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2. Culling and clipping, that is, efficiently determining
which objects are visible from the virtual camera

3. Projecting visible objects on the film plane of the virtual
camera in order to render them

References 1–4a provide excellent overviews of the field of
3-D graphics. This article provides an introduction to the field
by presenting the standard approaches for solving the afore-
mentioned problems.

THREE-DIMENSIONAL SCENE DESCRIPTION

Three-dimensional scenes are typically composed of many ob-
jects, each of which may be in turn composed of simpler parts.
In order to efficiently model this situation, the collection of
objects that comprise the model handled in a three-dimen-
sional graphics application is typically arranged in a hierar-
chical fashion. This kind of hierarchical structure, known as
a scene graph, has been introduced by Sutherland (5) and
later used in most graphics systems to support information
sharing (6).

In the most common case, a transformation hierarchy de-
fines the position, orientation, and scaling of a set of reference
frames that create coordinates for the space in which graphi-
cal objects are defined. Geometrical objects in a scene graph
are thus always represented in their own reference frame,

THREE-DIMENSIONAL GRAPHICS and geometric transformations define the mapping from a co-
ordinate system to another one. This makes it possible to per-

Three-dimensional graphics is the area of computer graphics form numerical computation always using the most appro-
that deals with producing two-dimensional representations, priate coordinate systems.
or images, of three-dimensional (3-D) synthetic scenes, as During the rendering process, the graph is traversed in
seen from a given viewing configuration. The level of sophisti- order and transformations are composed to implement rela-
cation of these images may vary from simple wire-frame rep- tive positioning. This kind of hierarchical structure is very
resentations, in which objects are depicted as a set of segment handy for many of the operations that are needed for model-
lines with no data on surfaces and volumes (Fig. 1), to photo- ing and animating a three-dimensional scene: objects can be
realistic rendering, in which illumination effects are com- easily placed relative to one another, and the animation of
puted using the physical laws of light propagation. articulated objects can be done in a natural way. Figure 3

All the different approaches are based on the metaphor of shows a possible structuring of the scene presented in Fig. 1.
a virtual camera positioned in 3-D space and looking at the The scene graph provides additional features for simpli-
scene. Hence, independently of the rendering algorithm used, fying transformation composition, and in particular can be
producing an image of the scene always requires the resolu- used to factor out commonality. Since graphical attributes are
tion of the following problems (Fig. 2): usually propagated from parent to child, setting attributes

high in the scene hierarchy effectively sets the attributes for
1. Modeling geometric relationships among scene objects, the entire subgraph. As an example, setting to red the color

and in particular efficiently representing the situation of the root object of the scene graph defines red as the default
in 3-D space of objects and virtual cameras color of all objects in the scene.

Most modern three-dimensional graphics systems imple-
ment some form of scene graph [e.g., OpenInventor (7), VRML
(8)]. A few systems, for example, PHIGS and PHIGS� (9),
provide multiple hierarchies, allowing different graphs to
specify different attributes.

GEOMETRIC TRANSFORMATIONS

Geometric transformations describe the mathematical rela-
tionship between coordinates in two different reference
frames. In order to support transformation composition effi-
ciently, three-dimensional graphics systems impose restric-
tions on the type of transformations used in a scene graph,
typically limiting them to be linear ones.Figure 1. Wire-frame representation of a simple scene.
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Figure 2. Three-dimensional viewing
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Linear transformations have the remarkable property that, plane even if it is outside the triangle. An interesting property
of such a system is given by the fact that scaling the threesince line segments are always mapped to line segments, it is

not necessary to compute the transformation of all points of weights by the same scale factor does not change the position
of the center of gravity: this implies that the coordinates of aan object but only that of a few characteristic points. This

obviously reduces the computational burden with respect to point are not unique.
A slightly different formulation of this concept, due tosupporting arbitrary transformations. For example, only the

vertices of a polygonal object need to be transformed to obtain Plücker, defines the coordinates of the point P on the
Cartesian plane in terms of the distances from the edges of athe image of the original object. Furthermore, each elemen-

tary linear transformation can be represented mathemati- fixed triangle (11). A particular case consists in placing one of
the edges of the triangle at infinity; under this assumptioncally using linear equations for each of the coordinates of a

point, which remains true for transformation sequences. It is the relation between the Cartesian coordinates of a point
P � (x, y) and its homogeneous coordinates (X, Y, W)T isthus possible to perform complex transformations with the

same cost associated with performing elementary ones.
Using 3-D Cartesian coordinates does not permit the rep- x = X/W, y = Y/W W �= 0

resentation of all types of transformations in matrix form
The same notation extended to the Cartesian space will use(e.g., 3-D translations cannot be represented as 3 � 3 matri-
the distances from the four sides of an arbitrary tetrahedron.ces), which is desirable to support transformation composition
The relation between the Cartesian coordinates of a pointefficiently. For this reason, 3-D graphics systems usually rep-
P � (x, y, z) and its homogeneous coordinates (X, Y, Z, W)T isresent geometric entities using homogeneous coordinates.

x = X/W, y = Y/W, z = Z/W, W �= 0Homogeneous Coordinates

Ferdinand Möbius introduced the concept of homogeneous co- Notice that when W is 1 the other coordinates coincide with
ordinates in the 19th century as a method for mathematically the Cartesian ones.
representing the position P of the center of gravity of three Since the curve and surface equations, defined using this
masses lying onto a plane (10). Once the three masses are coordinate definition, are homogeneous (all the terms have
arbitrarily placed, the weights of the masses define the place- the same degree), this coordinate system is called a homoge-
ment of P, and a variation in one of the weights is reflected neous coordinate system.
in a variation of P. Thus we have a coordinate system in
which three coordinates define a point on the plane inside the Matrix Representation of Geometric Entities. Using homoge-
triangle identified by the three masses. Forgetting the physics neous coordinates any three-dimensional linear transforma-
and using negative masses, we can represent any point on the tion can be represented by a 4 � 4 matrix. Points are repre-

sented in homogeneous coordinates as column vectors by
setting their w coordinate to 1, while vectors have their w
coordinate set to 0. Geometric transformations are then per-
formed simply by matrix multiplication.

If T is the matrix representation of a transformation map-
ping coordinates in a reference frame Fa to coordinates in a
reference frame Fb, the coordinates of a point P� � (p�x, p�y, p�z,
1)T relative to Fb are obtained from the coordinates P � (px,
py, pz, 1)T relative to Fa in two steps:

1. Let (x, y, z, w)T � T � (p�x, p�x, p�x, 1).
2. Then P� � (x/w, y/w, z/w, 1).

Vectors are instead transformed by simply performing matrix
multiplication followed by setting the w coordinate to 0.

Since any transformation is represented by a 4 � 4 matrix,
matrix composition can be used to minimize the number of
algebraic operations needed to perform multiple geometrical
transformations. The composed matrix is computed only once
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and then used on any object of the scene that should be trans-
formed. Homogeneous coordinates therefore unify the treat-Figure 3. Scene graph of the scene in Fig. 1.
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ment of common graphical transformations and operations. The general form of a shear matrix is an identity matrix plus
six shear factors:The value of this fact has been recognized early in the devel-

opment of computer graphics (12), and homogeneous coordi-
nates have become the standard coordinate system for pro-
gramming three-dimensional graphics systems.

Normal Vectors and the Dual Space. In many 3-D graphics

H =

�
����

1 hxy hxz 0
hyx 1 hyz 0
hzx hzy 1 0
0 0 0 1

�
����

applications, it is important to introduce the idea of a normal
vector. For example, polygonal models usually have normal

Manipulation of Orientation and Rotationvectors associated with vertices, which are used for per-
forming shading computations. It is easy to demonstrate that In a synthetic scene, cameras and visible objects are often
if the normal to a plane passing through three points is trans- manipulated as if they were rigid objects, and their situation
formed as a vector, its image does not remain orthogonal to in space is described as a rotation plus a translation from an
the plane passing through the images of the three points (13). initial orientation and position. We have seen that homoge-

In order to obtain the correct behavior, normal vectors neous coordinates are a general way to describe 3-D positions
must be modeled as algebraic entities called dual vectors, and transformations. However, the collection of all possible
which intuitively represent oriented planes. The conse- orientations of a 3-D rigid body forms an orientation space
quences of this fact can be summarized as follows (13): that is quite different from the Euclidean space of positions,

and a good parametrization is needed in order to perform
1. Dual vectors are represented as row vectors. meaningful operations easily. Representing orientations and

rotations as matrices is sufficient for applications that require2. If T is the matrix representation of a geometric trans-
only transformation composition but does not support trans-formation, then dual vectors are transformed by multi-
formation interpolation, a required feature for applicationsplying them by the inverse transpose of T, followed by
such as key-framing. In particular, interpolation of rotationsetting the last component to 0.
matrices does not produce orientation interpolation but intro-
duces unwanted shearing effects as the matrix deviates fromMatrix Representation of Primitive Linear Transformations. In
being orthogonal.a right-handed system the translation matrix is

It can be demonstrated that four parameters are needed to
create coordinates for the orientation space without singulari-
ties (14). Common three-value systems such as Euler angles
(i.e., sequences of rotations about the Cartesian axes) are
therefore not appropriate solutions. Unit quaternions, in-
vented by Hamilton in 1843 (14) and introduced to the com-

T(dx, dy, dz) =

�
����

1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

�
����

puter graphics community by Schoemake (15), have proven to
be the most natural parametrization for orientation and ro-The scaling matrix is
tation.

Quaternion Arithmetic for 3-D Graphics. A quaternion
q � [w, v] consists of a scalar part, the real number w, and
an imaginary part, the 3-D vector v. It can be interpreted as

S(sx, sy, sz) =

�
����

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

�
����

a point in four-space, with coordinates [x, y, w, z], equivalent
to homogeneous coordinates for a point in projective three-

Notice that reflections about one of the Cartesian axes or space. Quaternion arithmetic is defined as the usual 4-D vec-
about the origin of the coordinate system are special cases of tor arithmetic, augmented with a multiplication operation de-
scaling, where one or all the scale factors are set to �1. fined as follows:

The rotation matrices around the Cartesian axes are
q1q2 = [s1, v1][s1, v2]

= [(s1, s2 − v1 · v2), (s1v2 + s2v1 + v1 × v2)]

A rotation of angle � and an axis aligned with a unit vector
a is represented in quaternion form by the unit quaternion
q � [cos(�/2), sin(�/2), a].

With this convention, composition of rotations is obtained
by quaternion multiplication, and linear interpolation of ori-
entations is obtained by linearly interpolating quaternion
components. The formula for spherical linear interpolation
from q1 to q2, with parameter u moving from 0 to 1, is the
following:

slerp(q1, q2, u) = sin[(1 − u)θ]
sin θ

q1 + sin(uθ )

sin θ
q2

Rx(θ ) =

�
����

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

�
����

Ry(θ ) =

�
����

cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1

�
����

Rz(θ ) =

�
����

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

�
����
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where we can generically represent this class of projections by a ma-
trix of the form

q1 · q2 = cos θ

Quaternions are easily converted to and from transformation
matrices. The rotation matrix equivalent to a quaternion q �
[w, x, y, z] is

P =

�
�����������

1 0 −dx

dy
zp

dx

dz

0 1 −dy

dy
zp

dy

dz

0 0 − zp

Qdz

z2
p

Qdz
+ zp

0 0 − 1
Qdz

z2
p

Qdz
+ 1

�
�����������

R(q) =

�
1 − 2(y2 + z2) 2(xy + wz) 2(xz − wy) 0

2(xy − wz) 1 − 2(x2 + z2) 2(yz + wx) 0
2(xz + wy) 2(yz − wx) 1 − 2(x2 + y2) 0

0 0 0 1

�

THREE-DIMENSIONAL VIEWING PROCESS
Shoemake (16) presents a simple algorithm for performing
the inverse operation of transforming a rotation matrix into Specifying a View in 3-D Space
a quaternion.

As summarized in Fig. 2, to define a 3-D view, we do not only
need to define a projection but also to bound a view volume,Projections
that is, the region of the space including all and only the visi-

A projection is a geometrical transformation from a domain of ble objects. The projection and view volume together give us
dimension n to a co-domain of dimension n � 1 (or less). all the information necessary to clip and project.
When producing images of 3-D scenes, we are interested in While this process could be totally described using the
projections from three to two dimensions. mathematics seen before, it is much more natural to describe

The process of projecting a 3-D object on a planar surface the entire transformation process using the so-called camera
is performed casting straight rays from a single point, possi- metaphor. Setting the parameter of a synthetic view is analo-
bly at infinity, through each of the points forming the object, gous to taking a photograph with a camera. We can make a
and computing the intersections of the rays with the projec- schematic of the process of taking a picture in the following
tion plane. Projecting all the points forming a segment is steps:
equivalent to projecting its end points and then connecting
them on the projection plane. The projection process can be 1. Place the camera and point it to the scene.
then reduced to project only the vertices of the objects forming 2. Arrange the objects in the scene.
the scene. This particular class of projections is the class of

3. Choose the lens or adjust the zoom.planar geometric projections.
4. Decide the size of the final picture.There are two major categories of planar geometric projec-

tions: parallel and perspective. When the distance between
Generating a view of a synthetic scene on a computer, thesethe projection plane and the center of projection is finite the
four actions correspond to define, respectively, the followingprojection is perspective; otherwise it is parallel (Fig. 4).
four transformations:A perspective projection is typically used to simulate a re-

alistic view of the scene, while a parallel one is more suited
1. Viewing transformationfor technical purposes.

To give an example, assuming that: 2. Modeling transformation
3. Projection transformation

1. The projection plane is normal to the z axis at distance 4. Viewport transformation
zp

2. The normalized distance between the center of projec- The modeling transformation is, typically, a way to define ob-
tion and the intersection between the projection plane jects in the scene in a convenient coordinate system and then
and the z axis is Q(dx, dy, dz) transform them in a single, general, coordinate system called

the world coordinate system. The meaning of the other three
is explained in detail in the following.

Viewing Transformation. The projection plane (view plane)
is defined by a point, the view reference point (VRP) and a
normal to the plane, the view plane normal (VPN). In the real
world we are accustomed to place the projection plane always
beyond the projected objects with respect to the observer (e.g.,
a cinema screen). In a synthetic scene, instead, the plane can
be in any relation to the objects composing the scene: in front
of, behind, or even cutting through them.

A rectangular window on the plane results from the inter-
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Any object projected on the plane outside the window’s bound-Figure 4. Perspective and parallel projections.
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plane is placed at the focal distance from the eye, and the
VUP points from the top of the head up.

Viewport Transformation. The content of the view volume
is transformed in normalized projection coordinate (NPC) into
the so-called canonical view volume and then projected on the
display viewport by eliminating the z information from all the

VUP

VPN
VRP

View
plane

n
u

v

points. The normalization matrix (Npar) for parallel projection
Figure 5. Parameters defining the view plane. is a composition of

• Translation of VRP to the origin, T(�VRP)
• Rotation of VRC to align n (VUP) with z, u with x, and v

aries is not visible, that is, it is not part of the final 2-D im- with y, R
age. To define the window we place a coordinate system on

• Shearing to make the direction of projection parallel tothe plane; we call it the viewing reference coordinate (VRC)
the z axis, Hparsystem. One of the axes of the VRC system, the n axis, is

• Translation and scaling to the parallel canonical volume,defined by VPN, another one, the v axis, by the projection of
a parallelepiped, defined by the equations x � �1, x � 1,the view up vector (VUP) onto the plane, and the third one,
y � �1, y � 1, z � �1, z � 0, Tpar, and Spar.the u axis, is chosen such that u, v, and n form a right-handed

coordinate system (Fig. 5). In formula:
It is thus possible to define the window in terms of its

umin, umax, vmin, and vmax coordinates (Fig. 6). Npar = Spar · Tpar · Hpar · R · T(−VRP)
The window does not need to be symmetrical about the

VRP. In other words, the center of the window (CW) can be For a perspective projection the normalization matrix (Nper) is
distinct from the VRP. a composition of

• Translation of VRP to the origin, T(�VRP)Projection Transformation. The center of projection or the
• Rotation of VRC to align n (VUP) with z, u with x, and vdirection of projection (DOP) is defined by the projection refer-

with y, Rence point (PRP) plus the chosen projection type: parallel or
• Translation of PRP to the origin, T(�PRP)perspective. In the case of perspective projection the center of
• Shearing to make the center line of the view volume be-projection is PRP; in the case of parallel projections the direc-

ing the z axis, Hpertion of projection is from PRP to CW (Fig. 7).
In the perspective projection the view volume is a semi- • Scaling to the perspective canonical volume, a truncated

infinite pyramid, called the view frustum, while in parallel pyramid, defined by the equations x � z, x � �z, y � z,
projection it is an infinite parallelepiped with sides parallel y � �z, z � �zmin, z � �1, Sper

to the direction of projection.
In formula:It is useful to set up a method limiting the view volume to

be finite. This avoids objects being too close to the PRP to
Nper = Sper · Hper · T(−PRP) · R · T(−VRP)occlude the view, and objects too far away to be rendered,

since they would be too small to influence the final image.
If we, then, premultiply Nper by the transformation matrixTwo more attributes of the view make this possible: the front
from the perspective to the parallel canonical view volume:(hither) clipping plane and the back (yon) clipping plane. They

are both parallel to the view plane and specified by, respec-
tively, the front distance (F) and the back distance (B). When
the front clipping plane is further away from the PRP than
the back clipping plane, the view volume is empty.

We can compare the synthetic viewing process to the real
human single-eyed perspective one. The PRP represents the

Mper→par =

�
������

1 0 0 0
0 1 0 0

0 0
1

1 + zmin

−zmin

1 + zmin
0 0 −1 0

�
������

, zmin �= −1

position of the human eye, the view volume is an approxima-
we obtaintion of the conelike shaped region viewed by the eye, the view

N′
per = Mper→par · Nper = Sper · Hper · T(−PRP) · R · T(−VRP)

that is, the matrix transforming the object in the scene to the
canonical parallepided defined before.

Using N�per and Npar we are thus able to perform the clip-
ping operation against the same volume using a single pro-
cedure.

Culling and Clipping
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The clipping operation consists of determining which parts of
an object are visible from the camera and need to be projectedFigure 6. Parameters defining the window on the view plane.
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Figure 7. View volumes for perspective and par-

VPN
VRP

CW

View
plane

Center of
projection (PRP)

Prespective
projection

Parallel
projection

Direction of
projection (DOP)

n
u

v

VPN
VRP

CW

View
plane

n
u

v

allel projections.

on the screen for rendering. This operation is performed on the rectangle. Each bit is set to 1 or 0 when the conditions
listed in Table 1 are, respectively, true or false.each graphic and is composed of two different steps. First,

during culling, objects completely outside of the view volume The first step of the algorithm assigns a code to both end-
points of the segment, according to the position of the pointsare eliminated. Then, partially visible objects are cut against

the view volume to obtain only totally visible primitives. with respect to the clipping rectangle. If both endpoints have
a code of 0000, then the segment is totally visible. If the logic
AND of the two bit codes gives a result different from 0, thenCulling of Points. At the end of the projection stage all the
both the endpoints lie in a half-plane not containing the visi-visible points describing the scene are inside the volume de-
ble rectangle and thus the segment is totally invisible. Other-fined by the equations
wise the next step computes the intersection of the segment
with one edge of the rectangle and the process iterates on thex = −1, x = 1, y = −1, y = 1, z = −1 z = 0
segment connecting the found intersection and the re-
maining endpoint.The points satisfying the inequalities

In three dimensions a code of six bits is used. When the
segments are clipped against the canonical view volume the−1 ≤ x ≤ 1, −1 ≤ y ≤ 1, −1 ≤ z ≤ 0
conditions associated with the bits are

are visible; all the others have to be clipped out.
The same inequalities expressed in homogeneous coordi-

X ≥ −W, X ≤ W, Y ≥ −W, Y ≤ W, Z ≥ −W, Z ≤ 0 for W > 0

X ≤ −W, X ≥ W, Y ≤ −W, Y ≥ W, Z ≤ −W, Z ≥ 0 for W < 0
nates are:

When clipping ordinary lines and points, only the first set of−1 ≤ X/W ≤ 1, −1 ≤ Y/W ≤ 1, −1 ≤ Z/W ≤ 0
inequalities applies. For further discussion refer to Blinn and
Newell (17).

corresponding to the plane equations The trivial acceptance and rejection tests are the same as
in 2-D. There is a change in the line subdivision step, since

X = −W, X = W, Y = −W, Y = W, Z = −W, Z = 0 the intersections are computed between lines and planes in-
stead of lines and lines.

Clipping of Line Segments. The most popular line-segment
Clipping of Polygons. Clipping of polygons differs from clip-clipping algorithm, and perhaps the most used, is the Cohen–

ping of a collection of segment lines when they are consideredSutherland algorithm. Since it is a straightforward extension
as solid areas. In this case it is necessary that closed polygonsof the two-dimensional clipping algorithm, we illustrate this
remain closed.one first for sake of simplicity of explanation.

The standard algorithm for clipping polygons is due toWhen clipping a line against a 2-D rectangle, the plane is
Sutherland and Hodgman (18). Their algorithm uses a ‘‘dividetessellated in nine regions (Fig. 8); each one identified by a
and conquer approach,’’ decomposing the problem as a se-four-bit code, in which each bit is associated with an edge of
quence of simpler clippings of the polygon against each plane
delimiting the canonical view volume.

1001 1000 1010

0001 0000 0010

0101 0100 0110

Figure 8. Tessellation of the plane in the 2-D Cohen–Sutherland
algorithm.

Table 1. Bit Codes for the Classification of Points in the
Two-Dimensional Cohen–Sutherland Algorithm

Bit 1 Point in the half-plane over the upper edge y 	 ymax

Bit 2 Point in the half-plane under the lower edge y 
 ymin

Bit 3 Point in the half-plane to the right of the x 	 xmax

right edge
Bit 4 Point in the half-plane to the left of the left x 
 xmin

edge



178 THRESHOLD LOGIC

10. F. Möbius, Gesammelte Werke, Vol. 1: Die Barycentrische Calcul,
Wiesbaden, Germany: Dr. M. Saendig oHG, 1967, pp. 36–49.

11. J. Plücker, Ueber ein neues Coordinatensystem, J. Reine Angew.
Math., 5: 1–36, 1830.

12. L. G. Roberts, Homogeneous Matrix Representation and Manipu-
lation of N-Dimensional Constructs, Technical Report MS-1405,
Lincoln Laboratory, MIT, May, 1965.

13. T. DeRose, A coordinate-free approach to geometric program-
ming, in W. Strasser and H. Seidel (eds.) Theory and Practice of
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Geometric Modeling, New York: Springer, 1989, pp. 291–306.
14. W. R. Hamilton, On quaternions; or on a new system of imaginar-Figure 9. Different possibilities for edge-clipping plane comparison.

ies in algebra, Philos. Mag., XXV: 10–13, 1844.
15. K. Schoemake, Animating rotation with quaternion curves, Com-

put. Graphics, 19 (3): 245–254, 1985.The polygon is originally defined by the list of its vertices
16. K. Schoemake, Polar decomposition for rotation extraction, NotesP � P1, . . ., Pn, which implies a list of edges P1P2, P2P3, . . .,

for Course No. C2, Math for SIGGRAPH, SIGGRAPH TutorialPn�1Pn, PnP1. Let H be the half-space, defined by the current
Notes, 1991.clipping plane h, containing the view volume. The algorithm

17. J. F. Blinn and M. E. Newell, A Homogeneous Formulation forproduces a list of polygon vertices Q that are all inside H by
Lines in 3-Space, Proc. SIGGRAPH, 237–241, 1977.traversing each edge PiPj in sequence and producing at each

18. I. Sutherland and G. W. Hodgman, Reentrant polygon clipping,edge-clipping plane comparison zero, one, or two vertices
Commun. ACM, 17: 32–42, 1974.(Fig. 9):

ENRICO GOBBETTI1. If PiPj is entirely inside H, Pj is inserted into Q.
RICCARDO SCATENI

2. If Pi is inside H and Pj is outside, the intersection of Center for Advanced Studies,
PiPj with h is inserted into Q. Research, and Development in

Sardinia, CRS43. If PiPj is entirely outside H, nothing is inserted into Q.
4. If Pi is outside H and Pj is inside, the intersection of

PiPj with h and Pj are inserted into Q.

THREE-DIMENSIONAL SCANNERS. See RANGE
The output polygon Q is then used to feed the next clipping IMAGES.
step. The algorithm terminates when all planes bounding the
canonical view volume have been considered.

Sutherland and Hodgman (18) presented a version of this
algorithm that does not require storing intermediate results
and is therefore better suited to hardware implementation.
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