
242 RASTER GRAPHICS ARCHITECTURES

RASTER GRAPHICS ARCHITECTURES

The field of computer graphics involves rendering or visualiz-
ing of concrete or abstract data, for example, the 3-D display
of a mechanical part, the visualization of the airflow over a
wing, or the visualization of weather patterns. Since the very
early days of computer graphics it has been apparent that the
computational complexity and the bandwidth requirements

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

RASTER GRAPHICS ARCHITECTURES 243

for generating images exceeded by a wide margin the capabil- cessors and higher functions, in particular texture mapping
and image processing.ities of general-purpose processors. Therefore, dedicated

hardware was developed to accelerate the rendering of com-
puter-generated images. Only recently have general-purpose BASIC RASTER GRAPHICS ARCHITECTURE
microprocessors reached a performance level that permits to
build interactive 3-D graphics systems without dedicated Figure 1 shows the basic block diagram of a graphics com-
graphics hardware. This article starts with a survey of the puter (4). The host computer runs the operating system and
historical evolution of graphics hardware and a description of application software. The application responds to commands
the overall architecture of a graphics system. Next, we exam- and values provided by the input devices and generates the
ine in more detail the structure of raster graphics architec- graphics data to be displayed on the output device. The
tures for polygon rendering. We discuss the basic algorithms graphics subsystem converts the graphics data received from
and some exemplary, concrete architectures. The article con- the host computer into a data stream that can be displayed
cludes with a list of references for further reading that enable by the output device.
the reader to study the field of graphics hardware in more Graphics subsystems are specialized to operate on a set
detail. of graphics primitives. Different graphics subsystems support

different sets of primitives. Such primitive objects are, for in-
stance, line segments, triangles, general polygons, text, or

HISTORY curved surfaces. Figure 2 shows a more detailed view of the
graphics subsystem for a raster graphics subsystem.

Research and development of computer graphics hardware
started in 1950 with the Whirlwind Computer at the Massa- Geometry Subsystem
chusetts Institute of Technology (MIT). It employed a modi-

The geometric operations manipulate the geometric primi-fied oscilloscope to visualize and analyze the stability of air-
tives in the scene, for example, triangles or line segments,crafts. A few years later the SAGE air-defense system used a
to prepare them for rendering. The results of the geometricvector screen to display radar information. SAGE employed a
operations are primitives that are transformed into the coor-light pen to allow users to identify objects on the screen.
dinate system of the output device and carry associated colorIvan Sutherland’s seminal doctoral dissertation (1) marks
or intensity information. The geometric operations includethe birth of modern computer graphics. He introduced many
several or all of the following steps. More details on theseconcepts that are still in use, for example, hierarchical data
operations can be found in every standard text on computerstructures to define geometric information to be rendered onto
graphics, for example, Ref. 5.the screen, instantiation of prototype objects, and many inter-

action and user-interface techniques. Sutherland’s Sketchpad
Modeling Transformations. The modeling transformations

drawing system demonstrated the utility of these techniques. convert the description of a geometric primitive from its in-
Throughout the 1960s and early 1970s vector displays trinsic modeling coordinate system to a world coordinate sys-

were the only devices available for interactive graphics dis- tem that is used to describe the entire scene. Modeling trans-
plays. During that time the evolution was influenced by the formations are commonly specified as affine transformations
fact that most computing environments were based on termi- using homogeneous coordinates and are expressed as 4 � 4
nals attached to a central mainframe over low-bandwidth con- matrices. Usually, the coordinates and the parameters of the
nections. Consequently, substantial intelligence and compute matrices are specified as floating-point numbers.
power had to be put into the terminals to process a stream of
high-level commands and data coming from the host. Due to Lighting. The effects of light sources in the scene are com-
the substantial cost of graphics subsystems, they were mostly puted taking into account the position of the light source, the
restricted to defense and industrial applications [e.g., flight position of the viewer (eye point), the orientation of the primi-
simulators, CAD (computer aided design), or simulations tive (normal vector) and the primitive’s surface properties
analysis]. (e.g., reflectivity or shininess). The lighting model according

In the mid 1970s affordable semiconductor memories be- to Phong is frequently used to determine the intensity/color
came available, leading to the introduction of the first raster of a point on a surface.
graphics systems. Initially, raster graphics systems were very
expensive, had a low resolution, and were fairly slow. The I = Ia · ka + Il · [kd · (NNN · LLL) + ks · (RRR · EEE)n] (1)
development of specialized raster graphics algorithms and
dedicated hardware in the 1980s enabled interactive raster Equation (1) describes the Phong model using the geometry
graphics (2,3). shown in Fig. 3.

I is the intensity received by the viewer. Ia and Il are theThe final breakthrough of raster graphics occurred with
intensity of the ambient light and the light source. The coef-the introduction of workstations and personal computers.

These machines introduced the new computing model of de-
centralized, autonomous computers. Now, the graphics sub-
system was integrated more closely with the CPU (central
processing unit) and became an integral part of the system

Graphics
subsystemHost CPU

Input
devices

Output
device

architecture instead of being just another peripheral device.
Since about 1990, the evolution of raster graphics systems Figure 1. Basic structure of a graphics computer. (Reprinted from

(4) by courtesy of Marcel Dekker Inc.)has moved toward higher performance using parallel pro-

244 RASTER GRAPHICS ARCHITECTURES

Modeling
transforms

Setup
calculations

Lighting
calculations

Rasterization

Geometric operations

Image generation

Viewing
transforms

Pixel
processing

Clipping

Frame
buffer

Perspective
+ viewport

Screen
refresh

Figure 2. Components of a raster graphics system. (Reprinted from (4) by courtesy of Marcel
Dekker Inc.)

ficients ka, kd, and ks specify the surface reflectivity for ambi- a perspective projection to account for perspective foreshort-
ening. The perspective projection converts homogeneous coor-ent, diffuse and specular light. The coefficient n is the glossi-

ness, controlling the extent of specular highlights. dinates into real 3-D coordinates by dividing out the w compo-
nent of the coordinate. Viewing transformations and
perspective projection are performed using floating-point cal-Viewing Transformation. The viewing transformation posi-
culations. Finally, the viewport mapping scales and trans-tions and orients the scene according to the viewing parame-
lates the coordinates from world coordinates to device coordi-ters (or camera parameters), for example, viewing direction or
nates. Device coordinates are device-specific and are typicallyfield of view. Like the modeling transformations, the viewing
specified with integer or fixed-point values, for example, pixeltransformation is expressed using a 4 � 4 matrix.
positions. Hence viewport mapping involves casting the coor-
dinate values from floating-point to fixed-point represen-Clipping. Parts of the scene that fall outside of the viewing
tation.frustum do not need to be processed by any subsequent steps.

The viewing frustum is described by planes enclosing the vol-
ume visible for the given viewing parameters. Clipping geo- Image Generation Subsystem
metric primitives against the viewing frustum requires split-

Raster displays build the screen image from many small dotsting them along the clipping planes. Such computations are
on the screen, the picture elements, or pixels. As in a mosaic,performed using floating-point calculations.
each of the pixels can be controlled individually to assume aAnother technique similar to clipping is known as culling.
color and intensity. An overview over the principles of rasterEntire objects composed of many primitives are tested against
graphics can be found, for instance in Ref. 5.the viewing frustum. If an entire object is outside of the view-

Today, raster displays are dominant in workstations anding frustum the object is not considered further for rendering.
personal computers. Their principal advantage over vectorCulling is usually performed at the application level, but can
displays is that they can display images of arbitrary complex-be performed in hardware if the object structure is preserved,
ity without flicker and they can display shaded images in-that is, if the relationship between an object and its primi-
stead of only wireframes. They obviously provide a muchtives is not destroyed.
larger utility than vector displays. The main component of a
raster graphics system is the frame buffer. The frame bufferPerspective Transformation and Viewport Mapping. Option-
is a special memory that provides storage for every pixel onally, the viewing transformation and clipping are followed by
the screen. In the simplest case the frame buffer stores the
color of every screen pixel. Advanced raster graphics systems
store additional information for every pixel, for example, a
depth value for visible surface determination or transparency
information (see the following section).

The setup calculation takes as input the coordinates of the
triangle vertices and the colors at the vertices and computes
the coefficients of the bilinear expression for the color compo-
nents and the depth value. The rasterization step generates
the pixels covered by the triangle. Pixel processing operations
are arranged as a sequence of operations applied to the pixels
generated during rasterization. The screen refresh is per-

α α β

Light-
source

L

N
R

E

Viewpoint

Object

formed by periodically scanning out the contents of the frame
buffer onto the screen. The frame buffer decouples the imageFigure 3. Geometry of the Phong lighting model. (Reprinted from (4)

by courtesy of Marcel Dekker Inc.) generation from the screen refresh so that these two functions

RASTER GRAPHICS ARCHITECTURES 245

/* incrementally compute next y value */
}

This algorithm is not optimal as it still uses floating-point
numbers but it illustrates how incremental computations can
simplify and speed up the rasterization process. There exist
a number of algorithms that use only integer or fixed-point
numbers, for example, the Bresenham algorithm (6). Incre-
mental algorithms are more easily implemented in hardware,
see Fig. 5. Note how the structure inside the shaded blocks is

A

(a) (b)
used to incrementally compute the x and y coordinates of the

Figure 4. Rasterization of geometric primitives. (a) vector-based, line. This block is a linear interpolator to compute values of
ideal shape of the primitives; (b) rasterized primitives. (Reprinted an expression Ax � B for successive x � 0, 1, 2, . . .
from (4) by courtesy of Marcel Dekker Inc.).

Another important primitive in graphics is the triangle.
Triangles are the simplest 2-D primitives and are used as the
basic rendering primitive in many raster systems. To display

can be performed asynchronously, which is why the time for a triangle its interior must be filled with a color. The simplest
generating the entire image does not affect the screen re- case is flat shading where all pixels covered by the triangle
fresh rate. are assigned the same color. The Gouraud shading algorithm

interpolates colors specified at the vertices across the trian-
Rasterization. To fill the frame buffer the drawing primi- gle. The C code which follows illustrates how incremental

tives are subdivided into pixels, a process known as scan-con- computations can be applied to rasterize a triangle while in-
version or rasterization. Figure 4 illustrates this process. The terpolating its color using Gouraud shading.
pixels covered by the primitives are determined and the corre-
sponding locations in the frame buffer are overwritten with

Algorithm 3. Algorithm for rasterizing a Gouraud-the color of the primitives. Several algorithms have been de-
shaded triangle (see also Fig. 6)veloped to efficiently rasterize simple geometric shapes like
/* Assume scan-aligned bottom triangle */lines or triangles. These algorithms exploit coherence to com-
x_left = x1 ;pute the pixels covered by a primitive in an incremental fash-
x_right = x2 ;ion. A line segment connecting two pixels (x1, y1) and (x2,
c_left = c1 ;y2) is described by a linear equation y � mx � b, where m is
for (y=yt ; y <= yb ; y++) {the slope of the line segment and b denotes where the line
color = c_left ;intercepts the y axis.
for (x=x_left ; x <= x_right ; x++) {The simple approach to drawing that line segment is to
fill_pixel (x,y, color) ;evaluate line equation for every x between x1 and x2, as
color += mc_x ;shown in the following sample C code.

}
x_left += m_left ;Algorithm 1. Pseudo-code for simplistic line drawer
x_right += m_right ;for (x=x1 ; x<=x2 ; x++) {
c_left += mc_left ;y = m*x + b ;

}/* evaluate the line equation at (x,y) */
set_pixel (x,y) ;
/* store pixel into the frame buffer */

}

This procedure, even though functionally correct, is compu-
tationally expensive because it relies on floating-point compu-
tations and requires several multiplications.

A more efficient implementation of the line drawing algo-
rithm is shown below. It is known as digital differential ana-
lyzer (DDA). The sample C code which follows illustrates how
the multiplication operation is avoided using an iterative
scheme employing successive additions. (This algorithm will
generate connected pixels if the line has a slope between �1
and �1.)

Algorithm 2. DDA line drawing algorithm
y=y1 ; /* initialize y with the start value */
for (x=x1 ; x<=x2 ; x++) {

=

+

x

x

Mu

x1x2

+

y

Mu

y1m

done

1

yset_pixel (x,y) ;
/* store the pixel into frame buffer */ Figure 5. Block diagram of DDA line drawer. (Reprinted from (4) by

courtesy of Marcel Dekker Inc.)y = y+m ;

246 RASTER GRAPHICS ARCHITECTURES

buffer and the new color is stored in the frame buffer. Other-
wise the new pixel is discarded.

The main cost of z-buffering is the amount of extra memory
required to implement the z-buffer. Typically, depth values
are represented with 2 to 4 bytes per pixel. Depending on the
display size, the z-buffer can therefore require several MB of
memory. The advantage of z-buffering is that it allows objects
to be rendered in any order because visibility is determined at
every pixel. Other hidden-surface removal algorithms require
objects to be sorted prior to rendering; this can incur signifi-
cant overhead.

Texture mapping applies image information, the texture,
to the surface of rendered objects. It is used to enhance the
visual realism of rendered images without increasing the
number primitives in the scene. Figure 8 shows the steps for

x_left+
m_left

x_right
m_right

x2,ytx3,yt

x3,yb

x_left color color+mc_left x_right
y

y+

texture mapping an image onto a surface.Figure 6. Principle of triangle rasterization (see text). (Reprinted
Similar to color and depth values, texture coordinates arefrom (4) by courtesy of Marcel Dekker Inc.)

computed for every pixel covered by the primitive. These tex-
ture coordinates are used to access pixels in the texture map.

The algorithm assumes a triangle with a horizontal (scan- The color value retrieved from the texture map is applied to
line-aligned) top edge. A DDA line drawing algorithm com- the surface. In practice, this basic texture mapping algorithm
putes the pixels on the leading and trailing edge within each is refined to avoid perspective distortion of the texture and to
scanline. Then the pixels between starting and trailing edge reduce aliasing effects due to undersampling the texture map.
are filled. Figure 6 illustrates the procedure. The algorithm More details can be found for instance in Refs. 5 and 7.
relies on the fact that the color (and depth) changes linearly Alpha blending mixes the new pixel color with the color
across the triangle, that is, all colors in the triangle lie on a stored in the frame buffer using a weighting factor called
plane that is described by a linear expression Ax � By � C in alpha. Equation (2) describes one of several alpha blending
the screen coordinate system. The values mc_left and mc_x techniques:
are therefore the gradients of the color plane along the left
edge of the triangle and the x direction respectively. The eval- c = α · cnew + (1 − α) · c; 0 ≤ α ≤ 1 (2)
uation of a linear expression Ax � By � C occurs frequently
in computer graphics. The computation of this expression can

The value alpha determines how much of the new pixel colorbe implemented using two linear interpolators, and it is
cnew affects the color c already stored in the frame buffer.therefore also known as a bilinear interpolation. Figure 7
Alpha blending is primarily used for two purposes, transpar-shows the block diagram of a bilinear interpolator.
ency and anti-aliasing. To simulate transparency of a primi-
tive, the alpha value represents how transparent the object isPixel Processing. The most common pixel operations are z-
(0 for fully transparent, 1 for fully opaque). The transparencybuffering, texture mapping, and alpha blending. z-buffering
value can be computed similarly to color values by interpola-is an algorithm for hidden surface removal. The z-buffer is a
tion across the triangle.memory that stores a depth value at every pixel. These depth

For anti-aliasing, alpha values represent coverage infor-values indicate the distance from the viewer to the object visi-
mation (0: object doesn’t cover the pixel; 1: object covers theble at each pixel. During rasterization a depth value is gener-
pixel fully). The rasterizer computes this coverage informa-ated for each pixel. The stored and the new depth values are
tion for all pixels along the edges of a triangle, while interiorcompared. Only if the new depth value is smaller than the
pixels always cover the entire pixel. Using the coverage infor-stored depth value, that is, the new object is closer to the
mation, aliasing effects like staircases along the edges are re-viewer at that pixel, is the new depth value stored in the z-
duced. Figure 9 illustrates this.

v
Texture map

0
0 1

(0.0, 0.8)

(0.4, 0.2)

(0.8, 0.8)

1

u

Figure 8. Texture mapping. The texture coordinates (u, v) defined
at the vertices are interpolated across the triangle. The pixel color is
determined by looking up the texture color for the interpolated tex-

a

a

b

c

c

ax + by + c

ax + by + c

Linear
interpolator

Linear
interpolator

Bilinear
interpolator=ax + c

b

ture coordinates. Note how the highlighted pixel is distorted when
mapped into the texture map. (Reprinted from (4) by courtesy of Mar-Figure 7. Bilinear interpolator. (Reprinted from (4) by courtesy of

Marcel Dekker Inc.) cel Dekker Inc.)

RASTER GRAPHICS ARCHITECTURES 247

Figure 9. Anti-aliasing. (a) Pixel grid
with triangle. The numbers denote cover-
age information. (b) Aliased raster image.
(c) Anti-aliased raster image. (Reprinted

2

9

10 9

3

1

0

4

1

1

1

2

2

4 10 10 8

8

9 10 10 10 10

1010 10 10 10 9

10 10 10 5

55 5 5 5 5 2

(a) (b) (c) from (4) courtesy of Marcel Dekker Inc.)

Screen Refresh and Frame Buffer Memory. Certain output The frame buffer output can be interpreted as a color (or
gray value) to be displayed on the screen. Then the output ofdevices, in particular cathode ray tubes (CRTs), require con-

tinuous rewriting of the display surface to create the impres- the frame buffer is connected directly to the DAC as shown in
Fig. 10(a). Such displays are called true-color displays be-sion of a steady, flicker-free image at a rate of at least 30

times a second. Ergonomic standards require much higher re- cause the color stored in the frame buffer is the color that
appears on the screen. The advantage of true-color displays isfresh rates of 80 Hz and more. Figure 10 shows the block

diagram of a video controller that performs the screen refresh that every pixel on the screen can be assigned a different
color. This is very important for generating realistic lookingin a raster graphics system.

The frame buffer is scanned out periodically by the video images with many shades of colors. However, true-color dis-
plays demand a significant amount of frame-buffer memorycontroller that addresses the pixels in the frame buffer in

scanline order. The pixel values retrieved from the frame because colors are stored with 16 or 24 bits per pixel.
Another way to interpret the frame buffer contents is tobuffer are converted to analog signals using digital-to-analog

converters (DAC). The output of the DACs is fed to the moni- use the pixel values as an index into a look-up table (or pal-
ette) of color values [Fig. 10(b)]. The look-up table containstor synchronized with the trace of the electron beam scanning

across the screen. color values that are selected by the pixel values. Those color
values are then fed into the DACs to be displayed on the
screen. Such displays are known as index-color displays or
as color-mapped displays. Color-mapped displays require less
frame-buffer memory than true-color displays but offer only a
limited number of colors that can be displayed simultane-
ously. The actual number of simultaneous colors depends on
the length of the color map. In typical color-mapped systems
the frame buffer stores 8 bpp which allows selection from 256
values in the color map. The number of available colors de-
pends on the width of the color map, typically 24 bits (approx-
imately 16.7 million colors).

Look-up tables are also used to correct for the nonlinear
response of the CRT. Equation (3) shows the relationship be-
tween the computed pixel color C and the displayed intensity
I on the CRT screen.

I = k · Cγ (3)

The constants k and � are dependent on the monitor. Gamma
correction [named after the exponent in Eq. (3)] linearizes the
monitor characteristic by predistorting the color value pre-
sented to the monitor. A video look-up table (VLT) is loaded
with values that produce a linear monitor response.

In raster graphics systems the screen refresh requires
reading out the entire frame-buffer contents at the refresh
rate. This puts a very high demand on the memory bandwidth
for the frame buffer. Equation (4) describes time available for
accessing a single pixel in the frame buffer during screen re-
fresh.

y

y

x

Frame buffer

Frame buffer

(a)

(b)

R G

D D
A A

64

64 12

Look-up
table

23

128 23
B

Screen

Screen

Pixel content

Digital-to-analog
converters

Digital-to-analog
converters

x

A
D

D
A

D
A

D
A

Figure 10. Operating principle of (a) a true-color graphics system,
and (b) a color mapped graphics system. (Reprinted from (4) by cour-
tesy of Marcel Dekker Inc.)

tp =

� 1
fr

− tv

�/
V − th

H
(4)

248 RASTER GRAPHICS ARCHITECTURES

The following symbols are used in Eq. (4):

f r: Refresh rate, typically between 60 Hz and 120 Hz.
tv: Vertical retrace time for bringing the electron beam

from the last scanline to the first scanline, typically be-
tween 600 and 1250 �s.

th: Horizontal retrace time for bringing the electron beam
from the end of a scanline to the start of the next scan-
line, typically between 4 and 10 �s.

V: Vertical screen resolution, that is, the number of scan-
lines.

H: Horizontal screen resolution, that is, the number of pix-
els per scanline.

The bandwidth for accessing the frame buffer depends on the
pixel access time tp and how many bytes (bpp) must be ac-
cessed for each pixel. Equation (5) is used to determine the
bandwidth Br for transferring the pixel data from the frame
buffer to the display.

Col. decoder

Shift register
Serial I/O

8

512

512

5129

9Column address

Row address

Data I/O

8

1024 × 1024
DRAM array

R
o

w
 d

e
co

d
e

r

Figure 11. Basic architecture of Video-RAM (VRAM). The example
shows a 1 Mb VRAM, organized as 128 K � 8. (Reprinted from (4) by
courtesy of Marcel Dekker Inc.)

Br = bpp
tp

(5)

Note that Br denotes the peak bandwidth at which pixel infor-
mation must be supplied to the display. The average band- the video logic for screen refresh. This buffer is often referred
width is computed as H � V � bpp � f r. to as the front-buffer because its contents are initially dis-

In addition to the video logic, the rasterizer must access played on the screen. The second buffer (back-buffer) is filled
the frame buffer to write the image into the frame buffer. by the rasterizer. When the image is completed the buffers
This means that additional bandwidth into the frame buffer are swapped, that is the second buffer is displayed while a
is required to give the rasterizer access to the frame buffer. new image is rendered into the first buffer. Double-buffering
Frame-buffer designs must ensure that there is enough band- completely decouples image generation and screen refresh.
width available that the rasterizer is not slowed down be- An additional advantage of double-buffering is that the buff-
cause access to the frame buffer is denied. A good description ers are only swapped when the next image is finished. There-
of the problems of frame-buffer design can be found in Ref. 8. fore, the screen always contains a complete image, that is, the
Several strategies are available to accomplish this goal. To process of building the image from its primitives is completely
satisfy the bandwidth requirement frame buffers are highly hidden from the viewer. Double-buffered systems are often
optimized memory subsystems that are built from multiple used for animated images. The biggest disadvantage of dou-
banks of memory that are accessed in parallel. The values ble-buffered systems is the extra cost for the second frame
read from these banks of frame-buffer memory are stored in buffer.
a shift register from where the pixel values are read serially In virtual reality (VR) systems it is important to keep the
to the display. The shift register acts as a fast intermediate latency between user input, for example, head motion, and
memory between the frame buffer and the display. The bene- display update to a minimum in order to avoid possible mo-
fit is that the internal memory array is accessed less often, tion sickness. Since double-buffering adds up to one full
thus its availability for access from the rasterizer is in- frame-time to that latency, VR systems attempt to avoid dou-
creased. ble-buffered systems.

This concept has been integrated into single-chip memory
architecture known as video-random-access memories

PARALLEL RASTER GRAPHICS ARCHITECTURES(VRAM). Figure 11 shows a block diagram of a VRAM chip.
VRAMs are dual-ported dynamic random-access memories

Raster graphics forms the basis of most modern graphics sys-(DRAM). One port behaves like a standard DRAM interface
tems. A description of the basic functional units forming aand is used for filling the frame buffer. The other interface is
raster graphics system has already been given. We will dis-a specialized graphics port that allows the one-step loading of
cuss different classification systems for raster graphicsan entire row of the internal memory array into a shift regis-
architecture. Finally, we will describe small numbers of ac-ter from where the pixel values can be read at high speed.
tual raster graphics architecture and highlight different opti-Only one port can have access to the internal memory array
mizations in the design of graphics systems.of the VRAM chip. The serial port has priority over the paral-

lel port because the screen refresh must follow a fixed timing
Definition and Classification

and must not be delayed.
Another way to increase the availability of the frame The large variety of actual graphics systems has proven to

resist characterization in a single, comprehensive taxonomy.buffer is double-buffering. Here, the system is equipped with
two full-frame buffers. At any given time, one is connected to Several partial attempts at such taxonomies have been de-

RASTER GRAPHICS ARCHITECTURES 249

scribed in the literature (9,10,11,12). We will describe classi- tion of the rendering engines. However, the cost of sort-last
fications that emphasize different aspects of rendering archi- architectures lies in the final compositing step that has to de-
tectures in the following section. termine for every pixel the final color by selecting the front-

most object from all the partial images computed by the ren-
Sorting. In his dissertation Molnar (10) suggests rendering dering engines. If the compositing step has to be performed

systems classification based on a simple model of the render- at frame-rate, very stringent timing conditions have to be met
ing pipeline as shown in Fig. 12. in order to ensure synchronous operation with the screen re-

To accelerate the rendering process both the geometry fresh.
stage and the rasterization stage are usually implemented us-
ing multiple processors working in parallel. Polygons are

Parallelization. Parallel rendering architectures can also be
sorted and assigned to these processors. According to where

distinguished by how the rendering pipeline is partitioned
in the rendering pipeline this sorting is performed rendering

among the processing elements (9,13).systems are classified as sort-first, sort-middle or sort-last.
Given the model of the rendering pipeline, the most natu-Sort-first architectures statically assign a pair containing

ral partitioning is know as functional decomposition or pipe-one geometry engine (executing the geometry operations, see
lining. Every processor performs one or several steps of theFig. 2) and one rasterizer to a screen region [Fig. 13(a)]. We
rendering pipeline. Most graphics systems employ this parti-will refer to such a pair as a rendering engine. The application
tioning strategy at a high level, that is, by having one pro-assigns polygons to each rendering engine randomly. Model
cessor perform the geometric calculations while another per-and view transformations determine quickly which screen re-
forms the rasterization. This parallelization strategy isgion a polygon covers. The polygon is then transferred to the
straightforward as it relies on the natural sequence of stepsrendering engine for that screen region and the geometry pro-
in the rendering process. Early graphics engines employedcessing is completed. If a polygon covers several screen re-
this parallelization strategy for geometry processing, for ex-gions, the polygon is transferred to all affected rendering
ample, the Silicon Graphics GTX series (2,14). However, theengines. Sort-first architectures tend to suffer from poor load
disadvantages of pipelining are a low degree of parallelismbalancing if polygons are not evenly distributed across the
and limited flexibility to achieve load balancing. The latterscreen, thus resulting in higher load for some rendering
problem is a consequence of the rigidity of a pipeline as it isengines.
difficult for one processor to assume part of the workload ofIn sort-middle architectures only the rasterizers are stati-
another processor. Most of today’s graphics engines use paral-cally assigned to screen regions. Unlike sort-first architec-
lel processors to accelerate the geometry operations, for exam-tures, geometry engines and rasterizers are not rigidly cou-
ple, the Silicon Graphics VGX processor.pled into pairs [Fig. 13(b)]. Polygons are assigned to geometry

Parallel architectures can be classified by what data areengines in some arbitrary fashion that balances the load
treated in parallel. Object parallel architectures distribute ob-among the geometry engines, for example, random or round
jects among the processors, that is, several objects are pro-robin. After model and view transformation, polygons are
cessed in parallel. This partitioning is frequently used for ge-transferred to the rasterizer(s) responsible for the screen re-
ometry processing. For instance, the Silicon Graphics VGXgion(s) covered by the polygons. Sort-middle architectures
uses four parallel processors to transform and light the verti-achieve good load balancing among the geometry engines but
ces in a triangle in one step. A few architectures have appliedmay also suffer from uneven utilization of the rasterizers if
object-space partitioning to the rasterization stage.polygons are not distributed uniformly across the screen. An-

Image-parallel architectures assign portions of the screenother potential problem with sort-middle architectures lies in
to the processors. In the extreme, each processor handles onlythe many-to-many communication between geometry engines
one pixel, for example, the Pixel-planes 4 system (see the nextand rasterizers. For large numbers of geometry engines and
section). More typically, a single processor handles rectangu-rasterizers building such interconnects becomes very ex-
lar regions comprising several pixels. Image-space parti-pensive.
tioning is mostly used for parallel rasterizers.Sort-last architectures revert again to a static pairing of

geometry engines and rasterizers [Fig. 13(c)]. However, each
rendering engine covers the entire screen area. Each render- Example Architectures
ing engine computes a full-screen image containing all poly-

Pixel-Planes 4. Pixel-planes 4 (3) is a rasterization enginegons it has been assigned. After all rendering engines have
that uses a smart frame buffer (SFB) to compute all pixelsfinished rendering, the partial images are merged in a com-
inside a triangle in a fixed number of steps. The SFB consistspositing step to produce the final image. Sort-last architec-
of special memory modules that provide a simple processingtures exhibit good load balancing, as the spatial distribution

of polygons across the screen does not factor into the utiliza- element (PE) for every pixel. All PEs work in single-instruc-

Figure 12. Rendering pipeline model
used to classify parallel rendering archi-
tectures. (Reprinted from (4) by courtesy

Graphics subsystem

MiddleFirst Last
DisplayRasterizer

Geometry
engineApplication

of Marcel Dekker Inc.)

250 RASTER GRAPHICS ARCHITECTURES

Geometry
engine

Rasterizer

Geometry
engine

Rasterizer

Geometry
engine

Rasterizer

Geometry
engine

Geometry
engine

Geometry
engine

Geometry
engine

Geometry
engine

Rasterizer Rasterizer Rasterizer Rasterizer

Geometry
engine

Geometry
engine

Geometry
engine

Geometry
engine

Rasterizer Rasterizer Rasterizer Rasterizer

Rasterizer

(a) (b)

(c)

Composited
pixel

Display Display

Figure 13. Raster graphics architectures for (a) sort-first, (b) sort-middle, and (c) sort-last.

tion multiple-data (SIMD) fashion, that is, they perform the A, B, and C.
same operations at every pixel.

To exploit the SFB, Pixel-planes 4 uses a different rasteri- : Ax + By + C = 0 (6)
zation algorithm than the one described earlier. A triangle is
not described by its vertices but by the lines passing through Evaluating this equation for points to the left of the line pro-

duces positive values, while points on the right side of theits edges (Fig. 14).
Equation (6) shows the linear edge equation that describes line produce negative values. A point is inside a triangle if all

three edge equations return a positive value for this point.each line � by a linear expression with the line parameters

RASTER GRAPHICS ARCHITECTURES 251

Pixel-planes 4 computes z-values and Red–Green–Blue final rendering of a triangle. Most processors are running
idle. The successor to Pixel-planes 4 addresses these(RGB-values) by evaluating another linear expression. Equa-

tion (7) describes the plane supporting the triangle and is problems.
used to compute the z-values for pixels inside the triangle.

Pixel-Planes 5. Pixel-planes 5 (15) builds on the conceptsz = Azx + Bzy + Cz (7)
developed in the Pixel-planes 4 architecture but is much more
than just an extension of its predecessor. Pixel-planes 5 is aPixel-planes 4 uses simple one-bit processing elements (bit-
complete graphics subsystem, containing both geometry andserial computation) to evaluate the edge equations for all
raster processing capabilities. It was conceived as a flexiblethree edges, the z-values, and the RGB-values. Figure 15
testbed environment to prototype parallel rendering algo-shows how multiplier trees are used to compute the partial
rithms. Figure 16 gives an overview of the Pixel-planes 5 ar-sums Ax and By � C. The pixel processors add those partial
chitecture. The backbone of the system is a high-speed ringsums to compute the final sum.
network that connects up to 32 graphics processors (GP) andPixel-planes 4 delivers a rasterization performance of
up to 16 rasterization processors (RP). The GPs are built us-40,000 z-buffered and Gouraud-shaded triangles per second.
ing general purpose microprocessors (Intel 860). They per-As a consequence of its operating principles, this performance
form geometry processing operations and the setup calcula-is independent of the actual size of the triangles as all pixels
tions for the RPs. The central piece of the RPs is a 128 � 128are computed in parallel.
pixel-processor array that adds to the SFB modules of Pixel-The Pixel-planes 4 implementation uses 2048 SFB mod-
planes 4 the capability to evaluate biquadratic expressions ofules, each containing an 8 � 8 pixel array, to provide a
the form shown in Equation (8).512 � 512 pixel frame buffer. The modules are addressed by

external multiplier trees that precompute the base sums for
each module. z = Ax + By + C + Dx2 + Exy + Fy2 (8)

Besides its size (and cost), one of the principal problems
with Pixel-planes 4 is its low efficiency. Typical scenes contain This enables rasterization of quadratic patches instead of tri-

angles, thus allowing rendering of complex scenes with lessmany small triangles (less than 100 pixels). For such trian-
gles, only very few pixel processors actually contribute to the geometric primitives.

Figure 14. Triangle rasterization using
edge equations. Each pixel contains the
distance of the pixel center to each of the
lines bounding the triangle. (Reprinted
from (4) by courtesy of Marcel Dekkerx

y

0
0 1 2 3 4 5 6

1

2

3

4

+5.0
+0.7
–1.0

+5.0
+0.0
+0.0

+5.0
–0.7
+1.0

+5.0
–1.4
+2.0

+5.0
–2.1
+3.0

+5.0
–2.8
+4.0

+5.0
–3.5
+5.0

+4.0
+1.4
–1.0

+4.0
+0.7
+0.0

+4.0
+0.0
+1.0

+4.0
–0.7
+2.0

+4.0
–2.8
+5.0

+3.0
+2.1
–1.0

+3.0
+1.4
+0.0

+3.0
+0.7
+1.0

+3.0
+0.0
+2.0

+3.0
–0.7
+3.0

L2

L1 L3

+3.0
–1.4
+4.0

+3.0
–2.1
+5.0

+2.0
+2.8
–1.0

+2.0
+2.1
+0.0

+2.0
+1.4
+1.0

+2.0
+0.7
+2.0

+2.0
+0.0
+3.0

+2.0
–0.7
+4.0

+2.0
–1.4
+5.0

+1.0
+3.5
–1.0

+1.0
+2.8
+0.0

+1.0
+2.1
+1.0

+1.0
+1.4
+2.0

+1.0
+0.7
+3.0

+1.0
+0.0
+4.0

+1.0
–0.7
+5.0

+0.
+4.

–1.0

+0.0
+3.5
+0.0

+0.0
+2.8
+1.0

+0.0
+2.1
+2.0

+0.0
+1.4
+3.0

+0.0
+0.7
+4.0

+0.0
+0.0
+5.0

–1.0
+4.9
–1.0

–1.0
+4.2
+0.0

–1.0
+3.5
+1.0

–1.0
+2.8
+2.0

–1.0
+2.1
+3.0

–1.0
+1.4
+4.0

–1.0
+0.7
+5.0

5

6

L1: 0 = 0x + 1y – 1

L2: 0 = 1x + 0y – 1

L3: 0 = – 5/7x – 5/7y + 5

Inc.)

252 RASTER GRAPHICS ARCHITECTURES

Figure 15. Basic architecture of Pixel-
planes 4. (Reprinted from (9) with permis-
sion by Springer Verlag.)

Pixel processor
4A

+

+

+

A 2A 3A

7B

a + b

b

a

b

6B

5B

4B

3B

2B

B

0

0

B2B

+

4B

4A 5A 6A
C +C +C +C +C +C +C +C

7A

C

2A

A

Enable

A
 +

 C ALU

Memory

+

7B

+

+

+

+

+

+

+

+

+

+ +

Figure 16. Basic architecture of Pixel-
planes 5. (Reprinted from (4) by courtesy
of Marcel Dekker Inc.)

Ring nodes

Host Pixel-planes-5 ring network
(160 MHz, 32 bit, 640 MB/s)

RP15RP1RP0

GP31GPGP

Frame
buffer

+
video
ctrl.

Backing store

128 x 128
Pixel array

B
a

ck
in

g
st

o
re

Im
a

g
e

 g
e

n
co

n
tr

o
lle

r

RASTER GRAPHICS ARCHITECTURES 253

Pixel-planes 5 implements a sort-middle architecture, that Several research projects have studied pipelines of object-
processors (16,17,18,19). We will give a short description ofis, GPs operate on a part of the scene database and sort the

transformed and clipped triangles into bins for different the PROOF system (18) as it combines many features found
in the other systems. Figure 18 shows a block diagram ofscreen regions. For a display with 1280 � 1024 pixels, there

are 80 such screen regions each covering 128 � 128 pixels. PROOF (pipeline for rendering in an object-oriented frame-
work).There are much fewer RPs than screen regions. An idle RP is

assigned the next unprocessed screen region for rasterization, PROOF’s graphics subsystem consists of three main
stages. The first and principal stage is the object-processorthus load-balancing between very busy screen regions and

screen regions with few objects. pipeline (OPP) that performs rasterization, shading, and z-
buffering to determine the visible objects for every pixel. TheThe unconventional architecture of Pixel-planes 5 has en-

abled programmers to implement interesting variations of the basic mode of operation of the OPP is Gouraud shading where
the object processors compute object colors.standard graphics pipeline. Deferred shading delays the light-

ing computations until after the hidden-surface removal. The optional shading stage adds Phong shading to the
functionality. For Phong shading the OPP computes a normalNow, lighting and shading are only performed once at every

pixel, namely for the visible surface. In addition to the con- vector instead of colors for every pixel. In order to reduce the
bandwidth requirements for the OPP, the material propertiesstant cost of the shading computations, the advantage of de-

ferred shading is that it makes possible more complicated are looked up in the look-up table 1 (LUT1) before data enter
the shading stage.lighting models, for example, Phong shading or procedural

shading. The obvious drawback of this technique is that all To improve image quality, PROOF supports anti-aliasing
by implementing the A-buffer algorithm. The A-buffer is anparameters required for lighting, for example, material and

normal vectors, have to be stored at every pixel until after extension of the z-buffer algorithm that constructs for every
pixel a depth-sorted list of potentially visible objects (20). Forz-buffering.
instance, if the edge of an object intersects a pixel, that object
and the object behind it are entered into the list. The filterObject-Parallel Pipelines. In object-parallel pipelines objects
stage determines the final pixel color by computing an area-are assigned to one processor. Each object processor rasterizes
weighted average of the colors of the objects in the list.its objects and injects the rasterized pixels into the stream of

The pixel color at the output of the filter stage is passedpixels traveling through the pipeline (Fig. 17).
through a color look-up table (CLUT) to enable gamma cor-Pixels proceed through the pipeline in scan order. The ob-
rection.ject processors accomplish hidden surface removal by de-

termining for every pixel received at the input whether it is
closer to the viewer than the triangle stored in the object Pixel-Flow. Pixel-flow (10,21,22) is similar to object-paral-

lel pipelines in that it determines the final image by combin-processor. At the end of the pipeline the stream of pixels car-
ries for every pixel the color and depth value of the visible ing the partial images formed by subsets of the entire scene.

It is a typical sort-last architecture. Figure 19 shows the over-object.
The principal advantage of object-processor pipelines is all architecture of a Pixel-flow system.

Besides the host interface and the frame buffer, the Pixel-that the rendering performance is independent of the number
of objects as long as there are enough processors to store all flow system contains a number of renderer/shader boards.

Depending on their configuration these boards are workingobjects. At the same time, the maximum display resolution is
limited by the speed with which the object processors can pro- either as rasterizers for polygons or as shading engines. Each

renderer/shader board is a single-board graphics processorcess pixels. Typically such systems are reported to be limited
to display resolutions of 512 � 512 pixels. that is capable of transforming and rasterizing approximately

Figure 17. Basic architecture of object-
processor pipelines. At the top, the posi-
tion of the objects on the screen is shown.
The assignment of objects to processors is
shown at the bottom. At every stage in
the pipeline it is indicated which object is
visible at the highlighted pixel. (Re-
printed from (4) by courtesy of Marcel

ZBG, RGBBG ZB, RGBB ZB, RGBBZA, RGBA

Screen

BG

A

C

B

A B C

Dekker Inc.)

254 RASTER GRAPHICS ARCHITECTURES

Picking data

LUT1

Shading
stage

Filter
stage

CLUT
Frame
buffer

+
video
logic

Display

2-D
graphic
proc.

Data

Cmd

Ctrl

56

8

8

8

8

8

856 5

LUT2

Host and
geom.
proc.

Object
proc.

pipeline

Figure 18. Basic architecture of the PROOF system. Connections drawn with heavy lines denote
data buses, thin lines denote control and communication signals. (Reprinted from (4) by courtesy
of Marcel Dekker Inc.)

70,000 triangles per second using a 160 � 128 pixel SIMD renderer merges the image generated by the renderer with
the image received over the image-composition channel. Therasterizer similar to the one used in Pixel-planes 5. The

renderer/shader boards are connected through a shared in- merge operation determines for corresponding pixels the visi-
ble pixel by performing a comparison of depth values. Theterconnect structure that provides two communication net-

works, the message-passing network and the image-composi- output of the last renderer is the final image of the entire
scene. This image is then sent to the shading nodes. Similartion network. The message-passing network allows every

board in the system to communicate with any other board in to Pixel-planes 5 and PROOF, Pixel-flow employs deferred
shading to determine the final pixel color.the system. The message-passing network is used for system

initialization and for sending changes to the geometry infor- Pixel-flow implements anti-aliasing by super-sampling the
image, that is, by sampling every pixel at multiple, slightlymation or the view parameters. The image-composition net-

work is a bidirectional high-speed data channel for moving different locations. The samples are combined into the final
pixel color by the shading modules using a weighted-averagepixels between adjacent boards.

The operating principle of Pixel-flow is to distribute over filter.
Pixel-flow exhibits a number of advantageous characteris-the message-passing network subsets of the scene database

to each of the rendering boards. Each renderer generates a tics. The system is very scalable to different performance lev-
els by choosing the number of renderer/shader boards. Sincepartial image based on the objects that it was assigned. The

completed partial image is shipped over the image-composi- each renderer/shader board is programmable, different ren-
dering and shading algorithms can be realized by the system.tion network to the next renderer. A compositor stage in each

Figure 19. Basic architecture of Pixel-
flow; revised from Molnar (10).

Host

Renderer Renderer Shader Shader
Host

interface

r Renderers s Shaders

Display

Frame
buffer

Image-composition network (256 bits, 200 MHz)

Message-passing network (32 bits, 200 MHz)

RASTER GRAPHICS ARCHITECTURES 255

Silicon Graphics RealityEngine. The SGI RealityEngine (23) generators. The fragment generators perform rasterization,
texture mapping, blending, and fog computations. The gener-extends the concepts introduced with the VGX architecture.

Figure 20 shows a block diagram of the RealityEngine graph- ated pixels, the so-called fragments, are then sent to the
image engines (IE). Each raster board holds 80 IEs, 16 forics subsystem.

The geometry subsystem contains a command processor each fragment generator. Each IE performs depth buffering
and stores colors and z-values into the local frame bufferand, depending on the configuration, 6, 8 or 12 geometry en-

gines (GE). The command processor interprets the incoming memory. The local frame buffer memory is built from 4 MB
of DRAM that can be organized as 256, 512, or 1024 bpp,command stream, updates internal state and, if necessary,

subdivides long triangle-strips. Each GE contains an Intel depending on the display resolution and the number of
raster boards.860 processor, 2 MB of local memory and circuitry for data

buffering and data format conversion. The GEs decompose in- The RealityEngine architecture improves over its prede-
cessor, the VGX architecture, by computing for each pixel ancoming polygons into triangles and perform transformation

and lighting calculations. The transformed, lit, and clipped 8 � 8 subpixel coverage mask that indicates which subpixels
are actually covered by a triangle. This subpixel informationtriangles are then sent over the triangle bus to the raster sub-

system. is used in the IE compute to perform anti-aliasing by blending
the fragment color with the pixel color according to the cover-The raster subsystem can be equipped with one, two, or

four raster boards. Each raster board contains five fragment age mask.

Fragment
generator

GE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

Raster
subsystem

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

To display subsystem

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

GE GE GE 6, 8, or 12

Triangle bus

Geometry subsystem

From system bus

GE

Command
processor

Fragment
generator

Fragment
generator

Fragment
generator

Fragment
generator

Figure 20. Basic architecture of the Silicon Graphics RealityEngine; adapted from Akeley (23).

256 RASTER GRAPHICS ARCHITECTURES

3. J. Poulton et al., Pixel-planes: building a VLSI-based graphic sys-At a high level the RealityEngine has abandoned the use of
tem, Proc. Chapel Hill Conf. VLSI, 1985, pp. 35–61.pipelining in favor of parallel geometry engines and fragment

4. B.-O. Schneider, Computer graphics hardware, in A. Kent, H.generators. The fragment generators themselves, however,
Lancour and W. Z. Nasri (eds.), Encyclopedia of Library and Infor-are designed as deep pipelines. The RealityEngine is a typical
mation Science, New York: Marcel Dekker, in press.sort-middle architecture. The sorting step occurs across the

5. J. D. Foley et al., Computer Graphics, Principles and Practice,triangle bus that forms a potential bottleneck. The bandwidth
2nd ed., Reading: Addison-Wesley, 1990.of the triangle bus has been designed to accommodate the

6. J. E. Bresenham, Algorithm for computer control of a digital plot-maximum workload generated by a fully configured system
ter, IBM Syst. J., 4 (1): 25–30, 1965.with 12 geometry engines.

7. P. S. Heckbert, Survey of texture mapping, IEEE Comput. Graph-
ics Appl., 6 (11): 56–67, 1986.

8. M. C. Whitton, Memory design for raster graphics displays, IEEESPECIAL PURPOSE RASTER GRAPHICS ARCHITECTURES
Comput. Graphics Appl., 4 (3): 48–65, 1984.

9. B.-O. Schneider, Towards a taxonomy for display processors, inConstructive Solid Geometry
R. L. Grimsdale, W. Straßer (eds.), Advances in Computer Graph-

Even though most current raster graphics architectures oper- ics Hardware IV, New York: Springer-Verlag, 1991, pp. 3–36.
ate according to the principles laid out in the previous sec- 10. S. Molnar, Image composition architectures for real-time graphics,
tions, several research efforts have investigated raster graph- Ph.D. dissertation, Dept. of Comput. Sci., Univ. North Carolina,
ics architectures for primitive types other than triangles. Chapel Hill, 1991.
Constructive solid geometry (CSG) is a modeling technique 11. N. Gharachorloo, et al., A characterization of ten rasterization
frequently used in CAD. CSG describes objects as a sequence techniques, Comput. Graphics (Proc. Siggraph), 23 (3): 355–368,
of Boolean set operations, for example, union, intersection, 1989.
and difference, on simple point sets, for example, half-spaces 12. T. Whitted, Architectures for 3D graphics display hardware, in
(24). The ray-casting engine (RCE) (25) renders CSG objects Proceedings of the International Summer Institute, State of the
by directly evaluating the CSG expression for a set of rays Art in Computer Graphics—Aspects of Visualization, New York:

Springer-Verlag, July 1992.from the eye through the screen pixels. The RCE uses two
types of processors to reflect the structure of a CSG object. 13. G. Abram and H. Fuchs, VLSI architectures for computer graph-
The primitive classifier (PC) processors store the description ics, in G. Enderle (ed.), Advances in Comput. Graphics I, New

York: Springer-Verlag, 1986.of a half-space and compute the intersection of a viewing ray
with that half-space. The classification combine (CC) proces- 14. K. Akeley and T. Jermoluk, High-performance polygon rendering,

Comput. Graphics (Proc. Siggraph), 22 (4): 239–246, 1988.sors perform set operations on ray segments received from its
children, either PCs or CCs. 15. H. Fuchs et al., Pixel-planes 5: a heterogeneous multiprocessor

graphics system using processor-enhanced memories, Comput.
Graphics (Proc. Siggraph), 23 (3): 79–88, 1989.Volume Rendering

16. D. Cohen, A VLSI approach to the CIG problem, Siggraph
Several medical, geophysical, and meteorological applications Conf., 1980.
generate volume data. Volume data are a set of samples de- 17. R. Weinberg, Parallel processing image synthesis and anti-
fined over a 3-D grid. Each sample represents data for a small aliasing, Comput. Graphics (Proc. Siggraph), 15 (3): 55–62, 1981.
surrounding volume, usually called a voxel. Voxel data fre- 18. B.-O. Schneider, A processor for an object-oriented rendering sys-
quently are interpreted as volume densities. For rendering, tem, Comput. Graphics Forum, 7: 1988, pp. 301–310.
viewing rays are sent into the volume, where they are attenu- 19. M. Deering et al., The triangle processor and normal vector
ated according to the densities in the traversed voxels. shader: a VLSI system for high performance graphics, Comput.

Volume-rendering architectures store the volume data set Graphics (Proc. Siggraph), 22 (4): 21–30, 1988.
in a 3-D frame buffer with a resolution of 2563 to 10243 voxels. 20. L. Carpenter, The A-buffer, an antialiased hidden surface
Special purpose hardware generates the viewing rays, calcu- method, Comput. Graphics (Proc. Siggraph), 18 (3): 103–108,
lates for each ray the voxels along the ray, and combines the 1984.
densities of those voxels into a single value that is displayed 21. S. Molnar et al., PixelFlow: high-speed rendering using image
on the screen. Because of the huge amounts of data (16 MB composition, Comput. Graphics (Proc. Siggraph), 26 (2): 231–

240, 1992.to 1 GB) one of the critical design issues for volume-rendering
architectures is to construct efficient memory architectures 22. John Eyles et al., PixelFlow: the realization, Proc. 1997

Siggraph/Eurographics Workshop Graphics Hardware, Losthat allow parallel access to several voxels in order to speed
Angeles, ACM, 1997, pp. 57–68.up the rendering process. A more detail discussion of volume

rendering can be found in Ref. 26. 23. K. Akeley, RealityEngine graphics, Proc. Siggraph 93, Anaheim,
CA, 1993, Computer Graphics Proc., Annual Conf. Ser., 1993,
ACM Siggraph, New York, 1993, pp. 109–116.

BIBLIOGRAPHY 24. A. A. G. Requicha, Mathematical models of rigid solids: theory,
methods, and systems, ACM Comput. Surveys, 12 (4): 437–464,
1980.1. I. E. Sutherland, Sketchpad: a man–machine graphical commu-

nication system, in Proc. Spring Joint Comput. Conf., Baltimore, 25. G. Kedem and J. L. Ellis, The Raycasting Engine, Proc.1984 Int.
MD: Spartan Books, 1963. Conf. Comput. Des. (ICCCD), 1984, pp. 533–538.

26. J. Hesser et al., Three architectures for volume rendering, Com-2. J. H. Clark, The geometry engine: a VLSI geometry system for
graphics, Comput. Graphics (Proc. Siggraph), 16 (3): 349–355, puter Graphics Forum (Proc. Eurographics), 14 (3): pp. 111–

122, 1995.1982.

REACTIVE POWER 257

Reading List

J. Foley et al., Computer Graphics: Principles and Practice, Reading,
MA: Addison-Wesley.

This book is the standard textbook on computer graphics. It describes
many of the issues discussed in this article.

Conrac Corporation, Raster Graphics Handbook, New York: Van Nos-
trand Reinhold, 1985.

Although somewhat dated, this book summarizes in an excellent
fashion many practical aspect of the design of a raster graphics
system.

IEEE Computer Graphics & Applications
ACM Computer Graphics
Computer Graphics Forum
These journals publish articles on all aspects of computer graphics,

including hardware, algorithms, and graphics systems. In particu-
lar, the proceedings of the annual Siggraph conference are pub-
lished as an issue of ACM Computer Graphics. Siggraph is the
leading conference on computer graphics. The proceedings of the
annual European computer graphics conference, Eurographics,
appear as an issue of Computer Graphics Forum.

Eurographics Workshop on Graphics Hardware
This annual workshop is a forum for the latest developments in

graphics hardware and presents work about all aspects of graphics
architectures. Compared to Siggraph and Eurographics, this work-
shop tends to provide a platform for early results and reports of
work in progress.

H. K. Reghbati and A. Y. C. Lee, Tutorial: computer graphics hard-
ware, Image generation and display, Los Alamitos, CA: IEEE Com-
put. Soc. Press, 1988.

This tutorial is a collection of many of the early papers on the subject
of graphics hardware. It contains many of the seminal papers de-
scribing pioneering work in graphics architectures.

BENGT-OLAF SCHNEIDER

IBM Thomas J. Watson Research
Center

RATE-ADAPTIVE PACEMAKERS. See PACEMAKERS.
RATE DISTORTION THEORY. See DATA COMPRESSION,

LOSSY.
RATE WINDOW. See DEEP LEVEL TRANSIENT SPEC-

TROSCOPY.

