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FLOW VISUALIZATION Physical models often cannot be solved analytically. Thus,
discrete methods such as finite-element, finite-difference, or

Visualization has become an essential part of scientific and finite-volume methods are often used to numerically solve
systems of partial differential equations. These methods areengineering practice to help analyze the massive data fields

being generated from supercomputer simulations and labora- based on defining a computational grid. Approximate equa-
tions are specified, resulting in a system of equations that cantory observations. A field is any physical quantity, such as

density or force, for which a value is defined at every point of be solved numerically at each grid node.
The domain of a simulation may have two or three spatiala given spatial domain. Data fields can consist of discretized

scalar, vector, or tensor quantities or any combination dimensions. It may also be variable in time. The data points
(or grid points) thus are two-dimensional (2-D) (x, y) or three-thereof. Examples include scalar intensity fields from medical

scanner magnetic resonance imaging (MRI), computerized to- dimensional (3-D) (x, y, z) coordinate positions. The data fields
may contain any combination of scalar quantities (e.g., pres-mography (CT), velocity vector fields from computational fluid

dynamics simulations (‘‘flow fields’’), and stress tensor fields sure, density, or temperature), vector quantities (e.g., force or
velocity), or tensor quantities (e.g., stress or deformation) atfrom structural mechanics.

For visualization, the abstract physical parameters are each data point. The data values may be constant, or they
may vary as a function of time. Time-dependent fields are im-mapped into visual parameters such as shape, structure,
portant for highly dynamic phenomena such as fluid flow.color, and texture, so that the scientist or engineer can per-

ceive meaningful patterns and understand the underlying
Grid Typesphysical process. To achieve these mappings, we can link the

field quantities directly to the visual primitives, we can derive There are many types of computational grids, depending on
geometric objects (curves, surfaces, or solids) from data fields, the simulation technique, the domain, and the application. A
or we can extract topological structures. grid consists of nodes and cells. The nodes are points defined

In this article, we will discuss the area of flow visualiza- in the simulation domain, and the cells are simple spatial ele-
tion, which is the application of visualization techniques to ments connecting the nodes: triangles or quadrangles in 2-D,
steady and unsteady (time-varying) flow fields. The focus will tetrahedra or hexahedra in 3-D. The cells must fill the whole
be on visualization techniques for vector, tensor, and time- domain, but may not intersect or overlap, and adjacent cells
varying scalar flow datasets. Our main source of data is com- must have common edges and faces. Grids can be classified
putational fluid dynamics (CFD), and many of the physical according to their geometry, their topology, and their cell
concepts and analogies underlying the visualization tech- shape. Three of the most important types are shown in Fig.
niques are derived from this domain. Also, fluid dynamics has 1. The simplest type is the regular orthogonal (or Cartesian)
a long and rich experimental tradition, in which visualization grid [Fig. 1(a)]. This type of grid has a regular geometry and
plays a major role. Experimental visualization in fluid dy- topology; the nodes are spaced in a regular array, and the
namics has been (and still is) a strong inspiration to research cells are all unit cubes. The grid lines connecting the nodes
in scientific visualization. For information on general volume are straight and orthogonal. Every node can be referenced by
visualization see VOLUME VISUALIZATION. For an overall text an integer index vector i(i, j, k). Adjacent nodes can be found
on visualization which includes vector field visualization, see by incrementing any of the index vector components. Many
Ref. 1. operations on this type of grid (such as searching the grid cell

We will first describe the main characteristic of the data which contains a given point) are very simple, but grid den-
fields, and then we will describe some basic operations on sity is constant throughout the domain, and the shape of the
data fields such as transformations, interpolations, and gradi- domain must be rectangular.
ent computations. We will then describe various visualization The second type of grid is the structured, curvilinear grid
techniques for flow fields, such as arrow plots, stream curves [Fig. 1(b)]. This type has a regular topology (the adjacency
and surface generation, texture-based flow rendering, vector pattern for each internal node is the same), with the nodes
field topology, tensor field visualization, and feature tracking. again referenced by a 3-D index vector i(i, j, k), and adjacent

nodes can be found by incrementing index values. The cells
are usually hexahedra, with a deformed-brick shape. The ge-

DATA FIELDS: PROPERTIES AND REPRESENTATIONS ometry of each cell is irregular, and the cell faces are nonpla-
nar quadrangles. The cell size of a curvilinear grid can be

Basic Field Types highly variable, and thus the resolution of the simulation can

A three-dimensional field can be represented analytically by
a global function f (x, y, z), defined over a bounded spatial do-
main in R3. A field value s at every point (x, y, z) of the domain
can be found by evaluating: s � f (x, y, z). This is usually not
the case with the discrete numerical fields that are more com-
mon in science and engineering, where data values are known
only at a large but finite number of data points. Such discrete
fields are usually generated by numerical computer simula-
tions and data sensing systems. (For simplicity, we will as-
sume in the rest of this article that the data fields have been

(a) (b) (c)
generated by numerical simulations, but most discussions
will apply to measured data fields as well.) Figure 1. Three types of grids.
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be higher in areas of strong variation. Also, the curvilinear
shape can be made to conform to the boundary of a curved
object, such as an airplane wing. This type of grid is common
in finite-volume CFD simulations.

The third type of grid is the unstructured grid [Fig. 1(c)],
where the topology and geometry are both irregular. The
nodes do not have a fixed adjacency pattern, and adjacency
information cannot be derived from a spatial index, but has
to be stored explicitly. The cells are usually triangles in 2-D

z

x

y

αα

β
β

γ

γ

1 – 

1 – 

1 – 
X

or tetrahedra in 3-D. Cell size can be varied according to the
Figure 2. Trilinear interpolation.amount of detail desired, and they can be used to model a

complex geometry. Unstructured grids are often used in fi-
nite-element analysis. Due to the simple cell geometry, calcu-
lations on a single cell are simple. tion is shown in Fig. 2. If the field values are uniquely defined

There are many more variations of grids: staggered grids, in a face common to two neighboring cells, then the resulting
hybrid (mixed-type) grids, multiblock grids, moving grids, and field is C0 continuous. Higher-order interpolations using qua-
multiresolution grids. In this article, we will concentrate dratic or cubic basis functions provide higher orders of conti-
mainly on static 3-D Cartesian and structured curvilinear nuity, but these are far less common, because they make more
grids. assumptions on the field between the nodes, and they are

A numerical solution will generally produce a discrete data much more expensive to calculate.
field, consisting of a combination of scalar, vector, or tensor
quantities, given at every grid point. These datasets can be Grid Transformation
very large, with as many as 104 to 106 nodes and with 10 or

Curvilinear grids are widely used in CFD because of theirmore variables defined at every node. This results in a size of
flexibility for modeling physical boundaries. However, it is10 Mbytes to 100 Mbytes for constant (time-independent)
more difficult to perform common mathematical operationsfields and several gigabytes for time-dependent fields.
(such as interpolation and point location) on these grids.
Therefore, transformations are used to convert the physical
space (P space or P ) to a computational space (C-space or C )BASIC OPERATIONS IN GRIDS
(see Fig. 3). The transformation between the two domains can
be performed in both directions, and positions and vector val-

Now that we have defined some characteristics of the fields
ues are transformed (scalar values are not transformed since

we are working with, we go on to describe the following basic they are independent of the underlying spatial grid).
operations that can be performed on these grids: For some curvilinear grids, it is possible to define a global

transformation which maps an entire grid to the new domain.
• Interpolation This is the case for grids with simple parameterized geome-

tries (e.g., cylindrical or spherical grids) or for grids that are• Grid transformation
defined by a transfinite parametric mapping. In the general

• Grid traversal and point location case, a local transformation is defined for each cell.
• Gradient computation

Point Transformation. Points can be transformed from C to
P by mapping the corner nodes of a cubic cell in C to theThese operations are the building blocks for more complex
corner nodes of a curvilinear cell in P and by interpolatingalgorithms, and they will be described in the following subsec-
all the points in between (2). Let point � � (�, �, �) be a pointtions.
in C , whose coordinates may be split into an integer part I �
(i, j, k) and a fractional part � � (�, �, �), with 0 � �, �, � �

Interpolation
1. In addition, let c(I) be the coordinates of grid node I � (i,
j, k). Now, we can transform � in C to x in P by interpolatingThe field value at an arbitrary point X in the domain can be

found by interpolation between data values at surrounding
grid nodes (since the underlying assumption is of a physical
continuum). Interpolation can be considered as a local approx-
imation function fitted to the data at the grid points.
Piecewise constant or linear interpolations are often used as
a ‘‘minimum’’ assumption about the intermediary field. With
piecewise constant (zero order) interpolation, the field value
at a point X in a cell is taken either equal to the nearest grid
node (nearest-neighbor interpolation) or as an average of the
surrounding grid nodes. In these cases, the resulting field is
discontinuous. With linear (first-order) interpolation, a linear
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variation of the field is assumed between the data values at
the surrounding grid nodes. An example of trilinear interpola- Figure 3. Transformation between P and C .
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the current cell containing that position. Therefore, it must be
determined which cell is the current one. In particle tracing, a
particle traverses a grid containing a velocity field, which is
sampled at subsequent positions visited by the particle.
Again, the value of a sample is determined by interpolating
the field values at the corners of the current cell, so that here,
too, it must be determined which cell is the current one.

We can distinguish between global and incremental point
location. In global point location, a given point in a grid must
be found without a previous, known cell. In a curvilinear grid,
this is not an easy task. As with all search algorithms, it is
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possible to use a simple brute-force algorithm which searches
Figure 4. Transformation through interpolation. all grid cells one-by-one, but this is clearly very expensive.

Auxiliary data structures can be used to speed up this
search (4,5).

Fortunately, in many visualization techniques there is a(see previous section) the P coordinates of the corner nodes
previous known position in a previous known cell. StartingI(i, j, k), using the local offsets A � (�, �, �):
from there, a new position is to be found. This is called incre-
mental point location. Two possible approaches for this prob-xxx = T (ξξξ ) = Itri(AAA, c(I)) (1)
lem are stencil walk (6) and tetrahedrization (7). The stencil
walk approach is a recursive algorithm that begins with aFigure 4 illustrates this principle for a 2-D cell.
guess at an initial point in computation space. That point isThe inverse transformation involves finding A given some
transformed to physical space, and the difference vector be-point X. This is more complex, since an explicit expression for
tween that and the target point is calculated. This vector isA cannot be given; instead, a Newton–Raphson iteration
then transformed back to computational space and added tocould be used to find their values.
the previous point, resulting in a new guess. This process is
repeated until the right cell has been found. In the tetrahedri-Vector Transformation. A vector vc in C is transformed to
zation approach, the hexahedral grid cells are broken up intovp in P using the equation
tetrahedra. A line from the previous known position to the
new position is drawn. This line intersects the faces of adja-vvvp = JJJ · vvvc (2)
cent tetrahedral, thereby identifying adjacent cells in which
containment tests can be performed to find the new point.Similarly, a vector vp in P is transformed to vc in C with

Gradient Computation
vvvc = JJJ−1 · vvvp (3)

Gradient quantities play an important role in visualization in
two ways: Either they are visualized directly, or they are usedHere, J, called the metric Jacobian, is a matrix representing
as part of another visualization technique. Gradient quanti-the cell deformation. This matrix contains the partial deriva-
ties are typically derived from quantities given in the datatives of the transformation T :
field, using the nabla operator � � (�/�x, �/�y, �/�z), which is
applied in one of the following ways:

• The gradient of a scalar field f is a vector field: �f �
(�u/�x, �v/�y, �w/�z).

JJJ =

�
xξ xη xζ

yξ yη yζ

zξ zη zζ

�
(4)

• The gradient of a vector field v is a (second-order) tensor
where x� is short for �x/��, and so on. These derivatives may field:
also be considered groupwise, since the columns (j1 � j2 � j3) of
J are in fact the partial derivatives �x/��, �x/��, �x/��. The
calculation of transformation Jacobians may be done in two
ways: Jacobians may be calculated directly using continuous

∇vvv =

�
ux uy uz

vx vy vz

wx wy wz

�
derivatives, or they may be approximated using finite differ-
ences. Since most of the grids are not given in analytical form, where v � (u, v, w) denote the vector components, and
finite differences are used. For a full discussion of the various ux is short for �u/�x, and so on.
finite-difference methods, please see Ref. 3. • The divergence of a vector field v is a scalar field: � � v �

�u/�x 	 �v/�y 	 �w/�z.
Grid Traversal and Point Location • The rotation (or curl) of a vector field v is a vector field:

Grid traversal is a problem that occurs in visualization tech-
niques such as ray casting and particle tracing. A subproblem
of grid traversal is point location, which may be defined as
the process of finding which cell contains a given point. In ray
casting, a ray traverses a grid containing a scalar field, which
is sampled at subsequent positions. The value of a sample is
determined by interpolating the field values at the corners of

∇ × vvv =

�BBBBBB�
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visualization techniques discussed can be divided in three
groups:

• Global (or Direct) Techniques. A qualitative visualization
of a whole data set, or a large subset of it, at a low level
of abstraction. Scalar fields can be visualized globally us-
ing direct volume rendering or isosurface extraction (1).
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One simple method to visualize a vector field is to reduce
Figure 5. Decomposition. the vector to a scalar value, such as the magnitude of the

vector. Directional information is lost, but this can still
be useful for many purposes. Also, the scalar (magnitude)
field can be used as an enhancement to many of the tech-In fluid flows, the rotation of a velocity field v is called
niques listed below, using color mapping, or by usingthe vorticity �.
thresholding to select parts of the dataset. Examples of
global techniques for vector fields are arrow plots orA useful application of gradient quantities is in flow fields,
‘‘hedgehogs’’ (see section entitled ‘‘Arrows and Hedge-where meaningful flow properties may be derived from the
hogs’’) and texture-based visualization (see section enti-velocity gradient. The velocity gradient tensor J, calculated
tled ‘‘Texture-Based Vector Field Visualization’’).as shown above, may be decomposed into two components:

• Geometric Techniques. Generation and visualization of
geometric objects such as curves, surfaces, and solids, of
which the shape is directly related to the data field.

JJJ = JJJs + JJJa = 1
2

(JJJ + JJJT) + 1
2

(JJJ − JJJT) (5)

Definitions, generation, and visualization of flow curves
Here, the symmetrical tensor Js represents the deformation will be described in the sections entitled ‘‘Flow Curves,’’
of an infinitesimal fluid element, and the antisymmetrical ‘‘Integral Curve Generation,’’ ‘‘Curve Generation,’’ and
tensor Ja represents its rotation. ‘‘Curve Visualization.’’ Flow surfaces will be discussed in

An alternative decomposition of the velocity gradient ten- the sections entitled ‘‘Surface Definitions,’’ and ‘‘Stream
sor, given in Ref. 8, is based on a local coordinate frame with Surface Generation.’’
the x axis parallel to the local velocity vector, and the other • Feature Extraction and Tracking. High-level entities
two axes are defined as a Frenet frame. This allows us to (features) are extracted from large datasets, resulting in
determine several useful flow properties both parallel with representations that are directly related to the concepts
the flow and perpendicular to it, as shown in Fig. 5. of the application. Examples of flow features are vortices

As the x axis is defined parallel with the direction of the and shock waves. In feature-based visualization the most
flow, the acceleration in the direction of the flow simply be- relevant information is selected, which can lead to a
comes the element ux of the velocity gradient tensor. Torsion large reduction of the data. Features are characterized
around the velocity axis is given by the x component of the by quantitiative measures, thus emphasizing quantifica-
rotation �. The curvature at a point of a streamline may be tion for precise evaluation and comparison. An example
visualized using the osculating circle, as shown in Fig. 6(a). is the extraction of flow field topology, discussed in the

The other two properties may be visualized with a plane section entitled ‘‘Flow Field Topology.’’ In time-depen-
perpendicular to the flow. Shear in the direction of the flow is dent flow simulations, the dynamics of features is stud-
represented by the change of orientation of this plane. Figure ied by tracking their evolution in time, thus extracting
6(b) shows a reference plane and the changed orientation the temporal behavior and important events. This topic
caused by the local flow. On the other hand, convergence/di- will be discussed in the section entitled ‘‘Feature Extrac-
vergence of the flow is represented by the change of shape of tion and Tracking.’’
the plane, as shown in Fig. 6(c).

Arrows and Hedgehogs

Vector fields can be directly displayed with arrow plots orVISUALIZATION
hedgehogs (oriented lines anchored by a point). The arrow/
line is drawn from the location of the vector and the directionIn what follows, we discuss a variety of visualization tech-

niques for vector, tensor, and time-varying flow datasets. The of the vector determines the direction of the arrow or line

Figure 6. Three components of the veloc-
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• Time Line. A line connecting all particles that have been
simultaneously released in a flow from positions on a
straight line, perpendicular to the flow direction. The
straight line moves and deforms with the flow due to lo-
cal velocity variations.

• Vorticity Line. A field line of a vorticity vector field.
• Hyperstreamline. A field line of an eigenvector (usually

Figure 7. Cluttered vector plot. with the largest magnitude) of a tensor field (11).

Most of the definitions are based on the notion of particle
segment. The arrow is also scaled and/or colored by the mag- advection, or particles moving in a flow. Streaklines and time
nitude of the vector. Thresholding can be used to restrict the lines have been derived from experiments. Streamlines, vor-
arrow plots to certain portions of the datasets to avoid clutter. ticity lines, and hyperstreamlines are mathematical abstrac-
These techniques work reasonably well with 2-D vector fields, tions, but they are all based on the idea of field lines. In a
but in 3-D the arrows are ambiguous and the images are clut- steady (stationary, time-independent) flow, streamlines,
tered so that very little useful information is displayed (Fig. streak lines, and particle paths are identical (2). In an un-
7). Other types of glyphs or icons can also be used (9). Figure steady (instationary, time-dependent) flow, these curves are
8 shows one type of icon to interrogate and visualize different all different, but they can all be generated in a straightfor-
variables in the flow field (8). Related global visualization ward way using integral curve algorithms.
methods are the texture-based techniques described in the
section entitled ‘‘Texture-Based Vector Field Visualization.’’ Curve Integration Methods (Integral Curve Generation)
The effect of a vector field can also be seen by placing a geo-

Most of the curves described above (streamlines, pathlines,metric object, such as a plane, in certain locations in the field
etc.) are based upon the same principle: They are generatedand ‘‘warping’’ the plane according to the vectors at that loca-
by integrating a vector field. The only thing that distinguishestion (1,10).
these curves is the underlying vector field used to calculate
them: For streamlines, pathlines, streaklines and timelines,Flow Curves
a velocity field v is used; for vorticity lines a vorticity field

A field line or tangent curve is a curve that is everywhere (� � � 
 v) is used, and for hyperstreamlines a tensor field
tangent to a vector field. The different types of flow curves is used.
and their definitions are listed below. All the curves are generated with the same basic algo-

rithm: Starting in some specified initial position, a stepwise,
numerical integration is performed, yielding a sequence of po-• Streamline. A tangent curve in a steady velocity field.
sitions through which a curve may be fitted. This is describedThe curve satisfies the equations dx/u � dy/v � dz/w,
by the equationwhere (u, v, w) are the velocity components in the x, y,

and z direction of the domain.
• Streak Line. A line joining the positions at one instant of xxx(t) =

∫
t
vvv(xxx) dt (6)

all particles that have been released from a single point.
• Particle Path. A trajectory curve of a single fluid particle

where t denotes time, x the current position, and v(x) the vec-moving in the flow. This curve is identical to an integral
tor field. The initial condition for the equation is provided bycurve, obtained by stepwise integration of the velocity
the initial position x0. The solution is a sequence of positionsvector field.
(x0, x1, . . .).

For the numerical integration, the standard integration
methods found in the literature may be applied, such as the
first-order Euler method and the second-order Runge-Kutta
method (also known as the Heun method). The first-order Eu-
ler method is given by

xxxn+1 = xxxn + �t · vvv(xxxn) (7)

The second-order Runge–Kutta method uses the first-or-
der Euler method to determine an estimate x*n	1. This is then
used to compute xn	1 using the equation

xxxn+1 = xxxn + �t · 1
2

{vvv(xxxn) + vvv(xxx∗
n+1)} (8)

Generally, the Runge–Kutta technique is used because it
is more accurate with an error of O(�t3) as opposed to the
Euler method which has an error on the order of O(�t2).
Higher-order techniques can also be used.Figure 8. Flow probe.
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The time step �t is used for the integration and can be gorithm is obviously the best choice. If the vector field is de-
either fixed or adaptable. For animation purposes (e.g., in fined in P, then a different transformation is applied to each
rendering particles in a velocity field at subsequent positions), cell and continuity of the vector field at the cell faces is lost
a fixed-time step is used since equidistant time intervals are in C. This can lead to errors, especially when a cell face is
required for a smooth animation (12). If the shape of the inte- crossed in the integration step, at a sharp discontinuity of the
gral curve is most important, then adaptive step sizes may grid [see Fig. 9(a)]. A typical result of a C-space algorithm is
lead to more efficient computations and more accurate re- shown in Fig. 9(b).
sults. The cell size or path curvature can be used to determine With P-space algorithms, point location is done directly in
step size. In parts of the grid where cells are small and nodes P, using either tetrahedral decomposition, or the stencil walk
are closely spaced together, high gradients may occur, so algorithm. Continuity of the vector field is retained, and no
smaller integration steps are better in order not to step over errors occur even at sharp discontinuities of the grid [Fig.
cells and thus miss important data. Furthermore, in regions 9(c)]. The more complex point location in the curvilinear grid
of high curvature, it is better to space subsequent points of is easily compensated by savings on the transformations, and
the curve more closely together, while in regions of low curva- thus these algorithms are more efficient (3,13).
ture the distance between the points may be increased to save Integral curves start from a user-specified initial point or
computing time (13). seed point. As the information carried by a single integral

curve is local, selection of these seed points is crucial. Impor-
Curve Generation tant features of the data field may be overlooked by improper

seed point selection. Interactive selection is not always possi-In fluid dynamics, the local transformation of a structured
ble due to the expensive curve computations. Therefore, algo-curvilinear grid cell to a unit cube cell is common practice.
rithmic selection techniques have been developed to locateMany flow simulations use this transformation to perform cal-
seed points in areas of special interest (14). For a global view,culations in a regular Cartesian grid in computational space
a large number of seed points can be placed throughout theC. For integral curve generation (or particle tracing), there
whole field. An advanced method for doing this is describedare algorithms operating in physical space P, as well as algo-
in Ref. 15.rithms using the transformation to C. Assuming that a sta-

Particle tracing in instationary or time-dependent fields istionary velocity field is defined in P, the general form of the
different because velocity is sampled both in space and timeP-space algorithm is:
during integration. This means that a time stamp must be
kept for each particle. The particle position is located in thefind cell containing initial (point location)
grid cell, and its time stamp is located in an interval betweenposition
two time steps. Temporal interpolation between two timewhile particle in domain do
steps is performed to determine instantaneous velocity. Spe-determine velocity at (interpolation)
cial care must be taken with moving grids or time-dependentcurrent position
changes in grid geometry. Also, data management of verycalculate new (integration)
large time-dependent vector fields is not a simple task. Forposition
example, if a data set consists of a separate velocity field forfind cell containing (point location)
each time step, interpolation in time requires memory refer-new position
ences to two different fields for each particle at each step.end while

Streamlines are only significant for steady flows, because
they are only defined at one instant and do not behave coher-The general form of the C-space algorithm is:
ently in time-dependent flows. A streakline can be generated
by (1) releasing a stream of particles from one given point atfind cell containing initial (point location)
regular time intervals and (2) joining these particles by lineposition
segments. In time-dependent flow fields, streaklines showwhile particle in domain do
time-coherent deformations, and thus they are suitable for vi-transform corner (transform
sualization (13). A time line at time t is determined by tracingvelocities of cell vector)
a line of particles that were all released simultaneously atfrom P to C
time t0, and again connecting the same particles at time t.determine C-velocity (interpolation)
Time lines are also useful for visualization of time-dependentat current position
flow fields.calculate new position (integration)

in C
transform C-position (transform Curve Visualization

to P point)
Visualization of curves is straightforward, using line drawing.find cell containing (point location)
Collections of curves can be used to visualize local variations,new position
such as divergence and rotation.end while

Figure 10 shows an example of streamlines in a stationary
velocity field. Although curves show local flow characteristics,Point location is much simpler in C-space, but in 3-D fields
an impression of the global structure of the flow field can beeight vector transformations and one point transformation
obtained using a large number of streamlines. The directionmust be performed. If the vector field is defined in C, then the

vector transformations are not necessary, and the C-space al- of motion is not shown by the curves, but this can be added
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Figure 9. C-space and P-space algorithms. (a) Grid with sharp discontinuity. (b) Result of C-
space algorithm. (c) Result of P-space algorithm.

by coloring the curve at the inflow or by drawing an arrow on For unsteady flows, this technique is not feasible, and
open-loop animation must be employed. A larger number ofthe curve.

Particle animation can provide the ‘‘motion’’ that is miss- frames must be precomputed at regular simulation time in-
tervals, and displayed at a constant update rate. For largeing from a static image of a vector field (16). Particle positions

at regular intervals are computed and displayed on the numbers of particles, playback animation is necessary be-
cause of the heavy computational load. For interactive use,screen. To show accurate velocity of the moving particles, the

display update rate must be constant (and not dependent on particle positions must be computed and displayed in real
time, which is possible with a small number of particles in acomputation time). Therefore, particle positions are usually

precomputed. stationary flow field.
Particle paths are usually smooth curves, reflecting a con-Curve rendering and particle animation can be combined

(17). Streamlines are generated by calculating positions at tinuous velocity field. This is true for laminar, convective flow
fields. However, in turbulent flows, where small-scale fluctu-constant time intervals. Thus each streamline can be ren-

dered as a series of line segments corresponding to equal time ations of velocity occur, the curves will not be smooth. Special
visualization techniques have been devised for turbulentspans. If the color index of these line segments is alternated

between different values, then a motion effect along the flows (12), showing the jagged, irregular paths dues to ran-
dom fluctuations in particle motion. Animation shows the er-streamline can be obtained by cyclic changes of the color table

of the display system. If a large number of streamlines are ratic motions of particles.
precomputed, this technique can be used for interactive explo-
ration. Surface Definitions

Playback animation can also be used, either displaying the
Curves are difficult to visually locate in 3-D because no spa-particles directly at each time step or displaying prerendered
tial depth cues are available (rotating the image or viewingimages. For stationary flows, closed-loop animation can be
the image in stereo can usually help). The curves discussedemployed, repeatedly showing a cycle of about 10 frames. The
previously can be made into surfaces for better visualization.display intensity of a particle varies over a limited life span,
The tangent curve can be extended to a tangent surface, astarting at zero, increasing to a maximum, and decreasing
surface that is everywhere tangent to the vector direction. Inagain to zero. If the birth times of the particles are uniformly
a stationary velocity field, a tangent surface is called a streamspread over the animation time, and wrap around from the
surface. As the velocity direction is everywhere tangent to thelast to the first frame, the animation will appear continuous,
stream surface, the velocity component normal to the surfacewithout any jumps between the cycles.
is everywhere zero. This means that no material flows
through a stream surface, so it can be considered as a separa-
tion between two independent flow zones. Time lines can be
generalized to time surfaces, connecting particles that have
been simultaneously released from positions on a plane. The
other types of curves can be similarly extended to surfaces;
we will restrict this discussion to stream surfaces.

Stream Surface Generation

The simplest type of stream surface is a ribbon, or a narrow
band. Besides local flow direction, it can show the local rota-
tion of the flow. Ribbons can be generated in different ways.
First, two adjacent streamlines can be generated from two
seed points placed close together, and then a mesh of trian-
gles can be constructed between them. The width of the rib-
bon depends on the trajectories of both streamlines, and itFigure 10. Streamlines in a stationary velocity field. (Data from

Delft Hydraulics.) may become large in a strongly divergent area. A second way
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is to construct a surface strip of constant width centered
around a single streamline. The orientation of the strip is di-
rectly linked to the angular velocity of the flow, obtained from
the vorticity. From the angular velocity a rotation angle can
be found by time integration along the streamline (18). The
initial orientation is defined at the seed point, and an incre-
mental rotation is applied in a local coordinate frame at each
point on the streamline. The ribbon is constructed by weaving
a strip of triangles between the points. The first method can
show the vortical behavior of the flow and the divergence by
varying the width of the ribbon. The second method shows
purely local vortical behavior on the central streamline. In
both cases, the surface is not an exact stream surface, and
the tangency condition is only true for the constructing
streamlines.

A general stream surface can be constructed by generating Figure 12. Regions with high normalized helicity density (repre-
streamlines from each of a number of points on an initial line sented by ellipsoids) and stream tubes through these regions, in a

backward-facing step flow.segment or rake. If for all these streamlines a single constant
time step is used, then the lines connecting points of equal
time on all streamlines are time lines. Streamlines and time
lines thus make a quadrangular mesh (see Fig. 11), which can the axis is defined by two consecutive points on the stream-
be easily divided into triangles for visualization. line and by the two direction vectors at these points. The ra-

If the flow is strongly divergent, adjacent streamlines will dius of the circular cross section at the end points is bound to
move too far apart and if there is an object in the flow, the the inverse of the square root of velocity magnitude. In this
surface must be split. Finally, if there are high-velocity gradi- way, a smooth continuous tube is generated, which is an ap-
ents in the flow direction, the mesh will be strongly distorted proximation of a constant-flux stream tube; the velocity mag-
and unequal-sized and poorly shaped triangles will result. nitude can be inferred from the tube diameter. An example of

To solve these problems, an advancing front algorithm has a stream tube is shown in Fig. 12. In this figure, a steady,
been proposed (19). The surface is generated in the transverse laminar flow in a backward facing step geometry is visual-
direction by adding a strip of triangles to the front. When we ized. Velocity and pressure data are defined on a 25 
 37 

use adaptive time steps to compensate for the gradients in 9 curvilinear grid. Two streamlines were generated through
the flow direction, all points on the front will move forward starting points in these regions, and they were visualized us-
by about the same distance. Also, if two adjacent points on ing tubular icons. The streamlines show the characteristic
the front move too far apart by divergence, a new streamline spiraling pattern. The local pressure is bound to an icon pa-
will be started at the midpoint between them. Conversely, if rameter that determines the tube’s color. (See also section
two points move too close together, one streamline will be ter- entitled ‘‘Feature Extraction and Tracking.’’) (The simulation
minated. If an object in the flow is detected, the front can be was done by the Numerical Mathematics Department, Delft
split, and the two parts can move on separately. University of Technology, The Netherlands; and the visualiza-

A stream surface can also be modeled as an implicit sur- tion was performed by Theo van Walsum, Department of
face f (x) � C (20). The stream surface must satisfy the condi- Technical Informatics, Delft University of Technology, The
tion �f � v � 0, which means that the normal to the surface Netherlands.)
(denoted by the gradient �f ) is perpendicular to the velocity
direction. The function f is called the stream surface function
and are specified at the inflow boundaries of the flow area. TEXTURE-BASED VECTOR FIELD VISUALIZATION
All other grid points for the values of f are calculated numeri-
cally, either by solving the convection equation or by tracing Surfaces are easy to display using common polygon rendering

techniques. The shape of a surface can be very well perceivedbackwards from each grid point to the inflow boundary. A
stream surface is then generated as an isosurface of f [this from the shading derived from the reflection of directional

light. With color, an additional scalar variable (such as pres-type of technique can also be used for time surfaces (19)].
Another way to show the depth of a streamline is to use a sure) can be shown on the surface.

On tangent surfaces, no precise directional information ofstream tube. Each tube icon is a generalized cylinder, of which
the vector field is shown, because the true direction of a local
tangent vector cannot be derived from the display. One way
to improve this is to render tangent lines on the surface. A
better way is the use of texture, which gives a complete view
of the vector direction on the surface. There are a number
of different texture-based synthesis techniques including spot
noise, line integral convolution, and texture splats. All of the
methods attempt to generate a ‘‘feeling of flow’’ by having a
texture perturbed in the direction of flow. The effect is similar

Streamline

Rake

Time line

to metal shavings on paper lining up in the direction of a
magnetic field.Figure 11. Mesh for a stream surface.



648 FLOW VISUALIZATION

Figure 15. Spot noise applied to a 2-D slice of a 3-D simulation of the
flow around a square block. The section behind the block is shown.
(Simulation is by R. W. C. P. Verstappen and A. E. P. Veltman, Uni-
versity of Groningen, The Netherlands; Visualization is by W. de
Leeuw, Center for Mathematics and Computer Science (CWI), Am-
sterdam.)

if texture mapping hardware is available. An example is
Figure 13. Line integral convolution (LIC) overview. The input to shown in Fig. 13 (23,24). Recently, several extensions to the
LIC consists of a vector field and a texture.

LIC algorithm have been made to improve rendering in both
2-D and 3-D (see Ref. 25). Figure 14 depicts the surface flow
pattern on a rolling delta wing. The flow pattern is generated

Line integral convolution (LIC) is one method to produce using the line integral convolution algorithm with enhanced
the textured ‘‘flow’’ effect. The input to the LIC algorithm image quality (24). This image depicts the surface flow pat-
(21,22) is a vector field and an image texture (see Fig. 13). A tern colored by velocity magnitude. In the color image, low
local streamline is computed at each pixel (in both directions). velocity is blue, high velocity is red (25). There are several
The weighted average of the intensities of the pixels of the flow separations and reattachments along the leading edge of
input image that the streamline passes through is then com- the delta wing.
puted. The image texture is generally white noise (however, Spot noise (26) is a similar technique by which texture is
any picture or photograph can be used for the image texture, generated by blending a large number of elementary 2-D
resulting in a warped image in the direction of the vector shapes (called spots), randomly positioned in a 2-D plane and
field). The weighted average is calculated using a convolution with random intensity. Local control of the texture is possible
filter. The filtering operation causes the noise to be blurred in by adapting the spot shape to the local values of a 2-D vector
the direction of the vector field. Animation is possible by field. If the basic spot shape is a circular disk, the deformed
applying a phase shift to the filter function, proportional to spot is an ellipse, with its main axis aligned with the vector
local velocity magnitude. Texture frames are again precom- direction. The length of the main axis is proportional to vector
puted and stored, and they can be interactively viewed in 3D magnitude, and the area of each spot is kept constant for a

given texture. The spots can be bent to adapt better to highly
curved and divergent areas in the vector field. A generated 2-
D texture is mapped to a 3-D surface and displayed. Figure
15 is a 2-D slice of a 3-D direct simulation of a flow around a
square block. The goal of the study is to understand the evolu-
tion of vortex shedding and transition to turbulent flow down-
stream. The grid resolution is 278 
 208, and the texture res-
olution is 512 
 512 pixels, using 40,000 spots. Texture splats
(27) is another method to ‘‘paint’’ a vector field. This tech-
nique is an extension of the splatting algorithm (28) for scalar
fields and is based upon using splats aligned with the vector
direction.

FLOW FIELD TOPOLOGY

A vector or tensor field can be characterized by extracting its
topology (29–31). The topology can be understood in terms of
singular points (critical points in a vector field, degenerate
points in a tensor field). These points are connected by inte-
gral curves and surfaces, as well as hyperstreamlines, thusFigure 14. LIC applied to a delta wing simulation. (Data courtesy of
building topological skeletons, which divide the flow into sep-Neal Chaderjian, visualization is by David Kao, NASA Ames Re-

search Center.) arate regions.



FLOW VISUALIZATION 649

Second-Order Tensor Fields

Second order tensor fields are common in the study of fluid
flow. Second order tensors (3-D) contains a 3 
 3 matrix at
each grid location. Examples include the velocity gradient
(see section entitled ‘‘Basic Operations in Grids’’), viscous
stress, stress, momentum flux density, and reversible momen-
tum flux density (11). Second-order tensor field visualization
is a hard problem and is still an active area of research. Many
of the approaches to visualize second-order tensor fields
mimic those approaches for vector field (first-order tensor
fields). For icons, tensor glyphs or ellipsoids can be used
(9,32). The eigenvalues and eigenvectors of a symmetric ten-
sor define the axes and orientation of the ellipsoid centered
at that grid location. When the tensor field is defined at every
grid location, many small ellipsoids result much like an
arrow–vector field. Other local approaches include using in-
terrogation objects (33,34) in which a geometric object, such
as a plane, is deformed by the tensor field and then rendered.

For symmetric tensor fields, the eigenvalues can be sorted

Saddle: R1 × R2 < 0,
I1, I2 = 0

Repelling node
R1, R2 > 0
I1, I2 = 0

Repelling focus
R1, R2 > 0
I1, I2 ! = 0

Center: R1, R2 = 0
I1, I2 ! = 0

Attracting node
R1, R2 < 0
I1, I2 = 0

Attracting focus
R1, R2 < 0
I1, I2 ! = 0 by magnitude and a hyperstreamline can be generated by in-

tegrating along one of the eigenvector fields. A cylindrical sur-Figure 16. Critical point characterization.
face can be generated using such a hyperstreamline as a
spine curve and by using the other two eigenvectors to define
elliptical cross sections along the spine curve. In this way, a

Vector Fields ‘‘swept ellipse’’ object is generated along the hyperstreamline,
as a variable width tube (11,35). In Fig. 18, four hyperstream-Critical points are points in vector field where the vector mag-
lines which are integrated along the minor principle stressnitude is zero (30,31). A critical point can be classified by the
axis are shown. The data are from a point load applied to apattern of the field around it—for example, as an attracting
semi-infinite domain (Boussinesq problem). A rendering ofor repelling focus, attracting or repelling node, a saddle point,
this dataset using ellipsoids is shown in Ref. 1.or a center (see Fig. 16). This can be determined from the real

For nonsymmetric tensor fields, the field is first decom-and imaginary components of the eigenvalues of the vector
posed into a symmetric tensor field and a vector field. Hyper-gradient tensor (or Jacobian) at the critical point. The real
streamlines are then computed on the symmetric tensor field,component R determines if the pattern is attracting (R � 0),
and standard vector field visualization techniques can be usedrepelling (R 
 0), or neutral (R � 0). For a saddle point, the
to highlight the effect of the vector field.two real eigenvalues have opposite signs. The imaginary com-

The topological representation of second-order tensor fieldsponent I describes the circulation around the critical point. If
is a generalization of the vector field topology described pre-I is not equal to zero, there is a focus or center point. For I �
viously. To provide a global view of the field, degenerate0, there is a node or saddle point. For no-slip boundaries,
points can be identified. Degenerate points in a tensor fieldwhere the velocity is constrained to zero, certain points called

attachment and detachment nodes are also of interest. At these
points the tangential component of the velocity field on the
surface goes to zero. A classification for 3-D fields can be
found in Ref. 31.

The integral curves and surfaces start at the critical
points, at attachment and detachment points, or at the
boundary of the field. At critical points, the eigenvectors are
used as starting directions. An example of a simple topologi-
cal skeleton of a 2-D flow around a circular cylinder is shown
in Fig. 17. The topological skeleton gives a qualitative sum-
mary representation of the flow field.

at

de

at ce

ce

sp

Figure 18. Hyperstreamlines in a compressive stress field (the Bous-Figure 17. Vector field skeleton for 2-D flow around a cylinder: at,
attachment node s; de, detachment nodes; ce, center; sp, saddle point. sinesq problem). (From Ref. 1, with permission.)
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are points where at least two of the eigenvalues of the tensor
are equal to each other. Topological skeletons can be con-
structed in a similar way as in vector field topology. In this
case the field of the tensor’s largest eigenvector is used, and
hyperstreamlines are generated connecting the degenerate
points (11). An example of a tensor topological skeleton is
shown in Fig. 19. The skeleton is of the most compressive
eigenvector of a stress tensor field. In the original image, color
was used to show the magnitude of the compressive force
(red � high, blue � low) (36).

FEATURE EXTRACTION AND TRACKING

Scalar time-varying fields (representing flows) are common in
many disciplines, such as meteorology or oceanography. Ex-
amples include eddy movement, storm-front progression, pol-

(a)

(b)

(c)

Continu-
ation

Bifurcation

Amalgamation

Dissipation
Crea-
tion
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1
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2
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2

3

3

3

4

4

4

lution dispersion, and ozone hole growth. In these cases, stan-
dard scalar visualization techniques can be used (with Figure 20. Tracking interactions: continuation, creation, dissipation,
animations to represent time); however, the evolutionary his- bifurcation, and amalgamation.
tory of the flow is not highlighted.

An effective visualization technique for these fields is to
first extract the features of interest and then track them over

amalgamation. These are shown in Fig. 20. For continuation,time. Although each application has its own set of feature
one feature continues from a dataset at time ti to the nextdefinitions, most are based upon some sort of connectivity
dataset at time ti	1. Rotation or translation of the feature may(i.e., the regions of interest are connected) satisfying thresh-
occur, and its size may remain the same, intensify (becomeold and/or vector criteria. Examples include simple threshold
larger—that is, grow), or weaken (become smaller and beginintervals on a scalar field, multiple thresholds, vortex tubes
to dissipate). For creation, a new feature appears (i.e., cannotusing both scalar and vector fields (37), and so on. These fea-
be matched to a feature in the previous dataset). For dissipa-tures can be extracted using a seed-growing algorithm, which
tion, a feature weakens and disappears into the background.starts with a seed in the region of interest and recursively
For bifurcation, a feature separates in two or more featureschecks the neighbors for inclusion based upon the defining
in the next time step; and for amalgamation, two or morecriteria. The features can be visualized using standard scalar
features merge from one time step to the next.rendering techniques or by drawing vector icons in those re-

Matching features from one time step to the next is knowngions. An example of using icons to represent the distribution
as the correspondence problem and is a well-studied problemof values within a region is shown in Fig. 12. In this figure,
in 2-D computer vision. In Ref. 38 an algorithm is presentedellipsoid icons are fitted to regions with normalized helicity
which tracks 3-D features in time-varying simulation data-density at 66% of the global maximum (9).
sets. Features are matched based upon maximal area overlapOnce we have defined features, we can characterize the
and an octree is used to keep the matching hierarchical. Aevolutionary events present in continuum scientific simula-
feature f i from a dataset at time ti is intersected with the nexttions as continuation, creation, dissipation, bifurcation, and
dataset at time ti	1 and a list of candidates is compiled based
upon the features from ti	1 which overlap with f i. Using this
list of candidates, a best match (which also satisfies a user-
defined tolerance) is chosen. An example of the feature
tracking algorithm is given in Fig. 21. [This dataset is from a
simulation of rotating, stratified turbulence using the quasi-
geostrophic (QG) equations, performed by Dr. David G.
Dritschel at University of Cambridge (39). The simulation
was performed on a 120 
 120 
 60 grid with 1000 timesteps.
The variable under investigation is rotation direction (scalar),
and the features are defined by their rotational values.]

By isolating regions and extracting them, one can mini-
mize the amount of data to process and thereby reduce visual
clutter. This is especially useful for vector fields, so that vector
visualization techniques can be applied in selective regions.
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