
SHAPE REPRESENTATION

INTRODUCTION

Examples of digital objects are as follows:

� Space curves such as the trajectory of a robot arm
� Solid objects such as an engine block
� Surfaces such as the hood of a car
� Volumetric objects such as a magnetic resonance

imaging (MRI) scan

Each class of objects is represented using different
methods. These methods are addressed by a relatively new
discipline, called CAGD (computer-aided geometric design
also known as geometric modeling or geometric design),
situated between mathematics and computer science. We
will outline its basic themes and show how they apply to
the task of shape representation.

Several books exist on the topic of CAGD, and they
should be consulted for more details: Farin (1), Faux and
Pratt (2), Gallier (3), Hoschek and Lasser (4). An under-
graduate text is Reference 5. An authoritative collection of
papers is in Reference 6.

THE SHAPE OF TRIANGLES

One of the most basic geometric objects is a triangle. There
are many ways to judge the shape of a triangle. All aim at
measuring closeness to an equilateral triangle. One such
measure is as follows: Of all three angles in a triangle,
consider the smallest one. The larger this smallest angle
is, the better the shape of the triangle.

Now consider a set of 2-D points xi . A common problem
is to connect them all by (nonoverlapping) triangles, which
forms a triangulation. The most commonly used is the De-
launay triangulation. Although there are many possible
triangulations of a point set, the Delaunay triangulation
produces triangles of optimal shape in the following sense.
There are many possible triangulations of the point set. In
each triangulation, find the minimum angle of all angles
formed by the triangles in the triangulation. We observe
that a small minimum angle, say 1 degree, flags a triangle
as badly shaped. Thus, it seems reasonable to find, for all
triangulations, the one in which the largest minimum an-
gle occurs. This triangulation is unique: It is the Delaunay
triangulation. Figure 1 gives an example. An efficient al-
gorithm for finding the Delaunay triangulation was given
by Lawson (7). The boundary points of the Delaunay tri-
angulation form the convex hull of the point set. Often the
boundary triangles are badly shaped—to avoid this, con-
trained Delaunay triangulations are employed; see Refer-
ence 8.

The Delaunay triangulation has another interesting
property: Consider any triangle, and form its circumcir-
cle. Then it is guaranteed that no other data point xi is
inside this circle. For a recent book on triangulations, see
Reference 9.

Figure 1. The Delaunay triangulation of a point set.

Figure 2. The Voronoi diagram corresponding to Fig. 1.

Another important structure associated with a set of
points and their Delaunay triangulation is the Voronoi di-
agram. It is obtained by connecting the circumcenters of
neighboring triangles by straight lines. If the triangles are
on the convex hull of the point set, there will be infinite
lines. See Fig. 2 for an illustration. For literature, see Ref-
erence (10).

Closely related to the Voronoi diagram is the medial
axis. It represents shape by abstraction, namely by pro-
ducing a skeleton of a closed polygon. If we approximate a
closed polygon by a large set of sample points on it, we can
compute their Voronoi diagram. By connecting all neigh-
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Figure 3. The medial axis of a closed polygon. One circle is shown
that touches the polygon twice.

boring Voronoi vertices, we obtain the medial axis. A dif-
ferent (but equivalent) definition: Any interior point of a
closed polygon is the center of a circle touching the poly-
gon. Some interior points are centers of circles touching
two points of the polygon. They form the medial axis. The
medial axis originated in the life sciences (11) and is now
used in many disciplines (12–14). For an illustration, see
Fig. 3.

BÉZIER CURVES

Bézier curves originated in France in the early 1960s and
were pioneered by P. de Casteljau (at Citroën) and P. Bézier
(at Rénault). They are now ubiquitous in all of 2-D and 3-
D modeling. They were invented to digitally model curves
arising in the design of feature curves on car bodies, which
departs from the classic method of using wooden template
curves.

A Bézier curve of degree n is defined by

x(t) =
n∑

i=0

biB
n
i (t) (1)

where the Bn
i (t) are Bernstein polynomials.

Bn
i (t) = ( n

i
)(1 − t)n−i

ti (2)

and the bi are 2-D or 3-D control points.
Bézier curves have many important properties; we list

some of them:

1. Endpoint interpolation: The curve passes through the
polygon endpoints: x(0) = b0 and x(1) = bn.

2. Invariance under affine maps: In general, if an affine
map is applied to the control polygon, then the curve
is mapped by the same map. (We should mention that
Bézier curves are not invariant under projective maps.
If one wants this property, rational Bézier curves have
to be used.)

3. Convex hull property: For t ∈ [0, 1], the point x(t) is in
the convex hull of the control polygon.

4. Linear precision: If the control points bi are evenly
spaced on the straight line between b0 and bn , then the
Bézier curve is the linear interpolant between b0 and
bn .

5. Variation diminution: No straight line (2-D) or plane (3-
D) intersects the curve more often than the control poly-

Figure 4. The de Casteljau algorithm for a cubic curve.

gon. This property accounts for the shape preservation
property of Bézier curves.

The derivative of a Bézier curve may again be written
as a Bézier curve:

.x(t) = n

n−1∑
i=0

�biB
n−1
i (t) (3)

where �bi = bi+1 − bi are forward differences.
Bézier curves may also be evaluated using a recursive

algorithm, the de Casteljau algoritflm.
de Casteljau algorithm:
Given: b0, b1,. . . , bn ∈ IE3 and t ∈ IR,
set

br
i (t) = (1 − t)br−1

i (t) + tbr−1
i+1 (t)

{
r = 1, . . . , n

i = 0, . . . , n − r
(4)

andb0
i (t) = bi. Thenbn

0(t) is the point with parameter value
t on the Bézier curve bn .

The polygon P formed by b0,. . . , bn is called the
Bézier polygon or control polygon control polygon of the
Bézier curve bn . Similarly, the polygon vertices bi are
called control points or Bézier points. As t varies between
0 and 1, each intermediate point br

i (t) traces out curves of
degree r. They are illustrated in Fig. 4 for the case n = 3.

Figure 5 shows an example of a practical use of Bézier
curves: About 70 points were computed to represent the
shape of a propeller blade cross section and a degree five
Bézier curve was fitted to them. Note that the data are
somewhat noisy, so the fit is not very good.

B-SPLINE CURVES

Bézier curves are a great modeling tool, but they can-
not cope with complex shapes very well. For those, the
tool of choice includes B-spline curves of degree n. They
have added flexibility by not using just one interval
[0, 1], but rather a partition of an interval [a, b] into
subintervals. In this article, we restrict ourselves to
the special nondecreasing knot sequence a = u0 = . . . =
un−1, un, . . . , uL+n−1, uL+n, = . . . = uL+2n−2 = b. An example
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Figure 5. A quintic Bézier curve fit to data from a propeller blade.

for the cubic case n = 3 and L = 2: 0,0,0,1,1.5,2,2,2. We
also demand that no more than n successive ui are equal.

A B-spline curve is obtained by replacing the Bernstein
polynomials Bn

i in Reference 15 by B-splines Nu
i (u). They

are piecewise polynomial functions and are typically de-
fined recursively:

Nn
l (u) = u − ul−1

ul+n−1 − ul−1
Nn−1

l (u) + ul+n − u

ul+n − ul

Nn−1
l+1 (u) (5)

The recursion is anchored by

N0
i (u) =

{
1 if ui−1 ≤ u < ui

0 otherwise
(6)

A B-spline curve is then defined by

x(u) =
L−n+1∑

j=0

d jN
n
j(u)

where the dj are again called control points.A de Casteljau-
like algorithm exists for their evaluation as well; it is
known as the de Boor algorithm.

B-splines enjoy all the properties of Bézier curves; in
addition, they have a local control property: If only one of
the dj is changed, then the curve will only change nearby
and will remain unchanged everywhere else. This is due
to the fact that each Nn

i has local support: Nn
i (u) ≡ 0 for

u /∈ [ui−1, ui+n].
Bézier curves are a special case of B-spline curves.

Over the special knot sequence u0 = . . . = un =
0, un+1, . . . , u2n+2 = 1, the B-splines Nn

i are identical
to the Bernstein polynomials Bn

i .
An advantage of B-spline curves over Bézier curves is

that they may be used to form closed curves. For this, the
knot sequence and the control points are extended to form
periodic sequences. An example of a closed cubic B-spline
curve is shown in Fig. 6.

B-spline curves may also be used for least-squares ap-
proximation in much the same way—iust replace the Bern-
stein basis by the B-spline one.

NURBS

Bézier curves or B-spline curves are capable of represent-
ing parabolas but not any other conic, such as ellipses
or hyperbolas. This can be overcome by generalizing to
rational curves. A rational B-spline curve (typically known

Figure 6. A closed cubic B-spline curve.

Figure 7. A segment of a circle in rational quadratic form.

as a NURB curve, for the non uniform rational B-spline
curve) is given by

x(u) =
∑L−n+1

j=0 wjd jN
n
j(u)

∑L−n+1
j=0 wjN

n
j(u)

The scalar factors wi are called weights. The effect of a
large value for one wi is that the curve will pull toward the
control point di .

Bézier curves are a special case of B-spline curves; the
same is true for rational Bézier curves. We now show how
to write a segment of a circle as a rational Bézier curve of
degree two. Referring to Fig. 7, we see that b0 and b2 are
the segment’s endpoints and b1 is the intersection of the
respective tangents. The circle segment is then written as

x(t) = b0B
2
0(t) + vb1B

2
1(t) + b2B

2
2(t)

B2
0(t) + vB2

1(t) + B2
2(t)

where v = cos α, with α being the angle formed by b0b1 and
b0b2.

For references, consult References 16–18
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THE SHAPE OF CURVES

The main shape characteristic of curves is described
by classic differential geometry—it is the concept of
curvature. When a curve bends sharply, its curvature is
high; where it is fiat, its curvature is low. Intuitively, cur-
vature is then defined as follows: At a given point on the
curve, find a circle that best fits the curve there. The in-
verse of this circle’s radius is the curvature. Examples: A
straight line has zero curvature; a circle has constant cur-
vature.

Analytically, it can be shown that the curvature, denoted
by κ(t), is given by

κ(t)
‖ẋ∧ ẍ‖
‖ẋ‖3

where dots denote first and second derivatives, respec-
tively. A common way to judge the shape of a curve is by
inspection of its curvature plot. This is the graph of κ(t). If
it consists of only a small number of monotone pieces, then
the curve is said to be fair. Even if a curve appears accept-
able judging from its display on a computer screen, it may
badly fail a designer’s intent. The curvature plot will detect
any shape imperfections. An example is given in Fig. 11.

PARAMETERIC SURFACES

Curves axe important for 2-D processes such as font de-
sign. (For example, all letters in this book are designed as
piecewise Bézier curves.) Yet most “real-life” applications,
such as car design or scientific computing, require 3-D sur-
faces for modeling objects. Several kinds of surfaces exist;
the most commonly used are tensor product B-spline sur-
faces, with tensor product Bézier surfaces as an important
subset.

A Bézier surface is given by

x(u, v) =
m∑

i=0

n∑
j=0

bi, jB
m
i (u)Bn

j(v) (7)

This surface is a bipolynomial map of the 2-D unit square
0 ≤ u, v ≤ 1 (the domain) into the surfacés 3-D range. The
control points bi,j form the control net of the surface. The
boundaries of the control net are Bézier polygons of the
patch’s boundary curves.

If we replace the Bernstein polynomials by B-splines,
we obtain a B-spline surface:

x(u) =
L−n+1∑

i=0

M−m+1∑
j=0

di, jN
n
i (u)Nm

j (v) (8)

This surface is again defined by a set of control points, the
control net, and by two sets of knot sequences, one each for
the u-and v-direction. Bézier surfaces are one polynomial
surface, whereas B-spline surfaces consist ot many such
patches. An example of a B-splirre surface is shown in Fig.
8 .

Figure 8. A B-spline surface and its control net.

SUBDIVISION SURFACES

Although B-spline and NURB surfaces are frequently em-
ployed in the area of CAD/CAM, the emerging field of com-
puter animation has adopted subdivision surfaces as the
shape representation of choice. These are defined by recur-
sive algorithms that, starting from a coarse polygon, con-
verge to a smooth limit surface. Here, we consider one of
the more popular schemes: Loop subdivision, devised by C.
Loop (19). Its input is a coarse triangle mesh as discussed
and proceeds as follows.

1) Form edge points ei+1
j : Assuming that vi

1 and vi
2 are

the endpoints of an edge in the mesh and that vi
3, and vi

4
are the remaining vertices of the two triangles sharing the
edge, set

ei+1
j = 3

8
(vi

1 + vi
2) + 1

8
(vi

3 + vi
4) (9)

This process is easily visualized using a mask, shown in
Fig. 9. The shown coefficients have to be multiplied by a
factor of 1/8.

2) For each vertex vi in the mesh, form a new vertex
point vi+1. Assuming vi has n neighbors vi

1, . . . , vi
n, it is com-

puted as follows:

vi+1 = (1 − nα)vi + α

n∑
j=a

vvi
j (10)

where

α = 1
n

(
5
8

− (
3
8

+ 1
4

cos
2π

2
)
2

) (11)

for n > 3 and α = 3
16

if n = 3.

3) Form new triangles.
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Figure 9. Loop subdivision: the edge point mask.

Figure 10. Loop subdivision: the original control net (black) and
one level of subdivision (gray).

Figure 10 illustrates.
Now consider the mesh that is obtained after some num-

ber k of iterations. Select any vertex v of it. This vertex will
converge to a point v∞ on the limit surface. Using an eigen-
value analysis one can show that this limit point is given
by

v∞ = 3 + 8α(n − 1)
3 + 8nα

+ 8α

3 + 8nα

n∑
j=1

v j (12)

where the vj are the neighbors of v in the mesh obtained
after k iterations. For the special case k = 0, equation 16
gives the limit points corresponding the original mesh ver-
tices.

For more details on the Loop and other subdivision
schemes, consult Reference 20.

THE SHAPE OF SURFACES

Once a surface is constructed, one needs to verify that it
is acceptable. This verification needs to involve checking
if the surface is within a prescribed tolerance to the given
data points. Equally important for many applications, one
needs to inspect its shape. One of the most critical type
of surfaces occur in car body design: The slightest undu-
lation in the surface of a hood, for example, will result in
an unpleasant appearance of the car. These outer car body
surfaces are referred to as “class A surfaces” in the trade.

The term goes back to the CSD package, which was de-
veloped by Mercedes-Benz: “A” refers to “Aussennaut” or
outer surface; these are the ones needing the highest level
of perfection.

Thus, it is important to have tools that permit surface
shape inspection before an expensive prototype is built.
One method is to intersect the surface with a plane, re-
sulting a curve. The curvature of this curve is plotted to
aid a trained car designer to infer shape properties of the
surface.

We show a less traditional application: The model of an
American Indian vessel is inspected using a curvature plot
of a cross section; see Fig. 11.

The vessel is not exactly a surface of revolution that is
clearly revealed by the nonsymmetric curvature plot.

Another tool “paints” various curvatures4 onto the sur-
face, which was first suggested by R. Forrest (21). [These
are Gaussian, mean, or absolute curvatures; see do Carmo
(24)]. In this application, the curvature map is used as a
texture map for displaying the surface. The result is a col-
ored image of the surface that reveals much more shape in-
formation than a standard display. Again, we show the ex-
ample of using curvatures in archeology: Figure 12 shows
a vessel and its absolute curvatures.

Quantitative methods of reasoning about the shape of a
vessel are becoming far more powerful than was possible
when vessel shape was first given a mathematical treat-
ment by G. Birkhoff (15). That book promoted the use of
curvature for shape description, but it is only with modern
CAGD techniques that we can realize the full potential of
that approach.

Other developments are focusing on more involved as-
pects of the differential geometry of surfaces, the (probably)
most promising one being the concept of crest lines. A crest
line is, intuitively speaking, a line of extreme curvature on
a surface; an example is the ridge line of a mountain. A
crest line is defined as follows. Let κmax(u, v) be the max-
imum principal curvature at a point x(u, v), and let d be
the corresponding (domain) direction. The scalar-valued bi-
variate function κmax(u, v) reports the extreme curvature
at a given point. The extreme values of this function occur
along curves; one such curve is defined by the zero contours
of the directional derivative

Ddκmax(u, v) = 0; D2
dκmax(u, v)<0. (13)

All points satisfying equation 12 form the crest lines of a
surface. They have recently been used in medical imaging
and seem to be a useful concept in the shape analysis of
surfaces arising in other areas of CAGD. For algorithms to
find crest lines, see References 22 and 23. For an illustra-
tion, see Fig. 13.

TRIANGLE MESHES

In the 1990s, shape capture technology become widely
available These are devices that can collect coordinates of
points (also called vertices) on real objects. Several kinds
of scanning devices exist:

� Laser scanners
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Figure 11. A vessel cross section and a curvature plot.

Figure 12. A vessel and its absolute curvatures.

� Stereo photogrammetry
� Touch probes
� Satellite remote sensors

The result of an object scan is a collection of x, y, z
triples, ranging from several hundred to some billions. To
make these point sets (called point clouds) manageable,
they are typically endowed with a structure known as a
triangle mesh. A triangle mesh is a data structure consist-
ing of the list of all x, y, z triples plus a list of pointers. Each
pointer (pointing to three vertices) represents one triangle.
This additional connectivity information, while using up
some space, helps speeding up many algorithms for work-
ing with meshes. Figure 14 shows an example of a triangle
mesh.

Triangle meshes are not only obtained through digitiz-
ing. Many FEM codes deliver triangle meshes. Breaking a
smooth surface down into many triangles for display also
produces triangle meshes.

The local shape of a smooth surface is described using
its curvatures. Triangle meshes are piecewise planar and
not differentiable across triangle edges. To talk about cur-
vatures, approximation methods must be used. If one is
interested in the approximate curvatures around a vertex,
a least-squares fit may be used to build a local approximat-
ing surface; degree 2 is usually sufficient. Then curvatures
may be computed as in the previous section.

VOLUMETRIC DATA

Volume grids are 3-D arrays where each array element
(called a voxel) holds one or more scalar values. There are
devices whose output are volume grids, such as confocal
laser microscopes or MRI scanners. Volume grids may also
be the output of fluid flow computation.

When presented with a volume grid, a major task is to
extract the shape information represented by it. For exam-
ple, one might be interested in extracting all voxels of a
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Figure 13. Crest line on a brain surface.

Figure 14. Part of a turbine modeled as a triangle mesh.

skull from an MRI data set. These voxels record the skull’s
density, a value not found anywhere else in the brain scan.
The major algorithm for identifying those voxels is known
as marching cubes; see Reference 25. It weaves a triangle
mesh through those voxels where the known density level
occurs. Figure 15 shows the result of the algorithm applied
to a human brain scan. The image is a smooth rendering of
a triangle mesh. For more information, see Reference 26.
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