
604 WINDOWS SYSTEMS

WINDOWS SYSTEMS

The term window system refers to the software that supports
graphical user interfaces (GUI). Informally, the term window
refers to a screen area for which the system supports the fol-
lowing: (a) connecting user actions to the area and (b) draw-
ing the proper visual information on the area. The term win-
dow object refers collectively to all the software structures
that contain information related to a window, and the term
desktop environment denotes the collection of windows that
appear on the screen.

In many systems (such as Apple’s Macintosh or Microsoft’s
Windows 95) the graphical interface is the dominant access
mode of the system and the window system supports many
operations that are not graphical in any way. This article does
not attempt to cover features that go beyond the direct sup-
port of GUIs.

USER REQUIREMENTS

It will be helpful to briefly review what users expect from a
GUI, since these requirements guide the design of a window
system (see GRAPHICAL USER INTERFACES for more details).

The main mode of user interaction in a GUI is ‘‘point and
click’’; therefore the essential program code should be in the
procedures that are invoked upon user action. Such proce-
dures are generally called callbacks. Users expect certain vi-
sual clues to be associated with the functionality of a window.
Therefore windows where a click causes the invocation of a
single process have the appearance of a button that looks
pressed when the mouse button is pressed and pops out when
the mouse button is released. If the user action should result
in the selection of a specific discrete parameter value, the but-
ton should stay depressed. Such buttons are called toggles or
radio buttons. Windows that select from a continuum of val-
ues usually have the appearance of a slider or a scrollbar.

The selection windows (buttons) are arranged in menus
that may be permentally displayed or appear only upon user
action (popup or pulldown menus). Buttons may be labeled
with text or with images. The term icon refers to small im-
ages that are used to label not only buttons but any window
of small size. A dialogue box is a temporary window that dis-
plays a message to the user, who must provide a simple re-
sponse.

When an application is running and provides complete
functionality, its windows tend to occupy a significant area in

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

WINDOWS SYSTEMS 605

the screen. Because the user may stop using the application and then suspending execution. When an event occurs that is
associated with one of the windows, an appropriate functionfor awhile and resume later, the window system must provide

means for reducing the size of window and using a symbolic is executed. In other words, the program does nothing most
of the time, except when an event occurs. Such programs arerepresentation to signify the presence of the application. That

is typically done through an icon and a label. This process called event-driven programs.
Today all major window systems encourage event drivenis known by the terms minimization, closing a window, or

iconifying a window. (You should be aware that in some sys- programming. These systems include the X Window System
(X) (1–11), Microsoft (MS) Windows (including Windows 95,tems the term ‘‘closing a window’’ implies terminating an ap-

plication. Unfortunately, there is a great anarchy of terms in Windows NT, etc) (12–16), the BeBox Interface Kit (Be Kit)
(17), and the Abstract Windowing Toolkit (AWT) of Javawindow systems.)

In addition to minimizing windows, the system must pro- (18,19). The latter is not surprising since Java’s AWT always
runs on top of another window system. X has an extensionvide means for resizing windows as well as moving them in

front of others. This imposes the requirement of being able to (SHAPE) that supports nonrectangular windows (see Chapter
18 of Ref. 10).reconstruct on demand the appearance of a window and

adapting to larger or smaller drawing areas. Also, the system While all these systems have many similarities, they use
incompatible terminology. MS Windows and the Be Kit usemust be able to allocate resources for new windows and keep

track of their stacking order, since windows may overlap. the term message instead of ‘‘event,’’ so they refer to applica-
tion programs running in them as message-driven programs.Users often want to transfer data from one window into

another; for example, they want to cut a piece of text from On the other hand, similar terms are used for different con-
cepts (for example, the word ‘‘resources’’ means differentone editing window and paste it onto another. Such a transfer

may take place through a ‘‘drag and drop’’ interface. There- things in X and in MS Windows). Most confusing is the use
of the term ‘‘window’’ with similar but not identical meaningfore a window system must support communication between

applications. in these systems. In this article we use the term informally
to refer to the screen object that the user sees.

We should also mention that it is possible to access window
systems through scripting languages. Particular examples in-SYSTEM OVERVIEW
clude the Tk toolkit (20) as well as Javascript and HTML
forms.There are many ways to implement a window system. Typi-

cally, a window corresponds to a structure whose members
include at least the position and size of a rectangle and a
pointer to a memory area in the display where what is drawn WINDOW MANAGERS, SERVERS, AND CLIENTS
on the window will be displayed. (If nothing is drawn, the
window will appear blank.) Other information about the win- From the viewpoint of the application user, a window system

needs a program that lets the user manipulate windows asdow may be stored in the same structure or to other struc-
tures that are linked together. well as start applications by pointing and clicking on a partic-

ular part of the screen, or by selecting from a menu. ThisWindows are usually rectangles, but there is no fundamen-
tal reason for not having other shapes. We could have win- program is the window manager (WM). While it is possible to

run a window system without a WM, it is quite awkward todows that are oval, or star-shaped, or even doughnut-shaped.
Regardless of the shape we must provide a procedure that do so.

From the viewpoint of the application programmer a win-determines whether a given screen point is inside the window
area. We need this information both for confining a drawing dow system must provide means for accessing the graphics

hardware for input and output. Instead of requiring program-within the window area and for finding the window where the
pointer (cursor) is located. Because checking the point con- ming at the machine code level, modern window systems pro-

vide an Applications Programming Interface (API) through atainment is much simpler for rectangles with sides parallel to
the coordinate axes than for any other shape, most systems library of graphics functions. The API for the X Window Sys-

tem is Xlib and the API for most recent versions of Microsoftsupport only rectangular windows with vertical and hori-
zontal sides. Windows (95 and NT) is Win32. The Be Kit and Java are

strongly object-oriented, and graphics are performed with theWhen the user interacts with the display by manipulating
the mouse, the keyboard, or any other input device, the op- methods of various graphics objects.

Because the X window system was designed to run overerating system receives interrupts. Such interrupts are
mapped into events, structures that contain not only informa- a network, Xlib functions do not interact directly with the

hardware. Instead they generate or interpret messages ac-tion about the interrupt itself (for example that the mouse
moved) but also other related information (for example, coor- cording to the X Protocol. There is a different program that

translates such messages to graphics machine code, or con-dinates of the cursor, time of the day, etc). In modern window
systems events are generated not only by interrupts but by verts such code to messages. X uses the counter-intuitive

terms server for the part that deals with the hardware andnumerous other conditions, including program actions.
When an event is generated, it is associated with a particu- client for the application part.

A server program is necessary for any window system thatlar window (usually the one where the cursor is in). Normally,
for each window there is a function, the callback, to be called allows programs to run on a different machine than the one

in front of the user. A key issue is whether the server shouldin response for each particular type of event.
Application programs running in a window system start by be independent of the application. Indeed, it is possible to

write the client and server parts for each application. Thecreating one or more windows, initializing various structures,

606 WINDOWS SYSTEMS

server part would be down-loaded at start of the execution of need keep only strings of characters rather than their images.
(A character is normally represented by 8 bits, while its im-an application. This solution was adopted by the Blit (21). X

opted for a common server solution: Each display device has age requires 100 bits or more.) Both X and Microsoft Windows
have opted for the latter solution. Both impose upon the ap-a server program running that communicates with any appli-

cation through a socket mechanism. plication the need to respond to a ‘‘redrawing event.’’
An intermediate solution is to provide window back up.If we accept the common server solution, we must decide

what functionality to give to the server. Handling the low- When a window (or part of it) is obscured, an off-screen copy
is made. The creation of such a copy may be transparent tolevel graphics communications protocol and allocation of

hardware resources is a minimal functionality. This is the the application, so the application program may continue to
draw on the window. This solution was adopted for the earlypolicy that X has adopted, thus simplifying the server design.

There are two additional major functionalities that a server window system of the Blit (21). Window backup was also used
by another early window system, Sunview. X offers optionalmay have: that of the window manager and the ability to han-

dle the definition of new functions. backup, but the mechanism is not guaranteed to be available,
and it does not always function as the programmer might ex-The functions of the window manager are closely connected

to the hardware and a system would be more efficient if win- pect, so that an application is never relieved of the ultimate
responsibility to be able to restore the information displayeddow manager and server were parts of the same program.

Because the design of the window manager places certain re- on a window.
Window backup or redrawing is also needed when a win-strictions on the ‘‘look and feel’’ of the GUI, X opted to sepa-

rate the two programs, so users would have more choices. dow is resized. If backup is available, the old display is either
cropped (if the window becomes smaller) or surrounded byThis decision had two important consequences: On one hand

it made the server simpler and the other hand it made Xlib empty spaces (if window is enlarged). Requiring the applica-
tion to redraw offers the opportunity to adjust the scale of themuch larger because it had to contain functions that were

needed by window manager programs. The Be Kit uses an display to the new size of the window.
Application Server that combines the functions of the window
manager and the X Server (drawing and user input handling).

EVENTS OR MESSAGES
A desirable server property is to allow applications to de-

fine functions. This was possible in an early window system,
Window systems rely on a loop where one statement checks

NeWS, where the server interpreted the Postscript language
to see if there is an event (message) to be processed. If not,

and therefore allowed the definition of functions. The X server
the program suspends execution (usually); otherwise it looks

does not support function definitions. This is particularly un-
at the event structure. The structure contains information

fortunate because Xlib is a very low level library. For exam-
about the window where the event occurred, and on that basis

ple, it does not have a spline drawing function. To draw a
a function is involved. Listing 1 shows the basic loop in X

spline one must send the individual curve points to the
(Ref. 3, pp. 754–756) and Listing 2 shows the basic loop in

server. If function definition were allowed, one would need
MS Windows (Ref. 16, p. 95).

send only the control points of the spline. Win32 provides
functions equivalent to most of the low-level functions of Xlib, Listing 1

XEvent event;as well as higher-level functions, including spline drawing.
Win32 and the Be Kit also provide certain facilities that per- while (1) [

XtAppNextEvent(. . ., &event);form the role of user-defined functions (see section entitled
‘‘Drawing Line Segments’’). XtDispatchEvent(&event);

]

Listing 2
BACKING UP WINDOWS

MSG msg;
while (GetMessage(&msg, . . .)) [

When the user manipulates the desktop environment, some
TranslateMessage(&msg);

windows may be hidden behind others and later brought in
DispatchMessage(&msg);

front again. A key question is what happens to what was
]

drawn on them before and how do we restore it when the
window is brought back up again. There are various solutions The key function in both systems is a ‘‘dispatcher.’’ Each

system maintains a window-object tree and the tree is tra-to this problem. One extreme solution is to have a copy of the
window in off-screen memory. We may even follow the policy versed until a match is found between the window of the

event (message) and the object, thus ‘‘dispatching’’ the eventthat the application program never draws on the window it-
self, but only in the off-screen memory. When the window (or to the window object. Each object has certain methods that

are called when an event is received. While the generic termpart of it) becomes visible, the window manager or the server
copy the appropriate part of that memory to the window. callback is used for such functions, there are many varieties

of them, and in some systems the term ‘‘callback’’ is reservedAnother extreme solution is to make no effort to save any
off-screen information. Instead each application program is for a particular class. The most general type of an event pro-

cessing function is called an event handler in X, or a windowrequired to redraw the contents of its windows upon demand.
This implies that the application must keep its own internal procedure in MS Windows. The event/message contains a

‘‘type’’ member and the function is built around a switch withcopy of the information displayed. However, that information
may be in far more compact form than a copy of the window the type as argument. Listings 3 and 4 show switch examples

for X and MS Windows, respectively.itself. For example, if we have a window that displays text we

WINDOWS SYSTEMS 607

Listing 3 Microsoft Windows uses the term ‘‘window’’ for an object
that is closer to an X widget than to an X window. The Micro-Xevent *ep;

switch (ep-�type) [soft Foundation Classes provide formal objects that enhance
the basic window classes. The approach used by MS Windowscase Expose:

/* Draw on the Window */ is to provide a basic window class that has considerable func-
tionality. It is the only object that simple applications need.return;

case MotionNotify: It also provides window classes that may serve as control but-
tons, text labels, and so on. These classes are simple to use,/* Respond to Mouse Motion */

return; although the application writer has minimal control over
their appearance. In contrast, X allows for unlimited control

Listing 4 at the expense of considerable complexity.
UINT iMsg; The Be Kit has a BWindow object that is used only for the
switch (iMsg) [top window of an application. It establishes a connection to
case WM_PAINT: the Application Server and is associated with a computational
/* Draw on the Window */ thread. BViews are the Be objects that most closely corre-
return 0; spond to widgets in X and to windows in MS Windows.

case WM_MOUSEMOVE: Customization is an important question in the design of a
/* Respond to Mouse Motion */ window system. Users should be able to adjust the appear-
return 0; ance of their desktop without difficulty. X provides a general

resource that makes customization quite easy, some mightThe prefix ‘‘WM’’ stands for ‘‘Window Message.’’ In X, mes-
say too easy. Microsoft Windows uses the same term, re-sages are generated by the server. In the case of mouse mo-
source, with a different meaning that overlaps only partlytion the Window Manager is not involved at all. However, the
with the meaning of the term in X. Profile files and the Regis-Window Manager is the one that has initiated the event that
try support customization that parallels that provided by Xrequires drawing on the window since the Window Manager
resources.keeps track of which windows are visible.

Because of the significant differences in the handling ofWhile details are different and there are other ways of re-
resources and complex window objects we discuss each systemsponding to events what is shown in the four tables is the
separately. Java creates only partial window objects of itsprevailing way and it illustrates the structure of event
own. For full functionality, it relies on peer objects that aredriven programs.
taken from whatever toolkit happens to be available in theIn Java’s AWT the event loop is hidden. Instead the appli-
system the program runs. Therefore it relies always on an-cation must provide a handleEvent() method whose code is
other window system.similar to that shown in Listings 3 and 4. Java also has

names for methods for specific events: paint() and
Resources in XmouseMove() are examples with the obvious meaning. The

application must provide the code for these functions. Simi- The X Toolkit (Xt) uses a mechanism that links character
larly the Be Kit has Draw() and MouseMoved() methods strings with arbitrary values. A detailed discussion of Xt Re-
that must be implemented by the application. sources is beyond the scope of this article, so we provide only

a simplified description. Consider the labels of items in a
menu. We would like to use different labels depending on the

COMPONENTS OF WINDOW SYSTEMS user’s language; thus instead of having their text in the pro-
gram, we leave the labels undefined and specify them at exe-

Windows, Widgets, and Classes cution time on the basis of resource file. Let us assume that
the application name is draw and the buttons have internalA characteristic of graphical user interfaces is that there is a
names button_1, button_2, and so on. The resource filerelatively small number of operations that the window system
takes the following formmust support, while the operations themselves can be quite

complex. This has led to the building block approach in win- draw*button_1.label: Save
dow systems. A relatively small number of window objects draw*button_2.label: Save As
(classes) are defined and applications are built through combi- draw*button_3.label: Discard
nations of them.

The resource values may be changed either by editing theThe X Window System distinguishes between a low-level
resource file or by using a special dialogue box that is usuallywindow object that describes a screen area and a high-level
part of the application. This is a powerful mechanism, butwindow object that encompasses event handling and drawing
also a dangerous one. There is no security safeguard to limiton the window. It uses the term window for the low-level ob-
resource modification. An incorrect label translation can leadject and widget for the high-level. Because the functions of
to disaster. A safer solution in this case would have been toXlib are too low level, another library of functions (the X In-
have an application resource, ‘‘language’’ and have the re-trinsics) and objects (the X Widgets) has been built on top of
source file specifyit. Collectively the Intrinsics and the Widgets are known as

the X Toolkit (Xt). Additional toolkits have been built on top draw*language: English
of Xt, the most widely used being Motif. Therefore direct win-
dow creation is rarely found in X applications. Instead it is This assumes that the program has internal lists of all button

labels in different languages. Since this is not practical exceptpreferable to create a widget.

608 WINDOWS SYSTEMS

for a small number, the safer solution is not general. Re- WidgetClass, /* widget class */
Widget, /* parent */sources also provide a powerful conversion mechanism. For

example, a color may be specified by name rather than by ArgList, /* array of structures with
parameters */RGB (red, green, blue) values:
Cardinal, /* length of array in previous

draw*button_1.background: lightblue
argument */

draw*button_2.background: greenyellow
)

Note that Xt defines many data types for its own use, evenTranslation tables are a special type of resources that allow
if there is a corresponding C type. Thus String is char * andthe linking of events to callbacks. For example:
Cardinal is int. Widget is a pointer to an instance record.

draw*: translations: �key�q: quit() WidgetClass is a pointer to a class record. ArgList is an
array of Arg structures. Each one of the latter has two mem-or
bers: a resource name and a resource value. Widget class

draw*: translations: �Btn3Down�: quit() pointers are known by symbolic names, for example label-
WidgetClass. These are defined in the public definition fileThe first statement links the event of pressing the ‘‘q’’ key to
of the class, for example, in Label.h. Constructing a newthe callback quit(). The second statement links pressing the
class under Xt is a major effort, thus there is a limited andright mouse button (No. 3) to the same callback. Note that
well-defined set of widget classes that may be used. This isthe callback is fixed, and what may be customized is the event
true, even if the class is going to be very simple—a menuactivating the callback.
button or a drawing widget for example. There is always a
very large overhead involved.Windows and Widgets in X

The X Toolkit has a hierarchy of widget classes. The basic
In X the term ‘‘window’’ is used to refer to a server window class is Core that has Composite as a subclass. The latter
object. A window in X has geometry parameters, attributes, has two subclasses: Constraint and Shell. A shell widget
and properties. Parameters include the width and height of provides means for interacting with the window manager,
the window area, the coordinates of its upper left corner, bor- and a widget of that class serves always as the top widget of
der width, and so on. Attributes include the background color, an application. A constraint widget provides means for speci-
events that should be tracked for this window, information fying the arrangement of its children through layout rules
about redrawing policies after resizing, and so on. Finally that remain in effect even after the window is resized.
properties are a set of character strings that are used for com- These classes are not sufficient for most applications, and
munication between applications. toolkits such as Motif are used to provide major support. Mo-

The prototype Xlib function for creating a simple window tif has a Primitive class that is a subclass of Core and a
is shown in Listing 5. This function call specifies the geometry Manager class that is a subclass of Constraint. The sub-
parameters and two attributes. The type Window is not a classes of Manager include: RowColumn for simple layouts
pointer because the window may be on a different machine (usually vertical or horizontal arrays) and Form that allows
than the application that created it. Instead Window is an layouts of considerable complexity. Label is a subclass of
integer that serves as a handle to the window structure. X Primitive and has various button types as subclasses:
uses the term X ID (or XID) instead of handle. PushButton and ToggleButton. A Text class is a subclass

of Primitive and can be used to edit text. Motif also sup-Listing 5
ports compound widgets, widgets that consist of a collectionWindow XCreateSimpleWindow(
of others. Typical examples are popup menus and viewports.Display *, /* pointer to the server */
A high-level programming language, UIL, is available for pro-Window, /* parent */
totyping Motif applications (8).int, int, /* x, y of upper left corner */

The widget class hierarchy discussed here should be distin-int, int, /* width and height */
guished from the widget tree that is based on the windowint, /* border width */
containment relations in an application. Figure 1 shows onunsigned long, /* border color */
the left the appearance of an application and on the right theunsigned long, /* background color */
widget tree. The top-level shell widget wraps itself tightly)

Widget is a client window object that includes a reference to
a server window object. There is a clear distinction between
members of the object that vary with each implementation
(instance record) and those that do not (class record). The for-
mer include dimensions, location, and so on. The latter are
mostly methods and parameters that remain the same for all
members of the class.

The prototype Xt function to create a widget is shown in
Listing 6.

Text

Text

Frame

Shell

Menu container

Listing 6
Widget XtCreateWidget(Figure 1. (Left) Appearance of an application. (Right) The widget

tree.String, /* widget name */

WINDOWS SYSTEMS 609

around the frame. The frame contains a menu container and article on RASTER GRAPHICS ARCHITECTURES for the definition of
bitmaps.) The file is written in the form of C code and it con-a text widget. Buttons are marked in gray.
tains variables label_1_bits, label_1_width, and
label_1_height referring, respectively, to a character arrayAn Example of a Motif Widget
with the figure data, the width, and height of the bitmap.

We discuss here in some detail an example of a Motif widget.
It is tempting to try to use the resource mechanism to con-

Listing 7 shows the creation of a push button widget with a
struct the pixmap from the bitmap file. One could have the

fixed label and the assignment of a callback to it. Widget
line

names are used mainly in resource files. The specification of
the label is quite cumbersome because Motif provides for la- *button_1.labelPixmap: label_1.bitmap
bels of alphabets other than Latin. If we want to mark the

in a resource file. This will not work because the bitmap pro-button with an icon, rather than a text label, we can do so
duced will be only one bit per pixel deep while the Motif but-with the code of Listing 8.
ton expects a bitmap with full depth. The call to the pixmap

Listing 7 creation function includes two arguments (foreground and
#include �Xm/PushB.h� background colors that were not part of the original bitmap
/* . . . */ file).

void save_file(Widget, XtPointer, XtPointer); The code for a button labeled with a bitmap is sufficiently
/* . . . */ complex to discourage anyone from complaining that the basic

static char *file_name; Microsoft Window classes do not support such a feature. The
/* . . . */ numerous cryptic default arguments point to another problem

static Widget frame, choice[8]; with X. The intention is to provide full generality and in par-
/* . . . */ ticular support applications that use multiple servers, and

choice[0] � XtVaCreateManagedWidget(servers that have multiple screens. However, this provision
‘‘button_1’’, /* widget name */ increases the difficulty of writing the vast majority of applica-
xmPushButtonWidgetClass, /* class */ tions that use only one server with one screen.
frame, /* parent */
XmNlabelString, /* resource name */

Resources in Microsoft WindowsXmStringCreateLocalized(‘‘Save’’), /* label
*/ The term ‘‘resources’’ is used with a different meaning in Mi-
NULL); crosoft Windows. Resources are part of the executable file, but

are loaded in main memory only as they are needed. They are
XtAddCallback(choice[0], /*widget */ not specified in a C source file, but in a separate resource
XmNactivateCallback, /* resource name */ script. Listing 9 shows a resource script for some text labels.
save_file, /* callback */

Listing 9(XtPointer)file_name /* to be used as second
#include ‘‘mylabels.h’’argument in callback */

);
STRINGTABLE/* . . . */

�
Listing 8 SAVE, ‘‘Save’’
#include �label_1.bitmap� SAVE_AS, ‘‘Save As’’
/* . . . */ TRASH, ‘‘Discard’’
Pixmap px_1 � XCreatePixmapFromBitmapData(�
XtDisplay(frame),
DefaultRootWindow(XtDisplay(frame)), The file mylabels.h contains the definitions of the sym-
label_1_bits, label_1_width, label_1_height, bolic constants SAVE, etc. The resource script should be part
foreground_color, background_color, of a file called draw.rc. That file is compiled with an rc com-
DefaultDepth(XtDisplay(frame), mand with the result placed in a file draw.res that is then
DefaultScreen (XtDisplay(frame))) linked with the draw.obj and the various library files into

); the executable draw.exe. The draw.c file should contain the
code shown in Listing 10.

choice[0] � XtVaCreateManagedWidget(
Listing 10‘‘button_1’’, /* widget name */
#include ‘‘mylabels.h’’xmPushButtonWidgetClass, /* class */
/* . . . */frame, /* parent */
char label_buf[64];XmNlabelType, XmPIXMAP, /* type of label */
/* . . . */XmNlabelPixmap, /* resource name */
LoadString(hInstance, SAVE, label_buf, 64);px_1, /* pixmap */
/* . . . */NULL);

/* . . . */
Then the string label_buf could be used as the button

label. The argument hInstance refers to the running processThe above code assumes that a bitmap of one bit per pixel
has been drawn and placed the file label_1.bitmap. (See and is needed to identify the resources from the disc.

610 WINDOWS SYSTEMS

Windows in Microsoft Windows Wndclass.lpfnWndProc � PlayAround; /* event
handler */

In Microsoft Windows the term ‘‘window’’ has a meaning
/* . . . etc . . . */

closer to that of an X widget. The Microsoft Foundation
Classes (MFC) provide an object-oriented interface to Win-

(void)RegisterClass(&WndClass);
dows plus some enhancements in their functionality. The pro-
totype of the function to create a window is shown in List- Once a class has been registered, the same structure,
ing 11. WndClass, can be used to create a new class. There exist pre-

defined classes whose names might be used in the Cre-
Listing 11 ateWindow() without any other preparation.
HWND CreateWindow(
char *, /* class name */ Examples of Microsoft Window Classes
char *, /* window title */

We provide here examples of Microsoft Window buttons. Inint, /* window style */
contrast to X where each specific button type is a separateint int, /* x, y of upper left corner */
class, Windows has a general button class with name ‘‘button’’int int, /* width and height */
and 10 different button types are defined as styles:HWND, /* parent window handle */
BS_PUSHBUTTON, BS_RADIOBUTTON, BS_CHECKBOX, and soHWND, /* handle for menu subwindow */
on. One of the styles is BS_OWNERDRAW that allows the appli-HINSTANCE, /* program instance */
cation to create the label, possibly with a bitmap. Listing 13pointer, /* place for optional data, if none
is the counterpart of Listing 7.pass NULL */

)
Listing 13
static HWND hwndFrame;The type HWND stands for window handle, exactly the
static HWND hwndChoice[8];same role that the type Window (XID) plays in X. There are
/* . . . */several similarities with X, but also significant differences.

hwndChoice[0] � CreateWindow(The function arguments appear to be a mixture of the
‘‘button’’, /* class name */XCreateSimpleWindow() (position and dimension specifi-
‘‘Save’’, /* label */cation) and XtVaCreateWidget() functions (class name).
WS_CHILD � WS_VISIBLE � BS_PUSHBUTTON, /*The basic Microsoft Window provides the functionality of a
style */collection of several X widgets: a shell widget for interaction

/* . . . position and size parameters . . .with the window manager, a container widget, and, option-
*/ally, a menu. The menu subwindow can be omitted by setting

hwndFrame, /* parent window */the respective argument to NULL.
(HMENU)1, /* window ID number */Some parameters correspond to X window properties: the
hInst, /* Instance handle */window title and the program instance. The latter identifies
);the program that created the window. There is a major differ-

ence on how this information is handled in X and in Microsoft The callback code is included in window procedure in re-
Windows. In X the program may attach the command line sponse to the message of type WM_COMMAND.
arguments (that include the program name) as a property to The organization of the different types of classes is much
a window. Since this is an ASCII character string there is no simpler than in Motif (or other X Toolkits) which have almost
restriction on what can be placed there. In contrast, the han- as many button classes as MS Windows has styles. While the
dle used in Microsoft Windows has a value provided at execu- application designer has much more control over the appear-
tion time that cannot be modified in an obvious way to yield ance and functionality of Motif buttons compared to most MS
another legitimate value. In addition, the value corresponds buttons styles, that flexibility comes at the cost of complexity.
to an instance, so if we have two copies of an application run- For most applications the MS Windows button styles are
ning, we may distinguish between them. Because X may run quite adequate. For the few situations where these styles are
over a network, there is no way to ensure such a close link not adequate, there is the BS_OWNERDRAW style. The applica-
between window and program. tions programmer has to be concerned with button appear-

In contrast to X, classes can be defined easily by initializ- ance only when it is absolutely necessary.
ing a class structure of 12 members and then registering it.
Part of the code is shown in Listing 12. BeBox Interface Kit

The Be Kit software is written in C�� making full use of theListing 12
object oriented features of the language. Applications start byLRESULT CALLBACK PlayAround(/* . . . */)
creating a BWindow with a constructor function that has the�
prototype/* message handler code */

�
BWindow(BRect frame, const char *title,
window_type type, ulong flags, ulong

WNDCLASS WndClass;
workspaces = B_CURRENT_WORKSPACE)

Wndclass.lpszClassName � ‘‘Play The frame specifies the dimensions and location of the
window, and title has the obvious meaning. type specifiesProgram’’ ; /* name */

WINDOWS SYSTEMS 611

the window class. B_DOCUMENT_WINDOW has a title and scroll bitwise logical operations and the name of the symbolic con-
bars, so it is well suited for the display of text files. The pa- stants used in Windows and in X.
rameter flags specifies whether the window can be moved, The exclusive OR (XOR) deserves some comments. It has
resized, minimized, and so on. In short, those two arguments been a popular operation because it allows for the use of the
specify characteristics that are associated with the X Shell same call for drawing and for erasing a figure. XOR sets to 1
widget. A window object is associated with a computational all bits where source and destination differ. All other bits are
thread. set to 0. Therefore the XOR of a pattern with itself is 0. In

Subwindows are created as BView objects. Be Kit classes particular:
derived from BView include BButton, BMenu, and so on. A

src XOR (src XOR dest) = (src XOR src) XORBView object is responsible for drawing and for handling mes-
dest = destsages delivered to window thread, basically the same func-

tionality as an X Widget. The BView constructor is This works fine in 1 bit displays, but there are problems in
multibit displays if the drawing area has a background colorBView(BRect frame, const char *name, ulong
that corresponds to a nonzero bit pattern. As an example,resizingMode, ulong flags)
suppose that we have 3 bits per pixel with 100 corresponding

The first two arguments have the obvious meaning, and to red, 010 to green, and 001 to blue. To achieve a yellow
resizingMode specifies how the redrawing should be done background, all pixels should contain the pattern 110. If we
after resizing. flags specifies the types of notifications the want to draw a red line using XOR and assign the source the
object receives. 100 bit pattern, the result will not be red but green! (100 XOR

110 � 010). To have a red output we must use 010 as the
DOING GRAPHICS ON WINDOWS source bit pattern. In general, to make sure we obtain the

right color we must adjust the source color by applying one
BitBlt extra XOR operation with the destination color. Keeping

track of all the XOR operation adds to the complexity of theAll window systems rely on raster graphics that rely in turn
code, especially if we want to draw in more than one color.on television technology. The display is drawn on piece of
This might not be a problem for experienced programmers,memory (refresh memory or frame buffer) that is continu-
but it is troublesome for beginners. While both X and Micro-ously read, and its contents are used to specify the color of a
soft Windows support the XOR operation, the Be Kit does not.particular screen location. (See GRAPHICS HARDWARE for more

details.) A pixel is a location in the refresh memory that con-
Drawing Line Segmentstrols the color and intensity of a single spot on the screen.

The term BitBlt stands for bit block transfer and refers to Listing 14 shows the code that draws a line segment from a
the basic drawing operation in window systems: copying a point with coordinates x1, y1 to one with coordinates x2, y2
block of pixels from one memory location to another. This ap- for X and MS Windows. We observe that there are three ‘‘mys-pears to be a simple operation, except for one thing. Computer

terious’’ arguments in X and one in MS Windows.memory organization does not necessarily correspond to pixel
organization. For example, suppose we have a screen with one Listing 14
bit per pixel and 16 bit words in memory. Since most ma- Xlib:
chines require the same amount of time to copy a whole word

XDrawLine(Dpy, win, gc, x1, y1, x2, y2);than a part of it, if we copy pixel by pixel it may take 16 times
as long than if we copy word by word.

Win32:Therefore, an efficient implementation of bit block transfer
is essential. All window systems have a set of functions that MoveToEx(hdc, x1, y1, NULL);
copy a rectangular area from one piece of memory (source) to LineTo(hdc, x2, y2);
another (destination). The main function in MS Windows is

Dpy is pointer to the server, win is the window handleactually called BitBlt(), in X it is called XCopyArea(). In
(XID), and gc the graphics context; Dpy points to a structuregeneral, these functions perform a Boolean operation between
that contains information about the color, thickness, and stylethe contents of source and destination rather than simple cop-
(dashed or solid) of the line segment to be drawn. Those val-ying. The type of the operation is specified by a constant that
ues are set by earlier calls—for example, the calleither is passed as an argument in the bit block transfer func-

tion (in the case of Windows) or is a parameter of the graphics XSetLineAttributes(Dpy, gc, 2, LineOnOffDash,
environment (in the case of X). Table 1 shows some common CapButt, JoinMiter);

sets line thickness to 2 pixels, sets style to dashed, and speci-
fies the shape of endpoints and corners according to prede-
fined rules expressed by symbolic constants, a favorite prac-
tice in X.

hdc is a handle for device context that encompasses both
window and graphics context information. It is usually ob-
tained by a call such as

hdc = BeginPaint(hwnd, &ps);

where hwnd is a window handle and ps is a paint structure
(type PAINTSTRUCT). The latter structure contains a clipping

Table 1. Some Common Bitwise Logical Operations and the
Names of the Symbolic Constants Used in Windows and in X

Operation Symbol in X Symbol in Windows

0 GXclear BLACKNESS
src AND dst GXand SRCAND
src GXcopy SRCCOPY
src OR dest GXor SRCPAINT
src XOR dest GXxor SRCINVERT
1 GXset WHITENESS

612 WINDOWS SYSTEMS

rectangle that limits what you may draw on the window. If good idea to define macros in application programs that take
only the essential arguments.the window was partially obscured and must be redrawn be-

cause it is no longer obscured, the clipping rectangle encom- The Be Kit has left the line style outside the pen structure.
A pattern contains information both about the style and color.passes only the area that needs to be redrawn. In X the infor-

mation about the area to be redrawn is contained in the event Just to keep things interesting, the term ‘‘high color’’ is used
for foreground and ‘‘low color’’ for background.structure while a clipping polygon (and not just a rectangle)

is part of the graphics context.
The device context structure contains information both Communication between Applications

about the area to be painted on the window and the parame-
A popular feature of most GUIs is the ability to share dataters that usually go with the X graphics context. Some of
between applications, often through a ‘‘drag and drop’’ mecha-them are members of the device context structure itself (for
nism. The underlying process for such a transfer is providedexample, the background color), others are grouped in sub-
by the window system. When the user selects a block of datastructures. One of them is the pen structure (type HPEN) that
in X the server is informed about the selection and registerscontains information about style, line thickness, and fore-
a function that can recover the data. When the user ‘‘drops’’ground color. To specify a dashed green line with thickness 2
the data in another window, that application requests thewe need the call
data from the server which recovers them by calling the func-

hPen = CreatePen(PS_DASH, 2, RGB(0, 255, 0) tion registered by the owner of the selection. Such a transfer
); requires that the first application be running at the time of

the selection.There is another function that creates a pen with additional
A clipboard selection uses a third application which keepsattributes, including line ends and joints.

a copy of the selection, so the original owner need not be run-
hPen = ExtCreatePen(PS_DASH � PS_ENDCAP_FLAT ning when the selection is requested. MS Windows supports

� PS_JOIN_MITER, 2, &lBrush, 0, NULL); only clipboard selections.
From the application user viewpoint, selections throughThe Be Kit takes advantage of function name overloading

the clipboard mechanism require two steps: copy to the clip-that is supported in C�� and provides different versions of
board and copy from the clipboard. This is evident when textthe same function for drawing straight lines.
editors move a word from one place to another, which requires

Listing 15 a selection action that highlights the word, a copy operation,
BPoint p1, p2; a selection of the new place, and a paste operation. (‘‘Paste’’

is the term used for copying from the clipboard.)
v.MovePenTo(p1);
v.StrokeLine(p2, pattern);

BIBLIOGRAPHY

or
1. R. W. Scheifler and J. Gettys, The X window system, ACM Trans.

v.StrokeLine(p1, p2, pattern); Graphics, 5 (2): 79–109, 1986.

2. R. W. Scheifler and J. Gettys, X Window System, 3rd ed., Burl-
pattern corresponds to style; solid, dashed, and so on. The ington, MA: Digital Press, 1992.
pen structures contains information only about thickness. 3. P. J. Asente and R. R. Swick, X Window System Toolkit, Newton,

X uses the term Pixmap for a piece of memory where draw- MA: Digital Press/Butterworth-Heinemann, 1990.
ing operations are valid and which can be copied on a window. 4. A. Nye, Xlib Programming Manual, The Definite Guides to the X
MS Windows uses the term Bitmap for the same concept. The Window System, Vol. 1, Sebastopol, CA: O’Reilly & Associates,
term Bitmap is also used by X to denote a Pixmap with one 1991.
bit per pixel. Device Independent Bitmaps is a Windows con- 5. A. Nye (ed.), Xlib Reference Manual, The Definite Guides to the
cept and refers to Bitmaps that are accompanied by a color X Window System, Vol. 2, 3rd ed., Sebastopol, CA: O’Reilly &
correspondence table. All drawing operations that can be per- Associates, 1992.
formed on window and can also be performed on a bitmap/ 6. A. Nye and T. O’Reilly, X Toolkit Intrinsics Programming Manual,
pixmap and later copied to the window with a bitblt oper- The Definite Guides to the X Window System, Vol. 4, Motif edi-

tion, Sebastopol, CA: O’Reilly & Associates, 1993.ation.
MS Windows drawing functions are closer to traditional 7. D. Flanagan, X Toolkit Intrinsics Reference Manual, The Definite

Guides to the X Window System, Vol. 5, 3rd ed., Sebastopol, CA:graphics functions and reflect the historical development of
O’Reilly & Associates, 1992.graphics, and in particular vector graphics. There was a time

when the pen structure was the only context that could be 8. P. M. Ferguson, Motif Reference Manual, The Definite Guides to
the X Window System, Vol. 6B, Sebastopol, CA: O’Reilly & Asso-defined. The design also mixes window and graphics context
ciates, 1993.information.

9. P. E. Kimball, The X Toolkit Cookbook, Englewood Cliffs, NJ:The designers of X were brave enough to start afresh, and
Prentice-Hall PTR, 1995.therefore its graphics functions are much cleaner. Window

10. E. F. Johnson and K. Reichard, Advanced X Window Applicationsand graphics context are separate. On the other hand the ar-
Programming, New York: M&T Books, 1994.gument structure is needlessly cumbersome. All Xlib func-

11. T. Pavlidis, Fundamentals of X Programming, Boston: PWS-Kenttions have a pointer to the server as their first argument.
Publishing, 1997.However, most applications use only one server, and thus the

first argument of all their calls to Xlib are the same. It is a 12. A. King, Inside Windows 95, Redmont, WA: Microsoft Press, 1994.

WIND POWER 613

13. N. W. Cluts, Programming the Windows 95 User Interface, Red-
mont, WA: Microsoft Press, 1995.

14. Programmer’s Guide to Microsoft Windows 95, Redmont, WA: Mi-
crosoft Press, 1995.

15. Programming with MFC, Vol. 2 of Microsoft Visual C�� six-vol-
ume collection, Redmont, WA: Microsoft Press, 1995.

16. C. Petzold, Programming Windows 95, Redmont, WA: Microsoft
Press, 1996.

17. The Be Book Accessible through the web site www.be.com/
documentation/be_book/index.html.

18. A. von Hoff, S. Shaio, and O. Starbuck, Hooked on Java, Reading,
MA: Addison-Wesley, 1996.

19. P. Niemeyer and J. Peck, Exploring Java, Sebastopol, CA:
O’Reilly & Associates, 1996.

20. J. K. Ousterhout, Tcl and the Tk Toolkit, Reading, MA: Addison-
Wesley, 1994.

21. R. Pike, Graphics in overlapping bitmap layers, ACM Trans.
Graphics, 2 (2): 135–160, 1983.

THEO PAVLIDIS

SUNY

