
ASYNCHRONOUS LOGIC DESIGN 726

ments and prevent the circuit from changing state (i.e.,
events in synchronous circuits are sequenced by a globallyASYNCHRONOUS LOGIC DESIGN
distributed periodic clock signal).

The role of a clock in synchronous circuits can be describedThe performance, cost effectiveness, and complexity of digital
computers have experienced explosive growth in the past two with an excellent analogy to a conductor in an orchestra regu-

lating every beat of the music (5). In an orchestra, individualdecades. These advances in the performance and cost effec-
tiveness of integrated circuits (IC) are a direct result of inno- performers know exactly when to play each note and know

implicitly that their output will blend appropriately with thevations in the technology for fabrication, architecture, and ad-
vanced circuit techniques. Recent advances in semiconductor output of other functional units within the orchestra, so long

as they observe the conductor’s beat. Unlike an orchestra,technology have pushed the number of transistors on a single
microprocessor chip beyond the ten million mark and clock synchronous operation is not fundamental to an electronic cir-

cuit. The operation of an electronic circuit can be compared tofrequencies beyond 600 MHz (1). Distributing such a high-
frequency clock signal over the entire chip is an extremely a production line where partly assembled products are passed

from one stage to the next when they are ready. A smoothchallenging task, which is guaranteed to get more difficult
with future generations of microprocessors synchronized by a flow must be maintained for efficient production. Asynchro-

nous circuits follow this production line mode of operation.single clock. Thus, it is worth exploring other types of digital
design that might offer a solution to this clock distribution In contrast to synchronous sequential circuits, asynchro-

nous circuits are a broader class of circuits wherein generalproblem. Asynchronous logic circuits hold the promise of alle-
viating these clock distribution problems because they do not events may take place at any time (i.e., they are designed to

operate without a global synchronization clock signal). Asyn-require a global clock signal for their operation (2,3).
chronous circuits use local synchronization rather than a
global synchronous signal such as clock (i.e., various circuit

FUNDAMENTALS AND MOTIVATION components communicate with each other using handshaking
or request-and-acknowledge signals).

Modern computers are designed with digital logic circuits. Since its advent, digital logic design has been dominated
The design of digital logic circuits is broadly classified into by synchronous logic because of its relative ease of design
two basic types: combinational logic design and sequential compared to asynchronous logic circuits. The ease of design-
logic design (4). In combinational logic circuits, outputs de- ing synchronous logic is a direct result of timing restrictions
pend only on their present inputs. On the other hand, sequen- placed on circuit signals and the global clock. These timing
tial logic circuits are those circuits whose outputs depend on constraints ensure that all signals must stabilize before the
their past as well as present inputs. This implies that sequen- onset of the clock signal that stores the stabilized signal val-
tial circuits must incorporate some form of memory to hold ues into the memory elements. If this constraint is not satis-
information about past inputs. This information about past fied, the clock frequency must be reduced to avoid circuit mal-
inputs contained in the memory elements (also called latches function resulting from the storage of incorrect signal values
or flip-flops) is called state information. Thus, the output of a in the memory elements. In addition, distributing gigahertz
sequential circuit, as shown in Fig. 1, is a function of its cur- frequency clock signals over a complex chip is an extremely
rent input and state. Frequently, sequential circuits are also challenging task that is guaranteed to get more difficult with
referred as finite state machines (FSM) or sequential ma- future generations of microprocessors synchronized by a sin-
chines. gle clock. This has recently revived research efforts that elim-

Sequential circuits can be classified into synchronous or inate the global clock by employing asynchronous circuits or
clocked circuits and asynchronous circuits. In synchronous or locally clocked circuits. In addition, asynchronous circuits can
clocked sequential circuits, time is quantized, and all actions also offer the following desirable properties, when designed
take place at discrete intervals of time determined by a peri- carefully:
odic source of pulses called a clock. The clock signal controls
the memory elements whose values reflect the circuit state. • Alleviating Global Clock Distribution Problems. In a syn-
Inputs to synchronous circuits can change only during the pe- chronous circuit, the clock signal connects all the mem-
riod when the clock pulses essentially disable the memory ele- ory elements and clocked logic gates through wires that

are routed over the entire chip. Because long wires have
significant resistance and capacitance, electrical signals
carried on these wires incur significant delays. Due to
this large distributed resistive–capacitive clock network,
a given clock pulse arrives at different times at different
parts of the circuit. This effect is called clock skew, which
can severely affect the performance of the circuit. Dis-
tributing clock signal over the entire chip with relatively
low clock skew is one of the most difficult tasks being
faced by the designers of advanced high-performance mi-
croprocessors. One of the goals of the clock signal is to
synchronize the updating of the state information in the
memory elements. This synchronization in the presence

Combinational
logic

OutputsInputs

State
signals

Memory
elements

of clock skew can result in a circuit malfunction. Because
asynchronous circuits do not employ a global clock forFigure 1. Sequential logic circuit.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



ASYNCHRONOUS LOGIC DESIGN 727

synchronization, the problem of global clock skew and protocol). Early research work by Clark and Molnar (7a)
demonstrated the composition benefits of asynchronousglobal clock distribution is alleviated. Although asyn-

chronous circuits eliminate the global clock, they replace circuit modules and formed the basis for several recent
asynchronous synthesis approaches (54,55). The forma-this problem with synchronization or handshaking con-

straints at the local level. Thus, a large global problem tion of Virtual Socket Interface (VSI) alliance by leading
semiconductor corporations provides significant thrust tois replaced by several smaller problems at the local level.
the design methodologies that naturally support more• Low-Power Potential. In high-performance microproces-
modular systems with easy-to-replace components. Asyn-sors, designers have developed several methods to ad-
chronous design methodologies are bound to benefit fromdress clock distribution and clock-skew issues. Invari-
this recent push toward modularity and reusability. Inably, they involve building a clock distribution tree or
synchronous sequential circuits, various components aremesh with amplifying buffers. Unfortunately, high-per-
synchronized using the same global clock signal. Thus,formance microprocessor designs with clock frequencies
even in the case of minor change in circuit functionality,in the 600 MHz range require very large clock buffers
one must follow the fixed clock period constraint to avoidto obtain an acceptable clock-distribution network, which
a major redesign. In contrast, a logic change in asynchro-results in excessive power consumption and occupy large
nous circuits can be locally accommodated, since variousarea. For example, Digital Equipment Corporation’s
components do not have to adhere to a strict global tim-Alpha microprocessor with 433 MHz clock frequency re-
ing constraint.quires a clock-distribution network that occupies 10% of

total chip area (16.8 mm � 13.9 mm) and consumes 40% • Environmental Robustness. Synchronous circuits are de-
signed for correct operation within a range of tempera-of total power consumption of 30 W (6). With additional

increases in clock frequency, it will be increasingly ex- ture, power-supply voltage variations, and fabrication
process variations. While designing synchronous circuits,pensive to distribute a single global clock due to power

dissipation constraints. In addition, in a synchronous cir- the clock time period is chosen according to the delay of
cuit, the clock signal is always active, even if the circuit the components with worst-case parameters (e.g., maxi-
is not processing any data. Thus, low-power synchronous mum allowable temperature and minimum allowable
circuits usually switch the clock signal off to a subcircuit power-supply voltage). Thus, if a synchronous circuit was
that is not active. This requires an additional circuit that designed to operate at a maximum temperature of 95 �C,
monitors the input signals for any activity, which itself it may not function correctly above this temperature (be-
consumes power. Also, the switch that shuts off the clock cause of an increase in component delays with increasing
signal to an inactive subcircuit presents an additional ca- temperatures). In contrast, asynchronous circuits are ro-
pacitive load to the clock distribution network. Because bust with respect to variations in their environment,
asynchronous circuits do not require a continuously run- such as temperature, power supply, and fabrication pro-
ning global clock for their operation, they are free of cess because their operation is independent of component
these problems and can provide potential savings in delays and thus their variations. In addition, asynchro-
power consumption for low-power applications. Because nous circuits offer the advantage of reducing electromag-
the market for wireless, portable, and hand-held con- netic interference (emi) emissions because they distrib-
sumer products that require long battery life and thus ute the switching energy over time and frequency, in
low-power circuits is growing very fast, potential low- contrast to synchronous circuits where the switching en-
power benefits are a significant motivating factor in the ergy is concentrated around clock frequency (5).
recent resurgence of interest in asynchronous circuits (7).

• Improved Performance Potential. In synchronous sequen- In spite of all these potential benefits, asynchronous cir-
tial circuits, the pulse period of the clock signal is chosen cuits have not been widely used in commercial applications
according to the worst-case timing path through the com- except where unavoidable, such as interface circuits between
binational logic. This clock period is quite inflexible in two independently clocked circuits or real-time circuits. Even
taking advantage of the best-care or even average-case in the case of asynchronous interface circuits, their design is
behavior. Because components in asynchronous circuits considered to be very informal and is thought to be one of the
synchronize events by generating local completion sig- most difficult tasks by integrated circuit designers. The major
nals when the computation is complete, their perfor- reason for the overwhelming popularity of synchronous cir-
mance is not determined by worst-case delays. Thus, cuits is their ease of design, which is due to a clear separation
asynchronous circuits hold the potential of achieving in- between functionality and timing in synchronous designs.
creased performance. This separation is taken away in asynchronous circuits [e.g.,

in isochronic fork assumption (51) or fundamental mode as-• Modularity and Upgradability. An important aspect of
any design methodology is its support for ‘‘modularity,’’ sumption (15)], which makes the design of these circuits more

complex. Although asynchronous circuits eliminate the globalsince a divide and conquer approach is central to any
complex design task. A clock signal is, in effect, a global clock, they replace this problem with synchronization or

handshaking constraints at the local level. Unfortunately, insystem variable, and therefore an impediment to modu-
larity. Because asynchronous circuits do not impose a some cases the overhead due to handshaking can actually re-

sult in a performance degradation. To reduce this perfor-global clock constraint, a system designed with asynchro-
nous components will function correctly by simply con- mance penalty, architectural changes to hide this handshak-

ing overhead must be incorporated (63). In addition,necting these components together (provided their inter-
faces match and they observe the same signaling asynchronous circuits are prone to generating unwanted sig-



728 ASYNCHRONOUS LOGIC DESIGN

nal changes known as hazards that may cause a circuit to
malfunction. The hazards are naturally filtered out in a syn-
chronous design by choosing a long-enough clock period,
which ensures that the circuit is in a stable circuit state be-
fore the next input changes take place. Thus, high-perfor-
mance asynchronous logic circuits that are free of hazards are
more difficult to design than their synchronous counterparts.
In general, the presence of hazards in asynchronous circuits
is a major hindrance in their widespread use. Although an
asynchronous implementation of a DCC error corrector chip
at Philips Research Labs (72) demonstrated a five times re-
duction in power over the best synchronous design, a clear
advantage of asynchronous designs for large-scale high-per-
formance and low-power circuits still remains to be seen. This
chip was designed with the help of an internal asynchronous
synthesis tool called TANGRAM. Unavailability of such in-
dustrial strength synthesis tools through commercial CAD

REQ

Request

Sender Receiver

Acknowledge

(a)

(b)

REQ

ACK

ACK

vendors is another hurdle in the proliferation of commercial
Figure 2. (a) Two-phase signaling; (b) four-phase signaling.asynchronous designs.

Despite few current commercial applications of asynchro-
nous circuits, it is worth exploring other areas of digital de-

realized using a transition sensitive circuit or a level sensitivesign that may offer a solution to the clock distribution and
circuit, described as follows.power dissipation problems in high-performance circuits.

Asynchronous logic circuits hold the promise of solving these
Two-Phase Signaling. In two-phase signaling, also known asproblems, which is a major motivating factor in recent resur-

transition or nonreturn to zero signaling, the request-and-ac-gence of interest in asynchronous and locally clocked circuits.
knowledge events are actually transitions (i.e., either risingAsynchronous design should not be viewed as a single alter-
or falling). A request or acknowledge event is said to havenative to synchronous logic design. More accurately, synchro-
occurred if the corresponding signal wire has made a transi-nous design is a special case representing a single design
tion from its present state to another (i.e., from high levelpoint in a multidimensional asynchronous design space.
to low level or vice versa). The direction of the transition isThus, one can implement a logic circuit using completely
unimportant. As shown in Fig. 2(a), in the two-phase signal-asynchronous design, or a completely synchronous design, or
ing protocol, the sender can issue a request to start an eventa suitable combination of the two design techniques.
by generating a transition on the request wire, and the re-
ceiver can respond after completing the requested event by

ASYNCHRONOUS LOGIC generating a transition on the acknowledge wire. There are
two states in this signaling protocol: a state where the sender

There are many flavors of asynchronous logic. However, there is active and the receiver has not yet responded and a state
are a few key features that characterize the underlying imple- where the receiver has responded and is waiting for the
mentation of various asynchronous designs. These implemen- sender to become active again. In general, both request and
tation features can be seen as a choice between different syn- acknowledge wires are initialized to level zero. Thus, the inac-
chronization protocols (i.e., two-phase versus four-phase tive state in the protocol is defined as the state when both
signaling protocol), data encoding schemes (i.e., dual-rail data request and acknowledge wires are at the same level.
encoding versus bundled data encoding), and delay mod-
els (8).

Four-Phase Signaling. In the four-phase signaling protocol,
also known as return to zero signaling, the request-and-ac-

Asynchronous Control Protocols
knowledge events are levels instead of transitions [i.e., either
low (zero) or high (one)]. Similar to two-phase signaling, theIn general, asynchronous circuit components communicate

with each other using handshaking or request-and-acknowl- inactive state in this signaling protocol is also initialized to
level zero for both request and acknowledge wires. As shownedge signaling protocols. The correct functionality of an asyn-

chronous circuit depends upon each component following a se- in Fig. 2(b), a four-phase signaling protocol sequence starts
by both request and acknowledge wires at level zero. Thenquence of request-and-acknowledge events in its signaling

protocol and is independent of signal timings. One compo- sender initiates a request to start an event by changing the
request wire to level one. After completing the requestednent, the sender, sends a request to start an event to another

component, the receiver. After the receiver completes the re- event, the receiver responds with the acknowledge signal by
changing the acknowledge wire to level one. When the senderquested action, it sends an acknowledge signal back to the

sender to complete the protocol. In order for this protocol to receives the acknowledge event, it changes the level of re-
quest wire back to zero, and subsequently the receiver alsofunction correctly, the sender must not produce a new request

signal until the previous request signal has been acknowl- changes the level on acknowledge wire back to zero. Thus,
after completing the four-phase signaling, both request andedged. In addition, the receiver must not reply with an ac-

knowledge signal unless it has received the request signal. acknowledge wires return back to level zero. Now, the sender
is ready to send another request signal.This standard request acknowledge signaling protocol can be



ASYNCHRONOUS LOGIC DESIGN 729

Data

REQ

ACK

Data

REQ

ACK

Sender Receiver

Request

Data

Acknowledge

Two-phase signaling
with bundled data encoding

Four-phase signaling
with bundled data encoding

Figure 3. Bundled data encoding.

The choice of either the two-phase signaling or four-phase gether onto two wires (dual rails). In addition, an acknowl-
edge wire is also required for every data bit. Thus, communi-signaling depends on designers and a particular application.

In theory, two-phase signaling may appear to be faster and cating n data bits with this encoding requires 2n wires for the
dual-rail encoding of request and data signals and n wires forless power-consuming than four-phase protocol since a com-

plete sequence of two-phase protocol requires half the number acknowledge signals. In the case that the receiver requires
the availability of all data bits before activating acknowledgeof transitions of a four-phase protocol. However, two-phase

signaling requires special logic to detect transitions rather signal, only one acknowledge wire is sufficient for all dual-rail
data signals, which reduces the total number of wires fromthan levels that result in more complex circuits. This in turn

penalizes the interface in terms of both performance and 3n to 2n � 1. In general, the values on the dual rails are
interpreted as follows: 10 corresponds to data value 0, 01 im-power.
plies a data value 1, 00 implies that the data value is not yet

Asynchronous Data Encoding Schemes available, and 11 is not allowed. Dual-rail encoding is insensi-
tive to the delays on any wire and is often used when bundledIn addition to the choice of two- or four-phase control signal-
data constraint cannot be satisfied. Unfortunately, it resultsing protocol discussed earlier, the data signals can also be
in increased complexity of both the number of wires and theencoded using either bundled data encoding or dual-rail en-
logic. To compensate for the high complexity of dual-rail en-coding, which is described as follows.
coding, other coding schemes have been developed (8a,8b) in
which the logic overhead is only in the completion detectionBundled Data Encoding. Bundled data encoding employs
and the complexity of data processing is avoided.separate wires for data and control signals. As shown in Fig.

3, for n bits of data to be communicated from the sender to
Delay Models and Hazards in Asynchronous Circuitsthe receiver, bundled data encoding requires n � 2 wires: n

wires for the data, one wire for the request signal, and one A formal design method for a digital circuit requires a delay
wire for the acknowledge signal. Bundled data encoding can model of the logic gate operation. The accuracy of this model
be employed with either the two-phase signaling or the four- determines the practicality of the design method. Logic gates
phase signaling protocol, as illustrated in Fig. 3. and interconnections (i.e., wires are fundamental building

Separation of data and control timing in bundled data en- blocks of digital circuits). Physically, both logic gates and
coding imposes certain constraints described as follows. Sup- wires exhibit finite delays and are modeled with delay ele-
pose that the request signal were faster than at least one data ments while analyzing their behavior. A delay element is said
signal. In such a case, the receiver would receive the request to have pure delay if it delays the transition of its input wave-
event from the sender even before the data are received and form to its output but does not otherwise alter the waveform
may initiate the required computation with wrong data val- itself. On the other hand, a delay element is said to exhibit
ues. Thus, the use of bundled data encoding implies an im- inertial delay with threshold di if it does not react to input
plicit assumption that the request signal is slower are as- pulses shorter than di and the pulses longer than di are trans-
serted). This constraint is known as bundled data constraint mitted to its output with a delay di. A delay element is said
and is widely used in the design of asynchronous logic cir- to have bounded delay if its delay can take any value within
cuits. Thus, request signal in bundled data encoding is simi- a given interval and is said to have unbounded delay if its
lar to a clock signal. delay can take any finite value. Using this definition, logic

circuits can be characterized with a bounded delay model, un-Dual-Rail Encoding. In the case that the bundled data con-
bounded gate delay model, or unbounded wire delay modelstraint cannot be satisfied, dual-rail encoding (shown in Fig.
(9). The bounded delay model associates a bounded delay with4) is used where data and request signals are encoded to-
both logic gates and interconnecting wires. In contrast, the
unbounded gate delay model associates an unbounded delay
with every gate, and the interconnecting wires are assumed
to have zero delay, whereas the unbounded wire delay model
associates an unbounded delay with both logic gates and the
interconnecting wires. Because real gates and wires have fi-
nite delays, output signals may glitch before settling down to

Sender Receiver

Dual-rail data

Acknowledge

their final value. In a synchronous design, clock signal con-
trols all the state changes and communication between vari-Figure 4. Dual-rail data encoding.



730 ASYNCHRONOUS LOGIC DESIGN

it changes multiple times. A combinational hazard occurs as
a result of a distribution of finite gate delays in the combina-
tional logic (as described in the preceding example). A combi-
national hazard is classified as logic hazard if the hazard de-
pends on the particular logic implementation, as described in
the preceding example. A logic hazard can be eliminated by
changing the logic implementation of the function. A combina-
tional hazard is classified as a function hazard if it cannot be
eliminated by changing the logic, irrespective of the gate de-
lays. A sequential hazard occurs as a result of the feedback
wire delays. A sequential hazard is called an essential hazard
if it is inherent in the finite state machine specifications and
occurs irrespective of the logic implementation. For example,
the hazards due to critical races that cannot be eliminated by
proper state assignment are essential hazards. There is a
wide body of literature on hazard analysis and elimination
that establishes several properties of static, dynamic, combi-
national, and sequential hazards. Further details on hazards

Inputs

x2

x1

y2y1

y1

y2

z
Output

Feedback wires

Combinational logic

in asynchronous circuits can be obtained from Unger (15,16).
Given various delay models, asynchronous circuits are gen-Figure 5. Hazards in asynchronous circuits.

erally classified into speed-independent circuits and delay-
insensitive circuits. Speed-independent circuits (10) operate
correctly (without hazards) irrespective of gate delays, andous components. Between active clock edges, combinational

logic generates the next state function, possibly producing wires are assumed to have zero delays. Thus, their operation
is defined using the unbounded gate delay model. In contrast,many spurious output values (glitches). Synchronous logic op-

erates correctly by ensuring that all the outputs are correct delay-insensitive circuits (11) operate correctly (without haz-
ards) irrespective of the gate as well as wire delays. Thus,and stable before the next active clock edge. Because asyn-

chronous circuits do not employ a global clock, glitches cannot their operation is defined using the unbounded wire delay
model. In general, digital logic circuits are designed with ba-be filtered out by simply controlling a global synchronization

signal. In asynchronous circuits, these glitches are known as sic logic gates such as a NAND gate and NOR gate. It is
known that to ensure delay-insensitive behavior of the circuit,hazards, which can cause the circuit to malfunction.

For example, consider the circuit shown in Fig. 5. For this any logic gate must wait for a transition on all of its inputs
before generating a transition on its output (12). Because allcircuit, if input x1x2 changes from 00 to 10, then output z goes

high, and the next state variable Y1 changes to 1 while the single-output standard logic gates such as AND, NAND, OR,
NOR do not satisfy this constraint, they cannot be used tonext state variable Y2 remains at 1. In this process, the output

of the AND gate x1y1 changes to 0 while the output of the build delay-insensitive circuits. Thus, only logic elements that
satisfy this constraint, such as C-element (which implementsAND gate x1y2 changes to 1. If the AND gates have nonzero

finite delays and one AND gate has more delay than the an AND of transitions), inverters, buffers, and wires, can be
used to implement delay-insensitive circuits. In order to de-other, then the output of the OR gate implementing Y2 can go

to 0 for a short duration (equal to the difference in the delays sign delay-insensitive asynchronous circuits in practice, more
complex delay-insensitive logic elements with a range of func-of the AND gates). If this difference in AND gate delays is

large enough, the circuit can stabilize in some other state be- tionality are used (13). Because it is impractical to design
pure delay-insensitive circuits with simple logic elements, re-cause the transient can be propagated back through the feed-

back wires. This transient on the output of the OR gate is searchers have relaxed the pure delay-insensitivity constraint
to develop quasi-delay-insensitive circuits. Quasi-delay-insen-known as a hazard. Depending on the specifications, changing

the logic implementation can eliminate some type of hazards. sitive circuits are similar to delay-insensitive circuits except
that they assume isochronic forks (72). An isochronic fork isFor example, adding an AND gate y1y2 (shown as dotted in

Fig. 5) to the circuit implementing Y2 keeps the output Y2 at a forked wire where all branches have exactly the same delay.
Some researchers have relaxed this constraint to allow a1, and no hazard can occur assuming that the feedback wires

have much larger delays than the delays in combinational bounded skew between different branches of the fork. In con-
trast, the delays on different branches of a fork in delay-in-logic. If this assumption is not met and y1 falls too fast, then

the output of gate y1y2 may fall to give a transient Y2 output sensitive circuits are completely independent of each other. In
additon to speed-independent and delay-insensitive circuits,again.

We can now define a hazard as a deviation of an output timed asynchronous circuits (14,45) have also been developed
which utilize the bounded nature of delays in practice to opti-signal from the specified behavior. A hazard can be classified

as a static hazard, a dynamic hazard, a combinational hazard, mize the performance of asynchronous implementation.
There are several approaches of designing asynchronousor a sequential hazard. These are formally defined as follows.

A signal is said to have a static hazard if it should remain circuits. Asynchronous design methodologies can be charac-
terized in many ways (17,18) (i.e., the delay model used forconstant but it changes twice or more (in opposite directions).

A static hazard is a 0-hazard if the signal should remain 0, their implementation, the type of design specifications used to
specify their behavior). In the following section, several majorand it is a 1-hazard if the signal should remain 1. A signal is

said to have dynamic hazard if it should change only once but design methods for implementing asynchronous designs are



ASYNCHRONOUS LOGIC DESIGN 731

the same for input x1 � 1, x2 � 1. The outputs z1 and z2 repre-
sent the counter outputs (i.e., the count). Table 1 shows the
flow table specifications for the asynchronous counter. For
each state Si of the flow table, next, state entries are specified
for different input signals, and stable states are denoted by a
box. The rest state a is stable in input column 00. This input
may be followed by input 01, which results in a next state b
and outputs z1 � 0, z2 � 1 (i.e., a count of 1). Similarly, input
10 after the input 00 results in a next state c and outputs
z1 � 1, z2 � 0 (i.e., a count of 2). The next-state entry and the
outputs in column input 10 for present state a is unspecified.
The stable b in input column 01 may be followed by input 00

Combinational
logic

.

.

.

.

.

.

.

.

.

.

.

.

Delay elements

Inputs

State
signals

Outputs

or 11, taking the state machine to reset state a or state d,Figure 6. Asynchronous Huffman state machine.
respectively. In this case, the counter outputs z1 and z2 remain
unchanged (i.e., the count remains the same). Similarly, the
rest of the flow table entries can also be specified, as shown

briefly described. These methods are categorized according to in Table 1. Outputs are specified only for stable states, as-
the type of specifications they use. suming that outputs may change at any time during the tran-

sition.
The initial flow table describing the desired asynchronous

ASYNCHRONOUS DESIGN METHODOLOGIES
behavior usually contains some redundancy. The removal of
redundant states [i.e., state minimization] is important to re-

Asynchronous Design Using Finite State Machines
duce the circuit complexity of the final implementation. To
implement the reduced state table as a logic circuit, everyHuffman State Machines. Asynchronous behavior is tradi-

tionally synthesized using finite state machine specifications, state must be assigned a unique Boolean encoding. This step
is known as state assignment (15). In the case of a transitionwhich are implemented using a Huffman machine (15) shown

in Fig. 6. A Huffman machine follows a bounded delay model between states that involve multiple state signal changes, it
must be ensured that the circuit operation is independent ofand consists of combinational logic with primary inputs, pri-

mary outputs, and feedback state variables. Instead of latches the order in which these state signals change. A situation in
which more than one state variable must change in the courseor flip-flops in the state signal feedback loop, delay elements

are used to store state information. In each state, a state ma- of a transition is called a race condition. A race is said to be
a critical race if the stable state reached by the circuit de-chine can receive inputs, generate outputs, and move to the

next state. If the state machine receives an input and remains pends on the order in which the signals change (i.e., the out-
come of the race). There are many techniques to achieve criti-in the same state, then that state is called a stable state. Be-

cause asynchronous circuits do not have a clock, state transi- cal race free state assignment such as one-hot assignments
(15) or those described by Tracey (19). Further details on vari-tions are caused by input changes. If an input change causes

a transition from a stable state to an unstable state, then ous state minimization and state assignment techniques can
be obtained from Unger (15).the state continues to change until a stable state is reached.

Asynchronous state machines can also be characterized ac- The minimized and critical race free encoded flow table de-
scribes a set of logic equations that produce the next statecording to the number of inputs that may change between any

state transition. In a single-input change machine, only one and output functions. These logic functions can be imple-
mented by a combinational circuit. The logic function of ainput may change at any given time, and any subsequent in-

put change takes place only after the circuit has stabilized in next state (i.e., feedback wires) or an output signal can be
obtained by deriving its Karnaugh map (i.e., finding its im-response to this input. In contrast, in a multiple-input

change-asynchronous state machine, any number of inputs plied value in each binary encoded flow table state). Connect-
ing the next-state output and present-state input of this cir-may change simultaneously (i.e., within a very narrow inter-

val di) and any subsequent input changes take place only cuit yields the logic circuit implementing the asynchronous
state machine. This implementation may exhibit a hazardousafter the circuit has stabilized.

The asynchronous FSM specifications are described using behavior. Hazard removal is much easier in single-input
change machines as compared to multiple-input change ma-a flow table (15). A flow table expresses a relationship be-

tween present states, inputs, next states, and outputs. A flow chines because of their more constrained operation as dis-
cussed previously. The issue of hazard removal can be simpli-table represents the output and next-state circuit behavior as

a function of its inputs and present state. In Table 1, asyn- fied if it is assumed that the inputs to the logic circuit do not
change until the circuit outputs have stabilized. This condi-chronous flow table specifications are illustrated with a sim-

ple asynchronous modulo 4 counter having two binary inputs tion is known as fundamental mode constraint which gener-
ally results in severe performance penalty. Fundamentalx1 and x2 and two binary outputs z1 and z2. The input x1 � 0,

x2 � 0 is a reset input that clears the counter to an initial mode constraint is similar to a hold time constraint for a sim-
ple latch or a flipflop. Several formal design procedures existstate producing the output 00. In this example, only a single-

input variable is allowed to change in a transition (single- for synthesizing hazard-free fundamental-mode single-input
change asynchronous state machines and are described ininput change mode). The count is incremented by one when

the input x1 � 0, x2 � 1 is received and incremented by two (15). Although multiple-input change state machines are
more flexible, they are significantly more difficult to design.when the input x1 � 1, x2 � 0 is received. The count remains



732 ASYNCHRONOUS LOGIC DESIGN

Table 1. An Example Flow Table Specifications

Present State x1x2 � 00 x1x2 � 01 x1x2 � 11 x1x2 � 10

a a /00 b/� �/� c/�
b a/� b /01 d/� �/�
c a/� �/� e/� c /10
d �/� f/� d /01 g/�
e �/� h/� c /10 i/�
f a/� f /10 e/� �/�
g a/� �/� j/� g /11
h a/� h /11 j/� �/�
i a/� �/� k/� i /00
j �/� m/� j /11 l/�
k �/� b/� k /00 c/�
l a/� �/� d/� l /01
m a/� m /00 k/� �/�

Some methods (15) for synthesizing multiple-input change The local clock is also used to eliminate a number of possible
hazards.machines rely on inertial delays to filter out glitches. Unfortu-

nately, inertial delays are difficult to build, and they penalize In general, a self-synchronized machine is idle until an in-
put change occurs. Subsequently, the combinational logic gen-the logic implementation in terms of performance. In the ab-

sence of fundamental mode constraint, it is extremely difficult erates corresponding outputs and state signals. The storage
elements update the machine state when the local clock gen-to obtain hazard-free behavior in Huffman state machine im-

plementations. In addition, to obtain a hazard-free implemen- eration circuitry generates a clock pulse. The machine is
ready to accept new inputs after the storage elements havetation, the Huffman state machine specifications must be free

from essential hazards (i.e., hazards inherent to the specifi- been updated. Self-synchronized machines try to combine the
benefits of synchronous and asynchronous state machines.cation). Burst mode specifications developed by Nowick et al.

(22) provided solutions to these hazard-free implementation Both single-input change and multiple-input change self-syn-
chronized machines can be designed. They offer the advan-problems. In addition to providing the flexibility of multiple-

input changes, burst mode specifications avoid essential haz- tages of synchronous machines (i.e., they are simple and do
not require critical-race free state assignments). In addition,ards by construction.
they do not require hazard-free logic for outputs and next-
state entries. However, they do transfer the problem of haz-Self-synchronized State Machines. The difficulties and over-

head of hazard elimination associated with Huffman state ard elimination to the local clock generation logic, which may
require an inertial delay at its output to eliminate hazards.machines gave rise to an asynchronous design style called

self-synchronized state machines (20,21). As shown in Fig. 7, In addition, they may have poor performance as a result of
their design based on the worst-case delay of output andthese state machines generate their own synchronization sig-

nal, which acts like a clock on internal flip-flops. The self- state variables.
synchronized machine consists of combinational logic, storage

Burst Mode State Machines. Nowick et al. (22) made signifi-elements with clock control, inputs and outputs, and state
cant contributions to the design of asynchronous circuits us-variables that are fed back to machine inputs. The local clock
ing state machines by developing burst mode state machineis generated from the external inputs and the current state.
specifications. One of the biggest advantage of burst mode
machines is that the logic implementation is guaranteed to be
hazard-free, while maintaining high performance. In addi-
tion, burst mode machines allow multiple-input changes,
thereby yielding more concurrent systems. In burst mode
state machines, a set of input transitions (i.e., input burst) is
followed by a set of output transitions (i.e., output burst). Fi-
nally the state change takes place. The inputs in the input
burst may occur in any order. The output burst can occur only
after the entire input burst has occurred. A new input burst
cannot occur until the machine has reacted to the previous
input burst. Thus, these specifications also require the funda-
mental mode assumption but only between transitions in dif-
ferent input bursts. In order to distinguish different input
bursts in a given state, no input burst can be a subset of an-

State
signals

Outputs

Combinational
logic

Local clock
circuit

S
to

ra
g

e
 e

le
m

e
n

ts

Inputs

other input burst. This constraint is known as maximal set
constraint. In addition, each state must follow the unique en-Figure 7. Self-synchronized state machine.



ASYNCHRONOUS LOGIC DESIGN 733

burst mode specifications. To implement large designs, usu-
ally the behavior is described using distributed specifications.
Kudva et al. developed an approach for synthesizing distrib-
uted burst mode specifications (24). Nowick et al. have devel-
oped a comprehensive suite of burst mode synthesis tools
which include hazard-free logic minimization capability (24a)
as well.

Burst mode specifications can also be implemented using
the Huffman-style state machines illustrated in Fig. 6. Yun
and Dill (25) proposed automatic synthesis techniques for
burst mode specifications using Huffman state machines, also
known as 3D asynchronous state machines. Burst mode speci-
fications have enjoyed significant success in industry as well.
Research by Davis et al. (26) at Hewlett-Packard Labs re-

a+b+/y+z–

A

C

D

B

E

F

c+/z–

b–c+/z+

c–/– –

a–/y–

c+/y+

a+c–/z+

sulted in a complete CAD methodology for burst mode synthe-
sis, which was used to develop several industrial designs.Figure 8. Burst mode specifications of a simple controller.

Asynchronous Design Using Petri Nets-Based Specifications
try constraint, which implies that every state has a unique

Petri nets (27) are a modeling tool for the study of systems. A
entry point. Thus, a given state is always entered with the

petri net is a bipartite directed graph �P,T,F,M0�, consisting
same set of input values. Burst mode specifications are speci-

of a finite set of transitions T, a finite set of places P, and a
fied using state diagrams. Figure 8 shows the burst mode

flow relation F � P � T � T � P specifying a binary relation
specifications of a simple controller with three inputs a, b, c

between transitions (represented as bars) and places (repre-
and two outputs y, z. Each transition between two states is

sented as circles). For example, in the petri net of Fig. 9, six
labeled with an input burst followed by an output burst. For

places p0, p1, p2, p3, p4, and p5 correspond to six conditions (i.e.,
example, transition between state A and state B takes place

a job to be processed, a job is waiting, the processor is idle, a
with an input burst of �a� b�� and generates an output burst

job is being processed, a job is waiting to be output, and a job
of �y� z��, where a� denotes a rising transition on input a

has been processed). This example petri net has four transi-
and z� denotes a falling transition on output z. The key dif-

tions t1, t2, t3, and t4 that correspond to four events (i.e., a job
ference between burst mode state machines and multiple-in-

is put in input queue, a job is started, a job is completed, and
put change Huffman state machines is that, unlike multiple-

a job is output).
input change machines, inputs within a burst could be uncor-

The net structure represents the static nature of the mod-
related, arriving in any order and at any time.

eled system. Its dynamic behavior is captured by its markings
Burst mode asynchronous specifications are implemented

and the firing of transitions, which transform one marking
using self-synchronized or locally clocked state machine

into another. A marking M is a collection of places corre-
shown in Fig. 7. Implementation of burst mode specification

sponding to the local conditions that hold at a particular mo-
in locally clocked machines differs from self-synchronized ma-

ment. It is graphically represented by solid circles called to-
chines in several aspects. In burst mode implementation, the

kens, residing in these places, i.e., for a given place p, a
clock is generated selectively (i.e., some transitions do not re-

marking defines a nonnegative integer representing number
quire a clock pulse). In addition, unlike many self-synchro-

of tokens in p. The initial marking is denoted as M0. A transi-
nized methods (20,21), the clock unit does not require inertial
delays to eliminate hazards. As mentioned previously, burst
mode specifications impose simple constraints on input tran-
sitions, such as maximal set and unique entry constraint to
guarantee hazard-free logic. Initially, the burst mode locally
clocked machine is stable in some state. Inputs in a specified
burst may then change value in any order and at any time.
Throughout this input burst, the machine outputs and state
remain unchanged. When the input burst is complete, the
outputs change as specified. A state change may also occur
concurrently with the output change. Then the machine will
be driven to a new stable state. It is also possible for the input
burst and output burst to occur without a state change. In
either case, no further inputs may arrive until the machine is
stable. After the machine is stable, the transition is complete
and the machine is ready to receive a new input burst.
Throughout the entire machine cycle, outputs and state vari-
ables must be free of glitches.

Although this design style allows multiple input changes
that can arrive at arbitrary times, it is restricted in terms of

p2 {the processor is idle}

t1 {a job is put in input queue}

p0 {a job to be processed}

p1 {a job is waiting}

t2 {a job is started}

p3 {a job is being processed}

t4 {a job is output}

p5 {processed job}

p4 {a job is waiting to be output}

t3 {a job is completed}

modeling concurrency between input and output signals. Yun
et al. (23) removed some of these restrictions with extended Figure 9. Modeling of a simple computer system with petri nets.



734 ASYNCHRONOUS LOGIC DESIGN

STG specifications can explicitly describe asynchronous
circuit behavior (e.g., concurrency, causality and conflict) and
have captured wide attention. Figure 10(a) shows a timing
diagram that specifies three signals x, y, and z. A positive
transition of signal y follows the positive transition on signal
x. Similarly, a positive transition of signal z follows the posi-
tive transition on signal x. Because there is no ordering con-

z

y

x

y+
y+

x+
x+

(a) (b)

x+

z+

z+

y–y–

z–z–

x–

x–

straint between the positive transitions of y and z, they are
Figure 10. (a) An example timing diagram and (b) the corresponding said to be concurrent. This timing diagram can be directly
signal transition graph. transformed into STG specifications by representing signal

transitions as nodes and ordering constraints as directed arcs.
The STG specifications corresponding to the timing diagram
of Fig. 10(a) are shown in Fig. 10(b).tion is said to be enabled when all its input places are marked

with at least one token. The firing of an enabled transition A model similar to STG specifications, called change dia-
grams, was proposed by Varshavsky et al. (30). Change dia-removes one token from each input place and deposits one

token in each output place. The transformation of a marking grams can specify concurrent behavior but are unable to spec-
ify conflict behavior (i.e., either one of the events can occurM into another marking M�, by firing a transition t, is denoted

by M �t M�. For the petri net example of Fig. 9, the transition but not both). STG specifications have several advantages for
specifying control-intensive asynchronous behavior. STGt1 (a job is put in the input queue) is enabled because place

p0 has one token (i.e., condition a job to be processed is valid) specifications can explicitly describe the major aspects of
asynchronous control circuit behavior (e.g., concurrency, cau-and p0 is the only input place for transition t1. After the tran-

sition t1 occurs (fires), a token will be removed from place p0 sality, and conflict). Most control-intensive circuits are speci-
fied using timing diagrams that can be directly transformedand will be deposited in transition t1’s output place p1. This

implies that the condition a job is waiting will become valid. into STG specifications. Thus, they are appealing to design-
ers. Because STG specifications are based on petri nets as anThe initial marking M0 of the example petri net (Fig. 9) is

�p0, p2�. Occurrence (firing) of transition t1 transforms the pe- underlying formalism, they can directly use the wide body of
petri net analysis techniques. The graphical nature of a signaltri net marking to �p1, p2�.

One of the main features of petri nets is the inherent con- transition graph makes it easier to analyze circuit behavior
at a higher level of abstraction.currency. In the petri net model, two events, which are both

enabled and do not interact, may occur independently. An- A logic circuit can be derived by transforming the STG
specifications into a state graph (29) [as shown in Fig. 11(b)].other major characteristic of petri nets is their asynchronous

nature. Petri nets define a partial order of the occurrence of The state graph represents all the states of STG specifica-
tions. It captures all the possible transition sequences in theevents. The petri net structure contains all the necessary in-

formation to define all possible sequences of events. Thus, for STG. A state graph can be derived by exhaustively generating
all possible markings (i.e., states) of the STG. A state graphthe petri net of Fig. 9, the event a job is completed (transition

t3) must follow the event a job is started (transition t2). Petri can be mapped into a circuit by assigning a unique binary
code to each state in the state graph. This binary encodingnet execution is viewed as a sequence of discrete events. The

order in which the events occur is one of possibly many al- can be derived from the values of STG signals in each state
described as follows.lowed by the petri net structure. In addition to representing

concurrency, petri nets can also represent nondeterminism, Logic functions can be derived from a state graph by as-
signing binary codes to each state. The value of input andi.e., a choice between several events. If, at any time, more

than one interacting transitions (i.e., transitions that have a output signals in a given state gives the binary coding for
that state and is derived using a consistent state assignmentcommon place as input) are enabled simultaneously, then any

of the enabled transitions may fire next. The choice as to defined as follows. Consistent state assignment: For STG sig-
nals �s1, s2, . . ., sn�, a state M in the state graph is assignedwhich transition fires is made in a nondeterministic manner,

i.e., randomly. a binary code �M(s1), M(s2), . . ., M(sn)�. If a transition t is
enabled in state M (i.e., M �t M�), then t � ‘‘si�’’ implies
M(i) � 1; t � ‘‘si�’’ implies M(i) � 1 and M�(i) � 0.Signal Transition Graphs. Signal transition graphs (STG)

are event-based graphical models that specify the asynchro- For example, in the initial marking of STG shown in Fig.
11(a), transition x� is enabled. Thus, signal x must have anous circuit behavior using temporal relationships between

signal transitions rather than states. They were introduced value 0 in the initial state because it must go to a value 1
after firing a positive transition of x. Similarly, in the initialindependently by Rosenblum and Yakovlev (28) and Chu (29).

Signal transition graph specifications are based on petri nets state, STG signals y and z can also be evaluated to have val-
ues of 0 and 0, respectively. This assigns a binary code 000 toas an underlying formalism, where transitions T of the net

are interpreted as rising (positive) and falling (negative) tran- the initial state for state graph shown in Fig. 11(b). The val-
ues in binary code 000 correspond to values of STG signalssitions on input I and output O wires of the asynchronous

circuit (i.e., T � I � ��, �� � O � ��, ��). In an STG, transi- x, y, and z, respectively. Binary encoding for the rest of the
states can be easily derived by simply firing the enabled sig-tions are represented by their names instead of a bar and a

label. Every place with a single input and output transition nal transitions and changing the signal values accordingly.
Figure 11(b) shows the state graph corresponding to the sig-is represented by an arc between these transitions, which rep-

resents their temporal relationships [as illustrated in Fig. nal transition graph of Fig. 11(a). Every state the state graph
corresponding to the signal transition graph of Fig. 11(a). Ev-10(b)].



ASYNCHRONOUS LOGIC DESIGN 735

Figure 11. (a) An example STG; (b) the
corresponding state graph; and (c) the

100

101

y–

x–

x– y–

x–

z–

z–

x+

x+

z+

z+

z+

y+

y+

y

y

x

z

xz

y+

y+
111

110

00

Ckt.

(b)(a) (c)

01 11 10

y = x + z

0 1 1 1

0

0

1 1 1 1

001

011

010

000

logic derivation.

ery state in the state graph of Fig. 11(b) has been encoded graph. This signal must have a value of 1 in one state and 0
in the other state. The state signal insertion to satisfy com-according to the values of the input and output signals in the

STG. The following constraint ensures that the circuit will be plete state coding violation is also illustrated in Fig. 12 where
n is assigned to the binary code of state S1 and n is assignedable to distinguish between two states by using only the input

and output signal values. to the binary code of state S2. Thus, the states S1 and S2 now
have different binary codes (i.e., 001n and 001n, respectively).A state graph satisfies the complete state coding (CSC)

constraint (29) if and only if the transitions of non-input sig- A logic circuit can be derived from a state graph with no
CSC violations by finding the implied values of output signalsnals, enabled in two states having the same binary code as-

signment, are the same. in every state. The implied value of an output in a state graph
state is obtained as follows. The implied value of an output oThus, only input transitions enabled in two states having

the same binary code are different, and it is assumed that in some state graph state s is defined as
the environment can distinguish between them. A state graph

• the complement of the present value of o in binary codesatisfying the CSC constraints has a well-defined logic func-
of state s, if o is enabled in state s, ortion, and there is no conflict of implied values even if the bi-

nary code assignments of two states are the same. Because • the present value of o in the binary code of state s, if o is
only input and output signal values are used for coding the not enabled in state s.
states, the CSC constraints are necessary for logic implemen-
tation of the STG specifications. A CSC violation must be cor- For example, in initial state 000 of state graph in Fig.
rected by inserting extra signals in the STG, so as to distin- 11(b), output y is not enabled. Thus, the implied value of y in
guish between the states violating CSC (31). For example, state 000 will be same as the present value of y (i.e., 0). On
Fig. 12 shows two states S1 and S2 having the same state the other hand, in state 100, output transition y� is enabled.
encoding 011 in a state graph. State S1 enables an input sig- Thus, the implied value of y in state 100 will be the comple-
nal ai transition and an output signal ao transition. On the ment of the present value of y (i.e., 1). Similarly, the implied
other hand, state S2 enables only an output signal bo transi- value of output y in the rest of the state graph states can also
tion. Because both states S1 and S2 have the same binary en- be obtained. The logic function of an output can be obtained
coding 011, and they enable different output (i.e., noninput) by constructing a Karnaugh map that contains the entries of
signals, they violate the CSC constraint according to its defi- output-implied values. For example, in the Karnaugh map of
nition given previously. This violation can be corrected by in- output y in Fig. 11(c), the entry corresponding to xyz � 000 is
serting another signal n (called a state signal) in the state 0 (i.e., the implied value of y in state graph state 000) and the

entry corresponding to xyz � 100 is 1 (i.e., the implied value
of y in state graph state 100). A Karnaugh map gives the logic
function for the corresponding output [e.g., the Karnaugh
map in Fig. 11(c) generates the logic function y � x � z].

It has been proved that CSC is the necessary and sufficient
requirement for implementing hazard-free STG specifications
into logic circuits, if the logic can be implemented with a sin-
gle complex gate (32). A number of state encoding techniques
have been developed to satisfy CSC constraint. Lin and Lin
(37) and Vanbekbergen et al. (38) proposed state encoding
techniques to satisfy a more strict constraint than the generalInput signal ai+ Output signal ao– Output signal bo–

001 {n}

S2

001 {n}

S1

Figure 12. Complete State Coding violation in STGs. CSC constraint. This constraint requires that each state in



736 ASYNCHRONOUS LOGIC DESIGN

the state graph must have a unique state code. In addition, rive a hazard-free speed-independent (i.e., under unbounded
gate delay) circuit. Pastor and Cortadella (43e) developed ef-these techniques were restricted to STG specifications de-
ficient algorithms for hazard-free synthesis of speed-indepen-scribing only concurrent asynchronous behavior (also known
dent circuits directly from STGs that satisfy CSC constraint.as marked graphs). These techniques were also limited by an
Beerel and Meng (35) and Kishinevsky et al. (36) also devel-additional restriction that for every signal, the STG can spec-
oped efficient algorithms to derive hazard-free speed-indepen-ify only one rising and one falling transition. Lavagno et al.
dent circuits from state graphs. Myers and Meng (45) have(31) proposed a new state encoding framework for STG speci-
extended the STG specifications to incorporate timing con-fications with a limited interplay of concurrency and choice.
straints and developed efficient synthesis algorithms to im-They solved the CSC constraint satisfaction problem at the
plement them.state graph level by transforming the STG into an FSM state

Over several years, a group of researchers, which includetable. This state table is then reduced with state minimiza-
Kishinevsky, Kondratyev, Taubin, and Varshavsky, havetion and encoded using critical race-free state assignment
made significant contributions to developing a publicly avail-techniques. This approach guarantees sufficient conditions for
able design tool called FORCAGE for synthesizing practicalthe CSC satisfaction. The algorithm inserts state signals into
STG specification into speed-independent circuits (36). An-the original STG to satisfy CSC constraints, but only handles
other publicly available design tool for synthesizing hazard-live free-choice petri nets. The CSC solutions obtained in this
free circuits from STG specifications was developed by La-framework correspond to a special class of STG transforma-
vagno et al., and this tool is integrated with the publicly avail-tions. Vanbekbergen et al. (40) proposed a general framework
able Berkeley SIS tool (45a). Vanbekbergen, Ykman, and Linto solve the CSC satisfaction problem for general STG speci-
et al. at IMEC Belgium developed a tool called ASSASSIN forfications. It is not limited to marked graph or free-choice petri
synthesis and analysis of asynchronous control circuits fromnets. They formulated the CSC problem as a Boolean satisfi-
general STGs including timed signal transition graphs (45b).ability (SAT) problem. They gave the necessary and sufficient
Cortadella et al. have developed a state encoding and synthe-conditions for the insertion of state signals. This ensures that
sis tool called PATRIFY for designing speed-independent cir-CSC property while conserving the original STG behavior. It
cuits from STG specifications (43b,43c).is well known that many combinatorial optimization problems

can be directly transformed into the SAT problem. Unfortu-
nately, the instances of SAT formulas derived from practical Asynchronous Design Using Communicating Process
STGs are too large to be solved efficiently. Puri and Gu (41)

CSP-Based Specifications. Hoare introduced a specificationproposed an efficient modular approach for solving complete
language, called communicating sequential processes (CSP)state coding problems by first partitioning the signal transi-
(46), for a set of concurrent processes that communicate ontion graph into a number of simpler and manageable smaller
fixed links called channels. Martin used a subset of this speci-modular graphs. This approach is applicable to general signal
fication language consisting of sequential, communication,

transition graphs and achieves significant performance im- and probe constructs and developed a rule-based asynchro-
provement (42,43). A group of researchers that include Corta- nous synthesis procedure that transforms CSP (communicat-
della, Kishinevsky, Kondratyev, Lavagno, Pastor, Semenov, ing sequential processes) specifications describing asynchro-
and Yakovlev et al. (43a,43b,43c) have made significant prog- nous behavior into CMOS (complimentary metal oxide silicon)
ress in reducing the complexity of solving complete state cod- circuits (47,48).
ing. They solved the CSC problem by directly analyzing the In Martin’s method, asynchronous behavior specified using
STG specifications rather than state graphs derived from this the CSP notation is transformed into a semantically equiva-
STG. Because the number of states in a state graph can be lent set of VLSI (Very Large Scale Integrated circuit) opera-
very large for a highly concurrent STG, methods that work tors using transformations such as process decomposition,
directly at the STG level can yield significant performance handshaking expansion, and production-rule expansion. The
improvement in some cases. first step of the transformation, called process decomposition

In general, logic circuits derived from practical STG speci- replaces one process with several processes by application of
fications are too large to be implemented in a single complex a decomposition rule. Process decomposition makes it possible
gate. This implies that the gate level logic implementation to reduce a process with an arbitrary control structure to a
obtained from state graphs satisfying CSC constraint may not set of subprocesses of only two different types: either a (finite
be free from all hazards (32). Lavagno et al. (34) and Yu and or infinite) sequence of communication actions or a repetition
Subrahmanyan (39) developed heuristic techniques that add of process selections. The next step of the transformation,
delays for gate-level hazard removal for bounded delay mod- called handshaking expansion, replaces each channel with a
els. Moon proved in (33) that an STG that satisfies the CSC pair of wire-operators and each communication action in a
requirement is free from all functional hazards, all critical program with its implementation in terms of elementary ac-
races, and all static O-hazards, under the unbounded gate de- tions of four-phase handshaking protocol. Production-rule
lay (speed-independent) model. Thus, the speed-independent expansion is the transformation from a handshaking expan-
logic implementation of an STG-satisfying CSC constraint sion to a set of production rules. It is the most important step
may have only static 1-hazards and dynamic hazards. Moon of the compilation and consists of state assignment, guard
et al. further proposed algorithms to remove these remaining strengthening, and symmetrization. State assignment trans-
hazards (32,33). Significant progress was made by Kondra- forms the handshaking expansion to ensure that each state
tyev et al. (43d), who developed sufficient conditions called of the expansion is unique. After state variables have been

introduced so as to distinguish any two states of the hand-monotonous cover condition and unique entry condition to de-



ASYNCHRONOUS LOGIC DESIGN 737

shaking expansion, it is possible to strengthen the Boolean pletely specifies the behavior of the interface. A trace con-
taining no execution symbols is represented by symbol 	.guards of the production rules to enforce program-order exe-

cution. Subsequently, symmetrization may be performed on Traces may be extended by appending a new symbol corre-
sponding to a possible transition onto the end of the trace.production rules to minimize the number of state-holding op-

erators. Finally, the production rules can be transformed into This indicates that the transition is allowed to occur immedi-
ately following the events already recorded in the trace. Tracea circuit implementation.

Burns developed an automated version of this procedure sets, being sets of simple lists of symbols, are often expressed
using familiar regular-expression notation. This notationand further improved the performance of implemented

circuits (49,50). This design style assumes a four-phase hand- makes the description of an entire trace set more compact
than simply listing all the possible traces. Regular expres-shaking protocol [Fig. 2(b)]. The designed circuits are quasi-

delay-insensitive (i.e., the operation of the circuit is indepen- sions are composed of the symbols in the alphabet � � �	� of
the trace structure, and special symbols �, �, (, ) interpreteddent of the delays of the component and interconnecting wire

delays) and the delays of wire forks are comparable [i.e., the as follows.
Let r1 and r2 be two regular expressions.design conforms to the isochronic fork assumption (51)]. This

method using the CSP specifications has many practical ex-
• r1r2 is a regular expression representing the concatena-amples such as the distributed mutual exclusion element (52)

tion of r1 and r2.and an asynchronous microprocessor (53). A similar compila-
tion-based method that generalizes Martin’s communication • r1�r2 is a regular expression representing a choice be-
style to include shared variables has been proposed by van tween expressions r1 and r2.
Berkel et al. (54). These techniques have also been imple- • r*1 is a regular expression that represents zero or more
mented by van Berkel et al. into a robust asynchronous de- repetitions of expression r1 into a single expression.
sign tool called TANGRAM at Philips Research Labs. TAN- • (r1) represents a regular expression that groups all the
GRAM first compiles the CSP-based specifications into an symbols of expression r1 into a single expression.
intermediate representation called handshake circuit. A
handshake circuit consists of a network of handshake pro- For example, if alphabet � � �r,a� is used to represent re-
cesses which communicate asynchronously on channels using quest-and-acknowledge wires in a two-phase signaling proto-
asynchronous protocols. The circuit is then optimized using col, the trace set of this protocol can be expressed with the
peephole optimization, and finally the components are regular expression �[(ra)*]�[(ra)*r�.
mapped to VLSI implementation. TANGRAM has been suc- In designing delay-insensitive asynchronous circuits
cessfully used to implement several DSP (Digital Signal Pro- through trace theory, components are described using com-
cessing) designs at Philips. Brunvand and Sproull used a pro- mands that describe sequences of possible events (i.e., traces).
gramming language called occam, which is based on CSP (55). Based on trace theory, Ebergen developed the concepts of for-
Occam describes asynchronous computations as a set of con- mal decomposition of a component (59). A decomposition of a
current processes that interact by communication over chan- component represents a realization of that component by
nels. In occam, control over concurrent and sequential aspects means of a network of other basic components such that the
of communication is explicit. Brunvand and Sproull developed correctness of the network is insensitive to delays in the basic
a design methodology to translate programs written in a sub- components. The basic components in trace theory are imple-
set of occam automatically into delay-insensitive circuits us- mented with C-elements, a XOR gate, Toggle elements, and
ing syntax-driven techniques and two-phase handshaking Merge elements (59). All communication in this method is
protocol [Fig. 2(a)]. The resulting circuits are then improved through a two-phase handshaking protocol.
using semantics-preserving circuit-to-circuit transformations.

Asynchronous Design Using Micropipelines

Trace Theory-based Specifications. Trace theory was in- Pipelines provide an efficient framework for performing high-
spired by Hoare’s CSP and developed by van de Snepscheut speed computations because their separate stages can operate
(56) and Rem et al. (57). Ebergen used trace theory to de- in parallel. Pipelines both store and process data, and the
scribed asynchronous behavior (58). A trace of a circuit repre- storage elements (registers) and processing logic blocks alter-
sents a history of execution by listing all the transitions of nate along the length of the pipeline. Thus, without any pro-
signals at its interface. The set of all possible traces of a cir- cessing logic blocks, a pipeline will act like a shift register.
cuit, known as trace set, completely specifies the behavior of Synchronous circuits use clocked pipelines [as shown in Fig.
the circuit at its interface. More formally, a trace structure is 13(a)], where data advance through the pipeline at fixed clock
defined using the communication alphabet � of a circuit. This rate. Because processing logic blocks in the pipelines may
alphabet consists of a finite number of symbols used to repre- have different delays, the clock rate is chosen according to the
sent the wires over which a circuit communicates. A trace worst-case delay of any processing block. Because of this fixed
structure is defined as a triple: T � �I,O,X�, where I � � is a clock rate, a clocked pipeline operates at a much slower data
finite set of input symbols, O � � is a finite set of output rate than its optimal performance. This drawback of clocked
symbols, and X � �* is a set of all possible traces of the cir- pipelines can be eliminated by employing asynchronous pipe-
cuit. The set �* is the set of all finite-length sequences of lines where different stages operate at different rates and
symbols in �. Although an individual trace represents a sin- they communicate with each other using handshaking proto-
gle execution history of the circuit, the trace set X captures cols. Micropipelines were introduced by Sutherland (8) as an

asynchronous alternative to synchronous pipelines. As shownall possible execution histories of an interface and thus com-



738 ASYNCHRONOUS LOGIC DESIGN

Clock

(b)(a)

CLK

R
e

g
is

te
r

R
e

g
is

te
r

L
o

g
ic

L
o

g
ic

 L
1

R
eg

1

R
eg

2

L
o

g
ic

 L
2

L
o

g
ic

CLK

Di Do Di

C

Cd P C Pd

Pd Cd P

Ri

Ai

Do

R1

A1
d2 Ro

Ao

C2

C1

d1

Figure 13. (a) Clocked pipeline and (b) micropipeline with processing.

in Fig. 13(b), a micropipeline consists of alternating logic initialized to the same state. This is achieved through a mas-
ter clear signal. A request event received on the Ri wire of theblocks separated by registers and control circuitry. Computa-

tion on data in a micropipeline is accomplished by the logic micropipeline initiates the processing. This allows C-element
C1 to generate a capture signal for register Reg1. Subse-blocks. In addition to its elastic nature, a major benefit of

micropipeline structure is that hazards can be filtered out by quently after some delay, register Reg1 generates a capture
done (Cd) signal, which sends an acknowledge event back onthe registers that moderate the flow of data through the

logic blocks. Ai wire. The event on Cd wire generated by register Reg1 also
reaches C-element C2 after being delayed by a duration moreIn micropipelines, event-controlled registers are employed

as opposed to clocked registers in clocked pipelines. An event- than the worst-case delay d1 of the logic block L1, which gener-
ates a capture signal for register R2. This indicates that logiccontrolled register responds to events on its two control wires,

called capture [denoted by C in Fig. 13(b)] and pass [denoted block L1 has completed processing and register R2 should cap-
ture this data. After register Reg2 captures data, it generatesby P in Fig. 13(b)]. When the control signals C and P are in

same state, the event-controlled register is transparent (i.e., a capture done signal that in turn signals register Reg1

through pass (P) signal that it can pass new data to logicits data input is directly connected to its output). When sig-
nals C and P differ in their state, the event-controlled register block L1 now. At this point, logic block L2 can process the cap-

tured data in register Reg2 concurrently with processing incaptures and stores data, and its data output is disconnected
from its data output. The behavior of this event-controlled logic block L1. After the event on its pass wire, register Reg1

generates an event on its pass done (Pd) signal to indicateregister can also be described in terms of events. Initially, the
register is assumed to be transparent. In addition, it is as- that it has switched to the transparent mode. With this event

on Pd signal of register Reg1, C-element C1 will again gener-sumed that the capture control signal and the pass control
signal always alternate. An event on the capture control wire ate a capture signal for register Reg1 after a request event on

Ri is received signaling the availability of data and the samecauses the register to capture and hold the data value passing
through it. This event isolates the output value of the ele- process continues.

Micropipelines have been extensively used in one of thements from changes at the register’s input but does not
change the output value. A subsequent event on the pass con- most comprehensive research efforts to design an asynchro-

nous microprocessor called AMULET (60), an asynchronoustrol wire returns the register to its transparent state, permit-
ting the next data value to appear at its output and possibly version of the popular synchronous ARM microprocessor. Al-

though micropipelines avoid the hazard problem and are elas-changing its output value. Thus, after each event on the pass
control wire, a new output value may appear. The event-con- tic in nature (i.e., each pipeline stage can have different de-

lay), they still deliver worst-case performance in each singletrolled register also includes two control outputs called cap-
ture done (denoted as Cd) and pass done (denoted as Pd), state of the micropipeline.
which are amplified and thus delayed versions of the corre-
sponding control input signals capture and pass. The control
output signals Cd and Pd deliver output events after the reg- ASYNCHRONOUS PROCESSORS

AND OTHER DESIGN EXAMPLESister has done its action (i.e., they must be delayed until after
the register has performed the corresponding capture and

Early digital computers embodied a variety of design styles.pass actions).
The datapath of a micropipeline as shown in Fig. 13(b) con- Although most designs were based on synchronous tech-

niques, there were several examples that used an asynchro-sists of event-controlled registers and logic blocks for data
processing, which alternate along the length of the micropipe- nous approach. For example, ORDVAC, built at the Univer-

sity of Illinois in 1951 and IAS, built by John Neumann’sline. The control for the micropipeline consists of a string of
Muller C-elements with inverters interposed as illustrated in group at Princeton University in 1951, were asynchronous de-

signs and operated without any central clock. Later in 1974,Fig. 13(b). Initially, the outputs of all Muller C-elements are



ASYNCHRONOUS LOGIC DESIGN 739

design team at Manchester University built a processor called dition, asynchronous circuits are prone to hazards that may
MU5 that used asynchronous control. In 1978, Davis designed cause a circuit to malfunction. The hazards are naturally fil-
the first dataflow computer, called DDM-1 (61), which used tered out in a synchronous design by choosing a long enough
locally synchronous modules that communicated using re- clock period, which ensures that the circuit is in a stable circuit
quest-and-acknowledge protocol. While modern digital com- state before the next input changes take place. Thus, high-per-
puters are dominated by synchronous approach, some asyn- formance asynchronous logic circuits that are free of hazards
chronous processor designs are beginning to make the are more difficult to design than their synchronous counter-
transition from research to products. parts. In general, the presence of hazards in asynchronous cir-

Alain Martin at Caltech developed the first quasi-delay- cuits is a major hindrance in their widespread use. In addition,
insensitive 16-bit asynchronous microprocessor (53) that was a clear advantage of asynchronous designs over synchronous
fabricated in 1.6 �m CMOS version and consumed only 200 designs for large-scale high-performance and low-power cir-
mW at 5 V and 7.6 mW at 2 V. This design was later imple- cuits still remains to be demonstrated in general.
mented using GaAs technology as well (62). Recently Martin
et al. also designed asynchronous version of MIPS R3000 pro-
cessor (63). Researchers at Manchester University have de- CONCLUSIONS
signed several asynchronous versions of the ARM micropro-
cessor, called AMULET (60). The most recent version of this Asynchronous logic circuits hold the promise of solving the
asynchronous microprocessor, known as AMULET2e (64), de- clock distribution and power dissipation problems in high-
livers 40 MIPS at only 150 mW and targets portable embed- performance circuits. This is a major motivating factor in the
ded applications. Advanced RISC (Reduced Instruction Set recent resurgence of interest in applying asynchronous design
Computers) Machine Ltd., the inventors of ARM microproces- techniques to processor design as well as low-power applica-
sor, have already initiated the efforts to transfer this asyn- tions. Asynchronous logic design should not be viewed as a
chronous design into a commercial offering (65). Sharp Corpo- single alternative to synchronous logic design. More accu-
ration recently announced an asynchronous media processor rately, synchronous design is a special case representing a
chip called NMP (66), that employs a data-driven architec- single design point in a multidimensional asynchronous de-
ture. It uses eight clock-free CPUs (Central Processing Unit), sign space, which varies from totally distributed control to
each of which delivers 600 MOPS using only 40,000 gates and global control with clock. Because of the problems of clocks
consuming less than 60 mW. In a significant development in with frequencies in excess of 1 GHz, it is likely that the next
the area of commercial asynchronous processors, Cogency generation of processors will use some of the advantages of-
Technology, Inc., revealed a design system (67) that can pro- fered by asynchronous logic by implementing circuits with a
duce made-to-order, self-timed CPUs, and DSPs. In its first suitable combination of synchronous and asynchronous de-
commercial use, the suite has produced a completely asyn- sign techniques. Although modern digital computers are dom-
chronous digital signal-processing chip ‘stDSP’, which was de- inated by the synchronous approach, asynchronous designs
signed for LG Semicon. This chip is roughly the same size as

have already started to emerge in commercial products. Re-a functionally identical synchronous version but uses 47%
cent years have seen a surge in research activities related toless power. Researchers at Tokyo Institute of Technology re-
asynchronous logic design.cently designed a 32-bit delay-insensitive asynchronous ver-

This article focused on the logic design aspect of asynchro-sion of a MIPS R2000 processor, called TITAC-2 (68). Similar
nous circuits. We only discuss a portion of the vast body ofto any asynchronous processor, TITAC-2 works correctly even
literature available on asynchronous design (a complete bibli-with large temperature and power supply variations. In addi-
ography in the field is being maintained at Eindhoven Uni-tion, TITAC-2 achieves a performance of 52 MIPS with a
versity of Technology, Netherlands and can be obtained frompower consumption of 2 W at 3.3 V. Researchers at Sun Mi-
async-bib@win.tue.nl). Specification and design of logic cir-crosystems have recently designed an asynchronous count-
cuits is just one of the steps among several crucial steps in aerflow pipeline processor (69). A significant design effort by
practical design methodology. Testing and verification of im-a team of designers at Hewlett-Packard Labs resulted in a
plemented circuits is an integral part of any design flow andcompletely asynchronous full-custom CMOS chip called Post
consumes a dominant portion of the design cycle of a complexOffice (70), which had 300,000 transistors and was designed
system. Verifying that what you implemented is what youto support internode communication for the Mayfly parallel
specified is critical for avoiding costly errors late in the designprocessing system. Mark Dean at Stanford University built a
cycle. Formal techniques for verifying circuit implementationsprocessor called STRiP (self-timed RISC processor) (71),
are especially critical for asynchronous designs because of thewhich includes both synchronous and asynchronous design
subtlety. Research into these new frontiers of practical formaltechniques. In addition to the large asynchronous chips men-
verification techniques for asynchronous designs is the focus oftioned, several smaller asynchronous chips such as a DCC er-
some recent efforts and will be an interesting area for furtherror corrector chip (72) and a high-speed packet switching com-
study. Although much progress has been made toward devel-ponent chip (73) by Philips Research Labs and a
oping robust asynchronous design and verification techniques,communication chip at Hewlett-Packard Labs (7) are also
pushing asynchronous designs over competing synchronousslowly beginning to make their way into the commercial mar-
implementations in industry still remains a challenge. Nowketplace.
more than ever, it is crucial to evaluate the advantages of al-In spite of all the asynchronous design applications men-
ready researched design techniques through practical designtioned earlier, almost all commercial digital designs employ
implementations and develop methods that can be used in de-synchronous circuits. The major reason for the overwhelming

popularity of synchronous circuits is their ease of design. In ad- sign methodologies being practiced by the industry.



740 ASYNCHRONOUS LOGIC DESIGN

22. S. M. Nowick and D. L. Dill, Synthesis of asynchronous stateBIBLIOGRAPHY
machines using a local clock, Proc. Int. Conf. Comput. Design
ICCD, Los Alamitos, CA: IEEE Computer Society Press, October1. B. Gieseke et al., A 600MHz superscalar RISC microprocessor
1991, pp. 192–197.with out-of-order execution, Int. Solid State Circuits Symp., 1997,

23. K. Y. Yun, D. L. Dill, and S. M. Nowick, Practical generalizationspp. 176–177.
of asynchronous state machines, Proc. Eur. Conf. Design Autom.2. S. B. Furber, Breaking step: The return of asynchronous logic.
EDAC, Los Alamitos, CA: IEEE Computer Society Press, Febru-IEE Rev., 39 (4): 159–162, 1993.
ary 1993, pp. 525–530.

3. P. Song, Asynchronous design shows promise, Microprocessor Re-
24. P. Kudva, G. Gopalakrishnan, and H. Jacobson, A technique forport, 11 (13): 1997.

synthesizing distributed burst-mode circuits, Proc. ACM/IEEE
4. S. H. Unger, The Essence of Logic Circuits, 2nd ed., New York: Design Autom. Conf., 1996.

IEEE Press, 1997.
24a. S. M. Nowick and D. L. Dill, Exact two-level minimization of

5. S. B. Furber, Asynchronous design, in W. Nebel and J. Mermet hazard-free logic with multiple-input changes, IEEE Trans. Com-
(eds.), Proc. Submicron. Electr., Il Ciocco, Italy, 1996, pp. 461–492. put.-Aided Des., 14 (8): 986–997, 1995.

6. P. E. Gronowski et al., A 433MHz 65b quad-issue RISC micropro- 25. K. Y. Yun and D. L. Dill, Automatic synthesis of 3D asynchronous
cessor, in Int. Solid State Circuits Symp., 1996, pp. 222–223. state machines, Proc. Int. Conf. Comput.-Aided Design ICCAD,

Los Alamitos, CA: IEEE Computer Society Press, November7. A. Marshall, B. Coates, and P. Siegel, Designing an asynchronous
1992, pp. 576–580.communications chip, IEEE Design & Test Comput., 11 (2): 8–

21, 1994. 26. A. Davis, B. Coates, and K. Stevens, Automatic synthesis of fast
compact asynchronous control circuits, in S. Furber and M. Ed-7a. W. A. Clark and C. E. Molnar, Macromodular computer systems,
wards (eds.), Asynchronous Design Methodologies, vol. A-28 IFIPin R. W. Stacy and B. D. Waxman (eds.), Computers in Biomedical
Transactions, Elsevier, 1993, pp. 193–207.Research, vol. IV, New York: Academic Press, 1974, ch. 3, pp.

45–85. 27. T. Murata, Petri nets: Properties, analysis and applications, Proc.
IEEE, 77: 541–580, 1989.8. I. E. Sutherland, Micropipelines, Commun. ACM, 32 (6): 720–

28. L. Y. Rosenblum and A. V. Yakovlev, Signal graphs: From self-738, 1989.
timed to timed ones, in Proc. Int. Workshop Timed Petri Nets,8a. M. Dean, T. Williams, and D. Dill, Efficient self-timing with
Torino, Italy, Los Alamitos, CA: IEEE Computer Society Press,level-encoded 2-phase dual-rail (LEDR), in C. H. Sequin (ed.), Ad-
July 1985, pp. 199–207.vanced Research in VLSI, Cambridge, MA: MIT Press, 1991, pp.

29. T.-A. Chu, Synthesis of Self-Timed VLSI Circuits from Graph-55–70.
Theoretic Specifications, PhD thesis, MIT Laboratory for Com-8b. T. Verhoeff, Delay-insensitive codes—an overview. Distributed
puter Science, MIT, June 1987.Computing, 3 (1): 1–8, 1988.

30. V. I. Varshavsky (ed.), Self-Timed Control of Concurrent Processes:9. J. A. Brzozowski and C.-J. H. Seger, Asynchronous Circuits, New
The Design of Aperiodic Logical Circuits in Computers and DiscreteYork: Springer-Verlag, 1995.
Systems, Dordrecht: Kluwer, 1990.

10. D. E. Muller and W. S. Bartky, A theory of asynchronous circuits, 31. L. Lavagno et al., Solving the state assignment problem for signal
in Proc. Int. Symp. Theory of Switching, Harvard University transition graphs, Proc. ACM/IEEE Design Autom. Conf., IEEE
Press, April 1959, pp. 204–243. Computer Society Press, June 1992, pp. 568–572.

11. J. T. Udding, Classification and Composition of Delay-Insensitive 32. C. W. Moon, P. R. Stephan, and R. K. Brayton, Synthesis of haz-
Circuits, PhD thesis, Dept. of Math. and Comp. Sci., Eindhoven ard-free asynchronous circuits from graphical specifications,
Univ. of Technology, 1984. Proc. Int. Conf. Comput.-Aided Design ICCAD, IEEE Computer

12. J. B. Dennis and S. S. Patil, Speed-independent asynchronous Society Press, November 1991, pp. 322–325.
circuits, in Proc. Hawaii Int. Conf. System Sci., 1971, pp. 55–58. 33. C. W. Moon and R. K. Brayton, Elimination of dynamic hazards

13. J. C. Egergen, A formal approach to designing delay-insensitive in asynchronous circuits by factoring, Proc. ACM/IEEE Design
circuits, Distributed Comput., 5 (3): 107–119, 1991. Autom. Conf., IEEE Computer Society Press, June 1993, pp.

7–13.14. D. A. Huffman, The synthesis of sequential switching circuits, in
34. L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli, Algo-E. F. Moore (ed.), Sequential Machines: Selected Papers, New

rithms for synthesis of hazard-free asynchronous circuits, Proc.York: Addison-Wesley, 1964.
ACM/IEEE Design Autom. Conf., Los Alamitos, CA: IEEE Com-15. S. H. Unger, Asynchronous Sequential Switching Circuits, New
puter Society Press, pp. 302–308, 1991.York: Wiley-Interscience, 1969.

35. P. Beerel and T. H.-Y. Meng, Automatic gate-level synthesis of16. S. H. Unger, Hazards, critical races, and metastability, IEEE
speed-independent circuits, Proc. Int. Conf. Comput.-Aided DesignTrans. Comput., 44: 754–768, 1995.
ICCAD, Los Alamitos, CA: IEEE Computer Society Press, No-

17. S. Hauck, Asynchronous design methodologies: An overview, vember 1992, pp. 581–587.
Proc. IEEE, 83: 69–93, 1995.

36. M. Kishinevsky et al., Concurrent Hardware: The Theory and
18. A. L. Davis and S. M. Nowick, An introduction to asynchronous Practice of Self-Timed Design, New York: Wiley, 1994.

circuit design, in A. Kent and J. G. Williams (eds.), The Encyclo- 37. K.-J. Lin and C.-S. Lin, Automatic synthesis of asynchronous cir-
pedia of Computer Science and Technology, vol. 38, New York: cuits, Proc. ACM/IEEE Design Autom. Conf., Los Alamitos, CA:
Marcel Dekker, 1997. IEEE Computer Society Press, 1991, pp. 296–301.

19. J. H. Tracey, Internal state assignments for asynchronous se- 38. P. Vanbekbergen et al., Optimized synthesis of asynchronous con-
quential machines, IEEE Trans. Electron. Comput., EC-15: 551– trol circuits form graph-theoretic specifications, Proc. Int. Conf.
560, 1966. Comput.-Aided Design ICCAD, Los Alamitos, CA: IEEE Com-

20. A. B. Hayes, Stored state asynchronous sequential circuits, IEEE puter Society Press, 1990, pp. 184–187.
Trans. Comput., C-30 (8): 596–600, 1981. 39. M.-L. Yu and P. A. Subrahmanyan, A path oriented approach

for reducing hazards in asynchronous design, Proc. ACM/IEEE21. C. A. Rey and J. Vaucher, Self-synchronized asynchronous se-
quential machines, IEEE Trans. Comput., 23: 1306–1311, 1974. Design Automation Conf., 1992, pp. 239–244.



ASYNCHRONOUS LOGIC DESIGN 741

40. P. Vanbekbergen et al., A generalized state assignment theory sor, in Charles L. Seitz (ed.), Advanced Research in VLSI: Proc.
Decennial Caltech Conf. VLSI, Cambridge, MA: MIT Press, 1989,for transformations on signal transition graphs, Proc. Int. Conf.
pp. 351–373.Comput.-Aided Design ICCAD, Los Alamitos, CA: IEEE Com-

puter Society Press, November 1992, pp. 112–117. 54. C. H. (K.) van Berkel et al., VLSI programming and silicon compi-
lation, Proc Int. Conf. Comput. Design ICCD, Los Alamitos, CA:41. R. Puri and J. Gu, A modular partitioning approach for asynchro-
IEEE Computer Society Press, 1988, pp. 150–166.nous circuit synthesis, Proc. ACM/IEEE Design Autom. Conf.,

June 1994, pp. 63–69. 55. E. Brunvand and R. F. Sproull, Translating concurrent programs
into delay-insensitive circuits, in Proc. Int. Conf. Comput.-Aided42. R. Puri and J. Gu, Area efficient synthesis of asynchronous inter-
Design ICCAD, Los Alamitos, CA: IEEE Computer Society Press,face circuits, Proc. Int. Conf. Comput. Design ICCD, Los Alamitos,
November 1989, pp. 262–265.CA: IEEE Computer Society Press, October 1994.

56. M. Rem, J. L. A. van de Snepscheut, and J. T. Udding, Trace43. R. Puri and J. Gu, Asynchronous circuit synthesis with boolean
theory and the definition of hierarchical components, in Randalsatisfiability, IEEE Trans. Comput.-Aided Design, 14: 961–973,
Bryant (ed.), Proc. 3rd Caltech Conf. VLSI, Rockville, MA: Com-1995.
puter Science, 1983, pp. 225–239.

43a. A. Semenov et al., Synthesis of speed-independent circuits from
57. J. L. A. van de Snepscheut, Trace Theory and VLSI Design, vol.STG-unfolding segment, in Proc. ACM/IEEE Des. Automation

200, Lecture Notes in Computer Science, Berlin: Springer-Ver-Conf., pp. 16–21, 1997.
lag, 1985.

43b. J. Cortadella et al., Decomposition and technology mapping of 58. J. C. Ebergen, Translating Programs into Delay-Insensitive Cir-
speed-independent circuits using Boolean relations, in Proc. Int. cuits, vol. 56 of CWI Tract, Centre for Mathematics and Com-
Conf. Comput.-Aided Des. ICCAD, 1997. puter Science, 1989.

43c. J. Cortadella et al., A region-based theory for state assignment 59. J. C. Ebergen, Arbitrers: An exercise in specifying and decompos-
in speed-independent circuits, IEEE Trans. Comput.-Aided Des., ing asynchronously communicating components. Research Report
16: 793–812, 1997. CS-90-29, Computer Science Dept., Univ. of Waterloo, Canada,

43d. A. Kondratyev et al., Basic gate implementation of speed-inde- July 1990.
pendent circuits, in Proc. ACM/IEEE Des. Automation Conf., pp. 60. S. B. Furber et al., AMULET1: A micropipelined ARM, Proc.
56–62, 1994. IEEE Comput. Conf. COMPCON, March 1994, pp. 476–485.

43e. E. Pastor and J. Cortadella, Polynomial algorithms for the syn- 61. A. L. Davis, The architecture and system method of DDM-1: A
thesis of hazard-free circuits from signal transition graphs, in recursively-structured data driven machine, Proc. 5th Annu.
Proc. Int. Conf. Comput.-Aided Des. ICCAD, pp. 250–254, 1993. Symp. Comput. Architecture, 1978.

44. J. Cortadella et al., Methodology and tools for state encoding in 62. J. A. Tierno et al., A 100-MIPS GaAs asynchronous microproces-
sor, IEEE Design & Test Comput., 11 (2): 43–49, 1994.asynchronous circuit synthesis, Proc. ACM/IEEE Design Autom.

Conf., 1996. 63. A. J. Martin et al., The design of an asynchronous MIPS R3000
microprocessor, Proc. 17th Conf. Advanced Res. VLSI, September45. C. Myers and T. H.-Y. Meng, Synthesis of timed asynchronous
1997, pp. 164–181.circuits, Proc. Int. Conf. Comput. Design ICCD, Los Alamitos, CA:

IEEE Computer Society Press, October 1992, pp. 279–282. 64. S. B. Furber et al., AMULET2e: An asynchronous embedded con-
troller, Proc. Int. Symp. Advanced Res. Asynchronous Circuits45a. L. Lavagno and A. Sangiovanni-Vincentelli, Algorithms for Syn-
Syst., Los Alamitos, CA: IEEE Computer Society Press, Aprilthesis and Testing of Asynchronous Circuits, Dordrecht: Kluwer,
1997.1993.

65. R. Weiss, ARM researchers asynchronous CPU design, Comput.45b. C. Ykman-Couvreur, B. Lin, and H. de Man, ASSASSIN: A syn-
Design, 1995.thesis system for asynchronous control circuits, Tech. rep., IMEC,

66. J. Yoshida, Sharp’s processor beats the clock, Electron. Eng. EEBelgium, September 1994, user and tutorial manual.
Times, 1996.46. C. A. R. Hoare, Communicating sequential processes, Commun.

67. P. Clarke, Startup pushes asynchronous chips towards main-ACM, 21 (8): 666–677, 1978.
stream, Electron. Eng. EE Times, October 1977.

47. A. J. Martin, Compiling communicating processes into delay-in-
68. T. Nanya et al., TITAC: Design of a quasi-delay-insensitive mi-sensitive VLSI circuits, Distributed Comput., 1 (4): 226–234,

croprocessor, IEEE Design & Test of Comput., 11 (2): 50–63, 1994.1986.
69. R. F. Sproull, I. E. Sutherland, and C. E. Molnar, The counterflow48. A. J. Martin, A synthesis method for self-timed VLSI circuits,

pipeline processor architecture, IEEE Design & Test of Comput.,Proc. Int. Conf. Comput. Design ICCD, Los Alamitos, CA: IEEE
11 (3): 48–59, 1994.Computer Society Press, 1987, pp. 224–229.

70. A. Davis, B. Coates, and K. Stevens, The Post Office experience:
49. S. M. Burns, Automated Compilation of Concurrent Programs into Designing a large asynchronous chip, Proc. Hawaii Int. Conf. Syst.

Self-Timed Circuits, Master’s thesis, Pasadena, CA: California In- Sci., Los Alamitos, CA: IEEE Computer Society Press, January
stitute of Technology, 1988. 1993, vol. 1I, pp. 409–418.

50. S. M. Burns and A. J. Martin, Synthesis of self-timed circuits 71. M. E. Dean, STRiP: A Self-Timed RISC Processor Architecture,
by program transformation, in G. J. Milne (ed.), The Fusion of PhD thesis, Stanford University, 1992.
Hardware Design and Verification, New York: Elsevier, 1988,

72. K. van Berkel et al., A fully-asynchronous low-power error correc-
pp. 99–116.

tor for the DCC player, Int. Solid State Circuits Conf., February
51. C. H. van Berkel, Beware the isochronic fork, Nat. Lab. Unclassi- 1994, pp. 88–89.

fied Report UR 003/91, Philips Research Lab., Eindhoven, The 73. W. O. Budde et al., An asynchronous, high-speed packet switch-
Netherlands, 1991. ing component, IEEE Design & Test Comput., 11 (2): 33–42, 1994.

52. A. J. Martin, The design of a self-timed circuit for distributed
mutual exclusion, in Henry Fuchs (ed.), Proc. 1985 Chapel Hill RUCHIR PURI
Conf. VLSI, Computer Science Press, 1985, pp. 245–260. IBM Thomas J. Watson Research

Center53. A. J. Martin et al., The design of an asynchronous microproces-



742 ASYNCHRONOUS SEQUENTIAL LOGIC

ASYNCHRONOUS MULTIPLEXING. See STATISTICAL

MULTIPLEXING.


