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transformations cannot be done by simple matrix multiplica-
tion, but they can nonetheless be composed. Some newer ob-
ject-oriented graphics systems, for example Java, recognize
this by allowing one to collect chains of transformation ob-
jects.

Figure 1 shows a class hierarchy of planar transforma-
tions. The ‘‘Class’’ column shows each class of transformation
inheriting from its more general parent. For example, an
isometry is a similarity, but a similarity is not an isometry.
The ‘‘Transformation’’ column indicates the methods within
the transformation class. The ‘‘Invariance’’ column indicatesGRAPHICS TRANSFORMATIONS IN 2-D
the feature of graphical objects unchanged after transforma-

Transformations are fundamental to computer graphics. They
enable, for example, two-dimensional (2-D) perspective repre-
sentation of three-dimensional (3-D) objects. 2-D transforma-
tions themselves have many less obvious but equally impor-
tant applications. Rotation, scaling, and location of text,
placement of symbols in charts, map projections, clipping ob-
jects within panes and windows, and managing the behavior
of in-place editing tools all require the use of 2-D transforma-
tions somewhere in the coding of a graphical system. Further-
more, transformations of the plane have become especially
important recently in the development of interfaces for navi-
gating highly dense data configurations, networks, and ta-
bles. We will begin with an introduction to a basic hierarchy
of 2-D transformation groups and then examine some general
2-D coordinate transformations. Useful references for applica-
tions are Rogers and Adams (1), Foley et al. (2), Glassner (3),
Arvo (4), Hill (5), and Hearne and Baker (6).

TRANSFORMATIONS OF THE PLANE

A transformation is a function

T : S → S

mapping S to itself. For example, if (u, v) and (x, y) are ele-
ments of two sets S1 and S2, respectively, then the set of equa-
tions

x = g(u,v)

y = h(u,v)

where g and h are functions, transforms (u, v) to (x, y). As
with all functions, we call (x, y) the image of (u, v) and
T(u, v) � (g(u, v), h(u, v)) a mapping of S1 to S2. The mathe-
matical term image is particularly appropriate for under-
standing what we are doing with graphical transformations,
because it suggests that we are producing a figure that is an
image (reorientation, projection, distortion, etc.) of an origi-
nal. All transformations are functions, but not all functions
are transformations. Transformations are a subclass of func-
tions because a transformation maps a set to itself: A trans-
formation can be composed with itself by using its output as
input. In other words, we can define a new transformation
T 2 by the formula T 2 � T(T(x)). In computer graphics, this
means that we can compose a sequence of operations (for ex-
ample, repeated multiplications of a series of matrices) into a
single, more efficient operation (multiplication by one com-
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posed matrix). For examples of how 2-D matrix transforma-
tions can be composed, see Rogers and Adams (1). Some 2-D Figure 1. Hierarchy of planar transformations.
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tion. Finally, the ‘‘Image’’ column shows the effect of each If S1 and S2 are metric spaces with distance functions �1 and
�2, then a function g: S1 � S2 is an isometry transformation iftranformation on a dinosaur sketch. This figure does not cover

all possible transformations of the plane to itself, nor does it and only if
constitute a strict hierarchy. The reasons for this will become
more apparent in the sections to follow. δ2((g(x)),g(y)) = δ1(x, y) for all x, y ∈ S1

The isometry group is the set of transformations that pre-
serve distance between points. These operations obey the Isometries on the plane involve translation, rotation, and re-
axioms of Euclidean geometry. The three isometric transfor- flection. All of these preserve distance. While there are formal
mations are the rigid transformations: translation, rotation, proofs for this assertion, the simplest thing is to look at pic-
and reflection. Translation moves an object vertically or hori- tures.
zontally without changing its shape, size, or orientation. Ro-
tation rotates an object around a point (usually its center) Translation. Translation sends the coordinates (x, y) to
without changing shape or size. Reflection inverts an object (x � a, y � b). Translation moves a graphic right or left, up
horizontally or vertically without changing its size or shape, or down, or a combination of both, without changing its orien-
like looking in a mirror. tation. The dinosaur in Fig. 1 was translated from somewhere

The similarity group is the set of transformations that off the page.
change the size of an object. The method name, dilatate, sug-
gests enlargement, but it includes both shrinking and en-

Rotation. Rotation sends the polar coordinates (r, �) tolargement.
(r, � � c). This is equivalent to sending (x, y) toThe affinity group is the set of transformations that cause
(cos(�)x � sin(�)y, sin(�)x � cos(�)y).The dinosaur transforma-a dimension to stretch or shrink independently of the other.
tion in Fig. 1 is the rotation (cos(�)x � sin(�)y, sin(�)x �It also includes a shear, which is like turning Roman into
cos(�)y), where � is 45�.italic letters. Other shearings resemble a flexible object

squeezed between the blades of a pair of scissors.
Reflection. Reflection sends (x, y) to (�x, y) or to (x, �y).The projectivity group is the set of transformations that is

This operation reverses the vertical or horizontal orientationmost easily visualized by thinking of a light source shining on
of a graphic. The dinosaur is upended in Fig. 1 by negatingshapes drawn on a transparent plane and projecting a
the second coordinate.shadow onto another plane. This transformation preserves

straight lines but can modify angles considerably.
The conformality class covers conformal mappings. Confor- Similarity Transformations

mal mappings preserve local angles, but may distort global
A transformation g is a similarity if and only if there is ashape considerably. The conformality class, like the affinity
positive number r such thatclass, is a parent of the similarity class.

δ2(g(x), g(y)) = rδ1(x, y) for all x, y ∈ S1Isometric Transformations

A metric space is a set S together with a function Similarities on the plane involve isometries as well as dila-
tation.

δ : S × S → [0,∞)

Dilatation. Dilatation sends polar coordinates (�, �) towhere
(c�, �) or rectangular coordinates (x, y) to (cx, cy). Dilatation
works like a photo magnifier or reducer. The dinosaur is
transformed in Fig. 1 by c � 0.5.

δ(x, y) = 0 ⇔ x = y

δ(x, y) = δ(y, x)

δ(x, z) ≤ δ(x, y) + δ(y, z)

Affine Transformations
Although this definition is general enough to be applied to

The n-tuple coordinate for a point in a space can be repre-objects other than real numbers, we will assume that � is a
sented by the vector x � (x1, x2, . . ., xn). Vector notationdistance measure and x, y, z are points in a space defined on
allows us to express simply the affine class of transforma-the real numbers. Thus, (1) zero distance between two points
tions:implies that the points are the same, and if two points are

the same, the distance between them is zero, (2) the distance
xxx∗ = xTxTxT + cccbetween the point x and the point y is the same as the dis-

tance between the point y and the point x, and (3) a triangle
where x*, x, and c are row vectors and T is an n by n transfor-inequality among distances exists for any three points x, y,
mation matrix. In this notation, xT is the image of x. Ifand z.
c � 0, we call this a linear mapping. The linear subset of theAn instance of a metric space is the n-dimensional Euclid-
affine class includes rotation, reflection, and dilatation, asean space consisting of n-tuples (x1, x2, . . ., xn) of real num-
well as stretch and shear. If c � 0, we call it an affine map-bers xi, i � 1, . . ., n, with distance metric
ping. This adds translation to these operations.

Let’s first review the matrix form of the isometric and simi-
larity transformations we have seen so far. Beginning with
T, we can see that an identity transformation results from

δ =
�

n∑
i=1

x2
i

�1/2
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making T an identity matrix:

TTT =
[

1 0
0 1

]

Rotation involves the more general matrix

TTT =
[

cos θ sin θ

− sin θ cos θ

]

where � is the angle of rotation.
Reflection involves an identity matrix with one or more di- Figure 2. Planar projection.

agonal elements signed negative—for example,

Planar ProjectionsTTT =
[
−1 0
0 −1

]
A planar projection is the mapping of one plane to another by
perspective projection from any point not lying on either. Fig-Any negative diagonal element will reflect the corresponding
ure 2 illustrates this mapping spatially. As the figure sug-dimension of x. This particular T matrix reflects both dimen-
gests, we also may use a perspective projection to create 2-Dsions.
perspective views of 3-D objects in computer graphics. PlanarDilatation involves a matrix of the form
projections are more restrictive than 3-D to 2-D projections,
however. They share the composition behavior of other planar
transformations. We can, in other words, project a projection
and stay within the projectivity class.

TTT =
[

a 0
0 a

]

To notate projections, it is helpful to adopt homogeneous
coordinates. We combine the T and c matrices into one gen-where a is a real number.
eral square matrix A:Finally, translation involves a row vector of the form

ccc = [u v]

where u and v are real numbers.
AAA =




a b p
c d q
u v s




The affine class permits T to be a real matrix of the form

The elements a, b, c, and d are from the T matrix, and u and
v are from the c vector that we used for affine transforma-
tions. The elements p, q, and s are for projection. To make

TTT =
[

a b
c d

]

this system work, we need to express x in homogeneous coor-
where a, b, c, and d are real numbers. Stretch and shear are dinates by augmenting our coordinate vector by one element:
produced by two types of this matrix.

xxx = (x, y, h)

Stretch. Stretch is the transformation that sends (x, y) to
(ax, dy), so If h � 1, then our Cartesian coordinates are simply x � x/h

and y � y/h. This reparameterization makes the general pro-
jective transformation

TTT =
[

a 0
0 d

]
xxx∗ = xxxAAA

The stretch transformation varies the aspect ratio of a
This matrix equation produces the following homogeneous co-graphic. This is the ratio of the physical height to the physical
ordinates:width of the frame graphic.

xxx∗ = ((ax + cy + u), (bx + dy + v), ( px + qy + s))
Shear. Shear is the transformation that sends (x, y) to

((ax � cy), (bx � dy)), so
If we renormalize after the transformation so that the third
coordinate is unity, we can retrieve (x*, y*) as the Cartesian
coordinates from the projection. To see what projection adds
to the affine class, we should notice that the third column of

TTT =
[

a b
c d

]

A produces a different scaling of x and y, depending on their
values. And because all the transformations are linear, theThe sheared dinosaur in Fig. 1 was produced by the matrix

whose elements are a � 0.96, b � 0.3, c � 0.3, and d � 0.96. straightness of lines is preserved in the class.
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Project. The projected dinosaur in Fig. 1 was produced by as
the coordinate transformation

z = reiθ
(x, y) → (1/x, y/x)

We can thus reexpress the complex constant a and define aThe projection matrix for expressing this transformation is
similarity transformation as

w = reiθ z + bAAA =




0 0 1
0 1 0
1 0 0




which rotates z by � and dilatates it by r.
This takes x in homogeneous coordinates to x* � (1, y, x), A conformal mapping adds a peculiar geometric character-
which produces the result we want in Cartesian coordinates istic to a similarity transformation: Local angles (at the inter-
after dividing through by x. section of two curves) are preserved, but straight lines may

become curves. A planar mapping is conformal if every point
Conformal Mappings. We need to generalize our coordi- on the plane is transformed so that all possible infinitesmal

nates once more in order to move to the next level of the pla- vectors emanating from that point are rotated and dilatated
nar transformation hierarchy. By working on the complex by the same amount in the image. This local rotation and
plane, we can define functions that would be messy or diffi- dilatation means that very small squares remain squares in
cult to understand in the real domain. A complex number the image, but large squares can be distorted considerably.
z � x � iy may be represented by a vector z on the complex The paradoxical beauty of this transformation is that locally
plane whose coordinates are Re(z) � x and Im(z) � y. Coordi- it looks like a similarity but globally it looks like a nonlinear
nate transformations on (x, y) can then be expressed in the warping.
form Of particular interest is the Möbius transformation

w = f (z) = u(z) + iv(z)

w = az + b
cz + dwhere u(z) and v(z) are real functions of z and where w is the

image point of z under f .
Similarity transformations can be expressed in the com- where all the constants and variables are complex. This

plex formula transformation has inspired a variety of basic applications in
physics, fluid dynamics, electromagnetic fields, and other

w = az + b areas. Needham (7) offers a glimpse into this world from a
geometric perspective and illustrates its application to vector

where w, a, b, and z are all complex. We can see this by noting flows and other graphics in physics. The conformal dinosaur
that in Fig. 1 was produced by the transformation

(a1 + ia2)(x + iy) = (a1x − a2y) + i(a2x + a1y) + (b1 + ib2)

which is the same set of operations involved in the similarity
w = 1 − z

1 + z
subclass of the projective transformation

GENERAL 2-D COORDINATE TRANSFORMATIONS

The classes of transformations presented in Fig. 1 cover the

xAxAxA = (x, y, 1) ·




a1 a2 0
−a2 a1 0
b1 b2 1




most common, but by no means the majority, of transforma-
The projective matrix notation tells us that the complex con- tions used in 2-D computer applications. Almost any continu-
stant b is involved in translation and that the complex con- ous warping of the plane could be seen to have an application
stant a is involved in rotation and dilatation of the plane rep- in image processing and geometic modeling. This section will
resented in z, since the submatrix mention only two—polar coordinates and fisheye views—that

are widely used in scientific graphics and user–interface
design.

[
a1 a2

−a2 a1

]
= r

[
cos θ sin θ

− sin θ cos θ

]

Polar Coordinates
where r is a real number. There is another way to show the

If (u, v) represents the polar coordinates (�, �) of a point, thenrotational role of the complex constant a. Euler’s formula
a polar coordinate function P(u, v) corresponds to the case
u � �, v � �, where x � � cos � and y � �sin�. There areeiθ = cos θ + i sin θ

numerous applications of the polar transformation in engi-
neering and business graphics. The most common is the ordi-locates a point on the unit circle at angle � on the complex

plane. It tells us that any complex number can be expressed nary pie chart. Engineers and scientists often plot periodic
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a fisheye transformed dinosaur with the center of focus at the
middle of the body. This reveals most detail in the center.
Lensing can be used on almost any graphical object, including
text fields, spreadsheets, and tables.
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The fisheye transformation can be used on either coordi-
nate (for vertical or horizontal lensing of tables of objects) or
on both (for lensing uniformly dense displays). Figure 4 shows

Figure 4. Fisheye transformed dinosaur.


