
SOLID AND PHYSICAL MODELING

INTRODUCTION

Overview

A solid model (or simply a solid) is a digital representation
of the shape of an existing or envisioned rigid object. Solids
are routinely used in many applications, including archi-
tecture, entertainment, and health care. In particular, they
play a major role in the manufacturing industries, where
precise models of parts and assemblies are created using
a solid modeler—a computer program that provides facil-
ities for designing, storing, manipulating, and visualizing
assemblies of solids. These solids can be designed by a hu-
man through a graphic user interface (GUI), constructed
from scanned three-dimensional (3-D) data, or created au-
tomatically by applications via an application program-
ming interface (API). The design process is usually incre-
mental and follows one—or a combination—of the three
main paradigms: surface stitching, where designers specify
surfaces and stitch them together to define the boundary
of a solid; constructive solid geometry (abbreviated CSG),
where designers instantiate solid primitives (blocks, cylin-
ders, extruded areas. . .), specify their dimensions, position,
and orientation, and combine them using Boolean opera-
tors; and feature-based (1), where solids are specified by
a sequence of operations that create or modify features—
entities meaningful for a particular application. By expos-
ing the parameters (2) that define the positions and dimen-
sions of the features or of the CSG primitives, one creates
a generic solid that can be instantiated (reused) with dif-
ferent parameter values by the designer to simplify engi-
neering changes or to make new models or by a program
to assist shape optimization or tolerance analysis.

Contemporary 3-D graphics capabilities and intuitive
GUI support the design activities by providing designers
with an interactive environment in which they can; (a) see,
after each design step, realistic images of the solids they
have designed; (b) control the view parameters and the ren-
dering attributes; (c) graphically select a solids, a primitive,
or a feature; (d) edit a selected element by changing its di-
mensions, position, or orientation; and (e) create or modify
solids or features through a variety of operations, which
include Booleans, extrusions, sweeps, offsets, fillets, bends,
warps, morphs, and various filters.

Applications

When used in the computer-aided design/computer-aided
manufacturing (CAD/CAM) industry, solid modeling im-
pacts a variety of design and manufacturing activities. Ex-
amples include early sketches, space allocation, detailed
design, drafting, visualization, maintenance simulation,
usability studies, engineering changes, analysis of toler-
ances (3), 3-D mark-up, product data management, remote
collaboration, Internet-based catalogs, analysis of mecha-
nisms (4), meshing (5), and finite elements analysis, pro-
cess planning and cutter-path generation for machining
(6, 7), assembly and inspection planning, product docu-

mentation, and marketing. For example, CAD/CAM appli-
cations evaluate various properties of a solid or assem-
bly, such as volumes or contact areas, or assess the fea-
sibility and cost of life-cycle activities, such as manufac-
ture, assembly, or inspection. Ideally, these applications
should run concurrently with the design process, to help
assess the consequences of design decisions. Analysis al-
gorithms are available for generating displays of solids in
many styles and degrees of realism, for kinematic simula-
tion, for the evaluation of mass properties (8), for inter-
ference detection (9) in static environments, and so on.
On the other hand, problems such as design and plan-
ning, which involve synthesis, are much less understood,
although progress was made in certain areas, such as fea-
ture recognition for machining planning (10), dimensional
inspection planning (11, 12), and robot path planning (13).
Most of these application algorithms make extensive use of
the fundamental queries and constructions described be-
low. For example, mass property calculation for CSG solids
typically involves either line/solid classification or CSG-to-
octree conversion (14). And feature recognition and acces-
sibility analysis for inspection planning require Boolean
operation capabilities. Some applications, such as finite el-
ement method (FEM) analysis or computational fluid dy-
namic (CFD) simulations, require converting the solid into
a Cartesian or unstructured mesh of tetrahedra or hexahe-
dra. The automation of the construction of optimal meshes
continues to challenge the mesh generation community.
Furthermore, the mesh may evolve during simulation (15).

Solids are also used in medical visualization and surgery
planning to represent the desired parts (bone, cartilage,
heart, brain, artery) of a human anatomy and to simulate
the effect of a contemplated surgical intervention (graft
of cartilage, cardiopulmonary connection (16), radiation).
The extraction of solids from acquired computed tomog-
raphy (CT) or magnetic resonance image (MRI) scans is
complicated by the errors and low sampling rate of the ac-
quired data set (17). Solids are used in architecture and
construction to model the components, to verify that they
fit properly and adhere to construction codes, and to com-
pute their mass and possible deflection under stress (18)
or vibration modes. Solids may also be used to represent
the empty space and analyze it in terms of aesthetics or
acoustics. Finally, solids are used in the entertainment and
training industry represent to the objects in a virtual scene
and to detect collisions between moving objects.

Evolution

Research in solid modeling emerged in the 1970s from
early exploratory efforts that sought shape representa-
tions suitable for machine vision and for the automa-
tion of seemingly routine tasks performed by design-
ers and engineers in computer-aided design, manufactur-
ing, construction, and architecture (encapsulated in the
CAD/CAM/CAE abbreviation) (19). In particular, early ap-
plications of solid modeling focused on producing correct
engineering drawings automatically and on cutter-path
generation for numerically controlled machining (20). Such
two-dimensional (2-D) drawings are now in digital form
and are being rapidly replaced with 3-D solid models,

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 2007 John Wiley & Sons, Inc.

2 Solid and Physical Modeling

augmented with dimension, tolerance, and other mark-up
information.

Solid modeling has evolved to provide a set of funda-
mental tools for representing a large class of products
and processes and for performing on them the geometric
calculations required by applications. The ultimate goal
was to relieve engineers from the low-level or noncreative
tasks in designing products (21); in assessing their man-
ufacturability, assemblability, and other life-cycle charac-
teristics; and in generating all the information necessary
to produce them. Engineers/designers should be able to
focus on conceptual, high-level design decisions, whereas
domain-expert programs should provide advice on the con-
sequences and optimization of design decisions and gen-
erate plans for the manufacture and other activities as-
sociated with the product’s life cycle. The total automa-
tion of analysis and manufacturing activities (22),although
in principle made possible by solid modeling, remains a
research challenge despite of much progress on several
fronts.

Solid modeling has rapidly evolved into a large body of
knowledge, created by an explosion of research and pub-
lications (23–26). The solid modeling technology is imple-
mented in dozens of commercial solid modeling software
systems, which serve a multi-billion-dollar market and
have significantly increased design productivity, improved
product quality, and reduced manufacturing and mainte-
nance costs. Today, solid modeling is an interdisciplinary
field that involves a growing number of areas. Its objec-
tives evolved from a deep understanding of the practices
and requirements of the targeted application domains. Its
formulation and rigor are based on mathematical foun-
dations derived from general and algebraic topology and
from Euclidean, differential, and algebraic geometry. The
computational aspects of solid modeling deal with compact
representations and efficient algorithms, and benefit from
recent developments in the field of Computational Geome-
try. Compact representations and efficient processing are
essential, because the complexity of industrial models is
growing faster than the performance of commercial work-
stations and the available transmission bandwidth (27).
Techniques for modeling and analyzing surfaces and for
computing their intersections (28, 29) are fundamental in
solid modeling. This area of research, sometimes called
computer-aided geometric design (CAGD), has strong ties
with numerical analysis and differential geometry. GUI
techniques also play a crucial role in solid modeling, be-
cause they determine the overall usability of the modeler
and impact the user’s productivity. There have always been
strong symbiotic interaction and overlap between the solid
modeling community and the computer graphics commu-
nity. In particular, the complexity of the solid assemblies
used in industrial applications has challenged the capabil-
ities of graphics subsystems, motivating research in shape
simplification (30, 31), occlusion culling (32), and geometric
compression (33). A similar symbiotic relation with com-
puter vision has regained popularity, as some research ef-
forts in vision were model-based (34) and attempted to ex-
tract 3-D models from images or video sequences of ex-
isting parts or scenes. These efforts are particularly im-
portant for solid modeling, because the cost of manually

designing solid models of existing objects or scenes far ex-
ceeds the other costs (hardware, software, maintenance,
and training) associated with solid modeling. Finally, the
growing complexity of solid models and the growing need
for collaboration, reusability of design, and interoperabil-
ity of software require expertise in distributed databases,
constraint management systems, optimization techniques,
object linking standards, and Internet protocols.

Although the low-level geometry processing tools upon
which the solid modeling technology still lack in perfor-
mance, reliability, and generality, much of the innovations
in solid modeling are focused on two primary usability is-
sues: (a) Simplify the creation of solid models in a collab-
orative and often distributed design environment and (b)
integrate solid modeling functionality into broader product
data management (PDM) processes.

Beyond Solid Modeling

The fundamental difference between solid modeling and
other geometric modeling paradigms lies in the fact that
a solid model is a complete and unambiguous representa-
tion of a solid (35) and hence makes it possible to develop
practical algorithms for set membership classification: i.e.,
the ability to divide a candidate set C into parts that are
in the interior of the solid S, in its exterior, or on its bound-
ary (36). For example, integral properties of a solid may
be approximated by classifying randomly sampled points
and by adding the properties of points that fall in the inte-
rior. Realistic images produced through ray tracing require
classifying rays and identifying points where a ray inter-
sects the boundary of the solid. The ability to design and
process mathematically precise representations that dis-
tinguish among the interior, the boundary, and the exterior
of a rigid object being modeled is important to manufactur-
ing or construction applications. Yet it does not address a
plethora of characteristics of real objects that are essential
for other applications, such as medicine or entertainment,
or for manufacturing composite or flexible objects and ana-
lyzing their nonuniform properties. To address these chal-
lenges, several areas of research extend the scope of solid
modeling.

Nonregularized, sometimes called nonmanifold (NM)
modeling techniques have been proposed (37) to support
the representation of structures that combine different
materials in a solids (38) and may have lower dimen-
sional entities, such as membranes, sheets, and wires (39).
Among other applications, such nonregularized represen-
tations provide support for modeling contacts among ob-
jects, fractures in objects, anisotropic or composite mate-
rials, anatomies of human organs, or the partition of a
solid into components made of different materials. Higher
dimensional extensions of such nonregularized modelers

Figure 1. Union A+B, intersection AB, differences A–B and B–A,
and symmetric difference (A–B)+(B–A).

Solid and Physical Modeling 3

support analysis of configuration spaces for robotics and
tolerances for manufacturing.

Solid modeling applications that deal with natural or
artistic shapes are more in need of easy-to-use shape ac-
quisition, editing, and segmentation tools than of mathe-
matical precision. They often use sampled free-form mod-
els, which are easy to create and deform (16, 40). Never-
theless, they usually rely on algorithms that assume the
represented shapes to be topologically valid solids. Many
applications represent these solids in terms of a control
triangle mesh, which may be generated automatically to
interpolate surface samples acquired through a scanning
process, created by tessellating implicit surface models (41,
42), edited through user-controlled free-form deformations
(43), extracted as a level set of a three-dimensional scalar
field produced through simulation, or refined through sub-
division. To compare such models, compress them, segment
them automatically into features of interest to the applica-
tion domain, visualize them more clearly, or mesh them for
analysis or animation, a global parameterization of these
models is desired that minimizes distortion and is aligned
with the local curvature lines or features.

Finally, solids and structures may move, deform, break
(44) or change state over time (45). These animations may
either be designed by humans to demonstrate a process, ac-
quired through sensors from real behaviors, or simulated
using rules that may, but need not be, based on physical
principles. For example, one may use these technologies to
model the contractions of a ventricle, the flexing of an air-
craft wing, the melting of an iceberg, the sagging of a sofa,
or the breaking of a windshield. Many of these animations
use a tetrahedron or hexahedron mesh representation of
the solids.

To reflect on the importance of these three aspects
of solid modeling (nonregularized structures, free-form
shapes, and animations), the solid modeling community
has extended the name of its major conference from solid
modeling to solid and physical modeling (46).

Organization

Next, we introduce the topological foundations upon which
the solid modeling technology is based. Then, we discuss
the geometric domain, representation schemes, and nu-
meric accuracy issues. We will explain the fundamental
technologies for solid modeling with triangle meshes. We
will analyze their extensions to curved boundary represen-
tations. Then we will focus on constructive representations
and review parameterization techniques. Finally we will
discuss morphological and other operations and investi-
gate human–shape interaction (HSI) issues.

TOPOLOGICAL DOMAIN

Set Theoretic Boolean Operations

The solid modeling technology manipulates point sets. Set
theoretic operators provide the essential tool for defining
complex solids or expressing their properties. We will use
the following operators. The complement of a set S will
be denoted !S. Expression A+B, AB, and A–B, respectively,

will denote the union, intersection, and difference between
set A and set B. There is a correspondence between these
Boolean set theoretic operators (complement, union, inter-
section, and difference) and their logical counterparts (not,
or, and, and and not) because we can use the set builder
notation to define sets in terms of logical expressions of
predicates (membership classification) of the points they
contain. Specifically, !S is the set of points that are not in
S; A+B is the set of all points that belong to A or to B; AB is
the set of all points that belong to A and to B; and A–B is
the set of all points that belong to A and not to B. The pred-
icate of a point p being in or not in set S is its membership
classification with respect to S.

Because of this correspondence, set operators inherit the
properties of their logical counterparts. For example, !!S=S,
!(A+B)=!A!B, and !(AB)=!A+!B, and two operators suffice
to define the others. For example, we can express the dif-
ference and union in terms of complement and intersec-
tion:A–B=A!B and A+B=!(!A!B). Nevertheless, the Boolean
operations popular in solid modeling are the union, inter-
section, and difference. Note that, among the 16 different
Boolean combinations of two sets, 8 are unbounded, 3 are
trivial, and only 5 (shown in Fig. 1) are of interest for defin-
ing bounded solids.

Regularization and Membership Classification

The digital representation and basic algorithms used in
solid modeling are based on a few fundamental principles
discussed in this section. In the context of solid model-
ing, the term “solid” distinguishes a subclass of 3-D sets
from more general sets, which include arbitrary Boolean
combinations of volumes, curves, and surfaces. In partic-
ular, a solid is assumed to be bounded (i.e., it fits inside
a ball of finite radius) and regular (i.e., it is the closure
of its interior). The former assumption avoids the need to
compute and represent intersection points or curves that
are infinitely far from the origin. The latter, proposed in
the mid-1970s at the University of Rochester’s Production
Automation Project (PAP) as a mathematical definition of
physical solids (35), has guided the development of cor-
rect algorithms for regularized Boolean operations that are
guaranteed to produce models of solids that can be man-
ufactured, as opposed to volumes with lower dimensional
dangling surfaces, missing boundaries, and cracks.

To better understand what a regular set is and how this
restriction helps in solid modeling, consider the following
decomposition of space. (Formal definitions for the topolog-
ical concepts used here may be found in Reference 47. We
offer intuitive—although less precise—formulations and
combine them to define new terms that identify the var-
ious components of the boundary of a set.) We say that a
point p is adjacent to a set S if all balls of center p and
strictly positive radius contain at least one point of S. A set
S decomposes space into three parts: a) the boundary bS of
S, which is the closed, lower dimensional set of points that
are adjacent to S and to its complement !S; b) its interior iS,
which is the open set of point of S that are not in bS; and c)
its exterior eS, which is open and comprises the remaining
points. The boundary bS may be further decomposed (Fig.
2) into four parts: a1) the skin sS, which is the set of points

4 Solid and Physical Modeling

Figure 2. A 2-D set S may be decomposed into its interior iS, its
skin sS, and its hair hS. !S may be decomposed into its exterior eS,
its wound wS, and its cut cS.

Figure 3. The closure kS (left) of a set S (center) is obtained by
adding the cut cS and the wound wS. The regularization rS (right)
is obtained by removing (cutting) the hair hS and by adding (fill-
ing) the wound wS and the crack cS.

in S adjacent to both iS and eS; a2) the wound wS, which
is the set of points in !S adjacent to both iS and eS; a3)
the hair hS, which is the set of points in S not adjacent to
iS; and a4) the cut cS, which is the set of points in !S not
adjacent to eS. The closure kS of S is the union of S with
its boundary. The regularization rS of S is the closure k(iS)
of its interior iS (Fig. 3). We say that S is regularized when
S=rS.

The membership classification (or simply membership)
of a point p with respect to a set S may take three val-
ues: IN indicates that p is in iS, OUT indicates that p is
eS, and ON indicates that p is bS. Regularization, which
takes S and returns rS, changes the membership of wS to
ON, of hS to OUT, and of cS to IN. Converting a set S to
its regularized version rS has several benefits for model-
ing: 1) the dangling elements (hS and cS) need no longer
be represented, because hS is not distinguishable from eS
and cS from iS; 2) the boundary bS needs no longer be
split into wS and sS; and 3) most importantly, when bS is
bounded, S may be represented without ambiguity by its
boundary bS. The unambiguous specification (and repre-
sentation) of a solid by its boundary assumes that S, and
hence, iS is bounded. A regularized set S is the union of iS
with bS.

One can classify a point p (i.e., establish its membership)
with respect to a solid S represented by its boundary as fol-
lows (36). If a point p lies on bS, then it is by definition ON S.
Otherwise, we must establish its membership with respect
to iS. Point p is in iS if a path C that starts at p and goes to
infinity crosses bS an odd number of times. To simplify the
definition—and the corresponding algorithms—we exclude
paths that osculate (touch without crossing) bS. With these
precautions, the membership of a point p that is not in bS
may be consistently established using any such path. The
justification (Fig. 4) is that a point infinitely far along the
path is OUT, because S is bounded. As that point travels
toward p, it toggles its membership between IN and OUT
each time it crosses bS. For example, in computer graphics,
a ray (straight path) starting at p is used. Note that in the
definition of S in terms of bS and in the membership algo-

Figure 4. The parity of the number of crossings of bS by a ray
from a candidate point establishes its membership.

Figure 5. A one-dimensional set (center) may be the boundary of
more than one nonregular set: three are shown here.

rithm, no assumption is made as to the orientation of bS,
nor as to the number of shells of bS or of connected com-
ponents of S. However, it is implicitly assumed that the
boundary representation makes it possible to test whether
a point lies on it and to correctly compute the parity of the
number of intersections with a ray.

As mentioned, some applications manipulate digital
models of physical objects that are not solids but more
general structures that divide space into dimensionally
homogeneous, connected cells (vertices, edges, faces, and
volumes) and group such cells into collections that usu-
ally represent nonregularized sets. Note that, in general,
the boundary bS of such a nonregularized set may not be
used to represent S, nor to perform membership classifi-
cation, because it may be ambiguous (i.e., it may be the
boundary of more than one set) (see Fig. 5 for an example).
Hence, modeling systems that manipulate such nonregu-
lar features must construct, store, and exploit explicit in-
formation about the full-dimensional (open) cells and their
bounding lower dimensional shells. We will elaborate on
such representations later in this article.

The above discussion is important for three reasons: 1)
It provides the mathematical foundation for the numerous
solid modeling schemes that use a boundary representa-
tion (BRep); 2) it provides a practical algorithm for mem-
bership classification; and 3) it defines which faces should
be retained (sS and wS) and which should be discarded (hS
and cS) when computing (boundary evaluation process) a
representation of the boundary bS of a solid S defined by
a Boolean, sweep, morph, or other operation. In particular,
when a Boolean operation (union, intersection, difference)
is followed by a regularization operation, we say that it is a
regularized Boolean. Note that regularization may be ap-
plied after each Boolean (this is done during incremental
boundary evaluation) or performed on the result produced
by combining several solids according to a Boolean expres-
sion, which is a constructive solid geometry (CSG) repre-
sentation of the solid. Both BRep and CSG representations
are discussed below. Let us now examine how regulariza-
tion affects membership classifications. Assume that the

Solid and Physical Modeling 5

Figure 6. The solid (left) has a nonmanifold edge, which creates
a cut in the top face (right).

memberships of a point p with respect to solids A and B
are known. If at least one of them is not ON, then we can
conclude the membership classification of p with respect
AB, A+B, and A–B without further information. For exam-
ple, if p is ON A and IN B, it is ON AB, IN A+B, and OUT of
A–B. When p lies ON A and ON B, one must consider the lo-
cal neighborhood (infinitely small ball) around p, compute
its intersection with A and with B, and then test whether
the desired Boolean operation on these neighborhoods pro-
duces an empty, full, or mixed neighborhood (48).

Boundary Evaluation

Assume that we know the boundary of two solids A and
B. How should we compute the boundary of their Boolean
combination S (for example,A+B,AB,A–B)? The solid mod-
eling algorithms that perform this computation are all
based on the fundamental principle that the boundary of
a Boolean combination is a subset of the union bA+bB.
Hence, the faces of S are subsets of the faces of A and B. As
discussed in the next section, these subsets are either ex-
pressed using solid trimming (for example, the subsets of
bA in B) (49, 50) or parametric trimming (for example, the
curves that trace the intersection between the boundaries
of the two solids).

NonManifold Singularities

The boundary bS of a solid S is composed of a set of pair-
wise disjoint cells: faces (bounded, connected, and rela-
tively open subsets of a surface), edges (which do not in-
clude their endpoints), and vertices. A face is a connected
portion of the smooth subset of bS. It does not include its
bounding edges and vertices and may have cuts (see Fig. 6).
Hence, a face F equals its interior iF [relative to the sur-
face (extent) in which it is imbedded] but may not equal
the relative interior of its closure. An edge is a connected
one-dimensional set of points of the nonsmooth subset of
bS that are all adjacent to the same set of faces of S. The
vertices of bS are the isolated points of bS that are not
included in any face or edge.

An edge is manifold if it is adjacent to exactly two faces.
S is said to be edge-manifold if all its edges are manifold.
A vertex p of S is manifold if the intersection of bS with an
infinitely small open ball of positive radius centered at p is
homeomorphic to a disk. A solid is manifold if all its edges
and vertices are.

To reduce the complexity of the underlying data struc-
tures, early solid modelers only supported manifold solids,
forcing designers to carefully avoid the creation of nonman-
ifold edges or vertices. Unfortunately, the domain of man-
ifold solids is not closed under many modeling operations.

Figure 7. The regularized union A+B of two L-shaped manifold
solids (left) creates a nonmanifold solid (right) when the shapes
are carefully positioned.

For example, the union A+B of the two manifold solids in
Fig. 7 is nonmanifold. Even though one may argue that
nonmanifold solids do not correspond to physical models,
they occur often in the intermediate stages of design and
may be desired as the means of conveying the designers’
intent. Hence, many contemporary modelers support the
creation and processing of such nonmanifold solids. Non-
manifold solids, which are regularized and hence unam-
biguously defined by their boundary, should not be con-
fused with the nonregularized sets mentioned earlier (even
though some authors use the term nonmanifold models (39)
when referring to the latter).

GEOMETRIC DOMAIN AND REPRESENTATION
SCHEMES

The choice of representations used by the modeler deter-
mines its domain (i.e., which objects can be modeled pre-
cisely) and has a strong impact on the complexity and per-
formance of the algorithms that create or process the rep-
resentations. In the previous section, we have discussed
topological restrictions satisfied by solids and further re-
strictions limiting the domain of some modelers to manifold
solids. In this section, we discuss restrictions imposed on
the geometry of the bounding faces. These restrictions are
linked to the choice of the representation scheme; hence,
we discuss them together.

Geometric Domain

A modeler may support several distinct representation
schemes and conversion algorithms between them. Vari-
ous types of representation schemes have been explored
for solid modeling. We review the most important 10 here.

Three schemes are discrete:

1) A voxel model represents a solid as a binary mask
indicating which cells (voxels) of a regular three-
dimensional lattice are IN the solid. To save storage,
voxels with identical mask values may be aggregated
hierarchically into an octree (51, 52).

2) A ray model (53) groups stacks of voxels into columns
and for each column indicates which portion lies in the
solid. These portions are estimated by computing the
intersections of rays (column axis) with the solid.

3) A slice model (also called 2.5-D) represents a solid as a
stack of slices, each defined by a planar contour and a
depth. Note that these three discrete representations
produce jaggy approximations of slanted or curved
boundaries. A variety of algorithms have been pro-

6 Solid and Physical Modeling

posed for fitting a triangle mesh that is a better ap-
proximation of the original (smooth) solid (54–56).

Two schemes are based on sampling:

4) A triangle mesh stores a set of samples (points) on the
boundary of a solid and a set of triangles that define
a piecewise linear (polyhedral) surface that interpo-
lates these samples (called the vertices of the mesh).
The triangles (connectivity) are necessary to ensure
that the solid is represented without ambiguity, even
though the triangles may often be derived automati-
cally (57, 58) and may be unnecessary for rendering
when the sampling of the vertices is sufficiently dense
(59). Adjacent coplanar triangles may be grouped into
polygonal faces.

5) An implicit surface model defines the boundary of the
solid as an isosurface (zero-crossing) of a scalar field
or level set (60), which may be defined by combining
individual functions (61) or by interpolating sample
values measured or computed at the nodes of a regular
lattice.

One scheme is parametric:

6) The boundary of the solid is a patchwork of biparamet-
ric patches, each defined by a mapping M(s,t) from the
unit square [0,1]2 to a connected portion of a surface.
Typically the mapping, which specifies the (x,y,z) coor-
dinates of point M(s,t), is a low-degree polynomial—or
a rational polynomial—in s and t. The mappings must
be arranged carefully to ensure that the patchwork
forms a continuous (watertight) boundary and that
it exhibits the desired degree of smoothness (normal,
curvature) at the edges and vertices where patches
meet.

Two schemes are trimmed surface models. They decompose
the boundary of the solid into a set of faces. Each face is
defined by an extent (host surface) that contains it and by a
trimming model, which identifies the desired portion of the
extent. The extent may be represented (as discussed above)
as a parametric patch, by an implicit surface, or even by a
triangle mesh. There are two approaches to the trimming
model:

7) The parametric trimming model represents the trim-
ming information as a set of bounding curves in pa-
rameter space (the unit square) of the patch (62). The
principal difficulty of this approach lies in the fact that
an edge where two patches connect has two represen-
tations (one per patch) and that these usually do not
define exactly the same 3-D curve, producing a gap or
overshoot in the boundary (63) and, hence, an invalid
representation.

8) The solid trimming (50, 64) defines the face as the
intersection of the extent with a solid or with the com-
plement of a solid. This approach avoids the need for
computing and representing the intersection curves
and provides a powerful link between the trimmed

face boundary representation and the CSG model dis-
cussed next.

Two schemes are constructive:

9) The CSG and the binary space partitioning (BSP) (65)
representations identify which cells of an arrange-
ment of half-spaces lie in the desired solid. The half-
spaces are usually defined by implicit inequalities and
may be unbounded.The surfaces that delimit them are
usually simple and often restricted to natural quadrics
(planes, cylinder, cone, and sphere) and tori (66), al-
though in principle, any solid model could be used
as a half-space or as its complement. CSG identifies
the cells through a Boolean combination of these half-
spaces, such as (A+B)–CD. BSP uses a recursive ex-
pression, where, at each step, a half-space is used to
further split a portion of space in two parts that are
each either declared as IN the solid, as OUT of the
solid, or as further refined.

10) A procedural model generalizes the CSG and BSP
models and represents the solid by a construction pro-
cess (recipe) (67), which transforms or combines previ-
ously defined solids. A procedural model may measure
dimensions of specific features and use these dimen-
sions to define new features or patterns of features
(68). It may create these features through Boolean op-
erations or through direct boundary tweaking, which
must be performed carefully to avoid creating invalid
models (69). But it may also invoke other operations
that for example fillet (70) the concave corners for die
design, grow (offset) a solid’s boundary (71) to create
a crust for layered manufacturing (72), compute the
volume swept by a solid cutter for simulation of NC
machining (73), or warp the solid model of an artery
for surgery planning (74). The challenge with procedu-
ral models is that some of the operations they support
may produce solids whose boundary cannot be repre-
sented exactly in a closed mathematical form suitable
for supporting algorithmic queries for downstream ap-
plications. For example, Boolean operations between
offset solids are typically performed using approxima-
tions because intersections between offsets of curved
edges cannot be computed exactly.

Computing Intersections

The choice of the geometric domain of a modeler is impor-
tant because it may affect the accuracy of the analysis re-
sults and hence its suitability for specific applications and
performance and hence its usability for interactive design
and model inspection. The most complex problem in solid
modeling is the computation of the intersections of the faces
that bound solids or primitive half-spaces.

As discussed in the next section, the solution is rela-
tively simple when the solid’s boundary is approximated by
a triangle mesh. Unfortunately, the lack of fidelity of such
an approximation may invalidate some of the analysis re-
sults, unless it is compensated by the use of an exorbitant
number of small facets. For example, a cylindrical peg may
freely rotate in a cylindrical hole of a slightly larger ra-

Solid and Physical Modeling 7

dius if both surfaces are modeled using natural quadrics
(i.e., cylinders). Using faceted approximations for the peg
and the hole may lead to the wrong conclusion that the
peg cannot rotate or does not even fit. If we wish to in-
crease accuracy while remaining in the polygonal domain,
the mesh may be 1) refined through an iterative subdivi-
sion process, which converges to a smooth surface, or 2)
regenerated from a CSG model by using a higher tessella-
tion of the primitives. Computing intersections on such re-
fined meshes leads to two problems: 1) the large number of
boundary elements (triangles, edges) increases the compu-
tational complexity and 2) the results, although acceptable
for entertainment and medical applications, may be unac-
ceptable for manufacturing applications,where mathemat-
ically precise surface models are needed to ensure precision
manufacturing for tight assemblies (where, for example, a
peg must fit perfectly in a cylindrical hole and be able to
rotate freely) or functional requirements (where the shape
of a propeller must have sufficient small curvature deriva-
tives).

Although trimmed surfaces are sufficiently flexible to
approximate the desired shape with often much fewer faces
than triangle meshes, computing their intersections in-
volves elaborate mathematical techniques (28) and algo-
rithms that are significantly slower and less reliable than
their counterparts for triangular geometries.

Natural quadric surfaces, which have an implicit equa-
tion (e.g., PQ2=r2 for a sphere) and a biparametric formu-
lation (for example, a cylinder is a family of parallel rays),
offer an attractive compromise between polyhedra and
trimmed patches, because they provide mathematically ex-
act representations for the majority of faces found in man-
ufactured objects and lead to closed form expressions for
their intersection curves and to low-degree polynomial so-
lutions for the computation of the points where three sur-
faces intersect. Unfortunately, these surfaces cannot model
precisely the numerous fillets and blends found in most
manufactured parts (74, 75). They also cannot model sculp-
tured or free-form surfaces that appear in many objects,
especially those that must satisfy esthetic requirements,
such as car bodies.

Hence, intersection calculation modules must support
intersections between natural quadrics (which include the
planar faces of triangle and polyhedral meshes), between
biparametric patches, and between surfaces of both types
(28).

Figure 8. A corner c and operators identifying its vertex v(c),
triangle t(c), and neighboring corners.

Numeric Accuracy

The numeric values that are stored to represent the pre-
cise shape and position of the surfaces or trimming curves
and their intersections are rounded to the nearest value
that can be represented in the digital format selected by
the developer of the system. The most common formats are
floats, doubles, integers, or rationals (76). Floats (floating
point representations) cover a wider range of values, but
their worst-case round-off error is relative (i.e., it grows
with the magnitude of the value). Integer numbers, when
scaled and offset properly by a judicious choice of units
and of the origin, provide a denser and uniform coverage
of a desired modeling range, and hence lead to lower and
better controlled worst-case round-off errors. Doubles and
rationals offer a much higher accuracy than floats and in-
tegers but slow down computation and increase storage.
Numeric calculations with any of these formats generate
and propagate round-off errors. The developers of a model-
ing system must ensure that these round-off errors do not
lead to logical errors, to software crashes, or to wrong de-
sign decisions (77). Exact arithmetic packages do not suffer
from round-off problems (78) but are usually only effective
for polyhedral geometries and significantly slower, unless
used with quantized parameters (79).

TRIANGLE MESHES

The triangle meshes (or simply meshes) studied in this sec-
tion are an important category of BReps. They are arguably
the most common geometric representation of solids, be-
cause they are used as auxiliary representations that ap-
proximate curved solids in most solid modelers for render-
ing and exporting the models to various applications and
as primary representations of solids in most virtual real-
ity, animation, entertainment, architecture, and other ap-
plications. They facilitate the implementation and acceler-
ate the performance of many algorithms. For example, the
GPUs of hardware graphics accelerators have been tuned
to render triangles very fast and may be programmed to
perform additional computations on triangle meshes (such
as Booleans (80), cross sections (81), or interference detec-
tion (82)). Triangle meshes may be reconstructed automat-
ically from surface samples (57, 58). Arbitrarily polygonal
faces may be easily triangulated (83), and therefore, poly-
hedra may be represented by triangle meshes. Trimmed bi-
parametric patches are also triangulated for rendering, en-
suring that the triangulations of adjacent patches match at
their common edge (84) and that the tessellation offers an
optimal compromise between accuracy and speed (85). Fur-
thermore, triangle meshes are used for assembly inspec-
tion (digital mock-up) (86) and for interactive shape edit-
ing (87). Hence, in this section, we focus on techniques for
creating and processing solids bounded by triangle meshes.

Initially, we consider a manifold triangle mesh M with
nT triangles and nV vertices. We assume that M is bounded
and that the set of all its vertices, edges, and triangles are
pairwise disjoint. (As before, we assume that edges do not
include their endpoints and that the triangles do not in-
clude their bounding edges and vertices.) Hence, each edge
of a valid mesh M is bounding exactly two triangles and

8 Solid and Physical Modeling

each vertex is bounding a single fan of triangles. Some-
times valid polyhedra, and hence valid triangle meshes
may be recovered automatically from a set of faces that
do not form a watertight surface (88, 89).

M divides its complement !M into two half-spaces: the
inside i(M) and the outside e(M) of M. As explained, i(M) is
the set of points from which rays that avoid the edges and
vertices of M stab an odd number of triangles of M. Note
that M is the boundary of the solid S=M+i(M) and i(M)=iS.

Representations

We explain here an example of a simple data structure for
meshes and propose simple versions of the most funda-
mental solid modeling algorithms that operate on them.
We include implementation details to stress the simplic-
ity of these solutions and to help the reader appreciate the
challenges of extending them to curved models. Initially,
we focus on manifold meshes that are bounding a solid.
Then we briefly discuss extensions to nonmanifold and to
nonregularized models.

Although a simple enumeration of the triangles of a
mesh M suffices to unambiguously define the mesh and
hence the solid it bounds, most boundary representation
schemes cache additional information to accelerate the
traversal and processing of the boundary and combine the
description of adjacent faces in order to eliminate the re-
dundant descriptions of their common vertices. These data
structures are usually complex (90), because they capture
the incidence relations between a face and its bounding
edges and vertices, and between an edge and its bounding
vertices. Many data structures (91–93) have been studied
to achieve desired compromises among 1) the extent of the
topological and geometric domain (or coverage) of the mod-
eler; 2) the simplicity, regularity, and compactness of the
data structure; and (3) the complexity and efficiency of the
algorithms that process the representation. We will dis-
cuss the Corner Table data structure and the associated
operators (94) and algorithms, which have been initially
designed to simplify the compression of triangle meshes
(33). They may be used to produce efficient and elegant im-
plementations of a broader set of solid modeling tasks, as
illustrated below.

Assign to each vertex a different integer (identifier) v in
[0, nV–1] and to each triangle a different integer t in [0,
nT–1]. Each triangle t has three corners, each one corre-
sponding to a different vertex of t. Assign to each corner
of the mesh a different integer c in [0, 3nT–1]. Given a cor-
ner c, let v(c) denote (the integer identifier of) its vertex,
t(c) denote its triangle, n(p) and p(c) denote the next and
previous corners in t(c), and o(c) denote the opposite corner,
as shown in Fig. 8. For convenience, we also define l(c) as
o(p(c)) and r(c) as o(n(c)). We say that p(c), n(c), o(c), l(c),
and r(c) return, respectively, the (identifiers of the) previ-
ous, next, opposite, left, and right neighbors of corner c, g(c)
returns the point where vertex v(c) is located.

Point Membership Classification

To classify a point P that is not on M against i(M), we pick
a random point O and say that P is in i(M) if it lies in an
odd number of tetrahedra that each joint O to a different

triangle of M. Consider a triangle (A,B,C). P is in tetrahe-
dron (O,A,B,C) when m(O,A,B,C), m(P,A,B,C), m(O,P,B,C),
m(O,A,P,C), and m(O,A,P,C) have the same sign. Let T be
the tetrahedron with vertices A, B, C and D. Define

float m(A,B,C,D) return((AB×AC)•AD);

where AB denotes the vector (B–A). Note that
m(A,B,C,D)=0 when T is flat and that it is positive when
the vertices of triangle (B,C,D) appear in clockwise order
when viewed from A. To avoid dealing with numerical er-
rors, we pick a new perturbed location for point O if we
cannot establish the sign of any of these quantities.

Building the Corner Table

The Corner Table stores all the connectivity information
used by the corner operators in two arrays of integers: V[c],
which contains v(c), and O[c], which contains o(c). Entries
for p(c), c, and n(c) are stored as consecutive triplets in V
and O. Hence, all corner operators may be computed from
these using the following procedures:

int v(c) {return(V[c]);}
int o(c) {return(O[c]);}
int t(c) {return(int(c/3));}
int n(c) {if ((c%3)==2) return(c–1); else return(c+1);}
int p(c) {return(n(n(c)));}
int l(c) {return(o(p(c)));}
int r(c) {return(o(n(c)));}

Furthermore, given a triangle ID t, the ID of its first
corner is 3t.

Typically, most file formats for triangle meshes store
v(p(c)), v(c), and v(n(c)) as three consecutive integers.
Hence, V may be built trivially from these formats. Al-
though O could be computed by

for (each corner c) for (each corner b>c) if
((v(n(c))==v(p(b)))&&(v(p(c))==v(n(b))))
{O[c]=b; O[b]=c;}

a more efficient approach should be used for meshes
with large triangle counts. One such approach, which has
linear complexity for typical meshes, first computes the va-
lence (number of incident triangles), valence[v], for each
vertex v by simply incrementing valence[v(c)] for each cor-
ner c. Then it computes a running valence sum and allo-
cates to each vertex a set of valence[v] consecutive entries
in a temporary table C[] starting at C[bin[v]]). Note that C
has a total of 3nT entries. The approach stores with each
vertex v the index nextC[v] to the first empty entry in the
bin. Initially, nextC[v]=bin[v]. Then, for each corner c, it
stores c in C[nextC[v(c)]] and increments nextC[v(c)]. At
the end of this process, the bin of each vertex v contains
the corners incident upon v. The integer IDs of the corre-
sponding corners are stored in C between C[bin[v]] and
C[bin[v]+valence[v]]. One can now compute O as follows:

for (each vertex v) {
for (each corner c the bin of v)
for (each corner b in the bin of v)
if (v(n(c))==v(p(b)))
{O[p(c)]=n(b); O[n(b)]=p(c);}}

For meshes with a fixed maximum valence (negligible
with respect to nV), this approach has linear cost.

Solid and Physical Modeling 9

Shells, Volume, and Global Orientation

One may also use the corner operators to identify the
shells (connected components) of M as follows. Initialize
the shell count k=0 and, for each triangles t, the shell num-
ber shell[t]=0. Then perform:

{for (each corner c)
if (shell[t(c)]==0) {firstCorner[k++]=c; swirl(c,k);}

using

void swirl(c,k) {if (shell[t(c)]==0)
{shell[t(c)]=k; swirl(c.l,k); swirl(c.r,k);};}

Note that this procedure computes the number k of
shells and identifies a corner,firstCorner[s], for each shell s.

Most—although not all—applications assume that the
triangles of each shell are consistently oriented, which
means that the next corner of each corner is consistently
chosen so that for every corner c, n(c)=p(o(c)). This may be
easily checked during the swirl and rectified when needed
by swapping the values of n(c) and p(c). Note that swap-
ping the orientation of each triangle in a shell (connected
component) of M, which amounts to swapping the values
returned by n(c) and p(c) for each corner c, preserves con-
sistent orientation. Hence each shell has two possible ori-
entations.

One can show that |m(A,B,C,D)|/6 is the volume of
tetrahedron T with vertices A, B, C, and D. The volume
of a solid bounded by an oriented shell may be computed
as 1/6

∑
v(t), for all triangles t, using

float v(t) {c=3*t;
return(m(Q,g(c),g(n(c)),g(p(c))));}

where Q is any fixed point. To reduce round-off errors,
Q may be chosen as the average of the vertices. This for-
mulation may be easily extended to compute the center of
mass of the solid and other integral properties. Note that
the volume may be positive or negative, depending on the
shell orientation.

Now, we would like to assign to each shell a proper ori-
entation and organize the shells, so that we know explic-
itly how many connected components the solid has, and for
each component, how many cavities it has and what other
components lie in these cavities. To do this, we first build a
shell containment tree, which has the universe as root and
shells as internal nodes and leaves. Each shell is included
in the shell of the parent node. To test whether shell Mi

is in shell Mk, we pick any one vertex of Mi and compute
its membership with respect to Mk as explained above. The
depth of a node is its graph distance from the root. Nodes of
odd depth represent the outer shells of the connected com-
ponents of the solid S=M+i(M). Their orientation should
be flipped if their volume (computed as explained above) is
negative. Their children represent the meshes that bound
the holes (cavities) in the component of S. Their orientation
should be flipped if their volume is positive. Once the shells
are consistently oriented, the volume of each component of
S is the sum of the positive volume of its outer shell and of
the negative volumes of its cavities.

The corner operators listed above provide constant
time access to neighboring elements on M, which speeds
up many local and global calculations. For example,

the edge common to triangles t(c) and t(o(c)) is flat
when m(g(o(c)),g(p(c)),g(c),g(n(c)))=0 and concave when
m(g(o(c)),g(p(c)),g(c),g(n(c)))>0. Note that the edge be-
tween points g(p(c)) and g(n(c)) is implicitly represented by
both c and o(c). We say that the edge and c face each other.

Compression

To compress a mesh, several approaches (33, 95) visit
the triangles in a depth-first order of a spanning tree
and encode the vertices in the order in which they are
first encountered by this traversal. The location g(c) of
vertex v(c) is estimated using the parallelogram rule
as e(c)=g(p(c))+g(n(c))–g(o(c)). Then, the difference vector
g(c)–e(c) is encoded. When the coordinates are quantized
to 12 bits each and the mesh is reasonably smooth, the dif-
ference vectors may be encoded with an average of about
14 bits per vertex by using variable length entropy codes.

The V array of the Corner Table of a small model con-
tains 3nT short integers or 48nT bits. Edgebreaker (33)
compresses the entire Corner Table (V and O arrays) to
about nT bits. It can be implemented (94) as

void edgebreaker (corner c) {
if (visitedVertex(v(c)) {
if (visitedTriangle(t(l(c))) {
if (visitedTriangle(t(r(c))) {encode(‘E’); return();}
else {encode(‘R’); c=r(c);};}
else {if (visitedTriangle(t(r(c))) {encode(‘L’); c=l(c);}
else {encode(‘S’); edgebreaker(r(c)); c=l(c);};};}

else {encode(‘C’); c=r(c);}};

For each triangle, it encodes a symbol from the set
C,L,E,R,S.

If the shell has genus zero (no handles), nT=2nV–4.
Therefore, as the first two triangles need not be encoded,
half of the remaining triangles each correspond to a ver-
tex v(c) that has not yet been visited, and hence half of the
symbols are a ‘C’. If we encode them using one bit, say ‘0’,
we can encode the other four symbols using (‘100’, ‘101’,
‘110’, or ‘111’), which guarantees a compressed size of 2nT

bits. If we group symbols in pairs and assign a Huffman
code to each pair, the encoded size usually drops to about
1 bit per triangle.

The clers string may be decompressed using a variety of
simple and fast approaches (33, 95, 96). Both compression
and decompression have linear complexity and can process
an average complexity model in a fraction of a second. They
have been extended to handle meshes with arbitrary topol-
ogy (97).

Subdivision and Simplification

When a lack of accuracy is acceptable, to improve compres-
sion or to accelerate rendering or other applications,a mesh
may be coarsened (simplified) by iteratively merging adja-
cent vertices and removing degenerate triangles (83, 98).
Each step collapses the edge facing some selected corner
c (Fig. 9). Typically, at each step, the next edge to be col-
lapsed is the one that minimizes a bound on the maximum
Hausdorff error (83) or an estimate of the quadratic error
measure (99) between the original and the resulting sim-
plified mesh. The collapse, which may be implemented as

10 Solid and Physical Modeling

Figure 9. The original mesh (center) may be uniformly refined
(left) or simplified (right) by collapsing one of its edges (arrow).

{b=p(c), oc=o(c), vnc=v(n(c));
for (int a=b; a!=n(oc); a=p(r(a))) {V[a]=vnc;};
V[p(c)]=vnc; V[n(oc)]=vnc;
O[l(c)]=r(c); O[r(c)]=l(c);
O[l(oc)]=r(oc); O[r(oc)]=l(oc);}

ensures that corners of the two triangles t(c) and t(o(c))
and the vertex v(p(c)) are no longer referenced by any cor-
ner of the simplified mesh. When all desired simplification
steps have been performed, the triangles and vertices that
are not used by the simplified mesh are eliminated from
the Corner Table during a simple a posteriori compaction
process of the V and O tables and the vertex table.

Inversely, a coarse mesh (which may have been pro-
duced through simplification or through coarse sampling)
may be refined into a smoother looking mesh. A uniform
refinement (i.e., subdivision) step splits each triangle into
four as follows:

for (c=0; c<3*nT; c=c+3) {
V[3*nT+c]=v(c);
V[n(3*nT+c)]=w(p(c));
V[p(3*nT+c)]=w(n(c));
V[6*nT+c]=v(n(c));
V[n(6*nT+c)]=w(c);
V[p(6*nT+c)]=w(p(c));
V[9*nT+c]=v(p(c));
V[n(9*nT+c)]=w(n(c));
V[p(9*nT+c)]=w(c);
V[c]=w(c);
V[n(c)]=w(n(c));
V[p(c)]=w(p(c));};
nT=4*nT;

assuming that w(c) returns the index to the new vertex
introduced by splitting the edge facing c. The location of
the old and new vertices may then be computed using one
of several proposed masks (100, 101) to achieve the desired
compromise between smoothness and fidelity (Fig. 9, left).

Sharp edges and vertices that may have been chamfered
by random sampling may be restored and added to the
coarse mesh (102) and preserved as sharp edges during
subsequent subdivision steps (103).

Intersections

One of the most challenging problems in solid modeling
is the computation of the intersection curves between the
boundary of two solids. Such curves may, for example, pro-
vide the trimming model for the faces of a Boolean combi-
nation of the solids. Many approaches have been developed
for computing such curves. We include a simple one here
and then discuss the challenges of extending it to singular
situations and of coping with numeric round-off errors.

Consider five points, A, B, C, P, and Q, where no four are
coplanar. Let T be triangle (A,B,C) and E be edge (P,Q). T
and E intersect when

Boolean hit(A,B,C,P,Q) {
return((m(P,A,B,C)>0) && (m(P,Q,B,C)>0)
&& (m(P,A,Q,C)>0) && (m(P,A,B,Q)>0) &&
(m(A,B,C,Q)>0));}

is true. One can use hit to compute the intersection of
triangle meshes M and N as follows, again assuming that
no four vertices are coplanar. First, we use

{for (each triangle t of M)
for (each corner c of N) {
if ((c>o(c))&&
hit(g(3*t),g(3*t+1),g(3*t+2),g(p(c),g(n(c))))

WM+=(t,t(c),t(o(c));}

and

{for (each triangle t of N)
for (each corner c of M) {
if ((c>o(c))&&
hit(g(3*t),g(3*t+1),g(3*t+2),g(p(c),g(n(c))))

WN+=(t,t(c),t(o(c));}

to compute the lists WM and WN of triplets of triangle
indices. Note that the first triangle of each triplet of WM is
a triangle of M and the other two are triangles of N. Simi-
larly, the first triangle of each triplet of WN is a triangle of
N. Also note that each triplet defines a vertex where three
triangles intersect (or, equivalently, where an edge of one
mesh intersects the triangle of the other mesh). The ap-
proximate location of the vertex may be computed as the in-
tersection point between the line through P and Q and the
plane through A, B, and C. But this computation involves
a division and hence numeric round-off. However, the hit
test does not require a division and hence may be computed
exactly by using a fixed-length integer-arithmetic.

We sort the triplets into loops so that two consecutive
triplets in a loop share two triangles. Each loop defines a
trimming curve (i.e., intersection between M and N). With
the non-coplanarity precaution, these loops are manifold
and decompose both M and N into faces (subsets of homo-
geneous membership with respect to the inside of the other
mesh). In other words, a face of M, which may be bounded
by zero or more trimming curves, is either entirely in i(N)
or entirely in e(N). The membership classification of face
F of M is defined by the parity of the number of intersec-
tions of N with a ray from a point of F, as discussed above.
Note that only one ray need to be processed for each shell of
M, because the membership of one face may be recursively
propagated to other faces of the shell: Two adjacent faces
have opposite membership.

To produce the mesh bounding the Boolean intersection
between the solids bounded by M and N, we select the faces
of M in N and the faces of N in M. For the union, we select
faces of M not in N and faces of N not in M. For a difference,
we select faces of M not in N and faces of N in M.

How do we identify and represent faces? We first com-
pute the trimming curves of each shell of M and of N. To
produce a triangulation of the faces, we would need to tri-
angulate each triangle that is traversed by a trimming
curve. This process is delicate, because a triangle T may
be traversed by several trimming curves and more than

Solid and Physical Modeling 11

once by a single curve. To compute the correct topology of
the arrangements of the trimming curves in T, we must
order their entry and exit points around the perimeter of
T. (This also may be done without numeric error by using
fixed length integer arithmetic.) The trimming loops de-
compose T into subfaces, and we need to triangulate each
subface. Now, we can identify the faces of each shell by us-
ing a slightly modified version of the swirl procedure used
above for identifying shells. The modification simply pre-
vents swirl from crossing a trimming curve. Hence, when
we triangulate the subfaces of T, we must record which of
the corners of the triangulations are facing an edge of the
trimming curve.

We have pointed out that this approach is free of nu-
meric errors when fixed precision integer arithmetic is
used and when the general position (non-coplanarity) con-
ditions are met. Because all topological decisions (trian-
gle/edge intersection and order of intersections around
the periphery of a triangle) can be derived from the
signs of 3×3 determinants, a fixed length arithmetic is
sufficient.

Furthermore, the simulation of simplicity (SoS) (104)
approach may be used to extend this solution to singular
position cases where four vertices may be coplanar. SoS
produces a globally consistent sign assignment to zero-
valued determinants. Although it allows algorithms de-
signed for general position to work with singular posi-
tion data, it increases the computational cost and produces
shapes and topologies that although valid may be incorrect.
For example, the union of two cubes, stacked one on top of
the other, may produce two components or a single compo-
nent with overlapping faces that may be thought of as a
fracture along a portion of the common face.

The cost of computing all the triplets in the above ap-
proach is quadratic, or more precisely proportional to the
number of elements in M and N. If we had a starting triplet
for each loop, we could trace each loop, with linear (output-
sensitive) cost, using signs of 3×3 determinant to identify
the next triplet (32). Hence, the main challenge is to de-
vise acceleration techniques for finding all loops. For ex-
ample, hierarchical or uniform space partitioning may be
used, because edges of N in one cell may not intersect tri-
angles of M that are in another disjoint cell. Unfortunately,
when testing for interference in tight assemblies or when
computing the symmetric difference between two similar
solids, a large number of edge/triangle intersections will
not be rejected early by this approach and must still be
processed.

Topological Extensions

Although more elaborate data structures have been devel-
oped for more general polyhedra with polygonal faces that
need not be convex and may even have holes, it is often ad-
vantageous to triangulate the polygonal faces (105) and use
the representations and algorithms for triangles meshes,
such as those discussed above. The artificial edges intro-
duced by this triangulation of polygonal faces may be iden-
tified when needed using coplanarity tests (as discussed
above) or using a marker on the corners that face them.

For simplicity, we have assumed so far that the mesh is
manifold. The Corner Table may be extended to represent
the boundaries of nonmanifold solids as follows. Consider
an edge E with 2k incident triangles. Let c be a corner fac-
ing E. Only k–1 of the corners facing E are suitable candi-
dates for o(c) if we want to ensure a consistent orientation.
The MatchMaker process (106) computes an optimal as-
signment of the o() operators so that a manifold mesh could
be obtained by replicating some nonmanifold vertices (at
most one per connected component of the union of nonman-
ifold edges and vertices) and by perturbing their location by
an infinitely small amount. In practice, the vertices are not
perturbed; hence, in this pseudo-manifold representation,
two vertices with different IDs may be coincident and two
different edges may be coincident. Algorithms that assume
that all vertices and edges are disjoint need to be adjusted
to work on such pseudo-manifold BReps.

Finally, as mentioned in the Introduction, one may wish
to support nonregularized sets. Consider a finite arrange-
ment of planes. It defines a set of regions (3-cells), faces (2-
cells), edges (1-cells), and vertices (0-cells). As before, these
cells do not contain their bounding lower dimensional cells
and are hence pair wise disjoint. Now, assign a label to
each cell. The union of all cells with the same label forms
a feature. The arrangement and the labels define a struc-
tured topological complex (STC) (107), which generalizes
the notion of simplicial complexes. Various data structures
have been proposed for representing the cells of such a com-
plex and operators for traversing it (many are reviewed in
Reference 92). Note that such an approach is expensive,
because the number of cells in the arrangement grows as
the cube of the number of planes. In fact, many cells could
be merged with neighbors of identical label using the topo-
logical simplifications proposed in Reference 37.

The simplified STC can be compactly represented us-
ing a simple and compact extension of the Corner Table
constructed as follows. First, triangulate all faces. Then,
make two copies (front and back) of each triangle (one with
each orientation) and store with each corner c the identi-
fier b(c) of the corresponding corner on the opposite ori-
entation triangle in the B table. Shells may be recovered
and arranged into a shell containment tree as explained
above. Nodes of odd depth represent the outer shells of 3-
cells. Nodes of even depth represent the shells that bound
their cavities. The dangling edges and vertices that are
not in these shells must each be assigned to a particular
3-cell (including the infinite outer cell). The original Cor-
ner Table operators support the traversal and processing
of the shells. The new b() operator provides a tool for mov-
ing from a shell of one 3-cell to the shell of an adjacent
3-cell.

Also, the alternation of the o() and b() operators may
be used to traverse the triangles that are incident upon a
given edge in order around that edge.

CURVED BREPS

In this section, we briefly discuss the challenges of extend-
ing to curved BReps the mesh modeling techniques pre-
sented above.

12 Solid and Physical Modeling

Representation

First, consider a deformed version of a triangle mesh,
where each edge is possibly curved and where each trian-
gle is a smooth portion of a possibly curved surface. If we
use the Corner Table to represent the vertex locations and
the connectivity, we need to augment it with a description
of the geometry of each edge and of each triangle. Sub-
division rules may be applied to refine each triangle and
each edge. Hence, the curved elements (edges, faces) may be
represented implicitly as the limit of a subdivision process
applied to a coarse control triangle mesh. As an alterna-
tive, notice that each shell of a triangle mesh that bounds
a solid has an even number of triangles. The triangles may
be paired to form quads. Each quad may be defined by a
biparametric polynomial or rational mapping of the unit
square, as discussed above. For example, a patch could be
a bicubic Bezier or B-spline patch. The difficulty is to en-
sure the desired degree of continuity across edges and at
vertices. The desired boundary may also be defined implic-
itly (108) as the iso-surface of a smooth three-dimensional
scalar field that interpolates samples either using a tetra-
hedral mesh [A-patches (109)], a global function (radial ba-
sis function (110), R-function (111)), or a piecewise fit (mov-
ing least-square (112)). Or directly by an implicit equation.
For example, a sphere of center C and radius r can be ex-
pressed as the sets of points P satisfying PC2=r2.

The faces of a solid defined as a Boolean combination
of curved solids may be subdivided into triangles or quads
and represented by approximating parametric patches or
may be represented as a trimmed surface by a reference
to the host surface (original patch) on which they lie, and
by trimming loops of curved edges. The edges of a solid
typically lie on the intersection curves between two sur-
faces and sometimes on singular curves (cusps) of a single
surface. A simple edge, such as a line segment or a circu-
lar arc, may be represented by its type, parameters, and
position in space. More complex edges are often approxi-
mated by piecewise-polynomial parametric curves, either
in 3-D or in the 2-D parameter space of the host surface.
Exact, closed-form parametric representations for the in-
tersection of natural quadric surfaces were first derived in
the late 1970s at the University of Rochester for the PADL-
2 modeler (66). The intersections of these edges with im-
plicit polynomial surfaces can be computed efficiently by
substituting the parametric expressions, (x(t),y(t),z(t)), of
a point on the curve into the implicit polynomial equation
for the surface, f(x,y,z)=0, and solving for t using an efficient
numeric polynomial root finder.

For more general surfaces, the trimming loops cannot be
computed exactly (as discussed below). Hence, represent-
ing them by an approximating curve in three dimensions
would not provide a complete trimming model. For exam-
ple, how would one establish whether a point on a patch
lies inside the face defined by a trimming loop if that loop
does not exactly lie on the patch? To address this problem,
most modeling systems use two separate approximations
of the trimming curves, one per patch, and represent them
as two-dimensional curves in the parametric domain of the
patch. These may be used to perform point-in-face mem-
bership classification in the parametric two-dimensional

domain, provided that the parameter values of the point
are known. Unfortunately, redundant representations may
conflict due to numeric round-off errors and cause “cracks”
in the boundary (63). An alternative based on solid trim-
ming that avoids these cracks was mentioned earlier and
will be discussed in the next section.

Furthermore, trimming loops may be insufficient to de-
fine a face unambiguously. For example, a circular edge on
a spherical surface is the boundary of two complementary
faces. These may be distinguished by storing information
about which points in the neighborhood of the edge belong
to the face. This neighborhood information can be encoded
efficiently, as a single-bit “left” or “right” attribute, in terms
of the orientation of the surface normal and the orientation
of the curve (37).

Intersections

Let us now discuss the difficulties of adapting the inter-
sections algorithms proposed above for triangle meshes to
solids bounded by such curved surface meshes. Let us first
look at the problem of computing the intersection between
a curved edge and a curved face. Suppose that we are given
a curve with parametric equations x=x(u), y=y(u), z=z(u)
for the coordinates of the point C(u) on the curve and an
implicit surface defined by an algebraic equation f(x,y,z)=0.
Curve/surface intersection amounts to finding the u-roots
of f(x(u),y(u),z(u))=0. Except in very simple cases the solu-
tion can only be found numerically, which implies compu-
tational cost and accuracy loss.

Unfortunately performing curve/surface intersection
for all pairs of faces of one shape and edges of the other
does not guarantee that all intersection loops will be de-
tected. Indeed, small intersections loops, which may be of
vital importance for assessing the validity of a mechanical
assembly, could be missed. Hence, a variety of conserva-
tive techniques have been proposed to ensure that no loop
is missed (40). For surveys and representative research,
see References 28 and 29.

Selective Geometric Complexes

Many contemporary applications of solid modeling require
dealing with nonregularized sets (such as lower dimen-
sional regions of contacts between solids), or with non ho-
mogeneous point sets (such as composite-material aircraft
parts and semi conductor circuits consisting of adjacent re-
gions with different properties) (38, 113, 114). Such objects
cannot be represented in a traditional solid modeler. Sev-
eral boundary representation schemes have been proposed
for domains that extend beyond solids (92). For example,
Weiler’s radial-edge represents face-edge and edge-vertex
incidence relations and explicitly capture how incident
faces are ordered around an edge (39). Such schemes are
best analyzed in terms of a decomposition of space into cells
of various dimensions (volumes, faces, edges, points) and in
terms of their support for selecting arbitrary combinations
of such cells. For example, the selective geometric complex
(SGC), developed by Rossignac and O’Connor (37), provides
a general representation for nonregular point sets, which
can combine isolated points, edges, faces, and volumes with
internal structures and cracks (cuts). An SGC model is

Solid and Physical Modeling 13

based on a subdivision of Euclidean space into cells of
various dimensions that are disjoint, open, connected sub-
manifolds and are “compatible” with all other cells. (Two
sets are compatible if they are disjoint or equal.) Each cell
is represented by its host manifold (point, curve, surface,
or volume) and by the list of its bounding cells. Techniques
independent of the dimension of the space have been pro-
posed for computing such subdivisions, for selecting and
marking sets of cells that correspond to a given descrip-
tion (such as a regularized Boolean operation between two
previously selected sets), and for simplifying the represen-
tation through the removal or the merging of cells with
identical markings. The SGC representation is capable of
modeling sets with internal structures or sets of sets (107).
These combine features that are each the union of all cells
with identical attributes. Each region may correspond to a
mixed-dimensional (i.e., nonregularized) set.

The SGC model does not explicitly store the circular or-
dering of edges around their common vertex or the circular
ordering of faces around their common edge. If desired, this
information may be cached in the NAIL (Next cell Around
cell In List of incident cells) table (106).

CONSTRUCTIVE SOLID GEOMETRY

Constructive representations capture a process that de-
fines a solid by a sequence of operations that combine mod-
eling primitives or the results of previous constructions.
They often capture the user’s design intent in a high-level
representation that may be easily edited and parameter-
ized. CSG is the most popular constructive representa-
tion. Its primitives are typically parameterized solids (such
as cylinders, cones, spheres, blocks, tori), volume features
suitable for a particular application domain (such as slots
or counter-bored holes), more general translational or ro-
tational extrusions of planar regions, or triangle meshes,
such as those discussed above. The primitives may be in-
stantiated multiple times (possibly with different param-
eter values, positions, and orientations) and grouped hier-
archically. Primitive instances and groups may be trans-
formed through rigid body motions (which combine rota-
tions and translations) and possibly scaling. The trans-
formed instances may be combined through regularized
Boolean operations (35): union, intersection, and difference
to form intermediate solids or the final solid. These regu-
larized operations perform the corresponding set theoretic
Boolean operations and then transform the result into a
solid by applying the topological interior operation followed
by the topological closure. In practice, as discussed, regu-
larization removes the hair and cut and merges the wound
with the skin.

CSG representations are concise, always valid (i.e., al-
ways define a solid or the empty set), and easily parame-
terized and edited. Many solid modeling algorithms work
directly on CSG representations through a divide-and-
conquer strategy, where results computed on the leaves are
transformed and combined up the tree according to the op-
erations associated with the intermediate nodes. However,
CSG representations do not explicitly carry any informa-
tion on the connectivity or even the existence of the cor-

Figure 10. CSG tree for (A+B)(C–(D–E)) and its positive form
(A+B)(C(!D+E)).

responding solid. These topological questions are best ad-
dressed through some form of boundary evaluation, where
a whole or partial BRep is derived algorithmically from the
CSG model.

A blatant example is null-object detection (NoD) (115),
where, one wishes to quickly establish whether a given
CSG model represents the empty set. NoD may be used
to establish whether two solids interfere (their intersec-
tion is not an null set) and whether two solids are identical
(their symmetric difference is the null set).

Boolean Expressions and Positive Form

A CSG solid S is defined as a regularized Boolean expres-
sion that combines primitive solid instances through union
(+), intersection (omitted), and difference (−) operators. Re-
member that !A denotes the complement of A. Such an
expression may be parsed into a rooted binary tree: The
root represents the desired solid, which may be empty; the
leaves represent primitive instances; and the nodes are
each associated with a Boolean operation.

To simplify discussion, throughout this section we as-
sume that all CSG expressions have been converted into
their positive form (Fig. 10), obtained by replacing each dif-
ference operator, L–R, by the intersection, L(!R), with the
complement, !R, of its right operand R and by propagat-
ing the complements to the leaves using de Morgan laws:
!!S=S, !(A+B)=!A!B, and !(AB)=!A+!B. Leaves that are com-
plemented in this positive form (as D in Fig. 10) are said
to be negative. The other ones are said to be positive.

The depth of a CSG expression is the maximum number
of links that separate a leaf from the root. For example, the
depth of the tree in Fig. 10 is 3. The depth of a CSG tree
with n leaves is at least �log2(n)�. The alternating form of
a CSG tree is obtained by grouping adjacent nodes that
have the same operator in the positive form. It no longer is
a binary tree. The operators alternate between union and
intersection as one goes down an alternate form tree. Note
that the depth of the alternate form is usually lower than
the depth of the positive form. For example, the depth of
the alternate form tree of the example in Fig. 10 is 2.

Point Membership Classification for CSG

Assume that point P does not lie on the boundary of any
primitive. It may be classified against a CSG solid S by
calling the procedure pmc(P,s), where s is the root-node of
the positive form of the CSG tree of S and where pmc() is

14 Solid and Physical Modeling

defined as

boolean pmc (P,n) {
if (isPrimitive(n))

return(pmcInPrimitive(P,n));
else {if (operator(n)==‘+’)
return(pmc(leftChild(n))||

pmc(rightChild(n)));
else

return(pmc(leftChild(n))&&
pmc(rightChild(n))); }}

Note that the recursive calls require a stack depth that
is the depth of the CSG tree. A slight variation of this ap-
proach that uses the alternate form will reduce the stack
depth to the depth of the alternate form tree. The size of
the stack is not an issue when points are classified one at a
time, but it may become prohibitive when millions of points
are classified in parallel against deep CSG trees, which
happens when rendering CSG expressions using the GPU
(80) to achieve interactive performance. To reduce the foot-
print (i.e., the number of bits needed to store the interme-
diate results when computing the membership of a pount),
one may expand the CSG expression into a disjunctive form
(union of intersections) (116) or simply process the prim-
itives directly off the original tree, as they would appear
in the disjunctive form (117). A 2-bit footprint suffices for
evaluating disjunctive forms. Unfortunately, the number
of terms in the disjunctive form (and hence the associated
processing cost) may grow exponentially with the number
of primitives. The solution is to convert the CSG tree into
its Blist form (118), as shown below.

Membership classification against a natural quadric
primitive is simple if the primitive is defined in a natural
position (e.g. when the primitive’s axes are aligned with
the principal axes) and then transformed through a rigid
body motion. Classifying the point against the transformed
primitive is done by applying the inverse of the transfor-
mation to the point, and classifying the result against the
primitive in its original position. When the primitive is de-
fined by an algebraic or analytical inequality (for example,
a sphere is defined by a second degree inequality), it suf-
fices to substitute the point’s coordinates into the inequal-
ity and evaluate its sign. More complex primitives may in-
volve intersections of sets defined by inequalities or more
general point containment tests.

Special processing based on neighborhood combinations
may be necessary for points that lie on boundaries of sev-
eral primitives (119). A point’s neighborhood is the inter-
section of the solid with a small ball around the point. If
the neighborhood is full, the point is IN; if it is empty, the
point lies OUT; otherwise the point is ON. The complex-
ity involved in computing and testing the neighborhood
depends on the nature, number, and orientation of the sur-
faces involved.

When the primitive faces that contain the point are sub-
sets of a single surface, the neighborhood may be repre-
sented by two bits, each indicating whether there is ma-
terial on the corresponding side of the surface. Combin-
ing neighborhoods according to the regularized Boolean
operations amounts to combining these bits with the corre-
sponding logical operations (or for regularized union, and
for regularized intersection, not and for regularized dif-

ference). The initial values of these neighborhood bits for
surface points are obtained from the face orientation for
each primitive whose boundary contains the point. If the
two bits are set, the point is IN. If the two bits are off, the
point is OUT. If the bits differ, the point is ON.

For example, when P lies on two or more host surfaces
that intersect at a common curve passing through P,a curve
neighborhood is used to classify P. A sufficiently small disk
around P in the plane orthogonal to the curve is divided by
the host surfaces into sectors, analogous to those in a pie
chart. Each sector is classified against the primitives, and
its classifications are simple logical values, which may be
combined according to the Boolean expression. If all sectors
are full, the point—and in fact the edge-segment contain-
ing it—lies in the solid. If all sectors are empty, the point
is out. Otherwise the point lies on the solid. The most deli-
cate computation in this process is the segmentation of the
curve neighborhood, because it involves computing a circu-
lar order of surfaces around their common edge. The pro-
cess may be numerically unreliable and mathematically
challenging, if the surfaces are nonplanar and are not sim-
ple quadrics, especially when they have identical tangent
planes and curvature measures at P. When all surfaces
are planar and are represented by fixed-precision numbers,
the neighborhood evaluation may be done exactly and effi-
ciently (79) using fixed-length arithmetic.

Curve Membership Classification

A simple two-step strategy can be used to classify a line or
curve C with respect to a CSG solid S. In the first step, the
curve is segmented at places where it reaches, crosses, or
leaves the boundary of any primitive. Then, the classifica-
tion of each segment is inferred from the membership of
its midpoint, which is computed as discussed above.

The first step requires computing curve/surface inter-
sections. It is usually performed by substituting a paramet-
ric formulation C(t) of the curve into an implicit equation
of the surface and finding the roots or through an iterative
process. Sorting these t-values defines the endpoints of the
segments of C.

Active Zone

Consider the path from the root of the positive form of the
CSG tree of a solid S to an arbitrary primitive A. The i-
nodes of A are the children of intersection nodes of the path
that are not in the path. The u-nodes of A are the children
of union nodes of the path that are not in the path. The
I-zone I of A is the intersection of the universe W with all i-
nodes. The U-zone U is the union of all u-nodes. The active
zone (9) Z=WI–U of A is therefore the intersection of the
universe W with the i-nodes and with the complements
of the u-nodes of A. Note that the CSG expression of the
active zone of each primitive may be derived trivially from
the CSG tree by a recursive traversal (120). For example,
in (A+B)(C(!D+E)) of Fig. 10, primitive A has one u-node,
B, and one i-node, C(!D+E). Its active zone is Z=!BC(!D+E).
Primitive E has two i-nodes, A+B and C, and one u-node,
!D. Its active zone in is (A+B)CD.

Active zones have many applications, including CSG-
to-BRep conversion, NoD Detection, rendering from CSG

Solid and Physical Modeling 15

(50), and interference detection between CSG solids (9). In
particular, changes to a primitive A out of its active zone Z
will not affect the CSG solid S. For instance, in our example,
changing E in !D will have no affect on D–E. Changes of E
in D will affect D–E but will affect C(D–E) only if they are
in C.

Constructive Solid Trimming

The boundary of a CSG solid S is the union of the trimmed
boundaries of its primitives, where the trimming solid for
a primitive A is its active zone Z. Note that the formulation
of the active zone needs to be adjusted (120) for trimming
faces where the boundaries of several primitives overlap
(ON/ON cases). By using the Blist form (118) of the CSG ex-
pression of the active zone, discussed below, this approach,
called constructive solid trimming (CST), can be imple-
mented in hardware (50) to provide real-time feedback dur-
ing the editing of CSG models. For instance, assume that
CST(X,T) takes as argument a primitive X and the CSG ex-
pression of a trimming volume T and renders the portion of
the boundary of X in T. In the CSG tree of (A+B)(C(!D+E)),
we can render the contribution of A as CST(A, !BC(!D+E)).
The contribution of E is CST(E,(A+B)CD). This formulation
may be used to render CSG solids in real time on graphics
hardware and to highlight (in a different color) the con-
tribution of any given primitive to the boundary of a CSG
solid or the portion of a surface defined by a trimming solid
represented by a CSG tree.

Blist Form

The Blist form (121) of a Boolean expression is a partic-
ular case of the reduced function graph (RFG) and of the
ordered binary decision diagram (OBDD) (122) studied in
logic synthesis. These are acyclic binary decision graphs,
which may be constructed through Shannon’s Expansion
(123). The size (number of nodes) of RFGs may be expo-
nential in the number n of primitives and depends on their
order (124). Minimizing it is NP-hard. In contrast, Blist ex-
pressions have exactly n nodes and have linear construc-
tion and optimization costs, because they treat each leaf
of the tree as a different primitive. Although this may not
be acceptable for logic synthesis, it is appropriate for CSG
rendering. Indeed, if a primitive appears several times in a
CSG expression, each instance usually has a different po-
sition and hence must be processed as a different primitive
during rendering.

Consider a switch A (Fig. 11a). When current is applied
to the input node at the left of the triangle, if the switch is
up (i.e., A is true), current will flow to the upper right exit
node (Fig. 11b). When current is applied and A is false, the
switch is down and current flows to the lower output node
(Fig. 11c). Hence, the top output represents A and the bot-
tom !A (Fig. 11d). We can then wire two such these switches
to model a union, intersection, or difference between two
primitives (Fig. 11, right).

When A is true, then current will exit from A and reach
directly the top right output node of the combined circuit,
regardless of the value of B. If however A is false, current
will flow from its bottom output node to B. If in that case
B is true, then current will flow to its upper output node.

Figure 11. Blist represents each primitive as a switch (left). Two
such switches may be wired to represent A+B, AB, and A-B, which
is A!B (right).

Figure 12. Blist circuits for subexpressions L and R can be com-
bined to model Boolean operations.

Figure 13. The expression (A+B)(C–(D–E)) may be represented
by the CSG tree (left). We first wire (A+B) and (D–E) as shown top
right. Note that E is negative. Then we wire (C–(D–E)). Note that
the wiring of (D–E) is inverted and its primitives complemented.
Now E is positive again. Finally, we wire the two expressions to-
gether as an intersection (bottom right).

Assume now that we have already built such Blist cir-
cuits for two CSG subexpressions, L and R. We can wire
them (Fig. 12) to model L+R, LR, and L!R. The wiring for
the union and intersection operators is identical to those
for individual primitives. The wiring for L–R is the wiring
for the intersection, because L–R=L!R, but to obtain the
complement !R of R (right), we need to flip all its wires
and complement the primitives according to the de Mor-
gan laws.

To better understand the process of converting a CSG
expression into its Blist form, consider the example of Fig.
13.

A simple two-pass linear-cost algorithm for extracting
the Blist of a CSG tree is presented in Reference 50. With
each primitive X of the CSG tree, it associates three labels:
a label X.n assigned to the primitive, the label X.t of the
primitive reached by the top wire of the triangle of X, and
the label X.f of the primitive reached by the bottom wire.

To classify a point P against a Blist, we simply follow the
wiring (labels). If we reach a primitive X, we test P against
X. If the membership of P with respect to X is IN (true), we
go to primitive X.t; otherwise, we go to X.f. For example,
when X is A in Fig. 14, X.n= “A”, X.t= “t”, X.f= “B”. This
circuit represents the different paths that one may take to
classify a candidate P against the Blist, depending on its

16 Solid and Physical Modeling

Figure 14. Blist of A+(B+C)D with X.n, X.t, and X.f labels.

Figure 15. Top: Integer Blist labels for (A+B)(C–(D–E)). Bottom:
Reusing labels reduces the number of labels from 5 to 3.

classifications against the primitives. For instance, if P�∈A,
P∈B, P�∈C, P∈D, we would leave A by the bottom wire to B,
leave B by the top wire directly to D, skipping C, and leave
the whole circuit by the top wire of D. Note that the special
labels, “t” and “f”, of the exit wire stand for true and false
and indicate the ultimate membership of P.

When using a Blist form to evaluate a Boolean expres-
sion, the footprint is the maximum number of bits needed to
store a label. Although the size of the footprint is not a con-
cern during a sequential evaluation of one or more Boolean
expressions, it becomes important when evaluating a large
number of such expressions in parallel. For example, in
References 50 and 80 hundreds of thousands of Boolean
expressions are evaluated in parallel, one per pixel, at each
frame. The footprint for each pixel must be stored in seven
stencil bits. Hence, to support hardware-assisted render-
ing of complex CSG solids (which may have hundreds or
thousands primitives), we must reduce the number of la-
bels used, so that they can all be encoded using different
combinations of these seven bits.

First, we convert the labels to consecutive positive in-
tegers. As we do so, we keep track of the active and free
integer labels (80). When a primitive (or the final result
of true or false) is referenced for the first time, we give it
the smallest free integer label. When a primitive with label
L is reached during the Blist traversal, its label becomes
available for subsequent primitives in the Blist. Reusing
labels significantly reduces the number of integers used
and, hence, the number of bits needed to represent each
label (Fig. 15).

As the intersection and union operators are commuta-
tive, one may swap (pivot) their left and right arguments
to produce equivalent Blists. This flexibility may be
exploited to further reduce the number of labels needed.
A pivoting strategy that makes the tree left-heavy (80),
combined with a linear optimization (125), reduces the
storage requirement for CSG membership evaluation to at
most �log2j? bits, where j = �log2 (2n/3 + 2)?. This saving is
substantial over the recursive evaluation, which requires
a stack of at least �log2(n)� bits. For example, the Blist
for (A+((B+((C+((D+E)+F))+G))+H))+(I+(J+(K+L)M)N)
uses five labels. The Blist for the left-heavy

tree D+E+F+C+G+B+H+A+(((K+L)M+J)N+I) uses
four labels. The Blist for the optimized tree
(K+L)+JM+IN+(A+(H+(B+(G+(C+(F+(D+E))))))) uses
only three labels. For example, a 2-bit Blist footprint
suffices for CSG trees with up to 21 leaves and 4 bits
suffice for up to 98,301 leaves.

Boundary Evaluation

Consider a solid S defined by a regularized Boolean op-
eration on two argument solids A and B, which are both
defined in CSG. The boundary of S may be constructed by
computing the intersection curves of the boundaries of A
and B and by using them to trim the desired portions. For
example, if S=A+B, we discard the portions of the boundary
of A inside B and vice versa. This process is called bound-
ary merging. If the boundaries of A and B are not avail-
able because one or both are CSG expressions, they may
be derived recursively through an incremental boundary
evaluation by merging boundaries up the tree, starting at
the primitives.

The BRep of S can also be obtained directly from its
CSG by a nonincremental boundary evaluation process. We
describe briefly one such nonincremental boundary evalu-
ation algorithm. Typically, faces of CSG solids are repre-
sented in terms of their host surface and their bounding
edges. To compute the edges of a CSG solid S, we apply the
generate-and-test paradigm. First, compute the intersec-
tion curves between all pairs of surfaces that support prim-
itive faces. Then partition these curves into subsets that
are in IN S, OUT of S, or ON S by using curve/solid mem-
bership classification algorithms. Segments with a curve
neighborhood that is neither empty nor full form the edges
of the solid. The details of this process are presented in Ref-
erence 79 for CSG models composed of polyhedral primi-
tives. By keeping track of the association between curves
and surfaces, and between vertices and segments, a full
BRep may be inferred from the result of the curve classifi-
cation process. Edges are chained into loops,which are used
to trim the solid’s faces. The representation of the loops
may be simplified by merging adjacent curve segments,
when no more than two segments share a vertex. Other
algorithms for boundary evaluation and merging typically
also use the generate-and-test paradigm but may be artic-
ulated around vertices, edges, or faces (see Reference 48
for an example and Reference 119 for further references).
Boolean operation algorithms are among the most complex
in solid modeling. They also are among the most difficult
to implement reliably, in the presence of round-off errors.

Representation Conversion

Boundary evaluation is an important example of represen-
tation conversion, from CSG to BRep. The inverse process
of computing semi-algebraic expressions for solids repre-
sented by their boundary is also very important, because it
provides algorithms for maintaining consistency in multi-
representation systems. When a BRep is edited, for exam-
ple, to create or adjust a feature, the modifications must be
reflected on the associated CSG. The 2-D case is fairly well
understood (126).

Solid and Physical Modeling 17

Other representation conversion algorithms are useful
as well. For example, point membership classification for
points on a regular grid can be used to construct a spatial
enumeration approximation for a solid, which in turn fa-
cilitates the computation of the solid’s mass and moments
of inertia (14) and of interferences. As another example,
conversion into a cell decomposition in which all the cells
are “slices” perpendicular to a given direction is needed to
drive rapid prototyping machines (127). It can be accom-
plished by classifying a set of parallel planes with respect
to a solid (81). The portions of the planes inside the solid
are the desired slices.

Efficiency Enhancements

Set membership classification and CSG to BRep conver-
sion algorithms perform a very large amount of computa-
tion when compared with their output sizes. Many of these
algorithms are based on the generate-and-test paradigm
and spend much of their time generating, testing, and re-
jecting. Performance-enhancement methods play a crucial
role in eliminating a large fraction of unnecessary tests. In
essence, these methods ensure that entities are compared
only when there is a chance that they may interact.

Two of the widely used efficiency-enhancement tech-
niques are plane sweep algorithms from computational ge-
ometry (which generalize the earlier scan line algorithms
developed in computer graphics) and grid-based spatial di-
rectories. A plane sweep algorithm maintains a list of ac-
tive entities that can potentially interact and updates the
list incrementally, as the plane advances in its sweep of
the whole space. Only active entities need to be compared.
A spatial directory decomposes the space into cells (either
of constant size or arranged hierarchically) and associates
with each cell the entities that intersect it. Only those en-
tities associated with the same cell are compared and pro-
cessed.

When classifying a candidate set X (point, curve, primi-
tive’s boundary) against a CSG expression S representing
a solid or the active zone of a primitive in a CSG tree, one
may prune S to eliminate redundant primitives as follows.
Let bound(X) be a simple set (ball, axis aligned box, lin-
ear half-space) containing X. Let A be a positive primitive
(or the complement of a negative primitive) in the positive
form of S. If A∩bound(X)=∅, we can replace A by ∅ in S. If
bound(X)⊂A, we can replace A by the universe � in S. Then,
we can usually perform further simplifications up the pos-
itive form tree using the following substitutions: ∅∩B→∅,
∅∪B→B, �∩B→B, �∪B→�, where B is any leaf or node.

Constructive Nonregularized Geometry

Extensions of the Boolean operations to nonregularized
sets, to sets with internal structures, and to sets of dimen-
sion larger than three are important for many applications.
A constructive model for creating sets of sets from higher
level input, and for querying the existence and nature of
intersections or adjacency relations between regions was
developed by Rossignac and Requicha in their constructive
nonregularized geometry (CNRG) model (128). Users of ap-
plications can instantiate primitives and specify how they
should be combined to create a hyperset that is the union

of mutually disjoint regions. CNRG regions correspond to
expressions involving nonregularized Boolean and topolog-
ical operations on primitive regions. Rossignac’s STC (107)
add to the CNRG representation the capability of creating
and interrogating simultaneously several decompositions
of the three-dimensional space. For example, the same ar-
rangement may be decomposed into volume and surface
features important to manufacturing, into design features
and their intersections, into functional components, or into
finite elements for analysis. These decompositions are com-
patible, in that a cell belongs to a unique set in each decom-
position. The user or the application program can manipu-
late primitive regions and their intersections in a uniform
manner, independently of the representation or approxi-
mation of these entities in a particular modeler.

PARAMETERS, CONSTRAINTS, AND FEATURES

Regardless of the representation scheme used, building
and editing a model for a complicated solid is nontrivial.
Finding the size and position parameters that are needed
to ensure that geometric entities are in desired relation-
ships often is quite difficult (2). And so is ensuring that
such relationships are preserved when an object is edited.
In addition, the primitives provided by the representation
methods discussed earlier tend to be relatively low level
and not directly connected with the application domain.
The representational facilities discussed in the following
subsections address these problems.

Parametric Models

The size and position parameters used to instantiate the
primitives needed to represent an object provide a natural
parameterization for the object. However, there is no guar-
antee that a change of parameter values will produce an ob-
ject that is valid and consistent with the designer’s intent.
The first of these problems can be solved easily by using
a CSG-based parameterization, which ensures that an in-
stance of a parametric solid model is always valid. The sec-
ond problem is more pernicious. Some design constraints
may be expressed by substituting the parameters of the
primitives or of the transformations by symbolic parame-
ter expressions. This approach was first demonstrated in
the 1970s with the PADL-2 solid modeling system (66) and
is now in widespread use. In addition to symbolic expres-
sions, Rossignac proposed to link CSG parameters to pro-
cedures specified by the user in terms of geometric con-
straints (129). Each constraint corresponds to a transfor-
mation that brings the host surface of a primitive face into
a specified relationship (contact, distance, angle) with the
host surface of a primitive not affected by the transforma-
tion. These approaches rely on the user for producing and
sorting a sequence of steps that evaluate symbolic expres-
sions or that compute transformations to achieve the de-
sired effects (68). The user’s actions are akin to the writing
of a macro that takes some input parameters and produces
the desired solid. The macro defines a family of solids, also
called a “parametric solid model.” The user is responsible
for designing the correct macro, ensuring that executing
such a sequence for reasonable values of the input param-

18 Solid and Physical Modeling

eters produces a solid that meets the designer’s intent.
This is not always easy to achieve, because the required
symbolic expressions may be hard to find, and a transfor-
mation may violate a previously achieved constraint. For
example, one can use Rossignac’s CSG constraints to first
specify that a set S of CSG primitives (that typically form a
feature) should be translated in some given direction until
one of them, say, cylinder A, becomes tangent to another
cylinder B not in the set S. Instead of tangency, one may
for instance specify the distance between the two cylinders.
Assume now that the designer also wishes to achieve an-
other tangency or distance relation between a cylinder C
of S and another cylinder D not in S. The second constraint
can be achieved without violating the first one by either
rotating S around the axis of B or translating it along that
axis until the second constraint is satisfied. Rossignac has
provided a variety of closed-form solutions for computing
the corresponding rotations or translations for the natu-
ral quadric surfaces. Note however that, in this approach,
the designer is responsible for defining an order of trans-
formations, each specified by a set S of primitives, by the
two surfaces (one in S and one not) on which the constraint
is defined, and by additional parameters defining and con-
straining the authorized rigid motion.

VARIATIONAL GEOMETRY

In contrast, the variational geometry approach does not re-
quire the user to define an order for constraint-achieving
operations, nor even to define all the constraints. A user can
specify symbolic expressions that define relations between
two or more parameters. In addition, the system infers au-
tomatically bidirectional constraints from all singular sit-
uations (such as parallelism, orthogonality, or tangency)
that are detected on a nominal model. A constraint solver
(130) adjusts the model to meet all the constraints simul-
taneously. This process may involve numeric iterations to
solve the corresponding system of simultaneous, nonlin-
ear equations. Because the constraints, such as edge di-
mensions or angles between faces, are typically expressed
in terms of boundary entities, and because it is difficult
to relate these to the input parameters of a CSG model
(131), variational geometry is typically used in conjunction
with a parameterized boundary representation. The vari-
ational geometry approach is popular for 2-D drafting and
for designing solids that are extruded from 2-D contours,
but its application to more general 3D shapes still suffers
from several drawbacks. Performance problems are due to
the large number of nonlinear equations in many variables
that must be solved simultaneously. A small change in one
parameter may lead the iterative techniques to converge
to a local minimum that is significantly different from the
previous configuration, and surprise or confuse the user. In
an over-constrained situation, a user will have trouble de-
ciding which constraints to relax for the system to converge
to a solution. Finally, users may create invalid boundary
representations, because no practical techniques exist for
computing the bounds on parameter values for which the
model remains valid (132). One solution is to let the user
constrain both the dimensions and the topology (133).

Features

Features provide a higher level and domain-targeted vo-
cabulary for specifying shape-creating operations, and for
identifying the model’s elements from which the param-
eters of symbolic expressions or manufacturing plans are
to be derived. Models may be constructed by a sequence
of operations that create additive or subtractive volumet-
ric features. The nature of these features may vary widely
with the application domain. Volumetric features may be
viewed as higher level parameterized CSG primitives that
are relevant to a specific domain. For example, dove-tail
slots, profiled pins, blends, or chamfered holes are useful
features for machined parts. Their creation sequence and
parameters can be captured in a CSG representation with
union and difference operations and feature leaves. How-
ever, the geometry of a feature created by one operation
may be partially or totally obliterated by a subsequent op-
eration (129). Consequently, these design features cannot
be used directly for analysis or other computations with-
out a verification step, or conversion into a standard (i.e.,
non-feature-based) model.

A feature-based representation can be converted into a
BRep via a general-purpose CSG-to-Boundary conversion.
However, many systems provide the user with immediate
feedback based on direct modification of the boundary. This
is fast but not without danger. When tweaking the parame-
ters of one feature, the faces that bound the feature may in-
tersect faces of other features in unanticipated ways. Also,
if the volume of an additive feature overlaps the volume of
a subtractive feature, precedence information is needed to
decide whether to keep or remove the intersection of the
two features. This amounts to using a CSG-like structure
for evaluating the boundary of the resulting solid.

Because feature faces may be altered, split into several
connected components, or even destroyed by the creation
of other features, it is important to provide mechanisms
for connecting the feature entities with the corresponding
faces of the resulting solid. Furthermore, the user or an au-
tomatic feature-extraction process may identify collections
of faces or volumes in the solid or in its complement as fea-
tures that are important for further design activities or for
downstream applications, but that do not correspond to a
single-feature creation operation. For example, adding two
ribs to a solid may create a slot feature, which is a more ap-
propriate abstraction for manufacturing process planning
than the ribs. Techniques developed by Requicha and his
students at the University of Southern California address
issues of automatic feature conversion and dependencies
between converted and original features (10).

In essence, the input (or design) features are converted
either manually or automatically into other, application-
dependent features. The challenge is to capture the results
of these conversions in a form that persists when the pa-
rameters of the model are changed. Otherwise, all user in-
teractions or annotations with the converted features are
lost and must be re-entered manually after each parameter
modification or engineering change to the geometry of the
model. The difficulty of this challenge may be illustrated by
considering two versions, S and S’, of the same CSG model,
although with different parameter values. Which face F’ of

Solid and Physical Modeling 19

S’ corresponds to a given face F of S? Because the bound-
ary of a CSG solid is a subset of the boundaries of its primi-
tives, F may be associated with the faces of CSG primitives
whose intersection with F is two-dimensional and F’ may
be recovered as the contributions to S’ of the correspond-
ing primitive faces, given the CSG parameters for S’. This
approach suffers from three difficulties: 1) There may be
several primitive faces in S that overlap with F, 2) some of
these faces may not be responsible for contributing F,and 3)
F may only be one connected component of the contribution
of a set of primitive faces in the CSG model of S. The first
two difficulties have been addressed by Rossignac using
an extension of the active zone (9), which provides a simple
CSG expression for the region of space where the boundary
of a CSG primitive contributes to the boundary of the solid.
The third difficulty may be addressed by using Boolean or
topological filters to distinguish one connected component
of the boundary of a solid from another (68). Except for
limited situations, no reliable and automatic technique is
currently available for deriving such filters.

MORPHOLOGICAL TRANSFORMATIONS AND
ANALYSIS

A Boolean operation always returns a solid whose bound-
ary is a subset of the union of the boundaries of the argu-
ments. Several transformations and operations that create
new surfaces have been considered for extending the capa-
bilities of CSG systems. However, many of these operations
are difficult or impossible to integrate in the divide-and-
conquer paradigm for CSG and in some CSG-to-boundary
conversion algorithms, because simple calculations, such
as point-containment, may not be easily obtained by com-
bining the results of similar calculations on CSG primi-
tives.

Warps

Simple nonlinear transformations may twist an object by
applying to each point in space a 2-D rotation around the
z-axis with an angle that is a function of the z-coordinate
(134) or may bend an object by interpreting the Cartesian x
and y coordinates of a user-defined local coordinate system
as the radius and angle in a cylindrical coordinate system.
More complex free-form deformations have been proposed
that, for example, deform space by using a control mesh
(40), screw-motions between a grab and a release pose (87),
or a family of screw-motions controlled by a ribbon (16)
(Fig. 16). These deformations are usually applied to the
vertices of triangle meshes or of control meshes of curved
surfaces.

Minkowski Sums and Morphs

The Minkowski sum A⊕B of two solids A and B is the result
of sweeping one solid over the other. Mathematically, it is
defined by a+b, a∈A, b∈B, where point a+b corresponds to
the translation of point a by the vector from the origin to
point b. Kaul and Rossignac used linear Minkowski combi-
nations C(t)=(1–t)A⊕tB to construct parameterized shapes
that smoothly interpolate any two polyhedra A and B (Fig.

Figure 16. The red ear was selected by the user and bent using
Bender (16).

Figure 17. A solid is moving along a smooth polyscrew while mor-
phing from one shape to the next (136).

17). They further expanded this approach to the weighted
Minkowski averages of a larger number of polyhedra (135).
The user selects the shapes and orientations of the argu-
ment polyhedra. The modeling system computes the pa-
rameterized shape and animates its evolution in real time
as the user explores the range of values of the interpola-
tion parameters (weights). For example, one may animate a
solid morph that corresponds to a Bezier curve in the space
of polyhedra. Such tools are important for the interactive
exploration of new shapes in design, for the simulation of
some manufacturing processes, and for the creation of ani-
mations. Such morphs may be combined with rigid motions
(Fig. 17).

Minkowski sums also play a crucial role in robotics for
collision avoidance (13) and in accessibility and visibility
analysis (11, 12).

Grow-Shrink Combinations and Tightening

Minkowski sums or differences with a ball define growing
and shrinking operations on solids (Fig. 18). For instance,
when B is a ball of radius r, S⊕B is the grown solid S↑r

20 Solid and Physical Modeling

Figure 18. The original shape (center), its grown version, (right)
or shrunk version (left) (137).

Figure 19. The 2-D shape (left) may be filleted (right) by first
expanding it (center) and then shrinking the result.

defined as the union of S with all points at a distance less
than or equal to r from S. The shrunk solid S↓r is the differ-
ence between S and the set of points at distance less than
r from the boundary of S. The grown version of the bound-
ary bS of S is a tolerance zone E=(bS)↑r, which has been
used by Requicha to define the mathematical meaning of
tolerance specifications (136).

Combinations of growing and shrinking operations on
solids (71) produce constant radius fillets and rounds.
Specifically, Fr(S)=S↑r↓r is the set not reachable by a ball
of radius r that is disjoint from S. Hence the fillet operation
Fr add constant radius fillets along the concave edges of S
(see Fig. 19 for a 2-D illustration). Similarly, the round op-
eration produces Rr(S)=S↓r↑r, which is the set reachable
by a ball of radius r that in S. These operations always
produce valid solids and may be combined with Boolean
operations to limit their “blending” or “filleting” effect to
the desired sets of edges.

Note that R and F operations may be combined in an
attempt to round or fillet both the concave and the convex
edges. Unfortunately this approach does not always work.
In fact Rr(Fr(S)) tends to increase the volume but may leave
some sharp concave edges, whereas Fr(Rr(S)) tends to de-
crease the volume but may leave some sharp convex edges.

The r-mortar, Mr(S), of a solid S is (bS)↑r↓r or, equiva-
lently, Fr(bS). It is a small subset of the tolerance zone E.
The Rr(Fr(S)) and Fr(Rr(S)) combinations only affect S in
its mortar Mr(S). In fact, one or the other combination may
be selected independently for each connected component
of the mortar so as to minimize volume changes (138). The
stability of a point P of space with respect to a set S is min
r: P∈Mr(S). It may be used for a multiscale analysis of how
a shape S is imbedded in space (Fig. 20, left).

The r-tightening Tr(S) of S (139) is obtained by tighten-
ing (i.e., reducing perimeter length in 2-D or surface area in
3-D) bS, while keeping it in bS+Mr(S). Tightening provides
a powerful solid modeling operator for smoothing a solid
by imposing a constraint on the curvature (Fig. 20). Al-

Figure 20. The stability map (top left) indicates the maximum
radius of a ball that can reach the point without intersecting the
shape. Tightening fills in cracks and removes constrictions and
small components (top right and bottom left). Tightening of a 3-D
shape (bottom right).

Figure 21. Two control poses (top) define a screw motion. The
volume swept by the solid is shown (bottom).

though some applications may require that the topology of
the solid be preserved during simplification (140), one may
want to use tightening to simplify topology to remove noise.
Tightening has several advantages over other smoothing
operators (141) that affect the surface outside of the mor-
tar and deform the boundary without consideration as to
its immersion in the surroundings space.

Sweeps

The volume V swept by S during a motion M is important
in machining simulation. It is the infinite union of all in-
stances of S@M(t) of S at poses M(t) produced during the
motion M. (An infinite intersection produces an unsweep
(142), which is also useful for design and analysis.) The
computation of the boundary of V constructs candidate
faces as sweeps of characteristic curves on S, where veloc-
ity is orthogonal to the surface normal. Unfortunately, in
general, these curves change their shape with time. Hence,
to simplify the problem of computing bV (73), one may ap-
proximate each motion with a polyscrew (piecewise helical)
motion (Fig. 21). Polyscrews defined by a few control poses
may be smoothened (Fig. 17) with C2 continuity (143).

Solid and Physical Modeling 21

Figure 22. Original (left) and periodic quadrangulation (right)
(146) (Courtesy Bruno Levy).

Resampling and Parameterization

As an alternative to the refinement and simplification op-
erations discussed earlier, a mesh may be resampled. Re-
sampling strategies may favor the regularity of vertex po-
sitions or the alignment of the edges with the directions of
principal curvature.

Most approaches focus on triangle meshes. For example,
to improve compression, vertices may be placed at the tips
of the isosceles Edgebreaker (type ‘C’) triangles (102) or
along uniformly spaced X, Y, or Z-rays (144). Yet quadrilat-
eral meshes may be preferred for surface PDE simulations,
especially fluid dynamics, and are best suited for defin-
ing Catmull–Clark subdivision surfaces. Manifold trian-
gle meshes may be quadrangulated (145) using Laplacian
eigenfunctions, the natural harmonics of the surface, which
distribute their extrema evenly across a mesh and connect
them via gradient flow into a quadrangular base mesh. An
iterative relaxation algorithm simultaneously refines this
initial complex to produce a globally smooth parameteri-
zation of the surface. From this, one can construct a well-
shaped quadrilateral mesh with few extraordinary ver-
tices. The periodic global parameterization method (146),
also generates a (u,v) coordinate system aligned with the
principal direction of curvatures (Fig. 22) but uses periodic
variables that makes it possible to compute a parameteri-
zation that winds around the protrusions of the object.

HUMAN-SHAPE INTERACTION

The skills required to use a solid modeler impact the users’
effectiveness. Early solid modeling systems were reserved
to CAD experts in the aerospace and automotive indus-
tries. Considerable R&D efforts have improved the ease-
of-use for nonexperts and the productivity of expert de-
signers. Indeed, labor is the dominant cost of solid mod-
eling, and many professionals involved in the design cy-
cle are not CAD experts. Furthermore, new easy-to-use
“light-weight” solid modelers are making inroads in non-
traditional areas (such as electronic components or enter-
tainment) where accessibility to nonspecialists and rapid
design cycles are more important than precision. Further-
more, a complex 3-D database created by designers would
be of considerable value to others employees, customers,
or suppliers, who do not have the skills necessary to use a
complex solid modeler. To fulfill this need, many vendors
are now offering intuitive 3-D browsers that support the re-

Figure 23. Rossignac’s tangible camera for collaborative assem-
bly inspection.

view and annotation of 3-D models of complex assemblies of
solids. These browsers support communication in product
data management activities, help illustrate maintenance
manuals, or provide interactive virtual-reality experiences
for marketing, styling, or ergonomic analysis. In fact, we
expect that future solid modelers will be architected from
interchangeable (third party) design and analysis compo-
nents controlled from such a browser.

Advances in GUI are numerous. To illustrate their ben-
efits we mention two examples where the use of 3-D in-
put devices has considerably simplified the interaction be-
tween designer and scene and hence increases productiv-
ity and ease-of-use. A 6 degrees-of-freedom (DoF) magnetic
tracker was used by Rossignac and colleagues at IBM Re-
search to provide an intuitive interface for manipulating
the view of, say, a large model of a power plant, ship, or air-
plane for digital mock-up inspections. In this setting (Fig.
23), while the team is watching a blueprint of the plant
and a screen showing a 3-D view of it, one of the team mem-
bers is manipulating the tangible camera (tracker) over the
blueprint as if it was a small camera filming a 3-D model
made to scale and positioned above the blue print.This dual
visualization, which combines the traditional blueprint
with an easier to disambiguate 3-D view, encourages team
interaction, because others see exactly what is displayed on
the screen (the context is offered by the relative position
of the camera with respect to the blueprint) may point to
the blueprint or even annotate it. More recently, Rossignac
and students have developed a two-handed Human–Shape
Interaction paradigm (Fig. 24), which uses two haptic 3-D
trackers through which the user can either grab and ma-
nipulate objects, paint on them, or warp them to explore
new shapes or plan heart surgeries (74).

CONCLUSIONS

Solid modeling technology has significantly outgrown
its original scope of computer-aided mechanical design
and manufacturing automation. It plays an important
role in may domains, including medical imaging and

22 Solid and Physical Modeling

Figure 24. Rossignac’s two-handed haptic interface for
Human–Shape interaction.

therapy planning, architecture and construction, anima-
tion, and digital video production for entertainment and
advertising.

The maturity of the solid modeling theory and technol-
ogy has fostered an explosion in the field’s scientific lit-
erature and in the deployment of commercial solid mod-
elers. The dominant cost of embracing the solid modeling
technology within an industrial sector has shifted over the
years from hardware, to software, to labor.Today, industrial
strength solid modeling tools are supported on inexpensive
personal computers, software price ceased being an issue,
and the progress of user-friendly graphics interfaces has
considerably reduced training costs. As the theoretical un-
derstanding of solid modeling and efficient algorithms for
the fundamental operations have begun to percolate to-
ward commercial systems, research efforts are focused on
making nonexpert users more productive.

The modeling task is labor intensive. For instance, the
design of a new aircraft engine requires 200 person years.
Although the solid modeling activity is only a small part
of this cost, much of the current research attempts to
make designers more effective, by supporting higher level
design automation and reusability. Significant progress
was recently achieved on data compatibility between
different solid modelers and on the support of constraints
and features encapsulated into “smart” objects that adapt
their shape and dimensions to the context in which they
are used.

The exploitation of the resulting models has been so far
primarily restricted to designers. Spreading the access to a
larger population will reduce the cost of downstream appli-
cations (such as manufacturing, documentation, and mar-
keting) and will improve communication through out the
enterprise, its suppliers, and its customers.

Total automation of a wide range of applications—an
original motivation of solid modeling—has proven harder
than originally expected, especially when automatic syn-
thesis or planning is required.

BIBLIOGRAPHY

1. Lee, S. H. Feature-based Multiresolution Modeling of Solids.
ACM Trans. Graph. 2005, 24(4),pp 1417–1441.

2. Shah, J., Mantyla, M. Parametric and Feature Based
CAD/CAM: Concepts, Techniques, and Applications. John
Wiley & Sons: New York, 1995.

3. Requicha, A. A. G. Mathematical Definition of Tolerance
Specifications. ASME Manuf. Rev. 1993, 6,pp 269–274.

4. Joskowicz, L., Sacks, E. HIPAIR: Interactive Mechanism
Analysis and Design Using Configuration Spaces. Proc. of the
11th Annual Symposium on Computational Geometry SCG
’95; ACM Press: New York, 1995, pp 443–444.

5. Cutler, B., Dorsey, J., McMillan, L. Simplification and Im-
provement of Tetrahedral Models for Simulation. Proc. of the
2004 Eurographics/ACM SIGGRAPH Symposium on Geom-
etry Processing SGP ’04, ACM Press, 2004, 71,pp 93–102.

6. Voelcker, H., Hunt,W.The Role of Solid Modeling in Machine-
Process Modeling and NC Verification. SAE Technical Paper
No810195, Feb. 1981.

7. Elber, G. Cohen, E. Tool Path Generation for Freeform Sur-
face Models.J. Rossignac, J. Turner, G. Allen, Eds. ACM Sym-
posium on Solid Modeling and Applications. SMA ’93. ACM
Press, 1993, pp 419–428.

8. Gonzalez-Ochoa, C. McCammon, S. Peters, J. Computing Mo-
ments of Objects Enclosed by Piecewise Polynomial Surfaces.
ACM Trans. Graph. 1998, 17(3)pp 143–157.

9. Rossignac, J., Voelcker, H. Active Zones in CSG for Accel-
erating Boundary Evaluation, Redundancy Elimination, In-
terference Detection and Shading Algorithms. ACM Trans.
Grap. 1989, 8,pp 51–87.

10. Han, J.-H. Requicha, A. A. G. Integration of Feature Based
Design and Feature Recognition. Computer-Aided Design.
1997, 29(5),pp 393–403.

11. Spyridi, A. J., Requicha, A. A. G. Accessibility Analysis for
the Automatic Inspection of Mechanical Parts by Coordinate
Measuring Machines Proc. IEEE Int’l Conf. on Robotics &
Automation, Cincinnati, OH, 1990, pp 1284–1289.

12. Spyridi, A. J., Requicha, A. A. G. Automatic Programming of
Coordinate Measuring Machines Proc. IEEE Int’l Conf. on
Robotics & Automation. San Diego, CA, May 8–13, 1994, pp
1107–1112.

13. Latombe, J. Robot Motion Planning, Kluwer: Boston, 1991.
14. Lee, Y. T. Requicha, A. A. G. Algorithms for Computing the

Volume and other Integral Properties of Solids: I—Known
Methods and Open Issues and II—A Family of Algorithms
Based on Representation Conversion and Cellular Approxi-
mation. Commun. ACM, 1982, 25(9),pp 635–650.

15. Feldman, B., O’Brien, J., Klingner, B. Animating Gases with
Hybrid Meshes. ACM SIGGRAPH 2005. ACM Press, 2005,
pp 904–909.

16. Llamas, I., Powell, A., Rossignac, J., Shaw, C. Bender: A Vir-
tual Ribbon for Deforming 3D Shapes in Biomedical and
Styling Applications. ACM Symposium on Solid and Phys-
ical Modeling (SPM).June 2005.

17. Vivodtzev, F., Bonneau, G., Linsen, L., Hamann, B., Joy, K.,
Olshausen, B. Hierarchical Isosurface Segmentation Based
on Discrete Curvature. Eurographics Symposium on Data
Visualization. 2003, 40,pp 249–258.

18. Smith, J., Hodgins, J., Oppenheim, I., Witkin, A. Creating
Models of Truss Structures with Optimization. Conference on
Computer Graphics and Interactive Techniques SIGGRAPH
’02. ACM Press: New York, 2002, pp 295–301.

Solid and Physical Modeling 23

19. Faux, I. D., Pratt, M. J. Computational Geometry for Design
and Manufacture. Halsted Press: New York, 1979.

20. Requicha, A. A. G. Voelcker, H. B. Solid Modelling: A Histori-
cal Summary and Contemporary Assessment. IEEE Comput.
Graph. Applicat. 1982, 2,pp 9–24.

21. Requicha, A. A. G. Geometric Reasoning for Intelligent Man-
ufacturing. Commun. ACM. 1996, 39,pp 71–76.

22. Spyridi, A. J., Requicha, A. A. G. Automatic Planning for
Dimensional Inspection. ASME Manufact. Rev. 1993, 6,pp
314–319.

23. Requicha, A. A. G. Solid Modelling: A 1988 Update. InRa-
vani, B.; Ed., CAD Based Programming for Sensory Robots.
Springer Verlag: New York, 1988, pp 3–22.

24. Requicha, A. A. G., Voelcker, H. B. Solid Modelling: Current
Status and Research Directions. IEEE Comput. Graph. Ap-
plicat. 1983, 3,pp 25–37.

25. Requicha, A. A. G., Rossignac, J. R. Solid Modeling and Be-
yond. IEEE Comput. Graph. Applicat. 1992, 12,pp 31–44.

26. Hoffmann, C., Rossignac, J. A Road Map To Solid Modeling.
IEEE Trans. Vis. Comput. Graph. 1996, 2(1),pp 3–10.

27. Rossignac, J. Shape Complexity. Visual Comput. 2005.
28. Patrikalakis, N. Surface-to-Surface Intersections. IEEE

Comput. Graph. Applicat. 1993, 13pp 89–95.
29. Krishnan, S., Manocha, D. An Efficient Surface Intersection

Algorithm Based on Lower-dimensional Formulation. ACM
Trans. Graphics. 1997, 16(1),pp 74–106.

30. Rossignac, J., Borrel, P. Multi-Resolution 3D Approxima-
tions for Rendering Complex Scenes, In Geometric Model-
ing in Computer Graphics, Falcidieno, B., Kunii, T. L., Eds.,
Springer Verlag: New York, 1993.

31. Cignoni, P., Montani, C., Scopigno, R. A Comparison of Mesh
Simplification Algorithms. Comput. Graph. 1998, 22(1),pp
37–54.

32. Navazo, I., Rossignac, J., Jou, J., Shariff, R. ShieldTester: Cell-
to-Cell Visibility Test for Surface Occluders. Proc. of Euro-
graphics.September 2003.

33. Rossignac, J. Edgebreaker: Connectivity Compression for
Triangle Meshes. IEEE Trans. Vis. Comput. Graph. 1999,
5,pp 47–61.

34. Besl, P. J., Jain, R. C. Three-dimensional Object Recognition.
ACM Comput. Surv. 1985, 17(1),pp 75–145.

35. Requicha, A. Representations for Rigid Solids: Theory, Meth-
ods, and Systems. ACM Comput. Surv. 1980, 12,pp 437–
464.

36. Tilove, R. Set Membership Classification:A Unified Approach
to Geometric Intersection Problems. IEEE Trans. on Comput.
1980, C-29,pp 874–883.

37. Rossignac, J., O’Connor, M. SGC: A Dimension-independent
Model for Pointsets with Internal Structures and Incomplete
Boundaries. In Geometric Modeling for Product Engineering,
Wosny, M.;Turner, J.;Preiss, K.; Eds., North-Holland:Amster-
dam, 1989, pp 145–180.

38. Kumar,V.,Dutta,D.AnApproach to Modeling Multi-material
Objects. Proc. 4th ACM Symposium on Solid Modeling and
Applications. ACM Press: New York, 1997, pp 336–345.

39. Weiler, K. Non-Manifold Geometric Boundary Modeling.
ACM Siggraph, Tutorial on Advanced Solid Modeling. Ana-
heim, CA, July 1987.

40. Sedeberg, T., Parry, S. Free-Form Deformation of Solid Geo-
metric Models ACM Comput. Graph. (Proc. Siggraph). 1986,
20,pp 151–160.

41. Bloomenthal, J., Wyvill, B. Introduction to Implicit Sur-
faces, Morgan Kaufmann Publishers, Inc.: San Francisco, CA,
1997.

42. Guthe, M., Balázs, A., Klein, R. GPU-based Trimming and
Tessellation of NURBS and T-Spline Surfaces. ACM Trans.
Graphics. 2005, 24(3),pp 1016–1023.

43. Müller, M. Dorsey, J., McMillan, L., Jagnow, R., Cutler,
B. Stable Real-time Deformations. Proc 2002 ACM Sig-
graph/Eurographics Symposium on Computer Animation
SCA ’02. ACM Press: New York, 2002, pp 49–54.

44. O’Brien, J., Bargteil, A., Hodgins, J. Graphical Modeling
and Animation of Ductile Fracture. Proc. SIGGRAPH. ACM
Press: New York, 2002, pp 291–294.

45. Melek, Z. Keyser, J. Bending Burning Matches and Crum-
pling Burning Paper; ACM SIGGRAPH; ACM Press: New
York, 2006, p 131.

46. Kobbelt, L., Shapiro, V. Proc. ACM Symposium on Solid and
Physical Modeling. ACM Press: New York, 2005.

47. Alexandroff, P. Elementary Concepts of Topology, Dover Pub-
lications: New York, 1961.

48. Mantyla, M. Boolean Operations of 2-manifold Through Ver-
tex Neighborhood Classification. ACM Trans. Graph. 1986,
5(1)pp 1–29.

49. Rossignac, J., Szymczak, A. Wrap&Zip Decompression of the
Connectivity of Triangle Meshes Compressed with Edge-
breaker. J. Computat. Geom. Theory Applicat. 1999, 14,pp
119–135.

50. Hable, J. Rossignac, J. CST: Constructive Solid Trim-
ming for Rendering BReps and CSG. IEEE Trans. on
Vis. Comput. Graph. 13(5), Sept/Oct 2007. Available
from the GVU Center at Georgia Tech. www.gvu.gatech.
edu/research/techreports.html. as GVU Report GIT-GVU-
06-16.

51. Brunet, P., Navazo, I. Solid Representation and Operation
Using Extended Octrees. ACM Trans. Graphics (TOG). 1990,
9(2),pp 170–197.

52. Samet, H. Applications of Spatial Data Structures. Addison-
Wesley: Reading, MA, 1990.

53. Ellis, J. L., Kedem, G., Lyerly, T. C., Thielman, D. G., Marisa,
R. J., Menon, J. P., Voelcker, H. B. The RayCasting Engine
and Ray Representations. ACM Symposium on Solid Model-
ing Foundations and CAD/CAM Applications. 1991, pp 255–
267.

54. Andujar, C., Brunet, P., Chica, A., Rossignac, J., Navazo,
I., Vinacua, A. Computing Maximal Tiles and Applications
to Impostor-Based Simplification, Eurographics,September
2004.

55. Barequet, G., Goodrich, M., Levi-Steiner, A., Steiner, D. Con-
tour Interpolation by Straight Skeletons. Graphical Models,
2004, 66(4),pp 245–260.

56. Nonato, L. G., Cuadros-Vargas, A. J., Minghim, R., De
Oliveira, M. F. Beta-Connection: Generating a Family of Mod-
els from Planar Cross Sections. ACM Trans. Graph. 2005,
4,pp 1239–1258.

57. Amenta, N., Choi, S., Kolluri, R. K. The Power Crust, Proc.
of the 6th ACM Symposium on Solid Modeling and Applica-
tions,May 2001, pp 249–266.

58. Dey, T., Goswami, S. Tight Cocone: A Water-tight Surface Re-
constructor. Proc. 8th ACM Sympos: In Solid Modeling Appli-
cations. 2003, pp 127–134.Journal version in J. Computing
Infor. Sci. Eng. 2003, 30,pp 302–307.

24 Solid and Physical Modeling

59. Alexa, M., Gross, M., Pauly, M., Pfister, H., Stamminger, M.,
Zwicker,M. Point-based Computer Graphics, Proc. of the Con-
ference on SIGGRAPH 2004 course notes; 2004.

60. Museth,K.,Breen,D.,Whitaker,R.,Barr,A. Level Set Surface
Editing Operators. Proc. ACM SIGGRAPH. ACM Press: New
York, 2002, pp 330–338.

61. Pasko, G., Pasko, A., Kunii, T. Bounded Blending for
Function-Based Shape Modeling. IEEE Comput. Graph.
2005, 2,pp 36–45.

62. Farin, G. Curves and Surfaces for Computer-Aided Geometric
Design, 2nd ed., Computer Science and Scientific Computing
series, Academic Press: New York, 1990.

63. Kumar, S. Preventing Cracks in Surface Triangulations.
Proc. Chimera 98: 4th Symposium on Overset Composite Grid
& Solution Technology; 1998, pp 40–47.

64. Schmitt, B., Pasko, G., Pasko, A., Kunii, T. Rendering
Trimmed Implicit Surfaces and Curves. Proc. of the 3rd Inter-
national Conference on Computer Graphics, Virtual Reality,
Visualisation and Interaction in Africa, Stellenbosch, South
Africa, 2004.

65. Naylor, B., Amanatides, J., Thibault, W. Merging BSP Trees
Yields Polyhedral Set Operations,ACM Comput. Graph. SIG-
GRAPH ’90. 1990, 24pp 115–124.

66. Brown, C. PADL-2: A Technical Summary. IEEE Computer
Graphics Applications. 1982, 2(2)pp 69–84.

67. Hayes, E., Sevy, J., Regli, W. Representation of Temporal
Change in Solid Models; Proc. of the 6th ACM Symposium on
Solid Modeling and Applications.D. C. Anderson Ed., SMA
’01. ACM Press: New York, 2001, pp 317–318.

68. Rossignac, J., Borrel, P., Nackman, L. Interactive Design
with Sequences of Parameterized Transformations. Proc. 2nd
Eurographics Workshop on Intelligent CAD Systems: Imple-
mentation Issues. Veldhoven, The Netherlands, 1988, pp 95–
127.

69. Raghothama, S., Shapiro, V. Boundary Representation De-
formation in Parametric Solid Modeling. ACM Trans. Graph.
1998, 17,pp 259–286.

70. Rossignac, J., Requicha, A. Constant-Radius Blending in
Solid Modeling. ASME Comput. Mech. Eng. (CIME). 1984,
3,pp 65–73.

71. Rossignac, J. Requicha, A. Offsetting Operations in
Solid Modelling. Comput.-Aid. Geomet. Design. 1986, 3,pp
129–148.

72. McMains, S. Layered Manufacturing Technologies. Commun.
ACM, 2005, 48,pp 50–56.

73. Rossignac, J., Kim, J., Song, S., Suh, K., Joung, C.Boundary
of the Volume Swept by a Free-Form Solid in Screw Motion.
GVU Report GIT-GVU-06-19, 2006.

74. Rossignac, J., Pekkan, K., Whited, B., Kanter, K., Sharma,
S., Yoganathan, A.,Surgem: Next Generation CAD Tools for
Interactive Patient-Specific Surgical Planning and Hemody-
namic Analysis. GVU Report GIT-GVU-06-15.

75. Middleditch, A. E., Sears, K. H. Blend Surfaces for Set
Theoretic Volume Modelling Systems. Proc of the 12th An-
nual Conference on Computer Graphics and Interactive Tech-
niques SIGGRAPH ’85. ACM Press: New York, 1985, pp
161–170.

76. A. Ralston, E. Reilly, Eds. Encyclopedia of Computer Science
and Engineering, 2nd ed., van Nostrand Reinhold Co.: New
York, 1983, pp 97–102.

77. Hoffmann, C. Geometric and Solid Modeling, Morgan Kauf-
mann: San Mateo, CA, 1989.

78. Agrawal,A., Requicha,A. A. G. A Paradigm for the Robust De-
sign of Algorithms for Geometric Modeling; Proc. Eurograph-
ics ’94. Computer Graphics Forum, 1994, 13(3),pp 33–44.

79. Banerjee, R., Rossignac, J. Topologically Exact Evaluation of
Polyhedra Defined in CSG with Loose Primitives. Computers
Graphics Forum. 1996, 15(4),pp 205–217.

80. Hable, J. Rossignac, J. Blister: GPU-based Rendering of
Boolean Combinations of Free-form Triangulated Shapes.
ACM Trans. Graphics. 2005, 24(3),pp 1024–1031.

81. Rossignac, J., Megahed, A., Schneider, B. O. Interactive In-
spection of Solids: Cross-Sections and Interferences. Proc.
ACM Siggraph, ACM Comput. Graph. 1992, 26,pp 353–360.

82. Hadap, S., Eberle, D.,Volino, P., Lin, M., Redon, S., Ericson, C.
Collision Detection and Proximity Queries.ACM SIGGRAPH
2004 Course Notes, SIGGRAPH ’04. ACM Press: New York,
2004.

83. Ronfard, R. Rossignac, J. Full-Range Approximations of Tri-
angulated Polyhedra. Comput. Graph. Forum Proc. of Euro-
graph. 1996, pp C-67.

84. Rockwood, A., Heaton, K., Davis, T. Real-Time Rendering
of Trimmed Surfaces. Proc. ACM SIGGRAPH, 1989, pp
107–117.

85. Kumar, S., Manocha, D. Efficient Rendering of Trimmed
NURBS Surfaces. Computer-Aided Design. 1995, 27(7),pp
509–521.

86. Schneider, B. O., Borrel, P., Menon, J., Mittleman, J.,
Rossignac, J. BRUSH as a Walkthrough System for Architec-
tural Models. In Rendering Techniques, Eurographics Work-
shop on Rendering, Springer-Verlag: New York, 1995, pp
389–399.

87. Llamas, I., Kim, B., Gargus, J., Rossignac, J., Shaw, C. D.
Twister: A Space-warp Operator for the Two-handed Edit-
ing of 3D shapes. ACM Trans. Graphics. 2003, 22(3),pp 663–
668.

88. Murali, T. M., Funkhouser, T. A. Consistent Solid and Bound-
ary Representations from Arbitrary Polygonal Data. Proc.
1997 Symposium on Interactive 3D Graphics. ACM Press:
Providence, RI, April 1997, pp 155–162.

89. Bischoff, S., Pavic, D., Kobbelt, L. Automatic Restoration
of Polygon Models. ACM Trans. Graph. 2005, 24(4),pp
1332–1352.

90. Lopes, H., Tavares, G. Structural Operators for Modeling 3-
manifolds; Proc. ACM Symposium on Solid Modeling and Ap-
plications SMA: ACM Press, 1997, pp 10–18.

91. Baumgart, B.Winged Edge Polyhedron Representation,AIM-
79. Stanford University Report STAN-CS-320, 1972.

92. Rossignac, J. Through the Cracks of the Solid Modeling
Milestone. In From Object Modelling to Advanced Visualiza-
tion.Coquillart, S., Strasser,W., Stucki, P., Eds., Springer Ver-
lag: New York, 1994, pp 1–75.

93. Kallmann, M., Thalmann, D. Star-vertices: A Compact Rep-
resentation for Planar Meshes with Adjacency Information.
J. Graphics Tools. 2001, 6(1),pp 7–18.

94. Rossignac, J., Safonova, A., Szymczak, A. Edgebreaker on
a Corner Table: A Simple Technique for Representing and
Compressing Triangulated Surfaces. Hierarchical Geometri-
cal Methods Scientific Vis. 2003, pp 41–50.

95. Taubin, G., Rossignac, J.Geometric Compression through
Topological Surgery, IBM Research Report RC-20340,
January 1996. http://www.watson.ibm.com:8080/PS/7990.
ps.gz.

Solid and Physical Modeling 25

96. Isenburg, M., Snoeyink, J. Spirale Reversi: Reverse Decod-
ing of the Edgebreaker Encoding; Canadian Conference on
Computational Geometry 2000:August 2000, pp 247–256.

97. Lewiner, T., Lopes, H., Rossignac, J., Wilson-Vieira1,
A.Efficient Edgebreaker for Surfaces of Arbitrary Topology;
SIBGRAPI/SIACG 2004.

98. Luebke, D., Reddy, M., Cohen, J., Varshney, A., Watson, B.,
Hubner, R. Levels of Detail for 3D Graphics Morgan Kauf-
mann: San Mateo, CA, 2002.

99. Garland, M. Heckbert, P. Surface Simplification Using
Quadric Error Metrics. Proc. ACM SIGGRAPH’97. 1997, pp
209–216.

100. Warren, J., Weimer, H. Subdivision Methods for Geometric
Design: A Constructive Approach. Morgan Kaufmann: San
Francisco, CA, 2001.

101. Botsch, M., Pauly, M., Rössl, C., Bischoll, S., Kobbelt, L. Ge-
ometric Modeling Based on Triangle Meshes. Course Notes,
ACM SIGGRAPH 2006. ACM Press: New York, 2006.

102. (102) Attene, M., Falcidieno, B., Spagnuolo, M., Rossignac,
J. SwingWrapper: Retiling Triangle Meshes for Better Com-
pression. ACM Trans. Graphics 2003, 22(4),pp 982–996.

103. Attene, M., Falcidino, B., Spagnuolo, M., Rossignac, J.
Sharpen&Bend: Recovering Curved Edges in Triangle
Meshes Produced by Feature-insensitive Sampling. IEEE
Trans. Visualization Computer Graphics (TVCG), 2005,
11(3),pp 181–192.

104. Edelsbrunner, H., Mücke, E. P. Simulation of Simplicity: A
technique to Cope with Degenerate Cases in Geometric Al-
gorithms. ACM Trans. Graph. 1990, 9(1),pp 66–104.

105. Ronfard, R., Rossignac, J. Triangulating multiply-connected
polygons: A simple, yet efficient algorithm. Computer
Graphics Forum, Proc. Eurographics,Vol 13, No 3, pp
C281–C292,Sept 1994.

106. Rossignac, J., Cardoze, D. Matchmaker: Manifold BReps for
Non-manifold r-sets Proc. of the ACM Symposium on Solid
Modeling. 1999, pp 31–41.

107. Rossignac, J. Structured Topological Complexes: A Feature-
Based API For Non-Manifold Topologies. Proc. of the ACM
Symposium on Solid Modeing 97.Hoffmann, C., Bronsvort,
W., Eds., ACM Press: New York, 1997, pp 1–9.

108. Lodha,S.,Franke,R. Scattered DataTechniques for Surfaces.
Proc. of the Conference on Scientific Visualization.June 9–13,
1997, p 181.

109. Bajaj, C., Chen, J., Xu, G. Modeling with Cubic A-patches.
ACM Trans. Graphics (TOG). 1995, 14(2),pp 103–133.

110. Reuter, P., Tobor, I., Schlick, C., Dedieu, S. Point-Based Mod-
elling and Rendering using Radial Basis Functions. Proc. of
the 1st International Conference on Computer Graphics and
Interactive Techniques in Australasia and South East Asia,
2003.

111. Schmitt, B., Pasko, A., Christophe, S. Constructive Modeling
of FRep Solids Using Spline Volumes Proc. of the Sixth ACM
Symposium on Solid Modeling and Applications. 2001, pp
321–322.

112. Fleishman, S., Cohen-Or, D., Silva, C. Robust Moving Least-
squares Fitting with Sharp Features. ACM Trans. Graphics
(TOG). 2005, 24(3).

113. Adzhiev, V., Kartasheva, E., Kunii, T., Pasko, A., Schmitt, B.
Cellular-functional modeling of Heterogeneous Objects; Proc.
of the 7th ACM Symposium on Solid Modeling and Applica-
tion; Saarbrücken, Germany, June 17–21, 2002.

114. Bowyer, A., Cameron, S., Jared, G., Martin, R., Middleditch,
A., Sabin, M., Woodwark, J. Introducing Djinn: A Geometric

Interface for Solid Modeling, Information Geometers Ltd.:
1995.

115. Tilove,R.A Null-Object DetectionAlgorithm for Constructive
Solid Geometry. Commun. ACM. 1984, 27,pp 684–694.

116. Goldfeather, J., Molnar, S., Turk, G., Fuchs, H. Near Real-
time CSG Rendering Using Tree Normalization and Geomet-
ric Pruning. IEEE Comput.r Graph. Applicat. 1989, 9(3),pp
20–28.

117. Rossignac, J. Processing Disjunctive Forms Directly from
CSG Graphs. Proc. of CSG 94: Set-theoretic Solid Modelling
Techniques and Applications, Information Geometers. Winch-
ester, UK, 1994, pp 55–70.

118. Rossignac, J.Blist: A Boolean List Formulation of CSG Trees.
GVU Report GIT-GVU-99-04, 1998.

119. Requicha, A. A. G., Voelcker, H. B. Boolean Operations in
Solid Modelling: Boundary Evaluation and Merging Algo-
rithms. Proc. IEEE. 1985, 73,pp 30–44.

120. Rossignac, J. CSG Formulations for Identifying and for Trim-
ming Faces of CSG Models. CSG’96: Set-Theoretic Solid Mod-
eling Techniques and Applications, Information Geometers,
Woodwark, J., Ed., 1996, pp 1–14.

121. Rossignac, J.BLIST: A Boolean List Formulation
of CSG Trees. Technical Report GIT-GVU-99-04,
GVU Center, Georgia Institute of Technology. 1999.
http://www.cc.gatech.edu/gvu/reports/1999.

122. Bryant, R. Binary Decision Diagrams and Beyond: Enabling
Technologies for Formal Verification. Proc. IEEE/ACM in-
ternational Conference on Computer-Aided Design. 1995, pp
236–243.

123. Yang, B., O’Hallaron, D. Parallel Breadth-First BDD Con-
struction. Proc. ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, 1997, pp 145–156.

124. Payne, H., Meisel, W. An Algorithm for Constructing Opti-
mal Binary Decision Trees. IEEE Trans. Comput. 1977, 26,pp
905–916.

125. Rossignac, J. Optimized Blist Form (OBF). Technical Report
GIT-GVU-07-10, GUV Center, Georgia Institute of Technol-
ogy. May 2007.

126. Shapiro,V.,Vossler,D. Construction and Optimization of CSG
Representations. Comput.-Aid. Design. 1991, 23pp 4–20.

127. McMains, S., Séquin, C. A Coherent Sweep Plane Slicer
for Layered Manufacturing; Proc. of the fifth ACM Sympo-
sium on solid Modeling and Applications;June 8–11, 1999,
pp 285–295.

128. Rossignac, J., Requicha, A. Constructive Non-Regularized
Geometry. Comput.-Aided Design. 1991, 23,pp 21–32.

129. Rossignac, J. Constraints in Constructive Solid Geometry.
Proc. ACM Workshop on Interactive 3D Graphics ACM Press:
Chapel Hill, NC, 1986, pp 93–110.

130. Durand, C., Hoffmann, C. A Systematic Framework for Solv-
ing Geometric Constraints Analytically. J. Symb. Comput.
2000, 30(5),pp 493–519.

131. Rossignac, J. Issues on Feature-Based Editing and Interro-
gation of Solid Models. Comput. Graph. 1990, 14,pp 149–
172.

132. Raghothama, S., Shapiro, V. Boundary Representation De-
formation in Parametric Solid Modeling. ACM Trans. Graph.
1998, 17,pp 259–286.

133. van der Meiden, H., Bronsvoort, W. Solving Topological Con-
straints for Declarative Families of Objects; Proc. ACM Sym-
posium on Solid and Physical Modeling;June 6–8, 2006.

26 Solid and Physical Modeling

134. Barr, A. Local and Global Deformations of Solid Primitives;
Proc. Siggraph’84, Computer Graphics, 1984, 18(3),pp 21–
30.

135. Rossignac, J., Kaul, A. AGRELs and BIPs: Metamorphosis as
a Bezier Curve in the Space of Polyhedra. Comput. Graph.
Forum. 1994, 13,pp C179–C184.

136. Requicha,A. A. G. Toward a Theory of Geometric Tolerancing.
Int. J. Robotics Res. 1983, 2,pp 45–60.

137. Chen, Y., Wang, H., Rosen, D., Rossignac, J. Filleting
and Rounding Using a Point-based Method. ASME De-
sign Engineering Technical Conferences, DETC05/DAC-
85408.September 2005.

138. Williams, J., Rossignac, J. Mason: Morphological Simplifica-
tion. Graph. Models. 2005, 67,pp 285–303.

139. Williams, J., Rossignac, J. Tightening: Curvature-Limiting
Morphological Simplification. ACM Symposium on Solid and
Physical Modeling (SPM), June 2005.

140. Sakkalis, T., Peters, T. Ambient Isotopic Approximations
for Surface Reconstruction and Interval Solids Proc. of the
Eighth ACM Symposium on Solid Modeling and Applica-
tions.June 16–20, 2003.

141. Taubin, G. A Signal Processing Approach to Fair Surface
Design Proc. of the 22nd Annual Conference on Computer
Graphics and Interactive Techniques.September 1995, pp
351–358.

142. Ilies, H., Shapiro, V. UNSWEEP: Formulation and Computa-
tional Properties; Proc. of the 4th ACM Symposium on Solid
Modeling and Applications 1997, pp 155–167.

143. Powell, A., Rossignac, J. ScrewBender: Smoothing Piecewise
Helical Motions. IEEE Comput. Graph. Applicat. In press.

144. Szymczak, A., Rossignac, J., King, D. Piecewise Regular
Meshes: Construction and Compression. Graph. Models.
2002, 64,pp 183–198.

145. Dong, S., Bremer, P-T., Garland, M., Pascucci, V., Hart, J.
C. Spectral Surface Quadrangulation. ACM Trans. Graphics
Proc. SIGGRAPH, 2006.

146. Ray, N., Li,W. C., Lévy, B., Sheffer,A.,Alliez, P. Periodic Global
Parameterization.ACMTrans. Graph. 2006,4,pp 1460–1485.

Reading List

Rossignac, J., Requicha,A. Depth Buffering Display Techniques for
Constructive Solid Geometry IEEE Comput. Graph. Applicat.
1986, 6,pp 29–39.

Sederberg, T. W., Meyers, R. J. Loop Detection in Surface Patch In-
tersections. Comput.-Aid. Geomet. Design. 1988, 5,pp 161–171.

JAREK R. ROSSIGNAC

Georgia Institute of Technology

