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Figure 1. (a) P and P	 overlap each other. (b) P, P	, and P� cyclically
overlap, forming what is often called a priority cycle.

and then to use image-precision techniques to resolve visibil-
ity for the remaining objects.

This article concentrates on visibility for rendering data-
bases that consist of collections of polygons, as object-preci-
sion visibility computations for curved surfaces quickly be-
come intractable because of the degree of the algebraic
calculations required. Hidden line removal, where only the
visible portions of the boundary segments are determined,
without necessarily determining which face the segments
bound, is treated only briefly (see Refs. 1 and 2 for more de-
tails) because, for raster displays, hidden line removal is sub-HIDDEN FEATURE REMOVAL sumed by hidden surface removal. The rest of this section in-
troduces two simple hidden feature removal algorithms. The

BACKGROUND second section discusses image-precision techniques that have
become extremely important in practice. The third section

To render a scene correctly, we must determine which parts then covers object-precision techniques. The fourth section
of which objects can be seen from the given viewing position. covers hybrid techniques. The final section discusses recent
Techniques used to identify the visible portions of objects are advances in hidden feature removal algorithms.
called visibility algorithms, hidden surface removal algo- If the polygons in the rendering database are known to be
rithms, or hidden feature removal algorithms. As an example, the boundaries of solid objects, only faces that face toward
let us suppose that we are trying to render a scene where a the viewer can be visible; other faces need not be rendered.
man stands in front of a tree. It would be incorrect to have Removing polygons using this criterion is known as back-face
the tree showing where the man should be. One popular ap- culling. Back-face culling is sufficient to produce correct ren-
proach for producing a correct image is to render the tree first derings only for exceptional circumstances (a single, convex
and then to render the man over the old image, thus obscur- object). However, it is an extremely powerful technique for
ing the invisible portion of the tree. (This technique is called limiting the number of polygons that must be considered.
the painter’s algorithm, which is explained later in more de- Typically, polygons will be culled as early as possible in the
tail.) Now suppose we want to render a forest using the paint- rendering pipeline. To determine if a face is back-facing, we
er’s algorithm. Most of the trees in the back will be completely check the position of the viewpoint against the plane equation
obscured by the trees in the front. If we somehow knew in of the face and then test if the viewpoint lies in the appro-
advance which trees would be completely obscured, then we priate halfspace.
could save time by not rendering these trees at all, which If the rendering database is known to contain objects that
brings us to another reason that hidden feature removal algo- are in layers that do not cross one another (e.g., Very Large-
rithms are used—that is, efficiency. If only a small fraction of Scale Integration circuit masks), the layers can be rendered
the environment is visible from a viewing position, then we in order, with the bottom layer rendered first. Because the
can save a great deal of time by only rendering the visible ob- image of closer polygons overwrites the image of further poly-

gons, the method resolves visibility, at the cost of overrender-jects.
ing. Overlap between polygons or priority cycles (see Fig. 1)There are two broad categories of visibility algorithms: ob-
in the rendering database will lead to incorrect results. A ver-ject-precision algorithms, which work with the original object
sion of this algorithm, due to Newell et al. (3) and oftendefinition to determine which portion of each object is visible
known as the painter’s algorithm, can produce correct render-from the viewpoint and produces output in a similar format to
ings for arbitrary collections of polygons by detecting overlapsthe input, and image-precision algorithms, which determine
and subdividing the polygons involved; it is no longer widelywhich object is visible at each pixel. An image-precision algo-
used.rithm produces a solution that has a particular level of resolu-

tion. In contrast, object-precision algorithms can produce so-
lutions with the same level of accuracy as the original object IMAGE-PRECISION METHODS—THE z-BUFFER
definition. Because rendering databases have become larger,
it has become increasingly common to use object-precision The z-buffer (4) is the dominant image-precision method. The

discussion of this algorithm assumes that parallel projectiontechniques to cull large sections of the rendering database
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is used to project the scene onto the viewplane. (If perspective Therefore, succeeding depth values across a scan line are
obtained from the preceding values with a single addition be-projection is desired, then we can perform a projective trans-

formation on the 3-D scene and perform a parallel projection cause the ratio A/C is constant for each polygon. Given the
depth value of the first pixel on the scan line, depth values ofon the resulting distorted scene. This process is a standard

component of the rendering pipeline. The appropriate trans- the succeeding pixels can be easily found. Also, given the first
depth value of the current scan line, the first depth value offormation will take the focal point to infinity and will pre-

serve relative depth, straight lines, and planes, so the algo- the next scan line can be found by a single addition, by using
a similar reasoning.rithms described in this section produce the correct result for

perspective viewing.) For simplicity, the discussion assumes The z-buffer algorithm is by far the most widely used visi-
bility algorithm. Nonetheless, it has a number of significantthat the viewplane lies on the xy-plane and the scene is pro-

jected along the z-direction. The z-coordinate corresponds to disadvantages:
the distance from the viewing plane with higher z being fur-
ther away from the viewer. • Quantization error in the z-buffer can lead to annoying

The z-buffer requires a memory buffer—the z-buffer—that artifacts. As an extreme example, consider polygons A
has one element per screen pixel. A z-value for screen pixels and B that are very close in depth and parallel and
will be stored in this buffer, the size of whose elements may whose images overlap on the viewing plane. In one view,
vary. Initially, all the entries in the z-buffer are set to the A’s depth and B’s depth will translate to different quan-
maximum z-value (corresponding to the back-clipping plane). tized values, and the correct polygon will appear in the
To determine the visibility of a set of polygons, the polygons image. If the view is moved slightly, the depths may
are scan-converted into the frame buffer. translate to the same quantized values. In this case, it is

During the scan-conversion process of a polygon, suppose not possible to determine which should lie in front, and
that the pixel (x, y) is being filled, that the value zo is stored some policy (e.g., always render most recent pixel) must
at (x, y) on the z-buffer, and that the current polygon has be applied. Whether this policy will result in a correct
depth zn at (x, y). If zn is greater than zo, the current polygon image depends purely on chance factors in the structure
is farther from the view plane than whatever is in the frame of the rendering database. Therefore, it is possible to
buffer already and must therefore be invisible at this pixel, have a situation where moving the view backward and
and so nothing needs to be done. If zn is less than zo, the cur- forward results in polygons flashing. Quantization error
rent polygon is closer to the viewing plane than whatever was can also result in annoying artifacts where polygons in-
previously scan converted, and so should be written to the terpenetrate. Current z-buffers typically have 24 bits per
pixel at (x, y). At this point, lighting calculations for the given pixel to alleviate this difficulty.
pixel can proceed, and the result is written into the frame • Overrendering can become a serious problem for large
buffer at (x, y). Because the frame buffer now contains the rendering databases. In collections of millions of poly-
brightness of an object closer than zo, the z-buffer is updated gons, the requirement that every polygon be scan-con-
with the value zn at (x, y). verted can lead to very slow rendering. This is most

Because the z-values are compared per pixel, the z-buffer clearly inefficient when there is a structure to the ren-
produces the correct image regardless of the order in which dering database; for example, in most building models,
the polygons are scan-converted. However, because the light- most of the polygons in the model are not visible from a
ing calculations are done only for pixels whose z-value is given room.
smaller than that currently stored in the z-buffer, the order

• Aliasing and transparency are both poorly handled by
in which polygons are scan-converted can significantly affect the z-buffer algorithm because only one polygon can con-
the speed of the z-buffer algorithm. Typically, scan-converting tribute to the brightness at each pixel. Increasing the
polygons in a front-to-back order is significantly more efficient resolution of the buffers can alleviate the aliasing prob-
because overrendering will occur less frequently in a front-to- lems at the cost of large z-buffers and interim frame buff-
back order. ers. In general, the z-buffer cannot render scenes con-

Underlying the z-buffer algorithm’s popularity is the ease taining mixtures of transparent and opaque objects
with which it is implemented (both in software and in hard- correctly without using additional memory and incurring
ware), the fact that it does not demand preprocessing of the rendering overhead (5). The A-buffer (6) algorithm is an
rendering database, and its efficiency. Scan-line coherence elaboration on the z-buffer, which accumulates a list of
can be used to update the z-value at each pixel efficiently. polygon fragments that affect the visible brightness of
Suppose that the plane of the polygon is described by Ax � each pixel (rather than simply storing intensities). The
By � Cz � D � 0. Then list is then processed to determine the final pixel inten-

sity. With an appropriate set of rules for insertion, the
A-buffer can render mixed translucent and opaque sur-z = −Ax − By − D

C faces.

(If C � 0, then the plane is projected as a line and, there- The most important image-space visibility algorithm be-
fore, can be ignored.) Suppose that the polygon has depth z at sides the z-buffer is ray tracing (7–9). For each pixel on the
(x, y). The depth z� at (x � 1, y) can be obtained by image plane, an ‘‘eye ray’’ is fired. This eye ray is intersected

with every object, and the closest intersection point is deter-
mined. Then, the intensity value associated with the closest
intersection point is written into the pixel. This algorithm can

z′ = −A(x + 1) − By − D
C

= z − A
C
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be made faster by making intersection calculation more effi- associated with each polygon, so that the front and back side
cient (2). of the polygon can be defined.) First, a splitting polygon is

selected. The algorithm works correctly no matter which poly-
OBJECT-PRECISION METHODS gon is selected as the splitting polygon. The plane associated

with the splitting polygon divides the environment into two
Overrendering in the z-buffer makes it natural to consider half-spaces, namely the front and the back half-space. Then,
using an object-precision method to cull polygons that could each remaining polygon either lies entirely in the front half-
not possibly be visible. Even though the binary space parti- space or lies entirely in the back half-space or lies in both
tion tree (or BSP tree) overrenders as badly as the z-buffer, half-spaces. Those polygons lying in both half-spaces are split
it is still popular in practice. In restricted geometries, a cell along the splitting plane, so that the polygon fragments can
decomposition method can be extremely efficient. Finally, be assigned to either the front or the back half-space [Fig.
methods based on computational geometry achieve optimal 2(a)]. The root node of the BSP tree is associated with this
complexity in various ways, although most of them are not splitting polygon, and the rest of the BSP is constructed re-
used in practice. cursively. For example, given the set of polygons lying in the

front half-space, a splitting polygon is chosen, and this poly-Binary Space-Partitioning Tree
gon is associated with the front child of the root node [Fig.

The BSP tree (10,11) is a popular method for generating ren- 2(b)]. All the polygons in the front half-space are divided into
dering order among objects. The visibility among objects is two sets with respect to this splitting polygon. The BSP tree
resolved by rendering objects in back-to-front order, like the is completed when there is only one polygon associated with
painter’s algorithm. The BSP tree splits all the polygons in each child node [Fig. 2(c)].
the preprocess, so that it is possible to generate a rendering Note that a BSP tree can be constructed for any set of ob-
order among the polygons from any viewing position. The

jects, polygonal or otherwise, by choosing the appropriate setBSP tree is particularly useful when the viewpoint changes,
of splitting planes. It is particularly easy to build a BSP treeand the objects stay at fixed positions.
for a set of polygons, however, because the splitting planesGiven a set of polygons, the corresponding BSP is con-
can be conveniently chosen to lie along the polygons.structed as follows (Fig. 2). (Assume that a surface normal is

Given a BSP tree, the rendering order is produced as fol-
lows. Suppose that the viewpoint lies on the front half-space
of the root polygon. Then, none of the polygons lying within
the back half-space can obscure the polygons lying on the
front half-space. Therefore, the rendering order is as follows:
the set of polygons lying in the back half-space is rendered,
then the splitting polygon is rendered, and then the polygons
lying in the front half-space is rendered. The visibility among
the polygons is resolved during scan-conversion, like painter’s
algorithm. If the viewpoint lies inside the back half-space,
then the polygons lying on the front half-space is rendered
first, the splitting polygon is rendered next, and finally the
polygons lying on the back half-space is rendered. If the view-
point lies exactly on the splitting plane, then the rendering
order does not matter. Within each half-space, the rendering
order is computed recursively in the exact same way. Thus,
given a viewpoint, the BSP tree can be walked in-order, de-
pending on the half-space in which the viewpoint lies, to pro-
duce a rendering order among the polygons.

Which polygon is selected to serve as the root of each
subtree can have a significant impact on the algorithm’s per-
formance. Ideally, the polygon selected should cause the few-
est splits among all its descendants. The algorithm outlined
here potentially produces O(n3) faces (10). Paterson and Yao
(12) show how to choose the splitting planes optimally to pro-
duce O(n2) faces in O(n3) time. A heuristic that produces an
approximation to the best case is described in Ref. 10.

Cell Subdivision in a 2-D World

Object precision visibility in a 2-D environment is much eas-
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ier than the general 3-D case; a 2-D environment is often a
Figure 2. Building a BSP tree for this example set, which consists

useful approximation of the 3-D case in practice (e.g., mazesof vertical polygons viewed from above. (a) polygon A is chosen as the
and floors of buildings can be approximated as 2-D environ-splitting polygon associated with the root node; (b) polygon B is cho-
ments). This section focuses on a maze consisting of opaquesen as the splitting polygon for the front half-space of A; (c) polygon
walls, with all the walls rising up to the ceiling. From a typi-C is chosen as the splitting polygon for the back half-space of A. The

BSP tree is completed. cal viewpoint, only a fraction of the environment will be visi-
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ble. The main task is to determine the visible portions of the
maze and ignore the rest. To do this, we will decompose the
environment into a set of convex cells and then walk this cell
structure in breadth-first order to enumerate the visible
objects.

The environment can be decomposed into a set of convex
cells using a technique called trapezoidal decomposition (13).
In Fig. 3, the line segments correspond to opaque walls, and
the dashed line segments correspond to transparent walls
constructed through trapezoidal decomposition. To construct
the trapezoidal cells, extend transparent walls vertically from
each vertex until an opaque wall is reached. The result is a
set of convex cells, where each cell is a trapezoid (or a trian-
gle, in a degenerate case). We define a neighbor of a cell to be
the cells that share a transparent edge with the given cell.

We can define a ray-casting operation that extends a ray
from the viewpoint, through some other given point—which
will always be a cell vertex and which we shall call the ful-
crum—until the ray hits an opaque wall. Every cell that the
ray passes through is marked so that for any cell it is possible
to tell which rays pass through the cell. The ray separates the
visible portion of the environment from the invisible portion.
Because the ray affects visibility only between the fulcrum
and the far end, the ray is recorded only in cells that lie in
this span. With each ray, we make a record of which side of
the ray is visible.

The algorithm for enumerating visible objects by travers-
ing the cell structure is illustrated by the example in Fig. 4.
The initial configuration before any rays were cast is shown
in Fig. 4(a). The algorithm involves first marking the cell in
which the viewpoint lies (cell F in the example) as processed.
For each vertex that lies in this cell (v4 and v5 in the exam-
ple), cast rays through these vertices and record their pres-
ence in every affected cell. Finally, add every neighbor of this
cell to the TODO queue [Fig. 4(b)]. Pseudocode for the rest of
the algorithm follows:

while (TODO queue is not empty)
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1. Let Cell be the first cell of the TODO queue.
Figure 4. The cell structure is searched to enumerate the visible

2. Cast rays through the unprocessed, visible vertices of faces. Each stage is explained in the text.
Cell.

3. Add the unprocessed neighbors of Cell, which share a
visible transparent edge with Cell, to the TODO queue.

4. Mark Cell as processed.

In steps 2 and 3, to determine whether a vertex or an edge
is visible or not, it is tested against each ray that passes
through the cell. Fig. 4(c)–(f) illustrates this algorithm.

• In Fig. 4(c), Cell is E, which contains v3 and v5.
• v5 is ignored because it has already been processed.
• v3 is tested against the ray that passes through E,

namely r1, and is determined to be visible. Therefore a
ray is cast through v3.
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E has three neighbors, namely, F, H, and C.Figure 3. An example of trapezoidal decomposition. (a) A 2-D envi-
• F is ignored because it has already been processed.ronment consisting of line segments. (b) Trapezoidal decomposition of
• H is ignored because the transparent edge shared be-this environment. The vertices are labeled �v1, . . ., v6�, and the cells

are labeled �A, . . ., J�. tween E and H lies on the invisible side of r1.
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• C is added to TODO queue because the transparent
edge shared between C and E partially lies on the visi-
ble side of r1.

Finally, E is marked as processed.

The reader is encouraged to verify the remaining steps of
the algorithm. (They are illustrated in Fig. 4(d)–(f).)

When this process finishes, the final set of rays are shown
in Fig. 5. These rays are sorted either in clockwise or counter-
clockwise order, and the visible segments are determined be-
tween adjacent rays. These visible segments are then scan-
converted into the frame buffer. This process is very deficient
because most of the invisible cells are never visited. Versions
of this technique are commonly used in video games and other
simulation-type interactive programs. A 3-D analog of this al-
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gorithm is described in Ref. 13.
Figure 6. In Weiler-Atherton algorithm, polygon Q is clipped against
polygon P, so that each clipped polygon (Q� and Q�) either lies com-

Hidden Surface Removal in Computational Geometry pletely inside P or outside P when projected onto the viewing plane.

The Weiler-Atherton algorithm (14) is a good example of an
early object-precision hidden surface removal algorithm.

One difficulty with the Weiler-Atherton algorithm is theGiven a set of polygons, this algorithm outputs all the visible
number of polygon fragments it can generate. Even thoughfragments as lists of vertices. Before we discuss the algo-
the Weiler-Atherton algorithm is not optimal, this difficultyrithm, let us define the clipping operation which is used ex-
is intrinsic to 3-D visibility. The computational geometry com-tensively in the algorithm. If polygon Q is clipped against
munity has developed a body of work on the space- and time-polygon P (Fig. 6), Q is divided into fragments and these frag-
complexity of visibility, usually defined in terms of con-ments are collected into inside and outside lists. The frag-
structing a visibility map,, which is a subdivision of the view-ments on the inside list lie inside P when the fragments and
ing plane into maximal connected regions, in each of whichP are projected onto the viewing plane. The fragments on the
either a single face or nothing is visible (Fig. 7). The complex-outside list lie outside P when projected onto the viewing
ity of the algorithm is mainly characterized by three vari-plane. The algorithm works as follows. First, the polygons are
ables: the size of the input n, which is the number of distinctsorted in z (e.g., by the nearest z-coordinate). Let P be the
boundary edges in the input set (equivalently, n may measureclosest polygon, by this criterion. Then, every other polygon is
the number of distinct vertices or faces in the input set), theclipped against P. All the polygons on the inside list that are
number of intersections in the projection of the input set kbehind the clip polygon are invisible and, therefore, deleted.
(which includes all intersections, not just visible ones), andIf any polygon on the inside list is closer to the viewpoint than
the size of the output d, which is the number of distinctthe clip polygon, the algorithm recurses with this polygon as
boundary edges in the visibility map (equivalently, d maythe clip polygon. When the recursive call returns, the poly-
measure the number of distinct vertices or faces in the visibil-gons on the inside list are displayed, and the outside polygons
ity map). Notice that given n convex polygons (input sizeare processed. One of the advantages of the Weiler-Atherton

algorithm is that it can be used to generate shadows (15). To
generate shadows, the viewpoint is made to coincide with the
point light source, and the visible fragments are generated
from this point of view. These fragments correspond to the lit
portions of the polygons. After these lit fragments are gener-
ated, they are used as surface-detail polygons.

A

B

G

I

J

F
vp

E
H

D
y

x

Visibility map

Viewing plane

Object in 3D
z

Figure 7. A visibility map is constructed on the viewing plane byFigure 5. The ray-casting process results in an enumeration of the
visible portions of the segments. Each visible portion, together with performing a parallel projection of a 3-D object. The viewpoint is as-

sumed to be at (0, 0, �).the viewpoint, forms a triangle as shown previously.
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is potentially visible, a z-buffer can be used to render the visi-
ble portion of the chandelier effectively.

The Hierarchical z-Buffer

The hierarchical z-buffer (18) algorithm uses a hybrid object-
and image-precision approach to improve the efficiency of the
z-buffer algorithm. There are two data structures: the object-
space octree [Fig. 9(a)], and the image-space z-pyramid [Fig.
9(b)]. As a preprocess, objects are embedded in the octree
structure, so that each object is associated with the smallest
enclosing octree cube [Fig. 9(a)]. If an octree cube is invisible,
every object associated with the cube must also be invisible,
and these objects may be culled. The octree is traversed and
the contents of the octree nodes are rendered into the
framebuffer as follows:

Figure 8. This visibility map has output complexity �(n2), where n 1. Determine if the root cube of the octree is inside the
corresponds to the number of boundary edges in the input set. The viewing frustum. If it is outside the viewing frustum,
output complexity measures the number of boundary edges in the then the entire set of objects is invisible.
visibility map.

2. Determine if the root cube is (partially) visible by test-
ing each front-facing face against the hierarchical
z-buffer. The hierarchical z-buffer is explained later in

�(n)), the visibility map may have output size �(n2) (Fig. 8). this section.
Therefore, every hidden surface removal algorithm must have

3. Scan-convert the objects associated with the root node�(n2) worst case lower bound (for a more extensive discussion,
if the root cube is determined to be visible. Otherwise,see for example, Ref. 16).
we are finished.Constructing algorithms that are output-sensitive (i.e.,

4. Recursively process the children of the root node, in therunning time depends at least partly on d) or are optimal in
front-to-back order. Notice that it is trivial to determinetime and space requirements has been a major topic in com-
the front-to-back order of the octree children nodes, byputational geometry. An extensive review of recent results ap-
looking at the octant in which the viewpoint lies.pears in Ref. 17. Although these algorithms have low time-

and space-complexity, only a small number of them are used
in practice, for the following reasons:

• Many of the hidden surface removal algorithms in this
section are complicated and difficult to implement. Also,
even if these algorithms have low time- and space-com-
plexity, the complexity measurements may hide a huge
constant coefficient.

• In practice, some visibility queries are more easily an-
swered in image-space, as opposed to object-space. To
render a tree with thousands of leaves, it would be im-
practical to construct the visibility map using an object-
space algorithm, because the output complexity is ex-
tremely high. An image-space algorithm like the z-buffer
may prove to be a more practical solution.

HYBRID METHODS

For many situations, combinations of different visibility algo-
rithms work well in practice. The intuition is that a sophisti-
cated technique is first used to cull most of the invisible ob-
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jects. Among the remaining objects, simple techniques can be
Figure 9. Data structures used in the hierarchical z-buffer. (a) Theused to determine the exact visibility. For example, for a
objects in the environment are embedded in an object-space octree.walk-through of a building model, techniques outlined in this
Objects A and C are associated with smaller cubes, whereas object Bsection can be used to determine the set of potentially visible
is associated with the larger cube. (b) The image-space z-pyramid,

objects quickly. Given this set, a z-buffer can be used to deter- which corresponds to a square region on the screen. The farthest
mine exactly which objects are visible. Also, for a complicated depth value among four neighbors is passed up to the higher level.
detail object (e.g., chandelier in the middle of a room), the Because the highest entry has depth value 11, every other entry must
first pass would determine whether the chandelier is poten- have depth value 11 or less. Therefore, an object with minimum

depth-value greater than 11 would not be rendered inside this region.tially visible. If the first pass determined that the chandelier
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In order to cull the octree cubes, a z-pyramid is used. The walls, doors, floors, and ceilings; these cells, which would usu-
ally correspond to rooms or corridors, are typically quite sim-basic idea of the z-pyramid is to use the original z-buffer as

the finest level in the pyramid and then combine four z-values ple in shape. The detail consists of such things as furniture,
books, and telephones, which can be associated with individ-at each level into one z-value at the next coarser level. Given

the four z-values, the farthest z-value among the four entries ual cells. It is natural to attempt to perform object-precision
visibility on the large occluders and then use a z-buffer tois passed up to the entry on the higher level. At the top level,

there is a single z-value, which is the farthest z-value from render detail that could be visible, thereby culling large num-
bers of polygons without incurring high costs.the observer in the whole image. In the beginning, all the

entries on all the levels are initialized to the maximum Teller (20) offers an attractive approach to hybrid visibil-
ity, which uses a conservative algorithm—one that will notz-value.

Maintaining the z-pyramid is simple. Every time the z- omit a visible polygon, but may not cull all invisible poly-
gons—to determine visibility among the cells. A cell boundarybuffer is updated, the new z-value is propagated through to

coarser levels of the pyramid. As soon as this process reaches consists of occluders (opaque portion of the boundary such as
walls) and a collection of convex portals (transparent portiona level where the new z-value is no longer the farthest z-value

from the viewpoint, the propagation can stop. Determining of the boundary such as doors or windows). There are many
possible subdivisions of the same model; a heuristic to obtainwhether a polygon is visible or not works as follows:
good subdivisions appears in Ref. 20. The subdivision yields

1. Find the finest-level entry of the pyramid whose corre- a cell adjacency graph, where a vertex corresponds to a cell
sponding image region covers the screen-space and an edge corresponds to a portal. For example, if cells A
bounding box of the polygon. and B share a portal, then the vertices corresponding to A

and B are connected by an edge. Consider a generalized ob-2. Compare the z-value at the entry to the nearest z-value
server, an observer who is free to move anywhere inside aof the polygon. The z-value at an entry indicates that
given cell and look in any direction. Given a generalized ob-every pixel in the corresponding region is no farther
server in a cell, we want to determine which set of cells isthan this value. If the nearest z-value of the polygon is
visible to the observer, wherever the observer is. (This set offarther away than the z-value at the entry, then the
cells is called the potentially visible set.) Determining whichpolygon is hidden.
cells are potentially visible requires determining whether any3. If the previous step did not cull the polygon, then re-
ray can be cast through a sequence of portals; the process iscurse down to the next finer level and attempt to prove
described in some detail in the next section.that the polygon is invisible in each of the quadrants it

After it is known which cells are potentially visible fromintersects. (In each quadrant, the new nearest z-value
each given cell, relatively efficient rendering is simple. Weof the polygon can be calculated, or the old value can be
render every polygon in the cell containing the viewpoint, ev-reused. Reusing the old value provides a conservative
ery polygon in every cell that is potentially visible from thisestimate.)
cell, and all the detail associated with these cells, using a z-4. If the finest level of the pyramid is reached, and there
buffer to determine the exact visibility. The resulting algo-is at least one visible pixel, then the polygon is deter-
rithm is accurate and relatively efficient and is not particu-mined to be visible.
larly difficult to implement. The main drawbacks are that
there is no principled mechanism for distinguishing betweenWhen the z-pyramid determines that an octree cube is visi-
detail and cells and that there is no principled mechanism forble, the objects associated with the cube are scan-converted
cell decomposition. As a result, it can be difficult to apply thisinto the z-buffer, and the z-pyramid is updated. Thus, the
technique to geometries that do not offer an immediate celloctree is walked in the front-to-back order (the objects are
decomposition. These difficulties may be finessed in the mod-rendered in roughly front-to-back order), and the z-pyramid
eling process by building modeling tools that encourage ais used to determine whether the current cube is visible or
modeler to help distinguish between detail and large oc-not. This approach has the advantage that large nearby ob-
cluders and offer hints about the cell decomposition. At pres-jects will generally be rendered first and that whole sections
ent, this is the algorithm of choice for architectural models.of the octree may be culled with a single test. For a complex

scene with very high depth complexity, Greene, Kass, and
Miller (18) report that the hierarchical z-buffer achieves or-

CELL DECOMPOSITION IN ARCHITECTURAL MODELSders of magnitude speedup over the traditional z-buffer. For
simple scenes with low depth complexity, hierarchical z-buffer

Determining Potentially Visible Sets in 2-Dperforms slightly worse than the traditional z-buffer because
of the overhead of maintaining the z-pyramid and performing If a generalized observer in cell A can see into cell B, there
visibility tests on octree cubes. Meagher (19) describes a simi- must exist a stabbing line from cell A to cell B through a
lar algorithm, which precedes the work of Greene et al. (18). particular sequence of portals. Consider the two-dimensional
In this algorithm, an image-space quadtree is used to render case, where portals and occluders correspond to line seg-
the octree efficiently. ments. For cells A and B to be mutually visible, there must

exist a sequence of edges in the cell adjacency graph that
Cell Decomposition in Architectural Models leads from (the vertex corresponding to cell) A to (the vertex

corresponding to cell) B. We can orient each portal in the se-An architectural model can be seen as a combination of large
quence, so that the stabbing line must cross each portal in aoccluders and geometric detail. The large occluders form a

natural collection of cells separated by boundaries such as the particular direction.
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factor of scale, and they describe a point in 5-D in homoge-
neous coordinates.

Each Plücker coordinate corresponds to a 2 � 2 minor of
the matrix (

x0 x1 x2 x3

y0 y1 y2 y3

)
(2)

We can verify that the Plücker coordinates remain the
same, no matter which two points are used to describe the

L

R
L

LR

R
Ax + By + C = 0

line. Notice that taking a linear combination of the homoge-
Figure 10. An example of a stabbing line in 2-D. Each portal is ori- neous coordinates of x and y will produce a point (�x0 � �y0,ented (i.e., the stabbing line must cross the portal in such a way that

. . ., �x3 � �y3) that lies on the line that contains x and y. Inthe vertex labeled L must lie on the left side of the stabbing line),
matrix form, this is equivalent to multiplying the matrix inand the vertex labeled R must lie on the right side. A stabbing line
Eq. (2) by a 2 � 2 matrix on the leftexists through the portal sequence because the vertices labeled L are

linearly separable [i.e., satisfy Eq. (1)] from the vertices labeled R. (
α β

γ δ

)(
x0 x1 x2 x3

y0 y1 y2 y3

)
(3)

Depending on the direction in which the portal is crossed,
we can determine the left and right vertices of the line seg-

The reader may verify that the ratios among the 2 � 2ment corresponding to the portal. Given a portal sequence, we
minors of the matrix in Eq. (3) remain invariant. Therefore,can separate the set of vertices into sets L and R. A line stabs
the Plücker coordinates remain the same no matter whichthis portal sequence if and only if it separates the point sets
two points are used to describe the line.L and R, that is, if and only if there exists a line Ax � By �

If P and Q are two directed lines and if pij, qij are theirC � 0 such that (Fig. 10)
corresponding Plücker coordinates, the relation side(P, Q) can
be defined as the permuted inner productAx + By + C ≥ 0, ∀(x,y) ∈ L

Ax + By + C ≤ 0, ∀(x, y) ∈ R
(1)

side(P, Q)

= p01q23 + p23q01 + p02q31 + p31q02 + p03q12 + p12q03 (4)Standard algorithms from linear programming can be used
to determine whether a feasible point exists for the set of in-

This sidedness relation can be interpreted geometricallyequalities in Eq. (1). Enumerating the potentially visible set
with the right-hand rule (Fig. 11). If the thumb of one’s rightfrom a given cell now becomes a matter of depth first search.
hand is directed along P, then side(P, Q) is positive if Q goesGiven a portal sequence, we test to see if the next cell is visi-
by P along one’s fingers. If Q goes by P against one’s fingers,ble by adding a portal to the current portal sequence. Once
then side(P, Q) is negative. If P and Q are incident, thena cell is determined to be invisible, its ‘‘children’’ need not
side(P, Q) � 0.be explored.

Notice that every line must be incident upon itself. There-
fore, every real line P in 3-D must satisfy side(P, P) � 0. ThePotentially Visible Sets in 3-D
4-D hypersurface that satisfies the previous equation is called

To solve the three-dimensional case, we must be able to repre- the Klein quadric. Notice that not every homogeneous six-
sent lines in three dimensions. One way to represent lines in tuple corresponds to a real line in 3-D; only points on the
3-D is to use the Plücker coordinates (21,22). Suppose we Klein quadric do.
want to represent a directed line l which passes through Suppose an oriented portal has n edges. Then we can asso-
points x and y in this order. Using homogeneous coordinates, ciate a directed line ei with each edge so that it is oriented
the points can be represented as x � (x0, x1, x2, x3) and y � clockwise, viewed along a stabbing line. Then, for a directed
(y0, y1, y2, y3). Let us define the six Plücker coordinates as line S to stab the portal (Fig. 12), S must satisfy
(p01, p02, p03, p12, p23, p31), where pij � xi yj � xj yi. Since the
points are described by homogeneous coordinates, scaling side(ei, S) ≥ 0, i ∈ 1, . . ., 4 (4)
each coordinate by a constant will describe the same point,
but each Plücker coordinate will be scaled by the same con- If such S exists and side(S, S) � 0, then S stabs the portal.

For a stabbing line S to stab a portal sequence, S must satisfystant. Therefore, the Plücker coordinates are unique up to a

Figure 11. The right-hand rule applied
to side(a, b). The curved arrow indicates
the direction in which b goes by a (either
clockwise, or counterclockwise, as viewed
along a). side(a, b) is positive, negative, or
zero, depending on this direction.

Q

P
side (P,Q) = 0

Q

P
side (P,Q) > 0

Q

P
side (P,Q) < 0
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There are several ways to associate a point with a line
(e.g., Plücker coordinates associate a point in 5-D with a line
in 3-D. The readers are referred to Refs. 25 and 26 for addi-
tional examples of dualization schemes.) For illustration pur-
poses, this article will use the following dualization of lines in
2-D (this representation is similar to the dualization used in
Ref. 25). Given a directed line L, a vector u that starts from
the origin and meets L perpendicularly is constructed (Fig.
13). Let 	 be the angle formed by u and the x-axis and let d be
the directed distance between L and the origin. d is positive if
u � L is positive, as in Fig. 13. Otherwise, d is negative. The
directed line L is associated with the point (	, d) in the dual
space.

S

e3

e2

e1

e4 We illustrate the visibility complex with two examples.
Figure 14(a) shows an environment that consists of one ob-Figure 12. An example of a stabbing line in 3-D. A stabbing line
ject, O1. Given a directed line, there are infinitely many raysmust pass to the same side of each ei [i.e., satisfy Eq. (2)].
that are collinear with the directed line and that point in the
same direction as the directed line. Now, we want to divide
the set of rays according to which object the ray ‘‘sees.’’ For

Eq. (4) for each portal, and side(S, S) � 0. In (20), Teller de- example, in Fig. 14(a), all the rays that are associated with
scribes an algorithm that determines whether a portal se- L1 (e.g., r1 and r2) symbolically see the ‘‘blue sky.’’ When we
quence admits a stabbing line by associating an oriented hy- consider L2, however, some of the rays associated with L2 see
perplane with each ei, by forming a convex polytope �ihi, O1 (e.g., r3), whereas the rest of the rays see the blue sky
and by checking whether this polytope intersects the Klein (e.g., r4).
quadric. Given a set of rays that see the same object, we can associ-

ate with it a ‘‘sheet’’ in the dual space. For example, r3 and
r4 correspond to the same point in the dual space (becauseAlternative Approaches to Computing
they have the same 	 and d values), but they belong to differ-the Potentially Visible Sets
ent sheets, because they see different objects. r1 and r2 corre-

An early attempt at calculating the potentially visible set is spond to a point on the same sheet, because they see the same
presented in Ref. 23 where discrete sampling and shadow vol- object. Now, consider Fig. 14(b). The curved region in the mid-
umes [10] are used to compute the set of cells visible from a dle (which is bounded by two cosine curves) corresponds to
portal polygon. This method only offers an approximate solu- the set of lines that intersect O1. There are two sheets associ-
tion, since discrete sampling underestimates the potentially ated with this region: the rays associated with one sheet see
visible set, while using shadow volume overestimates it. the blue sky, whereas the rays associated with the other sheet

An algorithm which generates the potentially visible set on see O1. All the points outside this curved region correspond to
the fly is presented in Ref. 24 where every time the viewer one sheet, whose rays see the blue sky. This data structure is
changes position, the cell adjacency graph is traversed and called the visibility complex. Figure 14(b) shows the cross sec-
the potentially visible set is computed per viewpoint. This al- tion of the visibility complex.
gorithm is based on the observation that in order for a cell to Figure 15(c) shows an environment with two objects, and
be visible, the portal leading to that cell must be visible. To Fig. 15(a) shows the corresponding visibility complex. Notice
determine whether a portal is visible through a portal se-
quence, we associate a screen-space axial bounding box with
each portal. If the intersection of these bounding boxes is non-
empty, we can conservatively estimate that the portal is visi-
ble through the portal sequence. In this manner, determining
the potentially visible set reduces to depth-first search on the
cell adjacency graph. One advantage of computing the poten-
tially visible set on the fly is that walls and portals can be
interactively modified, and the visibility algorithm requires
no off-line processing to respond to these changes.

RECENT ADVANCES IN HIDDEN FEATURE REMOVAL

The Visibility Complex

As the previous section indicates, lines are the basic currency
of visibility. For example, object A can see object B, if and

y

u

L

x
d

θ

only if there exists a stabbing line from A to B. One way to
reason about lines is to think of them as if they are points. Figure 13. Dualization of a ray. A directed line L is associated with
The process of associating a point to a line is called dualiza- the point (	, d) in the dual space. 	 is the angle between u and the

x-axis, and d is the directed distance from the origin to L.tion. A region in the dual space corresponds to a set of lines.
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Figure 14. (a) An environment with one
object and (b) the corresponding visibility
complex. r1 and r2 share the same 	 and
d values and, therefore, correspond to the
same (	, d) point on the visibility complex.
r1 and r2 see the same object, so they cor-
respond to the same sheet. r3 and r4,
however, see different objects and there-
fore correspond to different sheets. On the
visibility complex shown in (b), r3 belongs
to the sheet labeled O1 and r4 belongs to
the sheet labeled BS.

θ
2π

d

y
L1 L2

r4

x

r2

r3

r1

o1

0

1 sheet

1 sheet

BS

Cross section B
(b)(a)

BS BS

O1

O1

0

2 sheets

Figure 15. (a) The visibility complex of
an environment with two objects, shown
in (c). (b) Cross sections of the visibility
complex at different 	-values. A cross sec-
tion at a particular 	-value corresponds to
a set of rays with the same direction, but
different d values. (c) The regions corre-
spond to sets of rays with the same view
(e.g., every ray starting from a region la-
beled O1 sees O1, along the given ray di-
rection). You can easily verify that a re-
gion in (c) corresponds to a sheet in the
cross section. In (c)(i), suppose that an ob-
server moves along the arrow shown,
while looking along the ray direction. On
the visibility complex, this corresponds to
tracing along the trajectory shown in
(b)(i). Thus, given how an observer
changes position and viewing direction
over time, the corresponding view is com-
puted by ‘‘walking’’ the visibility complex.
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that adding a new object corresponds to introducing a new create a representation that aided visibility calculations
at the same time as creating the model. The incrementalsheet in the visibility complex. Additional layers are added to

some regions when a new sheet is added. The following algo- nature of the algorithms for constructing the visibility
complex is particularly attractive here.rithm computes the view of a user who looks around the envi-

ronment. Sweeping the viewing ray around a fixed point • Recent work (27,28) builds representations of objects by
traces a (cosine) curve in the dual space. To compute the view, sampling the radiance along a set of rays. This represen-
the sheet corresponding to the starting point of the curve is tation is particularly suitable for very complicated real
determined, and the curve is traced on this sheet. When the objects (e.g., a furry toy), which cannot be represented
curve crosses an edge (where two sheets join), the algorithm with current geometrical and photometric modeling tech-
determines which sheet to follow by determining which corre- niques. Line representations of 3-D geometry interact
sponding object the current ray sees and traces the curve on particularly well with this object representation.
this sheet. This process is continued until the final point of
the curve is reached. As the user changes position, a new Overall, the visibility complex offers an effective method of
curve is traced in the dual space, and the algorithm begins calculating exact visibility in a very large environment. More-
again. Figure 15(b)(i) illustrates a simple example of how the over, the visibility complex offers a principled approach to
visibility complex is ‘‘walked’’ to compute a view. Suppose hidden feature removal since it obviates the need to define an
that an observer walks along the indicated path shown in Fig. arbitrary cell structure over the input set (as required by the
15(c)(i), while looking along the given ray direction. The corre- techniques that use potentially visible sets).
sponding path on the visibility complex is shown in Fig. 15(b)
to (i). The sheets encountered along this path correspond to

Other Recent Approachesthe set of objects seen by the observer.
Building the visibility complex follows the incremental al- One of the themes that emerge from recent research on hid-

gorithm suggested by the example; details appear in Ref. 26, den feature removal is the observation that a small number
and Ref. 25 discusses the visibility complex for three-dimen- of occluders hide a great number of occludees in a typical
sional environments. Both works use a cumbersome parame- scene. The algorithms outlined in Refs. 29 and 30 are based
terization of lines. A simpler parametrization could be on this insight. These algorithms are conservative in the
achieved in 2-D by using the projective dual space (21) and in sense that the set of occluders do not cull all of the invisible
3-D using Plücker coordinates. These parametrizations offer objects. These algorithms dynamically maintain a set of oc-
the advantage that a ‘‘sheet’’ will correspond to a polygon or cluders as the viewer changes position, and they embed the
a polytope in the dual space, both of which are easy to manip- objects in a spatial hierarchy so that a set of objects may be
ulate. The visibility complex approach offers numerous at- culled with one visibility query. In Ref. 29, to test if a convex
tractions: occluder hides an axial bounding box, check the viewpoint

against a set of tangent planes formed between the edges of
• The rendering cost is output-sensitive. For example, ren- the occluder and the vertices of the bounding box. By checking

dering a room in a building would involve investigating whether the viewpoint lies in the appropriate half-spaces, we
only those elements of the visibility complex that corre- can determine if the bounding box is completely hidden, par-
spond to visible polygons. This means that, even though tially hidden, or unoccluded by the occluder.
the visibility complex cannot help distinguish between One of the drawbacks of this approach is that we cannot
detail and large occluders, it avoids difficulties with de- easily check if a set of occluders collectively hides an object.
fining cells. This problem can be solved by using an image-space hierar-

chical occlusion map (30). The image of the occluders is writ-• The visibility complex is particularly well suited to inte-
gration with modeling tools. Ideally, a modeler would ten onto the occlusion map, and this map is organized in a

Table 1. Comparison of Different Visibility Algorithms

Can it
Easy to Hardware Support Large How Much Amt. of

Algorithm Implement? Support? Databases? Overrendering? Optimal Cases Preprocessing

z-buffer Very easy Yes No Maximum Small data set w/no clear None
structure

BSP tree Easy No No Maximum Small data set with obvious Fair
splitting planes

Hierarchical Easy Maybe Yes Fair Large data set where octree Fair
z-buffer structure is likely to be

respected
2-D maze algorithm Fair No Yes None Interactive maze environ- Fair

with ray casting ment
Conservative Fair Partial Yes Fair Large data set w/obvious Very much (Fair, if the

Vis. � z-buffer cell structure potentially visible
set is computed on-
the-fly.)

Visibility complex Difficult No Maybe None Unstructured? Very much
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