
GRAPHICAL USER INTERFACES 433

GRAPHICAL USER INTERFACES

HISTORY

The user interface is the vehicle by which the user specifies
the actions that the computer program is to carry out. The
computer program then conveys the results of carrying out
this action to the user through the user interface. Early per-
sonal computers used character-based interfaces or interfaces
that supported only text as input and output. Two widely
used character-based interface styles are command language
interfaces and question and answer interfaces.

Command language interfaces require that users type in
textual commands. User feedback is given as text responses,
in the form of results or error messages. In a command lan-
guage interface, users compose commands and arguments us-
ing a grammar understood by that software application. Us-
ers of character-based command style interfaces have to rely
on memory to recall the commands and objects needed to com-
municate actions to the computer. These commands are often
cryptic, as is the feedback that users receive, including the
error messages received if an incorrect command is given.
Many experienced users prefer a command language style of
interface, as this type of interaction is very efficient. Expert
users can type in short sequences of commands that accom-
plish many tasks. However, command language interfaces are
difficult for novices to learn and use because commands must
be memorized and recalled.

A question and answer style of interface prompts users
with a question. The user answers the question by supplying
one of the choices requested by the software application. De-
pending on the user’s response and the sequence of the ques-
tion, the application issues another question or carries out the
desired action. If the information is entered in an incorrect
format, an error message is given, and the user is again
prompted for the information. Question and answer interfaces
are easy for novices to use as they are guided through a series
of choices. However, experienced users find them tedious for
prolonged use.

The SketchPad system by Ivan Sutherland (1) was the pre-
cursor of the modern graphical user interface. In Sutherland’s
application, the user interface consisted of line drawings. Be-
cause of hardware limitations, the graphical user interface
(GUI) was not realized commercially until the 1970s with the
Xerox Star system (2).

DEFINITION OF A GRAPHICAL USER INTERFACE

Graphical user interfaces (GUIs) use icons or pictorial repre-
sentations of objects, such as files the user has stored in the
computer, and display menus of commands so that user can
recognize, rather than recall, actions and objects. Graphical
user interfaces allow the user more flexibility in communicat-
ing with the computer than the traditional character-based
interfaces. Users can communicate by selecting a desired ob-
ject from a set displayed on the user’s computer monitor and
picking the appropriate action from the menu of choices. User
feedback is also displayed graphically. For example, if a user
specifies that a file is to be copied, the computer application
might show an icon representing a copy of that file after the
action is completed.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



434 GRAPHICAL USER INTERFACES

• the objects and actions for a user task are continuously
represented on the display

• the user communicates with the computer by selecting a
menu choice or by moving an object on the display

• the user immediately sees the result of this action and
has the ability to reverse or undo it if necessary

Icons are used to represent both physical and abstract ob-
jects. Users can directly manipulate objects visible on the
screen by moving a graphical cursor and selecting the desired
object. The cursor is moved using pointing and selection de-
vices, such as computer mice, trackballs, or touch screens, or
by using designated keys on a keyboard (5). In a direct manip-
ulation system, users first select an object on which they wish

Figure 1. Typical desktop graphical user interface. to perform an action and then they select the action to be
performed. This is considered an object-oriented style of inter-
action (6) or object-action style.

Menus are often used to present choices of actions to users.
A list of items is displayed, and users select an item using the

Graphical user interfaces commonly use bit maps to dis- pointing device or by moving the cursor with the designated
play graphical images. A bit-map system uses an array of keys on the keyboard. Thus, the code for the user interface
data to represent images. By turning dots on or off and as- must allow continuous representation of graphical objects,
signing different colors to the dots, different images are dis- display immediate feedback to the user, and present graphi-
played. Another imaging system is postscript, which uses cal menus to the user for selecting actions.
mathematical descriptions of images. Complex images de- Display editors were one of the first uses of direct manipu-
scribed by mathematical formulas take longer to render on a lation techniques. Display editors show multiple lines of text
display than the same bit-mapped images. However, images on the screen, and users are able to view tables, columns,
described by mathematical formula can be scaled easily page breaks, etc., as they will appear in the printed docu-
whereas bit-mapped images cannot (3). ment. Uses can delete text, move text, change the formatting,

etc. by highlighting the desired text and selecting the appro-
priate commands. The changes appear on the screen instantly

Direct Manipulation and in the form that will be printed. This style has been la-
beled WYSIWYG, what you see is what you get.User interactions with graphical user interfaces are com-

Figures 1 and 2 are examples of typical graphical user in-monly accomplished through direct manipulation. Shneider-
terfaces. Figure 1 is an example of a typical desktop interface,man (4) used the term direct manipulation to refer to inter-

faces with the following properties: containing folders of information, an in-box, and a recycled

Figure 2. Application window with ac-
tions represented by menus.



GRAPHICAL USER INTERFACES 435

bin. The user can move any of these iconic representations to commands. Experienced users can use a keystroke or combi-
nation of keystrokes to select common actions.different positions on the desktop, open the folders, and de-

Graphical user interfaces pose other use problems. Al-posit any unwanted information in the recycled bin.
though these problems (7) were recognized from the begin-Figure 2 shows an application window with actions repre-
ning, some have become more pronounced. If graphical repre-sented by menus. In the figure, the pull-down Help menu is
sentations are to be used in an interface, users mustopen, and the menu item, Search for Help, is selected. The
understand the meaning of these representations. Ideally, theuser can type a name into the text field, labeled Business
meanings would be intuitive. However, abstract concepts andName, and select an account type. The user can then select
actions are difficult to represent using icons. Anyone who usesthe Search command button and the information about orders
current word processing software can attest to the difficultyfor that company will be retrieved and displayed in the bot-
of comprehending the multitude of icons that appear on thetom portion of the window. The scroll bar at the bottom of
various menu bars. All of these visual representations takethe menu indicates that not all the information is currently
space. Text consumes less space on a display than a series ofdisplayed. The user can view the remaining information by
icons. Users are left with less workspace in graphical usermoving the arrows on the scroll bar.
interfaces. As functionality increases in software applications,These two examples illustrate principles of direct manipu-
more space on the computer monitor is needed to displaylation. If a user moves an icon on the desktop shown in Fig.
iconic representations of the objects and actions available in1, that icon will immediately appear in the new location. In
the application.Fig. 2, the actions a user can select are displayed in the

Graphic representations are most useful when users easilymenus or on command buttons in the window. The user can
understand the representations. Design of individual icons isimmediately see the business name that he/she entered and
difficult. Moreover, the individual icons can be more easilyretype it if necessary. As the user selects a menu name from
understood if they are interpreted relative to the presentationthe menu bar, that menu is displayed (as with the Help menu
of the software application as a whole. Designing large sets ofshown in Fig. 2). Highlighting is used to show the menu item
icons to represent a wide range of actions and objects is athat the cursor is pointing to at any given time.
complex task. This is often accomplished by using a metaphor
or analogy to help user comprehension. The icons used are
those that fit the metaphor. For example, file folder icons areARE GRAPHICAL USER INTERFACES BETTER
used to represent documents on the desktop metaphor. TheTHAN CHARACTER-BASED INTERFACES?
use of metaphor is discussed in more detail in the section on
screen design.As computers moved out of the research labs into businesses

and homes, new types of users appeared. Shneiderman (7)
identified different types of users, including novices, experts, EFFECTS ON SOFTWARE DEVELOPMENT
and intermittent users. Each of these user types requires dif-

Developing graphical user interfaces is much more difficultferent types of interface support to be as productive as possi-
and time-consuming than developing simple command-basedble in using software applications. Novice users know very
interfaces for software applications. Moreover, the amount oflittle about an application in particular and computers in gen-
code needed for graphical user interfaces is much greatereral. To be productive in a short period of time, novices bene-
than the code for character-based interfaces. One survey (11)fit from seeing the functionality and interactions available to
found that in applications for artificial intelligence, aroundthem. Novice users need guidance and handholding. Expert
50% of the code was for the user interface. A survey conductedusers already know how to use computers and this applica-
by Myers and Rosson (12) found that 48% of the code in antion. They want speed. They are not as concerned with mak-
application dealt with the user interface. In addition, approxi-ing errors because they know how to recover from mistakes.
mately 50% of the time and cost of software development wasIntermittent users are casual users of the application. They
devoted to the user interface. Myers (13) lists several reasonsknow what they want to do if only they can remember exactly
why programming graphical user interfaces is difficult. Thehow to do it. They want help to be available, but only when
following are among these reasons:they need it.

Many studies have shown that graphical user interfaces
1. Issues of running multiple processes such as deadlockswith direct manipulation can benefit novice or casual users.

and synchronization, must be dealt with. Users can in-Studies comparing direct manipulation text editors to nondi-
put information that has to be processed while otherrect manipulation text editors showed that the direct manipu-
processing, such as printing files, is going on.lation text editors are more efficient (8,9).

2. Feedback for direct manipulation involves displaying anIt has also been shown that direct manipulation interfaces
object to users as they are moving it across the screen.improve learning by novices. Shneiderman and Margono’s
This requires redisplaying an object as many as 60(10) 1987 study showed that novices were able to learn simple
times per second.file manipulation tasks more quickly with the direct manipu-

3. The user interface has to be extremely robust. Althoughlation interface.
there are numerous combinations of commands and ob-Graphical user interfaces are not appropriate for all types
jects that a user can select, some valid, some not, theof users. People who are experienced typists type commands
system must never crash but should provide the usermore quickly than they move a pointer to a command and
with informative feedback.select it. This problem has been somewhat alleviated by

allowing shortcuts for experienced users. Interface designers 4. Testing all combinations of actions and objects is not
possible. Automated testing is not feasible in many in-often provide alternative ways for users to access frequent



436 GRAPHICAL USER INTERFACES

stances because the feedback from the screen has to be dinate the input and output between applications and the
users of those applications (15). Window management sys-observed and factored into the success of the action.
tems are associated with operating systems; that is, a given5. Many tools have been provided to help programmers
window management system is built on top of a specific op-implement the user interface. However, these tools are
erating system. Examples of window management systemscomplex and involve much effort on the part of the pro-
are X Windows, OpenLook�, Motif�, Microsoft Windows,grammer to learn.
Windows 95�, and MacApp. All window management sys-
tems support several shapes and types of windows. The rela-New disciplines have been incorporated into software de-
tionship of the various types of windows is defined by the par-velopment to facilitate development of GUIs. Additional con-
ticular system. A popular relationship is that of parent–childsiderations need to be given to the appearance of the user
windows. Child windows can be displayed only within theinterface, including icon design and screen design. Graphic
parent window. Each child window can have only one parentartists are needed to contribute design knowledge. Cognitive
window. Child windows depend on the parent window. If thepsychologists have contributed knowledge in reducing the
parent window is resized or closed, the corresponding adjust-complexity of displays and ways to design large systems so
ment is made to the child window.that users do not become confused in trying to carry out tasks.

A specialized parent–child relationship is the multiple doc-Another section of this article discusses issues of physical de-
ument interface or MDI windows made popular in modernsign and navigation.
word processing systems. A single toolbar is displayed with
the functionality of the word processor, but users may have

ARCHITECTURE OF GRAPHICAL USER INTERFACES several documents open simultaneously. Users can switch
back and forth between these documents, but the toolbar re-

Windowing Systems mains fixed.
Dialog windows or information windows are also used byMost graphical user interfaces are developed on top of what

applications to request information from the user or to informis called a windowing system. A window is the term denoting
the user about the status of the application program. Thesea section of the computer monitor containing the user inter-
windows normally appear on top of the main application win-face for a particular application. Windowing systems actually
dow. These windows are one of two types: modal and non-consist of two parts (14): the windowing system and the win-
modal. Modal windows stay on the screen until the user com-dowing manager. The windowing system is used to obtain the pletes an action to dismiss them. The windows are commonly

input and the output for the application program. The win- dismissed when the user provides the requested information
dowing manager handles the presentation of the windows to or acknowledges that the information has been seen. When a
the user and allows the user to control windows via special modal window appears, the user is unable to input informa-
window commands. The user can have several applications tion into another window until the modal window has been
running at the same time, each of which has its own window dismissed. Nonmodal windows are used to display progress in
for input and output. an action to the user, such as copying a file to a floppy disk.

All windowing systems provide a basic set of controls and These windows disappear automatically when the action is
interaction techniques, although the look and feel of these completed.
controls are distinct for the different platforms and win- The actual presentation of the input and output is not de-
dowing systems. The window is the main control provided. termined by the window management system but by the ap-
There are different types of windows, but all windows are plication. This functionality is managed by a user interface
used as containers for communication between the applica- management system (UIMS). Myers (16) distinguishes be-
tion and the end user. Users can close, open, move, and resize tween user interface development systems (UIDS) and UIMS,
windows. Users may also be able to control how multiple win- by noting that the UIMS is associated only with the run time
dows appear on their screen. Typical options are tiled, over- portion of the interface. A UIDS contains tools to help with
lapping, and cascading. interface design and interface management.

Current windowing systems include a full set of graphic The first graphical user interfaces were part of the applica-
tools and drawing tools that a programmer can use for dis- tion code, and each application had its own windowing system
playing output. Programmers can use the functionality pro- (16). The application and interface components were imple-
vided by the windowing system for input and output. This mented in a single unit. This type of architecture makes mod-
ensures that the visual representations of application objects ification and debugging very difficult, especially if the applica-
appear within the window for that application. Some win- tion is of any size. Porting the application to a different

platform is also difficult and usually results in completely re-dowing systems allow application programs to directly draw
writing the application. It is difficult to separate the code forthe output on the user’s screen, but this is an exception that
the user interface from the code for the application. Therefore,should rarely be used.
writing a similar application usually involves rewriting theAn application can have multiple windows open simultane-
user interface portion of the code also. Another problem withously if there is a need for the user to switch among various
each application having its own windowing system is thatpieces of functionality. Only one window can receive input
there can be little or no overlap in how the GUI looks or be-from the user at any one time. The window receiving input is
haves from the user’s perspective.called the listener or the active window.

Device drivers are library routines that manage input and
Interface Architectureoutput devices. This code exists in the windowing system por-

tion. The window management system keeps track of the ac- There are four basic architectural styles (15) that application
developers have historically used in designing applicationstive window. Window management systems are used to coor-



GRAPHICAL USER INTERFACES 437

Application with GUI

Window system Toolkit

Operating system

Figure 3. One type of window system architecture: The windows li-
brary or client server.

and their graphical user interfaces. The style used depends
largely on the size of the application, the window manage-
ment system and operating system for the platform on which
the application is being developed, and the suitability of the
application to components provided by different user inter-
face toolkits.

User
requirements

Interface
development

Interface
design

Usability
criteria
testing

Yes

Ship

User
input

A monolithic architecture is built on top of a windowing Figure 5. Iterative design process for user interfaces.
system, but all of the user interface management routines are
intertwined with the application code. For all but the smallest
of applications, this type of architecture is not recommended. lustrates the various modules and layers in this type of archi-
It is difficult to debug, and the developer cannot easily reuse tecture. Modularization is good because it facilitates code re-
the code for the interface. The development task is complex use. However, this type of separation is difficult to achieve
and error-prone. Monolithic architectures are not suited for in practice, and this type of architecture also involves much
use with modern window management systems, because this communication between the different components.
would involve adding application code to the window manage- Figure 5 illustrates the model view controller architecture.
ment architecture. Again, this architecture is based on modularization. Like the

A client server architecture or toolkit architecture (Fig. 3) Seeheim architecture, the presentation of the interface is sep-
separates the components of the user interface from the rest arated from the control of the interface components. The pre-
of the application. The client-server relationship in this archi- sentation is further divided into input and output. The view
tecture means that individual workstations are the servers module is used to present the output. The controller is used
where the code resides and they send data or events in the to define the input. The model component contains the appli-
interface to the client, which is the remote handler for user cation algorithms. This architecture reduces the need for com-
interfaces. munication among the modules because the model and view

Toolkits contain procedures that applications call to pro- components can communicate directly if there are changes in
vide different GUI components (16). Object-oriented toolkits the output. The controller and model components communi-
contain classes that define basic interface objects. Then pro- cate to handle input. The SmallTalk programming language
grammers can use these classes to create specific user inter- provides this type of architecture (18).
face objects in their applications. Although toolkits provide
for code reuse, the programmer must become very familiar Toolkits
with the different procedures and classes provided to locate

Researchers have developed several different types of tools forthe appropriate code.
constructing graphical user interfaces. The toolkit approachX Windows, developed at MIT, was an early standard
is widely used today. Toolkits contain code that can be calledUnix-based windowing system. Its architecture is based on
from application programs to handle input and output. Thethe client-server architecture. Application programmers use
pieces of code in these toolkit libraries are called widgets, con-the Xlib toolkit to provide interface components.
trols, or glyphs. Toolkits have several advantages for develop-The Seeheim (17) architecture separates the application
ers and users of the applications. It is reported that tools forcode from the user interface code. Moreover, two separate
GUI development reduce development time considerably (19).modules are provided for the user interface. One component

The developers, however, must learn to use the toolkit—deals with the way the objects are physically displayed in the
what calls to make and what parameters to pass. Tools forinterface. The other component is used to define and manage
interface development provide the programmer with prede-the dialog between the application and the user. Figure 4 il-
fined interactive components (user interface toolkits) or help
the programmer create interactive components (user interface
development systems). End users will see the same type of
controls or widgets and will know how to use them, assuming
that the same toolkits are used. Examples of visible controls
provided by toolkits are text fields, menus, buttons, and
scrolling lists. Other controls provided by toolkits are used to
position objects on the display.

Toolkits can be open or closed (15). Closed toolkits do not

Application

GUI display GUI dialog

Windowing system

Operating system

provide mechanisms to programmers for defining new inter-
active objects. Therefore, all interactive objects have beenFigure 4. Seeheim architecture.



438 GRAPHICAL USER INTERFACES

thoroughly tested. All applications using a closed toolkit con- Traditionally, application programs handled input and
output in a sequential fashion. With graphical user inter-tain the same (but limited) set of interactive objects. An open
faces, the user is free to select any object visible on the dis-toolkit supports creation of new interactive objects that are
play and to apply any allowable action on a selected object.easily inserted in the library. Programmers can create new
Sequential program design cannot handle this type of interac-interactive objects from scratch or modify existing interactive
tion. User interactions are handled as events. The code thatobjects. Application programs communicate with these con-
handles the user interface is a loop that cycles until an eventtrols through procedural calls.
happens. Device drivers for the various devices sense events,Object-oriented toolkits allow developers to use inheritance
such as keyboards, pointing devices, and keypads. Theseproperties and classes to define interactive objects. An object-
events are placed in an event queue. The user interface looporiented style is a good fit for interactive techniques because
examines the event queues for the various input and outputby nature, it is event-driven and asynchronous. MacApp (19)
devices. If an event queue is not empty, the first event in thatis an example of an object-oriented, application interface
queue is removed and the code for that particular interfaceframework. This framework implements the Macintosh user
control is called. The application code is invoked by the call-interface standard, including menus and windows. What is
back specified in the control. The code that handles an eventmissing is the contents of those menus and windows. Rather
is called an event handler. The application program also gen-than calling a series of procedures to deal with the user inter-
erates events when messages or results must be presented toface controls, the programmer, using an application frame-
the user.work, defines the objects that pertain to the application and

installs them in the framework. The base functionality of the
Look and Feelinterface is there, and the programmer merely installs the

specifics that customize the interface to this particular appli- The look and feel of a user interface refer to the presentation
cation. Schmucker (19) notes that by using such a tool the and the behavior of the controls. Consistency in look and feel
amount of code a programmer produces and the development is thought (7) to be beneficial to users of the applications.
time are reduced by a factor of 4 or 5. User interface toolkits help to provide this consistency and a

User interface generators (7,20) were developed in re- common look and feel to all applications developed with the
search laboratories but have never been widely used in indus- same toolkit. Look and feel have been defined at the platform
try. A user interface generator uses a specification of the in- or operating systems level.
terface and produces the actual interface for the application. Standards have been agreed upon to physically represent

common interactive objects and for the behavior of those ob-One reason for developing user interface generators was to
jects. For example, buttons on the Windows 95 platform aresolve the problem of having to write several interfaces for ap-
gray and have a three-dimensional look. Motif, OpenLook,plications that run on more than one platform. A user inter-
and X Windows have slightly different variations in look andface generator can be separated into two components, the
feel. The descriptions of look and feel for the different plat-front end, which parses the specification text, and the back
forms are in published references but are also implementedend that produces the platform-dependent interface. By sub-
in the toolkits for each of the platforms.stituting a different back end, the user interface generator

can produce a user interface for the same application on a
different platform. However, learning the specification lan- DEVELOPMENT PROCESS
guage for user interface generators is often as difficult as sim-
ply writing the interface. Moreover, specifications for direct The design and implementation of the graphical user inter-
manipulation interfaces are difficult to produce. face cannot be separated from the process of designing and

Myers (21) developed the Peridot system in which user in- implementing the application. The architecture of the applica-
terfaces are created by demonstration. His goal was to elimi- tion dictates what can be displayed at what time on the inter-
nate work for the interface designer and support creating the face and how the user can interact with the various objects.
look and behavior of the interface by demonstration. Peridot An iterative process of design and implementation (see Fig.
uses direction manipulation and makes some inferences so 5), in which user feedback is gathered at appropriate points,
that the designer does not have to demonstrate the entire is now accepted by usability professionals as the best process
user interface. for ensuring usable applications. This differs from the tradi-

tional waterfall method in which a sequential process for col-
lecting requirements and developing specifications was fol-Communication
lowed by implementation (22). One potential problem in this

The controls supplied by toolkits display data from the appli- method is limiting the number of iterations. The software
cation program or are used to input data to the application team needs to have a way of evaluating progress and de-
program. These controls must communicate with the applica- termining when the design or implementation is good enough
tion program and with the window management system. A to proceed. This threshold should be determined prior to the
toolkit control interacts with the application code by a call- start of design. These threshold values are often termed us-
back. The developer defines a routine to be used when the ability requirements. Some specification of the amount of time
user interacts with an object in the interface. For example, and number of errors typical end users could make in basic
the programmer defines a routine to be executed when the tasks and still perform their job effectively is used as a base-
user clicks a button. The programmer defines this button us- line. Several iterations of any particular step in the process
ing the code in the toolkit and provides the name of the rou- are reasonable. Returning to a previous step and iteration is

a more costly activity, but determining usability problemstine that should be called when the user clicks the button.



GRAPHICAL USER INTERFACES 439

during the requirements/design and implementation stage is allows specifying GUIs but is only useful for communication
among team members.still much less costly than discovering them just prior to

shipping. Object orientation (29) is a natural representation for
asynchronous events, and object-oriented programming lan-
guages are often used to implement GUIs. However, it is very

DESIGNING THE GRAPHICAL USER INTERFACE
difficult to use this same environment for designing the inter-
action because the flow of control in the user interface is actu-

Design of graphical user interfaces is a complex process. It
ally distributed among many objects. It is necessary to syn-

involves a multidisciplinary team working together to pro-
thesize the code from many objects to understand how the

duce an efficient, functional, and usable product. The terms
objects in the interface interact, given different input events.

user-centered and usability engineering are used to describe
This type of representation is good for implementing the de-

the need to produce interfaces easy for users to learn and ef-
sign but is inadequate as a communication vehicle among

ficient for them to use. Many references exist on how to de-
team members. It is also inadequate to communicate the de-

sign usable interfaces and how to incorporate usability evalu-
sign to end users.

ations into the development process (23,24).
The user action notation (UAN) (30) is another specifica-

In addition, usability guidelines have been developed for
tion language created to describe the interaction of an inter-

interface designers to use in constructing and evaluating
face. This type of design representation is useful for communi-

their interfaces. One early set of guidelines was developed by
cating the design to team members, assuming that team

Smith and Mosier (25). This is a huge set of guidelines, and
members take the time to learn the notation. Again, commu-

following them is not a trivial task. Indeed, some of the guide-
nicating the design to end users via this type of representa-

lines are conflicting. Others depend heavily on the circum-
tion is not feasible.

stances under which the software application is being used:
Prototypes are also used to show the look and behavior of

novice or expert users, noisy or quiet environment, room for
an interface or at least portions of an interface. A discussion

error or life-critical situations, etc.
of prototyping appears in the section on designing a user in-

Current window management systems have their own set
terface. This type of specification is useful for team member

of guidelines to deal with the look and feel of a particular
communication and also for communication with end users.

system. For example, Windows (26) outlines the controls for
Prototyping for interactive systems can be done with varying

the user interface, including behavior and presentation. Many
degrees of completeness (amount of actual system that is cov-

corporations have another set of guidelines developed on top
ered by the prototyping). Many portions of the application can

of a particular window management system to give a unique
be omitted from the prototype, depending on why the proto-

corporate look and feel. In addition, researchers in human
type is being built.

factors are learning more about users’ perceptions and cogni-
The problem of specifying how an interface looks and be-

tive loads in dealing with graphical user interfaces. As new
haves has not yet been solved. Using any type of specification

types of input and output devices, new applications, and new
language is extremely tedious and impractical for large soft-

interfaces are developed, empirical studies are used to evalu-
ware applications. Using the demonstration or prototyping

ate the new against the old. The human–computer interac-
methodology is less precise than a written specification and

tion and human factors literature reports these results.
leaves room for different interpretations. Again, it is often im-
practical to use a prototype to describe the entire interface.
In many instances of software development, a combination ofREPRESENTATIONS OF DESIGN
representation techniques is used for different reasons and
different portions of the user interface. Hartson and Boehm–There is a need to represent the design of a user interface.

First, there is a need to communicate this design among the Davis (31) note that design representation is a major research
issue. They conclude that no single representation techniquemembers of the team. Everyone needs to understand the de-

sign, make contributions to the design, and implement the adequately supports all instances of design representation
and that research on criteria for selecting the best representa-design. Furthermore, there is a need to evaluate the design.

Often this evaluation includes user testing. The section on tion is also needed.
evaluation discusses this in more detail. Some sort of design
representation is needed to get feedback about the design. Conceptual Design

State transition diagrams are commonly used to represent
Design of the user interface is often described as conceptualsequential interactions (27). State transition diagrams use
design followed by detailed design (27). In conceptual design,nodes to represent various states that the interface can have.
the developer must decide on the actions and objects in theArcs connect various nodes and represent the transition to
user interface and the interactions between objects. Detailedthat state, based on some input. There is one special state,
design involves screen layouts, the appearance of objects oncalled the start state, and one or more end states. A concep-
the display, icon design, the wording of messages, navigationtual design can be represented in this fashion for a sequential
between screens in the interface, and so on.interactive style. Although state transition diagrams are use-

The conceptual design or conceptual model for the user in-ful for designers and can be used to communicate among team
terface describes, at a high level, the actions and objects thatmembers, this representation is not suitable for obtaining
will be presented to the end user. This design includes speci-feedback from users. This sequential representation is also
fying which actions can be applied to which objects undernot suitable for asynchronous interactions in GUIs. Jacobs
which conditions and the results of doing so. The conceptual(28) developed a specification language for user interfaces us-

ing a set of state transition diagrams. This representation model represented in the user interface explains to the user



440 GRAPHICAL USER INTERFACES

what is happening in the application software. The actions Selecting command objects can result in the display of new
screens of information or the display of new objects and ac-that the user takes are based on comprehending the applica-
tions for the user. Moving between different screens of infor-tion based on this representation.
mation in a graphical user interface is termed navigation.Conceptual design includes considering the order in which
Navigation design should be presented to the users so thata user will carry out tasks in the application. It is important
they understand when they will be moved to a differentto understand this so that the appropriate objects and actions
screen and how to get back to the previous screen if nec-can be presented to the user at the correct time. In the detailed
essary.design, the order of the information and the pieces of informa-

tion that appear together are determined.
Metaphors are one way of explaining an application to an

APPEARANCEend user. The most familiar graphical user interface metaphor
is the desktop. Graphical representations of objects (files, pro-

Appearance of the graphical objects in the interface is also angrams, trash cans) are displayed to the user and are supposed
important consideration. The overall screen design and theto function like those objects on the user’s physical desktop.
design of individual object representations has to be carefullyFiles can be opened and read. New files can be created. Files in
done to aid the user in understanding how the applicationwhich the user is no longer interested can be thrown away in
functions. Graphical designers are often employed by soft-the trash container. Emptying the trash container implies that
ware development companies to work on the graphical userthe user can no longer retrieve those files. Clocks, in and out
interface teams and produce high quality graphics. Horton

boxes, calendars, and appointment books are often found on
(34), Galitz (35), and Tullis (36) discuss the design and per-

these electronic desktops as well. Because users know how the ception of icons by users.
physical objects behave, they use this knowledge to understand As with screen design, icons should first be designed in
how the electronic objects behave. Problems occur when the black and white. Color is added later for appeal but should
physical and electronic objects behave differently. Users can not figure into the basic design. Icons should also be designed
eject a disk from the floppy drive on a Macintosh by dragging in sets, not individually. Although icons for different actions
the icon for that file to the trash containers. This behavior is and concepts may look quite different, there should be a fam-
contrary to the way that trash containers actually behave, and ily resemblance to icons associated with the same application.
therefore, users had to learn this behavior. In selecting meta- As with other portions of the interface, icons need to be tested
phors for the user interface, it is essential that the user is in- by users to ensure that users can recognize and differentiate
formed of such inconsistencies. Computer systems are very between them.
powerful and allow us to do many tasks not possible without Although there is much room for creativity in this area,
this computational power. Many metaphors are incapable of certain basic icons have become associated with actions and
representing the tasks that computer applications can perform. objects in the desktop metaphor. Most current users of graph-
This first step in design is extremely important, and the selec- ical user interfaces know what trash cans, file folders, scis-
tion of an overall representation should be made only after the sors, and floppy disk icons represent. However, new computer
designers have ensured that the representation is understood applications are appearing and demand new metaphors and
by the actual end users of the system. Design heuristics (32,33) icons.
can be used to evaluate alternative conceptual designs.

Screen Design
Dialog Design The design of screens to present information and to convey

functionality to users is extremely important. Good screen de-A graphical user interface contains objects and actions that
sign significantly reduces the amount of time it takes userscan be performed on those objects. Users must select those
to locate information. Quickly locating the pertinent informa-objects and appropriate actions and are then given informa-
tion can be a critical issue in complex displays, such as airtion or feedback about what has happened. The details of se-
traffic control. Good screen design also helps prevent user er-lecting the objects and actions and the feedback that results
rors in the input of information. Users can use context to helpmust be designed. This is often termed dialog design (15).
interpret information they are unsure of, assuming that infor-Dialog design specifies the messages that the user can give
mation on input screens is organized into logical chunks.to objects in the application and how the objects respond to
Screen design research did not originate with graphical userthose messages. Some parts of the dialog are order-specific,
interfaces. Character-based interfaces also provide manythat is, the user can select an action only after an object has
challenges for screen design. However, graphical user inter-been selected. By using toolkits that predefine standard inter-
faces rely much more on the visual information processingface objects on the various platforms, designers already have
capabilities of users and present numerous new challenges tosome predefined dialogs. The way in which users select ob-
visual designers of user interfaces. Fortunately, researchjects and actions is predefined to some extent. Selection by a
from perceptual psychology and studies of human factorspointing device and selection by keyboard characters are two
have been used to develop some basic guidelines about screenbasic predefined dialogs.
design. The following are some of the issues to be consideredActions can include changing an object, deleting an object,
in screen design (36):copying an object, and undoing a previous action. Dialog de-

signers need to consider which actions users can cancel or
• the amount of information to displayreverse, with what degree of difficulty, and how many actions

can be reversed. • how to group information



GRAPHICAL USER INTERFACES 441

• the placement of the information in the display costs, productivity costs, job satisfaction, and employee turn-
over (40). Usability evaluation during software development• the best representation of the information displayed
can often more than pay for itself in both money and time
spent.Screen design details (37) include alignment of fields on

Much of the literature in human–computer interaction to-screens, titles for screens, ordering of fields on screens, order-
day concerns user-centered design and usability testing tech-ing of menus and presentation of menus, indicators of op-
niques (23,24,41,42). Most software developers now recognizetional fields, and indicators of the format for input data. The
that usability must be considered throughout the design andstudies and guidelines from alphanumeric interfaces are still
development of the software. The focus is on frequent checksappropriate for many questions about screen design in graph-
with representatives of the intended user population to verifyical user interfaces. Screen design issues for windowing sys-
design decisions. Participatory design is a technique originat-tems include the amount of information to include in one win-
ing in Scandinavia (43) in which several representative usersdow, providing feedback to the user about the window
are on the software design team. They can work with the soft-appearing in response to a user or application action, and ar-
ware developers and engineers during the development pro-rangement of windows (35,37).
cess to guide the design so that the software and interface are
well suited to the users and their tasks.

Usability engineers use other techniques during softwareEVALUATION OF GRAPHICAL USER INTERFACES
development to do usability evaluations. Prototypes are often
developed and shown to representative users. The users areTwo types of evaluations are performed on graphical user in-

terfaces; quality or assurance testing and usability testing. asked to complete some set of tasks with the prototype. Any
problems that users have in doing the tasks along with theirQuality testing consists of three basic steps (38): running a

program with a set of inputs, observing the effects during exe- reactions to the prototype are used as the basis for changing
the design.cution, and examining output to determine correctness. In ad-

dition to actually executing code, other types of testing are Heuristic evaluations are also used by usability engineers
to evaluate user interfaces with respect to a set of usabilitydone. During coding, teams of programmers conduct code

walkthroughs looking for errors. Analysis is also done by pro- heuristics or principles known to cause user confusion if vio-
lated (44). Studies (45–48) have compared the effectiveness ofgrams to detect certain types of common errors. Units of code

are tested dynamically in what is called white box testing. The doing heuristic evaluations and user testing and also noting
differences in heuristic evaluations depending on the exper-internal code is traced during this type of testing to determine

the paths used. Whole system testing is usually black box test- tise level of the evaluators. In general, trained usability ex-
perts find more errors in performing heuristic evaluationsing. In this type of testing, the inputs are given, and the out-

puts are observed with no attempt to understand the code ex- than nonexperts. Although heuristic evaluations are rela-
tively quick and inexpensive, they have the drawback thatecution.

There are several problems with attempting to completely they only predict problems that users may have and they tend
to find numerous potential problems. User testing finds thetest a graphical user interface. First, as objects and actions

can be selected in any order and combination, all but the more severe usability problems.
User interfaces are sometimes evaluated with respect tosmallest application produces an extremely large number of

possibilities. Secondly, writing specifications for what should published guidelines. However, guidelines are more suited for
use in guiding interface design. Smith and Mosier (25) devel-happen in all cases is difficult. Therefore, it is difficult to

know what should happen to compare it with what actually oped a set of 944 user interface guidelines. Many of these
guidelines are based on principles from cognitive and percep-does happen. If specifications were produced for a user inter-

face, then some of the testing of how the interface works could tual psychology. Other guidelines have been developed
through experimental studies comparing different techniquesbe done via proofs or it could be automated. However, much

of what happens in a graphical user interface involves feed- of interaction or different representations to determine which
results in better user performance. These are general guide-back to the user. Therefore, testing GUIs involves much more

than just analyzing the final output. The actual behavior of lines that apply to user interfaces on all platforms. There are
also platform-dependent user interface guidelines. Thesethe screen objects during execution must also be observed.

Observing behavior does not lend itself well to automation. guidelines determine the look and feel of user interfaces on
different platforms. For example, these guidelines specify ifCapture and playback tools are sometimes used to create

automatic test scripts for user interfaces. These are better the buttons in the user interface have a three-dimensional
look, whether the background color is gray or white, andsuited to creating test scripts representative of expert user

behavior because experts follow a more predictable path. Ge- whether pop-up menus are used for certain types of function-
ality.netic algorithms are being investigated as a way to generate

user events representative of novice behavior (39). Formal evaluations of user interfaces, such as the GOMS
model (Goals, Operators, Methods, Selection Rules) (49), canUser interfaces are also evaluated to see how usable they

are; that is, can the intended users of the system easily learn be used to compare different interactive techniques with re-
spect to the number of keystrokes required to accomplishand use the interface to complete the necessary tasks? Origi-

nally, the users of computers were technically trained, and them. These formal evaluations can also be used to compare
portions of the interface for consistency by comparing theusing a computer represented a large portion of their job re-

sponsibilities. Currently a large number of nontechnical users mechanisms for carrying out tasks and subtasks. GOMS pro-
vides a means for coding the keystrokes and mental opera-depend on computer applications to do their work. The usabil-

ity of these applications can have a large effect on training tions that a user must do to invoke a certain action on a cer-



442 GRAPHICAL USER INTERFACES

tain object. This technique is limited in use due to the with others in the world as well as with objects in the
expertise needed and the amount of work involved to model a worlds. Researchers are currently experimenting with new
large portion of a user interface. forms of interactions and new application domains for vir-

tual worlds.
Object-oriented application frameworks (52) are another

FUTURE OF GRAPHICAL USER INTERFACES direction being pursued to facilitate the development of differ-
ent types of applications. These frameworks are extensions of

There are many new and interesting directions currently be- the frameworks used by developers of graphical user inter-
ing developed in the field of user interfaces (50). The growing faces but have been developed for complex domains, such as
spread of the World Wide Web is now leading to the availabil- telecommunications and real-time avionics. The development
ity of information seeking applications and also to interactive of remote or distributed computing is facilitated in these new
applications. Using the World Wide Web as the delivery frameworks with the provision of code to deal with communi-
mechanism solves many of the problems of platform-depen- cation between remote and local objects.
dent applications. The graphical user interface resides in the Personal digital assistants (PDA) are small, mobile com-
browser window. New programming languages, such as Java, puter devices that are becoming popular. GUIs designed for
are springing up, and new toolkits are being developed to PDAs are particularly challenging because of the reduced
allow programmers of these applications to use standard con- space available for the display. Users can use current PDAs
trols. The use of audio, video, and animation in these applica- to view Web pages, read e-mail, download files from their
tions is adding to the complexity of programming these inter- desktop machines, compose documents, and keep track of ap-
faces. Dynamically created Web pages or user interfaces can pointments and phone numbers.
now be generated depending on the identity of the user. For New input and output devices are needed for interacting
example, the language that you see on the Web page can be with the new application techniques and interfaces. Spoken
different depending on the country from which you are re- language for input is improving in the past few years. Sensors
questing access. of body movements are being used in virtual reality applica-

Collaborative systems are another type of application in tions. Prototyping languages have been developed for spoken
which the graphical user interface is extremely important. language interfaces. Work continues in multimodal interfaces
Users of computer-supported work cooperative (CSCW) sys- that allow users access to the type or types of input most nat-
tems need to interact with objects, such as documents and ural for the tasks being done. As new types of interactions are
calendars, and also with each other. Interfaces for CSCW ap- developed, toolkits for developing interfaces for applications
plications need to provide functionality for people interacting using these interactive devices continue to be developed in
with each other and for interactions with documents and the research labs.
other objects. Interoperability is also a crucial aspect of Four problems are currently being addressed by user inter-
CSCW systems. All users do not have the same platforms and face researchers. The first problem is bandwidth. New appli-
the same capabilities but must be able to view the same infor- cations, such as collaborative virtual environments and digi-
mation and interact. tal libraries of multimedia data, require large amounts of

Direction manipulation techniques are being employed in bandwidth not currently available to everyone. Techniques
virtual environments or virtual worlds (51). Three-dimen- for delivering high-quality services at reduced bandwidths
sional techniques are used to display worlds in which users must be pursued. A second problem is dealing with large
can move around and interact with objects much the same as

quantities of information. Researchers are looking at visual-
they interact with similar objects in the real world. Direct

ization techniques to help users view, explore, and use largemanipulative techniques are also being used in software in-
amounts of data. Accessibility is the third issue. Researchersterfaces for remote devices. Applications, such as telemedi-
are looking into techniques to allow all individuals, regardlesscine, are employing these techniques. The World Wide Web is
of physical capabilities or limitations imposed by hardwarealso being used to allow remote users to control physical de-
and software capabilities, to have access to the same informa-vices for experimentation.
tion. Human–computer interaction considerations are alsoIn immersion virtual reality, the user wears a head-
being addressed. Researchers are exploring ways in whichmounted display so that it appears as if the interface sur-
user interactions can be leveraged to provide more effectiverounds the user. A data glove is often used to interact in this
user experiences than technological advances alone.environment. The user makes gestures while wearing the

glove. These gestures are recognized and interpreted by the
system into actions, such as moving to another area of the

BIBLIOGRAPHYenvironment or manipulating an object in the environment.
In nonimmersive virtual reality, the user interacts with a

1. I. E. Sutherland, Sketchpad: A man-machine graphical communi-three-dimensional world displayed on the computer monitor.
cation system, AFIPS Spring Joint Comput. Conf., 1963, pp.Interaction is accomplished by using a standard mouse or
329–346.trackball input device. Users get a sense of being in the envi-

2. C. Smith et al., Designing the star user interface, BYTE, 7 (4):ronment as they can change their view and zoom in on ob-
242–282, 1982.jects.

3. L. Bass and J. Coutaz, Developing Software for the User Interface,Collaborative virtual environments take these interfaces a
Reading, MA: Addison-Wesley, 1991.step further and allow multiple users to interact simultane-

ously. Users select representations for themselves and move 4. B. Shneiderman, Direct manipulation: A step beyond program-
ming languages, IEEE Comput., 16 (8): 57–69, 1983.these representations around the virtual world, interacting



GRAPHICAL USER INTERFACES 443

5. J. Greenstein and L. Arnaut, Input Devices. In Martin Helander 30. H. R. Hartson, A. C. Siochi, and D. Hix, The UAN: A user-ori-
ented representation for direct manipulation interface designs,(ed.), Handbook of Human–Computer Interaction, Amsterdam:

North Holland, 1988, pp. 495–536. ACM Trans. Inf. Syst., 8 (3): 181–203, 1990.
6. J. R. Brown and S. Cunningham, Programming the User Interface: 31. H. R. Hartson and D. Boehm-Davis, UI development processes

Principles and Examples, New York: Wiley, 1989. and methodologies, Behavior Inf. Technol., 12 (2): 98–114,
1993.7. B. Shneiderman, Designing the User Interface, Reading, MA: Ad-

dison-Wesley, 1987. 32. W. M. Newman and M. G. Lamming, Interactive System Design,
Wokingham, England: Addison-Wesley, 1995.8. S. K. Card, T. P. Moran, and A. Newell, The Psychology of Hu-

man-Computer Interaction, Hillsdale, NJ: Lawrence Erlbaum As- 33. D. J. Mayhew, Principles and Guidelines in Software User Inter-
sociates, 1983. face Design, Englewood Cliffs, NJ: Prentice-Hall, 1992.

9. T. Roberts and T. Moran, Evaluation of Text Editors. In Proc. 34. W. Horton, The Icon Book: Visual Symbols for Computer Systems
Human Factors in Comput. Syst., 136–141, 1982. and Documentation, New York: Wiley, 1994.

10. B. Shneiderman and S. Margono, A study of file manipulation by 35. W. O. Galitz, It’s Time to Clean Your Windows: Designing GUIS
novices using commands vs. direct manipulation, Proc. 26th that Work, New York: Wiley-QED Publ., 1994.
Annu. Tech. Symp. Washington D.C. Chapt. ACM, Gaithersburg, 36. T. Tullis, Screen Design. In Martin Helander (ed.), Handbook of
MD: NBS, 1987. Human-Computer Interaction, Amsterdam: North Holland, 1988,

11. D. B. Bobrow, S. Mittal, and M. J. Stefik, Expert Systems: Perils pp. 377–411.
and Promise, Commun. ACM, 880–894, 1986. 37. W. O. Galitz, Handbook of Screen Format Design, Wellesley, MA:

12. B. A. Myers and M. Rosson, Survey on user interface program- QED Information Sciences, 1989.
ming, Proc. CHI’92 Conf. Human Factors Comput. Syst., 1992 38. E. F. Miller, Software testing technology: An overview. In C. R.
New York: ACM, pp. 195–202. Vick and C. V. Ramamoorthy (eds.), Handbook of Softw. Eng.,

13. B. A. Myers, State of the Art in User Interface Software Tools. In New York: Van Nostrand Reinhold, 1984, pp. 359–379.
H. R. Hartson and D. Hix (eds.), Advances in Human–Computer 39. D. Kasik and H. George, Toward automatic generation of novice
Interaction, Norwood, NJ: Ablex, 1998, Vol. 4, pp. 110–150. user test scripts, Proc. CHI’96 Conf. Human Factors Comp. Syst.,

14. B. A. Myers, State of the art in user interface software tools. In New York: ACM 1996, pp. 244–251.
R. M. Baecker, J. Grudin, W. A. S. Buxton, and S. Greenberg 40. R. G. Bias and D. J. Mayhew (eds.), Cost Justifying Usability,
(eds.), Readings in Human–Computer Interaction: Toward the London: Academic Press, 1994.
Year 2000, San Francisco, CA: Morgan Kaufman, 1995. 41. J. Preece, Human Computer Interaction, Wokingham, England:

15. J. Larson, Interactive Software: Tools for Building Interactive User Addison-Wesley, 1994.
Interfaces, Englewood Cliffs, NJ: Prentice-Hall, 1992. 42. G. Lindgaard, Usability Testing and System Evaluation, London:

16. B. A. Myer, User-interface tools: Introduction and survey, IEEE Chapman & Hall Computing, 1994.
Softw., 6 (1): 15–23, 1989. 43. D. Schuler and A. Namioka (eds.), Participatory Design: Princi-

17. M. Green, Report on Dialogue Specification Tools. In Gunther E. ples and Practices, Hillsdale, NJ: Lawrence Erlbaum, 1993.
Pfaff (ed.), User interface Management Systems, Proc. Workshop 44. J. Nielsen and R. L. Mack (eds.), Usability Inspection Methods,
User Interface Manage. Syst., Seeheim, FRG, November 1–3, New York: Wiley, 1994.
1983, Berlin: Springer-Verlag, pp. 9–20.

45. R. Jeffries et al., User interface evaluation in the real world: A
18. T. Kaehler and D. Patterson, A small taste of smalltalk, BYTE, comparison of four techniques, Proc. CHI’91 Conf. Human Factors

11 (8): 145–159, 1986. Comput. Syst., New York: ACM 1991, pp. 119–124.
19. K. J. Schmucker, MacApp, An Application Framework, BYTE, 11 46. B. E. John and S. J. Marks, Tracking the effectiveness of usabil-

(8): 189–194, 1986. ity evaluation methods, Behavior Inf. Technol., 16 (4/5): 188–
20. D. R. Oslsen, Jr. et al., Research directions for user interface soft- 202, 1997.

ware, Behaviour Inf. Technol., 12 (2): 80–97, 1993. 47. T. S. Tullis, Is user interface design just common sense? In G.
21. B. A. Myers, Creating User Interfaces by Demonstration, San Salvendy and M. J. Smith (eds.), Human-computer interaction:

Diego, CA: Academic Press, 1988. Software and hardware interfaces, Proc 5th Int. Conf. Human-
22. B. W. Boehm, A spiral model of software development and en- Comput. Interaction, (HCI International ’93), Amsterdam, The

hancement, IEEE Comput., 21 (2): 61–72, 1988. Netherlands: Elsevier, 1993, pp. 9–14.
23. J. S. Dumas and J. C. Redish, A Practical Guide to Usability 48. J. Nielsen and V. L. Phillips, Estimating the relative usability of

Testing, Norwood, NJ: Ablex, 1993. two interfaces: Heuristics, formal, and empirical methods com-
pared, Proc. INTERCHI’93 Conf. Human Factors Comput. Syst.24. J. Nielsen, Usability Engineering, San Diego, CA: Academic
New York: ACM 1993, pp. 214–221.Press, 1993.

49. S. K. Card, T. P. Moran, and A. Newell, The Psychology of Hu-25. S. L. Smith and J. N. Mosier, Design Guidelines for Designing
man-Computer Interaction, Hillsdale, NJ: Lawrence Erlbaum As-User Interface Software, Tech. Rep. MTR-100090, Bedford, MA:
sociates, 1983.The MITRE Corporation, 1986.

50. R. J. K. Jacobs et al., UIST ’007: Where will we be ten years from26. The Windows Interface Guidelines for Software Design, Redmond,
now? UIST’97 Proc. ACM Symp. on User Interface Softw. Technol.,WA: Microsoft Press, 1995.
New York: ACM 1997, pp. 115–118.27. D. Hix and H. R. Hartson, Developing User Interfaces: Ensuring

51. B. Shneiderman, Designing the User Interface, Reading, MA: Ad-Usability Through Product and Process, New York: Wiley,
dison-Wesley, 1998.1993.

52. M. E. Fayad and D. C. Schmidt, Object-oriented application28. R. J. K. Jacob, A specification language for direct manipulation
frameworks, Commun. ACM, 40 (10): 32–38, 1997.user interfaces. ACM Trans. Graphics, 5 (4): 283–317, 1986.

29. L. Sibert, W. D. Hurly, and T. W. Bleser, Design and implementa-
tion of an object-oriented user interface management system. In JEAN C. SCHOLTZ

National Institute of Standards andH. R. Hartson and D. Hix (eds.), Advances in Human–Computer
Interaction, Norwood, NJ: Ablex, 1988, Vol. 2, pp. 175–213. Technology (NIST)



444 GRAPHICS TRANSFORMATIONS IN 2-D

GRAPHICAL USER INTERFACES. See SOFTWARE PROTO-

TYPING.
GRAPHICS, ANIMATION. See COMPUTER ANIMATION.
GRAPHICS, BUSINESS. See BUSINESS GRAPHICS.
GRAPHICS, COLOR. See COLOR GRAPHICS.
GRAPHICS HARDWARE. See RASTER GRAPHICS ARCHI-

TECTURES.


