
Fundamentals
of Power
Electronics
Third Edition

Robert W. Erickson
Dragan Maksimović 



Fundamentals of Power Electronics



Robert W. Erickson • Dragan Maksimović
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Preface

The objective of the First and Second Editions was to serve as a textbook for introductory power
electronics courses where the fundamentals of power electronics are defined, rigorously pre-
sented, and treated in sufficient depth so that students acquire the knowledge and skills needed
to design practical power electronic systems. An additional goal was to contribute as a reference
book for engineers who practice power electronics design, and for students who want to develop
their knowledge of the area beyond the level of introductory courses. In this Third Edition, the
basic objectives and philosophy of the earlier editions have not been changed.

Since we wrote the Second Edition, the field of power electronics has grown tremen-
dously, including new significant commercial applications such as electric vehicles, wireless
power transfer, and utility microgrids. Technical growth includes the commercialization of wide
bandgap power semiconductors, widespread digital control of switching converters, and matu-
ration of converter modeling. Our university power electronics curriculum has evolved as well,
in content as well as in organization. This edition is a response to these changes, and represents
a significant revision relative to the previous edition.

As of 2020, at the University of Colorado we offer a sequence of three core graduate courses
in power electronics. The first course, Introduction to Power Electronics, covers basic converter
analysis, converter controllers, and magnetics. In the Third Edition, this material is presented in
Chaps. 1–12, at the level and in the order covered in this class. Our second course, Modeling and
Control of Power Electronics Systems, covers more advanced topics of power converter applica-
tions, control, and design-oriented analysis. This material is covered in detail in Chaps. 13–21
in the Third Edition; this portion of the text represents a major revision of technical material
and coverage. Our third course, Resonant and Soft Switching Phenomena in Power Electronics,
relies primarily on supplementary notes rather than this textbook. Chapters 22 and 23 of the
Third Edition cover a summary of a portion of this third course.

The coverage of power semiconductor devices in Chap. 4 has been bolstered and updated.
The discussion of power diode switching has been significantly expanded, leading into aver-
aged modeling of diode-induced switching loss. New material on wide bandgap devices and on
MOSFET gate drivers has been added. The discussion of switching loss mechanisms has been
updated and reorganized, and the MCT section is removed.

The Third Edition adopts a more mature viewpoint of averaging, based on the trapezoidal
moving average defined in Eq. (7.3). The waveforms of the averaged model become true con-
tinuous quantities, with the approximations and logical steps clearly defined. New material in
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Chap. 7 includes a section on the averaging operator, and a new treatment of how the small-
ripple approximation works with the trapezoidal moving average. Additionally, the logical flow
of Chap. 7 has been significantly revised to conform to how we now teach this material in our
on-campus courses, and new material on state-space averaging has been added. This new view-
point of averaging then is followed throughout the remainder of the book. Of most note, this
viewpoint leads to the current-programmed control model of Tan and Middlebrook. The current-
programmed control Chap. 18 has been significantly revised and updated accordingly. The high-
frequency effects of sampling are discussed as well, in connection with current-programmed
control and also with ac modeling of the discontinuous conduction mode.

The previous treatment of stability and phase margin would leave some students with mis-
conceptions; to alleviate this, we have introduced a new section on Nyquist stability. Instructors
may choose whether there is time to cover this material in a power electronics course, but the
explanation is available as a reference in the text. The origin of the phase margin text is rigor-
ously explained, and special cases such as conditionally stable systems or those with multiple
crossover frequencies are adjudicated. A new section in the chapter on input filters has been
added, which relies on the Nyquist stability criterion to determine the exact stability boundary
in the presence of an input filter.

An all-new Part IV Advanced Modeling, Analysis, and Control Techniques has been orga-
nized to follow the logical flow of our advanced converter control course, and incorporates new
chapters on null double injection techniques (Middlebrook’s feedback theorem and extra ele-
ment theorem) and on digital control of switching converters. The topics of circuit averaging,
average switch modeling, and averaged simulation are consolidated into a single logical chap-
ter. New examples of the extra element theorem include solution of the SEPIC averaged switch
model, and damping the internal resonances of the SEPIC.

Chapter 18 on current-programmed control has been significantly revised and reorganized.
As noted above, it now employs the model of Tan and Middlebrook, using the trapezoidal mov-
ing average. New sections on simulation, sampling and high-frequency dynamics, and input
filters are incorporated into the chapter. A new section on average current-mode control has
also been added.

The new Chap. 19 on digital control of switching converters extends the analog control
techniques of earlier chapters, to address the relevant issues of digital controllers. Quantiza-
tion, sampling, and controller delays are modeled. The Z-transform is employed to model the
discrete-time portion of the feedback loop, with the Laplace transform used as usual for the
remaining analog system. Digital compensator design and realization is then addressed.

This text has evolved from courses developed over thirty-five years of teaching power elec-
tronics at the University of Colorado. These courses, in turn, were heavily influenced by our
previous experiences as graduate students at the California Institute of Technology, under the
direction of Profs. Slobodan Ćuk and R. D. Middlebrook, to whom we are grateful. We would
also like to thank the many readers of the First and Second Editions, students, and instructors
who offered their comments and suggestions, or who pointed out errata. We have attempted to
incorporate these suggestions wherever possible.

Boulder, CO, USA Robert W. Erickson
Boulder, CO, USA Dragan Maksimović
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1

Introduction

1.1 Introduction to Power Processing

The field of power electronics is concerned with the processing of electrical power using elec-
tronic devices [1–7]. The key element is the switching converter, illustrated in Fig. 1.1. In gen-
eral, a switching converter contains power input and control input ports, and a power output port.
The raw input power is processed as specified by the control input, yielding the conditioned out-
put power. One of several basic functions can be performed [2]. In a dc–dc converter, the dc
input voltage is converted to a dc output voltage having a larger or smaller magnitude, possibly
with opposite polarity or with isolation of the input and output ground references. In an ac-dc
rectifier, an ac input voltage is rectified, producing a dc output voltage. The dc output voltage
and/or ac input current waveform may be controlled. The inverse process, dc–ac inversion, in-
volves transforming a dc input voltage into an ac output voltage of controllable magnitude and
frequency. Ac-ac cycloconversion involves converting an ac input voltage to a given ac output
voltage of controllable magnitude and frequency.

Control is invariably required. It is nearly always desired to produce a well-regulated output
voltage, in the presence of variations in the input voltage and load current. As illustrated in
Fig. 1.2, a controller block is an integral part of any power processing system.

High efficiency is essential in any power processing application. The primary reason for
this is usually not the desire to save money on one’s electric bills, nor to conserve energy, in
spite of the nobility of such pursuits. Rather, high efficiency converters are necessary because
construction of low-efficiency converters, producing substantial output power, is impractical.
The efficiency of a converter having output power Pout and input power Pin is

Fig. 1.1 The switching converter, a
basic power processing block
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Fig. 1.2 A controller is generally
required
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η =
Pout

Pin
(1.1)

The power lost in the converter Ploss = Pin − Pout can be related to the output power as:

Q =
Pout

Ploss
=

η

1 − η (1.2)
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0.4

0.6

0.8

h

1

Ploss / Pout

Fig. 1.3 Converter power loss vs. efficiency

Equation (1.2) is plot-
ted in Fig. 1.3. The quan-
tity Q = Pout/Ploss is a
fundamental measure of
the quality of the power
converter. The loss Ploss

is converted into heat by
the converter circuit el-
ements and must be re-
moved by a cooling sys-
tem. In most applica-
tions, the maximum out-
put power is limited by
the capacity of the cool-
ing system to remove
this heat, and this lim-
its the maximum allow-
able output power. If the
loss power is substantial,
then a large and expen-
sive cooling system is
needed, the circuit ele-
ments within the converter may operate at high temperature, and the system reliability may be
reduced. Indeed, at high output powers, it may be impossible to adequately cool the converter
elements using a given cooling technology.
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Increasing the efficiency is the key to obtaining higher output powers. For example, if the
converter efficiency is 90%, then the converter loss power is equal to only 11% of the output
power and Pout/Ploss = 9. For a given cooling system technology and size, there is a maximum
amount of Ploss that can be handled. With this maximum loss, the maximum output power then
depends on the converter Q and efficiency according to Fig. 1.3. It can be seen that the output
power can be increased if the efficiency is increased. In this way, Q (and, less directly, efficiency
η) is a good measure of the success of a given converter technology. Figure 1.4 illustrates a
converter that processes a large amount of power, with very high Q. Since very little power
is lost, the converter elements can be packaged with high density and a small cooling system,
leading to a converter of small size and weight, and of low temperature rise.

Converter

Small converter
Large output powerLarge input power

Pin Pout

Fig. 1.4 A goal of current technology is to construct converters of small size and weight, which process
substantial power at high efficiency

How can we build a circuit that changes the voltage, yet dissipates negligible power? The
various conventional circuit elements are illustrated in Fig. 1.5. The available circuit elements
fall broadly into the classes of resistive elements, capacitive elements, magnetic devices includ-
ing inductors and transformers, semiconductor devices operated in the linear mode (for exam-
ple, as class A or class B amplifiers), and semiconductor devices operated in the switched mode
(such as in logic devices where transistors operate in either the fully on or fully off states). In
conventional signal processing applications, where efficiency is not the primary concern, mag-
netic devices are usually avoided wherever possible, because of their large size and the difficulty

DTs Ts

Resistors Capacitors Magnetics Semiconductor devices

Linear-
mode

+ –

Switched-mode

Fig. 1.5 Devices available to the circuit designer [2]
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of incorporating them into integrated circuits. In contrast, capacitors and magnetic devices are
important elements of switching converters, because ideally they do not consume power. It is the
resistive element, as well as the linear-mode semiconductor device, that is avoided [2]. Switched-
mode semiconductor devices are also employed. When a semiconductor device operates in the
off state, its current is zero and hence its power dissipation is zero. When the semiconductor de-
vice operates in the on (saturated) state, its voltage drop is small and hence its power dissipation
is also small. In either event, the power dissipated by the semiconductor device is low. So ca-
pacitive and inductive elements, as well as switched-mode semiconductor devices, are available
for synthesis of high-efficiency converters.

Let us now consider how to construct the simple dc–dc converter example illustrated in
Fig. 1.6. The input voltage Vg is 100 V. It is desired to supply 50 V to an effective 5Ω load, such
that the dc load current is 10 A.

+
–

+

V
50 V

–

Vg

100 V

Dc-dc
converter

I
10 A

R
5 W

Fig. 1.6 A simple power processing example: construction of a 500 W dc–dc converter

Introductory circuits textbooks describe a low-efficiency method to perform the required
function: the voltage divider circuit illustrated in Fig. 1.7a. The dc–dc converter then consists
simply of a variable resistor, whose value is adjusted such that the required output voltage is
obtained. The load current flows through the variable resistor. For the specified voltage and
current levels, the power Ploss dissipated in the variable resistor equals the load power Pout =

500 W. The source Vg supplies power Pin = 1000 W. Figure 1.7b illustrates a more practical
implementation known as the linear series-pass regulator. The variable resistor of Fig. 1.7a is
replaced by a linear-mode power transistor, whose base current is controlled by a feedback
system such that the desired output voltage is obtained. The power dissipated by the linear-
mode transistor of Fig. 1.7b is approximately the same as the 500 W lost by the variable resistor
in Fig. 1.7a. Series-pass linear regulators generally find modern application only at low power
levels of a few watts.

Figure 1.8 illustrates another approach. A single-pole double-throw (SPDT) switch is con-
nected as shown. The switch output voltage vs(t) is equal to the converter input voltage Vg when
the switch is in position 1, and is equal to zero when the switch is in position 2. The switch po-
sition is varied periodically, as illustrated in Fig. 1.9, such that vs(t) is a rectangular waveform
having frequency fs and period Ts = 1/ fs. The duty cycle D is defined as the fraction of time
in which the switch occupies position 1. Hence, 0 ≤ D ≤ 1. In practice, the SPDT switch is
realized using switched-mode semiconductor devices, which are controlled such that the SPDT
switching function is attained.
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Fig. 1.7 Changing the dc voltage via dissipative means: (a) voltage divider, (b) series pass regulator
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Fig. 1.8 Insertion of SPDT switch which changes the dc component of the voltage
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Fig. 1.9 Switch output voltage waveform vs(t)
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The switch changes the dc component of the voltage. Recall from Fourier analysis that the
dc component of a periodic waveform is equal to its average value. Hence, the dc component of
vs(t) is

Vs =
1
Ts

∫ Ts

0
vs(t)dt = DVg (1.3)

Thus, the switch changes the dc voltage, by a factor equal to the duty cycle D. To convert the
input voltage Vg = 100 V into the desired output voltage of V = 50 V, a duty cycle of D = 0.5
is required.

Again, the power dissipated by the switch is ideally zero. When the switch contacts are
closed, then their voltage is zero and hence the power dissipation is zero. When the switch
contacts are open, then the current is zero and again the power dissipation is zero. So we have
succeeded in changing the dc voltage component, using a device that is ideally lossless.

In addition to the desired dc component Vs, the switch output voltage waveform vs(t) also
contains undesirable harmonics of the switching frequency. In most applications, these harmon-
ics must be removed, such that the output voltage v(t) is essentially equal to the dc component
V = Vs. A low-pass filter can be employed for this purpose. Figure 1.10 illustrates the introduc-
tion of a single-section L–C low-pass filter. If the filter comer frequency f0 is sufficiently less
than the switching frequency fs, then the filter essentially passes only the dc component of vs(t).
To the extent that the switch, inductor, and capacitor elements are ideal, the efficiency of this
dc–dc converter can approach 100%.

+
– R

+

v(t)

–

1

2

+

vs(t)

–

Vg

100 V

i(t)

L

C

Ploss small Pout = 500 WPin ≈ 500 W

Fig. 1.10 Addition of L–C low-pass filter, for removal of switching harmonics

In Fig. 1.11, a control system is introduced for regulation of the output voltage. Since the
output voltage is a function of the switch duty cycle, a control system can be constructed that
varies the duty cycle to cause the output voltage to follow a given reference. Figure 1.11 also
illustrates a typical way in which the SPDT switch is realized using switched-mode semicon-
ductor devices. The converter power stage developed in Figs. 1.8, 1.9, 1.10, 1.11 is called the
buck converter, because it reduces the dc voltage.

Converters can be constructed that perform other power processing functions. For example,
Fig. 1.12 illustrates a circuit known as the boost converter, in which the positions of the induc-
tor and SPDT switch are interchanged. This converter is capable of producing output voltages
that are greater in magnitude than the input voltage. In general, any given input voltage can
be converted into any desired output voltage, using a converter containing switching devices
embedded within a network of reactive elements.
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Fig. 1.11 Addition of control system to regulate the output voltage
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Fig. 1.12 The boost converter: (a) ideal converter circuit, (b) output voltage V vs. transistor duty cycle D

Figure 1.13a illustrates a simple dc-1øac inverter circuit. As illustrated in Fig. 1.13b, the
switch duty cycle is modulated sinusoidally. This causes the switch output voltage vs(t) to con-
tain a low-frequency sinusoidal component. The L–C filter cutoff frequency f0 is selected to
pass the desired low-frequency components of vs(t), but to attenuate the high-frequency switch-
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Fig. 1.13 A bridge-type dc-1φac inverter: (a) ideal inverter circuit, (b) typical pulse-width-modulated
switch voltage waveform vs(t), and its low-frequency component

ing harmonics. The controller modulates the duty cycle such that the desired output frequency
and voltage magnitude are obtained.

1.2 Several Applications of Power Electronics

The power levels encountered in high-efficiency switching converters range from (1) less than
one watt, in dc–dc converters within battery-operated portable equipment, to (2) tens, hundreds,
or thousands of watts in power supplies for computers and office equipment, to (3) kilowatts
to megawatts, in variable-speed motor drives, to (4) roughly 1000 megawatts in the rectifiers
and inverters that interface dc transmission lines to the ac utility power system. The converter
systems of several applications are illustrated in this section.

A power supply system for a laptop computer is illustrated in Fig. 1.14. A lithium battery
powers the system, and several dc–dc converters change the battery voltage into the voltages
required by the loads. A buck converter produces the low-voltage dc required by the micropro-
cessor. A boost converter increases the battery voltage to the level needed by the disk drive. An
inverter produces high-voltage high-frequency ac to drive lamps that light the display. A charger
with transformer isolation converts the ac line voltage into dc to charge the battery. The converter
switching frequencies are typically in the vicinity of several hundred kilohertz; this leads to sub-
stantial reductions in the size and weight of the reactive elements. Power management is used,
to control sleep modes in which power consumption is reduced and battery life is extended.
In a distributed power system, an intermediate dc voltage appears at the computer backplane.
Each printed circuit card contains high-density dc–dc converters that produce locally regulated
low voltages. Commercial applications of power electronics include off-line power systems for
computers, office and laboratory equipment, uninterruptable ac power supplies, and electronic
ballasts for gas discharge lighting.
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Fig. 1.14 A laptop computer power supply system
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Fig. 1.15 Power system of an earth-orbiting spacecraft

Figure 1.15 illustrates a power system of an earth-orbiting spacecraft. A solar array produces
the main power bus voltage Vbus. DC–DC converters convert Vbus to the regulated voltages
required by the spacecraft payloads. Battery charge/discharge controllers interface the main
power bus to batteries; these controllers may also contain dc–dc converters. Aerospace applica-
tions of power electronics include the power systems of aircraft, spacecraft, and other aerospace
vehicles.

Figure 1.16 illustrates an electric vehicle power and drive system. Batteries are charged
by a converter that draws high power-factor sinusoidal current from a single-phase or three-
phase ac line. The batteries supply power to variable-speed ac motors to propel the vehicle. The
speeds of the ac motors are controlled by variation of the electrical input frequency. Inverters
produce three-phase ac output voltages of variable frequency and variable magnitude, to control
the speed of the ac motors and the vehicle. A dc–dc converter steps down the battery voltage
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Fig. 1.16 An electric vehicle power and drive system

to the lower dc levels required by the electronics of the system. Applications of motor drives
include speed control of industrial processes, such as control of compressors, fans, and pumps;
transportation applications such as electric vehicles, subways, and locomotives; and motion
control applications in areas such as computer peripherals and industrial robots.

Power electronics also finds application in other diverse industries, including dc power sup-
plies, uninterruptable power supplies, and battery chargers for portable electronics, electric ve-
hicles, and the telecommunications industry; inverter systems for renewable energy generation
applications such as wind and photovoltaic power; and utility power systems applications in-
cluding high-voltage dc transmission and static VAR (reactive volt-ampere) compensators.

1.3 Elements of Power Electronics

One of the things that makes the power electronics field interesting is its incorporation of con-
cepts from a diverse set of fields, including:

• analog circuits
• electronic devices
• control systems
• power systems
• magnetics
• electric machines
• numerical simulation
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Thus, the practice of power electronics requires a broad electrical engineering background. In
addition, there are fundamental concepts that are unique to the power electronics field, and that
require specialized study.

The presence of high-frequency switching makes the understanding of switched-mode con-
verters not straightforward. Hence, converter modeling is central to the study of power electron-
ics. As introduced in Eq. (1.3), the dc component of a periodic waveform is equal to its average
value. This ideal can be generalized, to predict the dc components of all converter waveforms
via averaging. In Part I of this book, averaged equivalent circuit models of converters operating
in steady state are derived. These models not only predict the basic ideal behavior of switched-
mode converters, but also model efficiency and losses. Realization of the switching elements,
using power semiconductor devices, is also discussed.

Design of the converter control system requires models of the converter dynamics. In Part II
of this book, the averaging technique is extended, to describe low-frequency variations in the
converter waveforms. Small-signal equivalent circuit models are developed, which predict the
control-to-output and line-to-transfer functions, as well as other ac quantities of interest. These
models are then employed to design converter control systems and to lend an understanding of
the well-known current-programmed control technique.

The magnetic elements are key components of any switching converter. The design of high-
power high-frequency magnetic devices having high efficiency and small size and weight is
central to most converter technologies. High-frequency power magnetics design is discussed in
Part III.

More advanced control, design-oriented analysis, and simulation are the topics of Part IV.
The Feedback Theorem, Extra Element Theorem, and n-Extra Element Theorem are techniques
of design-oriented analysis that enable analytical solution and design of complex systems, based
on the ideas of null double injection. These techniques are applied to converter control systems,
damping internal resonances, designing input filters, and analyzing peak- and average-current
mode control. The average switch modeling approach to converter modeling is developed, and
is employed to model converter dynamics in the discontinuous conduction mode and to perform
SPICE-based averaged simulations of converters. High-frequency converter dynamics are con-
sidered based on the ideas of converter sampled-data modeling; this explains observed behavior
of discontinuous conduction mode converters and of current programmed converters are fre-
quencies approaching half of the switching frequency. Digital control of switching converters
is now implemented in a variety of converter applications; analog-to-digital converters, digital
pulse-width modulators, and digital compensators are modeled and discussed.

Pollution of the ac power system by rectifier harmonics is a recognized problem. As a re-
sult, many converter systems now incorporate low-harmonic rectifiers, which draw sinusoidal
currents from the utility system. These modern rectifiers are considerably more sophisticated
than the conventional diode bridge: they may contain high-frequency switched-mode convert-
ers, with control systems that regulate the ac line current waveform. Modem rectifier technology
is treated in Part V.

Resonant converters employ quasi-sinusoidal waveforms, as opposed to the rectangular
waveforms of the buck converter illustrated in Fig. 1.9. These resonant converters find appli-
cation where high-frequency inverters and converters are needed. Resonant converters are mod-
eled in Part VI. Their loss mechanisms, including the processes of zero-voltage switching and
zero-current switching, are discussed.
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Converters in Equilibrium
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Principles of Steady-State Converter Analysis

2.1 Introduction

In the previous chapter, the buck converter was introduced as a means of reducing the dc voltage,
using only nondissipative switches, inductors, and capacitors. The switch produces a rectangular
waveform vs(t) as illustrated in Fig. 2.1. The voltage vs(t) is equal to the dc input voltage Vg

when the switch is in position 1, and is equal to zero when the switch is in position 2. In practice,
the switch is realized using power semiconductor devices, such as transistors and diodes, which
are controlled to turn on and off as required to perform the function of the ideal switch. The
switching frequency fs, equal to the inverse of the switching period Ts, generally lies in the
range of 1 kHz–1 MHz, depending on the switching speed of the semiconductor devices. The
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Fig. 2.1 Ideal switch, (a), used to reduce the voltage dc component, and (b) its output voltage waveform
vs(t)
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Fig. 2.2 Determination of the switch out-
put voltage dc component, by integrating
and dividing by the switching period

vs(t) Vg

0
t0 DTs Ts

〈vs〉 = DVgarea =
DTsVg

duty ratio D is the fraction of time that the switch spends in position 1, and is a number between
zero and one. The complement of the duty ratio, D′, is defined as (1 − D).

The switch reduces the dc component of the voltage: the switch output voltage vs(t) has a dc
component that is less than the converter dc input voltage Vg. From Fourier analysis, we know
that the dc component of vs(t) is given by its average value 〈vs〉, or

〈vs〉 =
1
Ts

∫ Ts

0
vs(t)dt (2.1)

As illustrated in Fig. 2.2, the integral is given by the area under the curve, or DTsVg. The average
value is therefore

〈vs〉 =
1
Ts

(DTsVg) = DVg (2.2)

So the average value, or dc component, of vs(t) is equal to the duty cycle times the dc input
voltage Vg. The switch reduces the dc voltage by a factor of D.

What remains is to insert a low-pass filter as shown in Fig. 2.3. The filter is designed to pass
the dc component of vs(t), but to reject the components of vs(t) at the switching frequency and
its harmonics. To accomplish this, we design the filter such that its cutoff frequency is much
lower than the switching frequency. The output voltage v(t) is then essentially equal to the dc
component of vs(t):

v ≈ 〈vs〉 = DVg (2.3)

The converter of Fig. 2.3 has been realized using lossless elements. To the extent that they are
ideal, the inductor, capacitor, and switch do not dissipate power. For example, when the switch
is closed, its voltage drop is zero, and the current is zero when the switch is open. In either
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Fig. 2.3 Insertion of low-pass filer, to remove the switching harmonics and pass only the dc component
of vs(t) to the output
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Fig. 2.4 Buck converter dc output voltage V vs.
duty cycle D
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case, the power dissipated by the switch is zero. Hence, efficiencies approaching 100% can
be obtained. So to the extent that the components are ideal, we can realize our objective of
changing dc voltage levels using a lossless network.
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The network of Fig. 2.3 also allows control of the output. Figure 2.4 is the control charac-
teristic of the converter. The output voltage, given by Eq. (2.3), is plotted vs. duty cycle. The
buck converter has a linear control characteristic. Also, the output voltage is less than or equal
to the input voltage, since 0 ≤ D ≤ 1. Feedback systems are often constructed that adjust the
duty cycle D to regulate the converter output voltage. Inverters or power amplifiers can also be
built, in which the duty cycle varies slowly with time and the output voltage follows.

The buck converter is just one of many possible switching converters. Two other commonly
used converters, which perform different voltage conversion functions, are illustrated in Fig. 2.5.
In the boost converter, the positions of the inductor and switch are reversed. It is shown later
in this chapter that the boost converter steps the voltage up: V ≥ Vg. Another converter, the
buck–boost converter, can either increase or decrease the magnitude of the voltage, but the
polarity is inverted. So with a positive input voltage, the ideal buck–boost converter can produce
a negative output voltage of any magnitude. It may at first be surprising that dc output voltages
can be produced that are greater in magnitude than the input, or that have opposite polarity. But
it is indeed possible to produce any desired dc output voltage using a passive network of only
inductors, capacitors, and embedded switches.

In the above discussion, it was possible to derive an expression for the output voltage of
the buck converter, Eq. (2.3), using some simple arguments based on Fourier analysis. How-
ever, it may not be immediately obvious how to directly apply these arguments to find the dc
output voltage of the boost, buck–boost, or other converters. The objective of this chapter is the
development of a more general method for analyzing any switching converter comprised of a
network of inductors, capacitors, and switches [4, 8–13].

The principles of inductor volt-second balance and capacitor charge balance are derived;
these can be used to solve for the inductor currents and capacitor voltages of switching convert-
ers. A useful approximation, the small-ripple or linear-ripple approximation, greatly facilitates
the analysis. Some simple methods for selecting the filter element values are also discussed.

2.2 Inductor Volt-Second Balance, Capacitor Charge Balance, and the
Small-Ripple Approximation

Let us more closely examine the inductor and capacitor waveforms in the buck converter of
Fig. 2.6. It is impossible to build a perfect low-pass filter that allows the dc component to pass
but completely removes the components at the switching frequency and its harmonics. So the
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Fig. 2.6 Buck converter circuit, with the inductor voltage vL(t) and capacitor voltage vC(t) waveforms
specifically identified
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Fig. 2.7 Output voltage waveform v(t), consisting of dc component V and switching ripple vripple(t)

low-pass filter must allow at least some small amount of the high-frequency harmonics gen-
erated by the switch to reach the output. Hence, in practice the output voltage waveform v(t)
appears as illustrated in Fig. 2.7, and can be expressed as

v(t) = V + vripple(t) (2.4)

So the actual output voltage v(t) consists of the desired dc component V , plus a small undesired
ac component vripple(t) arising from the incomplete attenuation of the switching harmonics by
the low-pass filter. The magnitude of vripple(t) has been exaggerated in Fig. 2.7.

The output voltage switching ripple should be small in any well-designed converter, since
the object is to produce a dc output. For example, in a computer power supply having a 3.3 V
output, the switching ripple is normally required to be less than a few tens of millivolts, or less
than 1% of the dc component V . So it is nearly always a good approximation to assume that the
magnitude of the switching ripple is much smaller than the dc component:

‖vripple‖ 	 V (2.5)

Therefore, the output voltage v(t) is well approximated by its dc component V , with the small-
ripple term vripple(t) neglected:

v(t) ≈ V (2.6)

This approximation, known as the small-ripple approximation, or the linear-ripple approxima-
tion, greatly simplifies the analysis of the converter waveforms and is used throughout this book.
With this approximation, we replace the exponential or damped sinusoidal expressions for the
inductor and capacitor waveforms with simpler linear waveforms; this approximation is justified
provided that the switching period is much shorter than the natural time constants of the circuit.
The small-ripple approximation is applied to the inductor currents and capacitor voltages of the
converter, which are continuous variables. It must not be applied to discontinuous waveforms
of the converter, such as the switch voltage, switch current, or inductor voltage.

Next let us analyze the inductor current waveform. We can find the inductor current by inte-
grating the inductor voltage waveform. With the switch in position 1, the left side of the inductor
is connected to the input voltage Vg, and the circuit reduces to Fig. 2.8a. It should be noted here
that the reference polarities of vL(t) and iL(t) have been carefully defined in Fig. 2.6, and these
reference polarities are consistently followed in the circuits of Fig. 2.8a,b. The inductor voltage
vL(t) is given by

vL = Vg − v(t) (2.7)
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As described above, the output voltage v(t) consists of the dc component V , plus a small ac
ripple term vripple(t). We can make the small-ripple approximation here, Eq. (2.6), to replace
v(t) with its dc component V:

vL ≈ Vg − V (2.8)

So with the switch in position 1, the inductor voltage is essentially constant and equal to Vg −V ,
as shown in Fig. 2.9. By knowledge of the inductor voltage waveform, the inductor current can
be found by use of the definition

vL(t) = L
diL(t)

dt
(2.9)

Thus, during the first interval, when vL(t) is approximately (Vg − V), the slope of the inductor
current waveform is

diL(t)
dt
=

vL(t)
L
≈

Vg − V

L
(2.10)

which follows by dividing Eq. (2.9) by L, and substituting Eq. (2.8). Since the inductor voltage
vL(t) is essentially constant while the switch is in position 1, the inductor current slope is also
essentially constant and the inductor current increases linearly.

Similar arguments apply during the second subinterval, when the switch is in position 2.
The left side of the inductor is then connected to ground, leading to the circuit of Fig. 2.8b. It is
important to consistently define the polarities of the inductor current and voltage; in particular,
the polarity of vL(t) is defined consistently in Figs. 2.7, 2.8a,b. So the inductor voltage during
the second subinterval is given by

vL(t) = −v(t) (2.11)

Use of the small-ripple approximation, Eq. (2.6), leads to

vL(t) ≈ −V (2.12)

So the inductor voltage is also essentially constant while the switch is in position 2, as illustrated
in Fig. 2.9. Substitution of Eq. (2.12) into Eq. (2.9) and solution for the slope of the inductor
current yields

diL(t)
dt
≈ −V

L
(2.13)

Hence, during the second subinterval the inductor current changes with a negative and essen-
tially constant slope.

We can now sketch the inductor current waveform (Fig. 2.10). The inductor current begins at
some initial value iL(0). During the first subinterval, with the switch in position 1, the inductor

L

C R

+

v(t)

–

iL(t)

+  vL(t)  – iC(t)

+
–Vg

L

C R

+

v(t)

–

iL(t)

+ vL(t)  – iC(t)

+
–Vg

(b)(a)

Fig. 2.8 Buck converter circuit: (a) while the switch is in position 1, (b) while the switch is in position 2
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Fig. 2.9 Steady-state inductor voltage
waveform, buck converter

vL(t) Vg – V

t
– V

D'TsDTs

Switch
position: 1 2 1

Fig. 2.10 Steady-state inductor current
waveform, buck converter – V

L
Vg – V

L

iL(t)

t0 DTs Ts

I
iL(0)

iL(DTs)
ΔiL

current increases with the slope given in Eq. (2.10). At time t = DTs, the switch changes to
position 2. The current then decreases with the constant slope given by Eq. (2.13). At time
t = Ts, the switch changes back to position 1, and the process repeats.

It is of interest to calculate the inductor current ripple ΔiL. As illustrated in Fig. 2.10, the
peak inductor current is equal to the dc component I plus the peak-to-average ripple ΔiL. This
peak current flows through not only the inductor, but also through the semiconductor devices
that comprise the switch. Knowledge of the peak current is necessary when specifying the rat-
ings of these devices.

Since we know the slope of the inductor current during the first subinterval, and we also
know the length of the first subinterval, we can calculate the ripple magnitude. The iL(t) wave-
form is symmetrical about I, and hence during the first subinterval the current increases by 2ΔiL

(since ΔiL is the peak ripple, the peak-to-peak ripple is 2ΔiL). So the change in current, 2ΔiL,
is equal to the slope (the applied inductor voltage divided by L) times the length of the first
subinterval (DTs):

(change in iL) = (slope)(length of subinterval)

(2ΔiL) =

(
Vg − V

L

)
(DTs) (2.14)

Solution for ΔiL yields

ΔiL =
Vg − V

2L
DTs (2.15)

Typical values ofΔiL lie in the range of 10%– 20% of the full-load value of the dc component
I. It is undesirable to allow ΔiL to become too large; doing so would increase the peak currents of
the inductor and of the semiconductor switching devices, and would increase their size and cost.
So by design the inductor current ripple is also usually small compared to the dc component I.
The small-ripple approximation iL(t) ≈ I is usually justified for the inductor current.

The inductor value can be chosen such that a desired current ripple ΔiL is attained. Solution
of Eq. (2.15) for the inductance L yields
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L =
Vg − V

2ΔiL
DTs (2.16)

This equation is commonly used to select the value of inductance in the buck converter.
It is entirely possible to solve converters exactly, without use of the small-ripple approxima-

tion. For example, one could use the Laplace transform to write expressions for the waveforms
of the circuits of Fig. 2.8a,b. One could then invert the transforms, match boundary conditions,
and find the periodic steady-state solution of the circuit. Having done so, one could then find
the dc components of the waveforms and the peak values. But this is a great deal of work, and
the results are nearly always intractable. Besides, the extra work involved in writing equations
that exactly describe the ripple is a waste of time, since the ripple is small and is undesired. The
small-ripple approximation is easy to apply, and quickly yields simple expressions for the dc
components of the converter waveforms.

The inductor current waveform of Fig. 2.10 is drawn under steady-state conditions, with the
converter operating in equilibrium. Let us consider next what happens to the inductor current
when the converter is first turned on. Suppose that the inductor current and output voltage are
initially zero, and an input voltage Vg is then applied. As shown in Fig. 2.11, iL(0) is zero.
During the first subinterval, with the switch in position 1, we know that the inductor current
will increase, with a slope of (Vg − v)/L and with v initially zero. Next, with the switch in
position 2, the inductor current will change with a slope of −v/L; since v is initially zero, this
slope is essentially zero. It can be seen that there is a net increase in inductor current over the
first switching period, because iL(Ts) is greater than iL(0). Since the inductor current flows to the
output, the output capacitor will charge slightly, and v will increase slightly. The process repeats
during the second and succeeding switching periods, with the inductor current increasing during
each subinterval 1 and decreasing during each subinterval 2.

As the output capacitor continues to charge and v increases, the slope during subinterval 1
decreases while the slope during subinterval 2 becomes more negative. Eventually, the point is
reached where the increase in inductor current during subinterval 1 is equal to the decrease in
inductor current during subinterval 2. There is then no net change in inductor current over a

iL(t)

t0 DTs Ts

iL(0) = 0

iL(nTs)

iL(Ts)

2Ts nTs (n + 1)Ts

iL((n + 1)Ts)

Vg – v(t)
L

– v(t)
L

Fig. 2.11 Inductor current waveform during converter turn-on transient
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complete switching period, and the converter operates in steady state. The converter waveforms
are periodic: iL(nTs) = iL((n+ 1)Ts). From this point on, the inductor current waveform appears
as in Fig. 2.10.

The requirement that, in equilibrium, the net change in inductor current over one switching
period be zero leads us to a way to find steady-state conditions in any switching converter: the
principle of inductor volt-second balance. Given the defining relation of an inductor:

vL(t) = L
diL(t)

dt
(2.17)

Integration over one complete switching period, say from t = 0 to Ts, yields

iL(Ts) − iL(0) =
1
L

∫ TS

0
vL(t)dt (2.18)

This equation states that the net change in inductor current over one switching period, given by
the left-hand side of Eq. (2.18), is proportional to the integral of the applied inductor voltage
over the interval. In steady state, the initial and final values of the inductor current are equal,
and hence the left-hand side of Eq. (2.18) is zero. Therefore, in steady state the integral of the
applied inductor voltage must be zero:

0 =
∫ TS

0
vL(t)dt (2.19)

The right-hand side of Eq. (2.19) has the units of volt-seconds or flux-linkages. Equation (2.19)
states that the total area, or net volt-seconds, under the vL(t) waveform must be zero.

An equivalent form is obtained by dividing both sides of Eq. (2.19) by the switching
period Ts:

0 =
1

TS

∫ Ts

0
vL(t)dt = 〈vL〉 (2.20)

The right-hand side of Eq. (2.20) is recognized as the average value, or dc component, of vL(t).
Equation (2.20) states that, in equilibrium, the applied inductor voltage must have zero dc com-
ponent.

The inductor voltage waveform of Fig. 2.9 is reproduced in Fig. 2.12, with the area un-
der the vL(t) curve specifically identified. The total area λ is given by the areas of the two
rectangles, or

λ =

∫ TS

0
vL(t)dt = (Vg − V)(DTs) + (−V)(D′Ts) (2.21)

Fig. 2.12 The principle of inductor volt-
second balance: in steady state, the net
volt-seconds applied to an inductor (i.e.,
the total area λ) must be zero

vL(t)
Vg – V

t

– V

DTs

Total area λ
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The average value is therefore

〈vL〉 =
λ

Ts
= D(Vg − V) + D′(−V) (2.22)

By equating 〈vL〉 to zero, and noting that D + D′ = 1, one obtains

0 = DVg − (D + D′)V = DVg − V (2.23)

Solution for V yields
V = DVg (2.24)

which coincides with the result obtained previously, Eq. (2.3). So the principle of inductor volt-
second balance allows us to derive an expression for the dc component of the converter output
voltage. An advantage of this approach is its generality—it can be applied to any converter. One
simply sketches the applied inductor voltage waveform, and equates the average value to zero.
This method is used later in this chapter, to solve several more complicated converters.

Similar arguments can be applied to capacitors. The defining equation of a capacitor is

iC(t) = C
dvC(t)

dt
(2.25)

Integration of this equation over one switching period yields

vC(Ts) − vC(0) =
1
C

∫ TS

0
iC(t)dt (2.26)

In steady state, the net change over one switching period of the capacitor voltage must be zero,
so that the left-hand side of Eq. (2.26) is equal to zero. Therefore, in equilibrium the integral
of the capacitor current over one switching period (having the dimensions of amp-seconds, or
charge) should be zero. There is no net change in capacitor charge in steady state. An equivalent
statement is

0 =
1
Ts

∫ Ts

0
iC(t)dt = 〈iC〉 (2.27)

The average value, or dc component, of the capacitor current must be zero in equilibrium.
This should be an intuitive result. If a dc current is applied to a capacitor, then the capacitor

will charge continually and its voltage will increase without bound. Likewise, if a dc voltage is
applied to an inductor, then the flux will increase continually and the inductor current will in-
crease without bound. Equation (2.27), called the principle of capacitor amp-second balance or
capacitor charge balance, can be used to find the steady-state currents in a switching converter.

2.3 Boost Converter Example

The boost converter, Fig. 2.13a, is another well-known switched-mode converter that is capable
of producing a dc output voltage greater in magnitude than the dc input voltage. A practical
realization of the switch, using a MOSFET and diode, is shown in Fig. 2.13b. Let us apply the
small-ripple approximation and the principles of inductor volt-second balance and capacitor
charge balance to find the steady-state output voltage and inductor current for this converter.
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+
–

L

C R

+

v

–

1

2

iL(t)

Vg

iC(t)+ vL(t) –

+
–

L

C R

+

v

–

iL(t)

Vg

iC(t)+ vL(t) –

D1

Q1

DTs Ts

+
–

(a)

(b)

Fig. 2.13 Boost converter: (a) with ideal switch, (b) practical realization using MOSFET and diode
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Fig. 2.14 Boost converter circuit, (a) while the switch is in position 1, (b) while the switch is in position 2

With the switch in position 1, the right-hand side of the inductor is connected to ground,
resulting in the network of Fig. 2.14a. The inductor voltage and capacitor current for this subin-
terval are given by

vL = Vg (2.28)

iC = −
v
R
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Use of the linear-ripple approximation, v ≈ V , leads to

vL = V (2.29)

iC = −
V
R

With the switch in position 2, the inductor is connected to the output, leading to the circuit of
Fig. 2.14b. The inductor voltage and capacitor current are then

vL = Vg − v (2.30)

iC = iL −
v
R

Use of the small-ripple approximation, v ≈ V and iL ≈ I, leads to

vL = Vg − V (2.31)

iC = I − V
R

Equations (2.29) and (2.31) are used to sketch the inductor voltage and capacitor current wave-
forms of Fig. 2.15.

It can be inferred from the inductor voltage waveform of Fig. 2.15a that the dc output voltage
V is greater than the input voltage Vg. During the first subinterval, vL(t) is equal to the dc input
voltage Vg, and positive volt-seconds are applied to the inductor. Since, in steady-state, the
total volt-seconds applied over one switching period must be zero, negative volt-seconds must
be applied during the second subinterval. Therefore, the inductor voltage during the second
subinterval, (Vg − V), must be negative. Hence, V is greater than Vg.

The total volt-seconds applied to the inductor over one switching period are

∫ TS

0
vL(t)dt = (Vg)DTs + (Vg − V)D′Ts (2.32)

vL(t)

Vg – V

t
DTs

Vg

D'Ts

iC(t)

– V/R
t

DTs

I – V/R

D'Ts

(a)

(b)

Fig. 2.15 Boost converter voltage and current waveforms
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Fig. 2.16 Dc conversion ratio M(D)
of the boost converter M
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By equating this expression to zero and collecting terms, one obtains

Vg(D + D′) − VD
′
= 0 (2.33)

Solution for V , and by noting that (D + D′) = 1, yields the expression for the output voltage,

V =
Vg

D′
(2.34)

The voltage conversion ratio M(D) is the ratio of the output to the input voltage of a dc–dc
converter. Equation (2.34) predicts that the voltage conversion ratio is given by

M(D) =
V
Vg
=

1
D′
=

1
1 − D

(2.35)

This equation is plotted in Fig. 2.16. At D = 0, V = Vg. The output voltage increases as D
increases, and in the ideal case tends to infinity as D tends to 1. So the ideal boost converter
is capable of producing any output voltage greater than the input voltage. There are, of course,
limits to the output voltage that can be produced by a practical boost converter. In the next
chapter, component nonidealities are modeled, and it is found that the maximum output voltage
of a practical boost converter is indeed limited. Nonetheless, very large output voltages can be
produced if the nonidealities are sufficiently small.

The dc component of the inductor current is derived by use of the principle of capacitor
charge balance. During the first subinterval, the capacitor supplies the load current, and the
capacitor is partially discharged. During the second subinterval, the inductor current supplies
the load and, additionally, recharges the capacitor. The net change in capacitor charge over one
switching period is found by integrating the iC(t) waveform of Fig. 2.15b,

∫ Ts

0
iC(t)dt =

(
−V

R

)
DTs +

(
I − V

R

)
D′Ts (2.36)

Collecting terms, and equating the result to zero, leads to the steady-state result

− V
R

(D + D′) + ID′ = 0 (2.37)
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Fig. 2.17 Variation of inductor cur-
rent dc component I with duty cycle
D, boost converter
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By noting that (D+D′) = 1, and by solving for the inductor current dc component I, one obtains

I =
V

D′R
(2.38)

So the inductor current dc component I is equal to the load current, V/R, divided by D′. Substi-
tution of Eq. (2.34) to eliminate V yields

I =
Vg

D′2R
(2.39)

This equation is plotted in Fig. 2.17. It can be seen that the inductor current becomes large as D
approaches 1.

This inductor current, which coincides with the dc input current in the boost converter, is
greater than the load current. Physically, this must be the case: to the extent that the converter
elements are ideal, the converter input and output powers are equal. Since the converter output
voltage is greater than the input voltage, the input current must likewise be greater than the out-
put current. In practice, the inductor current flows through the semiconductor forward voltage
drops, the inductor winding resistance, and other sources of power loss. As the duty cycle ap-
proaches one, the inductor current becomes very large and these component nonidealities lead
to large power losses. In consequence, the efficiency of the boost converter decreases rapidly at
high duty cycle.

Next, let us sketch the inductor current iL(t) waveform and derive an expression for the
inductor current ripple ΔiL. The inductor voltage waveform vL(t) has been already found
(Fig. 2.15), so we can sketch the inductor current waveform directly. During the first subinterval,
with the switch in position 1, the slope of the inductor current is given by

diL(t)
dt
=

vL(t)
L
=

Vg

L
(2.40)

Likewise, when the switch is in position 2, the slope of the inductor current waveform is

diL(t)
dt
=

vL(t)
L
=

Vg − V

L
(2.41)

The inductor current waveform is sketched in Fig. 2.18. During the first subinterval, the change
in inductor current, 2ΔiL, is equal to the slope multiplied by the length of the subinterval, or
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Fig. 2.18 Boost converter inductor
current waveform iL(t) Vg – V
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Fig. 2.19 Boost converter output
voltage waveform v(t)
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V Δv
I
C – V
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– V
RC

2ΔiL =
Vg

L
DTs (2.42)

Solution for ΔiL leads to

ΔiL =
Vg

2L
DTs (2.43)

This expression can be used to select the inductor value L such that a given value of ΔiL is
obtained.

Likewise, the capacitor voltage v(t) waveform can be sketched, and an expression derived
for the output voltage ripple peak magnitude Δv. The capacitor current waveform iC(t) is given
in Fig. 2.15. During the first subinterval, the slope of the capacitor voltage waveform v(t) is

dvC(t)
dt

=
iC(t)

C
=
−V
RC

(2.44)

During the second subinterval, the slope is

dvC(t)
dt

=
iC(t)

C
=

I
C
− V

RC
(2.45)

The capacitor voltage waveform is sketched in Fig. 2.19. During the first subinterval, the change
in capacitor voltage, −2Δv, is equal to the slope multiplied by the length of the subinterval:

− 2Δv =
−V
RC

DTs (2.46)

Solution for Δv yields

Δv =
V

2RC
DTs (2.47)

This expression can be used to select the capacitor value C to obtain a given output voltage
ripple peak magnitude Δv.
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2.4 Ćuk Converter Example

As a second example, consider the Ćuk converter of Fig. 2.20a. This converter performs a dc
conversion function similar to the buck–boost converter: it can either increase or decrease the
magnitude of the dc voltage, and it inverts the polarity. A practical realization using a transistor
and diode is illustrated in Fig. 2.20b.

This converter operates via capacitive energy transfer. As illustrated in Fig. 2.21, capacitor
C1 is connected through L1 to the input source while the switch is in position 2, and source
energy is stored in C1. When the switch is in position 1, this energy is released through L2 to
the load.

The inductor currents and capacitor voltages are defined, with polarities assigned somewhat
arbitrarily, in Fig. 2.20a. In this section, the principles of inductor volt-second balance and capac-
itor charge balance are applied to find the dc components of the inductor currents and capacitor
voltages. The voltage and current ripple magnitudes are also found.

During the first subinterval, while the switch is in position 1, the converter circuit reduces
to Fig. 2.21a. The inductor voltages and capacitor currents are

vL1 = Vg

vL2 = −v1 − v2

iC1 = i2 (2.48)

iC2 = i2 −
v2

R

We next assume that the switching ripple magnitudes in i1(t), i2(t), v1(t), and v2(t) are small
compared to their respective dc components I1, I2, V1, and V2. We can therefore make the
small-ripple approximation, and Eq. (2.48) becomes

+
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C1 L2

1 2
+ v1 –i1 i2
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–
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Fig. 2.20 Ćuk converter: (a) with ideal switch, (b) practical realization using MOSFET and diode
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Fig. 2.21 Ćuk converter circuit: (a) while switch is in position 1, (b) while switch is in position 2

vL1 = Vg

vL2 = −V1 − V2 (2.49)

iC1 = I2

iC2 = I2 −
V2

R

During the second subinterval, with the switch in position 2, the converter circuit elements are
connected as in Fig. 2.21b. The inductor voltages and capacitor currents are:

vL1 = Vg − v1

vL2 = −v2

iC1 = i1 (2.50)

iC2 = i2 −
v2

R

We again make the small-ripple approximation, and hence Eq. (2.50) becomes

vL1 = Vg − V1

vL2 = −V2

iC1 = I1 (2.51)

iC2 = I2 −
V2

R

Equations (2.49) and (2.51) are used to sketch the inductor voltage and capacitor current wave-
forms in Fig. 2.22.
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Fig. 2.22 Ćuk converter waveforms: (a) inductor voltage vL1(t), (b) inductor voltage vL2(t), (c) capacitor
current iC1(t), (d) capacitor current iC2(t)

The next step is to equate the dc components, or average values, of the waveforms of
Fig. 2.22 to zero, to find the steady-state conditions in the converter. The results are

〈vL1〉 = DVg + D′
(
Vg − V1

)
= 0

〈vL2〉 = D (−V1 − V2) + D′(−V2) = 0 (2.52)

〈iC1〉 = DI2 + D′I1 = 0

〈iC2〉 = I2 −
V2

R
= 0

Solution of this system of equations for the dc components of the capacitor voltages and inductor
currents leads to
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Fig. 2.23 Dc conversion ratio M(D) = −V/Vg of the Ćuk converter

V1 =
Vg

D′

V2 = −
D
D′

Vg (2.53)

I1 = −
D
D′

I2 =

( D
D′

)2 Vg

R

I2 =
V2

R
= − D

D′
Vg

R

The dependence of the dc output voltage V2 on the duty cycle D is sketched in Fig. 2.23.
The inductor current waveforms are sketched in Fig. 2.24a,b, and the capacitor C1 voltage

waveform v1(t) is sketched in Fig. 2.24c. During the first subinterval, the slopes of the wave-
forms are given by

di1(t)
dt
=

vL1(t)
L1
=

Vg

L1

di2(t)
dt
=

vL2(t)
L2
=
−V1 − V2

L2
(2.54)

dv1(t)
dt
=

iC1(t)
C1

=
I2

C1

Equation (2.49) has been used here to substitute for the values of vL1, vL2, and iC1 during the
first subinterval. During the second interval, the slopes of the waveforms are given by

di1(t)
dt
=

vL1(t)
L1
=

Vg − V1

L1

di2(t)
dt
=

vL2(t)
L2
=
−V2

L2
(2.55)

dv1(t)
dt
=

iC1(t)
C1

=
I1

C1

Equation (2.51) was used to substitute for the values of vL1, vL2, and iC1 during the second
subinterval.
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i1(t)

tDTs Ts

I1
Δi1

Vg – V1

L 1

Vg

L 1

– V2
L 2

– V1 – V2
L 2

i2(t)

tDTs Ts

I2 Δi2

I1
C1

I2
C1

v1(t)

tDTs Ts

V1

Δv1

(a)

(b)

(c)

Fig. 2.24 Ćuk converter waveforms: (a) inductor current i1(t), (b) inductor current i2(t), (c) capacitor
voltage v1(t)

During the first subinterval, the quantities i1(t), i2(t), and v1(t) change by 2Δi1, − 2Δi2, and
− 2Δv1, respectively. These changes are equal to the slopes given in Eq. (2.54), multiplied by
the subinterval length DTs, yielding

Δi1 =
VgDTs

2L1

Δi2 =
V1 + V2

2L2
DTs (2.56)

Δv1 =
−I2DTs

2C1

The dc relationships, Eq. (2.53), can now be used to simplify these expressions and eliminate
V1, V2, and I1, leading to

Δi1 =
VgDTs

2L1

Δi2 =
VgDTs

2L2
(2.57)

Δv1 =
VgD2Ts

2D′RC1
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These expressions can be used to select values of L1, L2, and C1, such that desired values of
switching ripple magnitudes are obtained.

Similar arguments cannot be used to estimate the switching ripple magnitude in the output
capacitor voltage v2(t). According to Fig. 2.22d, the current iC2(t) is continuous: unlike vL1, vL2,
and iC1, the capacitor current iC2(t) is nonpulsating. If the switching ripple of i2(t) is neglected,
then the capacitor current iC2(t) does not contain an ac component. The small-ripple approxima-
tion then leads to the conclusion that the output switching ripple Δv2 is zero.

Of course, the output voltage switching ripple is not zero. To estimate the magnitude of the
output voltage ripple in this converter, we must not neglect the switching ripple present in the
inductor current i2(t), since this current ripple is the only source of ac current driving the output
capacitor C2. A simple way of doing this in the Ćuk converter and in other similar converters is
discussed in the next section.

2.5 Estimating the Output Voltage Ripple in Converters Containing
Two-Pole Low-Pass Filters

A case where the small-ripple approximation is not useful is in converters containing two-pole
low-pass filters, such as in the output of the Ćuk converter (Fig. 2.20) or the buck converter
(Fig. 2.25). For these converters, the small-ripple approximation predicts zero output voltage
ripple, regardless of the value of the output filter capacitance. The problem is that the only
component of output capacitor current in these cases is that arising from the inductor current
ripple. Hence, inductor current ripple cannot be neglected when calculating the output capacitor
voltage ripple, and a more accurate approximation is needed.

An improved approach that is useful for this case is to estimate the capacitor current wave-
form iC(t) more accurately, accounting for the inductor current ripple. The capacitor voltage
ripple can then be related to the total charge contained in the positive portion of the iC(t) wave-
form.

Consider the buck converter of Fig. 2.25. The inductor current waveform iL(t) contains a dc
component I and linear ripple of peak magnitude ΔiL, as shown in Fig. 2.10. The dc compo-
nent I must flow entirely through the load resistance R (why?), while the ac switching ripple
divides between the load resistance R and the filter capacitor C. In a well-designed converter,
in which the capacitor provides significant filtering of the switching ripple, the capacitance C is
chosen large enough that its impedance at the switching frequency is much smaller than the load
impedance R. Hence nearly all of the inductor current ripple flows through the capacitor, and

+
–

L

C R

+

vC(t)

–

1

2
iC(t) iR(t)iL(t)

Vg

Fig. 2.25 The buck converter contains a two-pole output filter
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iC(t)

vC(t)

t

t

Total charge
q

DTs D'Ts

Ts /2

V

ΔiL

Δv
Δv

Fig. 2.26 Output capacitor voltage and current waveforms, for the buck converter in Fig. 2.25

very little flows through the load. As shown in Fig. 2.26, the capacitor current waveform iC(t) is
then equal to the inductor current waveform with the dc component removed. The current ripple
is linear, with peak value ΔiL.

When the capacitor current iC(t) is positive, charge is deposited on the capacitor plates and
the capacitor voltage vC(t) increases. Therefore, between the two zero crossings of the capacitor
current waveform, the capacitor voltage changes between its minimum and maximum extrema.
The waveform is symmetrical, and the total change in vC is the peak-to-peak output voltage
ripple, or 2Δv.

This change in capacitor voltage can be related to the total charge q contained in the positive
portion of the capacitor current waveform. By the capacitor relation Q = CV ,

q = C(2Δv) (2.58)

As illustrated in Fig. 2.26, the charge q is the integral of the current waveform between its zero
crossings. For this example, the integral can be expressed as the area of the shaded triangle,
having a height ΔiL. Owing to the symmetry of the current waveform, the zero crossings occur
at the centerpoints of the DTs and D′Ts subintervals. Hence, the base dimension of the triangle
is Ts/2. So the total charge q is given by

q =
1
2
ΔiL

Ts

2
(2.59)

Substitution of Eq. (2.58) into Eq. (2.59), and solution for the voltage ripple peak magnitude Δv
yields

Δv =
ΔiLTs

8C
(2.60)
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Fig. 2.27 Estimating inductor
current ripple when the inductor
voltage waveform is continuous

vL(t)

iL(t)

t

t

Total
flux linkage

− λ

DTs D'Ts

Ts /2

I

Δv

Δi
Δi

This expression can be used to select a value for the capacitance C such that a given voltage
ripple Δv is obtained. In practice, the additional voltage ripple caused by the capacitor equivalent
series resistance (ESR) must also be included.

Similar arguments can be applied to inductors. An example is considered in Problem 2.10, in
which a two-pole input filter is added to a buck converter as in Fig. 2.33. The capacitor voltage
ripple cannot be neglected; doing so would lead to the conclusion that no ac voltage is applied
across the input filter inductor, resulting in zero input current ripple. The actual inductor voltage
waveform is identical to the ac portion of the input filter capacitor voltage, with linear ripple
and with peak value Δv as illustrated in Fig. 2.27. By use of the inductor relation λ = Li, a result
similar to Eq. (2.60) can be derived. The derivation is left as a problem for the student.

2.6 Summary of Key Points

1. The dc component of a converter waveform is given by its average value, or the integral over
one switching period, divided by the switching period. Solution of a dc–dc converter to find
its dc, or steady state, voltages and currents therefore involves averaging the waveforms.

2. The linear- (or small-) ripple approximation greatly simplifies the analysis. In a well-
designed converter, the switching ripples in the inductor currents and capacitor voltages
are small compared to the respective dc components, and can be neglected.

3. The small-ripple approximation is properly applied only to inductor currents and capacitor
voltages, which are continuous waveforms. Attempts to apply the small-ripple approxima-
tion to switched (discontinuous) waveforms lead to erroneous results.

4. The principle of inductor volt-second balance allows determination of the dc voltage compo-
nents in any switching converter. In steady state, the average voltage applied to an inductor
must be zero.

5. The principle of capacitor charge balance allows determination of the dc components of the
inductor currents in a switching converter. In steady state, the average current applied to a
capacitor must be zero.
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6. By knowledge of the slopes of the inductor current and capacitor voltage waveforms, the
ac switching ripple magnitudes may be computed. Inductance and capacitance values can
then be chosen to obtain desired ripple magnitudes.

7. In converters containing multiple-pole filters, continuous (nonpulsating) voltages and cur-
rents are applied to one or more of the inductors or capacitors. Computation of the ac
switching ripple in these elements can be done using capacitor charge and/or inductor flux-
linkage arguments, without use of the small-ripple approximation.

8. Converters capable of increasing (boost), decreasing (buck), and inverting the voltage polar-
ity (buck–boost and Ćuk) have been described. Converter circuits are explored more fully
in the problems and in a later chapter.

Problems

2.1 Analysis and design of a buck–boost converter: A buck–boost converter is illustrated
in Fig. 2.28a, and a practical implementation using a transistor and diode is shown in
Fig. 2.28b.

Fig. 2.28 Buck–boost converter
of Problem 2.1: (a) ideal converter
circuit, (b) implementation using
MOSFET and diode
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+
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1 2
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Vg

+
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–

i(t)

+
–

D1Q1

L C R

iT iD

Vg

(a)

(b)

(a) Find the dependence of the equilibrium output voltage V and inductor current I on
the duty ratio D, input voltage Vg, and load resistance R. You may assume that the
inductor current ripple and capacitor voltage ripple are small.

(b) Plot your results of part (a) over the range 0 ≤ D ≤ 1.
(c) Dc design: for the specifications

Vg = 30 V V = −20V

R = 4Ω fs = 40 kHz

(i) Find D and I
(ii) Calculate the value of L that will make the peak inductor current ripple Δi equal

to ten percent of the average inductor current I.
(iii) Choose C such that the peak output voltage ripple Δv is 0.1 V.
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(d) Sketch the transistor drain current waveform iT (t) for your design of part (c). Include
the effects of inductor current ripple. What is the peak value of iT ? Also sketch iT (t)
for the case when L is decreased such that Δi is 50% of I. What happens to the peak
value of iT in this case?

(e) Sketch the diode current waveform iD(t) for the two cases of part (d).
2.2 The boost converter illustrated in Fig. 2.29 operates with the following conditions:

Input voltage Vg = 3.3 V
Output voltage V = 5 V
Switching frequency fs = 500 kHz

All elements are ideal, and the converter operates in steady state with waveforms similar
to those illustrated in Fig. 2.15.
(a) What is the duty cycle?

Fig. 2.29 Boost converter of Problem 2.2

(b) Sketch the waveform of the MOSFET drain-to-source voltage. Label the numerical
values of all relevant times and voltages.

(c) Find the dc component of the voltage waveform of Part (b).
2.3 In a certain application, an unregulated dc input voltage can vary between 18 and 36 V. It

is desired to produce a regulated output of 28 V to supply a 2 A load. Hence, a converter is
needed that is capable of both increasing and decreasing the voltage. Since the input and
output voltages are both positive, converters that invert the voltage polarity (such as the
basic buck–boost converter) are not suited for this application.
One converter that is capable of performing the required function is the nonisolated SEPIC
(single-ended primary inductance converter) shown in Fig. 2.30. This converter has a con-
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Fig. 2.30 SEPIC of Problems 2.3 and 2.4
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version ratio M(D) that can both buck and boost the voltage, but the voltage polarity is
not inverted. In the normal converter operating mode, the transistor conducts during the
first subinterval (0 < t < DTs), and the diode conducts during the second subinterval
(DTs < t < Ts). You may assume that all elements are ideal.
(a) Derive expressions for the dc components of each capacitor voltage and inductor cur-

rent, as functions of the duty cycle D, the input voltage Vg, and the load resistance
R.

(b) A control circuit automatically adjusts the converter duty cycle D, to maintain a con-
stant output voltage of V = 28 V. The input voltage slowly varies over the range
18 V ≤ Vg ≤ 36 V. The load current is constant and equal to 2 A. Over what range
will the duty cycle D vary? Over what range will the input inductor current dc compo-
nent I1 vary?

2.4 For the SEPIC of Problem 2.3,
(a) Derive expressions for each inductor current ripple and capacitor voltage ripple. Ex-

press these quantities as functions of the switching period Ts; the component values
L1, L2, C1, C2; the duty cycle D; the input voltage Vg; and the load resistance R.

(b) Sketch the waveforms of the transistor voltage vDS (t) and transistor current iD(t), and
give expressions for their peak values.

2.5 The switches in the converter of Fig. 2.31 operate synchronously: each is in position 1 for
0 < t < DTs, and in position 2 for DTs < t < Ts. Derive an expression for the voltage
conversion ratio M(D) = V/Vg. Sketch M(D) vs. D.
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+ v –

2

1iL
Vg
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2

Fig. 2.31 H-bridge converter of Problems 2.5 and 2.7

2.6 The switches in the converter of Fig. 2.32 operate synchronously: each is in position 1 for
0 < t < DTs, and in position 2 for DTs < t < Ts. Derive an expression for the voltage
conversion ratio M(D) = V/Vg. Sketch M(D) vs. D.
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Fig. 2.32 Current-fed bridge converter of Problems 2.6, 2.8, and 2.9
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2.7 For the converter of Fig. 2.31, derive expressions for the inductor current ripple ΔiL and
the capacitor voltage ripple ΔvC .

2.8 For the converter of Fig. 2.32, derive an analytical expression for the dc component of the
inductor current, I, as a function of D, Vg, and R. Sketch your result vs. D.

2.9 For the converter of Fig. 2.32, derive expressions for the inductor current ripple ΔiL and
the capacitor voltage ripple ΔvC .

2.10 To reduce the switching harmonics present in the input current of a certain buck converter,
an input filter consisting of inductor L1 and capacitor C1 is added as shown in Fig. 2.33.
Such filters are commonly used to meet regulations limiting conducted electromagnetic
interference (EMI). For this problem, you may assume that all inductance and capacitance
values are sufficiently large, such that all ripple magnitudes are small.

R

+

v

–

+
– C2

L2L1

C1

+

vC1

–

i1

iT

i2

D1

Q1

Vg

Fig. 2.33 Addition of L-C input filter to buck converter, Problem 2.10

(a) Sketch the transistor current waveform iT (t).
(b) Derive analytical expressions for the dc components of the capacitor voltages and

inductor currents.
(c) Derive analytical expressions for the peak ripple magnitudes of the input filter inductor

current and capacitor voltage.
(d) Given the following values:

Input voltage Vg = 48 V
Output voltage V = 36 V
Switching frequency fs = 100 kHz
Load resistance R = 6Ω

Select values for L1 and C1 such that (i) the peak voltage ripple on C1, ΔvC1, is two
percent of the dc component VC1, and (ii) the input peak current ripple Δi1 is 20 mA.

2.11 An ideal boost converter is shown in Fig. 2.13a. For the converter operating in steady state,
derive exact analytical expressions for:

(a) the dc component of the output voltage,
(b) the peak-to-peak inductor current ripple, and
(c) the peak-to-peak capacitor voltage ripple.

Your expressions should be written in terms of the circuit parameters Vg, R, Ts, L, C, and
duty cycle D.
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Steady-State Equivalent Circuit Modeling, Losses,
and Efficiency

Let us now consider the basic functions performed by a switching converter, and attempt to rep-
resent these functions by a simple equivalent circuit. The designer of a converter power stage
must calculate the network voltages and currents, and specify the power components accord-
ingly. Losses and efficiency are of prime importance. The use of equivalent circuits is a physical
and intuitive approach which allows the well-known techniques of circuit analysis to be em-
ployed. As noted in the previous chapter, it is desirable to ignore the small but complicated
switching ripple, and model only the important dc components of the waveforms.

The dc transformer is used to model the ideal functions performed by a dc-dc converter
[14–17]. This simple model correctly represents the relationships between the dc voltages and
currents of the converter. The model can be refined by including losses, such as semiconductor
forward voltage drops and on-resistances, inductor core and copper losses, etc. The resulting
model can be directly solved, to find the voltages, currents, losses, and efficiency in the actual
nonideal converter.

3.1 The DC Transformer Model

As illustrated in Fig. 3.1, any switching converter contains three ports: a power input, a power
output, and a control input. The input power is processed as specified by the control input, and
then is output to the load. Ideally, these functions are performed with 100% efficiency, and hence

Pin = Pout (3.1)

or,
VgIg = VI (3.2)

These relationships are valid only under equilibrium (dc) conditions: during transients, the
net stored energy in the converter inductors and capacitors may change, causing Eqs. (3.1) and
(3.2) to be violated.

In the previous chapter, we found that we could express the converter output voltage in an
equation of the form

V = M(D)Vg (3.3)
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Fig. 3.1 Switching converter terminal quantities
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Fig. 3.2 A switching converter equivalent circuit using dependent sources, corresponding to Eqs. (3.3)
and (3.4)

where M(D) is the equilibrium conversion ratio of the converter. For example, M(D) = D for
the buck converter, and M(D) = 1/(1 − D) for the boost converter. In general, for ideal PWM
converters operating in the continuous conduction mode and containing an equal number of
independent inductors and capacitors, it can be shown that the equilibrium conversion ratio M
is a function of the duty cycle D and is independent of load.

Substitution of Eq. (3.3) into Eq. (3.2) yields

Ig = M(D)I (3.4)

Hence, the converter terminal currents are related by the same conversion ratio.
Equations (3.3) and (3.4) suggest that the converter could be modeled using dependent

sources, as in Fig. 3.2. An equivalent but more physically meaningful model (Fig. 3.3) can be
obtained through the realization that Eqs. (3.1) to (3.4) coincide with the equations of an ideal
transformer. In an ideal transformer, the input and output powers are equal, as stated in Eqs. (3.1)
and (3.2). Also, the output voltage is equal to the turns ratio times the input voltage. This is con-
sistent with Eq. (3.3), with the turns ratio taken to be the equilibrium conversion ratio M(D).
Finally, the input and output currents should be related by the same turns ratio, as in Eq. (3.4).

Thus, we can model the ideal dc-dc converter using the ideal dc transformer model of
Fig. 3.3.

This symbol represents the first-order dc properties of any switching dc-dc converter: trans-
formation of dc voltage and current levels, ideally with 100% efficiency, controllable by the
duty cycle D. The solid horizontal line indicates that the element is ideal and capable of passing
dc voltages and currents. It should be noted that, although standard magnetic core transformers
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Fig. 3.3 Ideal dc trans-
former model of a dc-dc
converter operating in con-
tinuous conduction mode,
corresponding to Eqs. (3.1)
to (3.4)
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+
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+
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Ig I1 : M(D)

cannot transform dc signals (they saturate when a dc voltage is applied), we are nonetheless free
to define the idealized model of Fig. 3.3 for the purpose of modeling dc-dc converters. Indeed,
the absence of a physical dc transformer is one of the reasons for building a dc-dc switching
converter. So the properties of the dc-dc converter of Fig. 3.1 can be modeled using the equiva-
lent circuit of Fig. 3.3. An advantage of this equivalent circuit is that, for constant duty cycle, it
is time invariant: there is no switching or switching ripple to deal with, and only the important
dc components of the waveforms are modeled.

The rules for manipulating and simplifying circuits containing transformers apply equally
well to circuits containing dc-dc converters. For example, consider the network of Fig. 3.4a, in
which a resistive load is connected to the converter output, and the power source is modeled
by a Thevenin-equivalent voltage source V1 and resistance R1. The converter is replaced by the
dc transformer model in Fig. 3.4b. The elements V1 and R1 can now be pushed through the dc

(a)

D

RV1

R1

+

+

Vg

+

V

Switching

dc-dc

converter

(b) 1 : M(D)

RV1

R1

+

+

Vg

+

V

(c)

RM(D)V1

M 2(D)R1

+

+

V

Fig. 3.4 Example of the use of the dc transformer model: (a) original circuit; (b) substitution of switching
converter dc transformer model; (c) simplification by referring all elements to secondary side
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transformer as in Fig. 3.4c; the voltage source V1 is multiplied by the conversion ratio M(D),
and the resistor R1 is multiplied by M2(D). This circuit can now be solved using the voltage
divider formula to find the output voltage:

V = M(D)V1
R

R + M2(D)R1
(3.5)

It should be apparent that the dc transformer/equivalent circuit approach is a powerful tool for
understanding networks containing converters.

3.2 Inclusion of Inductor Copper Loss

The dc transformer model of Fig. 3.3 can be extended, to model other properties of the converter.
Nonidealities, such as sources of power loss, can be modeled by adding resistors as appropri-
ate. In later chapters, we will see that converter dynamics can be modeled as well, by adding
inductors and capacitors to the equivalent circuit.

L RL

Fig. 3.5 Modeling inductor
copper loss via series resistor
RL

Let us consider the inductor copper loss in a boost converter.
Practical inductors exhibit power loss of two types: (1) copper
loss, originating in the resistance of the wire, and (2) core loss,
due to hysteresis and eddy current losses in the magnetic core.
A suitable model that describes the inductor copper loss is given
in Fig. 3.5, in which a resistor RL is placed in series with the
inductor. The actual inductor then consists of an ideal inductor,
L, in series with the copper loss resistor RL.

The inductor model of Fig. 3.5 is inserted into the boost converter circuit in Fig. 3.6. The
circuit can now be analyzed in the same manner as used for the ideal lossless converter, using
the principles of inductor volt-second balance, capacitor charge balance, and the small-ripple
approximation. First, we draw the converter circuits during the two subintervals, as in Fig. 3.7.

For 0 < t < DTs, the switch is in position 1 and the circuit reduces to Fig. 3.7a. The inductor
voltage vL(t), across the ideal inductor L, is given by

vL(t) = Vg − i(t)RL (3.6)

and the capacitor current iC(t) is

iC(t) = −v(t)
R

(3.7)

L

+ C R

+

v
1

2

i

Vg

RL

Fig. 3.6 Boost converter circuit, including inductor copper resistance RL
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v

+ v

+ vL iC
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Fig. 3.7 Boost converter circuits during the two subintervals, including inductor copper loss resistance
RL: (a) with the switch in position 1, (b) with the switch in position 2

Next, we simplify these equations by assuming that the switching ripples in i(t) and v(t) are
small compared to their respective dc components I and V . Hence, i(t) ≈ I and v(t) ≈ V , and
Eqs. (3.6) and (3.7) become

vL(t) = Vg − IRL (3.8)

iC(t) = −V
R

For DTs < t < Ts, the switch is in position 2 and the circuit reduces to Fig. 3.7b. The inductor
current and capacitor voltage are then given by

vL(t) = Vg − i(t)RL − v(t) ≈ Vg − IRL − V (3.9)

iC(t) = i(t) − v(t)
R
≈ I − V

R

We again make the small-ripple approximation.
The principle of inductor volt-second balance can now be invoked. Equations (3.8) and

(3.9) are used to construct the inductor voltage waveform vL(t) in Fig. 3.8. The dc component,
or average value, of the inductor voltage vL(t) is

〈vL(t)〉 = 1
Ts

∫ Ts

0
vL(t)dt = D

(
Vg − IRL

)
+ D′

(
Vg − IRL − V

)
(3.10)

By setting 〈vL〉 to zero and collecting terms, one obtains

0 = Vg − IRL − D′V (3.11)

(recall that D + D′ = 1). It can be seen that the inductor winding resistance RL adds another
term to the inductor volt-second balance equation. In the ideal boost converter (RL = 0) example
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Fig. 3.8 Inductor voltage and
capacitor current waveforms, for
the nonideal boost converter of
Fig. 3.6
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t
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DTs D'Ts

Vg L
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t

of Chap. 2, we were able to solve this equation directly for the voltage conversion ratio V/Vg.
Equation (3.11) cannot be immediately solved in this manner, because the inductor current I is
unknown. A second equation is needed, to eliminate I.

The second equation is obtained using capacitor charge balance. The capacitor current iC(t)
waveform is given in Fig. 3.8. The dc component, or average value, of the capacitor current
waveform is

〈iC(t)〉 = D
(
−V

R

)
+ D′

(
I − V

R

)
(3.12)

By setting 〈iC〉 to zero and collecting terms, one obtains

0 = D′I − V
R

(3.13)

We now have two equations, Eqs. (3.11) and (3.13), and two unknowns, V and I. Elimination of
I and solution for V yields

V
Vg
=

1
D′

1(
1 +

RL

D′2R

) (3.14)

This is the desired solution for the converter output voltage V . It is plotted in Fig. 3.9 for several
values of RL/R. It can be seen that Eq. (3.14) contains two terms. The first, 1/D′, is the ideal
conversion ratio, with RL = 0. The second term, 1/(1 + RL/D′2R), describes the effect of the
inductor winding resistance. If RL is much less than D′2R, then the second term is approximately
equal to unity and the conversion ratio is approximately equal to the ideal value 1/D′. However,
as RL is increased in relation to D′2R, then the second term is reduced in value, and V/Vg is
reduced as well.

As the duty cycle D approaches one, the inductor winding resistance RL causes a major
qualitative change in the V/Vg curve. Rather than approaching infinity at D = 1, the curve
tends to zero. Of course, it is unreasonable to expect that the converter can produce infinite
voltage, and it should be comforting to the engineer that the prediction of the model is now
more realistic. What happens at D = 1 is that the switch is always in position 1. The inductor is
never connected to the output, so no energy is transferred to the output and the output voltage
tends to zero. The inductor current tends to a large value, limited only by the inductor resistance
RL. A large amount of power is lost in the inductor winding resistance, equal to V2

g/RL, while
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Fig. 3.9 Output voltage vs. duty cycle, boost converter with inductor copper loss

no power is delivered to the load; hence, we can expect that the converter efficiency tends to
zero at D = 1.

Another implication of Fig. 3.9 is that the inductor winding resistance RL limits the maxi-
mum voltage that the converter can produce. For example, with RL/R = 0.02, it can be seen that
the maximum V/Vg is approximately 3.5. If it is desired to obtain V/Vg = 5, then according to
Fig. 3.9 the inductor winding resistance RL must be reduced to less than 1% of the load resis-
tance R. The only problem is that decreasing the inductor winding resistance requires building
a larger, heavier, more expensive inductor. So it is usually important to optimize the design, by
correctly modeling the effects of loss elements such as RL, and choosing the smallest inductor
that will do the job. We now have the analytical tools needed to do this.

3.3 Construction of Equivalent Circuit Model

Next, let us refine the dc transformer model, to account for converter losses. This will allow
us to determine the converter voltages, currents, and efficiency using well-known techniques of
circuit analysis.

In the previous section, we used the principles of inductor volt-second balance and capacitor
charge balance to write Eqs. (3.11) and (3.13), repeated here:

〈vL〉 = 0 = Vg − IRL − D′V (3.15)

〈iC〉 = 0 = D′I − V
R
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Fig. 3.10 Circuit whose loop equation is identical to
Eq. (3.16), obtained by equating the average inductor volt-
age 〈vL〉 to zero +

L RL

+

+ vL
= 0

+ IRL

I
D'VVg

These equations state that the dc components of the inductor voltage and capacitor current are
equal to zero. Rather than algebraically solving the equations as in the previous section, we
can reconstruct a circuit model based on these equations, which describes the dc behavior of
the boost converter with inductor copper loss. This is done by constructing a circuit whose
Kirchhoff loop and node equations are identical to Eqs. (3.15).

3.3.1 Inductor Voltage Equation

〈vL〉 = 0 = Vg − IRL − D′V (3.16)

This equation was derived by use of Kirchhoff’s voltage law to find the inductor voltage during
each subinterval. The results were averaged and set to zero. Equation (3.16) states that the sum
of three terms having the dimensions of voltage are equal to 〈vL〉, or zero. Hence, Eq. (3.16) is
of the same form as a loop equation; in particular, it describes the dc components of the voltages
around a loop containing the inductor, with loop current equal to the dc inductor current I.

So let us construct a circuit containing a loop with current I, corresponding to Eq. (3.16).
The first term in Eq. (3.16) is the dc input voltage Vg, so we should include a voltage source
of value Vg as shown in Fig. 3.10. The second term is a voltage drop of value IRL, which is
proportional to the current I in the loop. This term corresponds to a resistance of value RL. The
third term is a voltage D′V , dependent on the converter output voltage. For now, we can model
this term using a dependent voltage source, with polarity chosen to satisfy Eq. (3.16).

3.3.2 Capacitor Current Equation

〈iC〉 = 0 = D′I − V
R

(3.17)

This equation was derived using Kirchhoff’s current law to find the capacitor current during
each subinterval. The results were averaged, and the average capacitor current was set to zero.

Equation (3.17) states that the sum of two dc currents is equal to 〈iC〉, or zero. Hence, Eq.
(3.17) is of the same form as a node equation; in particular, it describes the dc components of
currents flowing into a node connected to the capacitor. The dc capacitor voltage is V .

So now let us construct a circuit containing a node connected to the capacitor, as in Fig. 3.11,
whose node equation satisfies Eq. (3.17). The second term in Eq. (3.17) is a current of magnitude
V/R, proportional to the dc capacitor voltage V . This term corresponds to a resistor of value R,
connected in parallel with the capacitor so that its voltage is V and hence its current is V/R. The
first term is a current D′I, dependent on the dc inductor current I. For now, we can model this
term using a dependent current source as shown. The polarity of the source is chosen to satisfy
Eq. (3.17).
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3.3.3 Complete Circuit Model

The next step is to combine the circuits of Figs. 3.10 and 3.11 into a single circuit, as in Fig. 3.12.
This circuit can be further simplified by recognizing that the dependent voltage and current
sources constitute an ideal dc transformer, as discussed in Sect. 3.1. The D′V dependent voltage
source depends on V , the voltage across the dependent current source. Likewise, the D′I depen-
dent current source depends on I, the current flowing through the dependent voltage source. In
each case, the coefficient is D′. Hence, the dependent sources form a circuit similar to Fig. 3.2;
the fact that the voltage source appears on the primary rather than the secondary side is ir-
relevant, owing to the symmetry of the transformer. They are therefore equivalent to the dc
transformer model of Fig. 3.3, with turns ratio D′ : 1. Substitution of the ideal dc transformer
model for the dependent sources yields the equivalent circuit of Fig. 3.13.

The equivalent circuit model can now be manipulated and solved to find the converter volt-
ages and currents. For example, we can eliminate the transformer by referring the Vg voltage
source and RL resistance to the secondary side. As shown in Fig. 3.14, the voltage source value
is divided by the effective turns ratio D′, and the resistance RL is divided by the square of the
turns ratio, D′2. This circuit can be solved directly for the output voltage V , using the voltage
divider formula:

V =
Vg

D′
R

R +
RL

D′2

=
Vg

D′
1

1 +
RL

D′2R

(3.18)

This result is identical to Eq. (3.14). The circuit can also be solved directly for the inductor
current I, by referring all elements to the transformer primary side. The result is

Fig. 3.11 Circuit whose node equation is identical to Eq.
(3.17), obtained by equating the average capacitor current
〈iC〉 to zero

R

+

VC

iC
= 0

Node

V/R

D'I

++ D'V

RL

I D'I R

+

VVg

Fig. 3.12 The circuits of Figs. 3.10 and 3.11, drawn together
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+

RL

I

R

+

V

D' : 1

Vg

Fig. 3.13 Equivalent circuit model of the boost converter, including a D′ : 1 dc transformer and the
inductor winding resistance RL

Fig. 3.14 Simplification of the equivalent circuit of
Fig. 3.13, by referring all elements to the secondary side
of the transformer +

D'I

R

+

VVg/D'

RL/D' 2

I =
Vg

D′2R + RL
=

Vg

D′2R
1

1 +
RL

D′2R

(3.19)

3.3.4 Efficiency

The equivalent circuit model also allows us to compute the converter efficiency η. Figure 3.13
predicts that the converter input power is

Pin = (Vg)(I) (3.20)

The load current is equal to the current in the secondary of the ideal dc transformer, or D′I.
Hence, the model predicts that the converter output power is

Pout = (V)(D′I) (3.21)

Therefore, the converter efficiency is

η =
Pout

Pin
=

(V)(D′I)
(Vg)(I)

=
V
Vg

D′ (3.22)

Substitution of Eq. (3.18) into Eq. (3.22) to eliminate V yields

η =
1

1 +
RL

D′2R

(3.23)

This equation is plotted in Fig. 3.15, for several values of RL/R. It can be seen from Eq. (3.23)
that, to obtain high efficiency, the inductor winding resistance RL should be much smaller than
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D′2R, the load resistance referred to the primary side of the ideal dc transformer. This is easier
to do at low duty cycle, where D′ is close to unity, than at high duty cycle where D′ approaches
zero. It can be seen from Fig. 3.15 that the efficiency is typically high at low duty cycles, but
decreases rapidly to zero near D = 1.
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Fig. 3.15 Efficiency vs. duty cycle, boost converter with inductor copper loss

Thus, the basic dc transformer model can be refined to include other effects, such as the
inductor copper loss. The model describes the basic properties of the converter, including (a)
transformation of dc voltage and current levels, (b) second-order effects such as power losses,
and (c) the conversion ratio M. The model can be solved to find not only the output voltage V ,
but also the inductor current I and the efficiency η. All of the well-known techniques of circuit
analysis can be employed to solve the model, making this a powerful and versatile approach.

The example considered so far is a relatively simple one, in which there is only a single loss
element, RL. Of course, real converters are considerably more complicated, and contain a large
number of loss elements. When solving a complicated circuit to find the output voltage and
efficiency, it behooves the engineer to use the simplest and most physically meaningful method
possible. Writing a large number of simultaneous loop or node equations is not the best ap-
proach, because its solution typically requires several pages of algebra, and the engineer usually
makes algebra mistakes along the way. The practicing engineer often gives up before finding
the correct solution. The equivalent circuit approach avoids this situation, because one can sim-
plify the circuit via well-known circuit manipulations such as pushing the circuit elements to
the secondary side of the transformer. Often the answer can then be written by inspection, using
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the voltage divider rule or other formulas. The engineer develops confidence that the result is
correct, and does not contain algebra mistakes.

3.4 How to Obtain the Input Port of the Model

Let us try to derive the model of the buck converter of Fig. 3.16, using the procedure of Sect. 3.3.
The inductor winding resistance is again modeled by a series resistor RL.

Fig. 3.16 Buck converter
example + C R

+

vC

L RLiL
ig 1

2

+ vL

Vg

The average inductor voltage can be shown to be

〈vL〉 = 0 = DVg − ILRL − VC (3.24)

This equation describes a loop with the dc inductor current IL. The dc components of the volt-
ages around this loop are: (i) the DVg term, modeled as a dependent voltage source, (ii) a voltage
drop ILRL, modeled as resistor RL, and (iii) the dc output voltage VC .

The average capacitor current is

〈iC〉 = 0 = IL −
VC

R
(3.25)

This equation describes the dc currents flowing into the node connected to the capacitor. The
dc component of inductor current, IL, flows into this node. The dc load current VC/R (i.e., the
current flowing through the load resistor R) flows out of this node. An equivalent circuit that
models Eqs. (3.24) and (3.25) is given in Fig. 3.17. This circuit can be solved to determine the
dc output voltage VC .

What happened to the dc transformer in Fig. 3.17? We expect the buck converter model to
contain a dc transformer, with turns ratio equal to the dc conversion ratio, or 1:D. According to
Fig. 3.2, the secondary of this transformer is equivalent to a dependent voltage source, of value
DVg. Such a source does indeed appear in Fig. 3.17. But where is the primary? From Fig. 3.2,
we expect the primary of the dc transformer to be equivalent to a dependent current source. In

Fig. 3.17 Equivalent circuit derived
from Eqs. (3.24) and (3.25)

iC
= 0

R

+

VC

RL

+DVg

+ vL
= 0

IL

VC /R
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Fig. 3.18 Converter input current
waveform ig(t)

ig(t)

t

iL (t)  IL

0

DTs Ts0

area =
DTs IL

Fig. 3.19 Converter input port dc
equivalent circuit + DILIgVg

Fig. 3.20 The circuits of Figs. 3.17
and 3.19, drawn together
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VC

RL

+ DVg

IL

+ DIL

Ig

Vg

general, to derive this source, it is necessary to find the dc component of the converter input
current ig(t).

The converter input current waveform ig(t) is sketched in Fig. 3.18. When the switch is in
position 1, ig(t) is equal to the inductor current. Neglecting the inductor current ripple, we have
ig(t) ≈ IL. When the switch is in position 2, ig(t) is zero. The dc component, or average value,
of ig(t) is

Ig =
1
Ts

∫ Ts

0
ig(t)dt = DIL (3.26)

The integral of ig(t) is equal to the area under the ig(t) curve, or DTsIL according to Fig. 3.18. The
dc component Ig is therefore (DTsIL)/Ts = DIL. Equation (3.26) states that Ig, the dc component
of current drawn by the converter out of the Vg source, is equal to DIL. An equivalent circuit is
given in Fig. 3.19.

A complete model for the buck converter can now be obtained by combining Figs. 3.17
and 3.19 to obtain Fig. 3.20. The dependent current and voltage sources can be combined into a
dc transformer, since the DVg dependent voltage source has value D times the voltage Vg across
the dependent current source, and the current source is the same constant D times the current IL

through the dependent voltage source. So, according to Fig. 3.2, the sources are equivalent to a
dc transformer with turns ratio 1:D, as shown in Fig. 3.21.

In general, to obtain a complete dc equivalent circuit that models the converter input port, it
is necessary to write an equation for the dc component of the converter input current. An equiv-
alent circuit corresponding to this equation is then constructed. In the case of the buck converter,
as well as in other converters having pulsating input currents, this equivalent circuit contains a
dependent current source which becomes the primary of a dc transformer model. In the boost
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Fig. 3.21 Equivalent circuit of the
buck converter, including a 1 : D dc
transformer and the inductor winding
resistance RL

R

+

VC

RLIL

+

Ig 1 : D

Vg

converter example of Sect. 3.3, it was unnecessary to explicitly write this equation, because
the input current ig(t) coincided with the inductor current i(t), and hence a complete equivalent
circuit could be derived using only the inductor voltage and capacitor current equations.

3.5 Example: Inclusion of Semiconductor Conduction Losses in the Boost
Converter Model

As a final example, let us consider modeling semiconductor conduction losses in the boost
converter of Fig. 3.22. Another major source of power loss is the conduction loss due to semi-
conductor device forward voltage drops. The forward voltage of a metal oxide semiconductor
field-effect transistor (MOSFET) or bipolar junction transistor (BJT) can be modeled with rea-
sonable accuracy as an on-resistance Ron. In the case of a diode, insulated-gate bipolar transistor
(IGBT), or thyristor, a voltage source plus an on-resistance yields a model of good accuracy;
the on-resistance may be omitted if the converter is being modeled at a single operating point.

+

DTs Ts

+

i L

C R

+

v

iC

Vg

Fig. 3.22 Boost converter example

When the gate drive signal is high, the MOSFET turns on and the diode is reverse-biased.
The circuit then reduces to Fig. 3.23a. In the conducting state, the MOSFET is modeled by
the on-resistance Ron. The inductor winding resistance is again represented as in Fig. 3.5. The
inductor voltage and capacitor current are given by

vL(t) = Vg − iRL − iRon ≈ Vg − IRL − IRon (3.27)

iC(t) = − v
R
≈ −V

R
The inductor current and capacitor voltage have again been approximated by their dc compo-
nents.

When the gate drive signal is low, the MOSFET turns off. The diode becomes forward-
biased by the inductor current, and the circuit reduces to Fig. 3.23b. In the conducting state, the
diode is modeled in this example by voltage source VD and resistance RD. The inductor winding
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+ vL iC

RonVg

(b) L RL
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v

+ vL iC

RD

+

VD

Vg

Fig. 3.23 Boost converter circuits: (a) when MOSFET conducts, (b) when diode conducts

resistance is again modeled by resistance RL. The inductor voltage and capacitor current for this
subinterval are

vL(t) = Vg − iRL − VD − iRD − v ≈ Vg − IRL − VD − IRD − V (3.28)

iC(t) = i − v
R
≈ I − V

R

The inductor voltage and capacitor current waveforms are sketched in Fig. 3.24.
The dc component of the inductor voltage is given by

〈vL〉 = D
(
Vg − IRL − IRon

)
+ D′

(
Vg − IRL − VD − IRD − V

)
= 0 (3.29)

By collecting terms and noting that D + D′ = 1, one obtains

Vg − IRL − IDRon − D′VD − ID′RD − D′V = 0 (3.30)

Fig. 3.24 Inductor voltage
vL(t) and capacitor current iC(t)
waveforms, for the converter of
Fig. 3.22

vL(t)

t

Vg L on

DTs D'Ts

Vg L D D
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Fig. 3.25 Equivalent circuit
corresponding to Eq. (3.30)
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Fig. 3.26 Equivalent circuit
corresponding to Eq. (3.32)
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This equation describes the dc components of the voltages around a loop containing the inductor,
with loop current equal to the dc inductor current I. The resistive terms (for example, IDRon) are
interpreted as the voltage drop across resistive elements having current I and resistance equal
to the remaining terms (for the example, the effective resistance is DRon). An equivalent circuit
is given in Fig. 3.25.

The dc component of the capacitor current is

〈iC〉 = D
(
−V

R

)
+ D′

(
I − V

R

)
= 0 (3.31)

Upon collecting terms, one obtains

D′I − V
R
= 0 (3.32)

This equation describes the dc components of the currents flowing into a node connected to the
capacitor, with dc capacitor voltage equal to V . An equivalent circuit is given in Fig. 3.26.

The two circuits are drawn together in Fig. 3.27. The dependent sources are combined into
an ideal D′:1 transformer in Fig. 3.28, yielding the complete dc equivalent circuit model.

Solution of Fig. 3.28 for the output voltage V yields

V =

(
1
D′

)
(Vg − D′VD)

(
D′2R

D′2R + RL + DRon + D′RD

)
(3.33)

RL

+

D'RD

+

D'VDDRon

+D'V R

+

VD'I
I

Vg

Fig. 3.27 The circuits of Figs. 3.25 and 3.26, drawn together
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Dividing by Vg gives the voltage conversion ratio:

V
Vg
=

(
1
D′

) (
1 − D′VD

Vg

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

1 +
RL + DRon + D′RD

D′2R

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3.34)

It can be seen that the effect of the loss elements VD, RL, Ron, and RD is to decrease the voltage
conversion ratio below the ideal value (1/D′).

The efficiency is given by η = Pout/Pin. From Fig. 3.28, Pin = VgI and Pout = VD′I. Hence,

η = D′
V
Vg
=

(
1 − D′VD

Vg

)

(
1 +

RL + DRon + D′RD

D′2R

) (3.35)

For high efficiency, we require

Vg/D
′ 
 VD (3.36)

D′2R 
 RL + DRon + D′RD

It may seem strange that the equivalent circuit model of Fig. 3.28 contains effective resistances
DRon and D′RD, whose values vary with duty cycle. The reason for this dependence is that the
semiconductor on-resistances are connected in the circuit only when their respective semicon-
ductor devices conduct. For example, at D = 0, the MOSFET never conducts, and the effective
resistance DRon disappears from the model. These effective resistances correctly model the av-
erage power losses in the elements. For instance, the equivalent circuit predicts that the power
loss in the MOSFET on-resistance is I2DRon. In the actual circuit, the MOSFET conduction loss
is I2Ron while the MOSFET conducts, and zero while the MOSFET is off. Since the MOSFET
conducts with duty cycle D, the average conduction loss is DI2Ron, which coincides with the
prediction of the model.

In general, to predict the power loss in a resistor R, we must calculate the root-mean-square
current Irms through the resistor, rather than the average current. The average power loss is then

RL

+

D'RD

+

D'VDDRon

R

+

V
I

D' : 1

Vg

Fig. 3.28 Equivalent circuit model of the boost converter of Fig. 3.22, including ideal dc transformer,
inductor winding resistance, and MOSFET and diode conduction losses
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i(t)
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DTs Ts0

I
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1.1 I
(a)

(c)
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Fig. 3.29 Transistor current waveform, for various filter inductor values: (a) with a very large inductor,
such that Δi ≈ 0; (b) with a typical inductor value, such that Δi = 0.1I; (c) with a small inductor value,
chosen such that Δi = I

given by Irms
2R. Nonetheless, the average model of Fig. 3.28 correctly predicts average power

loss, provided that the inductor current ripple is small. For example, consider the MOSFET
conduction loss in the buck converter. The actual transistor current waveform is sketched in
Fig. 3.29, for several values of inductor current ripple Δi. Case (a) corresponds to use of an infi-
nite inductance L, leading to zero inductor current ripple. As shown in Table 3.1, the MOSFET
conduction loss is then given by Irms

2Ron = DI2Ron, which agrees exactly with the prediction of
the average model. Case (b) is a typical choice of inductance L, leading to an inductor current
ripple of Δi = 0.1I. The exact MOSFET conduction loss, calculated using the rms value of
MOSFET current, is then only 0.33% greater than the prediction of the average model. In the
extreme case (c) where Δi = I, the actual conduction loss is 33% greater than that predicted
by the average model. Thus, the dc (average) model correctly predicts losses in the component
nonidealities, even though rms currents are not calculated. The model is accurate provided that
the inductor current ripple is small.

Table 3.1 Effect of inductor current ripple on MOSFET conduction loss

Inductor current ripple MOSFET rms current Average power loss in Ron

(a) Δi = 0 I
√

D DI2Ron

(b) Δi = 0.1i (1.00167) I
√

D (1.0033) DI2Ron

(c) Δi = I (1.155) I
√

D (1.3333) DI2Ron

3.6 Summary of Key Points

1. The dc transformer model represents the primary functions of any dc-dc converter: trans-
formation of dc voltage and current levels, ideally with 100% efficiency, and control of the
conversion ratio M via the duty cycle D. This model can be easily manipulated and solved
using familiar techniques of conventional circuit analysis.

2. The model can be refined to account for loss elements such as inductor winding resistance
and semiconductor on-resistances and forward voltage drops. The refined model predicts
the voltages, currents, and efficiency of practical nonideal converters.
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3. In general, the dc equivalent circuit for a converter can be derived from the inductor volt-
second balance and capacitor charge balance equations. Equivalent circuits are constructed
whose loop and node equations coincide with the volt-second and charge balance equations.
In converters having a pulsating input current, an additional equation is needed to model
the converter input port; this equation may be obtained by averaging the converter input
current.

Problems

3.1 In the buck–boost converter of Fig. 3.30, the inductor has winding resistance RL. All other
losses can be ignored.

(a) Derive an expression for the nonideal voltage conversion ratio V/Vg.
(b) Plot your result of part (a) over the range 0 ≤ D ≤ 1, for RL/R = 0, 0.01, and 0.05.
(c) Derive an expression for the efficiency. Manipulate your expression into a form similar

to Eq. (3.35)

Fig. 3.30 Nonideal buck–boost
converter, Problems 3.1 and 3.2

+

V+Vg L

3.2 The inductor in the buck–boost converter of Fig. 3.30 has winding resistance RL. All other
losses can be ignored. Derive an equivalent circuit model for this converter. Your model
should explicitly show the input port of the converter, and should contain two dc transform-
ers.

3.3 In the converter of Fig. 3.31, the inductor has winding resistance RL. All other losses can be
ignored. The switches operate synchronously: each is in position 1 for 0 < t < DTs, and in
position 2 for DTs < t < Ts.

(a) Derive an expression for the nonideal voltage conversion ratio V/Vg.

+

L

C

R

+    V    

1

2

2

1

Vg

Fig. 3.31 Nonideal current-fed bridge converter, Problems 3.3 and 3.4
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(b) Plot your result of part (a) over the range 0 ≤ D ≤ 1, for RL/R = 0, 0.01, and 0.05.
(c) Derive an expression for the efficiency. Manipulate your expression into a form similar

to Eq. (3.35)
3.4 The inductor in the converter of Fig. 3.31 has winding resistance RL. All other losses can

be ignored. Derive an equivalent circuit model for this converter.
3.5 In the buck converter of Fig. 3.32, the MOSFET has on-resistance Ron and the diode forward

voltage drop can be modeled by a constant voltage source VD. All other losses can be
neglected.

Fig. 3.32 Nonideal buck converter,
Problem 3.5

D1

Q1

R

+

V+ C

L

Vg

(a) Derive a complete equivalent circuit model for this converter.
(b) Solve your model to find the output voltage V .
(c) Derive an expression for the efficiency. Manipulate your expression into a form similar

to Eq. (3.35).
3.6 A single-cell lithium-polymer battery is to be used to power a 3.3 V load. The battery volt-

age can vary over the usable range 3.0 V ≤ Vbatt ≤ 4.2 V. It has been decided to use a
buck–boost converter for this application, as illustrated in Fig. 3.33 below. A suitable MOS-
FET transistor has been found for Q1, having an on-resistance of Ron = 50 mΩ. A low-VF

(low forward voltage) Schottky diode is employed for D1; this diode can be modeled as a
fixed voltage drop of VD = 0.2V, in series with an effective resistance of RD = 0.1Ω. The
inductor has winding resistance RL. All other sources of loss can be neglected.
(a) Derive an equivalent circuit that models the dc properties of this converter. Include

the transistor, diode, and inductor conduction losses as described above. Your equiva-
lent circuit model should correctly describe the converter dc input port. Give analytical
expressions for all elements in your model.
“Analytical expressions” are equations or expressions that are written in terms of vari-
able names such as D, Ron, VD, etc., and that do not have numerical values substituted.

Q1

22 mH Load
R

+

V

–

fs = 200 kHz

DTs Ts

+–

–

Vbatt

+

D1

100 mF

Fig. 3.33 Nonideal buck–boost converter powering a 3.3 V load from a lithium-polymer battery, Prob-
lem 3.6
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(b) Solve your model to find analytical expressions for the converter output voltage and
efficiency.

(c) It is decided that the converter must operate with an efficiency of at least 80% under
the following operating condition:

Input voltage Vbatt = 4.0 V
Output voltage V = 3.3 V
Load current I = 2 A

You should assume that a controller system (not shown in Fig. 3.33) adjusts the duty
cycle as necessary to regulate the output voltage to be V = 3.3 V. To meet the above
requirements, how large can the inductor winding resistance RL be? At what duty cycle
will the converter then operate? Note: there is an easy way and a not-so-easy way to
solve this part.

(d) For your design of Part (c), compute the power loss in each element.
(e) Accurately plot the converter output voltage and efficiency over the complete range

0 ≤ D ≤ 1, using the value of inductor winding resistance RL computed in Part (c).
(f) Discuss your plot of Part (e). Does it behave as your expect? Explain.

3.7 To reduce the switching harmonics present in the input current of a certain buck converter,
an input filter is added as shown in Fig. 3.34. Inductors L1 and L2 contain winding resis-
tances RL1 and RL2, respectively. The MOSFET has on-resistance Ron, and the diode for-
ward voltage drop can be modeled by a constant voltage VD plus a resistor RD. All other
losses can be ignored.

D1

Q1

R

+

v+ C2C1

+

vC1

L2 RL2RL1L1

Vg

i1 i2

Fig. 3.34 Buck converter with input filter, Problem 3.7

(a) Derive a complete equivalent circuit model for this circuit.
(b) Solve your model to find the dc output voltage V .
(c) Derive an expression for the efficiency. Manipulate your expression into a form similar

to Eq. (3.35).
3.8 A 1.5 V battery is to be used to power a 5 V, 1 A load. It has been decided to use a buck–

boost converter in this application. A suitable transistor is found with an on-resistance of
35 mΩ, and a Schottky diode is found with a forward drop of 0.5 V. The on-resistance of
the Schottky diode may be ignored. The power stage schematic is shown in Fig. 3.35.
(a) Derive an equivalent circuit that models the dc properties of this converter. Include the

transistor and diode conduction losses, as well as the inductor copper loss, but ignore all
other sources of loss. Your model should correctly describe the converter dc input port.

(b) It is desired that the converter operates with at least 70% efficiency under nominal
conditions (i.e., when the input voltage is 1.5 V and the output is 5 V at 1 A). How
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Q1

100 μH Load

+

5 V

1 A

fs = 40 kHz

DTs Ts

+Vg

1.5 V

+

Fig. 3.35 Nonideal buck–boost converter powering a 5 V load from a 1.5 V battery, Problem 3.8

large can the inductor winding resistance be? At what duty cycle will the converter then
operate? Note: there is an easy way and a not-so-easy way to analytically solve this part.

(c) For your design of part (b), compute the power loss in each element.
(d) Plot the converter output voltage and efficiency over the range 0 ≤ D ≤ 1, using the

value of inductor winding resistance which you selected in part (b).
(e) Discuss your plot of part (d). Does it behave as you expect? Explain.

For Problems 3.9 and 3.10, a transistor having an on-resistance of 0.5Ω is used. To simplify
the problems, you may neglect all losses other than the transistor conduction loss. You may
also neglect the dependence of MOSFET on-resistance on rated blocking voltage. These
simplifying assumptions reduce the differences between converters, but do not change the
conclusions regarding which converter performs best in the given situations.

3.9 It is desired to interface a 500 V dc source to a 400 V, 10 A load using a dc-dc converter.
Two possible approaches, using buck and buck–boost converters, are illustrated in Fig. 3.36.
Use the assumptions described above to:

(a)
+

400 V

+

500 V

10 A

+

(b)
+

400 V500 V

+

10 A

+

Fig. 3.36 Problem 3.9: interfacing a 500 V source to a 400 V load, using: (a) a buck converter, (b) a
buck–boost converter
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(a) Derive equivalent circuit models for both converters, which model the converter input
and output ports as well as the transistor conduction loss.

(b) Determine the duty cycles that cause the converters to operate with the specified con-
ditions.

(c) Compare the transistor conduction losses and efficiencies of the two approaches, and
conclude which converter is better suited to the specified application.

3.10 It is desired to interface a 300 V battery to a 400 V, 10 A load using a dc-dc converter. Two
possible approaches, using boost and buck–boost converters, are illustrated in Fig. 3.37.
Using the assumptions described above (before Problem 3.9), determine the efficiency
and power loss of each approach. Which converter is better for this application?

(a)
+

400 V

+

300 V

10 A

(b)
+

400 V300 V

+

10 A

Fig. 3.37 Problem 3.10: interfacing a 300 V battery to a 400 V load, using: (a) a boost converter, (b) a
buck–boost converter

3.11 A buck converter is operated from the rectified 230 V ac mains, such that the converter dc
input voltage is

Vg = 325 V ± 20%

A control circuit automatically adjusts the converter duty cycle D, to maintain a constant
dc output voltage of V = 240 V dc. The dc load current I can vary over a 10: 1 range:

10 A ≤ I ≤ 1 A

The MOSFET has an on-resistance of 0.8 Ω. The diode conduction loss can be modeled
by a 0.7 V source in series with a 0.2 Ω resistor. All other losses can be neglected.

(a) Derive an equivalent circuit that models the converter input and output ports, as well
as the loss elements described above.

(b) Given the range of variation of Vg and I described above, over what range will the
duty cycle vary?
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(c) At what operating point (i.e., at what value of Vg and I) is the converter power loss
the largest? What is the value of the efficiency at this operating point?

3.12 In the Ćuk converter of Fig. 3.38, the MOSFET has on-resistance Ron and the diode has a
constant forward voltage drop VD. All other losses can be neglected.

+ D1

L1

C2 R

+

VQ1

C1

L2

Vg

Fig. 3.38 Ćuk converter, Problem 3.12

(a) Derive an equivalent circuit model for this converter. Suggestion: if you do not know
how to handle some of the terms in your dc equations, then temporarily leave them
as dependent sources. A more physical representation of these terms may become
apparent once dc transformers are incorporated into the model.

(b) Derive analytical expressions for the converter output voltage and for the efficiency.
(c) For VD = 0, plot V/Vg vs. D over the range 0 ≤ D ≤ 1, for (i) Ron/R = 0.01, and (ii)

Ron/R = 0.05.
(d) For VD = 0, plot the converter efficiency over the range 0 ≤ D ≤ 1, for (i) Ron/R
= 0.01, and (ii) Ron/R = 0.05.
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Switch Realization

We have seen in previous chapters that the switching elements of the buck, boost, and several
other dc–dc converters can be implemented using a transistor and diode. One might wonder
why this is so, and how to realize semiconductor switches in general. These are worthwhile
questions to ask, and switch implementation can depend on the power processing function be-
ing performed. The switches of inverters and cycloconverters require more complicated imple-
mentations than those of dc–dc converters. Also, the way in which a semiconductor switch is
implemented can alter the behavior of a converter in ways not predicted by the ideal-switch
analysis of the previous chapters—an example is the discontinuous conduction mode treated in
the next chapter. The realization of switches using transistors and diodes is the subject of this
chapter.

i

v

+

–

1

0

Fig. 4.1 SPST switch,
with defined voltage and
current polarities

Semiconductor power devices behave as single-pole single-throw
(SPST) switches, represented ideally in Fig. 4.1. So, although we of-
ten draw converter schematics using ideal single-pole double-throw
(SPDT) switches as in Fig. 4.2a, the schematic of Fig. 4.2b contain-
ing SPST switches is more realistic. The realization of a SPDT switch
using two SPST switches is not as trivial as it might at first seem,
because Fig. 4.2a,b are not exactly equivalent. It is possible for both
SPST switches to be simultaneously in the on state or in the off state,
leading to behavior not predicted by the SPDT switch of Fig. 4.2a. In
addition, it is possible for the switch state to depend on the applied
voltage or current waveforms—a familiar example is the diode. In-
deed, and it is common for these phenomena to occur in converters
operating at light load, or occasionally at heavy load, leading to the discontinuous conduction
mode previously mentioned. The converter properties are then significantly modified.

How an ideal switch can be realized using semiconductor devices depends on the polarity
of the voltage that the devices must block in the off state, and on the polarity of the current that
the devices must conduct in the on state. For example, in the dc–dc buck converter of Fig. 4.2b,
switch A must block positive voltage Vg when in the off state, and must conduct positive current
iL when in the on state. If, for all intended converter operating points, the current and blocking
voltage lie in a single quadrant of the plane as illustrated in Fig. 4.3, then the switch can be
implemented in a simple manner using a transistor or a diode. Use of single-quadrant switches
is common in dc–dc converters. Their operation is discussed briefly here.
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Fig. 4.2 Buck converter: (a) containing SPDT switch, (b) containing two SPST switches

Switch
off state voltage

Switch
on state
current

Fig. 4.3 A single-quadrant switch is capable of
conducting currents of a single polarity, and of
blocking voltages of a single polarity

In inverter circuits, two-quadrant switches
are required. The output current is ac, and hence
is sometimes positive and sometimes negative.
If this current flows through the switch, then its
current is ac, and the semiconductor switch re-
alization is more complicated. A two-quadrant
SPST switch can be realized using a transistor
and diode. The dual case also sometimes oc-
curs, in which the switch current is always posi-
tive, but the blocking voltage is ac. This type of
two-quadrant switch can be constructed using a
different arrangement of a transistor and diode.
Cycloconverters generally require four-quadrant
switches, which are capable of blocking ac volt-
ages and conducting ac currents. Realizations of
these elements are also discussed in this chapter.

Next, the synchronous rectifier is examined.
The reverse-conducting capability of the metal-
oxide-semiconductor field-effect transistor (MOSFET) allows it to be used where a diode would
normally be required. If the MOSFET on-resistance is sufficiently small, then its conduction
loss is less than that obtained using a diode. Synchronous rectifiers are sometimes used in low-
voltage high-current applications to obtain improved efficiency. Several basic references treating
single-, two-, and four-quadrant switches are listed in the bibliography [4, 18–25].
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Several power semiconductor devices are briefly discussed in Sect. 4.2. Majority-carrier de-
vices, including the MOSFET and Schottky diode, exhibit very fast switching times, and hence
are preferred when the off-state voltage levels are not too high. Minority-carrier devices, includ-
ing the bipolar junction transistor (BJT), insulated-gate bipolar transistor (IGBT), and thyristors
[silicon-controlled rectifier (SCR) and gate turn-off thyristor (GTO)] exhibit high breakdown
voltages with low forward voltage drops, at the expense of reduced switching speed. Recent
diodes and FET devices based on wide-bandgap semiconductors (SiC and GaN) represent a sig-
nificant advance in the tradeoff between breakdown voltage, forward voltage drop, and switch-
ing times.

Having realized the switches using semiconductor devices, switching loss can next be dis-
cussed. There are a number of mechanisms that cause energy to be lost during the switching
transitions [26]. When a transistor drives a clamped inductive load, it experiences high instan-
taneous power loss during the switching transitions. Diode stored charge further increases this
loss, during the transistor turn-on transition. Energy stored in certain parasitic capacitances
and inductances is lost during switching. Parasitic ringing, which decays before the end of the
switching period, also indicates the presence of switching loss. Switching loss increases directly
with switching frequency, and imposes a maximum limit on the operating frequencies of practi-
cal converters.

4.1 Switch Applications

4.1.1 Single-Quadrant Switches

The ideal SPST switch is illustrated in Fig. 4.1. The switch contains power terminals 1 and 0,
with current and voltage polarities defined as shown. In the on state, the voltage v is zero, while
the current i is zero in the off state. There is sometimes a third terminal C, where a control
signal is applied. Distinguishing features of the SPST switch include the control method (active
vs. passive) and the region of the i–v plane in which they can operate.

i

1

0

v

+

–

i

v

on

off

(a) (b)

Fig. 4.4 Diode symbol (a), and its ideal characteristic (b)

A passive switch does not contain
a control terminal C. The state of the
switch is determined by the waveforms
i(t) and v(t) applied to terminals 0 and
1. The most common example is the
diode, illustrated in Fig. 4.4. The ideal
diode requires that v(t) ≤ 0 and i(t) ≥ 0.
The diode is off (i = 0) when v < 0,
and is on (v = 0) when i > 0. It can
block negative voltage but not positive
voltage. A passive SPST switch can be
realized using a diode provided that the
intended operating points [i.e., the val-
ues of v(t) and i(t) when the switch is in
the on and off states] lie on the diode characteristic of Fig. 4.4b.

The conducting state of an active switch is determined by the signal applied to the control
terminal C. The state does not directly depend on the waveforms v(t) and i(t) applied to ter-
minals 0 and 1. The BJT, MOSFET, IGBT, GTO, and MCT are examples of active switches.
Idealized characteristics i(t) vs. v(t) for the BJT and IGBT are sketched in Fig. 4.5. When the
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Fig. 4.5 Bipolar junction transistor (BJT) and insulated-gate bipolar transistor (IGBT) symbols (a), and
their idealized switch characteristics (b)
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Fig. 4.6 Power MOSFET symbol (a), and its idealized switch characteristic (b)

control terminal causes the transistor to be in the off state, i = 0 and the device is capable of
blocking positive voltage: v ≥ 0. When the control terminal causes the transistor to be in the
on state, v = 0 and the device is capable of conducting positive current: i ≥ 0. The reverse-
conducting and reverse-blocking characteristics of the BJT and IGBT are poor or nonexistent,
and have essentially no application in the power converter area. The power MOSFET (Fig. 4.6)
has similar characteristics, except that it is able to conduct current in the reverse direction. With
one notable exception (the synchronous rectifier discussed later), the MOSFET is normally op-
erated with i ≥ 0, in the same manner as the BJT and IGBT. So an active SPST switch can be
realized using a BJT, IGBT, or MOSFET, provided that the intended operating points lie on the
transistor characteristic of Fig. 4.5b.

To determine how to implement an SPST switch using a transistor or diode, one compares
the switch operating points with the i− v characteristics of Figs. 4.4b, 4.5b, and 4.6b. For exam-
ple, when it is intended that the SPDT switch of Fig. 4.2a be in position 1, SPST switch A of
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Fig. 4.7 Operating points of switch A, (a), and switch B, (b), in the buck converter of Fig. 4.2b

Fig. 4.2b is closed, and SPST switch B is opened. Switch A then conducts the positive inductor
current, iA = iL, and switch B must block negative voltage, vB = −Vg. These switch operating
points are illustrated in Fig. 4.7. Likewise, when it is intended that the SPDT switch of Fig. 4.2a
be in position 2, then SPST switch A is opened and switch B is closed. Switch B then conducts
the positive inductor current, iB = iL, while switch A blocks positive voltage, vA = Vg.

By comparison of the switch A operating points of Fig. 4.7a with Figs. 4.5b and 4.6b, it can
be seen that a transistor (BJT, IGBT, or MOSFET) could be used, since switch A must block
positive voltage and conduct positive current. Likewise, comparison of Fig. 4.7b with Fig. 4.4b
reveals that switch B can be implemented using a diode, since switch B must block negative
voltage and conduct positive current. Hence a valid switch realization is given in Fig. 4.8.

Figure 4.8 is an example of a single-quadrant switch realization: the devices are capable of
conducting current of only one polarity, and blocking voltage of only one polarity. When the
controller turns the transistor on, the diode becomes reverse-biased since vB = −Vg. It is required
that Vg be positive; otherwise, the diode will be forward-biased. The transistor conducts current
iL. This current should also be positive, so that the transistor conducts in the forward direction.

When the controller turns the transistor off, the diode must turn on so that the inductor cur-
rent can continue to flow. Turning the transistor off causes the inductor current iL(t) to decrease.
Since vL(t) = LdiL(t)/dt, the inductor voltage becomes sufficiently negative to forward-bias
the diode, and the diode turns on. Diodes that operate in this manner are sometimes called
freewheeling diodes. It is required that iL be positive; otherwise, the diode cannot be forward-
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L iL(t)iA
vA

vB
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–

iB

vL(t)

+ –

+ –

Vg

Fig. 4.8 Implementation of SPST switches of Fig. 4.2b using a transistor and diode



72 4 Switch Realization

biased since iB = iL. The transistor blocks voltage Vg; this voltage should be positive to avoid
operating the transistor in the reverse blocking mode.

4.1.2 Current-Bidirectional Two-Quadrant Switches

In any number of applications such as dc-ac inverters and servo amplifiers, it is required that
the switching elements conduct currents of both polarities, but block only positive voltages. A
current-bidirectional two-quadrant SPST switch of this type can be realized using a transistor
and diode, connected in an antiparallel manner as in Fig. 4.9.

The MOSFET of Fig. 4.6 is also a two-quadrant switch. However, it should be noted here
that practical power MOSFETs inherently contain a built-in diode, often called the body diode,
as illustrated in Fig. 4.10a. The switching speed of the body diode typically is slower than that of
the MOSFET. If the body diode is allowed to conduct, then high peak currents can occur during
the diode tum-off transition. Some MOSFETs are not rated to handle these currents, and device
failure can occur. To avoid this situation, external series and antiparallel diodes can be added as

i
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(transistor conducts)

off

on
(diode conducts)

i
1

0

v

+

–

C

(a) (b)

Fig. 4.9 A current-bidirectional two-quadrant SPST switch: (a) implementation using a transistor and
antiparallel diode, (b) idealized switch characteristics
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Fig. 4.10 The power MOSFET inherently contains a built-in body diode: (a) equivalent circuit, (b) addi-
tion of external diodes to prevent conduction of body diode
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Fig. 4.11 Inverter circuit using two-quadrant switches

Fig. 4.12 Output voltage vs. duty cycle,
for the inverter of Fig. 4.11. This converter
can produce both positive and negative
output voltages
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Vg

–Vg

0
0.5 1

in Fig. 4.10b. Power MOSFETs can be specifically designed to have a fast recovery body diode,
and to operate reliably when the body diode is allowed to conduct the rated MOSFET current.
However, significant switching loss induced by the diode reverse-recovery process (discussed
later in this chapter) may occur, depending on the switching speed and stored charge of the body
diode.

A SPDT current-bidirectional two-quadrant switch can again be derived using two SPST
switches as in Fig. 4.2b. An example is given in Fig. 4.11. This converter operates from positive
and negative dc supplies, and can produce an ac output voltage v(t) having either polarity. Tran-
sistor Q2 is driven with the complement of the Q1 drive signal, so that Q1 conducts during the
first subinterval 0 < t < DTs, and Q2 conducts during the second subinterval DTs < t < Ts.

It can be seen from Fig. 4.11 that the switches must block voltage 2Vg. It is required that Vg

be positive; otherwise, diodes D1 and D2 will conduct simultaneously, shorting out the source.
It can be shown via inductor volt-second balance that

v0 = (2D − 1)Vg (4.1)

This equation is plotted in Fig. 4.12. The converter output voltage v0 is positive for D > 0.5, and
negative for D < 0.5. By sinusoidal variation of the duty cycle,



74 4 Switch Realization

Fig. 4.13 The switches in the inverter of
Fig. 4.11 must be capable of conducting both
positive and negative current, but need block
only positive voltage

Switch
on state
current

Switch
off state
voltage

+
–Vg

ia

ib
ic

Fig. 4.14 The dc–3φac voltage-source inverter requires two-quadrant switches

D(t) = 0.5 + Dm sin(ωt) (4.2)

with Dn being a constant less than 0.5, the output voltage becomes sinusoidal. Hence this con-
verter could be used as a dc-ac inverter.

The load current is given by v0/R; in equilibrium, this current coincides with the inductor
current iL,

iL =
v0

R
= (2D − 1)

Vg

R
(4.3)

The switches must conduct this current. So the switch current is also positive when D > 0.5,
and negative when D < 0.5. With high-frequency duty-cycle variations, the L − C filter may
introduce a phase lag into the inductor current waveform, but it is nonetheless true that switch
currents of both polarities occur. So the switch must operate in two quadrants of the plane, as
illustrated in Fig. 4.13. When iL is positive, Q1 and D2 alternately conduct. When iL is negative,
Q2 and D1 alternately conduct.

A well-known dc-3øac inverter circuit, the voltage-source inverter (VSI), operates in a simi-
lar manner. As illustrated in Fig. 4.14, the VSI contains three two-quadrant SPDT switches, one
per phase. These switches block the dc input voltage Vg, and must conduct the output ac phase
currents ia, ib, and ic, respectively. Figure 4.14 illustrates realization of the current-bidirectional
switches using IGBTs with antiparallel diodes.

Another current-bidirectional two-quadrant switch example is the bidirectional battery
charger/discharger illustrated in Fig. 4.15. This converter can be used, for example, to inter-
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Fig. 4.15 Bidirectional battery charger/discharger, based on the dc–dc buck converter

face a battery to the main power bus of a spacecraft. Both the dc bus voltage vbus and the battery
voltage vbatt are always positive. The semiconductor switch elements block positive voltage
vbus. When the battery is being charged, iL is positive, and Q1 and D2 alternately conduct cur-
rent. When the battery is being discharged, iL is negative, and Q2 and D1 alternately conduct.
At the time a diode would conduct, it is possible for the gate driver to turn on its antiparallel
MOSFET; the MOSFET then operates as a synchronous rectifier as described in Sect. 4.1.5. Al-
though this is a dc–dc converter, it requires two-quadrant switches because the power can flow
in either direction. Figure 4.15 illustrates realization of the current-bidirectional switches using
MOSFETs having fast-recovery body diodes.

Converters performing battery charging and battery discharging functions now find signifi-
cant application in portable electronic devices such as cell phones and laptop computers. When
the battery is being charged, the converter controller implements algorithms that control the
charging profile needed by the battery. While the battery is being discharged, the converter
controller regulates the bus voltage.

4.1.3 Voltage-Bidirectional Two-Quadrant Switches

Switch
on state
current

Switch
off state
voltage

Fig. 4.16 Voltage-bidirectional two-quadrant
switch properties

Another type of two-quadrant switch, having
the voltage-bidirectional properties illustrated in
Fig. 4.16, is sometimes required. In applications
where the switches must block both positive
and negative voltages, but conduct only positive
current, an SPST switch can be constructed us-
ing a series-connected transistor and diode as in
Fig. 4.17. When it is intended that the switch
be in the off state, the controller turns the tran-
sistor off. The diode then blocks negative volt-
age, and the transistor blocks positive voltage.
The series connection can block negative volt-
ages up to the diode voltage rating, and positive
voltages up to the transistor voltage rating. The
silicon-controlled rectifier is another example of
a voltage-bidirectional two-quadrant switch.
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Fig. 4.17 A voltage-bidirectional
two-quadrant SPST switch: (a) im-
plementation using a transistor and
series diode, (b) idealized switch
characteristics
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Fig. 4.18 Dc–3φ buck–boost inverter

A converter that requires this type of two-quadrant switch is the dc-3øac buck–boost inverter
shown in Fig. 4.18 [22]. If the converter functions in inverter mode, so that the inductor current
iL(t) is always positive, then all switches conduct only positive current. But the switches must
block the output ac line-to-line voltages, which are sometimes positive and sometimes negative.
Hence voltage-bidirectional two-quadrant switches are required.

4.1.4 Four-Quadrant Switches

The most general type of switch is the four-quadrant switch, capable of conducting currents of
either polarity and blocking voltages of either polarity, as in Fig. 4.19. There are several ways
of constructing a four-quadrant switch. As illustrated in Fig. 4.20b, two current-bidirectional
two-quadrant switches described in Sect. 4.1.2 can be connected back-to-back. The transistors
are driven on and off simultaneously. Another approach is the antiparallel connection of two
voltage-bidirectional two-quadrant switches described in Sect. 4.1.3, as in Fig. 4.20a. A third
approach, using only one transistor but additional diodes, is given in Fig. 4.20c.

Cycloconverters are a class of converters requiring four-quadrant switches. For example, a
3øac-to-3øac matrix converter is illustrated in Fig. 4.21. Each of the nine SPST switches is real-
ized using one of the semiconductor networks of Fig. 4.20. With proper control of the switches,
this converter can produce a three-phase output of variable frequency and voltage, from a given
three-phase ac input. Note that there are no dc signals in this converter: all of the input and
output voltages and currents are ac, and hence four-quadrant switches are necessary.
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Fig. 4.19 A four-quadrant switch can conduct
either polarity of current, and can block either
polarity of voltage
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Fig. 4.20 Three ways of implementing a four-quadrant SPST switch
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4.1.5 Synchronous Rectifiers

The ability of the MOSFET channel to conduct current in the reverse direction makes it possible
to employ a MOSFET where a diode would otherwise be required. When the MOSFET is
connected as in Fig. 4.22a [note that the source and drain connections are reversed from the
connections of Fig. 4.6a], the characteristics of Fig. 4.22b are obtained. The device can now
block negative voltage and conduct positive current, with properties similar to those of the
diode in Fig. 4.4. The MOSFET must be controlled such that it operates in the on state when the
diode would normally conduct, and in the off state when the diode would be reverse-biased.

Thus, we could replace the diode in the buck converter of Fig. 4.8 with a MOSFET, as in
Fig. 4.23. The BJT has also been replaced with a MOSFET in the figure. MOSFET Q2 is driven
with the complement of the Q1 control signal.

The trend in computer power supplies is reduction of output voltage levels, from 3.3 V
to lower levels. As the output voltage is reduced, the diode conduction loss increases; in con-
sequence, the diode conduction loss is easily the largest source of power loss in a sub-3.3 V
power supply. Unfortunately, the diode junction contact potential limits what can be done to
reduce the forward voltage drop of diodes. Schottky diodes having reduced junction potential
can be employed; nonetheless, low-voltage power supplies containing diodes that conduct the
output current must have low efficiency.
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A solution is to replace the diodes with MOSFETs operated as synchronous rectifiers. The
conduction loss of a MOSFET having on-resistance Ron and operated with rms current is Irms,
is Irms

2Ron. The on-resistance can be decreased by use of a larger MOSFET. So the conduction
loss can be reduced as low as desired, if one is willing to pay for a sufficiently large device.
Synchronous rectifiers find widespread use in low-voltage power supplies.

The half-bridge MOSFET switches of Fig. 4.23 are also called synchronous switches and
this buck converter is often called a synchronous buck converter. Most often, the synchronous
rectifier Q2 is driven with the complement of the gate drive signal that controls the main MOS-
FET Q1. Further details regarding gate drivers of synchronous buck converters are discussed in
Sect. 4.4.3.

4.2 Introduction to Power Semiconductors

4.2.1 Breakdown Voltage, Forward Voltage, and Switching Speed

The most fundamental challenge in power semiconductor design is obtaining a high breakdown
voltage, while maintaining low forward voltage drop and on-resistance [27, 28]. A closely re-
lated issue is the longer switching times of high-voltage low on-resistance devices; during these
switching times, significant switching loss can be induced in the semiconductor devices. The
tradeoff between breakdown voltage, on-resistance, and switching times is a key distinguishing
feature of the various power devices.

The breakdown voltage of a reverse-biased p–n junction and its associated depletion re-
gion is a function of doping level: obtaining a high breakdown voltage requires low doping
concentration, and hence high resistivity, in the material on at least one side of the junction.
This high-resistivity region is usually the dominant contributor to the on-resistance of the de-
vice, and hence high-voltage devices must have higher on-resistance than low-voltage devices.
In majority-carrier devices, including the MOSFET and Schottky diode, this accounts for the
first-order dependence of on-resistance on rated voltage. However, minority-carrier devices, in-
cluding the diffused-junction p–n diode, the bipolar junction transistor (BJT), the insulated-gate
bipolar transistor (IGBT), and the thyristor family (SCR, GTO), exhibit another phenomenon
known as conductivity modulation. When a minority-carrier device operates in the on state, mi-
nority carriers are injected into the lightly doped high-resistivity region by the forward-biased
p–n junction. The resulting high concentration of minority carriers effectively reduces the ap-
parent resistivity of the region, reducing the on-resistance of the device. Hence, minority-carrier
devices exhibit lower on-resistances than comparable majority-carrier devices.

However, the advantage of decreased on-resistance in minority-carrier devices comes with
the disadvantage of decreased switching speed. The conducting state of any semiconductor de-
vice is controlled by the presence or absence of key charge quantities within the device, and
the turn-on and turn-off switching times are equal to the times required to insert or remove
this controlling charge. Devices operating with conductivity modulation are controlled by their
injected minority carriers. The total amount of controlling minority charge in minority-carrier
devices is much greater than the charge required to control an equivalent majority-carrier de-
vice. Although the mechanisms for inserting and removing the controlling charge of the vari-
ous devices can differ, it is nonetheless true that, because of their large amounts of minority
charge, minority-carrier devices exhibit switching times that are significantly longer than those
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of majority-carrier devices. In consequence, majority-carrier devices find application at lower
voltage levels and higher switching frequencies, while the reverse is true of minority-carrier
devices.

The fundamental relationship between breakdown voltage, on-resistance, and switching
speed, is a function of the energy bandgap of the semiconductor material. Electrons having
low energy (in the valence band) are tightly bound to their atoms and do not participate in the
conduction of electrical current. Electrons having sufficiently high energy (in the conduction
band) are easily able to move from one atom to the next, and hence can participate in the con-
duction of current. The band gap of a semiconductor material is the energy difference between
the highest energy state of the valence band and the lowest energy state of the conduction band.
The bandgap of Silicon (Si) is approximately 1.1 eV.

Use of a wide-bandgap (WBG) semiconductor material can lead to a very significant
improvement in this tradeoff between voltage breakdown, on-resistance, and switching time.
Power diodes and transistors based on Silicon Carbide (SiC, bandgap approximately 3.2 eV) or
Gallium Nitride (GaN, bandgap 3.4 eV) materials are now becoming commercially significant.
These devices exhibit high-voltage characteristics that are superior to Silicon devices. Schottky
diodes based on SiC technology are widely available at 600 to 1700 V, and can significantly
improve converter efficiency relative to Si technology. Commercial power MOSFET devices
based on SiC technology are available or have been announced at voltages of 600 V to 10
kV, and exhibit on-resistance and switching time far superior to what can be achieved with Si.
Power transistors based on GaN technology are also available at voltages up to 650 V; these
also exhibit significantly better switching time and on-resistance.

A detailed description of power semiconductor device physics and switching mechanisms
is beyond the scope of this book. Selected references on power semiconductor devices are listed
in the reference section [8, 11, 26, 28–40]. Rather, this and the following sections discuss the
origins of switching times and forward voltage drop in power semiconductor devices at a high
level. The averaged models of Chap. 3 are then extended to include switching losses. How the
different types of power semiconductor switches address the tradeoff between forward voltage
drop and switching speed is also considered.

4.2.2 Transistor Switching Loss with Clamped Inductive Load

The nonzero switching times of practical semiconductor devices lead to power loss during the
switching transitions. This loss, called switching loss, can significantly reduce the efficiency of a
switching converter. Multiple physical mechanisms induce switching loss; the most significant
are discussed throughout this chapter.

Consider first the switching waveforms in the buck converter of Fig. 4.24. Let us treat the
diode as ideal, and investigate only the switching loss due to the transistor switching times.
Semiconductor output capacitances, transformer leakage inductances, diode reverse recovery,
and other sources of switching loss are neglected in this first example. A MOSFET is illustrated
in Fig. 4.24, but the introductory arguments of this section could apply to any power transistor.

The diode and inductor present a clamped inductive load to the transistor. With such a load,
the transistor voltage vA(t) and current iA(t) do not change simultaneously. For example, a mag-
nified view of the transistor turn-off-transition waveforms is given in Fig. 4.25. For simplicity,
the waveforms are approximated as piecewise linear. The switching times are short, such that
the inductor current iL(t) is essentially constant during the entire switching transition t0 < t < t2.
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Fig. 4.24 MOSFET driving a clamped inductive load, buck converter example
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Fig. 4.25 Magnified view of transistor turn-off transition waveforms for the circuit of Fig. 4.24

No current flows through the diode while the diode is reverse-biased, and the diode cannot be-
come forward-biased while its voltage vB(t) is negative. So first, the voltage vA(t) across the
transistor must rise from zero to Vg. The interval length (t1 − t0) is essentially the time required
for the gate driver to charge the MOSFET gate-to-drain capacitance. The transistor current iA(t)
is constant and equal to iL during this interval.

The diode voltage vB(t) and current iB(t) are given by

vB(t) = vA(t) − Vg

iA(t) + iB(t) = iL (4.4)
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At time t = t1, when vA = Vg, the diode becomes forward-biased. The current iL now begins to
commute from the transistor to the diode. The interval length (t2− t1) is the time required for the
gate driver to discharge the MOSFET gate-to-source capacitance down to the threshold voltage
which causes the MOSFET to be in the off state.

The instantaneous power pA(t) dissipated by the transistor is equal to vA(t)iA(t). This quantity
is also sketched in Fig. 4.25. The energy Wo f f lost during the transistor turn-off transition is the
area under this waveform. With the simplifying assumption that the waveforms are piecewise-
linear, then the energy lost is the area of the shaded triangle:

Wo f f =
1
2 VgiL(t2 − t0) (4.5)

This is the energy lost during each transistor turn-off transition in the simplified circuit of
Fig. 4.24. A transistor having shorter switching time (t2− t0) would be expected to exhibit lower
energy lost during this switching transition.

The transistor turn-on waveforms of the simplified circuit of Fig. 4.24 are qualitatively simi-
lar to those of Fig. 4.25, with the time axis reversed. The transistor current must first rise from 0
to iL. The diode then becomes reverse-biased, and the transistor voltage can fall from Vg to zero.
The instantaneous transistor power dissipation again has peak value VgiL, and if the waveforms
are piecewise linear, then the energy lost during the turn-on transition Won is given by 0.5 VgiL

multiplied by the transistor turn-on time.
Thus, during one complete switching period, the total energy lost during the turn-on and

turn-off transitions is (Won+Wo f f ). If the switching frequency is fs, then the average power loss
incurred due to switching is

Psw =
1
Ts

∫

switching
transitions

pA(t)dt = (Won +Wo f f ) fs (4.6)

So the switching loss Psw is directly proportional to the switching frequency. This loss is also
directly proportional to the energy losses Won and Wo f f ; transistors having faster switching
speeds are expected to exhibit lower switching loss.

The above arguments constitute a simplified and highly idealized view of switching loss.
Unfortunately, often they are insufficient to explain the observed converter behavior related to
switching loss; for example, they do not explain why zero-current switching of converters in-
corporating MOSFETs and diodes is inferior to zero-voltage switching (converters that employ
these soft-switching phenomena are the subject of Chaps. 22 and 23). Hence, the sections that
follow refine these arguments to account for the effects of diode reverse recovery, device output
capacitances, and similar phenomena.

4.3 The Power Diode

4.3.1 Introduction to Power Diodes

A p–n diode is illustrated in Fig. 4.26. The right side of the p–n junction is doped with donor
atoms that contribute weakly bound electrons to the semiconductor lattice, which can easily
move from atom to atom. The left side of the junction is doped with acceptor atoms that create
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Fig. 4.26 A p–n junction
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holes, which can also easily move from atom to atom and effectively act as positive charge carri-
ers. At the normal operating temperatures of the diode, these majority carriers exhibit thermally
induced vibrations that cause them to move randomly around the semiconductor lattice.

At the p–n junction, a depletion region forms. This occurs because the thermally induced
motion of the charge carriers causes them to diffuse in the direction of decreasing carrier concen-
tration. As illustrated in Fig. 4.27, the concentration of mobile electrons is high on the right side
of the junction, and low on the left side, and hence electrons diffuse to the left. These electrons
become mobile minority carriers in the p region, having an energy state sufficient to continue
to easily move from atom to atom within the semiconductor lattice. In a similar manner, holes
diffuse into the n region, where they become minority carriers as well.

These mobile carriers leave behind ionized dopant atoms near the junction, causing an elec-
tric field to form. For example, when a majority-carrier electron from the n region diffuses into
the p region, it leaves behind an ionized atom in the n region that is missing an electron and
therefore has net positive charge. Likewise, when holes from the p region diffuse into the n re-
gion, they leave behind ionized atoms having net negative charge. This region of ionized atoms
near the junction is called the space-charge layer, or depletion region. These ionized atoms
within this region lead to an electric field E, with net voltage vo, as illustrated in Fig. 4.27. The
voltage vo constitutes an energy barrier which tends to oppose the diffusion of the mobile carri-
ers: it causes carriers to drift in the opposite direction. As more mobile carriers diffuse across
the junction, the field continues to build. The device comes to equilibrium when the voltage
and the electric field strength are large enough to counteract the net diffusion of mobile charges
across the junction.

Figure 4.28 illustrates the situation in which an external voltage is applied that reverse-biases
the p–n junction. This external voltage causes the further ionization of dopant atoms near the
junction, and increases the size of the depletion region. Effectively, the applied voltage appears
across the depletion region and the electric field within this region is increased. Increasing
the reverse voltage requires that additional charge (from the external circuit) be added to the
depletion region; this is a capacitive effect that leads to the junction capacitance of the diode.

Figure 4.29 illustrates the situation in which an external source forward-biases the p–n junc-
tion. This external source reduces the voltage across the p–n junction, such that the depletion
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Fig. 4.28 The diode
under reverse-bias condi-
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Fig. 4.30 Minority-carrier concentrations and recombination under forward-bias conditions

region electric field is not large enough to counteract diffusion of carriers across the junction.
Under these forward-bias conditions, holes from the p-region diffuse across the junction, and
become minority carriers in the n-region whose energy state is high enough to enable them be
mobile carriers. Similarly, electrons from the n-region diffuse across the junction and become
mobile minority carriers in the p-region.

Figure 4.30 illustrates the mechanisms for conduction of current under forward-bias condi-
tions. Electrons enter the n-region from the external circuit, through the contact at the right edge
of the n-region. These electrons become majority carriers in the n-region. Likewise, electrons
leave the p-region through the contact at the left side of the p-region, creating majority-carrier
holes in the p-region. Some of these majority carriers diffuse across the forward-biased p–n
junction, and become minority carriers.

A number of processes cause minority carriers to lose their energy and recombine with ma-
jority carriers. This occurs at some rate, and therefore the minority carriers last for an effective
lifetime τL before recombination. As the minority carriers diffuse away from the junction, their
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concentration diminishes through recombination as illustrated in Fig. 4.30. The slope of this
concentration curve determines the rate at which the minority carriers diffuse.

Under forward-bias conditions, the forward current consists entirely of recombination. A
majority carrier from the external circuit enters the semiconductor at one of the contacts. This
majority carrier may recombine with a minority carrier. Alternatively, it may diffuse across the
junction, become a minority carrier, and then recombine.

Under forward-bias conditions, the diode is charge controlled. It can be shown that the
voltage v across the depletion region is related to the minority charge concentrations ps and ns

at the edge of the depletion region according to the diode equation (written below as a function
of the hole concentration at the right edge of the depletion region of Fig. 4.30):

ps(t) = Qs0

(
eλv(t) − 1

)
(4.7)

The quantity λ is kT/qe where k is Boltzmann’s constant, T is the Kelvin temperature, and
qe is the charge of the electron. This equation states that greater forward-bias leads to greater
minority charge injected across the junction. It also implies that the junction voltage cannot be
decreased unless the minority charge at the edge of the depletion region is decreased.

We can model the switching behavior using a lumped-element model of the minority charge.
In the simplest single-lump model, we let q(t) be equal to the total minority charge on one side of
the junction. This charge can reduce by recombination, and it can increase through application
of positive terminal current i(t). Hence we can write

dq(t)
dt
= i(t) − q(t)

τL
(4.8)

In this equation, q/τL is the rate at which the minority carriers recombine. In equilibrium, the
total stored minority charge q(t) is related to the charge concentration ps(t) or ns(t) at the edge
of the depletion region.

In equilibrium, the net stored minority charge does not change: dq(t)/dt = 0. Equations
(4.7) and (4.8) then predict

i(t) =
q(t)
τL
=

Q0

τL

(
eλv(t) − 1

)
= I0

(
eλv(t) − 1

)
(4.9)

This is the traditional exponential diode equation. It can be seen that this is an equilibrium
expression, and it does not hold during transient conditions (i.e. during the diode switching
times). In particular, during the diode turn-off switching transition, the voltage v(t) is determined
by the stored minority charge concentration according to Eq. (4.7). To reduce this voltage, the
stored minority charge must be removed. During the turn-off switching transition, the current
can deviate from Eq. (4.9); Eq. (4.8) predicts that negative current can actively reduce the stored
minority charge.

Figure 4.31 illustrates typical diode waveforms and stored minority charge concentration
profiles during the turn-off transient. Initially (for t ≤ t0), the diode is in the on state, with
a forward voltage v(t0) > 0 and conducting current i(t0) = Ion. The depletion region extends
some distance x0 from the p–n junction; the shaded region illustrated in Fig. 4.31b denotes the
depletion region at t = t0. For x > x0, there is a distribution of stored minority charge as
illustrated in Fig. 4.31b for t = t0. The slope of this minority charge curve is proportional to the
rate at which the minority carriers diffuse; this slope at x = x0 is proportional to Ion.
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Fig. 4.31 The diode reverse-recovery process: (a) waveforms of diode voltage v and diode current i;
(b) minority charge concentration on one side of the p–n junction

At time t = t0, the external circuit begins to reverse the direction of the applied current i(t).
The rate di/dt at which the current changes is determined by the external circuit, and typically
is limited by wiring and package inductances, transistor driver circuitry, etc.

The current has become negative at time t = t1. The total stored charge, which is the area
under the minority charge concentration curve of Fig. 4.31b, has been reduced by both negative
current and by recombination according to Eq. 4.8. The slope of the charge concentration curve
at the edge of the depletion region is negative, reflecting the reversal of current across the junc-
tion. Because of its polarity, the electric field within the depletion region does not oppose the
flow of minority carriers in the reverse direction, and the current i(t) now includes minority car-
riers flowing backwards across the depletion region. Since the minority charge concentration at
x = x0 is still substantial, Eq. (4.7) predicts that the voltage across the depletion region remains
positive. Because of the exponential nature of the diode equation, the voltage v(t) at t = t1 is
only slightly reduced from its initial value, and the diode remains forward-biased.

At time t = t2, the stored minority charge at x = x0 has been removed. Equation (4.7)
now predicts that the voltage across the depletion region can become negative. However, stored
minority charge remains for x > x0, as illustrated in Fig. 4.31b. For t > t2, this minority charge
continues to be removed, while the voltage becomes more negative. At time t = t3, the depletion
region has increased in size, and extends to x = x3 [not shown in Fig. 4.31b]. Finally, at time
t = t4, all of the minority stored charge has been removed. The diode now blocks the full reverse
voltage Vo f f , with no substantial reverse current.

Let us consider the power consumption of the diode during the reverse-recovery process, as
predicted by the waveforms of Fig. 4.31a. For t < t0, the power flowing into the diode is

p(t) = v(t)i(t) = VF Ion (4.10)

where VF is the forward voltage drop of the diode given by Eq. (4.9). This is the conduction
loss of the diode. At time t = t1, the current has reversed while the voltage remains positive;
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the diode then supplies power (but in a typical converter, this power is lost elsewhere in the
converter, usually in a transistor). For t2 < t < t4, both voltage and current are negative, and the
diode again consumes power. In addition to the negative current arising from minority charge
flowing across the depletion region, additional current is caused by charging the capacitance
of the depletion region. This capacitive component of current does not constitute power loss
within the diode. Nonetheless, the power lost at this time can be quite substantial, since both the
voltage and current are large, and this component of power loss can lead to substantial switching
loss within the diode. We will see soon that the total switching loss within the diode plus the
associated switching transistor is substantial for the entire time from t0 to t4.

The time extending from t0 to t4 is called the reverse recovery time, denoted tr. The charge
contained in the negative portion of the current i(t) waveform is called the recovered charge,
denoted Qr. This charge consists of the stored minority charge that is actively removed through
negative i(t), as well as changes in the capacitive charge of the reverse-biased depletion region.
The peak negative current at time t = t2 can be substantial, and may be several times larger than
the on-state current Ion, depending on the construction of the diode. This can cause significant
instantaneous power dissipation during the reverse recovery, with significant magnitude of Qr.

The magnitude of Qr can be reduced if the switching time is slow; this then causes more of
the stored minority charge to recombine rather than being actively removed through negative
i(t). If the slope di/dt for t0 < t < t2 is reduced, then Qr is observed to be reduced as well.

The softness factor S is defined as

S =
t4 − t2
t2 − t0

(4.11)

A diode whose turn-off transient is characterized by relatively large S is called a soft recovery
diode; conversely, a diode having a small value of S is called a snappy diode. The reduced dv/dt
of soft recovery diodes can aid in the turn-on process of the associated power transistor, and can
also lead to reduced generation of electromagnetic interference. Semiconductor manufacturers
are able to adjust S through device design.

Thus, the familiar exponential i–v curve of the diode is an equilibrium relationship that can
be violated during transient conditions. During the turn-on and turn-off switching transients,
the current may deviate substantially from the equilibrium i–v curve, because of changes in
the stored minority charge and changes within the reverse-biased depletion region. The reverse
recovery time tr is the time required to remove the stored charge in the diode and enable it to
block the full applied negative voltage. The area of the negative diode current during reverse
recovery is the recovered charge Qr.

4.3.2 Discussion: Power Diodes

As noted in Sect. 4.2, the diffused-junction p–n power diode contains a lightly doped epitaxial
or intrinsic high-resistivity region, which allows a high breakdown voltage to be obtained. This
region is often called the drift region. As illustrated in Fig. 4.32a, this region comprises one side
of the p–n− junction (denoted n−); under reverse-biased conditions, essentially all of the applied
voltage appears across the depletion region inside the n− region. Figure 4.32a illustrates the off
state of a punch-through design, in which the depletion region extends all of the way across
the n− region. The high electric field is supported without breakdown by the lightly doped n−

material.
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Fig. 4.32 Power diode: (a) under reverse-bias conditions, (b) under forward-bias conditions

On-state conditions are illustrated in Fig. 4.32b. Holes are injected across the forward-biased
junction, and become minority carriers in the n− region. In addition, electrons are injected across
the forward-biased n−–n junction, which increases the concentration of electron carriers in the
n− region. These hole and electron carriers effectively reduce the apparent resistivity of the n−

region via conductivity modulation. Essentially all of the forward current i(t) is comprised of
recombination of minority carriers: either the recombination of holes and electrons within the
n− region, the recombination of minority holes with majority electrons within the n region, or
the recombination of minority electrons with majority holes within the p region.

Diodes are rated according to the length of their reverse recovery time tr. Standard recovery
rectifiers are intended for 50 Hz or 60 Hz operation; reverse recovery times of these devices
are usually not specified. Fast recovery rectifiers and ultrafast recovery rectifiers are intended
for use in converter applications. The reverse recovery time tr, and sometimes also the recov-
ered charge Qr, are specified by manufacturers of these devices. Ratings of several commercial
devices are listed in Table 4.1.

Schottky diodes are essentially majority-carrier devices whose operation is based on the
rectifying characteristic of a metal-semiconductor junction. These devices exhibit negligible
minority stored charge, and their switching behavior can be adequately modeled simply by
their depletion region capacitance and equilibrium exponential i–v characteristic. Hence, an
advantage of the Schottky diode is its fast switching speed. An even more important advantage
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Table 4.1 Characteristics of several commercial power rectifier diodes

Part number Rated maximum voltage Rated average current VF (typical) tr (max)
Fast recovery rectifiers

lN3913 400 V 30 A 1.1 V 400 ns
SD453N2S20PC 2500 V 400 A 2.2 V 3 μs

Ultrafast recovery rectifiers
MUR815 150 V 8 A 0.975 V 35 ns
RHRD660 600 V 6 A 1.7 V 35 ns
RHRU100120 1200 V 100 A 2.6 V 60 ns

Schottky rectifiers
MBR6030L 30 V 60 A 0.48 V
444CNQ045 45 V 440 A 0.69 V
30CPQ150 150 V 30 A 1.19 V

SiC Schottky rectifiers
C4D10120E 1200 V 10 A 1.8 V
C3D3060F 600 V 3 A 1.7 V

of Schottky diodes is their low forward voltage drops, especially in devices rated 45 V or less.
Silicon Schottky diodes are restricted to low breakdown voltages; very few commercial devices
are rated to block 100 V or more. Their off-state reverse currents are considerably higher than
those of p–n junction diodes. Characteristics of several commercial Schottky rectifiers are also
listed in Table 4.1.

Wide-bandgap semiconductor materials have recently become commercially significant. Sil-
icon carbide (SiC) and, more recently, gallium nitride (GaN) materials exhibit an improved
tradeoff between blocking voltage, on-resistance, and switching speed. Schottky barrier diodes
based on SiC are available with 600 V and 1200 V ratings; these exhibit much faster switching
speeds and much lower Qr than comparable silicon p–n devices. Although the built-in diode
drop is larger, the switching loss is much smaller; hence, overall efficiency improvements are
observed. Because of the difficulties in producing high-quality compound semiconductor mate-
rial, wide-bandgap power devices are more expensive than traditional silicon devices.

Another important characteristic of a power semiconductor device is whether its on-resistance
and forward voltage drop exhibit a positive temperature coefficient. Such devices, including the
MOSFET and IGBT, are advantageous because multiple chips can be easily paralleled, to ob-
tain high-current modules. These devices also tend to be more rugged and less susceptible to
hot-spot formation and second-breakdown problems. Diodes cannot be easily connected in par-
allel, because of their negative temperature coefficients: an imbalance in device characteristics
may cause one diode to conduct more current than the others. This diode becomes hotter, which
causes it to conduct even more of the total current. In consequence, the current does not di-
vide evenly between the paralleled devices, and the current rating of one of the devices may
be exceeded. Since BJTs and thyristors are controlled by a diode junction, these devices also
exhibit negative temperature coefficients and have similar problems when operated in parallel.
Of course, it is possible to parallel any type of semiconductor device; however, use of matched
devices, a common thermal substrate, and/or external circuitry may be required to cause the
on-state currents of the devices to be equal.



90 4 Switch Realization

4.3.3 Modeling Diode-Induced Switching Loss

Diode-induced switching loss is often one of the largest sources of power loss in a PWM switch-
ing converter. In this section, the equivalent circuit models of Chap. 3 are extended to include
the switching loss induced by the diode reverse-recovery process. The diode reverse recovery
time tr and recovered charge Qr are included in the transistor and diode waveforms, and then
these waveforms are related to the inductor and capacitor waveforms. The principles of inductor
volt-second balance and capacitor charge balance are applied, along with the other techniques
of Chap. 3. Equivalent circuits are then constructed, which include the effects of diode-induced
switching loss, that can be employed to predict efficiency and dc components of the converter
waveforms.

The discussion of this section employs the buck converter example illustrated in Fig. 4.33.
An ideal MOSFET is assumed, which is driven by a control signal c(t) having a duty cycle Dc.
The diode is taken to be a p–n diode having reverse recovery time tr and recovered charge Qr.
Other nonidealities are neglected in this example, including conduction losses, switching ripple,
etc.

Fig. 4.33 Buck converter example:
modeling switching loss +
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The assumed transistor and diode waveforms are illustrated in Fig. 4.34. In these idealized
waveforms, the diode softness factor is taken to be S = 0. The switching ripple in the inductor
current and capacitor voltage are assumed to be small. Additionally, the power stage duty cycle
D is defined according to the transistor voltage waveform vt(t): the transistor voltage is zero
for the interval 0 ≤ t ≤ DTs. This definition causes the inductor volt-second balance equation
to coincide with the results for the ideal case, and leads to an equivalent circuit having a dc
transformer with turns ratio 1 : D.

It can be noted that the diode reverse recovery time tr distorts the duty cycle, and causes the
effective power stage duty cycle D to be smaller than the duty cycle Dc produced by the control
circuit:

D = Dc −
tr
Ts

(4.12)

Switching times, as well as phenomena such as gate driver delays, can create some ambiguity
in determination of the duty cycle. In this discussion, the power stage duty cycle D is defined
according to the transistor voltage waveform.

We can relate these waveforms to the inductor voltage, capacitor current, and converter input
current. The inductor voltage vL(t) is related to the diode voltage vd(t) as follows:

vL(t) = vd(t) − V (4.13)
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Fig. 4.34 Assumed
waveforms for the
buck converter with
diode reverse recov-
ery, Fig. 4.33
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Fig. 4.35 Buck converter example:
inductor voltage waveform

vL(t)
Vg

tDTs

Subtraction of the output voltage V from the diode voltage waveform vd(t) illustrated in Fig. 4.34
leads to the inductor voltage waveform of Fig. 4.35. It can be seen that, with the definition of
D as in Eq. (4.12), we obtain the usual inductor voltage waveform. Application of inductor
volt-second balance to this waveform leads to

〈vL〉 = 0 = DVg − V (4.14)
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The capacitor current iC(t) is related to the inductor and load currents in the usual manner.
Capacitor charge balance leads to

〈iC〉 = 0 = IL −
V
R

(4.15)

Construction of an equivalent circuit corresponding to these two equations, according to the
methods of Sect. 3.3, leads to the equivalent circuit of Fig. 4.36.

To complete the equivalent circuit model of the buck converter, an equation for the average
input current Ig must be derived, as discussed in Sect. 3.4. It can be seen from Fig. 4.33 that the
input current ig(t) coincides with the transistor current it(t). The transistor current waveform is
sketched in Fig. 4.34; its average is

Ig = 〈it(t)〉 =
1
Ts

∫ Ts

0
it(t) dt (4.16)

=
1
Ts

(DTsIL + trIL + Qr) (4.17)

= DIL +
tr
Ts

IL +
Qr

Ts
(4.18)

Fig. 4.36 Buck converter example:
equivalent circuit corresponding to
Eqs. (4.14) and (4.15)
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Fig. 4.37 Buck converter example:
equivalent circuit corresponding to
Eq. (4.18) + DIL

Ig

Vg Qr /Ts tr IL /Ts

Equation (4.18) can be viewed as a node equation describing the dc current drawn out of the
source Vg. The corresponding equivalent circuit is constructed in Fig. 4.37.

A complete model of the buck converter with switching loss can now be obtained by com-
bining Figs. 4.36 and 4.37 to obtain Fig. 4.38. The dependent sources are combined into a 1 : D
dc transformer. In addition, the model includes two current sources that model the dc compo-
nents of input current that are induced by the diode recovered charge Qr and reverse recovery
time tr.
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Fig. 4.38 Complete model of the buck converter with diode-induced switching loss

In the model of Fig. 4.38, the current sources consume power equal to

Psw = Vg

(
Qr

Ts
+ IL

tr
Ts

)
(4.19)

This is the switching loss induced by the diode reverse-recovery process. For the case S = 0,
this power is dissipated in the transistor. For S > 0, this switching loss is dissipated partly in
the diode and partly in the transistor.

We can now solve the model of Fig. 4.38, to derive expressions for the conversion ratio and
efficiency. The conversion ratio M is equal to the turns ratio of the dc transformer:

M =
V
Vg
= D (4.20)

The output power is
Pout = VIL (4.21)

The input power is

Pin = Vg

(
DIL +

Qr

Ts
+ IL

tr
Ts

)
(4.22)

The following equation for efficiency can be derived by taking the ratio of Eqs. (4.21) and (4.22),
and simplifying:

η =
Pout

Pin
=

1

1 + fs

(
tr
D
+

QrR
D2Vg

) (4.23)

It can be seen that the efficiency is dependent on the switching frequency.
Equation (4.23) is plotted in Fig. 4.39, for the values Vg = 24 V, fs = 100 kHz, R = 15Ω,

Qr = 0.75 μcoul, tr = 75 nsec. It can be seen that the switching loss causes the efficiency to
tend to zero at low duty cycle. This occurs because the output power goes to zero but switching
loss remains. This model assumes that the switching ripple is negligible, and no attempt has
been made to model how Qr and tr vary with current; in practice these quantities do vary with
current, but somewhat weakly. It is found experimentally that switching loss does indeed cause
the efficiency of constant-frequency converters to degrade substantially as the output power is
reduced.
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Fig. 4.39 Buck converter efficiency predicted by Eq. (4.23)

4.3.4 Boost Converter Example

As another example of modeling switching loss, the boost converter of Fig. 4.40 is considered.
Again, the switching loss induced by the diode reverse recovery is considered, including the
effects of reverse recovery time tr and recovered charge Qr. Additionally, the loss induced by
the inductor dc winding resistance RL is modeled, but all other sources of loss are neglected.
Also, the inductor current and capacitor voltage ripples are taken to be small.

The transistor and diode waveforms are sketched in Fig. 4.41; these are similar to the buck
waveforms of Fig. 4.34 with the exception of the voltage amplitudes. Again, the converter power
stage duty cycle D is defined with respect to the transistor voltage waveform vt(t); this duty
cycle differs from the duty cycle Dc of the controller gate drive signal c(t) because of the diode
reverse recovery time tr. We will see that this definition leads to an equivalent circuit having a
dc transformer with turns ratio D′ : 1.

To apply the principle of inductor volt-second balance, we first construct the waveform of
vL(t). In the boost converter, the inductor voltage vL(t) is related to the transistor voltage vt(t)
and inductor current iL(t) according to

vL(t) = Vg − iL(t)RL − vt(t) (4.24)

Fig. 4.40 Boost converter ex-
ample: modeling switching loss
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Fig. 4.41 Assumed
waveforms for the
boost converter with
diode reverse recov-
ery, Fig. 4.40
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Fig. 4.42 Boost converter example:
inductor voltage waveform
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By subtraction of the transistor voltage waveform of Fig. 4.41 from Vg, and with use of the
small-ripple approximation, the inductor voltage waveform of Fig. 4.42 is obtained. The dc
component of this waveform is

〈 vL 〉 = 0 = D
(
Vg − ILRL

)
− D′

(
Vg − ILRL − V

)
(4.25)

= Vg − ILRL − D′V
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In the boost converter, the capacitor current iC is related to the diode current id and load
current v/R according to the output node equation

iC = id −
v
R

(4.26)

By capacitor charge balance, the average value of the capacitor current is zero. We can therefore
use Eq. (4.26) to write

〈 iC 〉 = 0 = 〈 id 〉 −
V
R

(4.27)

The dc component of the diode current is found by integration of the waveform of Fig. 4.43:

〈 id 〉 =
1
Ts

∫ Ts

0
id(τ) dτ (4.28)

=
1
Ts

(
IL
(
D′Ts − tr

) − Qr
)

= D′IL −
trIL

Ts
− Qr

Ts

Fig. 4.43 Boost converter example:
diode current waveform
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By convention in these equations, the recovered charge Qr is taken to be a positive quantity.
Hence, the output node equation (4.27) becomes

0 = D′IL −
trIL

Ts
− Qr

Ts
− V

R
(4.29)

Finally, we note that the input current ig(t) coincides with the inductor current iL(t), and
hence the dc component of input current is

Ig = IL (4.30)

Hence, the equations that describe the dc model of this converter are

0 = Vg − ILRL − D′V (4.31)

0 = D′IL −
trIL

Ts
− Qr

Ts
− V

R
Ig = IL
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These equations follow from Eqs. (4.25), (4.29), and (4.30). An equivalent circuit corresponding
to Eqs. (4.31) is given in Fig. 4.44. This dc circuit model accounts for diode-induced switching
loss and for inductor dc winding resistance in the boost converter; other conduction losses could
have been included as well, following the approach of Chap. 3.

R

+

V+

Ig = IL

D  : 1

Vg Qr /Ts tr IL /Ts

RL

Fig. 4.44 Complete model of the boost converter with diode-induced switching loss

The two independent sources of Fig. 4.44 consume power

Psw = V

(
trIL

Ts
+

Qr

Ts

)
(4.32)

This power is equal to the switching loss within the MOSFET and diode induced by diode
reverse recovery. In the model, these sources appear in parallel with the load and effectively
behave as an additional load on the converter. Indeed, in the actual converter, the diode reverse
recovery current flows out of the output filter capacitor C and through the semiconductor de-
vices.

The model of Fig. 4.44 can now be solved, to find the conversion ratio M = V/Vg. The result
can be shown to be

M =
V
Vg
=

(
1
D′

)
(
1 − Qr

Ts

RL

D′Vg (1 − tr/D′Ts)

)

(
1 +

RL

D′2R (1 − tr/D′Ts)

) (4.33)

This equation is plotted vs. duty cycle in Fig. 4.45, for the values fs = 100 kHz, Vg = 24 V,
R = 15 Ω, RL = 0.15 Ω, Qr = 1 μCoul, and tr = 50 nsec. The conversion ratio with switching
loss (thick, lower line) is compared to the result with inductor winding resistance only (thin,
upper line). It can be seen that the two curves are qualitatively similar, and the effect of switching
loss is more pronounced at high duty cycles.

We can also evaluate the equivalent circuit model of Fig. 4.44 to find the converter efficiency.
The input power is given by

Pin = VgIg (4.34)

The output power is equal to

Pout = V

(
D′Ig −

Qr

Ts
− trIL

Ts

)
(4.35)
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Fig. 4.45 Conversion ratio V/Vg, boost converter with switching loss and inductor dc winding resistance.
The lower (thick) line includes switching loss terms and dc winding resistance. The upper (thin) line
includes dc winding resistance only, with no switching loss

By taking the ratio of these two expressions and simplifying, we can show that the efficiency is
given by

η =
V
Vg

(
D′ − Qr

T s IL
− tr

Ts

)
(4.36)

Additionally, the equivalent circuit model of Fig. 4.44 can be solved for the inductor current IL,
yielding

IL =

(
Vg

D′2R
+

Qr

TsD′

)

(
1 − tr

D′Ts
+

RL

D′2R

) (4.37)

Equations (4.36) and (4.37) can be used to plot the converter efficiency. The result is shown
in Fig. 4.46, for the same parameter values of Fig. 4.45. Again, the result with switching loss
(lower thick line) and without switching loss but with inductor winding resistance only (upper,
thin line) are compared. It can be seen that these values of diode reverse recovery time and
diode recovered charge lead to substantial reductions in efficiency, even at low duty cycles
where the diode reverse recovery causes negligible change in the conversion ratio V/Vg. The
term multiplying 1/D′ on the right-hand side of Eq. (4.33) is not equal to the efficiency, and
instead simply accounts for how the loss elements affect the conversion ratio.

The plot of Fig. 4.46 predicts that the efficiency tends to a value slightly less than 93% as
the duty cycle tends to zero. It should be noted that the boost converter can be operated in
passthrough mode at D = 0, where the MOSFET is always off and never switches. In this case,
there is no switching loss and the efficiency will jump to the upper curve that includes inductor
dc copper loss only.
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Fig. 4.46 Efficiency of the boost converter with diode-induced switching loss. The lower (thick) line in-
cludes switching loss terms and dc winding resistance. The upper (thin) line includes dc winding resistance
only, with no switching loss

4.4 Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)

4.4.1 Introduction to the Power MOSFET

The power MOSFET is a modern power semiconductor device having gate lengths close to one
micron. The power device is comprised of many small parallel-connected enhancement-mode
MOSFET cells, which cover the surface of the silicon die. A cross-section of one cell is il-
lustrated in Fig. 4.47. Current flows vertically through the silicon wafer: the metallized drain
connection is made on the bottom of the chip, while the metallized source connection and
polysilicon gate are on the top surface. Under normal operating conditions, in which vds ≥ 0,
both the p–n and p–n− junctions are reverse-biased. Figure 4.48a illustrates operation of the

Fig. 4.47 Cross-section
of DMOS n-channel
power MOSFET structure.
Crosshatched regions
are metallized contacts.
Shaded regions are in-
sulating silicon dioxide
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Fig. 4.48 Operation of the power MOSFET: (a) in the off state, vds across the depletion region in the n−

region; (b) current flow through the conducting channel in the on state; (c) body diode due to the p − n−

junction
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device in the off state. The applied drain-to-source voltage then appears across the depletion
region of the p–n− junction. The n− region is lightly doped, such that the desired breakdown
voltage rating is attained. Figure 4.48b illustrates operation in the on state, with a sufficiently
large positive gate-to-source voltage. A channel then forms at the surface of the p region, under-
neath the gate. This channel is called an inversion region, it contains mobile electrons that are
able to conduct current between the drain and source. The drain current flows through the n−

drift region, channel, n region, and out through the source contact. The on-resistance of the de-
vice is the sum of the resistances of the n− region, the channel, the source and drain contacts, etc.
As the breakdown voltage is increased, the on-resistance becomes dominated by the resistance
of the n− drift region. Since there are no minority carriers to cause conductivity modulation, the
on-resistance increases rapidly as the breakdown voltage is increased to several hundred volts
and beyond.

The p–n− junction is called the body diode; as illustrated in Fig. 4.48c, this junction forms
an effective diode in parallel with the MOSFET channel. The body diode can become forward-
biased when the drain-to-source voltage vds(t) is negative. This diode is capable of conducting
the full rated current of the MOSFET. However, many MOSFETs are not optimized with re-
spect to the speed of their body diodes, and the large peak currents that flow during the reverse
recovery transition of the body diode can cause device failure as described below. Most recent
MOSFETs contain fast recovery body diodes; these devices are rated to withstand the peak
currents during the body diode reverse recovery transition.

The MOSFET structure of Fig. 4.48 also includes a parasitic BJT structure, formed by the
source n region (emitter), substrate p region (base), and drift n− region (collector). Since the
n and p regions are shorted by the source contact, this parasitic BJT is normally off. However,
if a sufficiently large current flows through the bulk resistance of the p region, it is possible to
forward-bias the p− n base-emitter junction. This situation may be observed during the reverse
recovery transition of the body diode, and it can lead to latchup and failure of the MOSFET.
Recent MOSFET designs are less prone to this failure mechanism.

Typical n-channel MOSFET static switch characteristics are illustrated in Fig. 4.49. The
drain current is plotted as a function of the gate-to-source voltage, for various values of drain-
to-source voltage. When the gate-to-source voltage is less than the threshold voltage Vth, the
device operates in the off state. A typical value of Vth is 3 V. When the gate-to-source voltage is
greater than 6 or 7 V, the device operates in the on state; typically, the gate is driven to 12 or 15 V
to ensure minimization of the forward voltage drop. In the on state, the drain-to-source voltage
VDS is roughly proportional to the drain current ID. The MOSFET is able to conduct peak
currents well in excess of its average current rating, and the nature of the static characteristics
is unchanged at high current levels. Logic-level power MOSFETs are also available, which
operate in the on state with a gate-to-source voltage of 5 V. Some p-channel devices can be
obtained, but their properties are inferior to those of equivalent n-channel devices.

The on-resistance and forward voltage drop of the MOSFET have a positive temperature
coefficient. This property makes it relatively easy to parallel devices. High-current MOSFET
modules are available, containing several parallel-connect chips.

The major capacitances of the MOSFET are illustrated in Fig. 4.50. This model is suffi-
cient for qualitative understanding of the MOSFET switching behavior; more accurate models
account for the parasitic junction field-effect transistor inherent in the DMOS geometry. Switch-
ing times of the MOSFET are determined essentially by the times required for the gate driver
to charge these capacitances. Since the drain current is a function of the gate-to-source voltage,
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the rate at which the drain current changes is dependent on the rate at which the gate-to-source
capacitance is charged by the gate drive circuit. Likewise, the rate at which the drain voltage
changes is a function of the rate at which the gate-to-drain capacitance is charged. The drain-to-
source capacitance leads directly to switching loss in PWM converters, since the energy stored
in this capacitance is lost during the transistor turn-on transition. Switching loss is discussed in
Sect. 4.6.

The gate-to-source capacitance is essentially linear. However, the drain-to-source and gate-
to-drain capacitances are strongly nonlinear: these incremental capacitances vary as the inverse
square root of the applied capacitor voltage. For example, the dependence of the incremental
drain-to-source capacitance can be written in the form

Cds(vds) =
C0√

1 +
vds

V0

(4.38)
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where C0 and V0 are constants that depend on the construction of the device. These capacitances
can easily vary by several orders of magnitude as vds varies over its normal operating range. For
vds 
 V0, Eq. (4.38) can be approximated as

Cds(vds) ≈ C0

√
V0

vds
=

c′0√
vds

(4.39)

These expressions are used in Sect. 4.6.1 to determine the switching loss due to energy stored
in Cds.

Table 4.2 Characteristics of several commercial n-channel power MOSFETs

Part number Rated maximum voltage Rated average current Ron Qg (typical)

SiSS64DN 30 V 40 A 2.1 mΩ 21 nC
CSD18512Q5B 40 V 100 A 1.3 mΩ 75 nC
NTMFS6H800N 80 V 203 A 1.8 mΩ 85 nC
IXFH80N25X3 250 V 80 A 13 mΩ 83 nC
IPL60R065P7 650 V 41 A 53 mΩ 67 nC

Characteristics of several commercially available power MOSFETs are listed in Table 4.2.
The gate charge Qg is the charge that the gate drive circuit must supply to the MOSFET to
raise the gate voltage from zero to some specified value (typically 10 V), with a specified value
of off-state drain-to-source voltage (typically 80% of the rated VDS). The total gate charge is
the sum of the charges on the gate-to-drain and the gate-to-source capacitance. The total gate
charge is to some extent a measure of the size and switching speed of the MOSFET. A figure of
merit is the product of on-resistance Ron and gate charge Qg; a device exhibiting lower RonQg

is expected to operate with higher efficiency. The on-resistances listed in Table 4.2 are typical
values specified at 25◦C; the on-resistance increases significantly at elevated temperature.

Unlike other power devices, MOSFETs are usually not selected on the basis of their rated av-
erage current. Rather, on-resistance and its influence on conduction loss are the limiting factors,
and MOSFETs typically operate at average currents somewhat less than the rated value.

Majority-carrier silicon MOSFETs are usually the device of choice at voltages up to ap-
proximately 600 V. At these voltages, the forward voltage drop is competitive or superior to the
forward voltage drops of minority-carrier devices, and the switching speed is significantly faster.
Typical switching times are below 100 ns. At voltages greater than 600 V, minority-carrier de-
vices having lower forward voltage drops, such as the IGBT, usually have been preferred. These
minority-carrier devices are discussed in Sect. 4.5.

The superjunction MOSFET [41] employs alternate heavily doped n and p layers within the
drift region, to carefully control the electric field under off-state conditions. This enables better
optimization of the tradeoff between on-resistance and blocking voltage, leading to significantly
better on-resistance, capacitance, and die area in MOSFETs at voltages of 500–800 V. The
IPL60R06SP7 device listed in Table 4.2 is an example of a superjunction MOSFET.

4.4.2 Wide-Bandgap FETs

Power transistors based on wide-bandgap (WBG) materials have recently emerged as com-
mercially significant switching devices. In comparison with conventional silicon-based power
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transistors, these wide-bandgap transistors can achieve higher breakdown voltage with lower
on-resistance and faster switching times. Power MOSFETs based on Silicon Carbide (SiC) find
application at voltages above 600 V, and FET devices based on Gallium Nitride (GaN) currently
find application at voltages of 600 V and below.

For a majority-carrier device having no conductivity modulation, the resistance Ron of the
drift region can be expressed as

ARon =
k

μnεsE3
c

V2
B (4.40)

where Ron is the resistance of the drift region, A is the device area, k is a constant dependent on
the process and other factors, μn is the electron mobility, εs is the semiconductor permittivity, Ec

is the critical field for avalanche breakdown, and VB is the device breakdown voltage. The right-
hand side of Eq. (4.40) is known as the specific on-resistance of a power transistor technology,
having units of transistor on-resistance per unit area. Wide-bandgap devices take advantage of
this basic relationship to make significant advances in performance. These parameters are listed
in Table 4.3 for selected semiconductor materials. The electron mobility listed for GaN material
is for a high electron mobility transistor (HEMT), for the two-dimensional electron gas induced
at the junction between AlGaN and GaN materials. Different crystalline structures are possible
in these materials, which can lead to a range of values.

Table 4.3 Comparison of Power Semiconductor Materials [42]

Material Bandgap Electron mobility Permittivity Critical field Thermal conductivity
[eV] μn [cm2/Vs] εs Ec [V/cm] [W/m◦K]

Si 1.1 1350 11.8 3 · 105 150
SiC (4H) 3.26 720 10 2 · 106 450
GaN 3.44 1500–2000 (2DEG) 9 3.3 · 106 130

The wide-bandgap energies of SiC and GaN materials lead to significant increases in the crit-
ical field Ec, approximately an order-of-magnitude improvement. Equation (4.40) predicts that
an order-of-magnitude improvement in Ec leads to a three orders-of-magnitude improvement in
on-resistance Ron. Hence, wide-bandgap materials can potentially achieve a major improvement
in the relationship between on-resistance and breakdown voltage.

Additionally, a wide bandgap directly influences the impact on switching time because im-
provement in specific on-resistance allows a reduction in device area while maintaining the
same on-resistance. Reduction in device area reduces its capacitance, and hence also switch-
ing loss. Further, wide-bandgap materials enable the use of majority-carrier devices in much
higher voltage applications, with no current tail, no reverse recovery, and other advantages of
majority-carrier device technology. Hence a technological improvement in Eq. (4.40) represents
an improvement in a combination of on-resistance, switching time, and voltage breakdown.

Native oxide layers can be grown on SiC, and manufacturers have developed vertical power
MOSFETs in SiC having structures similar to Fig. 4.47. The properties of several commercial
SiC power MOSFETs are listed in Table 4.4. Relative to Si MOSFET technology, these SiC
MOSFETs achieve significantly higher breakdown voltages, lower on-resistances, and lower
gate charge. Silicon Carbide MOSFETs rated at 10 kV [43] and higher are feasible.
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Table 4.4 Characteristics of several commercial SiC MOSFETs

Part number Rated maximum voltage Rated average current Ron Qg (typical)

C3M0030090K 900 V 63 A 30 mΩ 87 nC
C3M0075120K 1200 V 30 A 75 mΩ 51 nC
C2M0045170D 1700 V 72 A 45 mΩ 188 nC
SCT3022AL 650 V 93 A 22 mΩ 133 nC
CPM3-0900-0010A 900 V 196 A 10 mΩ 68 nC

Table 4.3 notes that SiC exhibits significantly lower electron mobility than Si. Since on-
resistance depends on mobility, low-voltage SiC MOSFETs exhibit inferior on-resistance in
low-voltage devices. The advantage of wide bandgap in SiC causes SiC devices to be superior
to Si devices only at rated voltages above 600 V. At lower rated voltages, SiC MOSFETs exhibits
lower specific resistance than Si MOSFETs.

Silicon carbide exhibits high thermal conductivity and low thermal coefficient of expansion.
Bulk devices are able to operate at very high temperatures, possibly up to 300◦C. However, the
packaging of these devices generally is limited to lower temperatures. Additionally, the reliabil-
ity of oxide layers is compromised above 175◦C, which limits the maximum temperatures of
SiC MOSFETs.

The SiC MOSFET includes a body diode, as in Fig. 4.48c. The forward voltage drop of this
SiC p–n diode is 3–4 volts, and its reverse recovery time typically is several tens of nanoseconds.
If reverse current conduction is required, the MOSFET can be turned on and operated as a
synchronous rectifier, to reduce conduction loss.

As noted earlier, the SiC Schottky diode finds application as a replacement for high voltage
Si p–n diodes, at 600 V and above. The SiC MOSFET may find application as a replacement
for the Si IGBT at 600 V and above, enabling higher switching frequencies and smaller reactive
element size.

Gallium Nitride (GaN) is a second wide-bandgap material finding significant application
in power electronics. The bandgap energy and critical field of GaN is even higher than SiC,
and Eq. (4.40) again predicts that GaN can potentially achieve a major improvement in the
relationship between on-resistance and breakdown voltage. Thin-film lateral GaN devices are
deposited on a Si or SiC substrate. Since no native oxide is available in GaN, these transistors are
heterostructure field-effect devices. Early devices were depletion-mode field-effect transistors,
but enhancement-mode FETs now are offered commercially [38].

The structure of a simple enhancement-mode GAN FET is diagrammed in Fig. 4.51. The de-
vice may be fabricated on a silicon substrate, or possible another substrate material such as SiC

Fig. 4.51 Basic structure of
enhancement-mode GaN FET
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or sapphire. Since the coefficients of thermal expansion of the substrate and the GaN materials
differ, transition layers are needed for improvement of reliability under thermal cycling. Intrin-
sic GaN is deposited next. A layer of AlGaN is then deposited. The crystalline structures and
bandgaps of AlGaN and GaN differ, and hence the AlGaN–GaN interface is known as a hetero-
junction. In the GAN FET, a two-dimensional electron gas (2DEG) forms at the heterojunction
as illustrated in Fig. 4.52; the 2DEG contains high-mobility electrons within the GaN material at
the heterojunction. This type of device is also called a high electron mobility transistor (HEMT).

Fig. 4.52 Formation of a
two-dimensional electron gas
(2DEG) at the heterojunction,
comprised of high-mobility
electrons
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The electrons within the 2DEG form a channel that can conduct current between the source
and drain; because of their high mobility, the device exhibits low on-resistance. The gate forms
a GaN diode between the gate terminal and the channel. The 2DEG can be controlled by the
gate voltage: at zero gate voltage, the gate diode is reverse-biased, and its depletion region
extends into the GaN region sufficient to deplete the 2DEG. With positive gate voltage, the
2DEG forms a complete conducting channel between drain and source. It is important to limit
the on-state gate current to a value that does not exceed what the gate diode can handle. The i–v
characteristics of the gate GaN diode vary with temperature and drain current; depending on the
manufacturer, a typical on-state gate-to-source voltage may be 3–5 V.

The high electron mobility of these devices yields competitive on-resistance at voltages be-
low 600 V. GaN FETs are available at rated voltages of tens of volts up to 650 V, and devices
at much higher voltages are described in the literature. In comparison with Si MOSFETs, the
GaN FET can achieve similar on-resistance with smaller area, smaller capacitances, and faster
switching times. Table 4.5 contains a comparison of a 650 V GaN FET with a 650 V Si super-
junction MOSFET, having similar on-resistance. The gate charge of the GaN FET is roughly an
order-of-magnitude smaller than the Si MOSFET. For reverse conduction with zero gate bias,
the Si MOSFET body diode exhibits a voltage drop of approximately 0.8 V, while the GaN FET
exhibits a drop of approximately 4 V. The Si MOSFET body diode exhibits significant reverse
recovery, while the GaN FET does not.

The GaN FET structure of Fig. 4.51 does not contain a body diode. Nonetheless, the device
is able to conduct both positive and negative current between drain and source when the device
is on. Further, when vgs = 0, the GaN FET will conduct when vds is sufficiently negative such
that vgd is positive enough to turn on the device, as illustrated in Fig. 4.53. Hence, the GaN FET
cannot block negative voltage, but it is a current-bidirectional two-quadrant switch.
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Table 4.5 Comparison of Si Superjunction MOSFET and GaN FET

Si SJ MOSFET GaN FET

Voltage rating 650 V 650 V
Ron, 25–150◦C 24–60 mΩ 25–50 mΩ

Qg at VDS = 400V 123 nC (10 V) 12 nC (6 V)
VS D 0.8 V 4 V
Qrr 8.7 μC –
trr 440 ns –

Fig. 4.53 Reverse conduction through a FET such as a GaN
device, when the gate is shorted to the source. The FET becomes
forward-biased when vds ≤ −Vth
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4.4.3 MOSFET Gate Drivers

Now let us discuss some practical circuitry and basic considerations for driving power MOS-
FETs. Figure 4.54 contains a synchronous buck converter; in which the main switch Q1 and the
synchronous rectifier Q2 are both realized using power MOSFETs. This configuration is found
in quite a few examples, including not only low-voltage dc–dc buck converters, but also dc-ac
inverter circuits and converters having bidirectional power flow. The transistor configuration is
also called a half-bridge circuit, and the gate driver circuitry illustrated in this figure is called
a half-bridge gate driver. The fundamentals of driving the MOSFETs in these applications are
nearly the same, and are discussed in this section in the context of the synchronous buck con-
verter.

In Fig. 4.54, MOSFET Q2 is driven by low-side driver DRLS . Since the source of Q2 is
connected to ground, the gate is driven at zero volts to turn Q2 off, and at 12 V to turn Q2 on.

The source of MOSFET Q1 is connected to the switch node voltage vs(t); this voltage is
approximately zero when Q2 is on, but is approximately equal to the input voltage Vg when Q1

is on. The high-side driver DRHS must drive the gate of Q1 to 0 V with respect to vs(t) to turn Q1

off, and to +12 V with respect to vs(t) to turn Q1 on. To drive Q1 in this manner, the high-side
driver circuit is referenced to the switch node voltage vs(t), and a level shifter circuit converts
the ground-referenced control signal to a vs-referenced signal as needed to drive the input of
DRHS .

A bootstrap power supply provides 12 V power to DRHS that is referenced to vs. When
MOSFET Q2 conducts, then capacitor Cboot charges to 12 V through diode Dboot and Q2. While
Q1 conducts, capacitor Cboot supplies power to DRHS , that is approximately +12 V with respect
to vs. It is necessary to periodically turn Q2 on, to recharge Cboot to 12 V and maintain power to
DRHS .

Up-to-date gate driver ICs contain undervoltage lockout (UVLO) circuitry that reliably turns
off both MOSFETs when the 12 V power supply voltage is less than an UVLO threshold. This
forces the MOSFETs into a known safe OFF-state while the 12 V power supply starts up. For
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Fig. 4.54 Buck converter with MOSFET synchronous rectifier and half-bridge gate driver

reliable operation of the high-side bootstrap power supply, the voltage across capacitor Cboot

must be higher than this UVLO threshold.
The control signal c(t) is a logic signal that commands switching of the transistors, with

switching frequency fs and duty cycle Dc. This signal drives a deadtime generator that produces
signals that drive the driver circuits DRLS and DRHS . It is necessary to make sure that Q1 and Q2

do not simultaneously conduct, even for a few nanoseconds—simultaneous conduction leads to
very large current spikes drawn out of the source Vg, which can damage the MOSFETs or at
least substantially reduce the efficiency. The function of the deadtime generator is to insert small
delays, or deadtimes, that implement break-before-make switching, in which one transistor is
fully turned off before the next transistor begins to turn on. Typical waveforms of the control
signals c(t), cHS (t), and cLS (t) are illustrated in Fig. 4.55.

Fig. 4.55 Control waveforms of the
deadtime generator block of Fig. 4.54
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Let us consider next the details of the switching transition in which the synchronous rectifier
Q2 turns off, and then the main switch Q1 turns on. In Fig. 4.56, the low-side driver DRLS and
MOSFET Q2 are replaced by equivalent circuit models that aid in understanding the waveforms
observed during this switching transition. The driver DRLS is replaced by a Thevenin-equivalent
model consisting of a voltage source vthev(t) and a resistance Rthev. The voltage source vthev is the
open-circuit output voltage of the driver, and can be assumed to be proportional to the control
signal cLS (t) of Fig. 4.55. The resistance Rthev can be viewed, to first order, as arising from the
on-resistance of the output driver stage MOSFETs of the driver DRLS . It is traditional to rate
gate drivers according to their peak current capability; so, for example, a driver rated at 12 V
and 1 A would exhibit Rthev = (12 V)/(1 A) = 12Ω. Additionally, in Fig. 4.56, MOSFET Q2 is
replaced with an equivalent circuit model consisting of the device capacitances Cgs,Cgd, andCds,
body diode D2, and a dependent current source that models the dependence of the drain current
on vgs and vs.
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Rthev
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Fig. 4.56 Detail of half-bridge gate driver of Fig. 4.54, with low-side driver modeled by Thevenin-
equivalent network, and with MOSFET Q2 replaced by its equivalent circuit model

Waveforms of the switching transition are illustrated in Fig. 4.57. Initially, Q2 is on, and its
gate-to-source voltage vgs(t) is high. The switch node voltage vs(t) is approximately zero, and
transistor Q1 is off. When the control signal cLS (t) commands the low-side driver to turn Q2 off,
then the Q2 gate capacitances begin to discharge through the driver resistance Rthev. When the
Q2 gate voltage vgs(t) falls below the Q2 threshold voltage Vth, then MOSFET Q2 is fully off.
With a properly chosen deadtime td, this happens before Q1 begins to turn on.

After Q2 has turned off, but before Q1 turns on, where does the inductor current iL(t) flow?
It is assumed that the inductor current has small ripple, and does not significantly change over
the switching times illustrated in Fig. 4.57. With both Q1 and Q2 in the off state, and with
positive inductor current in the direction illustrated, the inductor current will forward-bias the
body diode D2. This body diode will continue to conduct for the remainder of the deadtime.
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Fig. 4.57 Waveforms for the
switching transition where Q2 turns
off and then Q1 turns on

cHS(t)

t

cLS(t)

td

vgs(t)

vs(t)

0

Vg

Vth

tr

Q2 Q1D2
Conducting

Devices:

tvr

At the conclusion of the deadtime, the control signal cHS (t) commands the high-side driver
to turn Q1 on. Since body diode D2 is conducting, it must undergo a reverse-recovery process,
and hence reverse current flows through D2 (also flowing through Q1 and Vg). Consequently,
D2 induces switching loss in Q1, as described in Sect. 4.3. In Fig. 4.57, the D2 reverse recovery
time is labeled tr.

When the reverse recovery of D2 has progressed enough to allow the diode voltage to
change, then the switch node voltage vs(t) will rise. Figure 4.57 is sketched for the case that
the body diode softness factor is S = 0, so that the voltage vs(t) changes after the reverse re-
covery has concluded. During the interval of length tvr, the switch node voltage rises from zero
to Vg. During this interval, the energy stored in the output capacitances Cds of MOSFETs Q1

and Q2 is dissipated as switching loss in Q1. Switching loss as described in Sect. 4.2.2 is also
induced in Q1.

It can be observed from Fig. 4.56 that when vgs(t) and vthev(t) are both zero, there is zero
voltage across Rthev, and hence idr is zero. This is what happens at the beginning of the tvr

interval of Fig. 4.57. But since vs(t) is rising, current igd = Cgd dvs/dt is induced in capacitance
Cgd. This current must flow into Cgs since idr = 0. Hence, vgs(t) must increase as shown. For vgs

greater than zero, some negative driver current idr will occur, limited by the Thevenin resistance
Rthev.

How high does vgs(t) become during the tvr interval? It is important that vgs remain less than
vth for the entire interval, so that MOSFET Q2 remains off. If vgs rises above Vth, then Q2 will
begin to turn on, leading to oscillations and additional switching loss. It is important to maintain
vgs < Vth for the entire Q1 turn-on interval.

A commonly used solution for reducing the rise of Vgs(t) is illustrated in Fig. 4.58. A small-
value resistor Rg1 is connected between the high-side driver DRHS and the gate of MOSFET Q1.
This slows down the turn-on of Q1, reducing the rate at which the switch node voltage vs(t) rises.
Hence the current igd of the Q2 gate-to-drain capacitance is reduced, and vgs(t) increases more
slowly. If Rg1 is large enough, then the low-side driver DRLS is able to maintain vgs(t) less than
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Fig. 4.58 Addition of resistor Rg1 and diode Dg1 between high-side driver and gate of Q1, to slow down
the turn-on of Q1 and maintain the Vgs of Q2 below Vth during the Q1 turn-on transition

Vth. Diode Dg1 bypasses Rg1 during the turn-off transition of Q1, so that Rg1 reduces the turn-on
speed but does not affect the turn-off speed. If the inductor current iL can reverse polarity, then
it may be desirable to insert a similar Rg2 and Dg2 network at the gate of Q2.

4.5 Minority-Carrier Transistors

4.5.1 Bipolar Junction Transistor (BJT)

A cross-section of an NPN power BJT is illustrated in Fig. 4.59. As with other power devices,
current flows vertically through the silicon wafer. A lightly doped n− region is inserted in the
collector, to obtain the desired voltage breakdown rating. The transistor operates in the off state

Fig. 4.59 Power BJT structure.
Crosshatched regions are metallized
contacts
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(cutoff) when the p–n base-emitter junction and the p–n− base-collector junction are reverse-
biased; the applied collector-to-emitter voltage then appears essentially across the depletion
region of the p–n− junction. The transistor operates in the on state (saturation) when both junc-
tions are forward-biased; substantial minority charge is then present in the p and n− regions.
This minority charge causes the n− region to exhibit a low on-resistance via the conductivity
modulation effect. Between the off state and the on state is the familiar active region, in which
the p–n base-emitter junction is forward-biased and the p–n− base-collector junction is reverse-
biased. When the BJT operates in the active region, the collector current is proportional to the
base region minority charge, which in turn is proportional (in equilibrium) to the base current.
There is in addition a fourth region of operation known as quasi-saturation, occurring between
the active and saturation regions. Quasi-saturation occurs when the base current is insufficient
to fully saturate the device; hence, the minority charge present in the n− region is insufficient to
fully reduce the n− region resistance, and high transistor on-resistance is observed.
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Fig. 4.60 Circuit for BJT switching time example

Consider the simple switching circuit of
Fig. 4.60. Figure 4.61 contains waveforms il-
lustrating the BJT turn-on and turn-off tran-
sitions. The transistor operates in the off
state during interval (1), with the base-emitter
junction reverse-biased by the source voltage
vs(t) = −Vs1. The turn-on transition is initi-
ated at the beginning of interval (2), when
the source voltage changes to vs(t) = +Vs2.
Positive current is then supplied by source
vs to the base of the BJT. This current first
charges the capacitances of the depletion re-
gions of the reverse-biased base-emitter and
base-collector junctions. At the end of inter-
val (2), the base-emitter voltage exceeds zero
sufficiently for the base-emitter junction to
become forward-biased. The length of interval (2) is called the turn-on delay time. During in-
terval (3), minority charge is injected across the base-emitter junction from the emitter into the
base region; the collector current is proportional to this minority base charge. Hence during
interval (3), the collector current increases. Since the transistor drives a resistive load RL, the
collector voltage also decreases during interval (3). This causes the voltage to reduce across the
reverse-biased base-collector depletion region (Miller) capacitance. Increasing the base current
IB1 (by reducing RB or increasing Vs2) increases the rate of change of both the base region mi-
nority charge and the charge in the Miller capacitance. Hence, increased IB1 leads to a decreased
turn-on switching time.

Near or at the end of interval (3), the base-collector p–n− junction becomes forward-biased.
Minority carriers are then injected into the n− region, reducing its effective resistivity. Depend-
ing on the device geometry and the magnitude of the base current, a voltage tail [interval
(4)] may be observed as the apparent resistance of the n− region decreases via conductivity
modulation. The BJT reaches on-state equilibrium at the beginning of interval (5), with low
on-resistance and with substantial minority charge present in both the n− and p regions. This
minority charge significantly exceeds the amount necessary to support the active region con-
duction of the collector current ICon; its magnitude is a function of IB1 − ICon/β, where β is the
active-region current gain.
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Fig. 4.61 BJT turn-on and turn-off transition waveforms

The turn-off process is initiated at the beginning of interval (6), when the source voltage
changes to vs(t) = −Vs1. The base-emitter junction remains forward-biased as long as minority
carriers are present in its vicinity. Also, the collector current continues to be iC(t) = ICon as long
as the minority charge exceeds the amount necessary to support the active region conduction of
ICon, that is, as long as excess charge is present. So during interval (6), a negative base current
flows equal to −IB2 = (−Vs1 − vBE(t))/RB. This negative base current actively removes the to-
tal stored minority charge. Recombination further reduces the stored minority charge. Interval
(6) ends when all of the excess minority charge has been removed. The length of interval (6)
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Fig. 4.62 Ideal base current waveform
for minimization of switching times
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is called the storage time. During interval (7), the transistor operates in the active region. The
collector current iC(t) is now proportional to the stored minority charge. Recombination and
the negative base current continue to reduce the minority base charge, and hence the collector
current decreases. In addition, the collector voltage increases, and hence the base current must
charge the Miller capacitance. At the end of interval (7), the minority stored charge is equal
to zero, and the base-emitter junction can become reverse-biased. The length of interval (7) is
called the turn-off time or fall time. During interval (8), the reverse-biased base-emitter junc-
tion capacitance is discharged to voltage −Vs1. During interval (9), the transistor operates in
equilibrium, in the off state.

It is possible to turn the transistor off using IB2 = 0; for example, we could let Vs1 be
approximately zero. However, this leads to very long storage and turn-off switching times. If
IB2 = 0, then all of the stored minority charge must be removed passively, via recombination.
From the standpoint of minimizing switching times, the base current waveform of Fig. 4.62 is
ideal. The initial base current IB1 is large in magnitude, such that charge is inserted quickly into
the base, and the turn-on switching times are short. A compromise value of equilibrium on-state
current IBon is chosen, to yield a reasonably low collector-to-emitter forward voltage drop, while
maintaining moderate amounts of excess stored minority charge and hence keeping the storage
time reasonably short. The current −IB2 is large in magnitude, such that charge is removed
quickly from the base and hence the storage and turn-off switching times are minimized.

Unfortunately, in most BJTs, the magnitudes of IB1 and IB2 must be limited because ex-
cessive values lead to device failure. As illustrated in Fig. 4.63, the base current flows laterally
through the p region. This current leads to a voltage drop in the resistance of the p material,
which influences the voltage across the base-emitter junction. During the turn-off transition, the
base current −IB2 causes the base-emitter junction voltage to be greater in the center of the base

Fig. 4.63 A large IB2 leads to focus-
ing of the emitter current away from
the base contacts, due to the voltage
induced by the lateral base region
current
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region, and smaller at the edges near the base contacts. This causes the collector current to focus
near the center of the base region. In a similar fashion, a large IB1 causes the collector current
to crowd near the edges of the base region during the turn-on transition. Since the collector-to-
emitter voltage and collector current are simultaneously large during the switching transitions,
substantial power loss can be associated with current focusing. Hence hot spots are induced at
the center or edge of the base region. The positive temperature coefficient of the base-emitter
junction current (corresponding to a negative temperature coefficient of the junction voltage)
can then lead to thermal runaway and device failure. Thus, to obtain reliable operation, it may
be necessary to limit the magnitudes of IB1 and IB2. It may also be necessary to add external
snubber networks which the reduce the instantaneous transistor power dissipation during the
switching transitions.

Steady-state characteristics of the BJT are illustrated in Fig. 4.64. In Fig. 4.64a, the collector
current IC is plotted as a function of the base current IB, for various values of collector-to-
emitter voltage VCE . The cutoff, active, quasi-saturation, and saturation regions are identified.
At a given collector current Ic, to operate in the saturation region with minimum forward voltage
drop, the base current IB must be sufficiently large. The slope dIC/dIB in the active region is
the current gain β. It can be seen that β decreases at high current–near the rated current of
the BJT, the current gain decreases rapidly and hence it is difficult to fully saturate the device.
Collector current IC is plotted as a function of collector-to-emitter voltage VCE in Fig. 4.64b,
for various values of IB. The breakdown voltages BVsus, BVCEO, and BVCBO are illustrated.
BVCBO is the avalanche breakdown voltage of the base-collector junction, with the emitter open
circuited or with sufficiently negative base current. BVCBO is the somewhat smaller collector-
emitter breakdown voltage observed when the base current is zero; as avalanche breakdown is
approached, free carriers are created that have the same effect as a positive base current and
that cause the breakdown voltage to be reduced. BVsus is the breakdown voltage observed with
positive base current. Because of the high instantaneous power dissipation, breakdown usually
results in destruction of the BJT. In most applications, the off-state transistor voltage must not
exceed BVCBO.

At voltage levels up to 600 V, the BJT has been replaced by the MOSFET in power applica-
tions. At 600 V and above, the BJT has been displaced by a more recent minority-carrier device,
the IGBT.

4.5.2 Insulated-Gate Bipolar Transistor (IGBT)

A cross-section of the IGBT is illustrated in Fig. 4.65. Comparison with Fig. 4.47 reveals that
the IGBT and power MOSFET are very similar in construction. The key difference is the p
region connected to the collector of the IGBT. So the IGBT is a modern four-layer power semi-
conductor device having a MOS gate.

The function of the added p region is to inject minority charges into the n− region while the
device operates in the on state, as illustrated in Fig. 4.65. When the IGBT conducts, the p–n−

junction is forward-biased, and the minority charges injected into the n− region cause conductiv-
ity modulation. This reduces the on-resistance of the n− region, and allows high-voltage IGBTs
to be constructed which have low forward voltage drops. IGBTs rated as low as 600 V and as
high as 6500 V are readily available. The forward voltage drops of these devices are typically 2
to 4 V, much lower than would be obtained in equivalent MOSFETs of the same silicon area.

Several schematic symbols for the IGBT are in current use; the symbol illustrated in
Fig. 4.66a is the most popular. A two-transistor equivalent circuit for the IGBT is illustrated
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Fig. 4.64 BJT static characteristics: (a) IC vs. IB, illustrating the regions of operation; (b) IC vs. VCE ,
illustrating voltage breakdown characteristics

in Fig. 4.66b. The IGBT functions effectively as an n-channel power MOSFET, cascaded by a
PNP emitter-follower BJT. The physical locations of the two effective devices are illustrated in
Fig. 4.67. It can be seen that there are two effective currents: the effective MOSFET channel
current i1, and the effective PNP collector current i2.

The price paid for the reduced voltage drop of the IGBT is its increased switching times,
especially during the turn-off transition. In particular, the IGBT turn-off transition exhibits a
phenomenon known as current tailing. The effective MOSFET can be turned off quickly, by re-
moving the gate charge such that the gate-to-emitter voltage is negative. This causes the channel
current i1 to quickly become zero. However, the PNP collector current i2 continues to flow as
long as minority charge is present in the n− region. Since there is no way to actively remove the
stored minority charge, it slowly decays via recombination. So i2 slowly decays in proportion
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Fig. 4.65 IGBT structure.
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Fig. 4.66 The IGBT: (a) schematic
symbol, (b) equivalent circuit
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to the minority charge, and a current tail is observed. The length of the current tail can be re-
duced by introduction of recombination centers in the n− region, at the expense of a somewhat
increased on-resistance. The current gain of the effective PNP transistor can also be minimized,
causing i1 to be greater than i2. Nonetheless, the turn-off switching time of the IGBT is sig-
nificantly longer than that of the MOSFET, with typical turn-off times in the range 0.5 μs to
5 μs.
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Fig. 4.68 IGBT switching
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A buck converter circuit containing an ideal diode and nonideal (physical) IGBT is illus-
trated in Fig. 4.68. Turn-off transition waveforms are illustrated in Fig. 4.69; these waveforms
are similar to the MOSFET waveforms of Fig. 4.25. The diode is initially reverse-biased, and
the voltage vA(t) rises from approximately zero to Vg. The interval length (t1 − t0) is the time re-
quired for the gate drive circuit to charge the IGBT gate-to-collector capacitance. At time t = t1,
the diode becomes forward-biased, and current begins to commute from the IGBT to the diode.
The interval (t2 − t1) is the time required for the gate drive circuit to discharge the IGBT gate-
to-emitter capacitance to the threshold value which causes the effective MOSFET in Fig. 4.66b
to be in the off state. This time can be minimized by use of a high-current gate drive circuit
which discharges the gate capacitance quickly. However, switching off the effective MOSFET
does not completely interrupt the IGBT current iA(t): current i2(t) continues to flow through the
effective PNP bipolar junction transistor of Fig. 4.66b as long as minority carriers continue to

Fig. 4.69 IGBT turn-off tran-
sition waveforms for the circuit
of Fig. 4.68
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exist within its base region. During the interval t2 < t < t3, the current is proportional to this
stored minority charge, and the current tail interval length (t3 − t2) is equal to the time required
for this remaining stored minority charge to recombine.

The energy Wo f f lost during the turn-off transition of the IGBT is again the area under
the instantaneous power waveform, as illustrated in Fig. 4.69. The switching loss can again be
evaluated using Eq. (4.6). Switching loss typically limits the maximum switching frequencies
of conventional PWM converters employing IGBTs to roughly 1 to 30 kHz.

The added p–n− diode junction of the IGBT is not normally designed to block significant
voltage. Hence, the IGBT has negligible reverse voltage-blocking capability.

Since the IGBT is a four-layer device, there is the possibility of SCR-type latchup, in which
the IGBT cannot be turned off by gate voltage control. Recent devices are not susceptible to this
problem. These devices are quite robust, hot spot and current crowding problems are nonexis-
tent, and the need for external snubber circuits is minimal.

The on-state forward voltage drop of the IGBT can be modeled by a forward-biased diode
junction, in series with an effective on-resistance. The temperature coefficient of the IGBT for-
ward voltage drop is complicated by the fact that the diode junction voltage has a negative tem-
perature coefficient, while the on-resistance has a positive temperature coefficient. Fortunately,
near rated current the on-resistance dominates, leading to an overall positive temperature coeffi-
cient. In consequence, IGBTs can be easily connected in parallel, with a modest current derating.
Large modules are commercially available, containing multiple parallel-connected chips.

Characteristics of several commercially available single-chip IGBTs and multiple-chip
IGBT modules are listed in Table 4.6.

4.5.3 Thyristors (SCR, GTO)

Of all conventional semiconductor power devices, the silicon-controlled rectifier (SCR) is the
oldest, has the lowest cost per rated kVA, and is capable of controlling the greatest amount
of power. Devices having voltage ratings of 5000 to 7000 V and current ratings of several
thousand amperes are available. In utility dc transmission line applications, series-connected
light-triggered SCRs are employed in inverters and rectifiers that interface the ac utility system

Table 4.6 Characteristics of several commercial IGBTs

Part number Rated maximum
voltage

Rated average
current

VF (typical) t f (typical)

Single-chip devices
HGTP12N60A4 600 V 23 A 2.0 V 70 ns
HGTG32N60E2 600 V 32 A 2.4 V 0.62 μs
HGTG30N120D2 1200 V 30 A 3.2 V 0.58 μs

Multiple-chip modules
CM400HA-12E 600 V 400 A 2.7 V 0.3 μs
CM300HA-24E 1200 V 300 A 2.7 V 0.3 μs
CM800HA-34H 1700 V 800 A 3.3 V 0.6 μs

High voltage modules
CM 800HB-50H 2500 V 800 A 3.15 V 1.0 μs
CM 600HB-90H 4500 V 900 A 3.3 V 1.2 μs
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Fig. 4.70 The SCR: (a)
schematic symbol, (b) equiv-
alent circuit
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to dc transmission lines which carry roughly 1 kA and 1 MV. A single large SCR fills a silicon
wafer that is several inches in diameter, and is mounted in a hockey-puck-style case.

The schematic symbol of the SCR is illustrated in Fig. 4.70a, and an equivalent circuit con-
taining NPN and PNP BJT devices is illustrated in Fig. 4.70b. A cross-section of the silicon chip
is illustrated in Fig. 4.71. Effective transistor Q1 is composed of the n, p, and n− regions, while
effective transistor Q2 is composed of the p, n−, and p regions as illustrated.

The device is capable of blocking both positive and negative anode-to-cathode voltages.
Depending on the polarity of the applied voltage, one of the p–n− junctions is reverse-biased. In
either case, the depletion region extends into the lightly doped n− region. As with other devices,
the desired voltage breakdown rating is obtained by proper design of the n− region thickness
and doping concentration.

The SCR can enter the on state when the applied anode-to-cathode voltage vAK is positive.
Positive gate current iG then causes effective transistor Q1 to turn on; this in turn supplies base
current to effective transistor Q2, and causes it to turn on as well. The effective connections
of the base and collector regions of transistors Q1 and Q2 constitute a positive feedback loop.
Provided that the product of the current gains of the two transistors is greater than one, then
the currents of the transistors will increase regeneratively. In the on state, the anode current is
limited by the external circuit, and both effective transistors operate fully saturated. Minority
carriers are injected into all four regions, and the resulting conductivity modulation leads to
very low forward voltage drop. In the on state, the SCR can be modeled as a forward-biased
diode junction in series with a low-value on-resistance. Regardless of the gate current, the SCR
is latched in the on state: it cannot be turned off except by application of negative anode current
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Fig. 4.72 Static iA–vAK characteristics of
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or negative anode-to-cathode voltage. In phase-controlled converters, the SCR turns off at the
zero crossing of the converter ac input or output waveform. In forced commutation converters,
external commutation circuits force the controlled turn-off of the SCR, by reversing either the
anode current or the anode-to-cathode voltage.

Static iA − vAK characteristics of the conventional SCR are illustrated in Fig. 4.72. It can
be seen that the SCR is a voltage-bidirectional two-quadrant switch. The turn-on transition is
controlled actively via the gate current. The turn-off transition is passive.

During the turn-off transition, the rate at which forward anode-to-cathode voltage is reap-
plied must be limited, to avoid retriggering the SCR. The turn-off time tq is the time required
for minority stored charge to be actively removed via negative anode current, and for recombi-
nation of any remaining minority charge. During the turn-off transition, negative anode current
actively removes stored minority charge, with waveforms similar to diode turn-off transition
waveforms of Fig. 4.31. Thus, after the first zero crossing of the anode current, it is necessary
to wait for time tq before reapplying positive anode-to-cathode voltage. It is then necessary to
limit the rate at which the anode-to-cathode voltage increases, to avoid retriggering the device.
Inverter-grade SCRs are optimized for faster switching times, and exhibit smaller values of tq.

Conventional SCR wafers have large feature size, with coarse or nonexistent interdigitation
of the gate and cathode contacts. The parasitic elements arising from this large feature size lead
to several limitations. During the turn-on transition, the rate of increase of the anode current
must be limited to a safe value. Otherwise, cathode current focusing can occur, which leads to
formation of hot spots and device failure.

The coarse feature size of the gate and cathode structure is also what prevents the conven-
tional SCR from being turned off by active gate control. One might apply a negative gate current,
in an attempt to actively remove all of the minority stored charge and to reverse-bias the p–n
gate-cathode junction. The reason that this attempt fails is illustrated in Fig. 4.73. The large neg-
ative gate current flows laterally through the adjoining the p region, inducing a voltage drop as
shown. This causes the gate-cathode junction voltage to be smaller near the gate contact, and
relatively larger away from the gate contact. The negative gate current is able to reverse-bias
only the portion of the gate-cathode junction in the vicinity of the gate contact; the remainder
of the gate-cathode junction continues to be forward-biased, and cathode current continues to
flow. In effect, the gate contact is able to influence only the nearby portions of the cathode.

The gate turn off thyristor, or GTO, is a more recent power device having small feature
size. The gate and cathode contacts highly interdigitated, such that the entire gate-cathode p–n



122 4 Switch Realization

A

n

p

GK

nn

p

K

++

G

iA

Fig. 4.73 Negative gate current is unable to completely reverse-bias the gate-cathode junction. The anode
current focuses away from the gate contact

junction can be reverse-biased via negative gate current during the turn-off transition. Like the
SCR, a single large GTO can fill an entire silicon wafer. Maximum voltage and current ratings
of commercial GTOs are lower than those of SCRs.

The turn-off gain of a GTO is the ratio of on-state current to the negative gate current magni-
tude required to switch the device off. Typical values of this gain are 2 to 5, meaning that several
hundred amperes of negative gate current may be required to turn off a GTO conducting 1000 A.
Also of interest is the maximum controllable on-state current. The GTO is able to conduct peak
currents significantly greater than the rated average current; however, it may not be possible to
switch the device off under gate control while these high peak currents are present.

4.6 Additional Sources of Switching Loss

Switching loss caused by transistor switching times with a clamped inductive load is introduced
in Sect. 4.2.2. Current tailing in IGBTs leads to this type of switching loss, as discussed in
Sect. 4.5.2. Diode reverse recovery also induces switching loss as modeled in Sect. 4.3.3.

Several other sources of switching loss are discussed in this section. Semiconductor output
capacitances store energy that is dissipated in the transistor at the transistor turn-on transition.
Inductances that effectively are in series with the transistor store energy when the transistor
conducts; when the transistor turns off and interrupts the inductor current, the stored energy
is dissipated in the transistor. Diode reverse recovery can also induce switching loss in other
circuit elements. These additional mechanisms of switching loss are discussed in this section.

4.6.1 Device Capacitances, and Leakage, Package, and Stray Inductances

Reactive elements can also lead to switching loss. Capacitances that are effectively in parallel
with switching elements are shorted out when the switch turns on, and any energy stored in
the capacitance is lost. The capacitances are charged without energy loss when the switching
elements turn off, and the transistor turn-off loss Wo f f computed in Eq. (4.5) may be reduced.
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Fig. 4.74 The energy stored in the
semiconductor output capacitances is
lost during the transistor turn-on tran-
sition +

+
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Likewise, inductances that are effectively in series with a switching element lose their stored
energy when the switch turns off. Hence, series inductances lead to additional switching loss at
turn-off, but can reduce the transistor turn-on loss.

The stored energies of the reactive elements can be summed to find the total energy loss
per switching period due to these mechanisms. For linear capacitors and inductors, the stored
energy is

WC =
∑

capacitive
elements

1
2CiV

2
i (4.41)

WL =
∑

inductive
elements

1
2 LjI

2
j

A common source of this type of switching loss is the output capacitances of the semiconductor
switching devices. The depletion layers of reverse-biased semiconductor devices exhibit capac-
itance which stores energy. When the transistor turns on, this stored energy is dissipated by
the transistor. For example, in the buck converter of Fig. 4.74, the MOSFET exhibits drain-to-
source capacitance Cds, and the reverse-biased diode exhibits junction capacitance C j. During
the switching transitions these two capacitances are effectively in parallel, since the dc source
Vg is effectively a short-circuit at high frequency. To the extent that the capacitances are linear,
the energy lost when the MOSFET turns on is

WC =
1
2

(
Cds +C j

)
V2

g (4.42)

Typically, this type of switching loss is significant at voltage levels above 100 V. The MOS-
FET gate drive circuit, which must charge and discharge the MOSFET gate capacitances, also
exhibits this type of loss.

As noted in Sect. 4.4.1, the incremental drain-to-source capacitance Cds of the power MOS-
FET is a strong function of the drain-to-source voltage vds. Cds(vds) follows an approximate
inverse-square root dependence of vds, as given by Eq. (4.39). The energy stored in Cds at
vds = VDS is

WCds =

∫
vdsiCdt =

∫ VDS

0
vdsCds(vds)dvds (4.43)

where iC = Cds(vds)dvds/dt is the current in Cds. Substitution of Eq. (4.39) into (4.43) yields

WCds =

∫ vDS

0
C′0(vds)

√
vds dvds =

2
3Cds(VDS)V2

DS (4.44)
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This energy is lost each time the MOSFET switches on. From the standpoint of switching loss,
the drain-to-source capacitance is equivalent to a linear capacitance having the value 4

3Cds(VDS).
The Schottky diode is essentially a majority-carrier device, which does not exhibit a reverse-

recovery transient such as in Fig. 4.31. Reverse-biased Schottky diodes do exhibit significant
junction capacitance, however, which can be modeled with a parallel capacitor C j as in Fig. 4.74,
and which leads to energy loss at the transistor turn-on transition.

Common sources of series inductance are transformer leakage inductances in isolated con-
verters (discussed in Chap. 6), as well as the inductances of interconnections and of semicon-
ductor device packages. In addition to generating switching loss, these elements can lead to
excessive peak voltage stress during the transistor turn-off transition. Interconnection and pack-
age inductances can lead to significant switching loss in high-current applications, and leakage
inductance is an important source of switching loss in many transformer-isolated converters.

4.6.2 Inducing Switching Loss in Other Elements

Diode stored minority charge can induce switching loss in the (nonideal) converter reactive
elements. As an example, consider the circuit of Fig. 4.75, containing an ideal voltage source
v j(t), an inductor L, a capacitor C (which may represent the diode junction capacitance, or
the junction capacitance in parallel with an external capacitor), and a silicon diode. The diode
switching processes of many converter and rectifier circuits can be modeled by a circuit of
this form. The voltage source produces the rectangular waveform vi(t) illustrated in Fig. 4.76.
This voltage is initially positive, causing the diode to become forward-biased and the inductor
current iL(t) to increase linearly with slope V1/L. Since the current is increasing, the stored
minority charge inside the diode also increases. At time t = t1, the source voltage vi(t) becomes
negative, and the inductor current decreases with slope diL/dt = −V2/L. The diode stored
charge also decreases, but at a slower rate that depends not only on iL but also on the minority-
carrier recombination lifetime of the silicon material in the diode. Hence, at time t = t2, when
iL(t) reaches zero, some stored minority charge remains in the diode. So the diode continues
to be forward-biased, and the inductor current continues to decrease with the same slope. The
negative current for t > t2 constitutes a reverse diode current, which actively removes diode
stored charge. At some time later, t = t3, the diode stored charge in the vicinity of the diode
junction becomes zero, and the diode junction becomes reverse-biased. The inductor current
is now negative, and must flow through the capacitor. The inductor and capacitor then form a
series resonant circuit, which rings with decaying sinusoidal waveforms as shown. This ringing
is eventually damped out by the parasitic loss elements of the circuit, such as the inductor
winding resistance, inductor core loss, and capacitor equivalent series resistance.

The diode recovered charge induces loss in this circuit. During the interval t2 < t < t3, the
minority stored charge Qr recovered from the diode is

Fig. 4.75 A circuit in which the diode
stored charge induces ringing, and ulti-
mately switching loss, in (nonideal) reac-
tive elements

+

LiL(t)

vL(t)
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Silicon
diodevi(t) CvB(t)

iB(t)
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Fig. 4.76 Waveforms of the circuit of
Fig. 4.75
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This charge is directly related to the energy stored in the inductor during this interval. The
energy WL stored in the inductor is the integral of the power flowing into the inductor:

WL =

∫ t3

t2

vL(t)iL(t)dt (4.46)

During this interval, the applied inductor voltage is

vL(t) = L
diL(t)

dt
= −V2 (4.47)

Substitution of Eq. (4.47) into Eq. (4.46) leads to

WL =

∫ t3

t2

L
diL(t)

dt
iL(t)dt =

∫ t3

t2

(−V2)iL(t)dt (4.48)

Evaluation of the integral on the left side yields the stored inductor energy at t = t3, or Li2L(t3)/2.
The right-side integral is evaluated by noting that V2 is constant and by substitution of Eq. (4.45),
yielding V2Qr. Hence, the energy stored in the inductor at t = t3 is

WL =
1
2 Li2L(t3) = V2Qr (4.49)

or, the recovered charge multiplied by the source voltage. For t > t3, the ringing of the resonant
circuit formed by the inductor and capacitor causes this energy to be circulated back and forth
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between the inductor and capacitor. If parasitic loss elements in the circuit cause the ringing
amplitude to eventually decay to zero, then the energy becomes lost as heat in the parasitic
elements.

So diode stored minority charge can lead to loss in circuits that do not contain an active
switching element. Also, ringing waveforms that decay before the end of the switching period
indicate the presence of switching loss.

4.6.3 Efficiency vs. Switching Frequency

Suppose next that we add up all of the energies lost due to switching, as discussed above:

Wtot = Won +Woff +WD +WC +WL + . . . (4.50)

This is the energy lost in the switching transitions of one switching period. To obtain the average
switching power loss, we must multiply by the switching frequency:

Psw = Wtot fsw (4.51)

Other losses in the converter include the conduction losses Pcond, modeled and solved as in
Chap. 3, and other frequency-independent fixed losses Pf ixed, such as the power required to
operate the control circuit. The total loss is therefore

Ploss = Pcond + Pf ixed +Wtot fsw (4.52)

which increases linearly with frequency. At the critical frequency

fcrit =
Pcond + Pf ixed

Wtot
(4.53)

the switching losses are equal to the other converter losses. Below this critical frequency, the to-
tal loss is dominated by the conduction and fixed loss, and hence the total loss and converter effi-
ciency are not strong functions of switching frequency. Above the critical frequency, the switch-
ing loss dominates the total loss, and the converter efficiency decreases rapidly with increasing
switching frequency. Typical dependence of the full-load converter efficiency on switching fre-
quency is plotted in Fig. 4.77, for an arbitrary choice of parameter values. The critical frequency
fcrit can be taken as a rough upper limit on the switching frequency of a practical converter.

4.7 Summary of Key Points

1. How an SPST ideal switch can be realized using semiconductor devices depends on the
polarity of the voltage that the devices must block in the off state, and on the polarity of the
current which the devices must conduct in the on state.

2. Single-quadrant SPST switches can be realized using a single transistor or a single diode,
depending on the relative polarities of the off-state voltage and on-state current.

3. Two-quadrant SPST switches can be realized using a transistor and diode, connected in se-
ries (bidirectional-voltage) or in antiparallel (bidirectional-current). Several four-quadrant
schemes are also listed here.
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Fig. 4.77 Efficiency vs. switching frequency, based on Eq. (4.52), using arbitrary values for the choice
of loss and load power. Switching loss causes the efficiency to decrease rapidly at high frequency

4. A “synchronous rectifier” is a MOSFET connected to conduct reverse current, with gate
drive control as necessary. This device can be used where a diode would otherwise be re-
quired. If a MOSFET with sufficiently low Ron is used, reduced conduction loss is obtained.

5. Majority-carrier devices, including the MOSFET and Schottky diode, exhibit very fast
switching times, controlled essentially by the charging of the device capacitances. How-
ever, the forward voltage drops of these devices increases quickly with increasing break-
down voltage.

6. Minority-carrier devices, including the BJT, IGBT, and thyristor family, can exhibit high
breakdown voltages with relatively low forward voltage drop. However, the switching times
of these devices are longer, and are controlled by the times needed to insert or remove stored
minority charge.

7. Wide-bandgap semiconductor devices can significantly improve the tradeoff between break-
down voltage, on-resistance, and switching speed. Silicon carbide MOSFETs, SiC Schottky
diodes, and GaN HEMTs have realized performance well beyond that achieved with silicon.

8. Energy is lost during switching transitions, owing to a variety of mechanisms. The result-
ing average power loss, or switching loss, is equal to this energy loss multiplied by the
switching frequency. Switching loss imposes an upper limit on the switching frequencies
of practical converters.

9. The diode and inductor present a “clamped inductive load” to the transistor. When a tran-
sistor drives such a load, it experiences high instantaneous power loss during the switching
transitions. An example where this leads to significant switching loss is the IGBT and the
“current tail” observed during its turn-off transition.
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10. The familiar exponential i–v characteristic of the p–n diode is an equilibrium relationship
that does not apply during switching transitions. To turn off the diode, its internal stored
minority charge must be removed. During the reverse-recovery process, significant negative
current can flow through the diode that induces switching loss in the transistor.

11. The equivalent circuit models of the previous chapter can be extended to model the switch-
ing loss caused by diode reverse recovery. Switching waveforms including the switching
transitions are averaged, to find expressions for their dc components. These averaged ex-
pressions are employed in the construction of equivalent circuits.

12. Other significant sources of switching loss include diode stored charge and energy stored in
certain parasitic capacitances and inductances. Parasitic ringing also indicates the presence
of switching loss.

Problems

In Problems 4.1 to 4.6 and 4.10, the input voltage Vg is dc and positive with the polarity shown.
Specify how to implement the switches using a minimal number of diodes and transistors, such
that the converter operates over the entire range of duty cycles 0 ≤ D ≤ 1. The switch states
should vary as shown in Fig. 4.78. You may assume that the inductor current ripples and capac-
itor voltage ripples are small.

Switch
position

t0 DTs Ts

1

2

Fig. 4.78 Switch control method for Problems 4.1 to 4.6

For each problem, do the following:

(a) Realize the switches using SPST ideal switches, and explicitly define the voltage and
current of each switch.

(b) Express the on-state current and off-state voltage of each SPST switch in terms of the
converter inductor currents, capacitor voltages, and/or input source voltage.

(c) Solve the converter to determine the inductor currents and capacitor voltages, as in
Chap. 2.

(d) Determine the polarities of the switch on-state currents and off-state voltages. Do the
polarities vary with duty cycle?

(e) State how each switch can be realized using transistors and/or diodes, and whether the real-
ization requires single-quadrant, current-bidirectional two-quadrant, voltage-bidirectional
two-quadrant, or four-quadrant switches.
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4.1 Realize the switches in the converter of Fig. 4.79, following steps (a) to (e) described
above.

+

12

1 2

Vg

Fig. 4.79 Converter for Problem 4.1

4.2 Realize the switches in the converter of Fig. 4.80, following steps (a) to (e) described
above.

+
1

2

2

1

Vg

Fig. 4.80 Converter for Problem 4.2

4.3 Realize the switches in the converter of Fig. 4.81, following steps (a) to (e) described
above.

+

1

2Vg

Fig. 4.81 Converter for Problem 4.3

4.4 Realize the switches in the converter of Fig. 4.82, following steps (a) to (e) described
above.
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+ 1 2

12

Vg

Fig. 4.82 Converter for Problem 4.4

4.5 Realize the switches in the converter of Fig. 4.83, following steps (a) to (e) described
above.

+

Vg

1 2

2 1

Fig. 4.83 Converter for Problem 4.5

4.6 Realize the switches in the converter of Fig. 4.84, following steps (a) to (e) described
above.
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2

Fig. 4.84 Converter for Problem 4.6
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4.7 The buck–boost converter of Fig. 4.85 is implemented with a MOSFET and a p–n diode.
The MOSFET can be modeled as ideal, but the diode exhibits a substantial reverse-
recovery process, with reverse recovery time tr and recovered charge Qr. In addition,
the inductor has winding resistance RL. The converter operates in continuous conduction
mode.

+
–

L
Vg C R

+ –

RL

Fig. 4.85 Converter for Problem 4.7

Derive an equivalent circuit that models the dc components of the converter waveforms
and that accounts for the loss mechanisms described above.

4.8 Solve the equivalent circuit model derived in Problem 4.7, to find closed-form expressions
for the output voltage and inductor current.

4.9 A certain boost converter is implemented with a MOSFET and a p–n diode. The MOSFET
can be modeled as ideal, but the diode exhibits a substantial reverse-recovery process, with
reverse recovery time tr and recovered charge Qr. In addition, the inductor has winding
resistance RL.

(a) Derive an equivalent circuit that models the dc components of the converter wave-
forms and that accounts for the loss elements described above.

(b) Solve your model to find an expression for the output voltage.
(c) Plot the output voltage vs. duty cycle over the range 0 ≤ D < 1, for the following

values: RL = 0.25Ω, fs = 150 kHz, Qr = 5 μcoul, tr = 100 nsec, R = 60Ω, Vg =

24 V.

4.10 It is desired to convert 60 Hz 120 VAC to 240 VAC, to power a 1 kW AC load. Although
a conventional 60 Hz transformer could be used in this application, such a transformer is
large and heave. Instead, it is decided to use a boost converter switching at 100 kHz, as
illustrated in Fig. 4.86. Potentially, this converter is small and lightweight. It operates at a
constant duty cycle of approximately 0.5, so that v(t) = 2vg(t). The elements L and C are
chosen to filter the switching harmonics and have small switching ripples; however, they
have negligible effect on the 60 Hz components of the waveforms. The load is a linear
impedance Z. Realize the switches in the converter of Fig. 4.86, following steps (a) to (e)
listed above Problem 4.1.

4.11 The converter illustrated in Fig. 4.87 is sometimes employed in low-power applications
requiring a wide range of conversion ratios. It is desired that all elements operate in the
continuous conduction mode (CCM) over the range 0 ≤ D < 1. This mode is defined
as follows: each switching period contains two subintervals numbered 1 and 2; in the
schematic illustrated in Fig. 4.87, switches labeled “1” conduct during subinterval 1 for
time DTs, and switches labeled “2” conduct during subinterval 2 for time (1 − D)Ts.



132 4 Switch Realization
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Fig. 4.86 Converter for Problem 4.10
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Fig. 4.87 Double buck–boost converter of Problem 4.11

(a) Solve the converter in steady state, to find the dc components of both capacitor volt-
ages and both inductor currents. Your expressions should be functions of Vg, D, and
R only. Clearly label the polarity or direction of each of these quantities on your
schematic.

(b) Show how to realize the switches using BJT’s and diodes, so that the converter oper-
ates in CCM over the range 0 ≤ D < 1. Document all steps in your derivation.

(c) How does your switch realization change if the duty cycle is restricted to the range
0 ≤ D < 0.5? Sketch the circuit and switch realization for this case.

4.12 An IGBT and a silicon diode operate in a buck converter, with the IGBT waveforms illus-
trated in Fig. 4.88. The converter operates with input voltage Vg = 400 V, output voltage
V = 200 V, and load current I = 10 A.
(a) Estimate the total energy lost during the switching transitions. You may graphically

estimate the waveforms of Fig. 4.88.
(b) The forward voltage drop of the IGBT is 2.5 V, and the diode has forward voltage drop

1.5 V. All other sources of conduction loss and fixed loss can be neglected. Estimate
the semiconductor conduction loss.

(c) Sketch the converter efficiency over the range of switching frequencies 1 kHz ≤ fs ≤
100 kHz, and label numerical values.

4.13 Two MOSFETs are employed as current-bidirectional two-quadrant switches in a bidirec-
tional battery charger/discharger based on the dc–dc buck converter, similar to Fig. 4.15.
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t, μs

vCE(t)

iC(t)10 A

20 A

0 A
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40 A400 V
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iCvCE
vCE(t)

0 1 2

iC(t)

Fig. 4.88 IGBT voltage and current waveforms, Problem 4.12

This converter interfaces a 16 V battery to a 28 V main power bus. The maximum bat-
tery current is 40 A. The MOSFETs have on-resistances of 35 mΩ. Their body diodes
have forward voltage drops of 1.0 V, and exhibit recovered charge Qr of 25 μC and re-
verse recovery times tr of 200 ns in the given circuit. You may assume that all diodes in
this problem have “snappy” reverse recovery characteristics, and also assume that diode
stored charge is the dominant cause of switching loss in this circuit. You may neglect all
losses other than the semiconductor conduction losses and the switching loss induced by
diode stored charge.
The current-bidirectional two-quadrant switches are realized as in Fig. 4.10a, utilizing the
MOSFET body diodes.
(a) Estimate the switching energy loss, conduction loss, and converter efficiency, when

the battery is being charged at the maximum rate. The switching frequency is 100 kHz.
External diodes are now added as illustrated in Fig. 4.10b. These diodes have forward
voltage drops of 1.0 V, and exhibit recovered charge Qr of 5 μC and reverse recovery
times tr of 40 ns in the given circuit.
(b) Repeat the analysis of Part (a), for this case.
(c) Over what range of switching frequencies does the addition of the external diodes

improve the converter efficiency?
4.14 A switching converter operates with a switching frequency of 100 kHz. The converter

waveforms exhibit damped sinusoidal ringing, initiated by the transistor turn-off transi-
tion, which decays slowly but eventually reaches zero before the end of the switching
period. This ringing occurs in a series resonant circuit formed by parasitic inductances
and capacitances in the circuit. The frequency of the ringing is 5 MHz. During the first
period of sinusoidal ringing, the ac inductor current reaches a peak magnitude of 0.5 A,
and the ac capacitor voltage reaches a peak magnitude of 200 V. Determine the following
quantities:
(a) the value of the total parasitic inductance,
(b) the value of the total parasitic capacitance,
(c) the energy lost per switching period, associated with this ringing, and
(d) the switching loss associated with this ringing.
(e) Derive a general expression for the switching loss, as a function of the switching

frequency, ringing frequency, and the ringing voltage and current peak magnitudes
during the first period of ringing.
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The Discontinuous Conduction Mode

When the ideal switches of a dc–dc converter are implemented using current-unidirectional
and/or voltage-unidirectional semiconductor switches, one or more new modes of operation
known as discontinuous conduction modes (DCM) can occur. The discontinuous conduction
mode arises when the switching ripple in an inductor current or capacitor voltage is large enough
to cause the polarity of the applied switch current or voltage to reverse, such that the current-
or voltage-unidirectional assumptions made in realizing the switch with semiconductor devices
are violated. The DCM is commonly observed in dc–dc converters and rectifiers, and can also
sometimes occur in inverters or in other converters containing two-quadrant switches.

The discontinuous conduction mode typically occurs with large inductor current ripple in a
converter operating at light load and containing current-unidirectional switches. Since it is usu-
ally required that converters operate with their loads removed, DCM is frequently encountered.
Indeed, some converters are purposely designed to operate in DCM for all loads.

The properties of converters change radically in the discontinuous conduction mode. The
conversion ratio M becomes load-dependent, and the output impedance is increased. Control of
the output may be lost when the load is removed. We will see in a later chapter that the converter
dynamics are also significantly altered.

In this chapter, the origins of the discontinuous conduction mode are explained, and the
mode boundary is derived. Techniques for solution of the converter waveforms and output volt-
age are also described. The principles of inductor volt-second balance and capacitor charge
balance must always be true in steady state, regardless of the operating mode. However, appli-
cation of the small- ripple approximation requires some care, since the inductor current ripple
(or one of the inductor current or capacitor voltage ripples) is not small.

Buck and boost converters are solved as examples. Characteristics of the basic buck, boost,
and buck–boost converters are summarized in tabular form.

5.1 Origin of the Discontinuous Conduction Mode, and Mode Boundary

Let us consider how the inductor and switch current waveforms change as the load power is
reduced. Let us use the buck converter (Fig. 5.1) as a simple example. The inductor current
iL(t) and diode current iD(t) waveforms are sketched in Fig. 5.2 for the continuous conduction
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Fig. 5.1 Buck converter
example +

Q1
L

C R

+

VD1Vg

iL(t)

iD(t)

mode. As described in Chap. 2, the inductor current waveform contains a dc component I,
plus switching ripple of peak amplitude ΔiL. During the second subinterval, the diode current
is identical to the inductor current. The minimum diode current during the second subinterval
is equal to (I − ΔiL); since the diode is a single-quadrant switch, operation in the continuous
conduction mode requires that this current remain positive. As shown in Chap. 2, the inductor
current dc component I is equal to the load current:

I =
V
R

(5.1)

(a) iL(t)

t

iL
I

0 DTs Ts

Conducting
devices: Q1 D1 Q1

(b) iD(t)

t0 DTs Ts

iL
I

Fig. 5.2 Buck converter waveforms in the continuous conduction mode: (a) inductor current iL(t),
(b) diode current iD(t)

since no dc current flows through capacitor C. It can be seen that I depends on the load resistance
R. The switching ripple peak amplitude is
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(a) iL(t)

t0 DTs Ts

Conducting
devices: Q1 D1 Q1

iL
I

(b) iD(t)

t0 DTs Ts

I
iL

Fig. 5.3 Buck converter waveforms at the boundary between the continuous and discontinuous conduc-
tion modes: (a) inductor current iL(t), (b) diode current iD(t)

ΔiL =
(Vg − V)

2L
DTs =

VgDD′Ts

2L
(5.2)

The ripple magnitude depends on the applied voltage (Vg − V), on the inductance L, and on the
transistor conduction time DTs. But it does not depend on the load resistance R. The inductor
current ripple magnitude varies with the applied voltages rather than the applied currents.

Suppose now that the load resistance R is increased, so that the dc load current is decreased.
The dc component of inductor current I will then decrease, but the ripple magnitude ΔiL will
remain unchanged. If we continue to increase R, eventually the point is reached where I = ΔiL,
illustrated in Fig. 5.3. It can be seen that the inductor current iL(t) and the diode current iD(t) are
both zero at the end of the switching period. Yet the load current is positive and nonzero.

What happens if we continue to increase the load resistance R? The diode current cannot
be negative; therefore, the diode must become reverse-biased before the end of the switching
period. As illustrated in Fig. 5.4, there are now three subintervals during each switching period
Ts. During the first subinterval of length D1Ts the transistor conducts, and the diode conducts
during the second subinterval of length D2Ts. At the end of the second subinterval the diode
current reaches zero, and for the remainder of the switching period neither the transistor nor the
diode conduct. The converter operates in the discontinuous conduction mode.

Figure 5.3 suggests a way to find the boundary between the continuous and discontinuous
conduction modes. It can be seen that, for this buck converter example, the diode current is
positive over the entire interval DTs < t < Ts provided that I > ΔiL. Hence, the conditions for
operation in the continuous and discontinuous conduction modes are
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(a) iL(t)

t0 DTs Ts

Conducting
devices: Q1 D1

Q1

I

X
D1Ts D2Ts D3Ts

(b) iD(t)

t0 DTs Ts
D2Ts

Fig. 5.4 Buck converter waveforms in the discontinuous conduction mode: (a) inductor current iL(t), (b)
diode current iD(t)

I > ΔiL for CCM (5.3)

I < ΔiL for DCM

where I and ΔiL are found assuming that the converter operates in the continuous conduction
mode. Insertion of Eqs. (5.1) and (5.2) into Eq. (5.3) yields the following condition for operation
in the discontinuous conduction mode:

DVg

R
<

DD′TsVg

2L
(5.4)

Simplification leads to
2L
RTs
< D′ (5.5)

This can also be expressed
K < Kcrit(D) for DCM (5.6)

where

K =
2L
RTs

and Kcrit(D) = D′
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Fig. 5.5 Buck converter Kcrit(D) vs. D. The
converter operates in CCM when K > Kcrit,
and in DCM when K < Kcrit K

crit(D) = 1  D

0 D1
0

1

2

K = 2L/RTs

K < Kcrit:
DCM

K > Kcrit:
CCM

The dimensionless parameter K is a measure of the tendency of a converter to operate in the
discontinuous conduction mode. Large values of K lead to continuous mode operation, while
small values lead to the discontinuous mode for some values of duty cycle. The critical value of
K at the boundary between modes, Kcrit(D), is a function of duty cycle, and is equal to D′ for
the buck converter.

The critical value Kcrit(D) is plotted vs. duty cycle D in Fig. 5.5. An arbitrary choice of K
is also illustrated. For the values shown, it can be seen that the converter operates in DCM at
low duty cycle, and in CCM at high duty cycle. Figure 5.6 illustrates what happens with heavier
loading. The load resistance R is reduced in value, such that K is larger. If K is greater than one,
then the converter operates in the continuous conduction mode for all duty cycles.

It is natural to express the mode boundary in terms of the load resistance R, rather than the
dimensionless parameter K. Equation (5.6) can be rearranged to directly expose the dependence
of the mode boundary on the load resistance:

R < Rcrit(D) for CCM (5.7)

R > Rcrit(D) for DCM

where

Rcrit(D) =
2L

D′Ts

So the converter enters the discontinuous conduction mode when the load resistance R exceeds
the critical value Rcrit. This critical value depends on the inductance, the switching period, and
the duty cycle. Note that, since D′ ≤ 1, the minimum value of Rcrit is 2L/Ts. Therefore, if
R < 2L/Ts, then the converter will operate in the continuous conduction mode for all duty
cycles.

Fig. 5.6 Comparison of K with Kcrit(D), for a
larger value of K. Since K > 1, the converter
operates in CCM for all D K

crit(D) = 1  D

0 D1
0

1

2
K = 2L/RTs

K > Kcrit:
CCM
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These results can be applied to loads that are not pure linear resistors. An effective load
resistance R is defined as the ratio of the dc output voltage to the dc load current: R = V/I. This
effective load resistance is then used in the above equations.

Table 5.1 CCM-DCM mode boundaries for the buck, boost, and buck–boost converters

Converter Kcrit(D) max
0≤D≤1

(Kcrit) Rcrit(D) min
0≤D≤1

(Rcrit)

Buck (1 − D) 1
2L

(1 − D)Ts
2

L
Ts

Boost D(1 − D)2 4
27

2L
D(1 − D)2Ts

27
2

L
Ts

Buck–boost (1 − D)2 1
2L

(1 − D)2Ts
2

L
Ts

A similar mode boundary analysis can be performed for other converters. The boost con-
verter is analyzed in Sect. 5.3, while analysis of the buck–boost converter is left as a homework
problem. The results are listed in Table 5.1, for the three basic dc–dc converters. In each case,
the dimensionless parameter K is defined as K = 2L/RTs, and the mode boundary is given by

K > Kcrit(D) or R < Rcrit(D) for CCM (5.8)

K < Kcrit(D) or R > Rcrit(D) for DCM

5.2 Analysis of the Conversion Ratio M(D, K)

With a few modifications, the same techniques and approximations developed in Chap. 2 for the
steady-state analysis of the continuous conduction mode may be applied to the discontinuous
conduction mode.

(a) Inductor volt-second balance. The dc component of the voltage applied to an inductor must
be zero:

〈vL〉 =
1
Ts

∫ Ts

0
vL(t)dt = 0 (5.9)

(b) Capacitor charge balance. The dc component of current applied to a capacitor must be zero:

〈iC〉 =
1
Ts

∫ Ts

0
iC(t)dt = 0 (5.10)

These principles must be true for any circuit that operates in steady state, regardless of the
operating mode.

(c) The linear-ripple approximation. Care must be used when employing the linear-ripple ap-
proximation in the discontinuous conduction mode.
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(i) Output capacitor voltage ripple. Regardless of the operating mode, it is required that
the output voltage ripple be small. Hence, for a well-designed converter operating in
the discontinuous conduction mode, the peak output voltage ripple Δv should be much
smaller in magnitude than the output voltage dc component V . So the linear-ripple
approximation applies to the output voltage waveform:

v(t) ≈ V (5.11)

(ii) Inductor current ripple. By definition, the inductor current ripple is not small in the
discontinuous conduction mode. Indeed, Eq. (5.3) states that the inductor current ripple
ΔiL is greater in magnitude than the dc component I. So neglecting the inductor current
ripple leads to inaccurate results. In other converters, several inductor currents, or a
capacitor voltage, may contain large switching ripple which should not be neglected.

The equations necessary for solution of the voltage conversion ratio can be obtained by invoking
volt-second balance for each inductor voltage, and charge balance for each capacitor current, in
the network. The switching ripple is ignored in the output capacitor voltage, but the inductor
current switching ripple must be accounted for in this buck converter example.

Let us analyze the conversion ratio M = V/Vg of the buck converter of Eq. (5.1). When the
transistor conducts, for 0 < t < D1Ts, the converter circuit reduces to the network of Fig. 5.7a.
The inductor voltage and capacitor current are given by

vL(t) = Vg − v(t) (5.12)

iC(t) = iL(t) − v(t)
R

By making the linear-ripple approximation, to ignore the output capacitor voltage ripple, one
obtains

vL(t) ≈ Vg − V (5.13)

iC(t) ≈ iL(t) − V
R

Note that the inductor current ripple has not been ignored.
The diode conducts during subinterval 2, D1Ts < t < (D1 + D2)Ts. The circuit then reduces

to Fig. 5.7b. The inductor voltage and capacitor current are given by

vL(t) = −v(t) (5.14)

iC(t) = iL(t) − v(t)
R

By neglecting the ripple in the output capacitor voltage, one obtains

vL(t) ≈ −V (5.15)

iC(t) ≈ iL(t) − V
R

The diode becomes reverse-biased at time t = (D1 + D2)Ts. The circuit is then as shown in
Fig. 5.7c, with both transistor and diode in the off state. The inductor voltage and inductor
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Fig. 5.7 Buck converter circuits for op-
eration in the discontinuous conduction
mode: (a) during subinterval 1, (b) during
subinterval 2, (c) during subinterval 3
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current are both zero for the remainder of the switching period (D1 + D2)Ts < t < Ts. The
network equations for the third subinterval are given by

vL = 0, iL = 0 (5.16)

iC(t) = iL(t) − v(t)
R

Note that the inductor current is constant and equal to zero during the third subinterval, and
therefore the inductor voltage must also be zero in accordance with the relationship vL(t) =
L diL(t)/dt. In practice, parasitic ringing is observed during this subinterval. This ringing occurs
owing to the resonant circuit formed by the inductor and the semiconductor device capacitances,
and typically has little influence on the converter steady-state properties. Again ignoring the
output capacitor voltage ripple, one obtains

vL(t) = 0 (5.17)

iC(t) = −V
R

Equations (5.13), (5.15), and (5.17) can now be used to plot the inductor voltage waveform as
in Fig. 5.8. According to the principle of inductor volt-second balance, the dc component of this
waveform must be zero. Since the waveform is rectangular, its dc component (or average value)
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Fig. 5.8 Inductor voltage waveform
vL(t), buck converter operating in discon-
tinuous conduction mode

vL(t)

0
Ts t

D1Ts D2Ts D3Ts

Vg

is easily evaluated:
〈vL(t)〉 = D1(Vg − V) + D2(−V) + D3(0) = 0 (5.18)

Solution for the output voltage yields

V = Vg
D1

D1 + D2
(5.19)

The transistor duty cycle D (which coincides with the subinterval 1 duty cycle D1) is the con-
trol input to the converter, and can be considered known. But the subinterval 2 duty cycle D2

is unknown, and hence another equation is needed to eliminate D2 and solve for the output
voltage V .

The second equation is obtained by use of capacitor charge balance. The connection of the
capacitor to its adjacent components is detailed in Fig. 5.9. The node equation of this network is

iL(t) = iC(t) +
v(t)
R

(5.20)

By capacitor charge balance, the dc component of capacitor current must be zero:

〈iC〉 = 0 (5.21)

Therefore, the dc load current must be supplied entirely by the other elements connected to the
node. In particular, for the case of the buck converter, the dc component of inductor current
must be equal to the dc load current:

〈iL〉 =
V
R

(5.22)

So we need to compute the dc component of the inductor current.
Since the inductor current ripple is not small, determination of the inductor current dc com-

ponent requires that we examine the current waveform in detail. The inductor current waveform
is sketched in Fig. 5.10. The current begins the switching period at zero, and increases during

Fig. 5.9 Connection of the output capacitor to adja-
cent components in the buck converter

L

C R

+

v(t)

iC(t)

iL(t) v(t)/R
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Fig. 5.10 Inductor current
waveform iL(t), buck converter
operating in discontinuous
conduction mode

iL(t)

t0 DTs Ts
D1Ts D2Ts D3Ts

iL = I

ipkVg V
L

V
L

the first subinterval with a constant slope, given by the applied voltage divided by the induc-
tance. The peak inductor current ipk is equal to the constant slope, multiplied by the length of
the first subinterval:

iL(D1Ts) = ipk =
Vg − V

L
D1Ts (5.23)

The dc component of the inductor current is again the average value:

〈iL〉 =
1
Ts

∫ Ts

0
iL(t)dt (5.24)

The integral, or area under the iL(t) curve, is the area of the triangle having height ipk and
base dimension (D1 + D2)Ts. Use of the triangle area formula yields

∫ Ts

0
iL(t)dt =

1
2

ipk(D1 + D2)Ts (5.25)

Substitution of Eqs. (5.23) and (5.25) into Eq. (5.24) leads to

〈iL〉 = (Vg − V)
(D1Ts

2L

)
(D1 + D2) (5.26)

Finally, by equating this result to the dc load current, according to Eq. (5.22), we obtain

V
R
=

D1Ts

2L
(D1 + D2)(Vg − V) (5.27)

Thus, we have two unknowns, V and D2, and we have two equations. The first equation, Eq.
(5.19), was obtained by inductor volt-second balance, while the second equation, Eq. (5.27),
was obtained using capacitor charge balance. Elimination of D2 from the two equations, and
solution for the voltage conversion ratio M(D1, K) = V/Vg, yields

V
Vg
=

2

1 +

√
1 +

4K

D2
1

(5.28)

where K = 2L/RTs

valid for K < Kcrit
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Fig. 5.11 Voltage conversion
ratio M(D,K), buck converter
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This is the solution of the buck converter operating in discontinuous conduction mode.
The complete buck converter characteristics, including both continuous and discontinuous

conduction modes, are therefore

M =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

D for K > Kcrit

2

1 +

√
1 +

4K
D2

for K < Kcrit
(5.29)

where the transistor duty cycle D is identical to the subinterval 1 duty cycle D1 of the above
derivation. These characteristics are plotted in Fig. 5.11, for several values of K. It can be seen
that the effect of the discontinuous conduction mode is to cause the output voltage to increase.
As K tends to zero (the unloaded case), M tends to unity for all nonzero D. The characteristics
are continuous, and Eq. (5.28) intersects the CCM characteristic M = D at the mode boundary.

5.3 Boost Converter Example

As a second example, consider the boost converter of Fig. 5.12. Let us determine the bound-
ary between modes, and solve for the conversion ratio in the discontinuous conduction mode.
Behavior of the boost converter operating in the continuous conduction mode was analyzed pre-
viously, in Sect. 2.3, and expressions for the inductor current dc component I and ripple peak
magnitude ΔiL were found.

When the diode conducts, its current is identical to the inductor current iL(t). As can be
seen from Fig. 2.18, the minimum value of the inductor current during the diode conduction
subinterval DTs < t < Ts is (I − ΔiL). If this minimum current is positive, then the diode is
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Fig. 5.12 Boost converter example
+ Q1
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forward-biased for the entire subinterval DTs < t < Ts, and the converter operates in the contin-
uous conduction mode. So the conditions for operation of the boost converter in the continuous
and discontinuous conduction modes are

I > ΔiL for CCM (5.30)

I < ΔiL for DCM

which is identical to the results for the buck converter. Substitution of the CCM solutions for I
and ΔiL, Eqs. (2.39) and (2.43), yields

Vg

D′2R
>

DTsVg

2L
for CCM (5.31)

This equation can be rearranged to obtain

2L
RTs
> DD′2 for CCM (5.32)

which is in the standard form

K > Kcrit(D) for CCM (5.33)

K < Kcrit(D) for DCM

where

K =
2L
RTs

and Kcrit(D) = DD′2

The conditions for operation in the continuous or discontinuous conduction modes are of similar
form to those for the buck converter; however, the critical value Kcrit(D) is a different function
of the duty cycle D. The dependence of Kcrit(D) on the duty cycle D is plotted in Fig. 5.13.
Kcrit(D) is zero at D = 0 and at D = 1, and has a maximum value of 4/27 at D = 1/3. Hence, if
K is greater than 4/27, then the converter operates in the continuous conduction mode for all D.
Figure 5.14 illustrates what happens when K is less than 4/27. The converter then operates in
the discontinuous conduction mode for some intermediate range of values of D near D = 1/3.
But the converter operates in the continuous conduction mode near D = 0 and D = 1. Unlike
the buck converter, the boost converter must operate in the continuous conduction mode near
D = 0 because the ripple magnitude approaches zero while the dc component I does not.



5.3 Boost Converter Example 147

Fig. 5.13 Boost converter
Kcrit(D) vs. D
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Fig. 5.14 Comparison of K
with Kcrit(D)
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Next, let us analyze the conversion ratio M = V/Vg of the boost converter. When the tran-
sistor conducts, for the subinterval 0 < t < D1Ts, the converter circuit reduces to the circuit of
Fig. 5.15a. The inductor voltage and capacitor current are given by

vL(t) = Vg (5.34)

iC(t) = −v(t)
R
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Fig. 5.15 Boost converter circuits
for operation in the discontinuous
conduction mode: (a) during
subinterval 1, 0 < t < D1Ts,
(b) during subinterval 2,
D1Ts < t < (D1 + D2)Ts, (c) during
subinterval 3, (D1 + D2)Ts < t < Ts
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Use of the linear-ripple approximation, to ignore the output capacitor voltage ripple, leads to

vL(t) ≈ Vg (5.35)

iC(t) ≈ −V
R

During the second subinterval D1Ts < t < (D1 + D2)Ts, the diode conducts. The circuit then
reduces to Fig. 5.15b. The inductor voltage and capacitor current are given by

vL(t) = Vg − v(t) (5.36)

iC(t) = i(t) − v(t)
R

Neglect of the output capacitor voltage ripple yields

vL(t) ≈ Vg − V (5.37)

iC(t) ≈ i(t) − V
R

The inductor current ripple has not been neglected.
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During the third subinterval, (D1 + D2)Ts < t < Ts, both transistor and diode are in the off
state, and Fig. 5.15c is obtained. The network equations are

vL = 0, i = 0

iC(t) = −v(t)
R

(5.38)

Use of the small-ripple approximation yields

vL(t) = 0 (5.39)

iC(t) = −V
R

Equations (5.35), (5.37), and (5.39) are now used to sketch the inductor voltage waveform as
in Fig. 5.16. By volt-second balance, this waveform must have zero dc component when the
converter operates in steady state. By equating the average value of this vL(t) waveform to zero,
one obtains

D1Vg + D2(Vg − V) + D3(0) = 0 (5.40)

Solution for the output voltage V yields

V =
D1 + D2

D2
Vg (5.41)

The diode duty cycle D2 is again an unknown, and so a second equation is needed for elimination
of D2 before the output voltage V can be found.

We can again use capacitor charge balance to obtain the second equation. The connection
of the output capacitor to its adjacent components is detailed in Fig. 5.17. Unlike the buck
converter, the diode in the boost converter is connected to the output node. The node equation
of Fig. 5.17 is

iD(t) = iC(t) +
v(t)
R

(5.42)

Fig. 5.16 Inductor voltage waveform
vL(t), boost converter operating in discon-
tinuous conduction mode

vL(t)

0
Ts t

D1Ts D2Ts D3Ts

Vg

Vg

Fig. 5.17 Connection of the output capacitor to ad-
jacent components in the boost converter

C R

+

v(t)

D1 iD(t)

iC(t)
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where iD(t) is the diode current. By capacitor charge balance, the capacitor current iC(t) must
have zero dc component in steady state. Therefore, the diode current dc component 〈iD〉 must
be equal to the dc component of the load current:

〈iD〉 =
V
R

(5.43)

So we need to sketch the diode current waveform, and find its dc component.
The waveforms of the inductor current i(t) and diode current iD(t) are illustrated in Fig. 5.18.

The inductor current begins at zero, and rises to a peak value ipk during the first subinterval.
This peak value ipk is equal to the slope Vg/L, multiplied by the length of the first subinterval,
D1Ts:

ipk =
Vg

L
D1Ts (5.44)

The diode conducts during the second subinterval, and the inductor current then decreases to
zero, where it remains during the third subinterval. The diode current iD(t) is identical to the
inductor current i(t) during the second subinterval. During the first and third subintervals, the
diode is reverse-biased and hence iD(t) is zero.

The dc component of the diode current, 〈iD〉, is

〈iD〉 =
1
Ts

∫ Ts

0
iD(t)dt (5.45)

(a) i(t)

t0 DTs Ts
D1Ts D2Ts D3Ts

ipkVg

L

Vg V
L

(b) iD(t)

t0 DTs Ts
D1Ts D2Ts D3Ts

ipk

iD 

Vg V
L

Fig. 5.18 Boost converter waveforms in the discontinuous conduction mode: (a) inductor current i(t), (b)
diode current iD(t)
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The integral is the area under the iD(t) waveform. As illustrated in Fig. 5.18b, this area is the
area of the triangle having peak value ipk and base dimension D2Ts:

∫ Ts

0
iD(t)dt = 1

2 iρkD2Ts (5.46)

Substitution of Eqs. (5.44) and (5.46) into Eq. (5.45) leads to the following expression for the
dc component of the diode current:

〈iD〉 =
1
Ts

(
1
2 ipk D2Ts

)
=

VgD1D2Ts

2L
(5.47)

By equating this expression to the dc load current as in Eq. (5.43), one obtains the final result

VgD1D2Ts

2L
=

V
R

(5.48)

So now we have two unknowns, V and D2. We have two equations: Eq. (5.41) obtained via
inductor volt-second balance, and Eq. (5.48) obtained using capacitor charge balance. Let us
now eliminate D2 from this system of equations, and solve for the output voltage V . Solution of
Eq. (5.41) for D2 yields

D2 = D1
Vg

V − Vg
(5.49)

By inserting this result into Eq. (5.48), and rearranging terms, one obtains the following
quadratic equation:

V2 − VVg −
V2

g D2
1

K
= 0 (5.50)

Use of the quadratic formula yields

V
Vg
=

1 ±

√
1 +

4D2
1

K

2
(5.51)

The quadratic equation has two roots: one of the roots of Eq. (5.51) is positive, while the other
is negative. We already know that the output voltage of the boost converter should be positive,
and indeed, from Eq. (5.41), it can be seen that V/Vg must be positive since the duty cycles D1

and D2 are positive. So we should select the positive root:

V
Vg
= M(D1, K) =

1 +

√
1 +

4D2
1

K

2
(5.52)

where K = 2L/RTs

valid for K < Kcrit(D)

This is the solution of the boost converter operating in the discontinuous conduction mode.
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Fig. 5.19 Voltage conversion
ratio M(D,K) of the boost con-
verter, including both continu-
ous and discontinuous conduc-
tion modes
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The complete boost converter characteristics, including both continuous and discontinuous
conduction modes, are

M =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1 − D

for K > Kcrit

1 +

√
1 +

4D2

K
2

for K < Kcrit

(5.53)

These characteristics are plotted in Fig. 5.19, for several values of K. As in the buck converter,
the effect of the discontinuous conduction mode is to cause the output voltage to increase. The
DCM portions of the characteristics are nearly linear, and can be approximated as

M ≈ 1
2
+

D
√

K
(5.54)

5.4 Summary of Results and Key Points

The characteristics of the basic buck, boost, and buck–boost are summarized in Table 5.2. Ex-
pressions for Kcrit(D), as well as for the solutions of the dc conversion ratios in CCM and DCM,
and for the DCM diode conduction duty cycle D2, are given.

The dc conversion ratios of the DCM buck, boost, and buck–boost converters are compared
in Fig. 5.20. The buck–boost characteristic is a line with slope 1/

√
K. The characteristics of

the buck and the boost converters are both asymptotic to this line, as well as to the line M =
1. Hence, when operated deeply into the discontinuous conduction mode, the boost converter
characteristic becomes nearly linear with slope 1/

√
K, especially at high duty cycle. Likewise,

the buck converter characteristic becomes nearly linear with the same slope, when operated
deeply into discontinuous conduction mode at low duty cycle.
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Table 5.2 Summary of CCM-DCM characteristics for the buck, boost, and buck–boost converters

Converter Kcrit(D) DCM M(D, K) DCM D2(D, K) CCM M(D)

Buck (1 − D)
2

1 +
√

1 + 4K/D2

K
D

M(D, K) D

Boost D(1 − D)2 1 +
√

1 + 4D2/K

2
K
D

M(D, K)
1

1 − D

Buck–boost (1 − D)2 − D
√

K

√
K − D

1 − D

with K = 2L/RTs. DCM occurs for K < Kcrit.

Fig. 5.20 Comparison of the dc
conversion ratios of the buck–boost,
buck, and boost converters oper-
ated in the discontinuous conduction
mode
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The following are the key points of this chapter:

1. The discontinuous conduction mode occurs in converters containing current- or voltage-
unidirectional switches, when the inductor current or capacitor voltage ripple is large
enough to cause the switch current or voltage to reverse polarity.

2. Conditions for operation in the discontinuous conduction mode can be found by determin-
ing when the inductor current or capacitor voltage ripples and dc components cause the
switch on state current or off state voltage to reverse polarity.

3. The dc conversion ratio M of converters operating in the discontinuous conduction mode
can be found by application of the principles of inductor volt-second and capacitor charge
balance.

4. Extra care is required when applying the small-ripple approximation. Some waveforms,
such as the output voltage, should have small ripple which can be neglected. Other wave-
forms, such as one or more inductor currents, may have large ripple that cannot be ignored.



154 5 The Discontinuous Conduction Mode

5. The characteristics of a converter changes significantly when the converter enters DCM.
The output voltage becomes load-dependent, resulting in an increase in the converter output
impedance.

Problems

5.1 The elements of the buck–boost converter of Fig. 5.21 are ideal: all losses may be ignored.
Your results for parts (a) and (b) should agree with Table 5.2.

Fig. 5.21 Buck–boost converter of
Problems 5.1, 5.2, and 5.16

+ L C R

+

VVg

Q1 D1

i(t)

(a) Show that the converter operates in discontinuous conduction mode when K < Kcrit,
and derive expressions for K and Kcrit.

(b) Derive an expression for the dc conversion ratio V/Vg of the buck–boost converter
operating in discontinuous conduction mode.

(c) For K = 0.1, plot V/Vg over the entire range 0 ≤ D ≤ 1.
(d) Sketch the inductor voltage and current waveforms for K = 0.1 and D = 0.3. Label

salient features.
(e) What happens to V at no load (R→ ∞)? Explain why, physically.

5.2 For this problem, the buck–boost converter of Fig. 5.21 employs a diode having forward
voltage drop VD. All other elements should be modeled as ideal. Express your results in
terms of the transistor duty cycle D, the input voltage Vg, the diode forward voltage drop
VD, and the dimensionless parameter K = 2L/RTs where Ts is the switching period.

(a) Derive an expression for the conditions under which this converter operates in the
discontinuous conduction mode. Express your result in the form K < Kcrit, and give
an expression for Kcrit.

(b) Derive an equation for the steady-state output voltage V . Manipulate your equation
into the form

V = f
(
D,K,Vg,VD

)
5.3 A certain buck converter contains a synchronous rectifier, as described in Sect. 4.1.5.

(a) Does this converter operate in the discontinuous conduction mode at light load? Ex-
plain.

(b) The load resistance is disconnected (R→ ∞), and the converter is operated with duty
cycle 0.5. Sketch the inductor current waveform.
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5.4 An unregulated dc input voltage Vg varies over the range 35 V ≤ Vg ≤ 70 V. A buck
converter reduces this voltage to 28 V; a feedback loop varies the duty cycle as necessary
such that the converter output voltage is always equal to 28 V. The load power varies over
the range 10 W ≤ Pload ≤ 1000 W. The element values are

L = 22 μH C = 470 μF fs = 75 kHz

Losses may be ignored.
(a) Over what range of Vg and load current does the converter operate in CCM?
(b) Determine the maximum and minimum values of the steady-state transistor duty cy-

cle.
5.5 The transistors in the converter of Fig. 5.22 are driven by the same gate drive signal, so

that they turn on and off in synchronism with duty cycle D.

Fig. 5.22 Watkins–Johnson
converter of Problem 5.5 + C R

+

VVg

Q1
D1

i(t)

L

D2

Q2

(a) Determine the conditions under which this converter operates in the discontinuous
conduction mode, as a function of the steady-state duty ratio D and the dimensionless
parameter K = 2L/RTs.

(b) What happens to your answer to Part (a) for D < 0.5?
(c) Derive an expression for the dc conversion ratio M(D, K). Sketch M vs. D for K = 10

and for K = 0.1, over the range 0 ≤ D ≤ 1.
5.6 In the buck converter illustrated in Fig. 5.23, the diode has forward voltage drop VF . You

may model this voltage as being independent of current. All other elements should be mod-
eled as ideal. In this problem, you will show how this diode drop changes the equations of
the discontinuous conduction mode.

Fig. 5.23 Buck converter of
Problem 5.6 +

Q1
L

C R

+

VD1Vg

iL(t)

iD(t)

(a) Derive the conditions under which the converter operates in the discontinuous con-
duction mode. Express your result in terms of the quantities K = 2L/RTs and Kcrit.
Note that Kcrit may now depend not only on D, but also on other element values.
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(b) Derive closed-form analytical expressions for the conversion ratio M = V/Vg for both
continuous and discontinuous conduction modes.

(c) The element values are

VD = 0.5 V fs = 250 kHz

Vg = 5 V R = 4 Ω

L1 = 2.2 μH

C is large. Plot the conversion ratio M = V/Vg for the entire range 0 ≤ D ≤ 1.
(d) What happens near D = 0? Does the converter operate in CCM or DCM? Compare

with your result from part (a).
5.7 DCM mode boundary analysis of the Ćuk converter of Fig. 5.24. The capacitor voltage

ripples are small.

+ D1

L1

C2 R

+

VQ1

C1

L2

Vg

i1 i2

iD

+   vC1

Fig. 5.24 Ćuk converter, Problems 5.7, 5.8, 5.14, and 5.15

(a) Sketch the diode current waveform for CCM operation. Find its peak value, in terms
of the ripple magnitudes ΔiL1, ΔiL2, and the dc components I1 and I2, of the two
inductor currents iL1(t) and iL2(t), respectively.

(b) Derive an expression for the conditions under which the Ćuk converter operates in the
discontinuous conduction mode. Express your result in the form K < Kcrit(D), and
give formulas for K and Kcrit(D).

5.8 DCM conversion ratio analysis of the Ćuk converter of Fig. 5.24.
(a) Suppose that the converter operates at the boundary between CCM and DCM, with

the following element and parameter values:

D = 0.4 fs = 100 kHz

Vg = 120V R = 10Ω

L1 = 54 μH L2 = 27 μH

C1 = 47 μF C2 = 100 μF

Sketch the diode current waveform iD(t), and the inductor current waveforms i1(t) and
i2(t). Label the magnitudes of the ripples and dc components of these waveforms.

(b) Suppose next that the converter operates in the discontinuous conduction mode, with
a different choice of parameter and element values. Derive an analytical expression
for the dc conversion ratio M(D, K).
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(c) Sketch the diode current waveform iD(t), and the inductor current waveforms i1(t) and
i2(t), for operation in the discontinuous conduction mode.

5.9 DCM mode boundary analysis of the modified SEPIC of Fig. 5.25 The converter illustrated
in Fig. 5.25 is similar to the SEPIC, except that an additional diode is placed in series
with the input inductor L1. The objective of this problem is to analyze the discontinuous
conduction mode associated with large ripple in the inductor current i1(t).

+

D2
L1

C2

+

v

Q1

C1

L2
RVg

D1
i1

Fig. 5.25 Modified SEPIC for Problem 5.9

i1(t)

t0 DTs Ts

Conducting
devices: Q1, D1

D1Ts D2Ts D3Ts

D1, D2 D2

Fig. 5.26 Inductor current waveform i1(t)

For this problem, you may assume that the switching ripples in the current of inductor L2,
the voltage of capacitor C1, and the voltage of capacitor C2, are negligible. Figure 5.26
depicts the inductor current waveform i1(t) and the sequence of conducting devices for the
discontinuous conduction mode that is the subject of this problem. Neglect all losses.

(a) Derive an expression for the boundary between the discontinuous conduction mode
illustrated in Fig. 5.26 and the continuous conduction mode. Express your result in
terms of the parameters K and Kcrit(D), in the usual manner, and give expressions for
K and Kcrit.

(b) Derive the system of equations that relate the dc components of the important wave-
forms of the circuit in the discontinuous conduction mode of Fig. 5.26. Solve to find
the conversion ratio:

M(D,K) =
V
Vg

Your result should be a function of D and K only, with other intermediate variables
eliminated.
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5.10 DCM mode boundary analysis of the SEPIC of Fig. 5.27
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Fig. 5.27 SEPIC, Problems 5.10 and 5.11

(a) Sketch the diode current waveform for CCM operation. Find its peak value, in terms
of the ripple magnitudes ΔiL1, ΔiL2, and the dc components I1 and I2, of the two
inductor currents iL1(t) and iL2(t), respectively.

(b) Derive an expression for the conditions under which the SEPIC operates in the dis-
continuous conduction mode. Express your result in the form K < Kcrit(D), and give
formulas for K and Kcrit(D).

5.11 DCM conversion ratio analysis of the SEPIC of Fig. 5.27.

(a) Suppose that the converter operates at the boundary between CCM and DCM, with
the following element and parameter values:

D = 0.225 fs = 100 kHz

Vg = 120V R = 10Ω

L1 = 50 μH L2 = 75 μH

C1 = 47 μF C2 = 200 μF

Sketch the diode current waveform iD(t), and the inductor current waveforms i1(t) and
i2(t). Label the magnitudes of the ripples and dc components of these waveforms.

(b) Suppose next that the converter operates in the discontinuous conduction mode, with
a different choice of parameter and element values. Derive an analytical expression
for the dc conversion ratio M(D, K).

(c) Sketch the diode current waveform iD(t), and the inductor current waveforms i1(t) and
i2(t), for operation in the discontinuous conduction mode.

5.12 An L − C input filter is added to a buck converter as illustrated in Fig. 5.28. Inductors L1

and L2 and capacitor C2 are large in value, such that their switching ripples are small. All
losses can be neglected.

(a) Sketch the capacitor C1 voltage waveform v1(t), and derive expressions for its dc
component V1 and peak ripple magnitude Δv1.

(b) The load current is increased (R is decreased in value) such that Δv1 is greater than
V1.
(i) Sketch the capacitor voltage waveform v1(t).

(ii) For each subinterval, determine which semiconductor devices conduct.
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i1 i2

Fig. 5.28 Buck converter with input filter, Problems 5.12 and 5.13

(iii) Determine the conditions under which the discontinuous conduction mode oc-
curs. Express your result in the form K < Kcrit(D), and give formulas for K and
Kcrit(D).

5.13 Derive an expression for the conversion ratio M(D, K) of the DCM converter described
in the previous problem. Note: D is the transistor duty cycle.

5.14 In the Cuk converter of Fig. 5.24, inductors L1 and L2 and capacitor C2 are large in value,
such that their switching ripples are small. All losses can be neglected.
(a) Assuming that the converter operates in CCM, sketch the capacitor C1 voltage wave-

form vC1(t), and derive expressions for its dc component V1 and peak ripple magnitude
ΔvC1.

(b) The load current is increased (R is decreased in value) such that ΔvC1 is greater than
V1.
(i) Sketch the capacitor voltage waveform vC1(t).

(ii) For each subinterval, determine which semiconductor devices conduct.
(iii) Determine the conditions under which the discontinuous conduction mode oc-

curs. Express your result in the form K < Kcrit(D), and give formulas for K and
Kcrit(D).

5.15 Derive an expression for the conversion ratio M(D, K) of the DCM Ćuk converter de-
scribed in the previous problem. Note: D is the transistor duty cycle.

5.16 A DCM buck–boost converter as in Fig. 5.21 is to be designed to operate under the follow-
ing conditions:

136 V ≤ Vg ≤ 204 V

5 W ≤ Pload ≤ 100 W

V = −150 V

fs = 100 kHz

You may assume that a feedback loop will vary to transistor duty cycle as necessary to
maintain a constant output voltage of −150 V.
Design the converter, subject to the following considerations:
• The converter should operate in the discontinuous conduction mode at all times
• Given the above requirements, choose the element values to minimize the peak inductor

current
• The output voltage peak ripple should be less than 1V.
Specify:
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(a) The inductor value L
(b) The output capacitor value C
(c) The worst-case peak inductor current ipk

(d) The maximum and minimum values of the transistor duty cycle D
5.17 A DCM boost converter as in Fig. 5.12 is to be designed to operate under the following

conditions:

18 V ≤ Vg ≤ 36 V

5 W ≤ Pload ≤ 100 W

V = 48 V

fs = 150 kHz

You may assume that a feedback loop will vary to transistor duty cycle as necessary to
maintain a constant output voltage of 48 V.
Design the converter, subject to the following considerations:
• The converter should operate in the discontinuous conduction mode at all times. To

ensure an adequate design margin, the inductance L should be chosen such that K is no
greater than 75% of Kcrit at all operating points.
• Given the above requirements, choose the element values to minimize the peak inductor

current.
• The output voltage peak ripple should be less than 1V.
Specify:
(a) The inductor value L
(b) The output capacitor value C
(c) The worst-case peak inductor current ipk

(d) The maximum and minimum values of the transistor duty cycle D.
(e) The values of D, K, and Kcrit at the following operating points: (i) Vg = 18 V and

Pload = 5 W; (ii) Vg = 36 V and Pload = 5 W; (iii) Vg = 18 V and Pload = 100 W; (iv)
Vg = 36 V and Pload=100 W.

5.18 In dc–dc converters used in battery-powered portable equipment, it is sometimes required
that the converter continue to regulate its load voltage with high efficiency while the load
is in a low-power “sleep” mode. The power required by the transistor gate drive circuitry,
as well as much of the switching loss, is dependent on the switching frequency but not on
the load current. So to obtain high efficiency at very low load powers, a variable-frequency
control scheme is used, in which the switching frequency is reduced in proportion to the
load current.
Consider the boost converter system of Fig. 5.29a. The battery pack consists of two nickel-
cadmium cells, which produce a voltage of Vg = 2.4V ± 0.4 V. The converter boosts
this voltage to a regulated 5 V. As illustrated in Fig. 5.29b, the converter operates in the
discontinuous conduction mode, with constant transistor on-time ton. The transistor off-
time to f f is varied by the controller to regulate the output voltage.
(a) Write the equations for the CCM-DCM boundary and conversion ratio M = V/Vg, in

terms of ton, to f f , L, and the effective load resistance R.
For parts (b) and (c), the load current can vary between 100 μA and 1 A. The transistor
on-time is fixed: ton = 10 μs.

(b) Select values for L and C such that:
• The output voltage peak ripple is no greater than 50 mV,
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Fig. 5.29 Boost con-
verter employed in
portable battery-powered
equipment with sleep
mode, Problem 5.18:
(a) converter circuit,
(b) inductor current
waveform
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t

ipk
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• The converter always operates in DCM, and
• The peak inductor current is as small as possible.

(c) For your design of part (b), what are the maximum and minimum values of the switch-
ing frequency?

5.19 An unregulated dc input voltage Vg varies over the range 35V ≤ Vg ≤ 70V. A buck
converter reduces this voltage to 28 V; a feedback loop varies the duty cycle as necessary
such that the converter output voltage is always equal to 28 V. The load power varies over
the range 10W ≤ Pload ≤ 1000W. The buck converter elements are L = 22μH, C = 470μF,
fs = 75kHz. Losses may be ignored.

Pload

Vg

1000 W

10 W

75 V35 V

Fig. 5.30 Vg vs. Pload axes, Problem 5.19
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(a) Over what range of Vg and Pload does the converter operate in continuous conduction
mode? Sketch the mode boundary on the axes of Fig. 5.30, and identify the region
over which the converter operates in CCM.

(b) Determine the maximum and minimum values of the steady-state transistor duty cy-
cle.
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Converter Circuits

We have already analyzed the operation of a number of different types of converters: buck, boost,
buck–boost, Ćuk, voltage-source inverter, etc. With these converters, a number of different func-
tions can be performed: step-down of voltage, step-up, inversion of polarity, and conversion of
dc to ac or vice-versa.

It is natural to ask: Where do these converters come from? What other converters occur,
and what other functions can be obtained? What are the basic relations between converters?
In this chapter, several different circuit manipulations are explored, which explain the origins
of the basic converters. Inversion of source and load transforms the buck converter into the
boost converter. Cascade connection of converters, and simplification of the resulting circuit,
shows how the buck–boost and Ćuk converters are based on the buck and the boost converters.
Differential connection of the load between the outputs of two or more converters leads to a
single-phase or polyphase inverter. A short list of some of the better known converter circuits
follows this discussion.

Transformer-isolated dc–dc converters are also covered in this chapter. Use of a transformer
allows isolation and multiple outputs to be obtained in a dc–dc converter, and can lead to better
converter optimization when a very large or very small conversion ratio is required. The trans-
former is modeled as a magnetizing inductance in parallel with an ideal transformer; this allows
the analysis techniques of the previous chapters to be extended to cover converters containing
transformers. A number of well-known isolated converters, based on the buck, boost, buck–
boost, single-ended primary inductance converter (SEPIC), and Ćuk, are listed and discussed.

Finally, the evaluation, selection, and design of converters to meet given requirements
are considered. Important performance-related attributes of transformer-isolated converters in-
clude: whether the transformer reset process imposes excessive voltage stress on the transis-
tors, whether the converter can supply a high-current output without imposing excessive current
stresses on the secondary-side components, and whether the converter can be well-optimized
to operate with a wide range of operating points, that is, with large tolerances in Vg and Pload.
Switch utilization is a simplified figure-of-merit that measures the ratio of the converter output
power to the total transistor voltage and current stress. As the switch utilization increases, the
converter efficiency increases while its cost decreases. Isolated converters with large variations
in operating point tend to utilize their power devices more poorly than nonisolated converters
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which function at a single operating point. Computer spreadsheets are a good tool for optimiza-
tion of power-stage designs and for trade studies to select a converter topology for a given
application.

6.1 Circuit Manipulations

The buck converter (Fig. 6.1) was developed in Chap. 1 using basic principles. The switch re-
duces the voltage dc component, and the low-pass filter removes the switching harmonics. In
the continuous conduction mode, the buck converter has a conversion ratio of M = D. The buck
converter is the simplest and most basic circuit, from which we will derive other converters.

Fig. 6.1 The basic buck converter
+

L

C R

+

V

1

2
Vg

6.1.1 Inversion of Source and Load

Let us consider first what happens when we interchange the power input and power output ports
of a converter. In the buck converter of Fig. 6.2a, voltage V1 is applied at port 1, and voltage V2

appears at port 2. We know that
V2 = DV1 (6.1)

This equation can be derived using the principle of inductor volt-second balance, with the as-
sumption that the converter operates in the continuous conduction mode. Provided that the
switch is realized such that this assumption holds, then Eq. (6.1) is true regardless of the di-
rection of power flow.

So let us interchange the power source and load, as in Fig. 6.2b. The load, bypassed by the
capacitor, is connected to converter port 1, while the power source is connected to converter
port 2. Power now flows in the opposite direction through the converter. Equation (6.1) must
still hold; by solving for the load voltage V1, one obtains

V1 =
1
D

V2 (6.2)

So the load voltage is greater than the source voltage. Figure 6.2b is a boost converter, drawn
backwards. Equation (6.2) nearly coincides with the familiar boost converter result, M(D) =
1/D′, except that D′ is replaced by D.

Since power flows in the opposite direction, the standard buck converter unidirectional
switch realization cannot be used with the circuit of Fig. 6.2b. By following the discussion of
Chap. 4, one finds that the switch can be realized by connecting a transistor between the induc-
tor and ground, and a diode from the inductor to the load, as shown in Fig. 6.2c. In consequence,
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Fig. 6.2 Inversion of source
and load transforms a buck
converter into a boost con-
verter: (a) buck converter, (b)
inversion of source and load,
(c) realization of switch
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Power flow

the transistor duty cycle D becomes the fraction of time which the single-pole double-throw
(SPDT) switch of Fig. 6.2b spends in position 2, rather than in position 1. So we should in-
terchange D with its complement D′ in Eq. (6.2), and the conversion ratio of the converter of
Fig. 6.2c is

V1 =
1
D′

V2 (6.3)

Thus, the boost converter can be viewed as a buck converter having the source and load con-
nections exchanged, and in which the switch is realized in a manner that allows reversal of the
direction of power flow.
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V
V1

= M 2(D)

Fig. 6.3 Cascade connection of converters

6.1.2 Cascade Connection of Converters

Converters can also be connected in cascade, as illustrated in Fig. 6.3 [15, 44]. Converter 1 has
conversion ratio M1(D), such that its output voltage V1 is

V1 = M1(D)Vg (6.4)

This voltage is applied to the input of the second converter. Let us assume that converter 2 is
driven with the same duty cycle D applied to converter 1. If converter 2 has conversion ratio
M2(D), then the output voltage V is

V = M2(D)V1 (6.5)

Substitution of Eq. (6.4) into Eq. (6.5) yields

V
Vg
= M(D) = M1(D)M2(D) (6.6)

Hence, the conversion ratio M(D) of the composite converter is the product of the individual
conversion ratios M1(D) and M2(D).

Let us consider the case where converter 1 is a buck converter, and converter 2 is a boost
converter. The resulting circuit is illustrated in Fig. 6.4. The buck converter has conversion ratio

V1

Vg
= D (6.7)

The boost converter has conversion ratio
V
V1
=

1
1 − D

(6.8)

So the composite conversion ratio is

V
Vg
=

D
1 − D

(6.9)

The composite converter has a noninverting buck–boost conversion ratio. The voltage is reduced
when D < 0.5, and increased when D > 0.5.
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The circuit of Fig. 6.4 can be simplified considerably. Note that inductors L1 and L2, along
with capacitor C1, form a three-pole low-pass filter. The conversion ratio does not depend on
the number of poles present in the low-pass filter, and so the same steady-state output voltage
should be obtained when a simpler low-pass filter is used. In Fig. 6.5a, capacitor C1 is removed.
Inductors L1 and L2 are now in series, and can be combined into a single inductor as shown
in Fig. 6.5b. This converter, the noninverting buck–boost converter, continues to exhibit the
conversion ratio given in Eq. (6.9).

The switches of the converter of Fig. 6.5b can also be simplified, leading to a negative output
voltage. When the switches are in position 1, the converter reduces to Fig. 6.6a. The inductor is
connected to the input source Vg, and energy is transferred from the source to the inductor. When
the switches are in position 2, the converter reduces to Fig. 6.6b. The inductor is then connected
to the load, and energy is transferred from the inductor to the load. To obtain a negative output,
we can simply reverse the polarity of the inductor during one of the subintervals (say, while

+

1

2

L1

C1

+

V1 R

+

V
1

2L2

C2{ {
Buck converter Boost converter

Vg

Fig. 6.4 Cascade connection of buck converter and boost converter
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Fig. 6.5 Simplification of the cascaded buck and boost converter circuit of Fig. 6.4: (a) removal of ca-
pacitor C1, (b) combining of inductors L1 and L2
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(a)
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VVg

iL
(b)

+

+

VVg
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Fig. 6.6 Connections of the circuit of Fig. 6.5b: (a) while the switches are in position 1, (b) while the
switches are in position 2
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+
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Fig. 6.7 Reversal of the output voltage polarity, by reversing the inductor connections while the switches
are in position 2: (a) connections with the switches in position 1, (b) connections with the switches in
position 2

the switches are in position 2). The individual circuits of Fig. 6.7 are then obtained, and the
conversion ratio becomes

V
Vg
= − D

1 − D
(6.10)

Note that one side of the inductor is now always connected to ground, while the other side is
switched between the input source and the load. Hence only one SPDT switch is needed, and the
converter circuit of Fig. 6.8 is obtained. Figure 6.8 is recognized as the conventional buck–boost
converter.

Thus, the buck–boost converter can be viewed as a cascade connection of buck and boost
converters. The properties of the buck–boost converter are consistent with this viewpoint. In-
deed, the equivalent circuit model of the buck–boost converter contains a 1:D (buck) dc trans-
former, followed by a D′ : 1 (boost) dc transformer. The buck–boost converter inherits the
pulsating input current of the buck converter, and the pulsating output current of the boost con-
verter.

Other converters can be derived by cascade connections. The Ćuk converter (Fig. 2.20) was
originally derived [15, 44] by cascading a boost converter (converter 1), followed by a buck
(converter 2). A negative output voltage is obtained by reversing the polarity of the internal

Fig. 6.8 Converter circuit obtained
from the subcircuits of Fig. 6.7 +

+

V

1 2

Vg

iL
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capacitor connection during one of the subintervals; as in the buck–boost converter, this opera-
tion has the additional benefit of reducing the number of switches. The equivalent circuit model
of the Ćuk converter contains a D′:1 (boost) ideal dc transformer, followed by a 1:D (buck)
ideal dc transformer. The Ćuk converter inherits the nonpulsating input current property of the
boost converter, and the nonpulsating output current property of the buck converter.

6.1.3 Rotation of Three-Terminal Cell

The buck, boost, and buck–boost converters each contains an inductor that is connected to a
SPDT switch. As illustrated in Fig. 6.9a, the inductor-switch network can be viewed as a basic
cell having the three terminals labeled a, b, and c. It was first pointed out in [15, 44], and later
in [45], that there are three distinct ways to connect this cell between the source and load. The
connections a–A b–B c–C lead to the buck converter. The connections a–A b–B c–C amount
to inversion of the source and load, and lead to the boost converter. The connections a–A b–B
c–C lead to the buck–boost converter. So the buck, boost, and buck–boost converters could be
viewed as being based on the same inductor-switch cell, with different source and are connected
in series with the source load connections.

(a)

+

+

v

1

2
Vg

Three-terminal cell
a BbA

c

C

(b)

+

+

v

1

2

Th

ree-terminal cell

A a b B

c

C

Vg

Fig. 6.9 Rotation of three-terminal switch cells: (a) switch/inductor cell, (b) switch/capacitor cell

A dual three-terminal network, consisting of a capacitor-switch cell, is illustrated in Fig. 6.9b.
Filter inductors are connected in series with the source and load, such that the converter input
and output currents are nonpulsating. There are again three possible ways to connect this cell
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between the source and load. The connections a–A b–B c–C lead to a buck converter with L-C
input low-pass filter. The connections a–A b–B c–C coincide with inversion of source and load,
and lead to a boost converter with an added output L–C filter section. The connections a–A b–B
c–C lead to the Ćuk converter.

Rotation of more complicated three-terminal cells is explored in [46].

6.1.4 Differential Connection of the Load

In inverter applications, where an ac output is required, a converter is needed that is capa-
ble of producing an output voltage of either polarity. By variation of the duty cycle in the
correct manner, a sinusoidal output voltage having no dc bias can then be obtained. Of the
converters studied so far in this chapter, the buck and the boost can produce only a posi-
tive unipolar output voltage, while the buck–boost and Ćuk converters produce only a nega-
tive unipolar output voltage. How can we derive converters that can produce bipolar output
voltages?

Converter 1 +

V1
+

V

D

Converter 2

+Vg

+

V2

D'

loaddc source

V1 = M(D) Vg

V2 = M(D') Vg

Fig. 6.10 Obtaining a bipolar output by differential connection of load

A well-known technique for obtaining a bipolar output is the differential connection of
the load across the outputs of two known converters, as illustrated in Fig. 6.10. If converter
1 produces voltage V1, and converter 2 produces voltage V2, then the load voltage V is
given by

V = V1 − V2 (6.11)

Although V1 and V2 may both individually be positive, the load voltage V can be either positive
or negative. Typically, if converter 1 is driven with duty cycle D, then converter 2 is driven with
its complement, D′, so that when V1 increases, V2 decreases, and vice versa.
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Several well-known inverter circuits can be derived using the differential connection. Let us
realize converters 1 and 2 of Fig. 6.10 using buck converters. Figure 6.11a is obtained. Converter

(a)

+

V1
+

V

+Vg

+

V2

1

2

1

2

Buck converter 1}
Buck converter 2

{
(b)

+Vg

1

2

1

2

+

V

Fig. 6.11 Derivation of bridge inverter (H-bridge): (a) differential connection of load across outputs of
buck converters, (b) bypassing load by capacitor, (c) combining series inductors, (d) circuit (c) redrawn in
its usual form
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Fig. 6.11 (continued)

Fig. 6.12 Conversion ratio of the H-
bridge inverter circuit

D

M(D)

10.5

1

0

1 is driven with duty cycle D, while converter 2 is driven with duty cycle D′. So when the SPDT
switch of converter 1 is in the upper position, then the SPDT switch of converter 2 is in the lower
position, and vice-versa. Converter 1 then produces output voltage V1 = DVg, while converter
2 produces output voltage V2 = D′Vg. The differential load voltage is

V = DVg − D′Vg (6.12)
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Fig. 6.13 Generation of dc–3φac inverter by differential connection of 3φ load

Simplification leads to
V = (2D − 1)Vg (6.13)

This equation is plotted in Fig. 6.12. It can be seen the output voltage is positive for D > 0.5,
and negative for D < 0.5. If the duty cycle is varied sinusoidally about a quiescent operating
point of 0.5, then the output voltage will be sinusoidal, with no dc bias.

The circuit of Fig. 6.11a can be simplified. It is usually desired to bypass the load directly
with a capacitor, as in Fig. 6.11b. The two inductors are now effectively in series, and can be
combined into a single inductor as in Fig. 6.11c. Figure 6.11d is identical to Fig. 6.11c, but is
redrawn for clarity. This circuit is commonly called the H-bridge, or bridge inverter circuit. Its
use is widespread in servo amplifiers and single-phase inverters. Its properties are similar to
those of the buck converter, from which it is derived.

Polyphase inverter circuits can be derived in a similar manner. A three-phase load can be
connected differentially across the outputs of three dc–dc converters, as illustrated in Fig. 6.13.
If the three-phase load is balanced, then the neutral voltage Vn will be equal to the average of
the three converter output voltages:

Vn =
1
3

(V1 + V2 + V3) (6.14)

If the converter output voltages V1,V2, and V3 contain the same dc bias, then this dc bias will
also appear at the neutral point Vn. The phase voltages Van,Vbn, and Vcn are given by
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Van = V1 − Vn

Vbn = V2 − Vn

Vcn = V3 − Vn

(6.15)

It can be seen that the dc biases cancel out, and do not appear in Van,Vbn, and Vcn.
Let us realize converters 1, 2, and 3 of Fig. 6.13 using buck converters. Figure 6.14a is then

obtained. The circuit is redrawn in Fig. 6.14b for clarity. This converter is known by several
names, including the voltage-source inverter and the buck-derived three-phase bridge.

Inverter circuits based on dc–dc converters other than the buck converter can be derived in a
similar manner. Figure 6.14c contains a three-phase current-fed bridge converter having a boost-
type voltage conversion ratio, also known as the current source inverter. Since most inverter
applications require the capability to reduce the voltage magnitude, a dc–dc buck converter is
usually cascaded at the dc input port of this inverter. Several other examples of three-phase
inverters are given in [19, 22, 47], in which the converters are capable of both increasing and
decreasing the voltage magnitude.

6.2 A Short List of Converters

An infinite number of converters are possible, and hence it is not feasible to list them all. A short
list is given here.

Let us consider first the class of single-input single-output converters, containing a single
inductor. There are a limited number of ways in which the inductor can be connected between
the source and load. If we assume that the switching period is divided into two subintervals,
then the inductor should be connected to the source and load in one manner during the first
subinterval, and in a different manner during the second subinterval. One can examine all of
the possible combinations, to derive the complete set of converters in this class [48–50]. By
elimination of redundant and degenerate circuits, one finds that there are eight converters, listed
in Fig. 6.15. How the converters are counted can actually be a matter of semantics and personal
preference; for example, many people in the field would not consider the noninverting buck–
boost converter as distinct from the inverting buck–boost. Nonetheless, it can be said that a
converter is defined by the connections between its reactive elements, switches, source, and
load; by how the switches are realized; and by the numerical range of reactive element values.

The first four converters of Fig. 6.15, the buck, boost, buck–boost, and the noninverting
buck–boost, have been previously discussed. These converters produce a unipolar dc output
voltage. With these converters, it is possible to increase, decrease, and/or invert a dc voltage.

Converters 5 and 6 are capable of producing a bipolar output voltage. Converter 5, the H-
bridge, has previously been discussed. Converter 6 is a nonisolated version of the current-fed
converter of Fig. 6.38b; this converter is denoted the Watkins-Johnson converter [51–55]. This
converter can also produce a bipolar output voltage; however, its conversion ratio M(D) is a
nonlinear function of duty cycle. The number of switch elements can be reduced by using a
two-winding inductor as shown. The function of the inductor is similar to that of the flyback
converter, discussed in the next section. When switch 1 is closed the upper winding is used,
while when switch 2 is closed, current flows through the lower winding. The current flows
through only one winding at any given instant, and the total ampere-turns of the two windings
are a continuous function of time. Advantages of this converter are its ground-referenced load
and its ability to produce a bipolar output voltage using only two SPST current-bidirectional
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Fig. 6.14 Dc–3φac inverter topologies: (a) differential connection of 3φ load across outputs of buck
converters; (b) simplification of low-pass filters to obtain the dc–3φac voltage-source inverter; (c) the
dc–3φac current source inverter
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Fig. 6.15 Eight members of the basic class of single-input single-output converters containing a single
inductor

switches. The isolated version and its variants have found application in high-voltage dc power
supplies.

Converters 7 and 8 can be derived as the inverses of converters 5 and 6. These converters
are capable of interfacing an ac input to a dc output. The ac input current waveform can have
arbitrary waveshape and power factor.

The class of single-input single-output converters containing two inductors is much larger.
Several of its members are listed in Fig. 6.16. The Ćuk converter has been previously discussed
and analyzed. It has an inverting buck–boost characteristic, and exhibits nonpulsating input and
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Fig. 6.15 (continued)

output terminal currents. The SEPIC (single-ended primary inductance converter) [56], and its
inverse, have noninverting buck–boost characteristics. The Ćuk and SEPIC also exhibit the
desirable feature that the MOSFET source terminal is connected to ground; this simplifies the
construction of the gate drive circuitry. Two inductor converters having conversion ratios M(D)
that are biquadratic functions of the duty cycle D are also numerous. An example is converter
4 of Fig. 6.16 [57]. This converter can be realized using a single transistor and three diodes.
Its conversion ratio is M(D) = D2. This converter may find use in nonisolated applications
that require a large step-down of the dc voltage, or in applications having wide variations in
operating point.
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Fig. 6.16 Several members of the basic class of single-input single-output converters containing two
inductors

6.3 Transformer Isolation

In a large number of applications, it is desired to incorporate a transformer into a switching
converter, to obtain dc isolation between the converter input and output. For example, in off-line
applications (where the converter input is connected to the ac utility system), isolation is usually
required by regulatory agencies. Isolation could be obtained in these cases by simply connecting
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a 50 Hz or 60 Hz transformer at the converter ac input. However, since transformer size and
weight vary inversely with frequency, significant improvements can be made by incorporating
the transformer into the converter, so that the transformer operates at the converter switching
frequency of tens or hundreds of kilohertz.

When a large step-up or step-down conversion ratio is required, the use of a transformer can
allow better converter optimization. By proper choice of the transformer turns ratio, the voltage
or current stresses imposed on the transistors and diodes can be minimized, leading to improved
efficiency and lower cost.

Multiple dc outputs can also be obtained in an inexpensive manner, by adding multiple sec-
ondary windings and converter secondary-side circuits. The secondary turns ratios are chosen
to obtain the desired output voltages. Usually only one output voltage can be regulated via con-
trol of the converter duty cycle, so wider tolerances must be allowed for the auxiliary output
voltages. Cross regulation is a measure of the variation in an auxiliary output voltage, given that
the main output voltage is perfectly regulated [58–60].

A physical multiple-winding transformer having turns ratio n1:n2:n3:. . . is illustrated in
Fig. 6.17, and the schematic symbol for this transformer is illustrated in Fig. 6.18a. A simple
equivalent circuit is illustrated in Fig. 6.18b, which is sufficient for understanding the operation
of most transformer-isolated converters. The model assumes perfect coupling between windings
and neglects losses; more accurate models are discussed in a later chapter. The ideal transformer
obeys the relationships

Fig. 6.17 Physical construction of a
three-winding transformer
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v1(t)
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+ v3(t

v1(t)
n1
=

v2(t)
n2
=

v3(t)
n3
= . . .

0 = n1i′1(t) + n2i2(t) + n3i3(t) + . . .
(6.16)

In parallel with the ideal transformer is an inductance LM , called the magnetizing inductance,
referred to the transformer primary in the figure.

Physical transformers must contain a magnetizing inductance. For example, suppose we dis-
connect all windings except for the primary winding. We are then left with a single winding on
a magnetic core—an inductor. Indeed, the equivalent circuit of Fig. 6.18b predicts this behavior,
via the magnetizing inductance.
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The magnetizing current iM(t) is proportional to the magnetic field H(t) inside the trans-
former core. The physical B–H characteristics of the transformer core material, illustrated in
Fig. 6.19, govern the magnetizing current behavior. For example, if the magnetizing current
iM(t) becomes too large, then the magnitude of the magnetic field H(t) causes the core to satu-
rate. The magnetizing inductance then becomes very small in value, effectively shorting out the
transformer.
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+

v1(t)

+
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+
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i1(t) i2(t)

i3(t)
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+
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+
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i1'(t)

LM

iM(t)

Transformer

Fig. 6.18 A multiple-winding transformer: (a) schematic symbol, (b) equivalent circuit model containing
a magnetizing inductance and ideal transformer

Fig. 6.19 B−H characteristics
of transformer core

B(t) v1(t) dt

H(t) iM(t)

slope  LM

saturation

The presence of the magnetizing inductance explains why transformers do not work in dc
circuits: at dc, the magnetizing inductance has zero impedance, and shorts out the windings. In a
well-designed transformer, the impedance of the magnetizing inductance is large in magnitude
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over the intended range of operating frequencies, such that the magnetizing current iM(t) has
much smaller magnitude than i1(t). Then i′1(t) ≈ i1(t), and the transformer behaves nearly as an
ideal transformer. It should be emphasized that the magnetizing current iM(t) and the primary
winding current i1(t) are independent quantities.

The magnetizing inductance must obey all of the usual rules for inductors. In the model of
Fig. 6.18b, the primary winding voltage v1(t) is applied across LM , and hence

v1(t) = LM
diM(t)

dt
(6.17)

Integration leads to

iM(t) − iM(0) =
1

LM

∫ t

0
v1(τ)dτ (6.18)

So the magnetizing current is determined by the integral of the applied winding voltage. The
principle of inductor volt-second balance also applies: when the converter operates in steady
state, the dc component of voltage applied to the magnetizing inductance must be zero:

0 =
1
Ts

∫ Ts

0
v1(t)dt (6.19)

Since the magnetizing current is proportional to the integral of the applied winding voltage, it
is important that the dc component of this voltage be zero. Otherwise, during each switching
period there will be a net increase in magnetizing current, eventually leading to excessively
large currents and transformer saturation.

The operation of converters containing transformers may be understood by inserting the
model of Fig. 6.18b in place of the transformer in the converter circuit. Analysis then proceeds
as described in the previous chapters, treating the magnetizing inductance as any other inductor
of the converter.

Practical transformers must also contain leakage inductance. A small part of the flux linking
a winding may not link the other windings. In the two-winding transformer, this phenomenon
may be modeled with small inductors in series with the windings. In most isolated converters,
leakage inductance is a nonideality that leads to switching loss, increased peak transistor voltage,
and that degrades cross-regulation, but otherwise has no influence on basic converter operation.

There are several ways of incorporating transformer isolation into a dc–dc converter. The
full-bridge, half-bridge, forward, and push-pull converters are commonly used isolated versions
of the buck converter. Similar isolated variants of the boost converter are known. The flyback
converter is an isolated version of the buck–boost converter. These isolated converters, as well
as isolated versions of the SEPIC and the Ćuk converter, are discussed in this section.

6.3.1 Full-Bridge and Half-Bridge Isolated Buck Converters

The full-bridge transformer-isolated buck converter is sketched in Fig. 6.20a. A version contain-
ing a center-tapped secondary winding is shown; this circuit is commonly used in converters
producing low output voltages. The two halves of the center-tapped secondary winding may
be viewed as separate windings, and hence we can treat this circuit element as a three-winding
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Fig. 6.20 Full-bridge transformer-isolated buck converter: (a) schematic diagram, (b) replacement of
transformer with equivalent circuit model

transformer having turns ratio 1:n:n. When the transformer is replaced by the equivalent cir-
cuit model of Fig. 6.18b, the circuit of Fig. 6.20b is obtained. Typical waveforms are illustrated
in Fig. 6.21. The output portion of the converter is similar to the nonisolated buck converter—
compare the vs(t) and i(t) waveforms of Fig. 6.21 with Figs. 2.1b and 2.10.

During the first subinterval 0 < t < DT s, transistors Q1 and Q4 conduct, and the trans-
former primary voltage is vT = Vg. This positive voltage causes the magnetizing current iM(t)
to increase with a slope of Vg/LM . The voltage appearing across each half of the center-tapped
secondary winding is nVg, with the polarity mark at positive potential. Diode D5 is therefore
forward-biased, and D6 is reverse-biased. The voltage vs(t) is then equal to nVg, and the output
filter inductor current i(t) flows through diode D5.

Several transistor control schemes are possible for the second subinterval DT s < t < Ts.
In the most common scheme, all four transistors are switched off, and hence the transformer
voltage is vT = 0. Alternatively, transistors Q2 and Q4 could conduct, or transistors Q1 and Q3

could conduct. In any event, diodes D5 and D6 are both forward-biased during this subinterval;
each diode conducts approximately one-half of the output filter inductor current.

Actually, the diode currents iD5 and iD6 during the second subinterval are functions of both
the output inductor current and the transformer magnetizing current. In the ideal case (no mag-
netizing current), the transformer causes iD5(t) and iD6(t) to be equal in magnitude since, if
i′1(t) = 0, then niD5(t) = niD6(t). But the sum of the two diode currents is equal to the output
inductor current:

iD5(t) + iD6(t) = i(t) (6.20)



6.3 Transformer Isolation 183

Fig. 6.21 Waveforms of
the full-bridge transformer-
isolated buck converter
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Therefore, it must be true that iD5 = iD6 = 0.5i during the second subinterval. In practice, the
diode currents differ slightly from this result, because of the nonzero magnetizing current.

The ideal transformer currents in Fig. 6.20b obey

i′1(t) − niD5(t) + niD6(t) = 0 (6.21)

The node equation at the primary of the ideal transformer is

i1(t) = iM(t) + i′1(t) (6.22)

Elimination of i′1(t) from Eqs. (6.21) and (6.22) leads to

i1(t) − niD5(t) + niD6(t) = iM(t) (6.23)

Equations (6.23) and (6.20) describe, in the general case, the transformer winding currents
during the second subinterval. According to Eq. (6.23), the magnetizing current iM(t) may flow
through the primary winding, through one of the secondary windings, or it may divide between
all three of these windings. How the division occurs depends on the i–v characteristics of the
conducting transistors and diodes, and on the transformer leakage inductances. In the case where
i1 = 0, the solution to Eqs. (6.20) and (6.23) is
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iD5(t) =
1
2

i(t) − 1
2n

iM(t)

iD6(t) =
1
2

i(t) +
1
2n

iM(t)

(6.24)

Provided that iM 	 ni, then iD5 and iD6 are each approximately 0.5i.
The next switching period, Ts < t < 2Ts, proceeds in a similar manner, except that the trans-

former is excited with voltage of the opposite polarity. During Ts < t < (Ts + DT s), transistors
Q2 and Q3 and diode D6 conduct. The applied transformer primary voltage is vT = −Vg, which
causes the magnetizing current to decrease with slope −Vg/LM . The voltage vs(t) is equal to nVg,
and the output inductor current i(t) flows through diode D6. Diodes D5 and D6 again both con-
duct during (Ts + DT s) < t < 2Ts, with operation similar to subinterval 2 described previously.
It can be seen that the switching ripple in the output filter elements has frequency fs = 1/Ts.
However, the transformer waveforms have frequency 0.5 fs.

By application of the principle of inductor volt-second balance to the magnetizing induc-
tance, the average value of the transformer voltage vT (t) must be zero when the converter oper-
ates in steady state. During the first switching period, positive volt-seconds are applied to the
transformer, approximately equal to

[
Vg −

(
Q1 and Q4 forward voltage drops

)]
(Q1 and Q4 conduction time) (6.25)

During the next switching period, negative volt-seconds are applied to the transformer, given by

−
[
Vg −

(
Q2 and Q3 forward voltage drops

)]
(Q2 and Q3 conduction time) (6.26)

The net volt-seconds, that is, the sum of Eqs. (6.25) and (6.26), should equal zero. While the
full-bridge scheme causes this to be approximately true, in practice there exist imbalances such
as small differences in the transistor forward voltage drops or in the transistor switching times,
so that 〈vT 〉 is small but nonzero. In consequence, during every two switching periods there is a
net increase in the magnitude of the magnetizing current. This increase can cause the transistor
forward voltage drops to change such that small imbalances are compensated. However, if the
imbalances are too large, then the magnetizing current becomes large enough to saturate the
transformer.

Transformer saturation under steady-state conditions can be avoided by placing a capacitor
in series with the transformer primary. Imbalances then induce a dc voltage component across
the capacitor, rather than across the transformer primary. Another solution is the use of current-
programmed control, discussed in a later chapter. The series capacitor is omitted when current-
programmed control is used.

By application of the principle of volt-second balance to the output filter inductor L, the dc
load voltage must be equal to the dc component of vs(t):

V = 〈vs〉 (6.27)

By inspection of the vs(t) waveform in Fig. 6.21, 〈vs〉 = nDVg. Hence,

V = nDVg (6.28)
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So as in the buck converter, the output voltage can be controlled by variation of the transistor
duty cycle D. An additional increase or decrease of the voltage can be obtained via the physical
transformer turns ratio n. Equation (6.28) is valid for operation in the continuous conduction
mode; as in the nonisolated buck converter, the full-bridge and half-bridge converters can oper-
ate in discontinuous conduction mode at light load. The converter can operate over essentially
the entire range of duty cycles 0 ≤ D < 1.

Transistors Q1 and Q2 must not conduct simultaneously; doing so would short out the dc
source Vg, causing a shoot-through current spike. This transistor cross-conduction condition can
lead to low efficiency and transistor failure. Cross conduction can be prevented by introduction
of delay between the turn-off of one transistor and the turn-on of the next transistor. Diodes D1 to
D4 ensure that the peak transistor voltage is limited to the dc input voltage Vg, and also provide
a conduction path for the transformer magnetizing current at light load. Details of the switching
transitions of the full-bridge circuit are discussed further in a later chapter, in conjunction with
zero-voltage switching phenomena.

The full-bridge configuration is typically used in switching power supplies at power levels
of approximately 750 W and greater. It is usually not used at lower power levels because of its
high parts count—four transistors and their associated drive circuits are required. The utilization
of the transformer is good, leading to small transformer size. In particular, the utilization of the
transformer core is very good, since the transformer magnetizing current can be both positive
and negative. Hence, the entire core B–H loop can be used. However, in practice, the flux swing
is usually limited by core loss. The transformer primary winding is effectively utilized. But the
center-tapped secondary winding is not, since each half of the center-tapped winding transmits
power only during alternate switching periods. Also, the secondary winding currents during
subinterval 2 lead to winding power loss, but not to transmittal of energy to the load. Design of
the transformer of the full-bridge configuration is discussed in detail in a later chapter.

The half-bridge transformer-isolated buck converter is illustrated in Fig. 6.22. Typical wave-
forms are illustrated in Fig. 6.23. This circuit is similar to the full-bridge of Fig. 6.20a, except
transistors Q3 and Q4, and their antiparallel diodes, have been replaced with large-value ca-
pacitors Ca and Cb. By volt-second balance of the transformer magnetizing inductance, the dc
voltage across capacitor Cb is equal to the dc component of the voltage across transistor Q2, or
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Fig. 6.22 Half-bridge transformer-isolated buck converter
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Fig. 6.23 Waveforms of
the half-bridge transformer-
isolated buck converter
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0.5Vg. The transformer primary voltage vT (t) is then 0.5Vg when transistor Q1 conducts, and
−0.5Vg when transistor Q2 conducts. The magnitude of vT (t) is half as large as in the full-bridge
configuration, with the result that the output voltage is reduced by a factor of 0.5:

V = 0.5nDVg (6.29)

The factor of 0.5 can be compensated for by doubling the transformer turns ratio n. However,
this causes the transistor currents to double.

So the half-bridge configuration needs only two transistors rather than four, but these two
transistors must handle currents that are twice as large as those of the full-bridge circuit. In
consequence, the half-bridge configuration finds application at lower power levels, for which
transistors with sufficient current rating are readily available, and where low parts count is
important. Utilization of the transformer core and windings is essentially the same as in the
full-bridge, and the peak transistor voltage is clamped to the dc input voltage Vg by diodes D1

and D2. It is possible to omit capacitor Ca if desired. The current-programmed mode generally
does not work with half-bridge converters.
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Fig. 6.24 Single-transistor forward converter

6.3.2 Forward Converter

The forward converter is illustrated in Fig. 6.24. This transformer-isolated converter is based on
the buck converter. It requires a single transistor, and hence finds application at power levels
lower than those commonly encountered in the full-bridge and half-bridge configurations. Its
nonpulsating output current, shared with other buck-derived converters, makes the forward con-
verter well suited for applications involving high output currents. The maximum transistor duty
cycle is limited in value; for the common choice n1 = n2, the duty cycle is limited to the range
0 ≤ D < 0.5.

The transformer magnetizing current is reset to zero while the transistor is in the off state.
How this occurs can be understood by replacing the three-winding transformer in Fig. 6.24 with
the equivalent circuit of Fig. 6.18b. The resulting circuit is illustrated in Fig. 6.25, and typical
waveforms are given in Fig. 6.26. The magnetizing inductance LM , in conjunction with diode D1,
must operate in the discontinuous conduction mode. The output inductor L, in conjunction with
diode D3, may operate in either continuous or discontinuous conduction mode. The waveforms
of Fig. 6.26 are sketched for continuous mode operation of inductor L. During each switching
period, three subintervals then occur as illustrated in Fig. 6.27.

During subinterval 1, transistor Q1 conducts and the circuit of Fig. 6.27a is obtained. Diode
D2 becomes forward-biased, while diodes D1 and D3 are reverse-biased. Voltage Vg is applied to
the transformer primary winding, and hence the transformer magnetizing current iM(t) increases
with a slope of Vg/LM as illustrated in Fig. 6.26. The voltage across diode D3 is equal to Vg,
multiplied by the turns ratio n3/n1.

The second subinterval begins when transistor Q1 is switched off. The circuit of Fig. 6.27b is
then obtained. The transformer magnetizing current iM(t) at this instant is positive, and must con-
tinue to flow. Since transistor Q1 is off, the equivalent circuit model predicts that the magnetizing
current must flow into the primary of the ideal transformer. It can be seen that n1iM ampere-turns
flow out of the polarity mark of the primary winding. Hence, according to Eq. (6.16), an equal
number of total ampere-turns must flow into the polarity marks of the other windings. Diode D2

prevents current from flowing into the polarity mark of winding 3. Hence, the current iMn1/n2

must flow into the polarity mark of winding 2. So diode D1 becomes forward-biased, while
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Fig. 6.26 Waveforms of the
forward converter
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diode D2 is reverse-biased. Voltage Vg is applied to winding 2, and hence the voltage across the
magnetizing inductance is −Vgn1/n2, referred to winding 1. This negative voltage causes the
magnetizing current to decrease, with a slope of −Vgn1/n2LM . Since diode D2 is reverse-biased,
diode D3 must turn on to conduct the output inductor current i(t).
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Fig. 6.27 Forward converter circuit: (a) during subinterval 1, (b) during subinterval 2, (c) during subin-
terval 3

When the magnetizing current reaches zero, diode D1 becomes reverse-biased. Subinterval
3 then begins, and the circuit of Fig. 6.27c is obtained. Elements Q1, D1, and D2 operate in the
off state, and the magnetizing current remains at zero for the balance of the switching period.

By application of the principle of inductor volt-second balance to the transformer magnetiz-
ing inductance, the primary winding voltage v1(t) must have zero average. Referring to Fig. 6.26,
the average of v1(t) is given by

〈v1〉 = D(Vg) + D2(−Vg n1/n2) + D3(0) = 0 (6.30)
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Fig. 6.28 Magnetizing cur-
rent waveform, forward con-
verter: (a) DCM, D < 0.5;
(b) CCM, D > 0.5
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Solution for the duty cycle D2 yields

D2 =
n2

n1
D (6.31)

Note that the duty cycle D3 cannot be negative. But since D + D2 + D3 = 1, we can write

D3 = 1 − D − D2 ≥ 0 (6.32)

Substitution of Eq. (6.31) into Eq. (6.32) leads to

D3 = 1 − D

(
1 +

n2

n1

)
≥ 0 (6.33)

Solution for D then yields

D ≤ 1

1 +
n2

n1

(6.34)

So the maximum duty cycle is limited. For the common choice n1 = n2, the limit becomes

D ≤ 1
2 (6.35)

If this limit is violated, then the transistor off-time is insufficient to reset the transformer magne-
tizing current to zero before the end of the switching period. Transformer saturation may then
occur.

The transformer magnetizing current waveform iM(t) is illustrated in Fig. 6.28, for the typ-
ical case where n1 = n2. Figure 6.28a illustrates operation with D < 0.5. The magnetizing
inductance, in conjunction with diode D1, operates in the discontinuous conduction mode, and
iM(t) is reset to zero before the end of each switching period. Figure 6.28b illustrates what hap-
pens when the transistor duty cycle D is greater than 0.5. There is then no third subinterval, and
the magnetizing inductance operates in continuous conduction mode. Furthermore, subinterval
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2 is not long enough to reset the magnetizing current to zero. Hence, there is a net increase of
iM(t) over each switching period. Eventually, the magnetizing current will become large enough
to saturate the transformer.

The converter output voltage can be found by application of the principle of inductor volt-
second balance to inductor L. The voltage across inductor L must have zero dc component, and
therefore the dc output voltage V is equal to the dc component of diode D3 voltage vD3(t). The
waveform vD3(t) is illustrated in Fig. 6.26. It has an average value of

〈vD3〉 = V =
n3

n1
DVg (6.36)

This is the solution of the forward converter in the continuous conduction mode. The solution
is subject to the constraint given in Eq. (6.34).

It can be seen from Eq. (6.34) that the maximum duty cycle could be increased by decreasing
the turns ratio n2/n1. This would cause iM(t) to decrease more quickly during subinterval 2,
resetting the transformer faster. Unfortunately, this also increases the voltage stress applied
to transistor Q1. The maximum voltage applied to transistor Q1 occurs during subinterval 2;
solution of the circuit of Fig. 6.27b for this voltage yields

max
(
vQ1

)
= Vg

(
1 +

n1

n2

)
(6.37)

For the common choice n1 = n2, the voltage applied to the transistor during subinterval 2 is 2Vg.
In practice, a somewhat higher voltage is observed, due to ringing associated with the trans-
former leakage inductance. So decreasing the turns ratio n2/n1 allows increase of the maximum
transistor duty cycle, at the expense of increased transistor blocking voltage.

A two-transistor version of the forward converter is illustrated in Fig. 6.29. Transistors Q1

and Q2 are controlled by the same gate drive signal, such that they both conduct during subin-
terval 1, and are off during subintervals 2 and 3. The secondary side of the converter is identical
to the single-transistor forward converter; diode D3 conducts during subinterval 1, while diode
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Fig. 6.29 Two-transistor forward converter
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D4 conducts during subintervals 2 and 3. During subinterval 2, the magnetizing current iM(t)
forward-biases diodes D1 and D2. The transformer primary winding is then connected to Vg,
with polarity opposite to that of subinterval 1. The magnetizing current then decreases, with
slope −Vg/LM . When the magnetizing current reaches zero, diodes D1 and D2 become reverse-
biased. The magnetizing current then remains at zero for the balance of the switching period.
So operation of the two-transistor forward converter is similar to the single-transistor forward
converter, in which n1 = n2. The duty cycle is limited to D < 0.5. This converter has the ad-
vantage that the transistor peak blocking voltage is limited to Vg, and is clamped by diodes D1

and D2. Typical power levels of the two-transistor forward converter are similar to those of the
half-bridge configuration.

The utilization of the transformer of the forward converter is quite good. Since the trans-
former magnetizing current cannot be negative, only half of the core B–H loop can be used.
This would seemingly imply that the transformer cores of forward converters should be twice
as large as those of full- or half-bridge converters. However, in modern high-frequency convert-
ers, the flux swing is constrained by core loss rather than by the core material saturation flux
density. In consequence, the utilization of the transformer core of the forward converter can be
as good as in the full- or half-bridge configurations. Utilization of the primary and secondary
windings of the transformer is better than in the full-bridge, half-bridge, or push-pull configu-
rations, since the forward converter requires no center-tapped windings. During subinterval 1,
all of the available winding copper is used to transmit power to the load. Essentially no unnec-
essary current flows during subintervals 2 and 3. Typically, the magnetizing current is small
compared to the reflected load current, and has negligible effect on the transformer utilization.
So the transformer core and windings are effectively utilized in modern forward converters.

6.3.3 Push-Pull Isolated Buck Converter

The push-pull isolated buck converter is illustrated in Fig. 6.30. The secondary-side circuit is
identical with the full- and half-bridge converters, with identical waveforms. The primary-side
circuit contains a center-tapped winding. Transistor Q1 conducts for time DT s during the first
switching period. Transistor Q2 conducts for an identical length of time during the next switch-
ing period, such that volt-second balance is maintained across the transformer primary winding.
Converter waveforms are illustrated in Fig. 6.31. This converter can operate over the entire range
of duty cycles 0 ≤ D < 1. Its conversion ratio is given by

V = nDVg (6.38)
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Fig. 6.31 Waveforms of
the push-pull isolated buck
converter
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This converter is sometimes used in conjunction with low input voltages. It tends to exhibit
low primary-side conduction losses, since at any given instant only one transistor is connected
in series with the dc source Vg. The ability to operate with transistor duty cycles approaching
unity also allows the turns ratio n to be minimized, reducing the transistor currents.

The push-pull configuration is prone to transformer saturation problems. Since it cannot be
guaranteed that the forward voltage drops and conduction times of transistors Q1 and Q2 are
exactly equal, small imbalances can cause the dc component of voltage applied to the trans-
former primary to be nonzero. In consequence, during every two switching periods there is a
net increase in the magnitude of the magnetizing current. If this imbalance continues, then the
magnetizing current can eventually become large enough to saturate the transformer.

Current-programmed control can be employed to mitigate the transformer saturation prob-
lems. Operation of the push-pull converter using only duty-cycle control is not recommended.

Utilization of the transformer core material and secondary winding is similar to that for the
full-bridge converter. The flux and magnetizing current can be both positive and negative, and
therefore the entire B–H loop can be used, if desired. Since the primary and secondary windings
are both center-tapped, their utilization is suboptimal.
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6.3.4 Flyback Converter

The flyback converter is based on the buck–boost converter. Its derivation is illustrated in
Fig. 6.32. Figure 6.32a depicts the basic buck–boost converter, with the switch realized using
a MOSFET and diode. In Fig. 6.32b, the inductor winding is constructed using two wires, with
a 1:1 turns ratio. The basic function of the inductor is unchanged, and the parallel windings
are equivalent to a single winding constructed of larger wire. In Fig. 6.32c, the connections
between the two windings are broken. One winding is used while the transistor Q1 conducts,
while the other winding is used when diode D1 conducts. The total current in the two windings
is unchanged from the circuit of Fig. 6.32b; however, the current is now distributed between
the windings differently. The magnetic fields inside the inductor in both cases are identical.

Fig. 6.32 Derivation of the fly-
back converter: (a) buck–boost
converter; (b) inductor L is
wound with two parallel wires;
(c) inductor windings are iso-
lated, leading to the flyback con-
verter; (d) with a 1 : n turns ra-
tio and positive output
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Although the two-winding magnetic device is represented using the same symbol as the trans-
former, a more descriptive name is “two-winding inductor.” This device is sometimes also called
a flyback transformer. Unlike the ideal transformer, current does not flow simultaneously in
both windings of the flyback transformer. Figure 6.32d illustrates the usual configuration of the
flyback converter. The MOSFET source is connected to the primary-side ground, simplifying
the gate drive circuit. The transformer polarity marks are reversed, to obtain a positive output
voltage. A 1:n turns ratio is introduced; this allows better converter optimization.

Fig. 6.33 Flyback converter
circuit: (a) with transformer
equivalent circuit model, (b)
during subinterval 1, (c) during
subinterval 2
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The flyback converter may be analyzed by insertion of the model of Fig. 6.18b in place of the
flyback transformer. The circuit of Fig. 6.33a is then obtained. The magnetizing inductance LM

functions in the same manner as inductor L of the original buck–boost converter of Fig. 6.32a.
When transistor Q1 conducts, energy from the dc source Vg is stored in LM . When diode D1

conducts, this stored energy is transferred to the load, with the inductor voltage and current
scaled according to the 1:n turns ratio.
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Fig. 6.34 Flyback converter waveforms,
continuous conduction mode
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During subinterval 1, while transistor Q1 conducts, the converter circuit model reduces to
Fig. 6.33b. The inductor voltage vL, capacitor current iC , and dc source current ig are given by

vL = Vg

iC = −
v
R

(6.39)

ig = i

With the assumption that the converter operates in the continuous conduction mode, with small
inductor current ripple and small capacitor voltage ripple, the magnetizing current i and output
capacitor voltage v can be approximated by their dc components, I and V , respectively. Equation
(6.39) then becomes

vL = Vg

iC = −
V
R

(6.40)

ig = I

During the second subinterval, the transistor is in the off state, and the diode conducts. The
equivalent circuit of Fig. 6.33c is obtained. The primary-side magnetizing inductance voltage
vL, the capacitor current iC , and the dc source current ig for this subinterval are
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vL = −
v
n

iC =
i
n
− v

R
(6.41)

ig = 0

It is important to consistently define vL(t) on the same side of the transformer for all subintervals.
Upon making the small-ripple approximation, one obtains

vL = −
V
n

iC =
I
n
− V

R
(6.42)

ig = 0

The vL(t), iC(t), and ig(t) waveforms are sketched in Fig. 6.34 for continuous conduction mode
operation.

Application of the principle of volt-second balance to the primary-side magnetizing induc-
tance yields

〈vL〉 = D(Vg) + D′
(
−V

n

)
= 0 (6.43)

Solution for the conversion ratio then leads to

M(D) =
V
Vg
= n

D
D′

(6.44)

So the conversion ratio of the flyback converter is similar to that of the buck–boost converter,
but contains an added factor of n.

Application of the principle of charge balance to the output capacitor C leads to

〈iC〉 = D
(
−V

R

)
+ D′

( I
n
− V

R

)
= 0 (6.45)

Solution for I yields

I =
nV
D′R

(6.46)

This is the dc component of the magnetizing current, referred to the primary. The dc component
of the source current ig is

Ig = 〈ig〉 = D(I) + D′(0) (6.47)

An equivalent circuit that models the dc components of the flyback converter waveforms can
now be constructed. Circuits corresponding to the inductor loop equation (6.43) and to node
equations (6.45) and (6.47) are illustrated in Fig. 6.35a. By replacing the dependent sources
with ideal dc transformers, one obtains Fig. 6.35b. This is the dc equivalent circuit of the fly-
back converter. It contains a 1:D buck-type conversion ratio, followed by a D′ : 1 boost-type
conversion ratio, and an added factor of 1:n arising from the flyback transformer turns ratio. By
use of the method developed in Chap. 3, the model can be refined to account for losses and to
predict the converter efficiency. The flyback converter can also be operated in the discontinuous
conduction mode; analysis is left as a homework problem. The results are similar to the DCM
buck–boost converter results tabulated in Chap. 5, but are generalized to account for the turns
ratio 1:n.
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Fig. 6.35 Flyback converter equivalent circuit model, CCM: (a) circuits corresponding to Eqs. (6.43),
(6.45), and (6.47); (b) equivalent circuit containing ideal dc transformers

The flyback converter is commonly used at the 50 to 100 W power range, as well as in high-
voltage power supplies for televisions and computer monitors. It has the advantage of very low
parts count. Multiple outputs can be obtained using a minimum number of parts: each additional
output requires only an additional winding, diode, and capacitor. However, in comparison with
the full-bridge, half-bridge, or two-transistor forward converters, the flyback converter has the
disadvantages of high transistor voltage stress and poor cross-regulation. The peak transistor
voltage is equal to the dc input voltage Vg plus the reflected load voltage V/n; in practice, ad-
ditional voltage is observed due to ringing associated with the transformer leakage inductance.
Rigorous comparison of the utilization of the flyback transformer with the transformers of buck-
derived circuits is difficult because of the different functions performed by these elements. The
magnetizing current of the flyback transformer is unipolar, and hence no more than half of the
core material B–H loop can be utilized. The magnetizing current must contain a significant dc
component. Yet, the size of the flyback transformer is quite small in designs intended to oper-
ate in the discontinuous conduction mode. However, DCM operation leads to increased peak
currents in the transistor, diode, and filter capacitors. Continuous conduction mode designs re-
quire larger values of LM , and hence larger flyback transformers, but the peak currents in the
power-stage elements are lower.

6.3.5 Boost-Derived Isolated Converters

Transformer-isolated boost converters can be derived by inversion of the source and load of
buck-derived isolated converters. A number of configurations are known, and two of these are
briefly discussed here. These converters find some employment in high-voltage power supplies,
as well as in low-harmonic rectifier applications.

A full-bridge configuration is diagrammed in Fig. 6.36, and waveforms for the continuous
conduction mode are illustrated in Fig. 6.37. The circuit topologies during the first and second



6.3 Transformer Isolation 199

C R

+

v

L

D1

D2

1  :  n

:  n

i(t)

+

vT(t)+Vg

Q1

Q2

Q3

Q4

+  vL(t)

io(t)

Fig. 6.36 Full-bridge transformer-isolated boost converter
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Fig. 6.37 Waveforms of the transformer-isolated full-bridge boost converter, CCM
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Fig. 6.38 Push-pull isolated converters: (a) based on the boost converter, (b) based on the Watkins–
Johnson converter

subintervals are equivalent to those of the basic nonisolated boost converter, and when the turns
ratio is 1:1, the inductor current i(t) and output current io(t) waveforms are identical to the
inductor current and diode current waveforms of the nonisolated boost converter.

During subinterval 1, all four transistors operate in the on state. This connects the inductor
L across the dc input source Vg, and causes diodes D1 and D2 to be reverse-biased. The inductor
current i(t) increases with slope Vg/L, and energy is transferred from the dc source Vg to inductor
L. During the second subinterval, transistors Q2 and Q3 operate in the off state, so that inductor
L is connected via transistors Q1 and Q4 through the transformer and diode D1 to the dc output.
The next switching period is similar, except that during subinterval 2, transistors Q1 and Q4

operate in the off state, and inductor L is connected via transistors Q2 and Q3 through the
transformer and diode D2 to the dc output. If the transistor off-times and the diode forward drops
are identical, then the average transformer voltage is zero, and the net volt-seconds applied to
the transformer magnetizing inductance over two switching periods is zero.

Application of the principle of inductor volt-second balance to the inductor voltage wave-
form vL(t) yields

〈vL〉 = D(Vg) + D′
(
Vg −

V
n

)
= 0 (6.48)

Solution for the conversion ratio M(D) then leads to

M(D) =
V
Vg
=

n
D′

(6.49)
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This result is similar to the boost converter M(D), with an added factor of n due to the trans-
former turns ratio.

The transistors must block the reflected load voltage V/n = Vg/D′. In practice, additional
voltage is observed due to ringing associated with the transformer leakage inductance. Because
the instantaneous transistor current is limited by inductor L, saturation of the transformer due
to small imbalances in the semiconductor forward voltage drops or conduction times is not
catastrophic. Indeed, control schemes are known in which the transformer is purposely operated
in saturation during subinterval 1 [53, 55].

A push-pull configuration is depicted in Fig. 6.38a. This configuration requires only two
transistors, each of which must block voltage 2V/n. Operation is otherwise similar to that of
the full-bridge. During subinterval 1, both transistors conduct. During subinterval 2, one of the
transistors operates in the off state, and energy is transferred from the inductor through the
transformer and one of the diodes to the output. Transistors conduct during subinterval 2 during
alternate switching periods, such that transformer volt-second balance is maintained. A similar
push-pull version of the Watkins–Johnson converter, converter 6 of Fig. 6.15, is illustrated in
Fig. 6.38b.

6.3.6 Isolated Versions of the SEPIC and the Ćuk Converter

The artifice used to obtain isolation in the flyback converter can also be applied to the SEPIC
and inverse-SEPIC. Referring to Fig. 6.39a, inductor L2 can be realized using two windings,
leading to the isolated SEPIC of Fig. 6.39b. An equivalent circuit is given in Fig. 6.39c. It can
be seen that the magnetizing inductance performs the energy storage function of the original
inductor L2. In addition, the ideal transformer provides isolation and a turns ratio.

Typical primary and secondary winding current waveforms ip(t) and is(t) are portrayed in
Fig. 6.40, for the continuous conduction mode. The magnetic device must function as both a fly-
back transformer and also a conventional two-winding transformer. During subinterval 1, while
transistor Q1 conducts, the magnetizing current flows through the primary winding, and the sec-
ondary winding current is zero. During subinterval 2, while diode D1 conducts, the magnetizing
current flows through the secondary winding to the load. In addition, the input inductor current
i1 flows through the primary winding. This induces an additional component of secondary cur-
rent i1/n, which also flows to the load. So design of the SEPIC transformer is somewhat unusual,
and the rms winding currents are larger than those of the flyback transformer.

By application of the principle of volt-second balance to inductors L1 and LM , the conversion
ratio can be shown to be

M(D) =
V
Vg
=

nD
D′

(6.50)

Ideally, the transistor must block voltage Vg/D′. In practice, additional voltage is observed due
to ringing associated with the transformer leakage inductance.

An isolated version of the inverse-SEPIC is shown in Fig. 6.41. Operation and design of the
transformer is similar to that of the SEPIC.

Isolation in the Ćuk converter is obtained in a different manner [58]. The basic nonisolated
Ćuk converter is illustrated in Fig. 6.42a. In Fig. 6.42b, capacitor C1 is split into two series capac-
itors C1a and C1b. A transformer can now be inserted between these capacitors, as indicated in
Fig. 6.42c. The polarity marks have been reversed, so that a positive output voltage is obtained.
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Fig. 6.39 Obtaining isolation in the SEPIC: (a) basic nonisolated converter, (b) isolated SEPIC, (c) with
transformer equivalent circuit model

Having capacitors in series with the transformer primary and secondary windings ensures that
no dc voltage is applied to the transformer. The transformer functions in a conventional manner,
with small magnetizing current and negligible energy storage within the magnetizing induc-
tance.

Utilization of the transformer of the Ćuk converter is quite good. The magnetizing current
can be both positive and negative, and hence the entire core B–H loop can be utilized if desired.
There are no center-tapped windings, and all of the copper is effectively utilized. The transistor
must block voltage Vg/D′, plus some additional voltage due to ringing associated with the
transformer leakage inductance. The conversion ratio is identical to that of the isolated SEPIC,
Eq. (6.50).

The isolated SEPIC and Ćuk converter find application as switching power supplies, typi-
cally at power levels of several hundred watts. They also find use as ac–dc low-harmonic recti-
fiers.
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Fig. 6.40 Waveforms
of the isolated SEPIC,
continuous conduction
mode
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6.4 Summary of Key Points

1. The boost converter can be viewed as an inverse buck converter, while the buck–boost and
Ćuk converters arise from cascade connections of buck and boost converters. The properties
of these converters are consistent with their origins. Ac outputs can be obtained by differ-
ential connection of the load. An infinite number of converters are possible, and several are
listed in this chapter.

2. For understanding the operation of most converters containing transformers, the transformer
can be modeled as a magnetizing inductance in parallel with an ideal transformer. The mag-
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Fig. 6.42 Obtaining isolation in the Ćuk converter: (a) basic nonisolated Ćuk converter, (b) splitting
capacitor C1 into two series capacitors, (c) insertion of transformer between capacitors

netizing inductance must obey all of the usual rules for inductors, including the principle of
volt-second balance.

3. The steady-state behavior of transformer-isolated converters may be understood by first re-
placing the transformer with the magnetizing-inductance-plus-ideal-transformer equivalent
circuit. The techniques developed in the previous chapters can then be applied, including
use of inductor volt-second balance and capacitor charge balance to find dc currents and
voltages, use of equivalent circuits to model losses and efficiency, and analysis of the dis-
continuous conduction mode.

4. In the full-bridge, half-bridge, and push-pull isolated versions of the buck and/or boost con-
verters, the transformer frequency is twice the output ripple frequency. The transformer is
reset while it transfers energy: the applied voltage polarity alternates on successive switch-
ing periods.

5. In the conventional forward converter, the transformer is reset while the transistor is off.
The transformer magnetizing inductance operates in the discontinuous conduction mode,
and the maximum duty cycle is limited.

6. The flyback converter is based on the buck–boost converter. The flyback transformer is
actually a two-winding inductor, which stores and transfers energy.
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Problems

Fig. 6.43 Tapped-inductor boost con-
verter, Problem 6.1
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6.1 Tapped-inductor boost converter. The boost converter is sometimes modified as illustrated
in Fig. 6.43, to obtain a larger conversion ratio than would otherwise occur. The inductor
winding contains a total of (n1 + n2) turns. The transistor is connected to a tap placed n1

turns from the left side of the inductor, as shown. The tapped inductor can be viewed as a
two-winding (n1 : n2) transformer, in which the two windings are connected in series. The
inductance of the entire (n1 + n2) turn winding is L.
(a) Sketch an equivalent circuit model for the tapped inductor, which includes a mag-

netizing inductance and an ideal transformer. Label the values of the magnetizing
inductance and turns ratio.

(b) Determine an analytical expression for the conversion ratio M = V/Vg. You may
assume that the transistor, diode, tapped inductor, and capacitor are lossless. You may
also assume that the converter operates in continuous conduction mode.

(c) Sketch M(D) vs. D for n1 = n2, and compare to the nontapped (n2 = 0) case.
6.2 Analysis of the DCM flyback converter. The flyback converter of Fig. 6.32d operates in

the discontinuous conduction mode.
(a) Model the flyback transformer as a magnetizing inductance in parallel with an ideal

transformer, and sketch the converter circuits during the three subintervals.
(b) Derive the conditions for operation in discontinuous conduction mode.
(c) Solve the converter: derive expressions for the steady-state output voltage V and subin-

terval 2 (diode conduction interval) duty cycle D2.
6.3 Analysis of the isolated inverse-SEPIC of Fig. 6.41. You may assume that the converter

operates in the continuous conduction mode, and that all inductor current ripples and ca-
pacitor voltage ripples are small.
(a) Derive expressions for the dc components of the magnetizing current, inductor current,

and capacitor voltages.
(b) Derive analytical expressions for the rms values of the primary and secondary winding

currents. Note that these quantities do not simply scale by the turns ratio.
6.4 The two-transistor flyback converter. The converter of Fig. 6.44 is sometimes used when

the dc input voltage is high. Transistors Q1 and Q2 are driven with the same gating signal,
such that they turn on and off simultaneously with the same duty cycle D. Diodes D1 and
D2 ensure that the off-state voltages of the transistors do not exceed Vg. The converter
operates in discontinuous conduction mode. The magnetizing inductance, referred to the
primary side, is LM .
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Fig. 6.44 Two-transistor flyback
converter, Problem 6.4 +
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(a) Determine an analytical expression for the steady-state output voltage V .
(b) Over what range of duty cycles does the transformer reset properly? Explain.

6.5 A nonideal flyback converter. The flyback converter shown in Fig. 6.32d operates in the
continuous conduction mode. The MOSFET has on-resistance Ron, and the diode has a
constant forward voltage drop VD. The flyback transformer has primary winding resistance
Rp and secondary winding resistance Rs.

(a) Derive a complete steady-state equivalent circuit model, which is valid in the contin-
uous conduction mode, and which correctly models the loss elements listed above as
well as the converter input and output ports. Sketch your equivalent circuit.

(b) Derive an analytical expression for the converter efficiency.

6.6 A low-voltage computer power supply with synchronous rectification. The trend in digital
integrated circuits is towards lower power supply voltages. It is difficult to construct a high-
efficiency low-voltage power supply, because the conduction loss arising in the secondary-
side diodes becomes very large. The objective of this problem is to estimate how the
efficiency of a forward converter varies as the output voltage is reduced, and to investigate
the use of synchronous rectifiers.
The forward converter of Fig. 6.24 operates from a dc input of Vg = 325 V, and supplies
20 A to its dc load. Consider three cases: (i) V = 5 V, (ii) V = 3.3 V, and (iii) V = 1.5 V.
For each case, the turns ratio n3/n1 is chosen such that the converter produces the required
output voltage at a transistor duty cycle of D = 0.4. The MOSFET has on-resistance
Ron = 5Ω. The secondary-side Schottky diodes have forward voltage drops of VF = 0.5 V.
All other elements can be considered ideal.

(a) Derive an equivalent circuit for the forward converter, which models the semiconduc-
tor conduction losses described above.

(b) Solve your model for cases (i), (ii), and (iii) described above. For each case, determine
numerical values of the turns ratio n3/n1 and for the efficiency η.

(c) The secondary-side Schottky diodes are replaced by MOSFETs operating as syn-
chronous rectifiers. The MOSFETs each have an on-resistance of 4 mΩ. Determine
the new numerical values of the turns ratio n3/n1 and the efficiency η, for cases (i),
(ii), and (iii).

6.7 Rotation of switching cells. A network containing switches and reactive elements has ter-
minals a, b, and c, as illustrated in Fig. 6.45a. You are given that the relationship between
the terminal voltages is Vbc/Vac = μ(D).
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Fig. 6.45 Rotation of three-terminal switching cells, Problem 6.7

(a) Derive expressions for the source-to-load conversion ratio V/Vg = M(D), in terms of
μ(D), for the following three connection schemes:
(i) a-A b-B c-C

(ii) a-B b-C c-A
(iii) a-C b-A c-B

(b) Consider the three-terminal network of Fig. 6.45b. Determine μ(D) for this network.
Plug your answer into your results from part (a), to verify that the buck, boost, and
buck–boost converters are generated.

(c) Consider the three-terminal network of Fig. 6.45c. Determine μ(D) for this network.
Plug your answer into your results from part (a). What converters are generated?

6.8 Transformer-isolated current-sense circuit. It is often required that the current flowing in
a power transistor be sensed. A noninductive resistor R placed in series with the transistor
will produce a voltage v(t) that is proportional to the transistor drain current iD(t). Use of
a transformer allows isolation between the power transistor and the control circuit. The
transformer turns ratio also allows reduction of the current and power loss and increase
of the voltage of the resistor. This problem is concerned with design of the transformer-
isolated current-sense circuit of Fig. 6.46.
The transformer has a single-turn primary and an n-turn secondary winding. The transis-
tor switches on and off with duty cycle D and switching frequency fs. While the transistor
conducts, its current is essentially constant and is equal to I. Diodes D1 and D2 are conven-
tional silicon diodes having forward voltage drop VD. Diode DZ is a Zener diode, which
can be modeled as a voltage source of value VZ , with the polarity indicated in the fig-
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Fig. 6.46 Transformer-isolated circuit for sens-
ing the transistor switch current, Problem 6.8

1 : n

iD(t)
R

+

v(t)

D1

Dz

D2

Vz

+

Q1

ure. For a proper design, the circuit elements should be chosen such that the transformer
magnetizing current, in conjunction with diode D2, operates in discontinuous conduction
mode. In a good design, the magnetizing current is much smaller than the transistor current.
Three subintervals occur during each switching period: subinterval 1, in which Q1 and D1

conduct; subinterval 2, in which D2 and DZ conduct; subinterval 3, in which Q1, D1 and
D2 are off.

(a) Sketch the current-sense circuit, replacing the transformer and zener diode by their
equivalent circuits.

(b) Sketch the waveforms of the transistor current iD(t), the transformer magnetizing cur-
rent iM(t), the primary winding voltage, and the voltage v(t). Label salient features.

(c) Determine the conditions on the Zener voltage VZ that ensure that the transformer
magnetizing current is reset to zero before the end of the switching period.

(d) You are given the following specifications:
Switching frequency fs = 100 kHz
Transistor duty cycle D ≤ 0.75
Transistor peak current max iD(t) ≤ 25 A

The output voltage v(t) should equal 5 V when the transistor current is 25 A. To avoid
saturating the transformer core, the volt-seconds applied to the single-turn primary
winding while the transistor conducts should be no greater than 2 volt-μsec. The sili-
con diode forward voltage drops are VD = 0.7 V.
Design the circuit: select values of R, n, and VZ .

6.9 Optimal reset of the forward converter transformer. As illustrated in Fig. 6.47, it is possible
to reset the transformer of the forward converter using a voltage source other than the dc
input Vg; several such schemes appear in the literature. By optimally choosing the value of
the reset voltage Vr, the peak voltage stresses imposed on transistor Q1 and diode D2 can
be reduced. The maximum duty cycle can also be increased, leading to a lower transformer
turns ratio and lower transistor current. The resulting improvement in converter cost and
efficiency can be significant when the dc input voltage varies over a wide range.

(a) As a function of Vg, the transistor duty cycle D, and the transformer turns ratios, what
is the minimum value of Vr that causes the transformer magnetizing current to be reset
to zero by the end of the switching period?

(b) For your choice of Vr from part (a), what is the peak voltage imposed on transistor
Q1?
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Fig. 6.47 Forward converter with auxiliary reset winding, Problem 6.9

This converter is to be used in a universal-input off-line application, with the following
specifications. The input voltage Vg can vary between 127 and 380 V. The load voltage is
regulated by variation of the duty cycle, and is equal to 12 V. The load power is 480 W.

(c) Choose the turns ratio n3/n1 such that the total active switch stress is minimized. For
your choice of n3/n1, over what range will the duty cycle vary? What is the peak
transistor current?

(d) Compare your design of Part (c) with the conventional scheme in which n1 = n2 and
Vr = Vg. Compare the worst-case peak transistor voltage and peak transistor current.

(e) Suggest a way to implement the voltage source Vr. Give a schematic of the power
stage components of your implementation. Use a few sentences to describe the control-
circuit functions required by your implementation, if any.

L1

C1 R

+Vg

1

2C2 LM

1 : n

1

2

Fig. 6.48 Forward converter of Problem 6.10

6.10 In the converter illustrated in Fig. 6.48, the transformer has magnetizing inductance LM

referred to the primary side, and has turns ratio 1 : n. It is desired that all elements operate
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in the continuous conduction mode (CCM) over the range 0 ≤ D < 1. This mode is
defined as follows: each switching period contains two subintervals numbered 1 and 2; in
the schematic illustrated in Fig. 6.48, switches labeled “1” conduct during subinterval 1
for time DTs, and switches labeled “2” conduct during subinterval 2 for time (1 − D)Ts.

(a) Solve the converter in steady state, to find the dc components of both capacitor volt-
ages and both inductor currents.

(b) Sketch both capacitor voltage waveforms and both inductor current waveforms, in-
cluding dc components and ripples.

(c) Show how to realize the switches using BJTs and diodes, so that the converter operates
in CCM over the range 0 ≤ D < 1.

(d) Does the transformer reset properly (i.e., do the volt-seconds balance on LM) for
D > 0.5? Explain.

6.11 A flyback converter with core loss and diode reverse recovery

+
–

LM

+

V

–

Vg

Q1

D11:n

C

Fig. 6.49 Flyback converter
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i1'(t)

LM

iM(t)

RM

Flyback transformer model

Fig. 6.50 Transformer equivalent circuit model, with core loss modeled by element RM

A flyback converter is illustrated in Fig. 6.49. This converter operates in continuous con-
duction mode. The following two loss mechanisms are significant in this converter: diode
reverse recovery, and transformer core loss. All other loss mechanisms can be ignored.
• The silicon diode D1 has reverse recovery time tr and recovered charge Qr. You may

model these parameters as being independent of current.
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• The transformer core loss may be modeled using a resistor RM in parallel with the
magnetizing inductance LM . This leads to the transformer equivalent circuit illustrated
in Fig. 6.50.

(a) Derive a dc equivalent circuit model for this converter. Your model should include the
effects of the diode reverse-recovery process and the transformer core loss.

(b) Derive an expression for the converter efficiency. It is not necessary to eliminate Vg,
V , and IM from your answer to this part.

(c) The element values are Vg = 24 V, fs = 100 kHz,R = 15 Ω,D = 0.4, n = 2,RM =

240 Ω,Qr = 0.75 μCoul, tr = 75 nsec. Compute the efficiency and the output voltage.

6.12 Design of a multiple-output dc–dc flyback converter. For this problem, you may neglect all
losses and transformer leakage inductances. It is desired that the three-output flyback con-
verter shown in Fig. 6.51 operates in the discontinuous conduction mode, with a switching
frequency of fs = 100 kHz. The nominal operating conditions are given in the diagram,
and you may that there are no variations in the input voltage or the load currents. Select
D3 = 0.1 (the duty cycle of subinterval 3, in which all semiconductors are off). The objec-
tive of this problem is to find a good steady-state design, in which the semiconductor peak
blocking voltages and peak currents are reasonably low.

+

i1

Vg

165 V dc

+15 V
1 A

0.5 A

+5 V
4 A

np : n1

: n2

: n3

i2

i3

ip

Fig. 6.51 Three-output flyback converter design, Problem 6.12

(a) It is possible to find a design in which the transistor peak blocking voltage is less than
300 V, and the peak diode blocking voltages are all less than 35 V, under steady-state
conditions. Design the converter such that this is true. Specify: (i) the transistor duty
cycle D, (ii) the magnetizing inductance LM , referred to the primary, (iii) the turns
ratios n1/np and n3/np.

(b) For your design of part (a), determine the rms currents of the four windings. Note that
they do not simply scale by the turns ratios.
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Converter Dynamics and Control
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AC Equivalent Circuit Modeling

7.1 Introduction

Converter systems invariably require feedback. For example, in a typical dc–dc converter appli-
cation, the output voltage v(t) must be kept constant, regardless of changes in the input voltage
vg(t) or in the effective load resistance R. This is accomplished by building a circuit that varies
the converter control input [i.e., the duty cycle d(t)] in such a way that the output voltage v(t)
is regulated to be equal to a desired reference value vre f . In inverter systems, a feedback loop
causes the output voltage to follow a sinusoidal reference voltage. In modern low-harmonic
rectifier systems, a control system causes the converter input current to be proportional to the
input voltage, such that the input port presents a resistive load to the ac source. So feedback is
commonly employed.

A typical dc–dc system incorporating a buck converter and feedback loop block diagram is
illustrated in Fig. 7.1. It is desired to design this feedback system in such a way that the output
voltage is accurately regulated, and is insensitive to disturbances in vg(t) or in the load current.
In addition, the feedback system should be stable, and properties such as transient overshoot,
settling time, and steady-state regulation should meet specifications. The ac modeling and de-
sign of converters and their control systems such as Fig. 7.1 is the subject of Part II of this
book.

To design the system of Fig. 7.1, we need a dynamic model of the switching converter. How
do variations in the power input voltage, the load current, or the duty cycle affect the output
voltage? What are the small-signal transfer functions? To answer these questions, we will extend
the steady-state models developed in Chaps. 2 and 3 to include the dynamics introduced by the
inductors and capacitors of the converter. Dynamics of converters operating in the continuous
conduction mode can be modeled using techniques quite similar to those of Chaps. 2 and 3; the
resulting ac equivalent circuits bear a strong resemblance to the dc equivalent circuits derived
in Chap. 3.

Modeling is the representation of physical phenomena by mathematical means. In engineer-
ing, it is desired to model the important dominant behavior of a system, while neglecting other
insignificant phenomena. Simplified terminal equations of the component elements are used,
and many aspects of the system response are neglected altogether, that is, they are “unmodeled.”
The resulting simplified model yields physical insight into the system behavior, which aids the
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R. W. Erickson, D. Maksimović, Fundamentals of Power Electronics,
https://doi.org/10.1007/978-3-030-43881-4_7

215

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43881-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-43881-4_7


216 7 AC Equivalent Circuit Modeling

+

+

v(t)vg(t)

Switching converterPower
input

Load

+

R

Compensator

Gc(s)

vref
Voltage
reference

v

Feedback
connection

Pulse-width
modulator

vc

Transistor
gate driver

c(t)

c(t)

TsdTs t t

vc(t)

Controller

Fig. 7.1 A simple dc–dc regulator system, including a buck converter power stage and a feedback net-
work

engineer in designing the system to operate in a given specified manner. Thus, the modeling pro-
cess involves use of approximations to neglect small but complicating phenomena, in an attempt
to understand what is most important. Once this basic insight is gained, it may be desirable to
carefully refine the model, by accounting for some of the previously ignored phenomena. It is
a fact of life that real, physical systems are complex, and their detailed analysis can easily lead
to an intractable and useless mathematical mess. Approximate models are an important tool for
gaining understanding and physical insight.

As discussed in Chap. 2, the switching ripple is small in a well-designed converter operating
in continuous conduction mode (CCM). Hence, we should ignore the switching ripple, and
model only the underlying ac variations in the converter waveforms. For example, suppose that
some ac variation is introduced into the control signal vc(t), such that

vc(t) = Vc + Vcm cosωmt (7.1)

where Vc and Vcm are constants, |Vcm| 	 Vc, and the modulation frequency ωm is much smaller
than the converter switching frequency ωS = 2π fs. This control signal is fed into a pulse-width
modulator (PWM) that generates a gate drive signal having switching frequency fs = 1/Ts and
whose duty cycle during each switching period depends on the control signal vc(t) applied dur-
ing that period. The resulting transistor gate drive signal is illustrated in Fig. 7.2a, and typical
buck–boost converter inductor current and output voltage waveforms iL(t) and v(t) are illustrated
in Fig. 7.2b. The spectrum of v(t) is illustrated in Fig. 7.3. This spectrum contains components
at the switching frequency as well as its harmonics and sidebands; these components are small
in magnitude if the switching ripple is small. In addition, the spectrum contains a low-frequency
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Fig. 7.2 Ac variation of the converter signals: (a) control signal vc(t) and transistor gate drive logic signal,
in which the duty cycle varies slowly; (b) the resulting inductor current waveform; (c) the resulting output
voltage waveform. Both the actual waveforms iL(t) and v(t), as well as their averaged, low-frequency
components 〈iL(t)〉Ts and 〈v(t)〉Ts are illustrated
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Fig. 7.3 Spectrum of the output voltage waveform v(t) of Fig. 7.2

component at the modulation frequency ωm. The magnitude and phase of this component de-
pend not only on the control signal and duty-cycle variation, but also on the frequency response
of the converter. If we neglect the switching ripple, then this low-frequency component remains
[also illustrated in Fig. 7.2c]. The objective of our ac modeling efforts is to predict this low-
frequency component.
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A simple method for deriving the small-signal model of CCM converters is explained in
Sect. 7.2. The switching ripples in the inductor current and capacitor voltage waveforms are
removed by averaging over one switching period. Hence, the low-frequency components of the
inductor and capacitor waveforms are modeled by equations of the form

L
d〈iL(t)〉Ts

dt
= 〈vL(t)〉Ts

C
d〈vC(t)〉Ts

dt
= 〈iC(t)〉Ts (7.2)

where 〈x(t)〉Ts denotes the average of x(t) over an interval of length Ts:

〈x(t)〉Ts =
1
Ts

∫ t+Ts/2

t−Ts/2
x(τ)dτ (7.3)

So we will employ the basic approximation of removing the high-frequency switching ripple by
averaging over one switching period. Yet the average value is allowed to vary from one switch-
ing period to the next, such that low-frequency variations are modeled. In effect, the “moving
average” of Eq. (7.3) constitutes low-pass filtering of the waveform. A few of the numerous
references on averaged modeling of switching converters are listed at the end of this chapter
[15–17, 46, 61–76].

Note that the principles of inductor volt-second balance and capacitor charge balance pre-
dict that the right-hand sides of Eqs. (7.2) are zero when the converter operates in equilibrium.
Equations (7.2) describe how the inductor currents and capacitor voltages change when nonzero
average inductor voltage and capacitor current are applied over a switching period.

The averaged inductor voltage and capacitor currents of Eq. (7.2) are, in general, nonlin-
ear functions of the signals in the converter, and hence Eqs. (7.2) constitute a set of nonlinear
differential equations. Indeed, the spectrum in Fig. 7.3 also contains harmonics of the modula-
tion frequency ωm. In most converters, these harmonics become significant in magnitude as the
modulation frequency ωm approaches the switching frequency ωs, or as the modulation am-
plitude Dm approaches the quiescent duty cycle D. Nonlinear elements are not uncommon in
electrical engineering; indeed, all semiconductor devices exhibit nonlinear behavior. To obtain
a linear model that is easier to analyze, we usually construct a small-signal model that has been
linearized about a quiescent operating point, in which the harmonics of the modulation or exci-
tation frequency are neglected. As an example, Fig. 7.4 illustrates linearization of the familiar
diode i–v characteristic shown in Fig. 7.4b. Suppose that the diode current i(t) has a quiescent
(dc) value I and a signal component î(t). As a result, the voltage v(t) across the diode has a
quiescent value V and a signal component v̂(t). If the signal components are small compared to
the quiescent values,

| v̂ | 	 |V |, | î | 	 | I | (7.4)

then the relationship between v̂(t) and î(t) is approximately linear, v̂(t) = rDî(t). The conductance
1/rD represents the slope of the diode characteristic, evaluated at the quiescent operating point.
The small-signal equivalent circuit model of Fig. 7.4c describes the diode behavior for small
variations around the quiescent operating point.

An example of a nonlinear converter characteristic is the dependence of the steady-state
output voltage V of the buck–boost converter on the duty cycle D, illustrated in Fig. 7.5. Suppose
that the converter operates with some dc output voltage, say, V = −Vg, corresponding to a
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Fig. 7.4 Small-signal equivalent circuit modeling of the diode: (a) a nonlinear diode conducting current i;
(b) linearization of the diode characteristic around a quiescent operating point; (c) a linearized small-signal
model

Fig. 7.5 Linearization of the static
control-to-output characteristic of the
buck–boost converter about the quiescent
operating point D = 0.5

quiescent duty cycle of D = 0.5. Duty-cycle variations d̂ about this quiescent value will excite
variations v̂ in the output voltage. If the magnitude of the duty-cycle variation is sufficiently
small, then we can compute the resulting output voltage variations by linearizing the curve. The
slope of the linearized characteristic in Fig. 7.5 is chosen to be equal to the slope of the actual
nonlinear characteristic at the quiescent operating point; this slope is the dc control-to-output
gain of the converter. The linearized and nonlinear characteristics are approximately equal in
value provided that the duty-cycle variations d̂ are sufficiently small.

Although it illustrates the process of small-signal linearization, the buck–boost example of
Fig. 7.5 is oversimplified. The inductors and capacitors of the converter cause the gain to exhibit
a frequency response. To correctly predict the poles and zeroes of the small-signal transfer
functions, we must linearize the converter averaged differential equations, Eqs. (7.2). This is
done in Sect. 7.2. A small-signal ac equivalent circuit can then be constructed using the methods
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Fig. 7.6 Small-signal ac equivalent circuit model of the buck–boost converter

developed in Chap. 3. The resulting small-signal model of the buck–boost converter is illustrated
in Fig. 7.6; this model can be solved using conventional circuit analysis techniques, to find the
small-signal transfer functions, output impedance, and other frequency-dependent properties. In
systems such as Fig. 6.51, the equivalent circuit model can be inserted in place of the converter.
When small-signal models of the other system elements (such as the pulse-width modulator)
are inserted, then a complete linearized system model is obtained. This model can be analyzed
using standard linear techniques, such as the Laplace transform, to gain insight into the behavior
and properties of the system.

Two well-known variants of the ac modeling method, state-space averaging and circuit av-
eraging, are explained in Sect. 7.5 and Chap. 14. An extension of circuit averaging, known
as averaged switch modeling, is also discussed in Chap. 14. Since the switches are the only
elements that introduce switching harmonics, equivalent circuit models can be derived by av-
eraging only the switch waveforms. The converter models suitable for analysis or simulation
are obtained simply by replacing the switches with the averaged switch model. The averaged
switch modeling technique can be extended to other modes of operation such as the discontinu-
ous conduction mode, as well as to current-programmed control and to resonant converters. In
Sect. 7.4, it is shown that the small-signal model of any dc–dc pulse-width modulated CCM
converter can be written in a standard form. Called the canonical model, this equivalent cir-
cuit describes the basic physical functions that any of these converters must perform. A simple
model of the pulse-width modulator circuit is described in Sect. 7.3.

These models are useless if you do not know how to apply them. So in Chap. 8, the frequency
response of converters is explored, in a design-oriented and detailed manner. Small-signal trans-
fer functions of the basic converters are tabulated. Bode plots of converter transfer functions
and impedances are derived in a simple, approximate manner, which allows insight to be gained
into the origins of the frequency response of complex converter systems.

These results are used to design converter control systems in Chap. 9 and input filters in
Chap. 17. The modeling techniques are extended in Chaps. 15 and 18 to cover the discontinuous
conduction mode and the current-programmed mode.

7.2 The Basic AC Modeling Approach

In this section, the steps in derivation of the small-signal ac model of a PWM converter are
derived and explained. The key steps are: (a) development of the equations relating the low-
frequency averages of the inductor and capacitor waveforms, with use of a dynamic version
of the small-ripple approximation, (b) perturbation and linearization of the averaged equations,
and (c) construction of an ac equivalent circuit model.
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Fig. 7.8 Buck–boost converter circuit: (a) when the switch is in position 1, (b) when the switch is in
position 2

The buck–boost converter of Fig. 7.7 is employed as an example. The analysis begins as
usual, by determination of the voltage and current waveforms of the inductor and capacitor.
When the switch is in position 1, the circuit of Fig. 7.8a is obtained. The inductor voltage and
capacitor current are

vL(t) = L
di(t)
dt
= vg(t) (7.5)

iC(t) = C
dv(t)

dt
= −v(t)

R
(7.6)

With the switch in position 2, the circuit of Fig. 7.8b is obtained. Its inductor voltage and capac-
itor current are

vL(t) = L
di(t)
dt
= v(t) (7.7)

iC(t) = C
dv(t)

dt
= −i(t) − v(t)

R
(7.8)

7.2.1 Averaging the Inductor and Capacitor Waveforms

We first derive the equation that governs how the averaged components of the inductor wave-
forms evolve with time. We know that the instantaneous inductor current and voltage are related
by the definition

L
di(t)
dt
= vL(t) (7.9)

Is there a similar relationship between the averages of the inductor voltage and current? Let us
compute the derivative of the average inductor current:
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d〈i(t)〉Ts

dt
=

d
dt

[
1
Ts

∫ t+Ts/2

t−Ts/2
i(τ)dτ

]
(7.10)

On the right side of this equation, we can interchange the order of differentiation and integration
because the inductor current is continuous, and because its derivative vL(t)/L has a finite number
of discontinuities over the period of integration. Hence, the above equation becomes

d〈i(t)〉Ts

dt
=

1
Ts

∫ t+Ts/2

t−Ts/2

d i(τ)
dτ

dτ (7.11)

Finally, we can use Eq. (7.9) to replace di(τ)/dτ with vL(τ):

d〈i(t)〉Ts

dt
=

1
Ts

∫ t+Ts/2

t−Ts/2

vL(τ)
L

dτ (7.12)

This can be rearranged to obtain

L
d〈i(t)〉Ts

dt
= 〈vL(t)〉Ts (7.13)

This result shows that average components of the inductor voltage and current follow the same
defining equation (7.9), with no change in L and no additional terms.

We can employ a similar analysis to find the relationship between the average components
of a capacitor voltage and current, with the following result:

C
d〈v(t)〉Ts

dt
= 〈iC(t)〉Ts (7.14)

We next need to evaluate the right sides of the above two equations, by averaging the inductor
voltage and capacitor current waveforms.

7.2.2 The Average Inductor Voltage and the Small-Ripple Approximation

The inductor voltage and current waveforms for the buck–boost converter example are illus-
trated in Fig. 7.9. It is desired to compute the average inductor voltage 〈vL(t)〉Ts at some arbi-
trary time t. As illustrated in Fig. 7.9, the averaging interval extends over the interval beginning
at t− Ts/2 and ending at t+ Ts/2. For the example time illustrated, there is an interval of length
dTs in which the inductor voltage is vL = vg, and there are two intervals of total length d′Ts in
which the inductor voltage is vL = v.

We now make the small-ripple approximation. But rather than replacing vg(t), v(t), and i(t)
with their dc components Vg, V and I as in Chap. 2, we now replace them with their low-
frequency averaged values 〈vg(t)〉Ts , 〈v(t)〉Ts , and 〈i(t)〉Ts , defined by Eq. (7.3). It is important to
note that it is valid to apply the small-ripple approximation only to quantities that actually have
small ripple and are nonpulsating; hence, we apply this approximation to the inductor currents,
capacitor voltages, and independent sources that indeed have small ripple and are continuous
functions of time.

The usefulness of the small-ripple approximation here is that we ignore the changes in these
quantities during one switching period or during the averaging interval (t−Ts/2, t+Ts/2). As in
the steady-state case, the small-ripple approximation considerably simplifies the mathematics.
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Fig. 7.9 Mechanics of evaluating the
average inductor waveforms at some ar-
bitrary time t: averaging the inductor
voltage vL(t) and the inductor current i(t)
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This approximation is valid provided that the natural frequencies of the circuit are sufficiently
slower than the switching frequency, so that the ripples in the actual inductor current and capac-
itor voltage waveforms are indeed small.

With the small-ripple approximation, we can express the inductor voltage for the subinterval
of length dTs [Eq. (7.5)] as

vL(t) = L
di(t)
dt
≈ 〈vg(t)〉Ts (7.15)

In a similar manner, for the remaining subintervals of total length d′Ts [Eq. (7.7)], we can ex-
press the inductor voltage as

vL(t) = L
di(t)
dt
≈ 〈v(t)〉Ts (7.16)

The average inductor voltage is therefore

〈vL(t)〉Ts =
1
Ts

∫ t+Ts/2

t−Ts/2
vL(τ) dτ ≈ d(t)〈vg(t)〉Ts + d′(t)〈v(t)〉Ts (7.17)

Insertion of this expression into Eq. (7.13) leads to

L
d〈i(t)〉Ts

dt
= d(t)〈vg(t)〉Ts + d′(t)〈v(t)〉Ts (7.18)

This equation describes how the low-frequency components of the inductor current vary with
time, and is the desired result.

7.2.3 Discussion of the Averaging Approximation

The averaging operator, Eq. (7.3), is repeated below:

〈x(t)〉Ts =
1
Ts

∫ t+Ts/2

t−Ts/2
x(τ)dτ (7.19)
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Averaging is an artifice that facilitates the derivation of tractable equations describing the low-
frequency dynamics of the switching converter. It removes the waveform components at the
switching frequency and its harmonics, while preserving the magnitude and phase of the wave-
form low-frequency components. In this chapter, we replace the converter waveforms by their
averages, to find models that describe the dynamic properties of switching converters operating
in the continuous conduction mode. In later chapters of this text, this averaging operator is em-
ployed in other situations such as the discontinuous conduction mode or current-programmed
control.

Figure 7.2 illustrates the inductor current and voltage waveforms of a buck–boost converter
in which the duty cycle is varied sinusoidally. The waveform averages as computed by Eq. (7.19)
are superimposed. It can be seen that the 〈i(t)〉Ts waveform indeed passes through the center of
the actual i(t) waveform. Additionally, an increase in 〈vL(t)〉Ts causes an increase in the slope of
〈i(t)〉Ts , as predicted by Eq. (7.13).

The averaging operator of Eq. (7.19) is a transformation that effectively performs a low-
pass function to remove the switching ripple. Indeed, we can take the Laplace transformation
of Eq. (7.19) to obtain:

〈x(s)〉Ts = Gav(s)x(s) (7.20)

It can be shown that Gav(s) is given by

Gav(s) =
esTs/2 − e−sTs/2

sTs
(7.21)

We can compute the effect of the averaging operator on a sinusoid of angular frequency ω by
letting s = jω in the above equation. The transfer function Gav then becomes

Gav( jω) =
e jωTs/2 − e− jωTs/2

jωTs
=

sin(ωTs/2)
ωTs/2

(7.22)

Figure 7.10 contains a plot of the magnitude (expressed in decibels) of Eq. 7.22 vs. frequency
(for more information on frequency response plots, see Sect. 8.1). The averaging operator ex-
hibits a low-frequency gain of 1 (or 0 dB), and a gain of zero (or −∞ dB) at the switching
frequency fs and its harmonics. Equation (7.22) is purely real, and exhibits zero phase shift for
frequencies less than the switching frequency. Thus, the averaging operator preserves the magni-
tude and phase of the low-frequency components of the waveform, while removing components
at the switching frequency and its harmonics.

For frequencies f greater than approximately fs/3, Fig. 7.10 exhibits substantial attenuation.
This suggests that averaged models may not accurately predict transient responses at higher
frequencies. The high-frequency dynamics of the discontinuous conduction mode is an example
of this behavior, and is discussed further in Sect. 15.5.

Unlike the steady-state analyses of Chaps. 2 and 3, Fig. 7.9 is sketched at an arbitrary time
t, with an averaging interval that does not necessarily begin when the transistor is switched
on. This rigorous definition of averaging is important when modeling high-bandwidth control
schemes such as the current-programmed mode of Chap. 18. The choice of averaging interval
extending from (t − Ts/2) to (t + Ts/2) preserves the phase of the waveform, and therefore
correctly predicts the behavior of current-programmed converters. It should also be noted that
computing the average by integrating one half-cycle into the future [i.e., to (t + Ts/2)] does not
violate any physical causality constraint, because this is merely a modeling artifice that is not
implemented in a physical circuit.
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Fig. 7.10 Frequency response of the averaging operator: ‖Gav( jω) ‖ given by Eq. (7.22)

We may also note that the result of Eq. (7.18) can be derived without such rigor. For deriva-
tion of continuous-time models of the continuous conduction mode, the same result is obtained
regardless of whether the averaging interval begins at (t − Ts/2) or at the instant when the
transistor is switched on. For the remainder of this textbook, we will continue to employ the
simpler arguments begun in Chap. 2, in which the averaging interval begins when the transistor
is switched on. In later chapters, the more rigorous treatment will be employed when necessary,
such as when modeling the high-frequency dynamics of current-programmed control.

7.2.4 Averaging the Capacitor Waveforms

A similar procedure leads to the capacitor dynamic equation. The capacitor voltage and current
waveforms are sketched in Fig. 7.11. When the switch is in position 1, the capacitor current is
given by

iC(t) = C
dv(t)

dt
= −v(t)

R
≈ −
〈v(t)〉Ts

R
(7.23)

With the switch in position 2, the capacitor current is

iC(t) = C
dv(t)

dt
= −i(t) − v(t)

R
≈ − 〈i(t)〉Ts

−
〈v(t)〉Ts

R
(7.24)

The average capacitor current can be found by averaging Eqs. (7.23) and (7.24); the result is

〈iC(t)〉Ts = d(t)

(
−
〈v(t)〉Ts

R

)
+ d′(t)

(
−〈i(t)〉Ts −

〈v(t)〉Ts

R

)
(7.25)

Upon inserting this equation into Eq. (7.2) and collecting terms, one obtains
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Fig. 7.11 Buck–boost converter wave-
forms: (a) capacitor current, (b) capaci-
tor voltage
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C

C
d〈v(t)〉Ts

dt
= −d′(t) 〈i(t)〉Ts −

〈v(t)〉Ts

R
(7.26)

This is the basic averaged equation which describes dc and low-frequency ac variations in the
capacitor voltage.

7.2.5 The Average Input Current

In Chap. 3, it was found to be necessary to write an additional equation that models the dc
component of the converter input current. This allowed the input port of the converter to be
modeled by the dc equivalent circuit. A similar procedure must be followed here, so that low-
frequency variations at the converter input port are modeled by the ac equivalent circuit.

For the buck–boost converter example, the current ig(t) drawn by the converter from the
input source is equal to the inductor current i(t) during the first subinterval, and zero during the
second subinterval. By neglecting the inductor current ripple and replacing i(t) with its averaged
value 〈i(t)〉TS , we can express the input current as follows:

ig(t) =

{
〈i(t)〉Ts during subinterval 1

0 during subinterval 2
(7.27)

The input current waveform is illustrated in Fig. 7.12. Upon averaging over one switching pe-
riod, one obtains

Fig. 7.12 Buck–boost converter wave-
forms: input source current ig(t)
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0
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〈ig(t)〉Ts = d(t)〈i(t)〉Ts (7.28)

This is the basic averaged equation which describes dc and low-frequency ac variations in the
converter input current.

7.2.6 Perturbation and Linearization

The buck–boost converter averaged equations, Eqs. (7.18), (7.26), and (7.28), are collected be-
low:

L
d〈i(t)〉TS

dt
= d(t)〈vg(t)〉Ts + d′(t)〈v(t)〉TS

C
d〈v(t)〉TS

dt
= −d′(t)〈i(t)〉Ts −

〈v(t)〉Ts

R
(7.29)

〈ig(t)〉TS = d(t)〈i(t)〉Ts

These equations are nonlinear because they involve the multiplication of time-varying quantities.
For example, the capacitor current depends on the product of the control input d′(t) and the low-
frequency component of the inductor current, 〈i(t)〉Ts . Multiplication of time-varying signals
generates harmonics, and is a nonlinear process. Most of the techniques of ac circuit analysis,
such as the Laplace transform and other frequency-domain methods, are not useful for nonlinear
systems. So we need to linearize Eqs. (7.29) by constructing a small-signal model.

Suppose that we drive the converter at some steady-state, or quiescent, duty ratio d(t) = D,
with quiescent input voltage vg(t) = Vg. We know from our steady-state analysis of Chaps. 2
and 3 that, after any transients have subsided, the inductor current 〈i(t)〉TS , the capacitor voltage
〈v(t)〉Ts , and the input current 〈ig(t)〉Ts will reach the quiescent values I, V , and Ig, respectively,
where

V = − D
D′

Vg

I = − V
D′R

Ig = DI (7.30)

Equations (7.30) are derived as usual via the principles of inductor volt-second and capacitor
charge balance. They could also be derived from Eqs. (7.29) by noting that, in steady state, the
derivatives must equal zero.

To construct a small-signal ac model at a quiescent operating point (I, V), one assumes that
the input voltage vg(t) and the duty cycle d(t) are equal to some given quiescent values Vg and
D, plus some superimposed small ac variations v̂g(t) and d̂(t). Hence, we have

〈vg(t)〉Ts = Vg + v̂g(t) (7.31)

d(t) = D + d̂(t)

In response to these inputs, and after any transients have subsided, the averaged inductor current
〈i(t)〉Ts , the averaged capacitor voltage 〈v(t)〉Ts , and the averaged input current 〈ig(t)〉Ts wave-
forms will be equal to the corresponding quiescent values I, V , and Ig, plus some superimposed
small ac variations î(t), v̂(t), and îg(t):
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〈i(t)〉Ts = I + î(t)

〈v(t)〉Ts = V + v̂(t) (7.32)

〈ig(t)〉Ts = Ig + îg(t)

With the assumptions that the ac variations are small in magnitude compared to the dc quiescent
values, or ∣∣∣v̂g(t)

∣∣∣ 	 ∣∣∣Vg

∣∣∣∣∣∣d̂(t)
∣∣∣ 	 |D|∣∣∣î(t)∣∣∣ 	 |I|

|v̂(t)| 	 |V |∣∣∣îg(t)
∣∣∣ 	 ∣∣∣Ig

∣∣∣

(7.33)

then the nonlinear equations (7.29) can be linearized. This is done by inserting Eqs. (7.31)
and (7.32) into Eq. (7.29). For the inductor equation, one obtains

L
d(I + î(t))

dt
= (D + d̂(t))(Vg + v̂g(t)) + (D′ − d̂(t))(V + v̂(t)) (7.34)

It should be noted that the complement of the duty cycle is given by

d′(t) = (1 − d(t)) = 1 − (D + d̂(t)) = D′ − d̂(t) (7.35)

where D′ = 1−D. The minus sign arises in the expression for d′(t) because a d(t) variation that
causes d(t) to increase will cause d′(t) to decrease.

By multiplying out Eq. (7.34) and collecting terms, one obtains

L

(
dI
dt
+

dî(t)
dt

)
=
(
DVg + D′V

)
︸����������︷︷����������︸

Dc terms

+
(
Dv̂g(t) + D′v̂(t) +

(
Vg − V

)
d̂(t)

)
︸�������������������������������������︷︷�������������������������������������︸

1st order ac terms
(linear)

+ d̂(t)
(
v̂g(t) − v̂(t)

)
︸���������������︷︷���������������︸

2nd order ac terms
(nonlinear)

(7.36)

The derivative of I is zero, since I is by definition a dc (constant) term. For the purposes of
deriving a small-signal ac model, the dc terms can be considered known constant quantities. On
the right-hand side of Eq. (7.36), three types of terms arise:

Dc terms: These terms contain dc quantities only.
First-order ac terms: Each of these terms contains a single ac quantity, usually multiplied by a

constant coefficient such as a dc term. These terms are linear functions of the ac variations.
Second-order ac terms: These terms contain the products of ac quantities. Hence they are

nonlinear, because they involve the multiplication of time-varying signals.

It is desired to neglect the nonlinear ac terms. Provided that the small-signal assumption,
Eq. (7.33), is satisfied, then each of the second-order nonlinear terms is much smaller in magni-
tude that one or more of the linear first-order ac terms. For example, the second-order ac term
d̂(t)v̂g(t) is much smaller in magnitude than the first-order ac term Dv̂g(t) whenever |d̂(t)| 	 D.
So we can neglect the second-order terms. Also, by definition [or by use of Eq. (7.30)], the dc
terms on the right-hand side of the equation are equal to the dc terms on the left-hand side, or
zero.
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We are left with the first-order ac terms on both sides of the equation. Hence,

L
dî(t)
dt
= Dv̂g(t) + D′v̂(t) + (Vg − V)d̂(t) (7.37)

This is the desired result: the small-signal linearized equation that describes variations in the
inductor current.

The capacitor equation can be linearized in a similar manner. insertion of Eqs. (7.31)
and (7.32) into the capacitor equation of Eq. (7.29) yields

c
d(V + v̂(t))

dt
= −

(
D′ − d̂(t)

)
(I + î(t)) − (V + v̂(t))

R
(7.38)

Upon multiplying out Eq. (7.38) and collecting terms, one obtains

C

(
dV
dt
+

dv̂(t)
dt

)
=

(
−D′I − V

R

)
︸��������︷︷��������︸

Dc terms

+

(
−D′ î(t) − v̂(t)

R
+ Id′(t)

)
︸�������������������������︷︷�������������������������︸

1st order ac terms
(linear)

+ d̂(t)î(t)︸�︷︷�︸
2nd order ac term

(nonlinear)

(7.39)

By neglecting the second-order terms, and noting that the dc terms on both sides of the equation
are equal, we again obtain a linearized first-order equation, containing only the first-order ac
terms of Eq. (7.39):

C
dv̂(t)

dt
= −D′ î(t) − v̂(t)

R
+ Id̂(t) (7.40)

This is the desired small-signal linearized equation that describes variations in the capacitor
voltage.

Finally, the equation of the average input current is also linearized. Insertion of Eqs. (7.31)
and (7.32) into the input current equation of Eq. (7.29) yields

Ig + îg(t) = (D + d̂(t))(l + î(t)) (7.41)

By collecting terms, we obtain

Ig︸︷︷︸
Dc term

+ îg(t)︸︷︷︸
1st order ac term

= (DI)︸︷︷︸
Dc term

+
(
Dî(t) + Id̂(t)

)
︸�����������︷︷�����������︸

1st order ac terms
(linear)

+ d̂(t)î(t)︸�︷︷�︸
2nd order ac term

(nonlinear)

(7.42)

We again neglect the second-order nonlinear terms. The dc terms on both sides of the equation
are equal. The remaining first-order linear ac terms are

îg(t) = Dî(t) + Id̂(t) (7.43)

This is the linearized small-signal equation that describes the low-frequency ac components of
the converter input current.

In summary, the nonlinear averaged equations of a switching converter can be linearized
about a quiescent operating point. The converter independent inputs are expressed as constant
(dc) values, plus small ac variations. In response, the converter averaged waveforms assume
similar forms. Insertion of Eqs. (7.31) and (7.32) into the converter averaged nonlinear equations
yields dc terms, linear ac terms, and nonlinear terms. If the ac variations are sufficiently small
in magnitude, then the nonlinear terms are much smaller than the linear ac terms, and so can be
neglected. The remaining linear ac terms comprise the small-signal ac model of the converter.
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7.2.7 Construction of the Small-Signal Equivalent Circuit Model

Equations (7.37), (7.40), and (7.43) are the small-signal ac description of the ideal buck–boost
converter, and are collected below:

L
dî(t)
dt
= Dv̂g(t) + D′v̂(t) + (Vg − V)d̂(t)

C
dv̂(t)

dt
= −D′ î(t) − v̂(t)

R
+ Id̂(t)

îg(t) = Dî(t) + Id̂(t) (7.44)

In Chap. 3, we collected the averaged dc equations of a converter, and reconstructed an equiva-
lent circuit that modeled the dc properties of the converter. We can use the same procedure here,
to construct averaged small-signal ac models of converters.

The inductor equation of (7.44), or Eq. (7.37), describes the voltages around a loop con-
taining the inductor. Indeed, this equation was derived by finding the inductor voltage via loop
analysis, then averaging, perturbing, and linearizing. So the equation represents the voltages
around a loop of the small-signal model, which contains the inductor. The loop current is the
small-signal ac inductor current î(t). As illustrated in Fig. 7.13, the term Ldî(t)/dt represents
the voltage across the inductor L in the small-signal model. This voltage is equal to three other
voltage terms. Dv̂g(t) and D′v̂(t) represent dependent sources as shown. These terms will be
combined into ideal transformers. The term (Vg − V)d̂(t) is driven by the control input d̂(t), and
is represented by an independent source as shown.

Fig. 7.13 Circuit equivalent to the small-signal ac inductor loop equation of Eq. (7.44) or (7.37)

The capacitor equation of (7.44), or Eq. (7.40), describes the currents flowing into a node
attached to the capacitor. This equation was derived by finding the capacitor current via node
analysis, then averaging, perturbing, and linearizing. Hence, this equation describes the cur-
rents flowing into a node of the small-signal model, attached to the capacitor. As illustrated in
Fig. 7.14, the term Cdv̂(t)/dt represents the current flowing through capacitor C in the small-
signal model. The capacitor voltage is v̂(t). According to the equation, this current is equal
to three other terms. The term −D′ î(t) represents a dependent source, which will eventually
be combined into an ideal transformer. The term −v̂(t)/R is recognized as the current flowing
through the load resistor in the small-signal model. The resistor is connected in parallel with
the capacitor, such that the ac voltage across the resistor R is v̂(t) as expected. The term Id̂(t) is
driven by the control input d̂(t), and is represented by an independent source as shown.
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Fig. 7.14 Circuit equivalent to the small-signal ac capacitor node equation of Eq. (7.44) or (7.40)

Fig. 7.15 Circuit equivalent to the small-
signal ac input source current equation of
Eq. (7.44) or (7.43)

Fig. 7.16 Buck–boost converter small-signal ac equivalent circuit: (a) the circuits of Figs. 7.13, 7.14,
7.15, collected together; (b) combination of dependent sources into effective ideal transformers, leading to
the final model

Finally, the input current equation of (7.44), or Eq. (7.43), describes the small-signal ac
current îg(t) drawn by the converter out of the input voltage source v̂g(t). This is a node equation
which states that îg(t) is equal to the currents in two branches, as illustrated in Fig. 7.15. The first
branch, corresponding to the Dî(t) term, is dependent on the ac inductor current î(t). Hence, we
represent this term using a dependent current source; this source will eventually be incorporated
into an ideal transformer. The second branch, corresponding to the Id̂(t) term, is driven by the
control input d(̂t), and is represented by an independent source as shown.

The circuits of Figs. 7.13, 7.14, and 7.15 are collected in Fig. 7.16a. As discussed in Chap. 3,
the dependent sources can be combined into effective ideal transformers, as illustrated in
Fig. 7.16b. The sinusoid superimposed on the transformer symbol indicates that the transformer
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is ideal, and is part of the averaged small-signal ac model. So the effective dc transformer prop-
erty of CCM dc–dc converters also influences small-signal ac variations in the converter signals.

The equivalent circuit of Fig. 7.16b can now be solved using techniques of conventional
linear circuit analysis, to find the converter transfer functions, input and output impedances, etc.
This is done in detail in the next chapter. Also, the model can be refined by inclusion of losses
and other nonidealities—an example is given in Sect. 7.2.10.

7.2.8 Discussion of the Perturbation and Linearization Step

In the perturbation and linearization step, it is assumed that an averaged voltage or current con-
sists of a constant (dc) component and a small-signal ac variation around the dc component. In
Sect. 7.2.6, the linearization step was completed by neglecting nonlinear terms that correspond
to products of the small-signal ac variations. In general, the linearization step amounts to taking
the Taylor expansion of a nonlinear relation and retaining only the constant and linear terms.
For example, the large-signal averaged equation for the inductor current in Eq. (7.29) can be
written as:

L
d〈i(t)〉Ts

dt
= d(t)〈vg(t)〉Ts + d′(t)〈v(t)〉Ts = f1

(
〈vg(t)〉Ts , 〈v(t)〉Ts , d(t)

)
(7.45)

Let us expand this expression in a three-dimensional Taylor series, about the quiescent operating
point (Vg, V, D):

L

(
dI
dt
+

dî(t)
dt

)
= f1

(
Vg, V, D

)
+ v̂g(t)

∂ f1(vg,V,D)

∂vg

∣∣∣∣∣∣
vg=Vg

+v̂(t)
∂ f1(Vg, v,D)

∂v

∣∣∣∣∣∣v=V + d̂(t)
∂ f1(Vg,V, d)

∂d

∣∣∣∣∣∣
d=D

(7.46)

+higher-order nonlinear terms

For simplicity of notation, the angle brackets denoting average values are dropped in the above
equation. The derivative of I is zero, since I is by definition a dc (constant) term. Equating the
dc terms on both sides of Eq. (7.46) gives

0 = f1(Vg, V, D) (7.47)

which is the volt-second balance relationship for the inductor. The coefficients with the linear
terms on the right-hand side of Eq. (7.46) are found as follows:

∂ f1(vg,V,D)

∂vg

∣∣∣∣∣∣
vg=Vg

= D (7.48)

∂ f1(Vg, v,D)

∂v

∣∣∣∣∣∣
v=V

= D′ (7.49)

∂ f1(Vg,V, d)

∂d

∣∣∣∣∣∣
d=D

= Vg − V (7.50)

Using (7.48), (7.49), and (7.50), neglecting higher-order nonlinear terms, and equating the linear
ac terms on both sides of Eq. (7.46) give
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L
dî(t)
dt
= Dv̂g(t) + D′v̂(t) + (Vg − V)d̂(t) (7.51)

which is identical to Eq. (7.37) derived in Sect. 7.2.6. In conclusion, the linearization step can
always be accomplished using the Taylor expansion.

(a)

Nonlinear
Load

+

v

i (b)

v

i

I

V

Slope
1/R

Fig. 7.17 Small-signal modeling of nonlinear load characteristic: (a) schematic, (b) linearization of i–v
characteristic

A similar approach can be employed to nonlinear loads in the small-signal model. Fig-
ure 7.17 depicts linearization of a nonlinear load characteristic in which

i = f (v) (7.52)

We can expand this i–v characteristic in a Taylor series about the quiescent operating point (V, I):

I + î = f (V) + v̂
d f (v)

dv

∣∣∣∣∣
v=V
+ higher-order nonlinear terms (7.53)

The small-signal terms are

î =
v̂
R

(7.54)

where R is determined by the slope at the quiescent operating point:

1
R
=

d f (v)
dv

∣∣∣∣∣
v=V

(7.55)

The DC solution of the converter proceeds from the nonlinear load characteristic of Eq. (7.52)
with v = V and i = I. The small-signal ac model of the converter employs the linearized
equation (7.54).

7.2.9 Results for Several Basic Converters

The equivalent circuit models for the buck, boost, and buck–boost converters operating in the
continuous conduction mode are summarized in Fig. 7.18. The buck and boost converter mod-
els contain ideal transformers having turns ratios equal to the converter conversion ratio. The
buck–boost converter contains ideal transformers having buck and boost conversion ratios; this
is consistent with the derivation of Sect. 6.1.2 of the buck–boost converter as a cascade connec-
tion of buck and boost converters. When the load is nonlinear, the incremental load resistance
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Fig. 7.18 Averaged small-signal ac models for several basic converters operating in continuous conduc-
tion mode: (a) buck, (b) boost, (c) buck–boost

of Eq. (7.55) is employed. These models can be solved to find the converter transfer functions,
input and output impedances, inductor current variations, etc. By insertion of appropriate turns
ratios, the equivalent circuits of Fig. 7.18 can be adapted to model the transformer-isolated ver-
sions of the buck, boost, and buck–boost converters, including the forward, flyback, and other
converters.

7.2.10 Example: A Nonideal Flyback Converter

To illustrate that the techniques of the previous section are useful for modeling a variety of
converter phenomena, let us next derive a small-signal ac equivalent circuit of a converter con-
taining transformer isolation and resistive losses. An isolated flyback converter is illustrated in
Fig. 7.19. The flyback transformer has magnetizing inductance L, referred to the primary wind-
ing, and turns ratio 1:n. MOSFET Q1 has on-resistance Ron. Other loss elements, as well as the
transformer leakage inductances and the switching losses, are negligible. The ac modeling of
this converter begins in a manner similar to the dc converter analysis of Sect. 6.3.4. The flyback
transformer is replaced by an equivalent circuit consisting of the magnetizing inductance L in
parallel with an ideal transformer, as illustrated in Fig. 7.20a.
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Fig. 7.19 Flyback converter example

During the first subinterval, when MOSFET Q1 conducts, diode D1 is off. The circuit then
reduces to Fig. 7.20b. The inductor voltage vL(t), capacitor current iC(t), and converter input
current ig(t) are

vL(t) = vg(t) − i(t)Ron

iC(t) = −v(t)
R

(7.56)

ig(t) = i(t)

We next make the small-ripple approximation, replacing the voltages and currents with their
average values as defined by Eq. (7.3), to obtain

vL(t) = 〈vg(t)〉Ts − 〈i(t)〉Ts Ron

iC(t) = −
〈v(t)〉Ts

R
(7.57)

ig(t) = 〈i(t)〉Ts

During the second subinterval, MOSFET Q1 is off, diode D1 conducts, and the circuit of
Fig. 7.20c is obtained. Analysis of this circuit shows that the inductor voltage, capacitor cur-
rent, and input current are given by

vL(t) = −v(t)
n

iC(t) =
i(t)
n
− v(t)

R
ig(t) = 0 (7.58)

The small-ripple approximation leads to

vL(t) =
〈v(t)〉Ts

n

iC(t) =
−〈i(t)〉Ts

n
−
〈v(t)〉Ts

R
(7.59)

ig(t) = 0
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Fig. 7.20 Flyback converter example: (a) incorporation of transformer equivalent circuit, (b) circuit dur-
ing subinterval 1, (c) circuit during subinterval 2

The inductor voltage and current waveforms are sketched in Fig. 7.21. The average inductor
voltage can now be found by averaging the waveform of Fig. 7.21a over one switching period.
The result is

〈vL(t)〉Ts = d(t)
(
〈vg(t)〉Ts − 〈i(t)〉Ts Ron

)
+ d′(t)

(
−〈v(t)〉Ts

n

)
(7.60)

By inserting this result into Eq. (7.13), we obtain the averaged inductor equation,



7.2 The Basic AC Modeling Approach 237

(a)

t

vL(t)

dTs Ts
0

vg on

vL(t) Ts

(b)

t

i(t)

dTs Ts0

i(t)
Ts

v(t)
Ts

nL

vg(t) Ts
i(t)

Ts
Ron

L

Fig. 7.21 Inductor waveforms for the flyback example: (a) inductor voltage, (b) inductor current
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Fig. 7.22 Capacitor waveforms for the flyback example: (a) capacitor current, (b) capacitor voltage

L
d〈i(t)〉Ts

dt
= d(t)〈vg(t)〉Ts − d(t)〈i(t)〉Ts Ron − d′(t)

〈v(t)〉Ts

n
(7.61)

The capacitor waveforms are constructed in Fig. 7.22. The average capacitor current is

〈iC(t)〉Ts = d(t)

(
−〈v(t)〉Ts

R

)
+ d′(t)

(
〈i(t)〉Ts

n
−
〈v(t)〉Ts

R

)
(7.62)



238 7 AC Equivalent Circuit Modeling

t

ig(t)

dTs Ts

0
0

i(t)
Ts

ig(t) Ts

0

Fig. 7.23 Input source current waveform, flyback example

This leads to the averaged capacitor equation

C
d〈v(t)〉Ts

dt
= d′(t)

〈i(t)〉TS

n
−
〈v(t)〉TS

R
(7.63)

The converter input current ig(t) is sketched in Fig. 7.23. Its average is

〈ig(t)〉Ts = d(t)〈i(t)〉Ts (7.64)

The averaged converter equations (7.61), (7.63), and (7.64) are collected below:

L
d〈i(t)〉Ts

dt
= d(t)〈vg(t)〉Ts − d(t)〈i(t)〉Ts Ron − d′(t)

〈v(t)〉Ts

n

C
d〈v(t)〉Ts

dt
= d′(t)

〈i(t)〉Ts

n
−
〈v(t)〉Ts

R
(7.65)

〈ig(t)〉TS = d(t)〈i(t)〉Ts

This is a nonlinear set of differential equations, and hence the next step is to perturb and lin-
earize, to construct the converter small-signal ac equations. We assume that the converter input
voltage vg(t) and duty cycle d(t) can be expressed as quiescent values plus small ac variations,
as follows:

〈vg(t)〉Ts = Vg + v̂g(t) (7.66)

d(t) = D + d̂(t)

In response to these inputs, and after all transients have decayed, the average converter wave-
forms can also be expressed as quiescent values plus small ac variations:

〈i(t)〉Ts = I + î(t)

〈v(t)〉Ts = V + v̂(t) (7.67)

〈ig(t)〉Ts = Ig + îg(t)

With these substitutions, the large-signal averaged inductor equation becomes

L
d(I + î(t))

dt
= (D + d̂(t))(Vg + v̂g(t)) − (D′ − d̂(t))

(V + v̂(t))
n

− (D + d̂(t))(I + î(t))Ron (7.68)
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Upon multiplying this expression out and collecting terms, we obtain

L

(
dI
dt
+

dî(t)
dt

)
=

(
DVg − D′

V
n
− DRonI

)
︸�����������������������︷︷�����������������������︸

Dc terms

+

(
Dv̂g(t) − D′

v̂(t)
n
+

(
Vg +

V
n
− IRon

)
d̂(t) − DRonî(t)

)
︸����������������������������������������������������������������︷︷����������������������������������������������������������������︸

1st order ac terms (linear)

+

(
d̂(t)v̂g(t) + d̂(t)

v̂(t)
n
− d̂(t)î(t)Ron

)
︸��������������������������������������︷︷��������������������������������������︸

2nd order ac terms (nonlinear)

(7.69)

As usual, this equation contains three types of terms. The dc terms contain no time-varying
quantities. The first-order ac terms are linear functions of the ac variations in the circuit, while
the second-order ac terms are functions of the products of the ac variations. If the small-signal
assumptions of Eq. (7.33) are satisfied, then the second-order terms are much smaller in magni-
tude that the first-order terms, and hence can be neglected. The dc terms must satisfy

0 = DVg − D′
V
n
− DRonI (7.70)

This result could also be derived by applying the principle of inductor volt-second balance to
the steady-state inductor voltage waveform. The first-order ac terms must satisfy

L
dî(t)
dt
= Dv̂g(t) − D′

v̂(t)
n
+

(
Vg +

V
n
− IRon

)
d̂(t) − DRonî(t) (7.71)

This is the linearized equation that describes ac variations in the inductor current.
Upon substitution of Eqs. (7.66) and (7.67) into the averaged capacitor equation (7.65), one

obtains

C
d(V + v̂(t))

dt
= (D′ − d̂(t))

(I + î(t))
n

− (V + v̂(t))
R

(7.72)

By collecting terms, we obtain

C

(
DV
dt
+

Dv̂(t)
dt

)
=

(
D′I
n
− V

R

)
︸�������︷︷�������︸
Dc terms

+

(
D′ î(t)

n
− v̂(t)

R
− Id̂(t)

n

)
︸������������������������︷︷������������������������︸

1st order ac terms
(linear)

− d̂(t)î(t)
n︸��︷︷��︸

2nd order ac term
(nonlinear)

(7.73)

We neglect the second-order terms. The dc terms of Eq. (7.73) must satisfy

0 =

(
D′I
n
− V

R

)
(7.74)
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This result could also be obtained by use of the principle of capacitor charge balance on the
steady-state capacitor current waveform. The first-order ac terms of Eq. (7.73) lead to the small-
signal ac capacitor equation

C
dv̂(t)

dt
=

D′ î(t)
n
− v̂(t)

R
− Id̂(t)

n
(7.75)

Substitution of Eqs. (7.66) and (7.67) into the averaged input current equation (7.65) leads to

Ig + îg(t) = (D + d̂(t))(I + î(t)) (7.76)

Upon collecting terms, we obtain

Ig︸︷︷︸
Dc term

+ îg(t)︸︷︷︸
1st order ac term

= (DI)︸︷︷︸
Dc term

+
(
Dî(t) + Id̂(t)

)
︸�����������︷︷�����������︸

1st order ac terms
(linear)

+ d̂(t)î(t)︸�︷︷�︸
2nd order ac term

(nonlinear)

(7.77)

The dc terms must satisfy
Ig = DI (7.78)

We neglect the second-order nonlinear terms of Eq. (7.77), leaving the following linearized ac
equation:

îg(t) = Dî(t) + Id̂(t) (7.79)

This result models the low-frequency ac variations in the converter input current.
The equations of the quiescent values, Eqs. (7.70), (7.74), and (7.78) are collected below:

0 = DVg − D′
V
n
− DRonI

0 =

(
D′I
n
− V

R

)
(7.80)

Ig = DI

For given quiescent values of the input voltage Vg and duty cycle D, this system of equations
can be evaluated to find the quiescent output voltage V , inductor current I, and input current dc
component Ig. The results are then inserted into the small-signal ac equations.

The small-signal ac equations, Eqs. (7.71), (7.75), and (7.79), are summarized below:

L
dî(t)
dt
= Dv̂g(t) − D′

v̂(t)
n
+

(
Vg +

V
n
− IRon

)
d̂(t) − DRonî(t)

C
dv̂(t)

dt
=

D′ î(t)
n
− v̂(t)

R
− Id̂(t)

n
(7.81)

îg(t) = Dî(t) + Id̂(t)

The final step is to construct an equivalent circuit that corresponds to these equations.
The inductor equation was derived by first writing loop equations, to find the applied in-

ductor voltage during each subinterval. These equations were then averaged, perturbed, and
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linearized, to obtain Eq. (7.71). So this equation describes the small-signal ac voltages around
a loop containing the inductor. The loop current is the ac inductor current î(t). The quantity
Ldî(t)/dt is the low-frequency ac voltage across the inductor. The four terms on the right-hand
side of the equation are the voltages across the four other elements in the loop. The terms Dv̂g(t)
and −D′v̂(t)/n are dependent on voltages elsewhere in the converter, and hence are represented
as dependent sources in Fig. 7.24. The third term is driven by the duty-cycle variations d̂(t) and
hence is represented as an independent source. The fourth term, −DRonî(t), is a voltage that is
proportional to the loop current î(t). Hence this term obeys Ohm’s law, with effective resistance
DRon as shown in the figure. So the influence of the MOSFET on-resistance on the converter
small-signal transfer functions is modeled by an effective resistance of value DRon.

Small-signal capacitor equation (7.75) leads to the equivalent circuit of Fig. 7.25. The equa-
tion constitutes a node equation of the equivalent circuit model. It states that the capacitor cur-
rent Cdv̂(t)/dt is equal to three other currents. The current D′ î(t)/n depends on a current else-
where in the model, and hence is represented by a dependent current source. The term −v̂(t)/R
is the ac component of the load current, which we model with a load resistance R connected
in parallel with the capacitor. The last term is driven by the duty-cycle variations d̂(t), and is
modeled by an independent source.

The input port equation, Eq. (7.79), also constitutes a node equation. It describes the small-
signal ac current îg(t), drawn by the converter out of the input voltage source v̂g(t). There are two
other terms in the equation. The term Dî(t) is dependent on the inductor current ac variation î(t),
and is represented with a dependent source. The term Id̂(t) is driven by the control variations,
and is modeled by an independent source. The equivalent circuit for the input port is illustrated
in Fig. 7.26.

Fig. 7.24 Circuit equivalent to the small-signal ac inductor loop equation, Eq. (7.81) or (7.71)

Fig. 7.25 Circuit equivalent to the small-signal ac capacitor node equation, Eq. (7.81) or (7.75)



242 7 AC Equivalent Circuit Modeling

Fig. 7.26 Circuit equivalent to the
small-signal ac input source current
equation, Eq. (7.81) or (7.79)

Fig. 7.27 The equivalent circuits of Figs. 7.24, 7.25, 7.26, collected together

Fig. 7.28 Small-signal ac equivalent circuit model of the flyback converter

The circuits of Figs. 7.24, 7.25, and 7.26 are combined in Fig. 7.27. The dependent sources
can be replaced by ideal transformers, leading to the equivalent circuit of Fig. 7.28. This is the
desired result: an equivalent circuit that models the low-frequency small-signal variations in the
converter waveforms. It can now be solved, using conventional linear circuit analysis techniques,
to find the converter transfer functions, output impedance, and other ac quantities of interest.

7.3 Modeling the Pulse-Width Modulator

We have now achieved the goal, stated at the beginning of this chapter, of deriving a useful
equivalent circuit model for the switching converter in Fig. 6.51. One detail remains: modeling
the pulse-width modulator. The pulse-width modulator block shown in Fig. 6.51 produces a
logic signal δ(t) that commands the converter power transistor to switch on and off. The logic
signal δ(t) is periodic, with frequency fs and duty cycle d(t). The input to the pulse-width
modulator is an analog control signal vc(t). The function of the pulse-width modulator is to
produce a duty cycle d(t) that is proportional to the analog control voltage vc(t).

A schematic diagram of a simple pulse-width modulator circuit is given in Fig. 7.29. A
sawtooth-wave generator produces the voltage waveform vsaw(t) illustrated in Fig. 7.30. The
peak-to-peak amplitude of this waveform is VM . The converter switching frequency fs is de-
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Fig. 7.29 A simple pulse-width modulator circuit
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termined by and equal to the frequency of vsaw(t). An analog comparator compares the analog
control voltage vc(t) to vsaw(t). This comparator produces a logic-level output which is high
whenever vc(t) is greater than vsaw(t), and is otherwise low. Typical waveforms are illustrated in
Fig. 7.30.

If the sawtooth waveform vsaw(t) has minimum value zero, then the duty cycle will be zero
whenever vc(t) is less than or equal to zero. The duty cycle will be D = 1 whenever vc(t) is
greater than or equal to VM . If, over a given switching period, vsaw(t) varies linearly with t, then
for 0 ≤ vc(t) ≤ VM the duty cycle d will be a linear function of vc. Hence, we can write

d(t) =
vc(t)
VM

for 0 ≤ vc(t) ≤ VM (7.82)

This equation is the input-output characteristic of the pulse-width modulator [15, 68].
To be consistent with the perturbed-and-linearized converter models of the previous sections,

we can perturb Eq. (7.82). Let

vc(t) = Vc + v̂c(t) (7.83)

d(t) = D + d̂(t)
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Fig. 7.31 Pulse-width modulator
block diagram

Fig. 7.32 A more accurate pulse-
width modulator model, including
sampling

Pulse-width modulator

1
VM

vc d
Sampler

fs

Insertion of Eq. (7.83) into Eq. (7.82) leads to

D + d̂(t) =
Vc + v̂c(t)

VM
(7.84)

A block diagram representing Eq. (7.84) is illustrated in Fig. 7.31. The pulse-width modulator
has linear gain 1/VM . By equating like terms on both sides of Eq. (7.84), one obtains

D =
Vc

VM

d̂(t) =
v̂c(t)
VM

(7.85)

So the quiescent value of the duty cycle is determined in practice by Vc.
The pulse-width modulator model of Fig. 7.31 is sufficiently accurate for nearly all applica-

tions. However, it should be pointed out that pulse-width modulators also introduce sampling of
the waveform. Although the analog input signal vc(t) is a continuous function of time, there can
be only one discrete value of the duty cycle during every switching period. Therefore, the pulse-
width modulator samples the waveform, with sampling rate equal to the switching frequency
fs. Hence, a more accurate modulator block diagram is as in Fig. 7.32 [10]. In the small-signal
sense, sampling in the pulse-width modulator occurs at the modulated edge of the PWM signal.
For example, in a trailing-edge PWM exemplified by the waveforms shown in Fig. 7.30, the
sampling instants coincide with falling edges of the PWM output signal δ(t). This has important
implications in developments of sampled-data dynamic models where the converter response
to duty-cycle perturbations is modeled as an equivalent hold [77]. The sampled-data nature of
pulse-width modulated converters is taken into account in the developments of high-frequency
models of DCM converters in Sect. 15.5, and current-programmed converters in Sect. 18.7. Fur-
thermore, PWM sampling effects are important in identification of delays in the control loop
around a converter when the controller is implemented digitally, as discussed in Chap. 19.

In practice, PWM sampling restricts the useful frequencies of the ac variations to values
much less than the switching frequency. The designer must ensure that the bandwidth of the
control system be sufficiently less than the Nyquist rate fs/2. Significant high-frequency vari-
ations in the control signal vc(t) can also alter the behavior of the pulse-width modulator. A
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common example is when vc(t) contains switching ripple, introduced by the feedback loop.
This phenomenon has been analyzed by several authors [67, 75], and effects of inductor current
ripple on the transfer functions of current-programmed converters are investigated in Chap. 18.
But it is generally best to avoid the case where vc(t) contains significant components at the
switching frequency or higher, since the pulse-width modulators of such systems exhibit poor
noise immunity.

7.4 The Canonical Circuit Model

Having discussed several methods for deriving the ac equivalent circuit models of switching
converters, let us now pause to interpret the results. All PWM CCM dc–dc converters perform
similar basic functions. First, they transform the voltage and current levels, ideally with 100%
efficiency. Second, they contain low-pass filtering of the waveforms. While necessary to remove
the high-frequency switching ripple, this filtering also influences low-frequency voltage and
current variations. Third, the converter waveforms can be controlled by variation of the duty
cycle.

We expect that converters having similar physical properties should have qualitatively sim-
ilar equivalent circuit models. Hence, we can define a canonical circuit model that correctly
accounts for all of these basic properties [15, 17, 61]. The ac equivalent circuit of any CCM
PWM dc–dc converter can be manipulated into this canonical form. This allows us to extract
physical insight, and to compare the ac properties of converters. The canonical model is used in
several later chapters, where it is desired to analyze converter phenomena in a general manner,
without reference to a specific converter. So the canonical model allows us to define and discuss
the physical ac properties of converters.

In this section, the canonical circuit model is developed, based on physical arguments. An
example is given which illustrates how to manipulate a converter equivalent circuit into canon-
ical form. Finally, the parameters of the canonical model are tabulated for several basic ideal
converters.

7.4.1 Development of the Canonical Circuit Model

The physical elements of the canonical circuit model are collected, one at a time, in Fig. 7.33.
The converter contains a power input port vg(t) and a control input port d(t), as well as a power
output port and load having voltage v(t). As discussed in Chap. 3, the basic function of any CCM
PWM dc–dc converter is the conversion of dc voltage and current levels, ideally with 100% effi-
ciency. As illustrated in Fig. 7.33a, we have modeled this property with an ideal dc transformer,
having effective turns ratio 1:M(D) where M is the conversion ratio. This conversion ratio is a
function of the quiescent duty cycle D. As discussed in Chap. 3, this model can be refined, if
desired, by addition of resistors and other elements that model the converter losses.

Slow variations vg(t) in the power input induce ac variations v(t) in the converter output
voltage. As illustrated in Fig. 7.33b, we expect these variations also to be transformed by the
conversion ratio M(D).

The converter must also contain reactive elements that filter the switching harmonics and
transfer energy between the power input and power output ports. Since it is desired that the
output switching ripple be small, the reactive elements should comprise a low-pass filter having
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Fig. 7.33 Development of the canonical circuit model, based on physical arguments: (a) dc transformer
model, (b) inclusion of ac variations, (c) reactive elements introduce effective low-pass filter, (d) inclusion
of ac duty-cycle variations
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a cutoff frequency well below the switching frequency. This low-pass characteristic also affects
how ac line voltage variations influence the output voltage. So the model should contain an
effective low-pass filter as illustrated in Fig. 7.33c. This figure predicts that the line-to-output
transfer function is

Gvg(s) =
v̂(s)
v̂g(s)

= M(D)He(s) (7.86)

where He(s) is the transfer function of the effective low-pass filter loaded by resistance R. When
the load is nonlinear, R is the incremental load resistance, evaluated at the quiescent operating
point. The effective filter also influences other properties of the converter, such as the small-
signal input and output impedances. It should be noted that the elemental values in the effective
low-pass filter do not necessarily coincide with the physical element values in the converter. In
general, the element values, transfer function, and terminal impedances of the effective low-pass
filter can vary with quiescent operating point. Examples are given in the following subsections.

Control input variations, specifically, duty-cycle variations d̂(t), also induce ac variations
in the converter voltages and currents. Hence, the model should contain voltage and current
sources driven by d̂(t). In the examples of the previous section, we have seen that both voltage
sources and current sources appear, which are distributed around the circuit model. It is possible
to manipulate the model such that all of the d̂(t) sources are pushed to the input side of the
equivalent circuit. In the process, the sources may become frequency-dependent; an example
is given in the next subsection. In general, the sources can be combined into a single voltage
source e(s)d̂(s) and a single current source j(s)d̂(s) as shown in Fig. 7.33d. This model predicts
that the small-signal control-to-output transfer function is

Gvd(s) =
v̂(s)

d̂(s)
= e(s)M(D)He(s) (7.87)

This transfer function is found by setting the v̂g(s) variations to zero, and solving for the de-
pendence of v̂(s) on d̂(s). Figure 7.33d is the complete canonical circuit, which can model any
PWM CCM dc–dc converter.

Often, we are also interested in the variations in output voltage v̂ induced by variations
in load current îload. We can model this by addition of an independent current source at the
converter output, as illustrated in Fig. 7.34. In this figure, the load is modeled as an effective
resistor R, in parallel with an independent ac current source îload. In the ac model, the resistance
R is the incremental resistance of the load, measured at the quiescent operating point, while îload

is the ac variation in the load current. This model predicts that the transfer function from load
current variations to output voltage variation is given by

Zout(s) = − v̂(s)

îload(s)
= Zeo(s)‖R (7.88)

To derive Eq. (7.88), we set the independent sources v̂g and d̂ to zero, and solve for the trans-
fer function from îload to v̂. This transfer function (with a minus sign) is the converter output
impedance Zout(s). As defined above, the output impedance includes the incremental load resis-
tance R. In some circumstances, it may be appropriate to exclude the load impedance from the
definition of Zout, or to further include additional load impedances.

Thus, the canonical model can be solved for the converter key ac transfer functions. Of
common interest are the control-to-output transfer function Gvd(s), the line-to-output transfer
function Gvg(s), and the output impedance Zout(s).
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Fig. 7.34 Modeling the effect of load current variations by addition of independent current source îload

Fig. 7.35 Small-signal ac model of the buck–boost converter, before manipulation into canonical form

7.4.2 Example: Manipulation of the Buck-Boost Converter Model into Canonical Form

To illustrate the steps in the derivation of the canonical circuit model, let us manipulate the
equivalent circuit of the buck–boost converter into canonical form. A small-signal ac equivalent
circuit for the buck–boost converter is derived in Sect. 7.2. The result, Fig. 7.16b, is reproduced
in Fig. 7.35. To manipulate this network into canonical form, it is necessary to push all of the
independent d(t) generators to the left, while pushing the inductor to the right and combining
the transformers.

The (Vg−V)d̂(t) voltage source is in series with the inductor, and hence the positions of these
two elements can be interchanged. In Fig. 7.36a, the voltage source is placed on the primary side
of the 1:D ideal transformer; this requires dividing by the effective turns ratio D. The output-
side Id̂(t) current source has also been moved to the primary side of the D′:1 transformer. This
requires multiplying by the turns ratio 1/D′. The polarity is also reversed, in accordance with
the polarities of the D′:1 transformer windings.

Next, we need to move the Id̂(t)/D current source to the left of the inductor. This can be
done using the artifice illustrated in Fig. 7.36b. The ground connection of the current source is
broken, and the source is connected to node A instead. A second, identical, current source is
connected from node A to ground. The second source causes the current flowing into node A to
be unchanged, such that the node equations of Fig. 7.36a,b are identical.
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Fig. 7.36 Steps in the manipulation of the buck–boost ac model into canonical form

In Fig. 7.36c, the parallel combination of the inductor and current source is converted into
Thevenin-equivalent form. The series combination of an inductor and voltage source is obtained.

In Fig. 7.36d, the Id̂(t)/D current source is pushed to the primary side of the 1:D transformer.
The magnitude of the current source is multiplied by the turns ratio D. In addition, the current
source is pushed through the (Vg − V)d̂(t)/D voltage source, using the previously described
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Fig. 7.37 The buck–boost converter model, in canonical form

artifice. The ground connection of the source is moved to node B, and an identical source is
connected from node B to ground such that the circuit node equations are unchanged.

Figure 7.37 is the final form of the model. The inductor is moved to the secondary side of
the D′:1 transformer, by multiplying by the square of the turns ratio as shown. The sLId̂(t)/D′

voltage source is moved to the primary side of the 1:D transformer, by dividing by the turns
ratio D. The voltage and current sources are combined as shown, and the two transformers are
combined into a single D′:D transformer. The circuit is now in canonical form.

It can be seen that the inductance of the effective low-pass filter is not simply equal to the
physical inductor value L, but rather is equal to L/D′2. At different quiescent operating points,
with different values of D′, the value of the effective inductance will change. In consequence,
the transfer function, input impedance, and output impedance of the effective low-pass filter
will also vary with quiescent operating point. The reason for this variation is the transformation
of the inductance value by the effective D′:1 transformer.

It can also be seen from Fig. 7.37 that the coefficient of the d̂(t) voltage generator is

e(s) =
Vg − V

D
− s

LI
DD′

(7.89)

This expression can be simplified by substitution of the dc relationships (7.30). The result is

e(s) = − V
D2

(
1 − s

DL
D′2R

)
(7.90)

When we pushed the output-side Id̂(t) current source through the inductor, we obtained a volt-
age source having a frequency dependence. In consequence, the e(s)d̂ voltage generator is
frequency-dependent.

7.4.3 Canonical Circuit Parameter Values for Some Common Converters

For ideal CCM PWM dc–dc converters containing a single inductor and capacitor, the effective
low-pass filter of the canonical model should contain a single inductor and a single capacitor.
The canonical model then reduces to the circuit of Fig. 7.38. It is assumed that the capacitor is
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Fig. 7.38 The canonical model, for ideal CCM converters containing a single inductor and capacitor

connected directly across the load. The parameter values for the basic buck, boost, and buck–
boost converters are collected in Table 7.1. Again, it should be pointed out that the effective
inductance Le depends not only on the physical inductor value L, but also on the quiescent duty
cycle D. Furthermore, the current flowing in the effective inductance Le does not in general
coincide with the physical inductor current I + î(t).

Table 7.1 Canonical model parameters for the ideal buck, boost and buck–boost converters

Converter M(D) Le e(s) j(s)

Buck D L
V
D2

V
R

Boost
1
D′

L
D′2

V
(
1 − sL

D′2R

) V
D′2R

Buck–boost − D
D′

L
D′2

− V
D2

(
1 − sDL

D′2R

)
− V

D′2R

The model of Fig. 7.38 can be solved using conventional linear circuit analysis, to find quan-
tities of interest such as the converter transfer functions, input impedance, and output impedance.
Transformer-isolated versions of the buck, boost, and buck–boost converters, such as the full-
bridge, forward, and flyback converters, can also be modeled using the equivalent circuit of
Fig. 7.38 and the parameters of Table 7.1, provided that one correctly accounts for the trans-
former turns ratio.

7.5 State-Space Averaging

A number of ac converter modeling techniques have appeared in the literature, including the
current-injected approach, circuit averaging, and the state-space averaging method. Although
the proponents of a given method may prefer to express the end result in a specific form, the
end results of nearly all methods are equivalent. And everybody will agree that averaging and
small-signal linearization are the key steps in modeling PWM converters.

The state-space averaging approach [15, 61] is described in this section. The state-space
description of dynamical systems is a mainstay of modern control theory; the state-space av-
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eraging method makes use of this description to derive the small-signal averaged equations of
PWM switching converters. The state-space averaging method is otherwise identical to the pro-
cedure derived in Sect. 7.2. Indeed, the procedure of Sect. 7.2 amounts to state-space averaging,
but without the formality of writing the equations in matrix form. A benefit of the state-space
averaging procedure is the generality of its result: a small-signal averaged model can always be
obtained, provided that the state equations of the original converter can be written.

Section 7.5.1 summarizes how to write the state equations of a network. The basic results of
state-space averaging are described in Sect. 7.5.2, and a short derivation is given in Sect. 7.5.3.
Section 7.5.4 contains an example, in which the state-space averaging method is used to derive
the quiescent dc and small-signal ac equations of a buck–boost converter.

7.5.1 The State Equations of a Network

The state-space description is a canonical form for writing the differential equations that de-
scribe a system. For a linear network, the derivatives of the state variables are expressed as
linear combinations of the system independent inputs and the state variables themselves. The
physical state variables of a system are usually associated with the storage of energy, and for a
typical converter circuit, the physical state variables are the independent inductor currents and
capacitor voltages. Other typical state variables include the position and velocity of a motor
shaft. At a given point in time, the values of the state variables depend on the previous history
of the system, rather than on the present values of the system inputs. To solve the differential
equations of the system, the initial values of the state variables must be specified. So if we know
the state of a system, that is, the values of all of the state variables, at a given time t0, and if we
additionally know the system inputs, then we can in principle solve the system state equations
to find the system waveforms at any future time.

The state equations of a system can be written in the compact matrix form of Eq. (7.91):

K
dx(t)

dt
= Ax(t) + Bu(t) (7.91)

y(t) = Cx(t) + Eu(t)

Here, the state vector x(t) is a vector containing all of the state variables, that is, the inductor
currents, capacitor voltages, etc. The input vector u(t) contains the independent inputs to the
system, such as the input voltage source vg(t). The derivative of the state vector is a vector
whose elements are equal to the derivatives of the corresponding elements of the state vector:

x(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1(t)
x2(t)
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
dx(t)

dt
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dx1(t)
dt

dx2(t)
dt
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.92)

In the standard form of Eq. (7.91), K is a matrix containing the values of capacitance, inductance,
and mutual inductance (if any), such that Kdx(t)/dt is a vector containing the inductor winding
voltages and capacitor currents. In other physical systems, K may contain other quantities such
as moment of inertia or mass. Equation (7.91) states that the inductor voltages and capacitor
currents of the system can be expressed as linear combinations of the state variables and the
independent inputs. The matrices A and B contain constants of proportionality.
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iin(t) R1 C1

L

C2

R3

R2

+

v1(t)

+

v2(t) +
vout(t)

+v
L(t)iR1(t) iC1(t) iC2(t)

i(t)

Fig. 7.39 Circuit example

It may also be desired to compute other circuit waveforms that do not coincide with the
elements of the state vector x(t) or the input vector u(t). These other signals are, in general,
dependent waveforms that can be expressed as linear combinations of the elements of the state
vector and input vector. The vector y(t) is usually called the output vector. We are free to place
any dependent signal in this vector, regardless of whether the signal is actually a physical out-
put. The converter input current ig(t) is often chosen to be an element of y(t). In the state equa-
tions (7.91), the elements of y(t) are expressed as a linear combination of the elements of the
x(t) and u(t) vectors. The matrices C and E contain constants of proportionality.

As an example, let us write the state equations of the circuit of Fig. 7.39. This circuit con-
tains two capacitors and an inductor, and hence the physical state variables are the independent
capacitor voltages v1(t) and v2(t), as well as the inductor current i(t). So we can define the state
vector as

x(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
v1(t)
v2(t)
i(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7.93)

Since there are no coupled inductors, the matrix K is diagonal, and simply contains the values
of capacitance and inductance:

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
C1 0 0
0 C2 0
0 0 L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7.94)

The circuit has one independent input, the current source iin(t). Hence we should define the
input vector as

u(t) = [iin(t)] (7.95)

We are free to place any dependent signal in vector y(t). Suppose that we are interested in also
computing the voltage vout(t) and the current iR1(t). We can therefore define y(t) as

y(t) =

[
vout(t)
iR1(t)

]
(7.96)

To write the state equations in the canonical form of Eq. (7.91), we need to express the inductor
voltages and capacitor currents as linear combinations of the elements of x(t) and u(t), that is,
as linear combinations of v1(t), v2(t), i(t), and iin(t).

The capacitor current iC1(t) is given by the node equation

iC1(t) = C1
dv1(t)

dt
= iin(t) − v1(t)

R1
− i(t) (7.97)
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This equation will become the top row of the matrix equation (7.91). The capacitor current iC2(t)
is given by the node equation,

iC2(t) = C2
dv2(t)

dt
= i(t) − v2(t)

R2 + R3
(7.98)

Note that we have been careful to express this current as a linear combination of the elements
of x(t) and u(t) alone. The inductor voltage is given by the loop equation,

vL(t) = L
di(t)
dt
= v1(t) − v2(t) (7.99)

Equations (7.97) to (7.99) can be written in the following matrix form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
C1 0 0
0 C2 0
0 0 L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸������︷︷������︸

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dv1(t)
dt

dv2(t)
dt

di(t)
dt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸���︷︷���︸

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
R1

0 −1

0 − 1
R2 + R3

1

1 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸��������������������︷︷��������������������︸

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
v1(t)
v2(t)
i(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸︷︷︸

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸︷︷︸

[iin(t)]︸︷︷︸

K
dx(t)

dt
= A x(t) + B u(t)

(7.100)

Matrices A and B are now known.
It is also necessary to express the elements of y(t) as linear combinations of the elements of

x(t) and u(t). By solution of the circuit of Fig. 7.39, vout(t) can be written in terms of v2(t) as

vout(t) = v2(t)
R3

R2 + R3
(7.101)

Also, iR1(t) can be expressed in terms of v1(t) as

iR1(t) =
v1(t)
R1

(7.102)

By collecting Eqs. (7.101) and (7.102) into the standard matrix form of Eq. (7.91), we obtain

[
vout(t)
iR1(t)

]
︸��︷︷��︸

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

R3

R2 + R3
0

1
R1

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸��������������︷︷��������������︸

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
v1(t)
v2(t)
i(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸︷︷︸

+

[
0
0

]
︸︷︷︸

[iin(t)]︸︷︷︸

y(t) = C x(t) + E u(t)

(7.103)

We can now identify the matrices C and E as shown above.
It should be recognized that, starting in Chap. 2, we have always begun the analysis of

converters by writing their state equations. We are now simply writing these equations in matrix
form.
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7.5.2 The Basic State-Space Averaged Model

Consider now that we are given a PWM converter, operating in the continuous conduction
mode. The converter circuit contains independent states that form the state vector x(t), and
the converter is driven by independent sources that form the input vector u(t). During the first
subinterval, when the switches are in position 1, the converter reduces to a linear circuit that can
be described by the following state equations:

K
dx(t)

dt
= A1x(t) + B1u(t)

y(t) = C1x(t) + E1u(t) (7.104)

During the second subinterval, with the switches in position 2, the converter reduces to another
linear circuit whose state equations are

K
dx(t)

dt
= A2x(t) + B2u(t) (7.105)

y(t) = C2x(t) + E2u(t)

During the two subintervals, the circuit elements are connected differently; therefore, the respec-
tive state equation matrices A1, B1, C1, E1 and A2, B2, C2, E2 may also differ. Given these
state equations, the result of state-space averaging is the state equations of the equilibrium and
small-signal ac models.

Provided that the natural frequencies of the converter, as well as the frequencies of variations
of the converter inputs, are much slower than the switching frequency, then the state-space
averaged model that describes the converter in equilibrium is

0 = AX + BU (7.106)

Y = CX + EU

where the averaged matrices are

A = DA1 + D′A2

B = DB1 + D′B2

C = DC1 + D′C2

E = DE1 + D′E2 (7.107)

The equilibrium dc components are

X = equilibrium (dc) state vector

U = equilibrium (dc) input vector

Y = equilibrium (dc) output vector

D = equilibrium (dc) duty cycle (7.108)

Quantities defined in Eq. (7.108) represent the equilibrium values of the averaged vectors. Equa-
tion (7.106) can be solved to find the equilibrium state and output vectors:

X = −A−1BU (7.109)

Y = (−CA−1B + E)U



256 7 AC Equivalent Circuit Modeling

The state equations of the small-signal ac model are

K
dx̂(t)

dt
= Ax̂(t) + Bû(t) + {(A1 − A2)X + (B1 − B2)U} d̂(t) (7.110)

ŷ(t) = Cx̂(t) + Eû(t) + {(C1 − C2)X + (E1 − E2)U} d̂(t)

The quantities x̂(t), û(t), ŷ(t), and d̂(t) in Eq. (7.110) are small ac variations about the equilibrium
solution, or quiescent operating point, defined by Eqs. (7.106) to (7.109).

So if we can write the converter state equations, Eqs. (7.104) and (7.105), then we can
always find the averaged dc and small-signal ac models, by evaluation of Eqs. (7.106) to (7.110).

7.5.3 Discussion of the State-Space Averaging Result

As in Sects. 7.1 and 7.2, the low-frequency components of the inductor currents and capacitor
voltages are modeled by averaging over an interval of length Ts. Hence, we can define the
average of the state vector x(t) as

〈x(t)〉Ts =
1
Ts

∫ t+Ts/2

t−Ts/2
x(τ) dτ (7.111)

The low-frequency components of the input and output vectors are modeled in a similar manner.
By averaging the inductor voltages and capacitor currents, one then obtains the following low-
frequency state equation:

K
d〈x(t)〉Ts

dt
=
(
d(t)A1 + d′(t)A2

) 〈x(t)〉Ts +
(
d(t)B1 + d′(t)B2

) 〈u(t)〉Ts (7.112)

This result is equivalent to Eq. (7.2).
For example, let us consider how the elements of the state vector x(t) change over one

switching period. During the first subinterval, with the switches in position 1, the converter
state equations are given by Eq. (7.104). Therefore, the elements of x(t) change with the slopes
K−1(A1x(t)+B1u(t)). If we make the small ripple approximation, that x(t) and u(t) do not change
much over one switching period, then the slopes are essentially constant and are approximately
equal to

dx(t)
dt
= K−1 (A1〈x(t)〉Ts + B1〈u(t)〉Ts

)
(7.113)

This assumption coincides with the requirements for small switching ripple in all elements of
x(t) and that variations in u(t) be slow compared to the switching frequency. If we assume that
the state vector is initially equal to x(0), then we can write

x(dTs)︸�︷︷�︸
final
value

= x(0)︸︷︷︸
initial
value

+ (dTs)︸︷︷︸
interval
length

K−1 (A1〈x(t)〉Ts + B1〈u(t)〉Ts

)
︸��������������������������������︷︷��������������������������������︸

slope

(7.114)

Similar arguments apply during the second subinterval. With the switch in position 2, the state
equations are given by Eq. (7.105). With the assumption of small ripple during this subinterval,
the state vector now changes with slope

dx(t)
dt
= K−1 (A2〈x(t)〉Ts + B2〈u(t)〉Ts

)
(7.115)
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Fig. 7.40 How an element of the state vector, and its average, evolve over one switching period

The state vector at the end of the switching period is

x(Ts)︸︷︷︸
final
value

= x(dTs)︸�︷︷�︸
initial
value

+ (d′Ts)︸︷︷︸
interval
length

K−1 (A2〈x(t)〉Ts + B2〈u(t)〉Ts

)
︸��������������������������������︷︷��������������������������������︸

slope

(7.116)

Substitution of Eq. (7.114) into Eq. (7.116) allows us to determine x(Ts) in terms of x(0):

x(Ts) = x(0) + dTsK−1 (A1〈x(t)〉Ts + B1〈u(t)〉Ts

)
+ d′TsK−1 (A2〈x(t)〉Ts + B2〈u(t)〉Ts

)
(7.117)

Upon collecting terms, one obtains

x(Ts) = x(0) + TsK−1 (d(t)A1 + d′(t)A2
) 〈x(t)〉Ts + TsK−1 (d(t)B1 + d′(t)B2

) 〈u(t)〉Ts (7.118)

Next, we approximate the derivative of 〈x(t)〉TS using the net change over one switching period:

d〈x(t)〉Ts

dt
≈ x(Ts) − x(0)

Ts
(7.119)

Substitution of Eq. (7.118) into (7.119) leads to

K
d〈x(t)〉Ts

dt
= (d(t)A1 + d′(t)A2)〈x(t)〉Ts + (d(t)B1 + d′(t)B2)〈u(t)〉Ts (7.120)

which is identical to Eq. (7.113). This is the basic averaged model which describes the converter
dynamics. It is nonlinear because the control input d(t) is multiplied by 〈x(t)〉Ts and 〈u(t)〉Ts .
Variation of a typical element of x(t) and its average are illustrated in Fig. 7.40.

It is also desired to find the low-frequency components of the output vector y(t) by averag-
ing. The vector y(t) is described by Eq. (7.104) for the first subinterval, and by Eq. (7.105) for
the second subinterval. Hence, the elements of y(t) may be discontinuous at the switching tran-
sitions, as illustrated in Fig. 7.41. We can again remove the switching harmonics by averaging
over one switching period; the result is

〈y(t)〉Ts = d(t)
(
C1〈x(t)〉Ts + E1〈u(t)〉Ts

)
+ d′(t)

(
C2〈x(t)〉Ts + E2〈u(t)〉Ts

)
(7.121)

Rearrangement of terms yields

〈y(t)〉Ts =
(
d(t)C1 + d′(t)C2

) 〈x(t)〉Ts +
(
d(t)E1 + d′(t)E2

) 〈u(t)〉Ts (7.122)
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Fig. 7.41 Averaging an element of the output vector y(t)

This is again a nonlinear equation.
The averaged state equations, (7.120) and (7.122), are collected below:

K
d〈x(t)〉TS

dt
= (d(t)A1 + d′(t)A2)〈x(t)〉Ts + (d(t)B1 + d′(t)B2)〈u(t)〉Ts (7.123)

〈y(t)〉Ts = (d(t)C1 + d′(t)C2)〈x(t)〉Ts + (d(t)E1 + d′(t)E2)〈u(t)〉Ts

The next step is the linearization of these equations about a quiescent operating point, to con-
struct a small-signal ac model. When dc inputs d(t) = D and u(t) = U are applied, converter
operates in equilibrium when the derivatives of all of the elements of 〈x(t)〉Ts are zero. Hence,
by setting the derivative of 〈x(t)〉Ts to zero in Eq. (7.123), we can define the converter quiescent
operating point as the solution of

0 = AX + BU (7.124)

Y = CX + EU

where definitions (7.107) and (7.108) have been used. We now perturb and linearize the con-
verter waveforms about this quiescent operating point:

〈x(t)〉Ts = X + x̂(t)

〈u(t)〉Ts = U + û(t) (7.125)

〈y(t)〉Ts = Y + ŷ(t)

d(t) = D + d̂(t)⇒ d′(t) = D′ − d̂(t)

Here, û(t) and d̂(t) are small ac variations in the input vector and duty ratio. The vectors x̂(t)
and ŷ(t) are the resulting small ac variations in the state and output vectors. We must assume
that these ac variations are much smaller than the quiescent values. In other words,

‖U‖ 
 ‖û(t)‖
D 
 |d̂(t)|

‖X‖ 
 ‖x̂(t)‖
‖Y‖ 
 ‖ŷ(t)‖ (7.126)

Here, ‖x‖ denotes a norm of the vector x.
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Substitution of Eq. (7.125) into Eq. (7.123) yields

K
d(X + x̂(t))

dt
=
(
(D + d̂(t))A1 +

(
D′ − d̂(t)

)
A2

)
(X + x̂(t))

+
(
(D + d̂(t))B1 + (D′ − d̂(t))B2

)
(U + û(t))

(7.127)

(Y + ŷ(t)) =
(
(D + d̂(t))C1 + (D′ − d̂(t))C2

)
(X + x̂(t))

+
(
(D + d̂(t))E1 + (D′ − d̂(t))E2

)
(U + û(t))

The derivative dX/dt is zero. By collecting terms, one obtains

K
dx̂(t)

dt︸��︷︷��︸
first order ac

= (AX + BU)︸�������︷︷�������︸
dc terms

+ Ax̂(t) + Bû(t) + {(A1 − A2)X + (B1 − B2)U} d̂(t)︸����������������������������������������������������������︷︷����������������������������������������������������������︸
first-order ac terms

+ (A1 − A2)x̂(t)d̂(t) + (B1 − B2)û(t)d̂(t)︸�������������������������������������������︷︷�������������������������������������������︸
second-order nonlinear terms

(7.128)

(Y + ŷ(t))︸�����︷︷�����︸
dc+1storder ac

= (CX + EU)︸��������︷︷��������︸
dc terms

+ Cx̂(t) + Eû(t) + {(C1 − C2)X + (E1 − E2)U} d̂(t)︸����������������������������������������������������������︷︷����������������������������������������������������������︸
first-order ac terms

+ (C1 − C2)x̂(t)d̂(t) + (E1 − E2)û(t)d̂(t)︸�������������������������������������������︷︷�������������������������������������������︸
second-order nonlinear terms

Since the dc terms satisfy Eq. (7.124), they drop out of Eq. (7.128). Also, if the small-signal
assumption (7.126) is satisfied, then the second-order nonlinear terms of Eq. (7.128) are small
in magnitude compared to the first-order ac terms. We can therefore neglect the nonlinear terms,
to obtain the following linearized ac model:

K
dx̂(t)

dt
= Ax̂(t) + Bû(t) + {(A1 − A2)X + (B1 − B2)U} d̂(t) (7.129)

ŷ(t) = Cx̂(t) + Eû(t) + {(C1 − C2)X + (E1 − E2)U} d̂(t)

This is the desired result, which coincides with Eq. (7.109).

7.5.4 Example: State-Space Averaging of a Nonideal Buck-Boost Converter

Let us apply the state-space averaging method to model the buck–boost converter of Fig. 7.42.
We will model the conduction loss of MOSFET Q1 by on-resistance Ron, and the forward volt-
age drop of diode D1 by an independent voltage source of value VD. It is desired to obtain a
complete equivalent circuit, which models both the input port and the output port of the con-
verter.

The independent states of the converter are the inductor current i(t) and the capacitor voltage
v(t). Therefore, we should define the state vector x(t) as

x(t) =

[
i(t)
v(t)

]
(7.130)
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+ L C R

+

v(t)vg(t)

Q1 D1

i(t)

ig(t)

Fig. 7.42 Buck–boost converter example

The input voltage vg(t) is an independent source which should be placed in the input vector
u(t). In addition, we have chosen to model the diode forward voltage drop with an independent
voltage source of value VD. So this voltage source should also be included in the input vector
u(t). Therefore, let us define the input vector as

u(t) =

[
vg(t)
VD

]
(7.131)

To model the converter input port, we need to find the converter input current ig(t). To calculate
this dependent current, it should be included in the output vector y(t). Therefore, let us choose
to define y(t) as

y(t) = [ig(t)] (7.132)

Note that it is not necessary to include the output voltage v(t) in the output vector y(t), since v(t)
is already included in the state vector x(t).

Next, let us write the state equations for each subinterval. When the switch is in position
1, the converter circuit of Fig. 7.43a is obtained. The inductor voltage, capacitor current, and
converter input current are

L
di(t)
dt
= vg(t) − i(t)Ron

C
dv(t)

dt
= −v(t)

R
ig(t) = i(t)

(7.133)

These equations can be written in the following state-space form:
[
L 0
0 C

]
︸︷︷︸

d
dt

[
i(t)
v(t)

]
︸���︷︷���︸

=

⎡⎢⎢⎢⎢⎢⎢⎣
−Ron 0

0 − 1
R

⎤⎥⎥⎥⎥⎥⎥⎦
︸�������︷︷�������︸

[
i(t)
v(t)

]
︸︷︷︸

+

[
1 0
0 0

]
︸︷︷︸

[
vg(t)
VD

]
︸︷︷︸

K
dx(t)

dt
A1 x(t) B1 u(t)

[
ig(t)

]
︸︷︷︸ =

[
1 0

]
︸︷︷︸

[
i(t)
v(t)

]
︸︷︷︸

+
[
0 0

]
︸︷︷︸

[
vg(t)
VD

]
︸︷︷︸

y(t) C1 x(t) E1 u(t)

(7.134)

So we have identified the state equation matrices A1, B1, C1, and E1.
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(a)

+ L C R

+

v(t)

i(t)

vg(t)

Ronig(t)

(b)

+ L C R

+

v(t)

i(t)

vg(t)
+

VD

ig(t)

Fig. 7.43 Buck–boost converter circuit: (a) during subinterval 1, (b) during subinterval 2

With the switch in position 2, the converter circuit of Fig. 7.43b is obtained. For this subin-
terval, the inductor voltage, capacitor current, and converter input current are given by

L
di(t)
dt
= v(t) − VD

C
dv(t)

dt
= −v(t)

R
− i(t) (7.135)

ig(t) = 0

When written in state-space form, these equations become

[
L 0
0 C

]
︸︷︷︸

d
dt

[
i(t)
v(t)

]
︸���︷︷���︸

=

⎡⎢⎢⎢⎢⎢⎢⎣
0 1

−1 − 1
R

⎤⎥⎥⎥⎥⎥⎥⎦
︸�����︷︷�����︸

[
i(t)
v(t)

]
︸︷︷︸

+

[
0 −1
0 0

]
︸�︷︷�︸

[
vg(t)
VD

]
︸︷︷︸

K
dx(t)

dt
A2 x(t) B2 u(t)

[
ig(t)

]
︸︷︷︸ =

[
0 0

]
︸︷︷︸

[
i(t)
v(t)

]
︸︷︷︸

+
[
0 0

]
︸︷︷︸

[
vg(t)
VD

]
︸︷︷︸

y(t) C2 x(t) E2 u(t)

(7.136)

So we have also identified the subinterval 2 matrices A2, B2, C2, and E2.
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The next step is to evaluate the state-space averaged equilibrium equations (7.106) to (7.108).
The averaged matrix A is

A = DA1 + D′A2 = D

⎡⎢⎢⎢⎢⎢⎢⎣
−Ron 0

0 − 1
R

⎤⎥⎥⎥⎥⎥⎥⎦ + D′
⎡⎢⎢⎢⎢⎢⎢⎣

0 1

−1 − 1
R

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣
−DRon D′

−D′ − 1
R

⎤⎥⎥⎥⎥⎥⎥⎦ (7.137)

In a similar manner, the averaged matrices B, C, and E are evaluated, with the following
results:

B = DB1 + D′B2 =

[
D −D′

0 0

]

C = DC1 + D′C2 =
[
D 0

]

E = DE1 + D′E2 =
[
0 0

]
(7.138)

The dc state equations (7.106) therefore become

[
0
0

]
=

⎡⎢⎢⎢⎢⎢⎢⎣
−DRon D′

−D′ − 1
R

⎤⎥⎥⎥⎥⎥⎥⎦
[

I
V

]
+

[
D −D′

0 0

] [
Vg

VD

]

[
Ig

]
=

[
D 0

] [
I
V

]
+

[
0 0

] [
Vg

VD

] (7.139)

Evaluation of Eq. (7.109) leads to the following solution for the equilibrium state and output
vectors:

[
I
V

]
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

1 +
D

D′2
Ron

R

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
D

D′2R
1

D′R

− D
D′

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
Vg

VD

]

[
Ig

]
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

1 +
D

D′2
Ron

R

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
[

D2

D′2R
1

D′R

] [
Vg

VD

] (7.140)

Alternatively, the steady-state equivalent circuit of Fig. 7.44 can be constructed as usual from Eq.
(7.139). The top row of Eq. (7.139) could have been obtained by application of the principle of
inductor volt-second balance to the inductor voltage waveform. The second row of Eq. (7.139)
could have been obtained by application of the principle of capacitor charge balance to the
capacitor current waveform. The ig(t) equation expresses the dc component of the converter
input current. By reconstructing circuits that are equivalent to these three equations, the dc
model of Fig. 7.44 is obtained.
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+

+

Vg

Ig I

R

1 : D D' : 1
DRon D'VD

+

V

Fig. 7.44 Dc circuit model for the buck–boost converter model, equivalent to Eq. (7.139)

The small-signal model is found by evaluation of Eq. (7.109). The vector coefficients of d̂(t)
in Eq. (7.109) are

(A1 − A2) X + (B1 − B2) U =
[
−V − IRon

I

]
+

[
Vg + VD

0

]
=

[
Vg − V − IRon + VD

I

]

(C1 − C2) X + (E1 − E2) U =
[
I
] (7.141)

The small-signal ac state equations (7.109) therefore become

[
L 0
0 C

]
d
dt

[
î(t)
v̂(t)

]
=

⎡⎢⎢⎢⎢⎢⎢⎣
−DRon D′

−D′ − 1
R

⎤⎥⎥⎥⎥⎥⎥⎦
[
î(t)
v̂(t)

]
+

[
D −D′

0 0

] [
v̂g(t)

0

]
+

[
Vg − V − IRon + VD

I

]
d̂(t)

[
îg(t)

]
=
[
D 0

] [ î(t)
v̂(t)

]
+
[
0 0

] [v̂g(t)
0

]
+
[
I
]
d̂(t)

(7.142)

Note that, since the diode forward voltage drop is modeled as the constant value VD, there
are no ac variations in this source, and v̂D(t) equals zero. Again, a circuit model equivalent to
Eq. (7.142) can be constructed, in the usual manner. When written in scalar form, Eq. (7.142)
becomes

L
dî(t)
dt
= D′v̂(t) − DRonî(t) + Dv̂g(t) +

(
Vg − V − IRon + VD

)
d̂(t)

C
dv̂(t)

dt
= −D′ î(t) − v̂(t)

R
+ Id̂(t)

îg(t) = Dî(t) + Id̂(t)

(7.143)

Circuits corresponding to these equations are listed in Fig. 7.45. These circuits can be combined
into the complete small-signal ac equivalent circuit model of Fig. 7.46.
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Fig. 7.45 Circuits equivalent to the small-signal converter equations: (a) inductor loop, (b) capacitor
node, (c) input port

Fig. 7.46 Complete small-signal ac equivalent circuit model, nonideal buck–boost converter example

7.5.5 Example: State-Space Averaging of a Boost Converter with ESR

As a final example, let us employ the state-space averaging method to derive the model of the
nonideal boost converter of Fig. 7.47. This circuit includes a resistor RC that models the capaci-
tor equivalent series resistance; the dashed line encloses the capacitor model including an ideal
capacitor C and ESR RC . Students often experience difficulty in deriving the averaged equations
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+ Q1

L

C
R

+

v(t)

D1

vg

iL(t)

RC +
vC(t)

Fig. 7.47 Boost converter circuit, including capacitor equivalent series resistance RC

v(t)

tdTs Ts0

i R||RC

Fig. 7.48 The capacitor ESR causes the output voltage waveform v(t) to become discontinuous

of this circuit, and the state-space averaging method provides a framework for correctly deriv-
ing the averaged model. With the exception of the capacitor ESR, we will model all elements
as ideal.

As illustrated in Fig. 7.48, the capacitor ESR causes the output voltage v(t) to be discontinu-
ous. When the diode conducts, the inductor current causes the output voltage to be greater by an
amount iL(t) R‖RC and so the voltage exhibits a discontinuity during the switching times. Hence,
we must be careful not to attempt to apply the small-ripple approximation to the output voltage
v(t). On the other hand, the voltage vC(t) of the ideal capacitor portion of the capacitor model is
continuous and exhibits small ripple.

The independent states of this circuit are the inductor current iL(t) and the capacitor voltage
vC(t). Note that vC(t) is defined as the voltage across the ideal capacitor portion of the capacitor
model. The state vector x(t) is therefore defined as

x(t) =

[
iL(t)
vC(t)

]
(7.144)

The input voltage vg(t) is an independent source which should be placed in the input vector u(t).
We have chosen to model no other independent sources. Therefore, let us define the input vector
as

u(t) =
[
vg(t)

]
(7.145)

To model the converter input port, we need to find the converter input current ig(t). For the boost
converter, the input current ig(t) coincides with the inductor current iL(t). Since iL(t) is already
in the state vector x(t), no additional information is gained by inclusion of ig(t) in the output
vector. On the other hand, to model the output port, we must write an equation for the output
voltage v(t). Since the actual output voltage v(t) no longer coincides with the capacitor state
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(a)

+vg

LiL(t)

RC

C

R

+

v(t)
+
vC(t)

+ vL(t) + vL(t) 

iC(t)

(b)

+vg

LiL(t)

RC

C

R

+

v (t)
+
vC(t)

iC(t)

Fig. 7.49 Boost with ESR converter circuit: (a) during subinterval 1, (b) during subinterval 2

vC(t), we must write additional equations that can be solved for the averaged output voltage.
Therefore v(t) must be included in the output vector. Hence, let us choose to define y(t) as

y(t) =
[
v(t)

]
(7.146)

Thus for this example, the output vector contains only the dependent quantity v(t).
Next, we will develop the state equations for each subinterval. For the first subinterval, the

MOSFET conducts and the converter circuit reduces to that of Fig. 7.49a. We can express the
inductor voltage and capacitor current as:

L
diL(t)

dt
= vg(t)

C
dvC(t)

dt
= − vC(t)

R + RC

(7.147)

Note that we have been careful to express the capacitor current in terms of the capacitor voltage
vC(t), rather than the output voltage v(t). This is necessary because the state equations must
be written as functions of the elements of the independent vectors x(t) and u(t), but not the
dependent vector y(t).

For the first subinterval, we can express the output quantity also as a function of the elements
of x(t) and u(t), as follows:

v(t) = vC(t)
R

R + RC
(7.148)

Again, we have been careful to express v(t) as a function of the capacitor state vC(t).
We can next write Eqs. (7.147) and (7.148) in matrix form. The result is

[
L 0
0 C

]
︸︷︷︸

d
dt

[
iL(t)
vC(t)

]
︸�����︷︷�����︸

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 0

0 − 1
R + RC

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸�������������︷︷�������������︸

[
iL(t)
vC(t)

]
︸�︷︷�︸

+

[
1
0

]
︸︷︷︸

[
vg(t)

]
︸︷︷︸

K
dx(t)

dt
A1 x(t) B1 u(t)

[
v(t)

]
︸︷︷︸ =

[
0

R
R + RC

]
︸�����������︷︷�����������︸

[
iL(t)
vC(t)

]
︸�︷︷�︸

+
[
0
]

︸︷︷︸
[
vg(t)

]
︸︷︷︸

y(t) C1 x(t) E1 u(t)

(7.149)
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For the second subinterval, the MOSFET is off and the diode conducts. The circuit of
Fig. 7.49b is obtained. We can express the inductor voltage and capacitor current as:

L
diL(t)

dt
= vg(t) − v(t) = vg(t) − vC(t)

R
R + RC

− iL(t) R‖RC

C
dvC(t)

dt
=

v(t) − vC(t)
RC

= − vC(t)
R + RC

+ iL(t)
R

R + RC

(7.150)

In the above equations, it was necessary to eliminate the output voltage v(t), again because the
state equations must be written as functions of the elements of the independent vectors x(t) and
u(t), but not the dependent vector y(t). The notation R‖RC denotes the parallel combination of
R and RC .

For this subinterval, we can express the output also as a function of the elements of x(t) and
u(t), as follows:

v(t) = vC(t)
R

R + RC
+ iL(t) R‖RC (7.151)

Again, we have been careful to express v(t) as a function of the capacitor state vC(t). We can
now assemble the above equations to obtain the state-space description of the circuit during the
second subinterval:

[
L 0
0 C

]
︸︷︷︸

d
dt

[
iL(t)
vC(t)

]
︸�����︷︷�����︸

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−R‖RC − R

R + RC
R

R + RC
− 1

R + RC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸����������������������︷︷����������������������︸

[
iL(t)
vC(t)

]
︸�︷︷�︸

+

[
1
0

]
︸︷︷︸

[
vg(t)

]
︸︷︷︸

K
dx(t)

dt
A2 x(t) B2 u(t)

[
v(t)

]
︸︷︷︸ =

[
R‖RC

R
R + RC

]
︸�����������������︷︷�����������������︸

[
iL(t)
vC(t)

]
︸�︷︷�︸

+
[
0
]

︸︷︷︸
[
vg(t)

]
︸︷︷︸

y(t) C2 x(t) E2 u(t)

(7.152)

The state-space averaging method predicts that the converter steady-state model is

[
0
0

]
︸︷︷︸

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−D′(R‖RC) −D′

R
R + RC

D′
R

R + RC
− 1

R + RC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸�������������������������������︷︷�������������������������������︸

[
IL

VC

]
︸︷︷︸

+

[
1
0

]
︸︷︷︸

[
Vg

]
︸︷︷︸

0 DA1 + D′A2 X DB1 + D′B2 U

[
V
]

︸︷︷︸ =
[
D′(R‖RC)

R
R + RC

]
︸�����������������������︷︷�����������������������︸

[
IL

VC

]
︸︷︷︸

+
[
0
]

︸︷︷︸
[
Vg

]
︸︷︷︸

Y DC1 + D′C2 X DE1 + D′E2 U

(7.153)
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(a)

+Vg
+D′V

DD′ (R||RC)

IL

(b)

D′IL R

+

V

(c)

R

RC

VC +

V D IL

+

Fig. 7.50 Steps in the construction of the steady-state equivalent circuit for the boost converter with
capacitor equivalent series resistance: (a) inductor loop, (b) output node, (c) connection of capacitor to
output node

Let us construct a steady-state equivalent circuit corresponding to the above equations. The
output terminal of our converter is the output voltage V , rather than the capacitor voltage VC .
Therefore, it is helpful to first express the above equations in terms of the output voltage V , by
using the output equation to eliminate VC . This leads to the following equations:

0 = Vg − D′V − DD′IL (R‖RC) (7.154a)

0 = D′IL −
V
R

(7.154b)

V = VC
R

R + RC
+ D′IL (R‖RC) (7.154c)

Equation (7.154a) can be recognized as a voltage loop equation, resulting from volt-second bal-
ance on the inductor. The current of this loop is the dc inductor current IL. Construction of an
equivalent circuit corresponding to this equation leads to the network of Fig. 7.50a. Likewise,
Eq. (7.154b) is the equation of the output node, having voltage V . A corresponding equivalent
circuit for this equation is shown in Fig. 7.50b. Equation (7.154c) describes how the capacitor
C and its voltage VC is connected to the output node. We might expect that the ideal capacitor
element C is connected through the ESR RC to the output node, as it is in the original converter
circuit of Fig. 7.47. Indeed this is the case: Fig. 7.50c is a circuit corresponding to Eq. (7.154c),
with the capacitor voltage VC connected to the output node voltage V through resistor RC . Re-
sistors R and RC constitute a voltage divider having the divider ratio R/(R + RC) shown in
Eq. (7.154c). The second term in the equation accounts for how the current D′IL increases the
output voltage, through the Thevenin-equivalent output resistance of the voltage divider, R‖RC .

The circuits of Fig. 7.50 can be combined into the complete steady-state equivalent circuit
illustrated in Fig. 7.51. It can be observed that the steady-state voltages V and VC are equal.
Additionally, the capacitor ESR leads to an additional effective series resistor DD′(R‖RC). This
resistor models the loss induced in the ESR by the ac capacitor current, and its effect on the
converter efficiency.
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+Vg R

D  : 1DD (R||RC)

RC

+

V
+
VC

IL

Fig. 7.51 Steady-state model of the boost converter, including effects of capacitor equivalent series resis-
tance RC

The small-signal ac state-space averaged model is found by evaluation of Eq. (7.110). The
result is

[
L 0
0 C

]
d
dt

[
îL(t)
v̂C(t)

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−D′(R‖RC) −D′

R
R + RC

D′
R

R + RC
− 1

R + RC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
îL(t)
v̂C(t)

]
+

[
1
0

] [
v̂g(t)

]
(7.155)

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
IL R‖RC + VC

R
R + RC

−IL
R

R + RC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ d̂(t) (7.156)

[
v̂(t)

]
=

[
D′(R‖RC)

R
R + RC

] [
îL(t)
v̂C(t)

]
+
[
−IL R‖RC

]
d̂(t) (7.157)

To construct a small-signal ac circuit model, it is helpful to again express the equations in terms
of the converter output voltage v̂ rather than the capacitor voltage v̂C . This is accomplished by
using the output equation to eliminate v̂C from the right side of the state equations. After some
algebra, we obtain

L
dîL

dt
= v̂g − D′v̂ − DD′(R‖RC)îL + ((D − D′)(R‖RC)IL + V) d̂ (7.158a)

C
dv̂C

dt
= D′ îL −

v̂
R
− ILd̂ (7.158b)

v̂ = v̂C
R

R + RC
+ (D′ îL − ILd̂)(R‖RC) (7.158c)

Equation (7.158a) can be recognized as a voltage loop equation, describing the small-signal ac
components of the voltage around a loop containing the inductor. The current of this loop is
the ac inductor current îL. Construction of an equivalent circuit corresponding to this equation
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Fig. 7.52 Steps in the construction of the small-signal ac equivalent circuit for the boost converter with
capacitor equivalent series resistance: (a) inductor loop, (b) output node, (c) connection of capacitor to
output node, (d) composite circuit, output node and capacitor

Fig. 7.53 Complete small-signal ac model of the boost converter, including effects of capacitor equivalent
series resistance RC

leads to the network of Fig. 7.52a. Likewise, Eq. (7.158b) is the equation of the output node,
having voltage v̂. A corresponding equivalent circuit for this equation is shown in Fig. 7.52b.
Although the capacitor current C dv̂C/dt flows out of this node, Eq. (7.158b) does not describe
whether the capacitor is connected through the capacitor ESR, and so at this point we will leave
the capacitor branch as an unknown element.

Equation (7.158c) describes how the capacitor C and its voltage v̂C are connected to the
output node. As in the steady-state model, we expect that the ideal capacitor element C is con-
nected through the ESR RC to the output node. Again, this is the case: Fig. 7.52c is a circuit
corresponding to Eq. (7.158c), with the capacitor voltage v̂C connected to the output node volt-
age v̂ through resistor RC . Resistors R and RC again constitute a voltage divider having the
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divider ratio R/(R + RC) shown in Eq. (7.158c). The second term in the equation accounts for
how the total current (D′ îL + ILd̂) (from the transformer secondary plus the d̂ current source)
increases the output voltage, through the Thevenin-equivalent output resistance of the voltage
divider, R‖RC . The circuits of Fig. 7.52b and c can be combined into the single circuit illustrated
in Fig. 7.52d.

The circuits of Fig. 7.52a,d now can be combined, and the dependent sources replaced by
an effective transformer as illustrated in Fig. 7.53. In this small-signal ac model, the voltages v̂
and v̂C can differ, and the capacitor ESR leads to new transfer function dynamics not present in
the converter without ESR.

7.6 Summary of Key Points

1. The CCM converter analytical techniques of Chaps. 2 and 3 can be extended to predict con-
verter ac behavior. The key step is to average the converter waveforms over one switching
period. This removes the switching harmonics, thereby exposing directly the desired dc and
low-frequency ac components of the waveforms. In particular, expressions for the averaged
inductor voltages, capacitor currents, and converter input current are usually found.

2. Since switching converters are nonlinear systems, it is desirable to construct small-signal
linearized models. This is accomplished by perturbing and linearizing the averaged model
about a quiescent operating point.

3. Ac equivalent circuits can be constructed, in the same manner used in Chap. 3 to construct
dc equivalent circuits. If desired, the ac equivalent circuits may be refined to account for
the effects of converter losses and other nonidealities.

4. The conventional pulse-width modulator circuit has linear gain, dependent on the slope of
the sawtooth waveform, or equivalently on its peak-to-peak magnitude. The pulse-width
modulator also introduces sampling to the system.

5. The canonical circuit describes the basic properties shared by all dc–dc PWM converters
operating in the continuous conduction mode. At the heart of the model is the ideal 1:M(D)
transformer, introduced in Chap. 3 to represent the basic dc–dc conversion function, and
generalized here to include ac variations. The converter reactive elements introduce an ef-
fective low-pass filter into the network. The model also includes independent sources that
represent the effect of duty-cycle variations. The parameter values in the canonical models
of several basic converters are tabulated for easy reference.

6. The state-space averaging method of Sect. 7.5 is essentially the same as the basic approach
of Sect. 7.2, except that the formality of the state-space network description is used. The
general results are listed in Sect. 7.5.2. State-space averaging is a formal approach that
shows how a small-signal averaged model can always be derived, provided that the state
equations can be written for each subinterval.
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Problems

7.1 An ideal boost converter operates in the continuous conduction mode.
(a) Determine the nonlinear averaged equations of this converter.
(b) Now construct a small-signal ac model. Let

〈vg(t)〉Ts = Vg + v̂g(t)

d(t) = D + d̂(t)

〈i(t)〉Ts = I + î(t)

〈v(t)〉Ts = V + v̂(t)

where Vg, D, I, and V are steady-state dc values; v̂g(t) and d̂(t) are small ac variations
in the power and control inputs; and î(t) and v̂(t) are the resulting small ac variations in
the inductor current and output voltage, respectively. Show that the following model
results:
Large-signal dc components

0 = −D′V + Vg

0 = D′I − V
R

Small-signal ac components

L
dî(t)
dt
= −D′v̂(t) + Vd̂(t) + v̂g(t)

C
dv̂(t)

dt
= D′ î(t) − Id̂(t) − v̂(t)

R

7.2 Construct an equivalent circuit that corresponds to the boost converter small-signal ac
equations derived in Problem 7.1(b).

7.3 Manipulate your boost converter equivalent circuit of Problem 7.2 into canonical form.
Explain each step in your derivation. Verify that the elements in your canonical model
agree with Table 7.1.

7.4 The ideal current-fed bridge converter of Fig. 2.32 operates in the continuous conduction
mode.
(a) Determine the nonlinear averaged equations of this converter.
(b) Perturb and linearize, to determine the small-signal ac equations.
(c) Construct a small-signal ac equivalent circuit model for this converter.

7.5 Construct a complete small-signal ac equivalent circuit model for the flyback converter
shown in Fig. 7.19, operating in continuous conduction mode. The transformer contains
magnetizing inductance L, referred to the primary. In addition, the transformer exhibits
significant core loss, which can be modeled by a resistor RC in parallel with the primary
winding. All other elements are ideal. You may use any valid method to solve this problem.
Your model should correctly predict variations in ig(t).

7.6 Modeling the Ćuk converter. You may use any valid method to solve this problem.
(a) Derive the small-signal dynamic equations that model the ideal Ćuk converter.
(b) Construct a complete small-signal equivalent circuit model for the Ćuk converter.
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+vg(t)

+

v(t)RL1

L2
C1

C2

ig(t)

Fig. 7.54 Inverse-SEPIC, Problem 7.7

7.7 Modeling the inverse-SEPIC. You may use any valid method to solve this problem.
(a) Derive the small-signal dynamic equations that model the converter shown in Fig. 7.54.
(b) Construct a complete small-signal equivalent circuit model for the inverse-SEPIC.

7.8 Consider the nonideal buck converter of Fig. 7.55. The input voltage source vg(t) has inter-
nal resistance Rg. Other component nonidealities may be neglected.

+

L

C R

+

v(t)vg(t)

Rg

ig(t)

Fig. 7.55 Nonideal buck converter, Problem 7.8

(a) Using the state-space averaging method, determine the small-signal ac equations that
describe variations in i, v, and ig, which occur owing to variations in the transistor
duty cycle d and input voltage vg.

(b) Construct an ac equivalent circuit model corresponding to your equations of part (a).
(c) Solve your model to determine an expression for the small-signal control-to-output

transfer function.
7.9 Starting with Eq. (7.19), derive Eqs. (7.20) and (7.22). Show all steps in your derivation.

7.10 A flyback converter operates in the continuous conduction mode. The MOSFET switch
has on-resistance Ron, and the secondary-side diode has a constant forward voltage drop
VD. The flyback transformer has primary winding resistance Rp and secondary winding
resistance Rs.
(a) Derive the small-signal ac equations for this converter.
(b) Derive a complete small-signal ac equivalent circuit model, which is valid in the con-

tinuous conduction mode and which correctly models the above losses, as well as the
converter input and output ports.

7.11 The two-output flyback converter of Fig. 7.56a operates in the continuous conduction
mode. It may be assumed that the converter is lossless.



274 7 AC Equivalent Circuit Modeling

Fig. 7.56 Two-output flyback converter, Problem 7.11: (a) converter circuit, (b) small-signal ac equiva-
lent circuit

(a) Derive a small-signal ac equivalent circuit for this converter.
(b) Show that the small-signal ac equivalent circuit for this two-output converter can be

written in the generalized canonical form of Fig. 7.56b. Give analytical expressions
for the generators e(s) and j(s).

7.12 A pulse-width modulator circuit is constructed in which the sawtooth-wave generator is
replaced by a triangle-wave generator, as illustrated in Fig. 7.57a. The triangle waveform
is illustrated in Fig. 7.57b.

(a) Determine the converter switching frequency, in Hz.
(b) Determine the gain d(t)/vc(t) for this circuit.
(c) Over what range of vc is your answer to (b) valid?
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(a)
Triangle

wave

generator

+

vtri(t)

vc(t)

Comparator

(t)

PWM
waveform

Analog
input

(b) vtri(t)

0
t

2 V

50 μs 100 μs

Fig. 7.57 Pulse-width modulator, Problem 7.12 (a) looks very large. Adjust magnification to be the same
as (b)
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Converter Transfer Functions

The engineering design process is comprised of several major steps:

1. Specifications and other design goals are defined.
2. A circuit is proposed. This is a creative process that draws on the physical insight and

experience of the engineer.
3. The circuit is modeled. The converter power stage is modeled as described in Chap. 7.

Components and other portions of the system are modeled as appropriate, often with vendor-
supplied data.

4. Design-oriented analysis of the circuit is performed. This involves development of equa-
tions that allow element values to be chosen such that specifications and design goals are
met. In addition, it may be necessary for the engineer to gain additional understanding and
physical insight into the circuit behavior, so that the design can be improved by adding
elements to the circuit or by changing circuit connections.

5. Model verification. Predictions of the model are compared to a laboratory prototype, under
nominal operating conditions. The model is refined as necessary, so that the model predic-
tions agree with laboratory measurements.

6. Worst-case analysis (or other reliability and production yield analysis) of the circuit is per-
formed. This involves quantitative evaluation of the model performance, to judge whether
specifications are met under all conditions. Computer simulation is well suited to this task.

7. Iteration. The above steps are repeated to improve the design until the worst-case behavior
meets specifications, or until the reliability and production yield are acceptably high.

This chapter covers techniques of design-oriented analysis, measurement of experimental trans-
fer functions, and computer simulation, as needed in steps 4, 5, and 6.

Sections 8.1 to 8.3 discuss techniques for analysis and construction of the Bode plots of the
converter transfer functions, input impedance, and output impedance predicted by the equiva-
lent circuit models of Chap. 7. For example, the small-signal equivalent circuit model of the
buck–boost converter is illustrated in Fig. 7.18c. This model is reproduced in Fig. 8.1, with the
important inputs and terminal impedances identified. The line-to-output transfer function Gvg(s)
is found by setting duty cycle variations d̂(s) to zero, and then solving for the transfer function
from v̂g(s) to v̂(s):

Gvg(s) =
v̂(s)
v̂g(s)

∣∣∣∣∣∣
d̂(s)= 0

(8.1)
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Fig. 8.1 Small-signal equivalent circuit model of the buck–boost converter, as derived in Chap. 7

This transfer function describes how variations or disturbances in the applied input voltage vg(t)
lead to disturbances in the output voltage v(t). It is important in design of an output voltage
regulator. For example, in an off-line power supply, the converter input voltage vg(t) contains
undesired even harmonics of the ac power line voltage. The transfer function Gvg(s) is used to
determine the effect of these harmonics on the converter output voltage v(t).

The control-to-output transfer function Gvd(s) is found by setting the input voltage variations
v̂g(s) to zero, and then solving the equivalent circuit model for v̂(s) as a function of d̂(s):

Gvd(s) =
v̂(s)

d̂(s)

∣∣∣∣∣∣
v̂g(s)= 0

(8.2)

This transfer function describes how control input variations d̂(s) influence the output voltage
v̂(s). In an output voltage regulator system, Gvd(s) is a key component of the loop gain and has
a significant effect on regulator performance.

The output impedance Zout(s) is found under the conditions that v̂g(s) and d̂(s) variations are
set to zero. Zout(s) describes how variations in the load current affect the output voltage. This
quantity is also important in voltage regulator design. It may be appropriate to define Zout(s)
either including or not including the load resistance R.

The converter input impedance Zin(s) plays a significant role when an electromagnetic inter-
ference (EMI) filter is added at the converter power input. The relative magnitudes of Zin and
the EMI filter output impedance influence whether the EMI filter disrupts the transfer function
Gvd(s). Design of input EMI filters is the subject of Chap. 17.

An objective of this chapter is the construction of Bode plots of the important transfer func-
tions and terminal impedances of switching converters. For example, Fig. 8.2 illustrates the
magnitude and phase plots of Gvd(s) for the buck–boost converter model of Fig. 8.1. Rules for
construction of magnitude and phase asymptotes are reviewed in Sect. 8.1, including two types
of features that often appear in converter transfer functions: resonances and right half-plane
zeroes. Bode diagrams of the small-signal transfer functions of the buck–boost converter are
derived in detail in Sect. 8.2, and the transfer functions of the basic buck, boost, and buck–boost
converters are tabulated. The physical origins of the right half-plane zero are also described.

A difficulty usually encountered in circuit analysis (step 4 of the above list) is the complex-
ity of the circuit model: practical circuits may contain hundreds of elements, and hence their
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Fig. 8.2 Bode plot of control-to-output transfer function predicted by the model of Fig. 8.1, with analyti-
cal expressions for the important features

analysis may lead to complicated derivations, intractable equations, and lots of algebra mis-
takes. Design-oriented analysis [78] is a collection of tools and techniques that can alleviate
these problems. Some tools for approaching the design of a complicated converter system are
described in this chapter. Writing the transfer functions in normalized form directly exposes the
important features of the response. Analytical expressions for these features, as well as for the
asymptotes, lead to simple equations that are useful in design. Well-separated roots of trans-
fer function polynomials can be approximated in a simple way. Sect. 8.3 describes a graphical
method for constructing Bode plots of transfer functions and impedances, essentially by inspec-
tion. This method can: (1) reduce the amount of algebra and associated algebra mistakes; (2)
lead to greater insight into circuit behavior, which can be applied to design the circuit; and (3)
lead to the insight necessary to make suitable approximations that render the equations tractable.
Some more advanced techniques of design-oriented analysis are covered in Part IV.

Experimental measurement of transfer functions and impedances (needed in step 4, model
verification) is discussed in Sect. 8.5. Use of computer simulation to plot converter transfer
functions (as needed in step 6, worst-case analysis) is covered in Chap. 14.

8.1 Review of Bode Plots

A Bode plot is a plot of the magnitude and phase of a transfer function or other complex-valued
quantity, vs. frequency. Magnitude in decibels and phase in degrees are plotted vs. frequency, us-
ing semi-logarithmic axes. The magnitude plot is effectively a log–log plot, since the magnitude
is expressed in decibels and the frequency axis is logarithmic.
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The magnitude of a dimensionless quantity G can be expressed in decibels as follows:

‖G‖dB = 20 log10 (‖G ‖) (8.3)

Decibel values of some simple magnitudes are listed in Table 8.1. Care must be used when the
magnitude is dimensionless. Since it is not proper to take the logarithm of a quantity having
dimensions, the magnitude must first be normalized. For example, to express the magnitude of
an impedance Z in decibels, we should normalize by dividing by a base impedance Rbase:

‖Z ‖dB = 20 log10

(
‖Z ‖
Rbase

)
(8.4)

Table 8.1 Expressing magnitudes in decibels

Actual magnitude Magnitude in dB

1/2 −6 dB
1 0 dB
2 6 dB

5 = 10/2 20 dB − 6 dB = 14 dB
10 20 dB

1000 = 103 3 · 20 dB = 60 dB

The value of Rbase is arbitrary, but we need
to tell others what value we have used. So
if ‖Z ‖ is 5 Ω, and we choose Rbase =

10 Ω, then we can say that ‖Z ‖dB =

20 log10(5 Ω/10Ω) = −6 dB with respect to
10 Ω. A common choice is Rbase = 1Ω; deci-
bel impedances expressed with Rbase = 1 Ω
are said to be expressed in dBΩ. So 5 Ω is
equivalent to 14 dBΩ. Current switching har-
monics at the input port of a converter are of-
ten expressed in dBμA, or dB using a base
current of 1 μA : 60 dBμA is equivalent to
1000 μA, or 1 mA.

The magnitude Bode plots of functions equal to powers of f are linear. For example, suppose
that the magnitude of a dimensionless quantity G( f ) is

‖G ‖ =
(

f
f0

)n

(8.5)

where f0 and n are constants. The magnitude in decibels is

‖G ‖dB = 20 log10

(
f
f0

)n

= 20n log10

(
f
f0

)
(8.6)

This equation is plotted in Fig. 8.3, for several values of n. The magnitudes have value 1⇒ 0 dB
at frequency f = f0. They are linear functions of log10( f ). The slope is the change in ‖G ‖dB

arising from a unit change in log10( f ); a unit increase in log10( f ) corresponds to a factor of
10, or a decade, increase in f . From Eq. (8.6), a decade increase in f leads to an increase in
‖G ‖dB of 20n dB. Hence, the slope is 20n dB per decade. Equivalently, we can say that the
slope is 20n log10(2) ≈ 6n dB per octave, where an octave is a factor of 2 change in frequency.
In practice, the magnitudes of most frequency-dependent functions can usually be approximated
over a limited range of frequencies by functions of the form (8.5); over this range of frequencies,
the magnitude Bode plot is approximately linear with slope 20n dB/decade.

A simple transfer function whose magnitude is of the form (8.5) is the pole at the origin:

G(s) =
1(
s
ω0

) (8.7)
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Fig. 8.3 Magnitude Bode plots of functions which vary as f n are linear, with slope n dB per decade

The magnitude is

‖G( jω)) ‖ = 1∥∥∥∥∥ jω
ω0

∥∥∥∥∥
=

1(
ω

ω0

) (8.8)

If we define f = ω/2π and f0 = ω0/2π, then Eq. (8.8) becomes

‖G ‖ =
(

f
f0

)−1

(8.9)

which is of the form of Eq. (8.5) with n = −1. As illustrated in Fig. 8.3, the magnitude Bode
plot of the pole at the origin (8.7) has a −20 dB per decade slope, and passes through 0 dB at
frequency f = f0.

+

R

Cv1(s)

+

v2(s)

Fig. 8.4 Simple R–C low-pass filter example

8.1.1 Single-Pole Response

Consider the simple R–C low-pass filter illustrated
in Fig. 8.4. The transfer function is given by the
voltage divider ratio

G(s) =
v2(s)
v1(s)

=

1
sC

1
sC
+ R

(8.10)

This transfer function is a ratio of voltages, and
hence is dimensionless. By multiplying the numer-
ator and denominator by sC, we can express the
transfer function as a rational fraction:
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G(s) =
1

1 + sRC
(8.11)

The transfer function now coincides with the following standard normalized form for a single
pole:

G(s) =
1(

1 +
s
ω0

) (8.12)

The parameter ω0 = 2π f0 is found by equating the coefficients of s in the denominators of
Eqs. (8.11) and (8.12). The result is

ω0 =
1

RC
(8.13)

Since R and C are real positive quantities, ω0 is also real and positive. The denominator of
Eq. (8.12) contains a root at s = −ω0, and hence G(s) contains a real pole in the left half of the
complex plane.

Im(G(j ))

Re(G(j ))

G(j )

|| G
(j

) ||

G(j )

Fig. 8.5 Magnitude and phase of the
complex-valued function G( jω)

To find the magnitude and phase of the trans-
fer function, we let s = jω, where j is the square
root of −1. We then find the magnitude and phase of
the resulting complex-valued function. With s = jω,
Eq. (8.12) becomes

G ( jω) =
1(

1 + j
ω

ω0

) =
1 − j

ω

ω0

1 +

(
ω

ω0

)2
(8.14)

The complex-valued G( jω) is illustrated in Fig. 8.5,
for one value of ω. The magnitude is

∥∥∥G ( jω)
∥∥∥ =

√[
Re

(
G ( jω)

)]2
+
[
Im

(
G ( jω)

)]2
=

1√
1 +

(
ω

ω0

)2

(8.15)

Here, we have assumed that ω0 is real. In decibels, the magnitude is

‖G( jω) ‖dB = −20 log10

⎛⎜⎜⎜⎜⎜⎜⎜⎝
√

1 +

(
ω

ω0

)2
⎞⎟⎟⎟⎟⎟⎟⎟⎠ dB (8.16)

The easy way to sketch the magnitude Bode plot of G is to investigate the asymptotic behavior
for large and small frequency.

For small frequency, ω 	 ω0 and f 	 f0, it is true that
(
ω

ω0

)
	 1 (8.17)
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Fig. 8.6 Magnitude
asymptotes for the
single real pole trans-
fer function
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The (ω/ω0)2 term of Eq. (8.15) is therefore much smaller than 1, and hence Eq. (8.15) becomes

‖G( jω) ‖ ≈ 1
√

1
= 1 (8.18)

In decibels, the magnitude is approximately

‖G( jω) ‖dB ≈ 0 dB (8.19)

Thus, as illustrated in Fig. 8.6, at low frequency ‖G( jω) ‖dB is asymptotic to 0 dB.
At high frequency, ω 
 ω0 and f 
 f0. In this case, it is true that

(
ω

ω0

)

 1 (8.20)

We can then say that

1 +

(
ω

ω0

)2

≈
(
ω

ω0

)2

(8.21)

Hence, Eq. (8.15) now becomes

∥∥∥G ( jω)
∥∥∥ ≈ 1√(

ω

ω0

)2
=

(
f
f0

)−1

(8.22)

This expression coincides with Eq. (8.5), with n = −1. So at high frequency, ‖G( jω) ‖dB has
slope −20 dB per decade, as illustrated in Fig. 8.6. Thus, the asymptotes of ‖G( jω) ‖ are equal
to 1 at low frequency, and ( f / f0)−1 at high frequency. The asymptotes intersect at f0. The actual
magnitude tends toward these asymptotes at very low frequency and very high frequency. In the
vicinity of the corner frequency f0, the actual curve deviates somewhat from the asymptotes.

The deviation of the exact curve from the asymptotes can be found by simply evaluating
Eq. (8.15). At the corner frequency f = f0, Eq. (8.15) becomes

∥∥∥G ( jω0)
∥∥∥ = 1

1 +

(
ω0

ω0

)2
=

1
√

2
(8.23)
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Fig. 8.7 Deviation of the actual curve
from the asymptotes, real pole
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In decibels, the magnitude is

‖G( jω0) ‖dB = −20 log10

⎛⎜⎜⎜⎜⎜⎜⎜⎝
√

1 +

(
ω0

ω0

)2
⎞⎟⎟⎟⎟⎟⎟⎟⎠ ≈ −3 dB (8.24)

So the actual curve deviates from the asymptotes by −3 dB at the corner frequency, as illustrated
in Fig. 8.7. Similar arguments show that the actual curve deviates from the asymptotes by −1 dB
at f = f0/2 and at f = 2 f0.

The phase of G( jω) is

∠G( jω) = tan−1

(
Im(G( jω))
Re(G( jω))

)
(8.25)

Insertion of the real and imaginary parts of Eq. (8.14) into Eq. (8.25) leads to

∠G( jω) = − tan−1

(
ω

ω0

)
(8.26)

This function is plotted in Fig. 8.8. It tends to 0◦ at low frequency and to −90◦ at high frequency.
At the corner frequency f = f0, the phase is −45◦.

Fig. 8.8 Exact phase plot,
real pole
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Fig. 8.9 One choice for
the mid-frequency phase
asymptote, which correctly
predicts the actual slope at
f = f0

0

f

0.01f0 0.1f0 f0 100f0

G(j )

f0

fa = f0 / 4.81

fb = 4.81 f0

Since the high-frequency and low-frequency phase asymptotes do not intersect, we need a
third asymptote to approximate the phase in the vicinity of the corner frequency f0. One way
to do this is illustrated in Fig. 8.9, where the slope of the asymptote is chosen to be identical to
the slope of the actual curve at f = f0. It can be shown that, with this choice, the asymptote
intersection frequencies fa and fb are given by

fa = f0e−π/2 ≈ f0
4.81

(8.27)

fb = f0eπ/2 ≈ 4.81 f0

A simpler choice, which better approximates the actual curve, is

fa =
f0
10

(8.28)

fb = 10 f0

This asymptote is compared to the actual curve in Fig. 8.10. The pole causes the phase to change
over a frequency span of approximately two decades, centered at the corner frequency. The slope
of the asymptote in this frequency span is −45◦ per decade. At the break frequencies fa and fb,
the actual phase deviates from the asymptotes by tan−1(0.1) = 5.7◦.

The magnitude and phase asymptotes for the single-pole response are summarized in
Fig. 8.11. It is good practice to consistently express single-pole transfer functions in the nor-
malized form of Eq. (8.12). Both terms in the denominator of Eq. (8.12) are dimensionless, and
the coefficient of s0 is unity. Equation (8.12) is easy to interpret, because of its normalized form.
At low frequencies, where the (s/ω0) term is small in magnitude, the transfer function is ap-
proximately equal to 1. At high frequencies, where the (s/ω0) term has magnitude much greater
than 1, the transfer function is approximately (s/ω0)−1. This leads to a magnitude of ( f / f0)−1.
The corner frequency is f0 = ω0/2π. So the transfer function is written directly in terms of its
salient features, that is, its asymptotes and its corner frequency.
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0
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G(j )

f0

fa = f0/10

fb = 10f0

Fig. 8.10 A simpler choice for the mid-frequency phase asymptote, which better approximates the curve
over the entire frequency range
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Fig. 8.11 Summary of the magnitude and phase Bode plot for the single real pole
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8.1.2 Single Zero Response

A single zero response contains a root in the numerator of the transfer function, and can be
written in the following normalized form:

G(s) =

(
1 +

s
ω0

)
(8.29)

This transfer function has magnitude

‖G( jω) ‖ =

√
1 +

(
ω

ω0

)2

(8.30)

At low frequency, f 	 f0 = ω0/2π, the transfer function magnitude tends to 1⇒ 0 dB. At high
frequency, f 
 f0, the transfer function magnitude tends to ( f / f0). As illustrated in Fig. 8.12,
the high-frequency asymptote has slope +20 dB/decade. The phase is given by

∠G( jω) = tan−1

(
ω

ω0

)
(8.31)

With the exception of a minus sign, the phase is identical to Eq. (8.26). Hence, suitable asymp-
totes are as illustrated in Fig. 8.12. The phase tends to 0◦ at low frequency and to +90◦ at high
frequency. Over the interval f0/10 < f < 10 f0, the phase asymptote has a slope of +45◦/decade.

0˚G(j )

f0
45˚

f0 /10

10f0 +90˚
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5.7˚

+45˚/decade

+20 dB/decade

f0

|| G(j ) || dB
3 dB1 dB

0.5f0
1 dB

2f0

0 dB

Fig. 8.12 Summary of the magnitude and phase Bode plot for the single real zero
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8.1.3 Right Half-Plane Zero

Right half-plane zeroes are often encountered in the small-signal transfer functions of switching
converters. These terms have the following normalized form:

G(s) =

(
1 − s
ω0

)
(8.32)

The root of Eq. (8.32) is positive, and hence lies in the right half of the complex s-plane. The
right half-plane zero is also sometimes called a nonminimum phase zero. Its normalized form,
Eq. (8.32), resembles the normalized form of the (left half-plane) zero of Eq. (8.29), with the
exception of a minus sign in the coefficient of s. The minus sign causes a phase reversal at high
frequency.

The transfer function has magnitude

‖G( jω) ‖ =

√
1 +

(
ω

ω0

)2

(8.33)

This expression is identical to Eq. (8.30). Hence, it is impossible to distinguish a right half-plane
zero from a left half-plane zero by the magnitude alone. The phase is given by

∠G( jω) = − tan−1

(
ω

ω0

)
(8.34)

This coincides with the expression for the phase of the single pole, Eq. (8.26). So the right half-
plane zero exhibits the magnitude response of the left half-plane zero, but the phase response of
the pole. Magnitude and phase asymptotes are summarized in Fig. 8.13.
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Fig. 8.13 Summary of the magnitude and phase Bode plot for the single real RHP zero
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8.1.4 Frequency Inversion

Two other forms arise, from inversion of the frequency axis. The inverted pole has the transfer
function

G(s) =
1(

1 +
ω0

s

) (8.35)

As illustrated in Fig. 8.14, the inverted pole has a high-frequency gain of 1, and a low-frequency
asymptote having a + 20 dB/decade slope. This form is useful for describing the gain of high-
pass filters, and of other transfer functions where it is desired to emphasize the high-frequency
gain, with attenuation of low frequencies. Equation (8.35) is equivalent to

G(s) =

(
s
ω0

)

(
1 +

s
ω0

) (8.36)

However, Eq. (8.35) more directly emphasizes that the high-frequency gain is 1.
The inverted zero has the form

G(s) =
(
1 +
ω0

s

)
(8.37)

As illustrated in Fig. 8.15, the inverted zero has a high-frequency gain asymptote equal to 1, and
a low-frequency asymptote having a slope equal to −20 dB/decade. An example of the use of
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||G(j ) || dB
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1 dB

0.5f0
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2f0

Fig. 8.14 Inversion of the frequency axis: summary of the magnitude and phase Bode plots for the
inverted real pole
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Fig. 8.15 Inversion of the frequency axis: summary of the magnitude and phase Bode plot for the inverted
real zero

this type of transfer function is the proportional-plus-integral controller, discussed in connection
with feedback loop design in the next chapter. Equation (8.37) is equivalent to

G(s) =

(
1 +

s
ω0

)

(
s
ω0

) (8.38)

However, Eq. (8.37) is the preferred form when it is desired to emphasize the value of the high-
frequency gain asymptote.

The use of frequency inversion is illustrated by example in the next section.

8.1.5 Combinations

The Bode diagram of a transfer function containing several pole, zero, and gain terms can be
constructed by simple addition. At any given frequency, the magnitude (in decibels) of the
composite transfer function is equal to the sum of the decibel magnitudes of the individual
terms. Likewise, at a given frequency the phase of the composite transfer function is equal to
the sum of the phases of the individual terms.

For example, suppose that we have already constructed the Bode diagrams of two complex-
valued functions of ω, G1(ω) and G2(ω). These functions have magnitudes R1(ω) and R2(ω),
and phases θ1(ω) and θ2(ω), respectively. It is desired to construct the Bode diagram of the
product G3(ω) = G1(ω) G2(ω). Let G3(ω) have magnitude R3(ω), and phase θ3(ω). To find this
magnitude and phase, we can express G1(ω), G2(ω), and G3(ω) in polar form:
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G1(ω) = R1(ω)e jθ1(ω)

G2(ω) = R2(ω)e jθ2(ω) (8.39)

G3(ω) = R3(ω)e jθ3(ω)

The product G3(ω) can then be expressed as

G3(ω) = G1(ω)G2(ω) = R1(ω)e jθ1(ω)R2(ω)e jθ2(ω) (8.40)

Simplification leads to
G3(ω) = (R1(ω)R2(ω)) e j(θ1(ω)+θ2(ω)) (8.41)

Hence, the composite phase is
θ3(ω) = θ1(ω) + θ2(ω) (8.42)

The total magnitude is
R3(ω) = R1(ω)R2(ω) (8.43)

When expressed in decibels, Eq. (8.43) becomes
∣∣∣R3(ω)

∣∣∣
dB
=
∣∣∣R1(ω)

∣∣∣
dB
+
∣∣∣R2(ω)

∣∣∣
dB

(8.44)

So the composite phase is the sum of the individual phases, and when expressed in decibels, the
composite magnitude is the sum of the individual magnitudes. The composite magnitude slope,
in dB per decade, is therefore also the sum of the individual slopes in dB per decade.

For example, consider construction of the Bode plot of the following transfer function:

G(s) =
G0(

1 +
s
ω1

) (
1 +

s
ω2

) (8.45)

where G0 = 40 ⇒ 32 dB, f1 = ω1/2π = 100 Hz, f2 = ω2/2π = 2 kHz. This transfer function
contains three terms: the gain G0, and the poles at frequencies f1 and f2. The asymptotes for each
of these terms are illustrated in Fig. 8.16. The gain G0 is a positive real number, and therefore
contributes zero phase shift with the gain 32 dB. The poles at 100 Hz and 2 kHz each contribute
asymptotes as in Fig. 8.11.

At frequencies less than 100 Hz, the G0 term contributes a gain magnitude of 32 dB, while
the two poles each contribute magnitude asymptotes of 0 dB. So the low-frequency composite
magnitude asymptote is 32 dB + 0 dB + 0 dB = 32 dB. For frequencies between 100 Hz and
2 kHz, the G0 gain again contributes 32 dB, and the pole at 2 kHz continues to contribute a
0 dB magnitude asymptote. However, the pole at 100 Hz now contributes a magnitude asymp-
tote that decreases with a −20 dB per decade slope. The composite magnitude asymptote there-
fore also decreases with a −20 dB per decade slope, as illustrated in Fig. 8.16. For frequencies
greater than 2 kHz, the poles at 100 Hz and 2 kHz each contribute decreasing asymptotes hav-
ing slopes of −20 dB/decade. The composite asymptote therefore decreases with a slope of
−20 dB/decade − 20 dB/decade = −40 dB/decade, as illustrated.

The composite phase asymptote is also constructed in Fig. 8.16. Below 10 Hz, all terms
contribute 0◦ asymptotes. For frequencies between f1/10 = 10 Hz and f2/10 = 200 Hz, the pole
at f1 contributes a decreasing phase asymptote having a slope of −45◦/decade. Between 200 Hz
and 10 f1 = 1 kHz, both poles contribute decreasing asymptotes with −45◦/decade slopes; the
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Fig. 8.16 Construction of magnitude and phase asymptotes for the transfer function of Eq. (8.45). Dashed
lines: asymptotes for individual terms. Solid lines: composite asymptotes

composite slope is therefore −90◦/decade. Between 1 kHz and 10 f2 = 20 kHz, the pole at
f1 contributes a constant −90◦ phase asymptote, while the pole at f2 contributes a decreasing
asymptote with −45◦/decade slope. The composite slope is then −45◦/decade. For frequencies
greater than 20 kHz, both poles contribute constant −90◦ asymptotes, leading to a composite
phase asymptote of −180◦.

As a second example, consider the transfer function A(s) represented by the magnitude
and phase asymptotes of Fig. 8.17. Let us write the transfer function that corresponds to these
asymptotes. The dc asymptote is A0. At corner frequency f1, the asymptote slope increases
from 0 dB/decade to +20 dB/decade. Hence, there must be a zero at frequency f1. At frequency
f2, the asymptote slope decreases from +20 dB/decade to 0 dB/decade. Therefore the transfer
function contains a pole at frequency f2. So we can express the transfer function as

A(s) = A0

(
1 +

s
ω1

)

(
1 +

s
ω2

) (8.46)

where ω1 and ω2 are equal to 2π f1 and 2π f2, respectively.

Fig. 8.17 Magnitude and
phase asymptotes of example
transfer function A(s)
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We can use Eq. (8.46) to derive analytical expressions for the asymptotes. For f < f1, and
letting s = jω, we can see that the (s/ω1) and (s/ω2) terms each have magnitude less than 1. The
asymptote is derived by neglecting these terms. Hence, the low-frequency magnitude asymptote
is

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
A0

⎛⎜⎜⎜⎜⎜⎝1 +
�
���
s
ω1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝1 +

�
���
s
ω2

⎞⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
s= jω

= A0
1
1
= A0 (8.47)

For f1 < f < f2, the numerator term (s/ω1) has magnitude greater than 1, while the denominator
term (s/ω2) has magnitude less than 1. The asymptote is derived by neglecting the smaller
terms: ∥∥∥∥∥∥∥∥∥∥∥∥∥∥

A0

(
���1 +

s
ω1

)

⎛⎜⎜⎜⎜⎜⎝1 +
�
���
s
ω2

⎞⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
s= jω

= A0

∥∥∥∥∥ s
ω1

∥∥∥∥∥
s= jω

1
= A0

ω

ω1
= A0

f
f1

(8.48)

This is the expression for the mid-frequency magnitude asymptote of A(s). For f > f2, the
(s/ω1) and (s/ω2) terms each have magnitude greater than 1. The expression for the high-
frequency asymptote is therefore:

∥∥∥∥∥∥∥∥∥∥∥∥
A0

(
���1 +

s
ω1

)

(
���1 +

s
ω2

)

∥∥∥∥∥∥∥∥∥∥∥∥
s= jω

= A0

∥∥∥∥∥ s
ω1

∥∥∥∥∥
s= jω∥∥∥∥∥ s

ω2

∥∥∥∥∥
s= jω

= A0
ω2

ω1
= A0

f2
f1

(8.49)

We can conclude that the high-frequency gain is

A∞ = A0
f2
f1

(8.50)

Thus, we can derive analytical expressions for the asymptotes.
The transfer function A(s) can also be written in a second form, using inverted poles and

zeroes. Suppose that A(s) represents the transfer function of a high-frequency amplifier, whose
dc gain is not important. We are then interested in expressing A(s) directly in terms of the high-
frequency gain A∞. We can view the transfer function as having an inverted pole at frequency
f2, which introduces attenuation at frequencies less than f2. In addition, there is an inverted zero
at f = f1. So A(s) could also be written as

A(s) = A∞

(
1 +
ω1

s

)
(
1 +
ω2

s

) (8.51)

It can be verified that Eqs. (8.51) and (8.46) are equivalent.
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8.1.6 Quadratic Pole Response: Resonance

+

L

C Rv1(s)

+

v2(s)

Fig. 8.18 Two-pole low-pass filter example

Consider next the transfer function
G(s) of the two-pole low-pass filter of
Fig. 8.18. The buck converter contains
a filter of this type. When manipulated
into canonical form, the models of the
boost and buck–boost also contain simi-
lar filters. One can show that the transfer
function of this network is

G(s) =
v2(s)
v1(s)

=
1

1 + s
L
R
+ s2LC

(8.52)
This transfer function contains a second-order denominator polynomial, and is of the form

G(s) =
1

1 + a1s + a2s2
(8.53)

with a1 = L/R and a2 = LC.
To construct the Bode plot of this transfer function, we might try to factor the denominator

into its two roots:

G(s) =
1(

1 − s
s1

) (
1 − s

s2

) (8.54)

Use of the quadratic formula leads to the following expressions for the roots:

s1 = −
a1

2a2

⎡⎢⎢⎢⎢⎢⎢⎣1 −
√

1 − 4a2

a2
1

⎤⎥⎥⎥⎥⎥⎥⎦ (8.55)

s2 = −
a1

2a2

⎡⎢⎢⎢⎢⎢⎢⎣1 +
√

1 − 4a2

a2
1

⎤⎥⎥⎥⎥⎥⎥⎦ (8.56)

If 4a2 ≤ a2
1, then the roots are real. Each real pole then exhibits a Bode diagram as derived in

Sect. 8.1.1, and the composite Bode diagram can be constructed as described in Sect. 8.1.5 (but
a better approach is described in Sect. 8.1.7).

If 4a2 > a2
1, then the roots (8.55) and (8.56) are complex. In Sect. 8.1.1, the assumption was

made that ω0 is real; hence, the results of that section cannot be applied to this case. We need to
do some additional work, to determine the magnitude and phase for the case when the roots are
complex.

The transfer functions of Eqs. (8.52) and (8.53) can be written in the following standard
normalized form:

G(s) =
1

1 + 2ζ
s
ω0
+

(
s
ω0

)2
(8.57)
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If the coefficients a1 and a2 are real and positive, then the parameters ζ and ω0 are also real and
positive. The parameter ω0 is again the angular corner frequency, and we can define f0 = ω0/2π.
The parameter ζ is called the damping factor: ζ controls the shape of the transfer function in the
vicinity of f = f0. An alternative standard normalized form is

G(s) =
1

1 +
s

Qω0
+

(
s
ω0

)2
(8.58)

where

Q =
1
2ζ

(8.59)

The parameter Q is called the quality factor of the circuit, and is a measure of the dissipation
in the system. A more general definition of Q, for sinusoidal excitation of a passive element or
network, is

Q = 2π
(peak stored energy)

(energy dissipated per cycle)
(8.60)

For a second-order passive system, Eqs. (8.59) and (8.60) are equivalent. We will see that the Q-
factor has a very simple interpretation in the magnitude Bode diagrams of second-order transfer
functions.

Analytical expressions for the parameters Q and ω0 can be found by equating like powers of
s in the original transfer function, Eq. (8.52), and in the normalized form, Eq. (8.58). The result
is

f0 =
ω0

2π
=

1

2π
√

LC
(8.61)

Q = R

√
C
L

The roots s1 and s2 of Eqs. (8.55) and (8.56) are real when Q ≤ 0.5, and are complex when
Q > 0.5.

The magnitude of G is

∥∥∥G ( jω)
∥∥∥ = 1√√⎛⎜⎜⎜⎜⎜⎝1 −

(
ω

ω0

)2⎞⎟⎟⎟⎟⎟⎠
2

+
1

Q2

(
ω

ω0

)2
(8.62)

Asymptotes of ‖G ‖ are illustrated in Fig. 8.19. At low frequencies, (ω/ω0) 	 1, and hence

Fig. 8.19 Magni-
tude asymptotes for
the two-pole transfer
function

f
f0

– 2

–40 dB/decade

ff00.1f0 10f0

0 dB

|| G(j ) ||dB

0 dB

–20 dB

–40 dB

–60 dB
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∥∥∥G∥∥∥→ 1 for ω 	 ω0 (8.63)

At high frequencies where (ω/ω0) 
 1, the (ω/ω0)4 term dominates the expression inside the
radical of Eq. (8.62). Hence, the high-frequency asymptote is

∥∥∥G∥∥∥→
(

f
f0

)−2

for ω 
 ω0 (8.64)

This expression coincides with Eq. (8.5), with n = −2. Therefore, the high-frequency asymptote
has slope −40 dB/decade. The asymptotes intersect at f = f0, and are independent of Q.

|| G ||

f0

| Q |dB0 dB

–40 dB/decade

Fig. 8.20 Important features of the magnitude Bode
plot, for the two-pole transfer function

The parameter Q affects the deviation of
the actual curve from the asymptotes, in the
neighborhood of the corner frequency f0. The
exact magnitude at f = f0 is found by substi-
tution of ω = ω0 into Eq. (8.62):

∥∥∥G ( jω0)
∥∥∥ = Q (8.65)

So the exact transfer function has magnitude
Q at the corner frequency f0. In decibels,
Eq. (8.65) is

∥∥∥G ( jω0)
∥∥∥

dB
=
∣∣∣Q∣∣∣

dB
(8.66)

So if, for example, Q = 2 ⇒ 6 dB, then the
actual curve deviates from the asymptotes by 6 dB at the corner frequency f = f0. Salient
features of the magnitude Bode plot of the second-order transfer function are summarized in
Fig. 8.20.

The phase of G is

∠G ( jω) = − tan−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Q

(
ω

ω0

)

1 −
(
ω

ω0

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8.67)

The phase tends to 0◦ at low frequency and to −180◦ at high frequency. At f = f0, the phase
is −90◦. As illustrated in Fig. 8.21, increasing the value of Q causes a sharper phase change be-
tween the 0◦ and −180◦ asymptotes. We again need a mid-frequency asymptote, to approximate
the phase transition in the vicinity of the corner frequency f0, as illustrated in Fig. 8.22. As in
the case of the real single pole, we could choose the slope of this asymptote to be identical to
the slope of the actual curve at f = f0. It can be shown that this choice leads to the following
asymptote break frequencies:

fa =
(
eπ/2

)− 1
2Q f0

fb =
(
eπ/2

) 1
2Q f0

(8.68)



8.1 Review of Bode Plots 297

Fig. 8.21 Phase plot, second-
order poles. Increasing Q
causes a sharper phase change

f / f0

G

0.1 1 10

Increasing Q

–180º

–90º

0º

Fig. 8.22 One choice for the
mid-frequency phase asymptote
of the two-pole response, which
correctly predicts the actual
slope at f = f0

–180º

–90º

0º

f / f0

G

0.1 1 10

f0

–90º

fb

fa0º

–180º

A better choice, which is consistent with the approximation (8.28) used for the real single pole,
is

fa = 10−1/2Q f0

fb = 101/2Q f0
(8.69)

With this choice, the mid-frequency asymptote has slope −180 Q degrees per decade. The phase
asymptotes are summarized in Fig. 8.23. With Q = 0.5, the phase changes from 0◦ to −180◦ over
a frequency span of approximately two decades, centered at the corner frequency f0. Increasing
the Q causes this frequency span to decrease rapidly.

Second-order response magnitude and phase curves are plotted in Figs. 8.24 and 8.25.
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Fig. 8.23 A simpler choice
for the mid-frequency phase
asymptote, which better approx-
imates the curve over the entire
frequency range and is consis-
tent with the asymptote used for
real poles

–180º
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Fig. 8.24 Exact
magnitude curves,
two-pole response,
for several values of
Q
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8.1.7 The Low-Q Approximation

As mentioned in Sect. 8.1.6, when the roots of second-order denominator polynomial of
Eq. (8.53) are real, then we can factor the denominator, and construct the Bode diagram using
the asymptotes for real poles. We would then use the following normalized form:

G(s) =
1(

1 +
s
ω1

) (
1 +

s
ω2

) (8.70)
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Fig. 8.25 Exact
phase curves, two-
pole response, for
several values of Q

Q = 0.1

Q = 0.5
Q = 0.7
Q = 1
Q = 2
Q =5
Q = 10
Q = 

0111.0

f / f0
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Q = 0.2

–180º

–135º

–90º

–45º
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This is a particularly desirable approach when the corner frequencies ω1 and ω2 are well sepa-
rated in value.

The difficulty in this procedure lies in the complexity of the quadratic formula used to find
the corner frequencies. Expressing the corner frequencies ω1 and ω2 in terms of the circuit ele-
ments R, L, C, etc., invariably leads to complicated and unilluminating expressions, especially
when the circuit contains many elements. Even in the case of the simple circuit of Fig. 8.18,
whose transfer function is given by Eq. (8.52), the conventional quadratic formula leads to the
following complicated formula for the corner frequencies:

ω1, ω2 =

L
R
±

√(L
R

)2
− 4LC

2LC
(8.71)

This equation yields essentially no insight regarding how the corner frequencies depend on
the element values. For example, it can be shown that when the corner frequencies are well
separated in value, they can be expressed with high accuracy by the much simpler relations

ω1 ≈
R
L
, ω2 ≈

1
RC

(8.72)

In this case, ω1 is essentially independent of the value of C, and ω2 is essentially independent of
L, yet Eq. (8.71) apparently predicts that both corner frequencies are dependent on all element
values. The simple expressions of Eq. (8.72) are far preferable to Eq. (8.71), and can be easily
derived using the low-Q approximation [79].



300 8 Converter Transfer Functions

Let us assume that the transfer function has been expressed in the standard normalized form
of Eq. (8.58), reproduced below:

G(s) =
1

1 +
s

Qω0
+

(
s
ω0

)2
(8.73)

For Q ≤ 0.5, let us use the quadratic formula to write the real roots of the denominator polyno-
mial of Eq. (8.73) as

ω1 =
ω0

Q

1 −
√

1 − 4Q2

2
(8.74)

ω2 =
ω0

Q

1 +
√

1 − 4Q2

2
(8.75)

The corner frequency ω2 can be expressed as

ω2 =
ω0

Q
F(Q) (8.76)

where F(Q) is defined as [79]:

F(Q) =
1
2

(
1 +

√
1 − 4Q2

)
(8.77)

Note that, when Q 	 0.5, then 4Q2 	 1 and F(Q) is approximately equal to 1. We then obtain

ω2 ≈
ω0

Q
for Q 	 1

2
(8.78)

The function F(Q) is plotted in Fig. 8.26. It can be seen that F(Q) approaches 1 very rapidly as
Q decreases below 0.5.

To derive a similar approximation for ω1, we can multiply and divide Eq. (8.74) by F(Q),
Eq. (8.77). Upon simplification of the numerator, we obtain

ω1 =
Qω0

F(Q)
(8.79)

Fig. 8.26 F(Q) vs. Q, as
given by Eq. (8.77). The
approximation F(Q) = 1
is within 10% of the exact
value for Q < 3

F(Q)

0 0.1 0.2 0.3 0.4 0.5

Q

0

0.25

0.5

0.75

1
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Fig. 8.27 Magnitude asymptotes pre-
dicted by the low-Q approximation.
Real poles occur at frequencies Q f0 and
f0/Q

f2 = f0F(Q)
Q

f0
Q

–40 dB/decade

f00 dB

|| G ||dB

–20 dB/decade

f1 = Q f0
F(Q)
Q f0

Again, F(Q) tends to 1 for small Q. Hence, ω1 can be approximated as

ω1 ≈ Qω0 for Q 	 1
2

(8.80)

Magnitude asymptotes for the low-Q case are summarized in Fig. 8.27. For Q < 0.5, the
two poles at ω0 split into real poles. One real pole occurs at corner frequency ω1 < ω0, while
the other occurs at corner frequency ω2 > ω0. The corner frequencies are easily approximated,
using Eqs. (8.78) and (8.80).

For the filter circuit of Fig. 8.18, the parameters Q and ω0 are given by Eq. (8.61). For
the case when Q 	 0.5, we can derive the following analytical expressions for the corner
frequencies, using Eqs. (8.78) and (8.80):

ω1 ≈ Qω0 = R

√
C
L

1
√

LC
=

R
L

ω2 ≈
ω0

Q
=

1
√

LC

1

R

√
C
L

=
1

RC

(8.81)

So the low-Q approximation allows us to derive simple design-oriented analytical expressions
for the corner frequencies.

8.1.8 The High-Q Approximation

Another case of interest is the determination of the Q-factor of a high-Q resonant circuit con-
taining multiple resistive elements. Consider, for example, the resonant L–C circuit illustrated
in Fig. 8.28, which contains load resistor R and an additional resistor RC in series with the ca-
pacitor. In the case of large R and small RC , the circuit approaches an undamped L–C network
having resonant frequency

Fig. 8.28 Two-pole low-pass filter with
two resistive elements +

L

C
Rv1(s)

+

v2(s)

RC
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ω0 =
1
√

LC
(8.82)

When RC is negligibly small but R is significant, then the circuit previously considered in
Sect. 8.1.6 (Fig. 8.18) is obtained. We previously found that this circuit exhibits a Q-factor
given by

Qload =
R
R0

(8.83)

with

R0 =

√
L
C

leading to the transfer function

G(s) =
1

1 +
s

Qload ω0
+

(
s
ω0

)2
(8.84)

Conversely, in the case where the load resistor R is very large but RC is significant, we can
analyze the circuit to find the following transfer function:

G(s) =

(
1 +

s
ωz

)

1 +
s

QC ω0
+

(
s
ω0

)2
(8.85)

The corner frequency ω0 is again given by Eq. (8.82), but the Q-factor is

QC =
R0

RC
(8.86)

So individually, the two damping cases lead to similar second-order denominators, whose Q
factors depend on the individual resistor values.

For the case when R and RC simultaneously cause significant damping, we can analyze the
circuit of Fig. 8.28 to show that the transfer function is

G(s) =
1 + sRCC

1 + s
(L
R
+ RCC

)
+ s2LC

(
1 +

RC

R

) (8.87)

This equation can be expressed in the following normalized form:

G(s) =

(
1 +

s
ωz

)

1 +

(
s
ω0

) (
1

Qload
+

1
QC

)
+

(
s
ω0

)2 (
1 +

1
Qload QC

) (8.88)
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where

ω0 =
1
√

LC

Qload =
R
R0

QC =
R0

RC

R0 =

√
L
C

(8.89)

If Qload 
 1 and QC 
 1, then

1 +
1

Qload QC
≈ 1 (8.90)

Equation (8.88) can then be simplified as follows:

G(s) ≈

(
1 +

s
ωz

)

1 +

(
s
ω0

) ⎛⎜⎜⎜⎜⎜⎝ 1

Qload

∥∥∥QC

⎞⎟⎟⎟⎟⎟⎠ +
(

s
ω0

)2
(8.91)

Thus, for the case when R and RC simultaneously cause significant damping, the composite
Q-factor can be estimated from Qload and QC by use of the High-Q Approximation:

Q ≈ Qload

∥∥∥QC =
1

1
Qload

+
1

QC

(8.92)

The notation x ‖ y denotes inverse addition as shown above. This approximation for the Q-factor
of the denominator poles is accurate provided that

Qload 
 1 and QC 
 1 (8.93)

The two damping terms Qload and QC affect both the exact frequency and the exact Q-factor.
We can express Eq. (8.88) in the following standard normalized form:

G(s) =

(
1 +

s
ωz

)

1 +

(
s
ωe

) (
1

Qe

)
+

(
s
ωe

)2
(8.94)

where the exact corner frequency ωe and exact Q-factor Qe are given by

ωe =
ω0

FH (QloadQC)
, Qe =

(
Qload

∥∥∥QC

)
FH (QloadQC) (8.95)
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Fig. 8.29 FH(Q1Q2) vs. Q1Q2, as given by Eq. (8.96). The approximation FH(Q1Q2) ≈ 1 is within 10%
of the correct value for Q1Q2 > 5

and with

FH (Q1Q2) =

√
1 +

1
Q1Q2

(8.96)

The factor FH(Q1Q2) is plotted in Fig. 8.29. It can be seen that this factor converges to 1 as the
product of the two Q factors is increased above 1.

In summary, the high-Q approximation states that in a resonant circuit damped by two ele-
ments that individually induce Q-factors of Q1 and Q2, the composite Q-factor is approximately
Q1‖Q2. This approximation facilitates derivation of simple design-oriented expressions for res-
onant circuits having multiple damping elements. An example of its use is given in Sect. 9.5.4,
where the high-Q approximation substantially simplifies the equations of a buck converter in
which inductor and capacitor resistances are modeled.

8.1.9 Approximate Roots of an Arbitrary-Degree Polynomial

The low-Q approximation can be generalized, to find approximate analytical expressions for the
roots of the nth-order polynomial

P(s) = 1 + a1s + a2s2 + · · · + ansn (8.97)

It is desired to factor the polynomial P(s) into the form

P(s) = (1 + τ1s)(1 + τ2s) · · · (1 + τns) (8.98)
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In a real circuit, the coefficients a1, . . . , an are real, while the time constants τ1, . . . , τn may
be either real or complex. Very often, some or all of the time constants are well separated in
value, and depend in a very simple way on the circuit element values. In such cases, simple
approximate analytical expressions for the time constants can be derived.

The time constants τ1, . . . , τn can be related to the original coefficients a1, . . . , an by
multiplying out Eq. (8.98). The result is

a1 = τ1 + τ2 + · · · + τn

a2 = τ1(τ2 + · · · + τn) + τ2(τ3 + · · · + τn) + · · ·
a3 = τ1τ2(τ3 + · · · + τn) + τ2τ3(τ4 + · · · + τn) + · · · (8.99)
...

an = τ1τ2τ3 · · · τn

General solution of this system of equations amounts to exact factoring of the arbitrary-degree
polynomial, a hopeless task. Nonetheless, Eq. (8.99) does suggest a way to approximate the
roots.

Suppose that all of the time constants τ1, . . . , τn are real and well separated in value. We
can further assume, without loss of generality, that the time constants are arranged in decreasing
order of magnitude:

|τ1| 
 |τ2| 
 · · · 
 |τn| (8.100)

When the inequalities of Eq. (8.100) are satisfied, then the expressions for a1, . . . , an of Eq.
(8.99) are each dominated by their first terms:

a1 ≈ τ1

a2 ≈ τ1τ2

a3 ≈ τ1τ2τ3

...

an = τ1τ2τ3 · · · τn (8.101)

These expressions can now be solved for the time constants, with the result

τ1 ≈ a1

τ2 ≈
a2

a1

τ3 ≈
a3

a2
(8.102)

...

τn ≈
a1

an−1

Hence, if

∣∣∣a1

∣∣∣ 

∣∣∣∣∣a2

a1

∣∣∣∣∣ 

∣∣∣∣∣a3

a2

∣∣∣∣∣ 
 · · · 

∣∣∣∣∣ an

an−1

∣∣∣∣∣ (8.103)
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then the polynomial P(s) given by Eq. (8.97) has the approximate factorization

P(s) ≈ (1 + a1s)

(
1 +

a2

a1
s

) (
1 +

a3

a2
s

)
· · ·

(
1 +

an

an−1
s

)
(8.104)

Note that if the original coefficients in Eq. (8.97) are simple functions of the circuit elements,
then the approximate roots given by Eq. (8.104) are similar simple functions of the circuit ele-
ments. So approximate analytical expressions for the roots can be obtained. Numerical values
are substituted into Eq. (8.103) to justify the approximation.

In the case where two of the roots are not well separated, then one of the inequalities of
Eq. (8.103) is violated. We can then leave the corresponding terms in quadratic form. For exam-
ple, suppose that inequality k is not satisfied:

∣∣∣a1

∣∣∣ 

∣∣∣∣∣a2

a1

∣∣∣∣∣ 
 · · · 

∣∣∣∣∣ ak

ak−1

∣∣∣∣∣ /

∣∣∣∣∣ak+1

ak

∣∣∣∣∣ 
 · · · 

∣∣∣∣∣ an

an−1

∣∣∣∣∣ (8.105)

Then an approximate factorization is

P(s) ≈ (1 + a1s)

(
1 +

a2

a1
s

)
· · ·

(
1 +

ak

ak−1
s +

ak+1

ak−1
s2

)
· · ·

(
1 +

an

an−1
s

)
(8.106)

The conditions for accuracy of this approximation are

∣∣∣a1

∣∣∣ 

∣∣∣∣∣a2

a1

∣∣∣∣∣ 
 · · · 

∣∣∣∣∣ ak

ak−1

∣∣∣∣∣ 

∣∣∣∣∣∣
ak−2 ak+1

a2
k−1

∣∣∣∣∣∣ 

∣∣∣∣∣ak+2

ak+1

∣∣∣∣∣ 
 · · · 

∣∣∣∣∣ an

an−1

∣∣∣∣∣ (8.107)

Complex conjugate roots can be approximated in this manner.
When the first inequality of Eq. (8.103) is violated, that is,

|a1| /

∣∣∣∣∣a2

a1

∣∣∣∣∣ 

∣∣∣∣∣a3

a2

∣∣∣∣∣ 
 · · · 

∣∣∣∣∣ an

an−1

∣∣∣∣∣ (8.108)

then the first two roots should be left in quadratic form:

P(s) ≈
(
1 + a1s + a2s2

) (
1 +

a3

a2
s

)
· · ·

(
1 +

an

an−1
s

)
(8.109)

This approximation is justified provided that
∣∣∣∣∣∣
a2

2

a3

∣∣∣∣∣∣ 
 |a1| 

∣∣∣∣∣a3

a2

∣∣∣∣∣ 

∣∣∣∣∣a4

a3

∣∣∣∣∣ 
 · · · 

∣∣∣∣∣ an

an−1

∣∣∣∣∣ (8.110)

If none of the above approximations is justified, then there are three or more roots that are close
in magnitude. One must then resort to cubic or higher-order forms.

As an example, consider the damped EMI filter illustrated in Fig. 8.30. Filters such as this
are typically placed at the power input of a converter, to attenuate the switching harmonics
present in the converter input current. By circuit analysis, one can show that this filter exhibits
the following transfer function:

G(s) =
ig(s)

ic(s)
=

1 + s
L1 + L2

R

1 + s
L1 + L2

R
+ s2L1C + s3 L1L2C

R

(8.111)
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Fig. 8.30 Input EMI filter example

This transfer function contains a third-order denominator, with the following coefficients:

a1 =
L1 + L2

R
a2 = L1C

a3 =
L1L2C

R
(8.112)

It is desired to factor the denominator, to obtain analytical expressions for the poles. The correct
way to do this depends on the numerical values of R, L1, L2, and C. When the roots are real
and well separated, then Eq. (8.104) predicts that the denominator can be factored as follows:

(
1 + s

L1 + L2

R

) (
1 + sRC

L1

L1 + L2

) (
1 + s

L2

R

)
(8.113)

According to Eq. (8.103), this approximation is justified provided that

L1 + L2

R

 RC

L1

L1 + L2

 L2

R
(8.114)

These inequalities cannot be satisfied unless L1 
 L2. When L1 
 L2, then Eq. (8.114) can be
further simplified to

L1

R

 RC 
 L2

R
(8.115)

The approximate factorization, Eq. (8.113), can then be further simplified to

(
1 + s

L1

R

)
(1 + sRC)

(
1 + s

L2

R

)
(8.116)

Thus, in this case the transfer function contains three well- separated real poles. Equations (8.113)
and (8.116) represent approximate analytical factorizations of the denominator of Eq. (8.111).
Although numerical values must be substituted into Eqs. (8.114) or (8.115) to justify the ap-
proximation, we can nonetheless express Eqs. (8.113) and (8.116) as analytical functions of
L1, L2, R, and C. Equations (8.113) and (8.116) are design-oriented, because they yield in-
sight into how the element values can be chosen such that given specified pole frequencies are
obtained.
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When the second inequality of Eq. (8.114) is violated,

L1 + L2

R

 RC

L1

L1 + L2
/
L2

R
(8.117)

then the second and third roots should be left in quadratic form:
(
1 + s

L1 + L2

R

) (
1 + sRC

L1

L1 + L2
+ s2L1‖L2C

)
(8.118)

This expression follows from Eq. (8.106), with k = 2. Equation (8.107) predicts that this ap-
proximation is justified provided that

L1 + L2

R

 RC

L1

L1 + L2

 L1‖L2

L1 + L2
RC (8.119)

In application of Eq. (8.107), we take a0 to be equal to 1. The inequalities of Eq. (8.119) can be
simplified to obtain

L1 
 L2, and
L1

R

 RC (8.120)

Note that it is no longer required that RC 
 L2/R. Equation (8.120) implies that factoriza-
tion (8.118) can be further simplified to

(
1 + s

L1

R

) (
1 + sRC + s2L2C

)
(8.121)

Thus, for this case, the transfer function contains a low-frequency pole that is well separated
from a high-frequency quadratic pole pair. Again, the factored result (8.121) is expressed as an
analytical function of the element values, and consequently is design-oriented.

In the case where the first inequality of Eq. (8.114) is violated:

L1 + L2

R
/
RC

L1

L1 + L2

 L2

R
(8.122)

then the first and second roots should be left in quadratic form:
(
1 + s

L1 + L2

R
+ s2L1C

) (
1 + s

L2

R

)
(8.123)

This expression follows directly from Eq. (8.109). Equation (8.110) predicts that this approxi-
mation is justified provided that

L1RC
L2


 L1 + L2

R

 L2

R
(8.124)

that is,

L1 
 L2, and RC 
 L2

R
(8.125)

For this case, the transfer function contains a low-frequency quadratic pole pair that is well
separated from a high-frequency real pole. If none of the above approximations are justified,
then all three of the roots are similar in magnitude. We must then find other means of dealing
with the original cubic polynomial. Design of input filters, including the filter of Fig. 8.30, is
covered in Chap. 17.
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8.2 Analysis of Converter Transfer Functions

Let us next derive analytical expressions for the poles, zeroes, and asymptote gains in the trans-
fer functions of the basic converters.

8.2.1 Example: Transfer Functions of the Buck–Boost Converter

The small-signal equivalent circuit model of the buck–boost converter is derived in Sect. 7.2,
with the result (Fig. 7.16b) repeated in Fig. 8.31. Let us derive and plot the control-to-output
and line-to-output transfer functions for this circuit.

The converter contains two independent ac inputs: the control input d̂(s) and the line input
v̂g(s). The ac output voltage variations v̂(s) can be expressed as the superposition of terms arising
from these two inputs:

v̂(s) = Gvd(s)d̂(s) +Gvg(s)v̂g(s) (8.126)

Hence, the transfer functions Gvd(s) and Gvg(s) can be defined as

Gvd(s) =
v̂(s)

d̂(s)

∣∣∣∣∣∣
v̂g(s)=0

and Gvg(s) =
v̂(s)
v̂g(s)

∣∣∣∣∣∣
d̂(s)=0

(8.127)

To find the line-to-output transfer function Gvg(s), we set the d̂ sources to zero as in
Fig. 8.32a. We can then push the vg(s) source and the inductor through the transformers, to
obtain the circuit of Fig. 8.32b. The transfer function Gvg(s) is found using the voltage divider
formula:

Gvg(s) =
v̂(s)
v̂g(s)

∣∣∣∣∣∣
d̂(s)=0

= − D
D′

(
R
∥∥∥ 1

sC

)

sL
D′2
+

(
R
∥∥∥ 1

sC

) (8.128)

We next expand the parallel combination, and express as a rational fraction:

Gvg(s) =
(
− D

D′

)
( R
1 + sRC

)

sL
D′2
+

( R
1 + sRC

)

=

(
− D

D′

) R

R +
sL
D′2
+

s2RLC
D′2

(8.129)

+
–

+–

L

RC

1 : D D' : 1

vg(s) I d (s) I d (s)

i (s) (Vg – V) d (s)
+

v (s)

–

ˆ ˆ

ˆ ˆ

ˆ ˆ

Fig. 8.31 Buck–boost converter equivalent circuit derived in Sect. 7.2



310 8 Converter Transfer Functions

(a)

+
–

L

RC

1 : D D' : 1

vg(s)

+

v(s)

–

(b)

+
– RC

+

v(s)

–

L
D' 2

vg(s) – D
D'

ˆ

ˆ ˆ

ˆ

Fig. 8.32 Manipulation of buck–boost equivalent circuit to find the line-to-output transfer function
Gvg(s): (a) set d̂ sources to zero; (b) push inductor and v̂g source through transformers

We are not done yet—the next step is to manipulate the expression into normalized form, such
that the coefficients of s0 in the numerator and denominator polynomials are equal to one. This
can be accomplished by dividing the numerator and denominator by R:

Gvg(s) =
v̂(s)
v̂g(s)

∣∣∣∣∣∣
d̂(s)=0

=

(
− D

D′

) 1

1 + s
L

D′2R
+ s2 LC

D′2

(8.130)

Thus, the line-to-output transfer function contains a dc gain Gg0 and a quadratic pole pair:

Gvg(s) = Gg0
1

1 +
s

Qω0
+

(
s
ω0

)2
(8.131)

Analytical expressions for the salient features of the line-to-output transfer function are
found by equating like terms in Eqs. (8.130) and (8.131). The dc gain is

Gg0 = −
D
D′

(8.132)

By equating the coefficients of s2 in the denominators of Eqs. (8.130) and (8.131), we obtain

1

ω2
0

=
LC
D′2

(8.133)

Hence, the angular corner frequency is

ω0 =
D′
√

LC
(8.134)

By equating coefficients of s in the denominators of Eqs. (8.130) and (8.131), we obtain
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1
Qω0

=
L

D′2R
(8.135)

Elimination of ω0 using Eq. (8.134) and solution for Q leads to

Q = D′R

√
C
L

(8.136)

Equations (8.132), (8.134), and (8.136) are the desired results in the analysis of the line-to-
output transfer function. These expressions are useful not only in analysis situations, where it
is desired to find numerical values of the salient features Gg0, ω0, and Q, but also in design
situations, where it is desired to select numerical values for R, L, and C such that given values
of the salient features are obtained.

Derivation of the control-to-output transfer function Gvd(s) is complicated by the presence in
Fig. 8.31 of three generators that depend on d̂(s). One good way to find Gvd(s) is to manipulate
the circuit model as in the derivation of the canonical model, Fig. 7.36. Another approach, used
here, employs the principle of superposition. First, we set the v̂g source to zero. This shorts the
input to the 1:D transformer, and we are left with the circuit illustrated in Fig. 8.33a. Next, we
push the inductor and d̂ voltage source through the D’:1 transformer, as in Fig. 8.33b.

Figure 8.33b contains a d̂-dependent voltage source and a d̂-dependent current source. The
transfer function Gvd(s) can therefore be expressed as a superposition of terms arising from
these two sources. When the current source is set to zero (i.e., open-circuited), the circuit of
Fig. 8.34a is obtained. The output v̂(s) can then be expressed as

v̂(s)

d̂(s)
=

(
−

Vg − V

D′

)
(
R
∥∥∥ 1

sC

)

sL
D′2
+

(
R
∥∥∥ 1

sC

) (8.137)

(a)

(b)

+–

L

RC

D' : 1

I d (s)

(Vg – V) d (s)
+

v(s)

–

+
–

RCI d (s)

+

v(s)

–

L
D' 2

Vg – V
D' d (s)

ˆ

ˆ ˆ

ˆˆˆ

Fig. 8.33 Manipulation of buck–boost equivalent circuit to find the control-to-output transfer function
Gvd(s): (a) set v̂g source to zero; (b) push inductor and voltage source through transformer
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Fig. 8.34 Solution of the model of
Fig. 8.33b by superposition: (a) cur-
rent source set to zero; (b) voltage
source set to zero

(a)

(b)

+
–

RC

+

v (s)

–

L
D' 2

Vg – V
D' d (s)

RCI d (s)

+

v (s)

–

L
D' 2

ˆ ˆ

ˆˆ

When the voltage source is set to zero (i.e., short-circuited), Fig. 8.33b reduces to the circuit
illustrated in Fig. 8.34b. The output v̂(s) can then be expressed as

v̂(s)

d̂(s)
= I

(
sL
D′2

∥∥∥R
∥∥∥ 1

sC

)
(8.138)

The transfer function Gvd(s) is the sum of Eqs. (8.137) and (8.138):

Gvd(s) =

(
−

Vg − V

D′

)
(
R
∥∥∥ 1

sC

)

sL
D′2
+

(
R
∥∥∥ 1

sC

) + I

(
sL
D′2

∥∥∥R
∥∥∥ 1

sC

)
(8.139)

By algebraic manipulation, one can reduce this expression to

Gvd(s) =
v̂(s)

d̂(s)

∣∣∣∣∣∣
v̂g(s)=0

=

(
−

Vg − V

D′

)
⎛⎜⎜⎜⎜⎜⎜⎝1 − s

LI

D′
(
Vg − V

)
⎞⎟⎟⎟⎟⎟⎟⎠

(
1 + s

L
D′2R

+ s2 LC
D′2

) (8.140)

This equation is of the form

Gvd(s) = Gd0

(
1 − s
ωz

)

⎛⎜⎜⎜⎜⎜⎝1 + s
Qω0

+

(
s
ω0

)2⎞⎟⎟⎟⎟⎟⎠
(8.141)

The denominators of Eq. (8.140) and (8.130) are identical, and hence Gvd(s) and Gvg(s)
share the same ω0 and Q, given by Eqs. (8.134) and (8.136). The dc gain is

Gd0 = −
Vg − V

D′
= −

Vg

D′2
=

V
DD′

(8.142)
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The angular frequency of the zero is found by equating coefficients of s in the numerators of
Eqs. (8.140) and (8.141). One obtains

ωz =
D′(Vg − V)

LI
=

D′2R
DL

(RHP) (8.143)

This zero lies in the right half-plane. Equations (8.142) and (8.143) have been simplified by use
of the dc relationships

V = − D
D′

Vg (8.144)

I = − V
D1R

Equations (8.134), (8.136), (8.142), and (8.143) constitute the results of the analysis of the
control-to-output transfer function: analytical expressions for the salient features ω0, Q, Gd0,
and ωz. These expressions can be used to choose the element values such that given desired
values of the salient features are obtained.

Having found analytical expressions for the salient features of the transfer functions, we
can now plug in numerical values and construct the Bode plot. Suppose that we are given the
following values:

D = 0.6

R = 10 Ω

Vg = 30 V

L = 160 μH

C = 160 μF

(8.145)

We can evaluate Eqs. (8.132), (8.134), (8.136), (8.142), and (8.143), to determine numerical
values of the salient features of the transfer functions. The results are:

∣∣∣Gg0

∣∣∣ = D
D′
= 1.5⇒ 3.5 dB

|Gd0| =
|V |

DD′
= 187.5 V⇒ 45.5 dB V

f0 =
ω0

2π
=

D′

2π
√

LC
= 400 Hz

Q = D′R

√
C
L
= 4⇒ 12 dB

fz =
ωz

2π
=

D′2R
2πDL

= 2.65 kHz

(8.146)

The Bode plot of the magnitude and phase of Gvd is constructed in Fig. 8.35. The transfer
function contains a dc gain of 45.5 dBV, resonant poles at 400 Hz having a Q of 4⇒ 12dB, and
a right half-plane zero at 2.65 kHz. the resonant poles contribute −180◦ to the high-frequency
phase asymptote, while the right half-plane zero contributes −90◦. In addition, the inverting
characteristic of the buck–boost converter leads to a 18◦ phase reversal, not included in Fig. 8.35.
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Fig. 8.35 Bode plot of the control-to-output transfer function Gvd, buck–boost converter example. Phase
reversal owing to output voltage inversion is not included
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Fig. 8.36 Bode plot of the line-to-output transfer function Gvg, buck–boost converter example. Phase
reversal owing to output voltage inversion is not included

The Bode plot of the magnitude and phase of the line-to-output transfer function Gvg is
constructed in Fig. 8.36. This transfer function contains the same resonant poles at 400 Hz, but
is missing the right half-plane zero. The dc gain Gg0 is equal to the conversion ratio M(D)
of the converter. Again, the 180◦ phase reversal, caused by the inverting characteristic of the
buck–boost converter, is not included in Fig. 8.36.
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Table 8.2 Salient features of the small-signal CCM transfer functions of some basic dc–dc converters

Converter Gg0 Gd0 ω0 Q ωz

Buck D
V
D

1
√

LC
R

√
C
L

∞

Boost
1
D′

V
D′

D′
√

LC
D′R

√
C
L

D′2R
L

Buck–boost − D
D′

V
DD′

D′
√

LC
D′R

√
C
L

D′2R
DL

8.2.2 Transfer Functions of Some Basic CCM Converters

The salient features of the line-to-output and control-to-output transfer functions of the basic
buck, boost, and buck–boost converters are summarized in Table 8.2. In each case, the control-
to-output transfer function is of the form

Gvd(s) = Gd0

(
1 − s
ωz

)

⎛⎜⎜⎜⎜⎜⎝1 + s
Qω0

+

(
s
ω0

)2⎞⎟⎟⎟⎟⎟⎠
(8.147)

and the line-to-output transfer function is of the form

Gvg(s) = Gg0
1⎛⎜⎜⎜⎜⎜⎝1 + s

Qω0
+

(
s
ω0

)2⎞⎟⎟⎟⎟⎟⎠
(8.148)

The boost and buck–boost converters exhibit control-to-output transfer functions containing
two poles and a right half-plane zero. The buck converter Gvd(s) exhibits two poles but no
zero. The line-to-output transfer functions of all three ideal converters contain two poles and no
zeroes.

These results can be easily adapted to transformer-isolated versions of the buck, boost, and
buck–boost converters. The transformer has negligible effect on the transfer functions Gvg(s)
and Gvd(s), other than introduction of a turns ratio. For example, when the transformer of the
bridge topology is driven symmetrically, its magnetizing inductance does not contribute dynam-
ics to the converter small-signal transfer functions. Likewise, when the transformer magnetiz-
ing inductance of the forward converter is reset by the input voltage vg, as in Figs. 6.24 or 6.29,
then it also contributes negligible dynamics. In all transformer-isolated converters based on the
buck, boost, and buck–boost converters, the line-to-output transfer function Gvg(s) should be
multiplied by the transformer turns ratio; the transfer functions (8.147) and (8.148) and the
parameters listed in Table 8.2 can otherwise be directly applied.
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8.2.3 Physical Origins of the Right Half-Plane Zero in Converters

+

1

s
z

uout(s)uin(s)

Fig. 8.37 Block diagram having a right half-plane
zero transfer function, as in Eq. (8.32), with ω0 = ωz

Figure 8.37 contains a block diagram that il-
lustrates the behavior of the right half-plane
zero. At low frequencies, the gain (s/ωz) has
negligible magnitude, and hence uout ≈ uin.
At high frequencies, where the magnitude
of the gain (s/ωz) is much greater than 1,
uout ≈ −(s/ωz)uin. The negative sign causes
a phase reversal at high frequency. The im-
plication for the transient response is that the
output initially tends in the opposite direction
of the final value.

We have seen that the control-to-output
transfer functions of the boost and buck–
boost converters, Fig. 8.38, exhibit RHP ze-
roes. Typical transient response waveforms for a step change in duty cycle are illustrated in
Fig. 8.39. For this example, the converter initially operates in equilibrium, at d = 0.4 and
d′ = 0.6. Equilibrium inductor current iL(t), diode current iD(t), and output voltage v(t) wave-
forms are illustrated. The average diode current is

〈iD〉Ts
= d′ 〈iL〉Ts

(8.149)

By capacitor charge balance, this average diode current is equal to the dc load current when
the converter operates in equilibrium. At time t = t1, the duty cycle is increased to 0.6. In
consequence, d′ decreases to 0.4. The average diode current, given by Eq. (8.149), therefore
decreases, and the output capacitor begins to discharge. The output voltage magnitude initially
decreases as illustrated.

(a)

+

L

C R

+

v
1

2

vg

iL(t)

iD(t)

(b)

+
L

C R

+

v

1 2

vg

iL(t)

iD(t)

Fig. 8.38 Two basic converters whose CCM control-to-output transfer functions exhibit RHP zeroes: (a)
boost, (b) buck–boost
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Fig. 8.39 Waveforms of the con-
verters of Fig. 8.38, for a step re-
sponse in duty cycle. The average
diode current and output voltage
initially decrease, as predicted by
the RHP zero. Eventually, the in-
ductor current increases, causing
the average diode current and the
output voltage to increase

t

iD(t)

iD(t) Ts

t

| v(t) |

t

iL(t)

d = 0.6d = 0.4

The increased duty cycle causes the inductor current to slowly increase, and hence the aver-
age diode current eventually exceeds its original d = 0.4 equilibrium value. The output voltage
eventually increases in magnitude, to the new equilibrium value corresponding to d = 0.6.

The presence of a right half-plane zero tends to destabilize wide-bandwidth feedback loops,
because during a transient the output initially changes in the wrong direction. The phase margin
test for feedback loop stability is discussed in the next chapter; when a RHP zero is present,
it is difficult to obtain an adequate phase margin in conventional single-loop feedback systems
having wide bandwidth. Prediction of the right half-plane zero, and the consequent explanation
of why the feedback loops controlling CCM boost and buck–boost converters tend to oscillate,
was one of the early successes of averaged converter modeling.

8.3 Graphical Construction of Impedances and Transfer Functions

Often, we can draw approximate Bode diagrams by inspection, without large amounts of messy
algebra and the inevitable associated algebra mistakes. A great deal of insight can be gained into
the operation of the circuit using this method. It becomes clear which components dominate
the circuit response at various frequencies, and so suitable approximations become obvious.
Analytical expressions for the approximate corner frequencies and asymptotes can be obtained
directly. Impedances and transfer functions of quite complicated networks can be constructed.
Thus insight can be gained, so that the design engineer can modify the circuit to obtain a desired
frequency response.
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The graphical construction method, also known as “doing algebra on the graph,” involves
use of a few simple rules for combining the magnitude Bode plots of impedances and transfer
functions.

8.3.1 Series Impedances: Addition of Asymptotes

R
10 

C
1 μF

Z(s)

Fig. 8.40 Series R–C network example

A series connection represents the addition of
impedances. If the Bode diagrams of the individual
impedance magnitudes are known, then the asymptotes
of the series combination are found by simply taking
the largest of the individual impedance asymptotes. In
many cases, the result is exact. In other cases, such as
when the individual asymptotes have the same slope,
then the result is an approximation; nonetheless, the
accuracy of the approximation can be quite good.

Consider the series-connected R–C network of
Fig. 8.40. It is desired to construct the magnitude
asymptotes of the total series impedance Z(s), where

Z(s) = R +
1

sC
(8.150)

Let us first sketch the magnitudes of the individual impedances. The 10 Ω resistor has an
impedance magnitude of 10 Ω⇒ 20 dBΩ. This value is independent of frequency, and is given
in Fig. 8.41. The capacitor has an impedance magnitude of 1/ωC. This quantity varies inversely
with ω, and hence its magnitude Bode plot is a line with slope −20 dB/decade. The line passes
through 1Ω⇒ 0 dBΩ at the angular frequency ω where

1
ωC
= 1Ω (8.151)

that is, at

ω =
1

(1Ω)C
=

1
(1Ω)(10−6F)

= 106 rad/sec (8.152)

Fig. 8.41
Impedance
magnitudes of the
individual elements
in the network of
Fig. 8.40
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In terms of frequency f , this occurs at

f =
ω

2π
=

106

2π
= 159 kHz (8.153)

So the capacitor impedance magnitude is a line with slope −20 dB/dec, and which passes
through 0 dBΩ at 159 kHz, as shown in Fig. 8.41. It should be noted that, for simplicity, the
asymptotes in Fig. 8.41 have been labeled R and 1/ωC. But to draw the Bode plot, we must
actually plot dBΩ; for example, 20 log10(R/1 Ω) and 20 log10((1/ωC)/1Ω).

Let us now construct the magnitude of Z(s), given by Eq. (8.150). The magnitude of Z can
be approximated as follows:

∥∥∥Z ( jω)
∥∥∥ =

∥∥∥∥∥R + 1
jωC

∥∥∥∥∥ ≈
⎧⎪⎪⎪⎨⎪⎪⎪⎩

R for R 
 1/ωC
1
ωC

for R 	 1/ωC
(8.154)

The asymptotes of the series combination are simply the larger of the individual resistor and
capacitor asymptotes, as illustrated by the heavy lines in Fig. 8.42. For this example, these
are in fact the exact asymptotes of ‖Z‖. In the limiting case as frequency tends to zero (dc),
then the capacitor tends to an open circuit. The series combination is then dominated by the
capacitor, and the exact function tends asymptotically to the capacitor impedance magnitude. In
the limiting case as frequency tends to infinity, then the capacitor tends to a short circuit, and
the total impedance becomes simply R. So the R and 1/ωC lines are the exact asymptotes for
this example.

The corner frequency f0, where the asymptotes intersect, can now be easily deduced. At
angular frequency ω0 = 2π f0, the two asymptotes are equal in value:

1
ω0C

= R (8.155)

Solution for ω0 and f0 leads to:

ω0 =
1

RC
=

1
(10 Ω)(10−6F)

= 105 rad/sec

f0 =
ω0

2π
=

1
2πRC

= 16 kHz (8.156)
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Fig. 8.42 Construction of the composite asymptotes of ‖Z ‖. The asymptotes of the series combination
can be approximated by simply selecting the larger of the individual resistor and capacitor asymptotes
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So if we can write analytical expressions for the asymptotes, then we can equate the expressions
to find analytical expressions for the corner frequencies where the asymptotes intersect.

The deviation of the exact curve from the asymptotes follows all of the usual rules. The
slope of the asymptotes changes by +20 dB/decade at the corner frequency f0 (i.e., from
−20 dBΩ/decade to 0 dBΩ/decade), and hence there is a zero at f = f0. So the exact curve
deviates from the asymptotes by +3 dBΩ at f = f0, and by +1 dBΩ at f = 2 f0 and at f = f0/2.

8.3.2 Series Resonant Circuit Example

Z(s)

R

L

C

Fig. 8.43 Series R–L–C network example

As a second example, let us construct the
magnitude asymptotes for the series R–L–
C circuit of Fig. 8.43. The series impedance
Z(s) is

Z(s) = R + sL +
1

sC
(8.157)

The magnitudes of the individual resistor, in-
ductor, and capacitor asymptotes are plotted
in Fig. 8.44, for the values

R = 1 kΩ

L = 1 mH (8.158)

C = 0.1μF

The series impedance Z(s) is dominated by the capacitor at low frequency, by the resistor at mid
frequencies, and by the inductor at high frequencies, as illustrated by the bold line in Fig. 8.44.
The impedance Z(s) contains a zero at angular frequency ω1, where the capacitor and resistor
asymptotes intersect. By equating the expressions for the resistor and capacitor asymptotes, we
can find ω1:

R =
1
ω1C

⇒ ω1 =
1

RC
(8.159)

A second zero occurs at angular frequency ω2, where the inductor and resistor asymptotes inter-
sect. Upon equating the expressions for the resistor and inductor asymptotes at ω2, we obtain
the following:

Fig. 8.44 Graphical
construction of ‖Z ‖
of the series R–L–C
network of Fig. 8.43,
for the element values
specified by Eq. (8.158)
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Fig. 8.45 Graphical con-
struction of impedance
asymptotes for the series
R–L–C network example,
with R decreased to 10 Ω
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R
L

(8.160)

So simple expressions for all important features of the magnitude Bode plot of Z(s) can be
obtained directly. It should be noted that Eqs. (8.159) and (8.160) are approximate, rather than
exact, expressions for the corner frequencies ω1 and ω2. Equations (8.159) and (8.160) coincide
with the results obtained via the low-Q approximation of Sect. 8.1.7.

Next, suppose that the value of R is decreased to 10Ω. As R is reduced in value, the approx-
imate corner frequencies ω1 and ω2 move closer together until, at R = 100Ω, they are both
100 krad/sec. Reducing R further in value causes the asymptotes to become independent of the
value of R, as illustrated in Fig. 8.45 for R = 10ω. The ‖Z ‖ asymptotes now switch directly
from ωL to 1/ωC.

So now there are two zeroes at ω = ω0. At corner frequency ω0, the inductor and capacitor
asymptotes are equal in value. Hence,

ω0L =
1
ω0C

= R0 (8.161)

Solution for the angular corner frequency ω0 leads to

ω0 =
1
√

LC
(8.162)

At ω = ω0, the inductor and capacitor impedances both have magnitude R0, called the charac-
teristic impedance.

Since there are two zeroes at ω = ω0, there is a possibility that the two poles could be
complex conjugates, and that peaking could occur in the vicinity ofω = ω0. So let us investigate
what the actual curve does at ω = ω0. The actual value of the series impedance Z( jω0) is

Z( jω0) = R + jω0L +
1

jω0C
(8.163)

Substitution of Eq. (8.161) into Eq. (8.163) leads to

Z( jω0) = R + jR0 +
R0

j
= R + jR0 − jR0 = R (8.164)

At ω = ω0, the inductor and capacitor impedances are equal in magnitude but opposite in phase.
Hence, they exactly cancel out in the series impedance, and we are left with Z( jω0) = R, as
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Fig. 8.46 Ac-
tual impedance
magnitude (solid
line) for the series
resonant R–L–C
example. The induc-
tor and capacitor
impedances cancel
out at f = f0, and
hence Z( jω0) = R
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illustrated in Fig. 8.46. The actual curve in the vicinity of the resonance at ω = ω0 can deviate
significantly from the asymptotes, because its value is determined by R rather than ωL or 1/ωC.

We know from Sect. 8.1.6 that the deviation of the actual curve from the asymptotes at
ω = ω0 is equal to Q. From Fig. 8.46, one can see that∣∣∣Q ∣∣∣

dB
=
∣∣∣R0

∣∣∣
dBΩ
−
∣∣∣R ∣∣∣

dBΩ
(8.165)

or,

Q =
R0

R
(8.166)

Equations (8.161) to (8.166) are exact results for the series resonant circuit.
The practice of adding asymptotes by simply selecting the larger asymptote can be applied

to transfer functions as well as impedances. For example, suppose that we have already con-
structed the magnitude asymptotes of two transfer functions, G1 and G2, and we wish to find
the asymptotes of G = G1 + G2. At each frequency, the asymptote for G can be approximated
by simply selecting the larger of the asymptotes for G1 and G2:

G = G1 +G2 ≈
⎧⎪⎪⎨⎪⎪⎩

G1,
∥∥∥G1

∥∥∥ 
 ∥∥∥G2

∥∥∥
G2,

∥∥∥G2

∥∥∥ 
 ∥∥∥G1

∥∥∥ (8.167)

Corner frequencies can be found by equating expressions for asymptotes as illustrated in the
preceding examples. In the next chapter, we will see that this approach yields a simple and
powerful method for determining the closed-loop transfer functions of feedback systems.

8.3.3 Parallel Impedances: Inverse Addition of Asymptotes

A parallel combination represents inverse addition of impedances:

Zpar =
1(

1
Z1
+

1
Z2
+ · · ·

) = Z1

∥∥∥Z2

∥∥∥ · · · (8.168)

If the asymptotes of the individual impedances Z1, Z2, . . ., are known, then the asymptotes
of the parallel combination Zpar can be found by simply selecting the smallest individual
impedance asymptote. This is true because the smallest impedance will have the largest inverse,
and will dominate the inverse sum. As in the case of the series impedances, this procedure will
often yield the exact asymptotes of Zpar.
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Z(s) R L C

Fig. 8.47 Parallel R–L–C network example

Let us construct the magnitude asymp-
totes for the parallel R–L–C network of
Fig. 8.47, using the following element values:

R = 10Ω

L = 1 mH (8.169)

C = 0.1μF

Impedance magnitudes of the individual ele-
ments are illustrated in Fig. 8.48. The asymptotes for the total parallel impedance Z are approx-
imated by simply selecting the smallest individual element impedance, as shown by the heavy
line in Fig. 8.48. So the parallel impedance is dominated by the inductor at low frequency, by
the resistor at mid frequencies, and by the capacitor at high frequency. Approximate expressions
for the angular corner frequencies are again found by equating asymptotes:

at ω = ω1, R = ω1L⇒ ω1 =
R
L

(8.170)

at ω = ω2, R =
1
ω2C

⇒ ω2 =
1

RC

These expressions could have been obtained by conventional analysis, combined with the low-Q
approximation of Sect. 8.1.7.
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Fig. 8.48 Construction of the composite asymptotes of ‖Z ‖, for the parallel R–L–C example. The asymp-
totes of the parallel combination can be approximated by simply selecting the smallest of the individual
resistor, inductor, and capacitor asymptotes

8.3.4 Parallel Resonant Circuit Example

Figure 8.49 illustrates what happens when the value of R in the parallel R–L–C network is
increased to 1 kΩ. The asymptotes for ‖Z ‖ then become independent of R, and change directly
from ωL to 1/ωC at angular frequency ω0. The corner frequency ω0 is now the frequency where
the inductor and capacitor asymptotes have equal value:
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Fig. 8.49 Graphical con-
struction of impedance
asymptotes for the parallel
R–L–C example, with R
increased to 1 kΩ
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ω0L =
1
ω0C

= R0 (8.171)

which implies that

ω0 =
1
√

LC
(8.172)

At ω = ω0, the slope of the asymptotes of ‖Z ‖ changes from +20 dB/decade to −20 dB/decade,
and hence there are two poles. We should investigate whether peaking occurs, by determining
the exact value of ‖Z ‖ at ω = ω0, as follows:

Z ( jω0) = (R)
∥∥∥ ( jω0L)

∥∥∥
(

1
jω0C

)
=

1(
1
R
+

1
jω0L

+ jω0C

) (8.173)

Substitution of Eq. (8.171) into (8.173) yields

Z ( jω0) =
1

1
R
+

1
jR0
+

j
R0

=
1

1
R
− j

R0
+

j
R0

= R (8.174)

So atω = ω0, the impedances of the inductor and capacitor again cancel out, and we are left with
Z( jω0) = R. The values of L and C determine the values of the asymptotes, but R determines
the value of the actual curve at ω = ω0.

The actual curve is illustrated in Fig. 8.50. The deviation of the actual curve from the asymp-
totes at ω = ω0 is ∣∣∣Q ∣∣∣

dB
=
∣∣∣R ∣∣∣

dBΩ
−
∣∣∣R0

∣∣∣
dBΩ

(8.175)

or,

Q =
R
R0

(8.176)

Equations (8.171) to (8.176) are exact results for the parallel resonant circuit.
The graphical construction method for impedance magnitudes is well known, and reac-

tance paper can be purchased commercially. As illustrated in Fig. 8.51, the magnitudes of
the impedances of various inductances, capacitances, and resistances are plotted on semi-
logarithmic axes. Asymptotes for the impedances of R–L–C networks can be sketched directly
on these axes, and numerical values of corner frequencies can then be graphically determined.



8.3 Graphical Construction of Impedances and Transfer Functions 325

Fig. 8.50 Actual
impedance magni-
tude (solid line) for
the parallel resonant
R–L–C example. The
inductor and capacitor
impedances cancel out
at f = f0, and hence
Z( jω0) = R
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Fig. 8.51 “Reactance paper”: an aid for graphical construction of impedances, with the magnitudes of
various inductive, capacitive, and resistive impedances preplotted

8.3.5 Voltage Divider Transfer Functions: Division of Asymptotes

Usually, we can express transfer functions in terms of impedances—for example, as the ratio
of two impedances. If we can construct these impedances as described in the previous sections,
then we can divide to construct the transfer function. In this section, construction of the transfer
function H(s) of the two-pole R–L–C low-pass filter (Fig. 8.52) is discussed in detail. A filter of
this form appears in the canonical model for two-pole converters, and the results of this section
are applied in the converter examples of the next section.

The familiar voltage divider formula shows that the transfer function of this circuit can be
expressed as the ratio of impedances Z2/Zin, where Zin = Z1+Z2 is the network input impedance:

v̂2(s)
v̂1(s)

=
Z2

Z1 + Z2
=

Z2

Zin
(8.177)

For this example, Z1(s) = sL, and Z2(s) is the parallel combination of R and 1/sC. Hence, we
can find the transfer function asymptotes by constructing the asymptotes of Z2 and of the series
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Fig. 8.52 Two-pole low-pass filter based on voltage divider circuit: (a) transfer function H(s), (b) deter-
mination of Zout(s) by setting independent sources to zero, (c) determination of Zin(s)

combination represented by Zin, and then dividing. Another approach, which is easier to apply
in this example, is to multiply the numerator and denominator of Eq. (8.177) by Z1:

v̂2(s)
v̂1(s)

=
Z2Z1

Z1 + Z2

1
Z1
=

Zout

Z1
(8.178)

where Zout = Z1 ‖Z2 is the output impedance of the voltage divider. So another way to construct
the voltage divider transfer function is to first construct the asymptotes for Z1 and for the par-
allel combination represented by Zout, and then divide. This method is useful when the parallel
combination Z1‖Z2 is easier to construct than the series combination Z1 + Z2. It often gives a
different approximate result, which may be more (or sometimes less) accurate than the result
obtained using Zin.

The output impedance Zout in Fig. 8.52b is

Zout(s) = R
∥∥∥ 1

sC

∥∥∥ sL (8.179)

The impedance of the parallel R–L–C network is constructed in Sect. 8.3.3, and is illustrated in
Fig. 8.51a for the high-Q case.

According to Eq. (8.178), the voltage divider transfer function magnitude is ‖H ‖ = ‖Zout ‖/
‖Z1 ‖. This quantity is constructed in Fig. 8.53b. For ω < ω0, the asymptote of ‖Zout ‖ co-
incides with ‖Z1‖: both are equal to ωL. Hence, the ratio is ‖Zout ‖/‖Z1 ‖ = 1. For ω >
ω0, the asymptote of ‖Zout ‖ is 1/ωC, while ‖Z1 ‖ id equal to ωL. The ratio then becomes
‖Zout ‖/‖Z1 ‖ = 1/ω2LC, and hence the high-frequency asymptote has a −40 dB/decade slope.
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Fig. 8.53 Graphical construction of
H and Zout of the voltage divider cir-
cuit: (a) output impedance Zout; (b)
transfer function H
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Fig. 8.54 Effect of increasing L
on the output impedance asymptotes,
corner frequency, and Q-factor
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At ω = ω0, ‖Zout ‖ has exact value R, while ‖Z1‖ has exact value R0. The ratio is then
‖H( jω0) ‖ = ‖Zout( jω0) ‖/‖Z1( jω0) ‖ = R/R0 = Q. So the filter transfer function H has the
same ω0 and Q as the impedance Zout.

It now becomes obvious how variations in element values affect the salient features of the
transfer function and output impedance. For example, the effect of increasing L is illustrated in
Fig. 8.54. This causes the angular resonant frequency ω0 to be reduced, and also reduces the
Q-factor.

8.4 Graphical Construction of Converter Transfer Functions

The small-signal equivalent circuit model of the buck converter, derived in Chap. 7, is repro-
duced in Fig. 8.55. Let us construct the transfer functions and terminal impedances of this con-
verter, using the graphical approach of the previous section.

The output impedance Zout(s) is found with the d̂(s) and v̂g(s) sources set to zero; the circuit
of Fig. 8.56a is then obtained. This model coincides with the parallel R–L–C circuit analyzed
in Sects. 8.3.3 and 8.3.4. As illustrated in Fig. 8.56b, the output impedance is dominated by the
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Fig. 8.55 Small-signal model of the buck converter, with input impedance Zin(s) and output impedance
Zout(s) explicitly defined
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Fig. 8.56 Construction of buck converter output impedance Zout(s): (a) circuit model; (b) impedance
asymptotes

inductor at low frequency, and by the capacitor at high frequency. At the resonant frequency f0,
given by

f0 =
1

2π
√

LC
(8.180)

the output impedance is equal to the load resistance R. The Q-factor of the circuit is equal to

Q =
R
R0

(8.181)

where

R0 = ω0L =
1
ω0C

=

√
L
C

(8.182)

Thus, the circuit is lightly damped (high Q) at light load, where the value of R is large.
The converter input impedance Zin(s) is also found with the d̂(s) and v̂g(s) sources set to

zero, as illustrated in Fig. 8.57a. The input impedance is referred to the primary side of the 1:D
transformer, and is equal to

Zin(s) =
1

D2

[
Z1(s) + Z2(s)

]
(8.183)
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Fig. 8.57 Construction of the input impedance Zin(s) for the buck converter: (a) circuit model; (b) the
individual resistor, inductor, and capacitor impedance magnitudes; (c) construction of the impedance mag-
nitudes ‖Z1‖ and ‖Z2‖; (d) construction of ‖Zout‖; (e) final result ‖Zin‖

where

Z1(s) = sL (8.184)

and

Z2(s) = R
∥∥∥ 1

sC
(8.185)

We begin construction of the impedance asymptotes corresponding to Eqs. (8.183) to (8.185)
by constructing the individual resistor, capacitor, and inductor impedances as in Fig. 8.57b. The
impedances in Fig. 8.57 are constructed for the case R > R0. As illustrated in Fig. 8.57c, ‖Z1‖
coincides with the inductor reactance ωL. The impedance ‖Z2‖ is asymptotic to resistance R
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at low frequencies and to the capacitor reactance 1/ωC at high frequency. The resistor and
capacitor asymptotes intersect at corner frequency f1, given by

f1 =
1

2πRC
(8.186)

According to Eq. (8.183), the input impedance Zin(s) is equal to the series combination of Z1(s)
and Z2(s), divided by the square of the turns ratio D. The asymptotes for the series combination
[Z1(s) + Z2(s)] are found by selecting the larger of the ‖Z1‖ and ‖Z2‖ asymptotes. The ‖Z1‖ and
‖Z2‖ asymptotes intersect at frequency f0, given by Eq. (8.180). It can be seen from Fig. 8.57c
that the series combination is dominated by Z2 for f < f0 and by Z1 for f > f0. Upon scaling
the [Z1(s)+Z2(s)] asymptotes by the factor 1/D2, the input impedance asymptotes of Fig. 8.57e
are obtained.

The zeroes of Zin(s), at frequency f0, have the same Q-factor as the poles of Zout(s)
[Eq. (8.181)]. One way to see that this is true is to note that the output impedance can be ex-
pressed as

Zout(s) =
Z1(s)Z2(s)

Z1(s) + Z2(s)
=

Z1(s)Z2(s)
D2Zin(s)

(8.187)

Hence, we can relate Zout(s) to Zin(s) as follows:

Zin(s) =
1

D2

Z1(s)Z2(s)
Zout(s)

(8.188)

The impedances ‖Z1‖, ‖Z2‖, and ‖Zout ‖ are illustrated in Fig. 8.57d. At the resonant frequency
f = f0, impedance Z1 has magnitude R0 and impedance Z2 has magnitude approximately equal
to R0. The output impedance Zout has magnitude R. Hence, Eq. (8.188) predicts that the input
impedance has the magnitude

‖Zin ‖ ≈
1

D2

R0R0

R
at f = f0 (8.189)

At f = f0, the asymptotes of the input impedance have magnitude R0/D2. The deviation from
the asymptotes is therefore equal to Q = R/R0, as illustrated in Fig. 8.57e.

The control-to-output transfer function Gvd(s) is found with the v̂g(s) source set to zero, as in
Fig. 8.58a. This circuit coincides with the voltage divider analyzed in Sect. 8.3.5. Hence, Gvd(s)
can be expressed as

Gvd(s) = Vg
Zout(s)
Z1(s)

(8.190)

The quantities ‖Zout ‖ and ‖Z1‖ are constructed in Fig. 8.58b. According to Eq. (8.190), we can
construct ‖Gvd(s)‖ by finding the ratio of ‖Zout ‖ and ‖Z1‖, and then scaling the result by Vg. For
f < f0, ‖Zout ‖ and ‖Z1‖ are both equal to ωL and hence ‖Zout ‖/‖Z1‖ is equal to 1. As illustrated
in Fig. 8.58c, the low-frequency asymptote of ‖Gvd(s)‖ has value Vg. For f > f0, ‖Zout ‖ has
asymptote 1/ωC, and ‖Z1‖ is equal to ωL. Hence, ‖Zout ‖/‖Z1‖ has asymptote 1/ω2LC, and the
high-frequency asymptote of ‖Gvd(s)‖ is equal to Vg/ω

2LC. The Q-factor of the two poles at
f = f0 is again equal to R/R0.



8.4 Graphical Construction of Converter Transfer Functions 331

(a)

+

L

RCVg (t)

+

(t)

(b) 1
C

R

|| Zout ||

f0

R0

Q = R /R0

|| Z1 || = L

(c)

f0

Q = R /R0Vg
L
L = Vg

Vg
1/ C

L
=

Vg
2LC|| Gvd(s) ||

d̂ v̂

Fig. 8.58 Construction of the control-to-output transfer function Gvd(s) for the buck converter: (a) circuit
model; (b) relevant impedance asymptotes; (c) transfer function ‖Gvd(s)‖

Fig. 8.59 The line-to-output trans-
fer function Gvg(s) for the buck con-
verter: (a) circuit model; (b) magni-
tude asymptotes
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The line-to-output transfer function Gvg(s) is found with the d̂(s) sources set to zero, as
in Fig. 8.59a. This circuit contains the same voltage divider as in Fig. 8.58, and additionally
contains the 1:D transformer. The transfer function Gvg(s) can be expressed as

Gvg(s) = D
Zout(s)
Z1(s)

(8.191)

This expression is similar to Eq. (8.190), except for the scaling factor of D. Therefore, the line-
to-output transfer function of Fig. 8.59b has the same shape as the control-to-output transfer
function Gvd(s).
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8.5 Measurement of AC Transfer Functions and Impedances

It is good engineering practice to measure the transfer functions of prototype converters and
converter systems. Such an exercise can verify that the system has been correctly modeled and
designed. Also, it is often useful to characterize individual circuit elements through measure-
ment of their terminal impedances.

Small-signal ac magnitude and phase measurements can be made using an instrument
known as a network analyzer, or frequency response analyzer. The key inputs and outputs of
a basic network analyzer are illustrated in Fig. 8.60. The network analyzer provides a sinusoidal
output voltage v̂z of controllable amplitude and frequency. This signal can be injected into the
system to be measured, at any desired location. The network analyzer also has two (or more)
inputs, v̂x and v̂y. The return electrodes of v̂z, v̂y, and v̂x are internally connected to earth ground.
The network analyzer performs the function of a narrowband tracking voltmeter: it measures the
components of v̂x and v̂y at the injection frequency, and displays the magnitude and phase of the
quantity v̂y/v̂x. The narrowband tracking voltmeter feature is essential for switching converter
measurements; otherwise, switching ripple and noise corrupt the desired sinusoidal signals and
make accurate measurements impossible [80]. Modem network analyzers can automatically
sweep the frequency of the injection source v̂z to generate magnitude and phase Bode plots of
the transfer function v̂y/v̂x.

A typical test setup for measuring the transfer function of an amplifier is illustrated in
Fig. 8.61. A potentiometer, connected between a dc supply voltage VCC and ground, is used
to bias the amplifier input to attain the correct quiescent operating point. The injection source
voltage v̂z is coupled to the amplifier input terminals via a dc blocking capacitor. This blocking
capacitor prevents the injection voltage source from upsetting the dc bias. The network ana-
lyzer inputs v̂x and v̂y are connected to the input and output terminals of the amplifier. Hence,
the measured transfer function is

Network Analyzer
Injection source Measured inputs

vy

Magnitude
vz

Frequency
vz

Output
vz

+ –

Input
vx

Input
+ – + –

vy

vx

vy

vx

Data

17.3 dB

– 134.7˚

Data bus
to computer

Fig. 8.60 Key features and functions of a network analyzer: sinusoidal source of controllable amplitude
and frequency, two inputs, and determination of relative magnitude and phase of the input components at
the injection frequency
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Fig. 8.61 Measurement of a transfer function

v̂y(s)

v̂x(s)
= G(s) (8.192)

Note that the blocking capacitance, bias potentiometer, and v̂z amplitude have no effect on the
measured transfer function

An impedance

Z(s) =
v̂(s)

î(s)
(8.193)

can be measured by treating the impedance as a transfer function from current to voltage. For
example, measurement of the output impedance of an amplifier is illustrated in Fig. 8.62. The
quiescent operating condition is again established by a potentiometer which biases the amplifier
input. The injection source v̂z is coupled to the amplifier output through a dc blocking capacitor.
The injection source voltage v̂z excites a current îout in impedance Zs. This current flows into the
output of the amplifier, and excites a voltage across the amplifier output impedance:

Zout(s) =
v̂y(s)

îout(s)

∣∣∣∣∣∣ amplifier
ac input = 0

(8.194)
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Fig. 8.62 Measurement of the output impedance of a circuit

A current probe is used to measure îout. The current probe produces a voltage proportional
to îout; this voltage is connected to the network analyzer input v̂x. A voltage probe is used to
measure the amplifier output voltage v̂y. The network analyzer displays the transfer function
v̂y/v̂x, which is proportional to Zout. Note that the value of Zs and the amplitude of v̂z do not
affect the measurement of Zout.

In power applications, it is sometimes necessary to measure impedances that are very small
in magnitude. Grounding problems [4] cause the test setup of Fig. 8.62 to fail in such cases.
The reason is illustrated in Fig. 8.63a. Since there turn connections of the injection source v̂z

and the analyzer input v̂y are both connected to earth ground, the injected current îout can return
to the source through the return connections of either the injection source or the voltage probe.
In practice, îout divides between the two paths according to their relative impedances. Hence,
a significant current (1 − k)îout flows through the return connection of the voltage probe. If
the voltage probe return connection has some total contact and wiring impedance Zprobe, then
the current induces a voltage drop (1 − k)îoutZprobe in the voltage probe wiring, as illustrated
in Fig. 8.63a. Hence, the network analyzer does not correctly measure the voltage drop across
the impedance Z. If the internal ground connections of the network analyzer have negligible
impedance, then the network analyzer will display the following impedance:

Z + (1 − k)Zprobe = Z + Zprobe

∥∥∥Zrz (8.195)

Here, Zrz is the impedance of the injection source return connection. So to obtain an accurate
measurement, the following condition must be satisfied:

∥∥∥Z∥∥∥ 

∥∥∥∥∥
(
Zprobe

∥∥∥Zrz

) ∥∥∥∥∥ (8.196)

A typical lower limit on ‖Z ‖ is a few tens or hundreds of milliohms.
An improved test setup for measurement of small impedances is illustrated in Fig. 8.63b. An

isolation transformer is inserted between the injection source and the dc blocking capacitor. The
return connections of the voltage probe and injection source are no longer in parallel, and the
injected current îout must now return entirely through the injection source return connection. An
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Fig. 8.63 Measurement of a small impedance Z(s): (a) current flowing in the return connection of the
voltage probe induces a voltage drop that corrupts the measurement; (b) an improved experiment, incor-
porating isolation of the injection source
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added benefit is that the transformer turns ratio n can be increased, to better match the injection
source impedance to the impedance under test. Note that the impedances of the transformer, of
the blocking capacitor, and of the probe and injection source return connections, do not affect
the measurement. Much smaller impedances can therefore be measured using this improved
approach.

8.6 Summary of Key Points

1. The magnitude Bode diagrams of functions which vary as ( f / f0)n have slopes equal to
20n dB per decade, and pass through 0 dB at f = f0.

2. It is good practice to express transfer functions in normalized pole-zero form; this form
directly exposes expressions for the salient features of the response, that is, the corner
frequencies, reference gain, etc.

3. The right half-plane zero exhibits the magnitude response of the left half-plane zero, but
the phase response of the pole.

4. Poles and zeroes can be expressed in frequency-inverted form when it is desirable to refer
the gain to a high-frequency asymptote.

5. A two-pole response can be written in the standard normalized form of Eq. (8.58). When
Q > 0.5, the poles are complex conjugates. The magnitude response then exhibits peaking
in the vicinity of the corner frequency, with an exact value of Q at f = f0. High Q also
causes the phase to change sharply near the corner frequency.

6. When Q is less than 0.5, the two-pole response can be plotted as two real poles. The low-
Q approximation predicts that the two poles occur at frequencies f0/Q and Q f0. These
frequencies are within 10% of the exact values for Q ≤ 0.3.

7. When a circuit includes two damping elements, the composite Q-factor can be estimated
as the “parallel combination” (inverse addition) of the Q-factors determined by the two
elements individually. This estimation is within 10% of the exact value when the product
of the individual Q-factors is greater than 5.

8. The low-Q approximation can be extended to find approximate roots of an arbitrary-degree
polynomial. Approximate analytical expressions for the salient features can be derived.
Numerical values are used to justify the approximations.

9. Salient features of the transfer functions of the buck, boost, and buck–boost converters are
tabulated in Sect. 8.2.2. The line-to-output transfer functions of these converters contain
two poles. Their control-to-output transfer functions contain two poles, and may addition-
ally contain a right half-plane zero.

10. Approximate magnitude asymptotes of impedances and transfer functions can be easily
derived by graphical construction. This approach is a useful supplement to conventional
analysis, because it yields physical insight into the circuit behavior, and because it exposes
suitable approximations. Several examples, including the impedances of basic series and
parallel resonant circuits and the transfer function H(s) of the voltage divider circuit, are
worked in Sect. 8.3. The input impedance, output impedance, and transfer functions of the
buck converter are constructed in Sect. 8.4, and physical origins of the asymptotes, corner
frequencies, and Q-factor are found.

11. Measurement of transfer functions and impedances using a network analyzer is discussed
in Sect. 8.5. Careful attention to ground connections is important when measuring small
impedances.



8.6 Summary of Key Points 337

Problems

8.1 Express the gains represented by the asymptotes of Fig. 8.64a–c in factored pole-zero form.
You may assume that all poles and zeroes have negative real parts.

(a)

+20 dB/decade

f0

Gm

f1

(b)

f2

Gm

f3

f1

(c)
f1

Q

f2

G
+20 dB/decade

Fig. 8.64 Gain asymptotes for Problem 8.1

8.2 Express the gains represented by the asymptotes of Fig. 8.65a–c in factored pole-zero form.
You may assume that all poles and zeroes have negative real parts.

8.3 Derive analytical expressions for the low-frequency asymptotes of the magnitude Bode
plots shown in Fig. 8.65a–c.

8.4 Derive analytical expressions for the three magnitude asymptotes of Fig. 8.16.
8.5 An experimentally measured transfer function. Figure 8.66 contains experimentally mea-

sured magnitude and phase data for the gain function A(s) of a certain amplifier. The object
of this problem is to find an expression for A(s). Overlay asymptotes as appropriate on the
magnitude and phase data, and hence deduce numerical values for the gain asymptotes
and corner frequencies of A(s). Your magnitude and phase asymptotes must, of course,
follow all of the rules: magnitude slopes must be multiples of ±20 dB per decade, phase
slopes for real poles must be multiples of ±45◦ per decade, etc. The phase and magnitude
asymptotes must be consistent with each other.
It is suggested that you start by guessing A(s) based on the magnitude data. Then construct
the phase asymptotes for your guess, and compare them with the given data. If there are
discrepancies, then modify your guess accordingly and redo your magnitude and phase
asymptotes. You should turn in: (1) your analytical expression for A(s), with numerical
values given, and (2) a copy of Fig. 8.66, with your magnitude and phase asymptotes
superimposed and with all break frequencies and slopes clearly labeled.
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Fig. 8.65 Gain asymptotes for Problems 8.2 and 8.3
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Fig. 8.66 Experimentally measured magnitude and phase data, Problem 8.5

8.6 An experimentally measured impedance. Figure 8.67 contains experimentally measured
magnitude and phase data for the driving-point impedance Z(s) of a passive network. The
object of this problem is the find an expression for Z(s). Overlay asymptotes as appropri-
ate on the magnitude and phase data, and hence deduce numerical values for the salient
features of the impedance function. You should turn in: (1) your analytical expression for
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Z(s), with numerical values given, and (2) a copy of Fig. 8.67, with your magnitude and
phase asymptotes superimposed and with all salient features and asymptote slopes clearly
labeled.

Fig. 8.67 Impedance mag-
nitude and phase data, Prob-
lem 8.6
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º

º
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|| Z ||

Z

8.7 For the nonideal flyback converter modeled in Sect. 7.2.10:

(a) Derive analytical expressions for the control-to-output and line-to-output transfer
functions Gvd(s) and Gvg(s). Express your results in standard normalized form.

(b) Derive analytical expressions for the salient features of these transfer functions.
(c) Construct the magnitude and phase Bode plots of the control-to-output transfer func-

tion, using the following values: n = 2, Vg = 48 V, D = 0.3, R = 5Ω, L =
250μH, C = 100 μF, Ron = 1.2Ω. Label the numerical values of the constant asymp-
totes, all corner frequencies, the Q-factor, and asymptote slopes.

8.8 Magnitude Bode diagram of an R–L–C filter circuit. For the filter circuit of Fig. 8.68,
construct the Bode plots for the magnitudes of the Thevenin-equivalent output impedance
Zout and the transfer function H(s) = v2/v1. Plot your results on semi-log graph paper.
Give approximate analytical expressions and numerical values for the important corner
frequencies and asymptotes. Do all of the elements significantly affect Zout and H?
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Fig. 8.68 Filter circuit of
Problem 8.8
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8.9 Operational amplifier filter circuit. The op-amp circuit shown in Fig. 8.69 is a practical
realization of what is known as a PID controller, and is sometimes used to modify the
loop gain of feedback circuits to improve their performance. Using semi-log graph paper,
sketch the Bode diagram of the magnitude of the transfer function v2(s)/v1(s) of the circuit
shown. Label all corner frequencies, flat asymptote gains, and asymptote slopes, as appro-
priate, giving both analytical expressions and numerical values. You may assume that the
op-amp is ideal.
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+
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100 
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24 nF

R2
1 k
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2 k

R3 20 k

C2
1 μF

C3 800 pF

Fig. 8.69 Op-amp PID controller circuit, Problem 8.9

8.10 Phase asymptotes. Construct the phase asymptotes for the transfer function v2(s)/v1(s) of
Problem 8.9. Label all break frequencies, flat asymptotes, and asymptote slopes.

8.11 Construct the Bode diagram for the magnitude of the output impedance Zout of the net-
work shown in Fig. 8.70. Give suitable analytical expressions for each asymptote, corner
frequency, and Q-factor, as appropriate. Justify any approximations that you use. The com-
ponent values are: L1 = 100 μH, L2 = 16 mH,C1 = 1000 μF,C2 = 10 μF,R1 = 5Ω,R2 =

50Ω
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Fig. 8.70 Filter network of Problem 8.11
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Fig. 8.71 Input filter circuit of Problem 8.12

8.12 The two section input filter in the circuit of Fig. 8.71 should be designed such that its
output impedance Zout |vg = 0 meets certain input filter design criteria, and hence it is
desirable to construct the Bode plot for the magnitude of Zs. Although this filter contains
six reactive elements, ‖Zs‖ can nonetheless be constructed in a relatively straightforward
manner using graphical construction techniques. The element values are:

L1 = 32mH C1 = 32 μF
L2 = 400 μH C2 = 6.8 μF
L3 = 800 μH R1 = 10Ω
L4 = 1 μH R2 = 1Ω

(a) Construct ‖Zs ‖ using the“algebra on the graph” method. Give simple approximate
analytical expressions for all asymptotes and corner frequencies.

(b) It is desired that ‖Zs ‖ be approximately equal to 5 Ω at 500 Hz and 2.5 Ω at 1 kHz.
Suggest a simple way to accomplish this by changing the value of one component.

8.13 Construct the Bode plot of the magnitude of the output impedance of the filter illustrated
in Fig. 8.72. Give approximate analytical expressions for each corner frequency. No credit
will be given for computer-generated plots.
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Fig. 8.72 Input filter circuit of Problem 8.13

8.14 A certain open-loop buck–boost converter contains an input filter. Its small-signal ac
model is shown in Fig. 8.73, and the element values are specified below. Construct the
Bode plot for the magnitude of the converter output impedance ‖Zout(s)‖. Label the values
of all important corner frequencies and asymptotes.

D = 0.6 Lf = 150 μH
R = 6Ω C f = 16 μF
C = 0.33 μF Cb = 2200 μF
L = 25 μH Rf = 1Ω

+
– Id(s)vg(s)

+–

L
Vg – V d(s)

RCId(s)

1 : D D' : 1Lf

Rf
Cf

Cb

Zout(s)

Fig. 8.73 Small-signal model of a buck converter with input filter, Problem 8.14

8.15 In Sect. 7.2.10, the small-signal ac model of a nonideal flyback converter is derived, with
the result illustrated in Fig. 7.28. Construct a Bode plot of the magnitude and phase of
the converter output impedance Zout(s). Give both analytical expressions and numerical
values for all important features in your plot. Note: Zout(s) includes the load resistance R.
The element values are: D = 0.4, n = 0.2, R = 6Ω, L = 600μH, C = 100μF, Ron = 5Ω.

8.16 The small-signal equations of the Watkins–Johnson converter operating in continuous con-
duction mode are:

L
dî(t)
dt
= −Dv̂(t) + (2Vg − V)d̂(t) + (D − D′)v̂g(t)

C
dv̂(t)

dt
= Dî(t) − v̂(t)

R
îg(t) = (D − D′)î(t) + 2Id̂(t)
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(a) Derive analytical expressions for the line-to-output transfer function Gvg(s) and the
control-to-output transfer function Gvd(s).

(b) Derive analytical expressions for the salient features (dc gains, corner frequencies,
and Q-factors) of the transfer functions Gvg(s) and Gvd(s). Express your results as
functions of Vg, D, R, L, and C.

(c) The converter operates at Vg = 28 V, D = 0.25, R = 28Ω, C = 100 μF, L = 400 μF.
Sketch the Bode diagram of the magnitude and phase of Gvd(s). Label salient features.

8.17 The element values in the buck converter of Fig. 7.55 are:

Vg = 120 V D = 0.6
R = 10Ω Rg = 2Ω
L = 550 μH C = 100 μF

(a) Determine an analytical expression for the control-to-output transfer function Gvg(s)
of this converter.

(b) Find analytical expressions for the salient features of Gvg(s).
(c) Construct magnitude and phase asymptotes for Gvg. Label the numerical values of all

slopes and other important features.

8.18 The LCC resonant inverter circuit contains the following transfer function:

H(s) =
sC1R

1 + sR(C1 +C2) + s2LC1 + s3LC1C2R

(a) When C1 is sufficiently large, this transfer function can be expressed as an inverted
pole and a quadratic pole pair. Derive analytical expressions for the corner frequen-
cies and Q-factor in this case, and sketch typical magnitude asymptotes. Determine
analytical conditions for validity of your approximation.

(b) When C2 is sufficiently large, the transfer function can be also expressed as an inverted
pole and a quadratic pole pair. Derive analytical expressions for the corner frequen-
cies and Q-factor in this case, and sketch typical magnitude asymptotes. Determine
analytical conditions for validity of your approximation in this case.

(c) When C1 = C2 and when the quadratic poles have sufficiently high Q, then the transfer
function can again be expressed as an inverted pole and a quadratic pole pair. Derive
analytical expressions for the corner frequencies and Q-factor in this case, and sketch
typical magnitude asymptotes. Determine analytical conditions for validity of your
approximation in this case.

8.19 A two-section L −C filter has the following transfer function:

G(s) =
1

1 + s
(L1 + L2

R

)
+ s2

(
L1 (C1 +C2) + L2C2

)
+ s3

(L1L2C1

R

)
+ s4

(
L1L2C1C2

)

The element values are:

R = 50 mΩ
C1 = 680 μF C2 = 4.7 μF
L1 = 500 μH L2 = 50 μH
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(a) Use the above numerical values to determine how to factor G(s) into approximate real
and quadratic poles, as appropriate. Give approximate analytical expressions for the
salient features that are valid for the above numerical values.

(b) Construct the magnitude and phase asymptotes of G(s).
(c) It is desired to reduce the Q to 2, without significantly changing the corner frequencies

or other features of the response. It is possible to do this by changing only two element
values. Specify how to accomplish this.

Fig. 8.74 Boost converter of
Problem 8.20
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vg

Boost converter

Controller
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C R
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12 48 V

d

8.20 The boost converter of Fig. 8.74 operates in the continuous conduction mode, with quies-
cent duty cycle D = 0.6. On semi-log axes, construct the magnitude and phase Bode plots
of
(a) the control-to-output transfer function Gvd(s),
(b) the line-to-output transfer function Gvg(s),
(c) the output impedance Zout(s), and
(d) the input impedance Zin(s).
On each plot, label the corner frequencies and asymptotes.
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Fig. 8.75 Forward converter of Problem 8.21
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8.21 The forward converter of Fig. 8.75 operates in the continuous conduction mode, with the
quiescent values Vg = 380 V and V = 28 V. The transformer turns ratio is n1/n3 = 4.5. On
semi-log axes, construct the magnitude and phase Bode plots of
(a) the control-to-output transfer function Gvd(s), and
(b) the line-to-output transfer function Gvg(s).
On each plot, label the corner frequencies and asymptotes. Hint: other than introduction of
the turns ratio n1/n3, the transformer does not significantly affect the small-signal behavior
of the forward converter.

8.22 Loss mechanisms in capacitors, such as dielectric loss and contact and foil resistance, can
be modeled electrically using an equivalent series resistance (ESR). Capacitors whose
dielectric materials exhibit a high dielectric constant, such as electrolytic capacitors, tan-
talum capacitors, and some types of multi-layer ceramic capacitors, typically exhibit rela-
tively high ESR.
A buck converter contains a 1.6 mH inductor, and operates with a quiescent duty cycle of
0.5. Its output capacitor can be modeled as a 16 μF capacitor in series with a 0.2 Ω ESR.
The load resistance is 10 Ω. The converter operates in continuous conduction mode. The
quiescent input voltage is Vg = 120 V.
(a) Determine an analytical expression for the control-to-output transfer function Gvg(s)

of this converter.
(b) Find analytical expressions for the salient features of Gvg(s).
(c) Construct magnitude and phase asymptotes for Gvg. Label the numerical values of all

slopes and other important features.
8.23 The boost converter of Fig. 8.76 operates in the continuous conduction mode, with the

following quiescent values: Vg = 120 V, V = 300 V. It is desired to control the converter
input current waveform, and hence it is necessary to determine the small-signal transfer
function

Gid(s) =
îg(s)

d̂(s)

∣∣∣∣∣∣
v̂g(s)=0

(a) Derive an analytical expression for Gid(s). Express all poles and zeroes in normalized
standard form, and give analytical expressions for the corner frequencies, Q-factor,
and dc gain.

(b) On semi-log axes, construct the Bode plot for the magnitude and phase of Gid(s).

Fig. 8.76 Boost converter of
Problem 8.23
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8.24 The buck–boost converter of Fig. 8.77 operates in the continuous conduction mode, with
the following quiescent values: Vg = 48 V, V = −24 V. On semi-log axes, construct the
magnitude and phase Bode plots of:
(a) the control-to-output transfer function Gvd(s), and
(b) the output impedance Zout(s).
On each plot, label the corner frequencies and asymptotes as appropriate.

Fig. 8.77 Buck–boost con-
verter of Problem 8.24
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Controller Design

9.1 Introduction

In all switching converters, the output voltage v(t) is a function of the input line voltage vg(t), the
duty cycle d(t), and the load current iload(t), as well as the converter circuit element values. In
a dc–dc converter application, it is desired to obtain a constant output voltage v(t) = V , in spite
of disturbances in vg(t) and iload(t), and in spite of variations in the converter circuit element
values. The sources of these disturbances and variations are many, and a typical situation is
illustrated in Fig. 9.1. The input voltage vg(t) of an off-line power supply may typically contain
periodic variations at the second harmonic of the ac power system frequency (100 Hz or 120
Hz), produced by a rectifier circuit. The magnitude of vg(t) may also vary when neighboring
power system loads are switched on or off. The load current iload(t) may contain variations of
significant amplitude, and a typical power supply specification is that the output voltage must
remain within a specified range (for example, 3.3 V ± 0.05 V) when the load current takes a
step change from, for example, full rated load current to 50% of the rated current, and vice
versa. The values of the circuit elements are constructed to a certain tolerance, and so in high-
volume manufacturing of a converter, converters are constructed whose output voltages lie in
some distribution. It is desired that essentially all of this distribution fall within the specified
range; however, this is not practical to achieve without the use of negative feedback. Similar
considerations apply to inverter applications, except that the output voltage is ac.

So we cannot expect to simply set the dc–dc converter duty cycle to a single value, and
obtain a given constant output voltage under all conditions. The idea behind the use of negative
feedback is to build a circuit that automatically adjusts the duty cycle as necessary, to obtain
the desired output voltage with high accuracy, regardless of disturbances in vg(t) or iload(t) or
variations in component values. This is a useful thing to do whenever there are variations and
unknowns that otherwise prevent the system from attaining the desired performance.

A block diagram of a feedback system is shown in Fig. 9.2. The output voltage v(t) is mea-
sured, using a “sensor” with gain H(s). In a dc voltage regulator or dc–ac inverter, the sensor
circuit is usually a voltage divider, comprised of precision resistors. The sensor output signal
H(s)v(s) is compared with a reference input voltage vre f (s). The objective is to make H(s)v(s)
equal to vre f (s), so that v(s) accurately follows vre f (s) regardless of disturbances or component
variations in the compensator, pulse-width modulator, gate driver, or converter power stage.

© Springer Nature Switzerland AG 2020
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Fig. 9.1 The output voltage of a typical switching converter is a function of the line input voltage vg, the
duty cycle d, and the load current iload: (a) open-loop buck converter; (b) functional diagram illustrating
dependence of v on the independent quantities vg, d, and iload

The difference between the reference input vre f (s) and the sensor output H(s)v(s) is called
the error signal ve(s). If the feedback system works perfectly, then vre f (s) = H(s)v(s), and
hence the error signal is zero. In practice, the error signal is usually nonzero but nonetheless
small. Obtaining a small error is one of the objectives in adding a compensator network Gc(s)
as shown in Fig. 9.2. Note that the transfer function from the error signal ve(s) to the output
voltage v(s) is equal to the gains of the compensator, pulse-width modulator, and converter
power stage. If the compensator gain Gc(s) is large enough in magnitude, then a small error
signal can produce the required output voltage v(t) = V for a dc regulator (Q: how should H
and vre f then be chosen?). So a large compensator gain leads to a small error, and therefore the
output follows the reference input with good accuracy. This is the key idea behind feedback
systems.

The averaged small-signal converter models derived in Chap. 7 are used in the following sec-
tions to find the effects of feedback on the small-signal transfer functions of the regulator. The
loop gain T (s) is defined as the product of the small-signal gains in the forward and feedback
paths of the feedback loop. It is found that the transfer function from a disturbance to the output
is multiplied by the factor 1/(1 + T (s)). Hence, when the loop gain T is large in magnitude,
then the influence of disturbances on the output voltage is small. A large loop gain also causes
the output voltage v(s) to be nearly equal to vre f (s)/H(s), with very little dependence on the
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Fig. 9.2 Feedback loop for regulation of the output voltage: (a) buck converter, with feedback loop block
diagram; (b) functional block diagram of the feedback system

gains in the forward path of the feedback loop. So the loop gain magnitude ‖T ‖ is a measure
of how well the feedback system works. All of these gains can be easily constructed using the
algebra-on-the-graph method; this allows easy evaluation of important closed-loop performance
measures, such as the output voltage ripple resulting from 120 Hz rectification ripple in vg(t) or
the closed-loop output impedance.

Stability is another important issue in feedback systems. Adding a feedback loop can cause
an otherwise well-behaved circuit to exhibit oscillations, ringing and overshoot, and other unde-
sirable behavior. An in-depth treatment of stability is beyond the scope of this book; however,
the simple phase margin criterion for assessing stability is used here. When the phase margin
of the loop gain T is positive, then the feedback system is stable. Moreover, increasing the
phase margin causes the system transient response to be better behaved, with less overshoot and
ringing. The relation between phase margin and closed-loop response is quantified in Sect. 9.4.

An example is given in Sect. 9.5, in which a compensator network is designed for a dc reg-
ulator system. The compensator network is designed to attain adequate phase margin and good
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rejection of expected disturbances. Lead compensators and P–D controllers are used to improve
the phase margin and extend the bandwidth of the feedback loop. This leads to better rejection
of high-frequency disturbances. Lag compensators and P–I controllers are used to increase the
low-frequency loop gain. This leads to better rejection of low-frequency disturbances and very
small steady-state error. More complicated compensators can achieve the advantages of both
approaches.

Injection methods for experimental measurement of loop gain are introduced in Sect. 9.6.
The use of voltage or current injection solves the problem of establishing the correct quiescent
operating point in high-gain systems. Conditions for obtaining an accurate measurement are
exposed. The injection method also allows measurement of the loop gains of unstable systems.

9.2 Effect of Negative Feedback on the Network Transfer Functions

We have seen how to derive the small-signal ac transfer functions of a switching converter. For
example, the equivalent circuit model of the buck converter can be written as in Fig. 9.3. This
equivalent circuit contains three independent inputs: the control input variations d̂, the power
input voltage variations v̂g, and the load current variations îload. The output voltage variation v̂
can therefore be expressed as a linear combination of the three independent inputs, as follows:

v̂(s) = Gvd(s) d̂(s) +Gvg(s) v̂g(s) − Zout(s) î load(s) (9.1)

where

Gvd(s) =
v̂(s)

d̂(s)

∣∣∣∣∣∣ v̂g=0
îload=0

converter control-to-output transfer function (9.1a)

Gvg(s) =
v̂(s)
v̂g(s)

∣∣∣∣∣∣ d̂=0
îload=0

converter line-to-output transfer function (9.1b)

Zout(s) = − v̂(s)

îload(s)

∣∣∣∣∣∣ v̂g=0
d̂=0

converter output impedance (9.1c)

The Bode diagrams of these quantities are constructed in Chap. 8. Equation (9.1) describes how
disturbances vg and iload propagate to the output v, through the transfer function Gvg(s) and the
output impedance Zout(s). If the disturbances vg and iload are known to have some maximum
worst-case amplitude, then Eq. (9.1) can be used to compute the resulting worst-case open-loop
variation in v.

As described previously, the feedback loop of Fig. 9.2 can be used to reduce the influences
of vg and iload on the output v. To analyze this system, let us perturb and linearize its aver-
aged signals about their quiescent operating points. Both the power stage and the control block
diagram are perturbed and linearized:

vre f (t) = Vre f + v̂re f (t) (9.2)

ve(t) = Ve + v̂e(t)

etc.
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Fig. 9.3 Small-signal converter model, which represents variations in vg, d, and iload

In a dc regulator system, the reference input is constant, so v̂re f (t) = 0. In a switching amplifier
or dc–ac inverter, the reference input may contain an ac variation. In Fig. 9.4a, the converter
model of Fig. 9.3 is combined with the perturbed and linearized control circuit block diagram.
This is equivalent to the reduced block diagram of Fig. 9.4b, in which the converter model has
been replaced by blocks representing Eq. (9.1).

Solution of Fig. 9.4b for the output voltage variation v yields

v̂ = v̂re f
GcGvd/VM

1 + HGcGvd/VM
+ v̂g

Gvg

1 + HGcGvd/VM
− îload

Zout

1 + HGcGvd/VM
(9.3)

which can be written in the form

v̂ = v̂re f
1
H

T
1 + T

+ v̂g
Gvg

1 + T
− îload

Zout

1 + T
(9.4)

with
T (s) = H(s)Gc(s)Gvd(s)/VM = “loop gain”

Equation (9.4) is a general result. The loop gain T (s) is defined in general as the product of the
gains around the forward and feedback paths of the loop. This equation shows how the addition
of a feedback loop modifies the transfer functions and performance of the system, as described
in detail below.

9.2.1 Feedback Reduces the Transfer Functions from Disturbances to the Output

The transfer function from vg to v in the open-loop buck converter of Fig. 9.3 is Gvg(s), as given
in Eq. (9.1). When feedback is added, this transfer function becomes

v̂(s)
v̂g(s)

∣∣∣∣∣∣ v̂re f=0
îload=0

=
Gvg(s)

1 + T (s)
(9.5)

from Eq. (9.4). So this transfer function is reduced via feedback by the factor 1/(1+T (s)). If the
loop gain T (s) is large in magnitude, then the reduction can be substantial. Hence, the output
voltage variation v resulting from a given vg variation is attenuated by the feedback loop.
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Fig. 9.4 Voltage regulator system small-signal model: (a) with converter equivalent circuit; (b) complete
block diagram

Equation (9.4) also predicts that the converter output impedance is reduced, from Zout(s) to

v̂(s)

− îload(s)

∣∣∣∣∣∣ v̂g=0
v̂re f=0

=
Zout(s)

1 + T (s)
(9.6)

So the feedback loop also reduces the converter output impedance by a factor of 1/(1 + T (s)),
and the influence of load current variations on the output voltage is reduced.
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9.2.2 Feedback Causes the Transfer Function from the Reference Input to the Output
to Be Insensitive to Variations in the Gains in the Forward Path of the Loop

According to Eq. (9.4), the closed-loop transfer function from vre f to v is

v̂(s)
v̂re f (s)

∣∣∣∣∣∣ v̂g=0
îload=0

=
1

H(s)
T (s)

1 + T (s)
(9.7)

If the loop gain is large in magnitude, that is, ‖T ‖ 
 1, then (1 + T ) ≈ T and T/(1 + T ) ≈
T/T = 1. The transfer function then becomes

v̂(s)
v̂re f (s)

≈ 1
H(s)

(9.8)

which is independent of Gc(s), VM , and Gvd(s). So provided that the loop gain is large in mag-
nitude, then variations in Gc(s), VM , and Gvd(s) have negligible effect on the output voltage. Of
course, in the dc regulator application, vre f (t) is constant and v̂re f = 0. But Eq. (9.8) applies
equally well to the dc values. For example, if the system is linear, then we can write

V
Vre f

=
1

H(0)
T (0)

1 + T (0)
≈ 1

H(0)
(9.9)

So to make the dc output voltage V accurately follow the dc reference Vre f ′ we need only ensure
that the dc sensor gain H(0) and dc reference Vre f are well known and accurate, and that T (0) is
large. Precision resistors are normally used to realize H, but components with tightly controlled
values need not be used in Gc, the pulse-width modulator, or the power stage. The sensitivity of
the output voltage to the gains in the forward path is reduced, while the sensitivity of v to the
feedback gain H and the reference input vre f is increased.

9.3 Construction of the Important Quantities 1/(1 + T) and T/(1 + T)
and the Closed-Loop Transfer Functions

The transfer functions in Eqs. (9.4) to (9.9) can be easily constructed using the algebra-on-the-
graph method [81]. Let us assume that we have analyzed the blocks in our feedback system, and
have plotted the Bode diagram of ‖T (s) ‖. To use a concrete example, suppose that the result is
given in Fig. 9.5, for which T (s) is

T (s) = T0

(
1 +

s
ω z

)
⎛⎜⎜⎜⎜⎜⎝1 + s

Qωp1.
+

(
s

ωp1

)2⎞⎟⎟⎟⎟⎟⎠
(
1 +

s
ωp2

) (9.10)

This example appears somewhat complicated. But the loop gains of practical voltage regulators
are often even more complex, and may contain four, five, or more poles. Evaluation of Eqs. (9.5)
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Fig. 9.5 Magnitude of the loop gain example, Eq. (9.10)

to (9.7), to determine the closed-loop transfer functions, requires quite a bit of work. The loop
gain T must be added to 1, and the resulting numerator and denominator must be refactored.
Using this approach, it is difficult to obtain physical insight into the relationship between the
closed-loop transfer functions and the loop gain. In consequence, design of the feedback loop
to meet specifications is difficult.

Using the algebra-on-the-graph method, the closed-loop transfer functions can be con-
structed by inspection, and hence the relation between these transfer functions and the loop gain
becomes obvious. Let us first investigate how to plot ‖T/(1 + T )‖. It can be seen from Fig. 9.5
that there is a frequency fc, called the “crossover frequency,” where ‖T‖ = 1. At frequencies
less than fc, ‖T‖ > 1; indeed, ‖T‖ 
 1 for f 	 fc. Hence, at low frequency, (1 + T ) ≈ T , and
T/(1 + T ) ≈ T/T = 1. At frequencies greater than fc, ‖T‖ < 1, and ‖T‖ 	 1 for f 
 fc. So at
high frequency, (1 + T ) ≈ 1 and T/(1 + T ) ≈ T/1 = T . So we have

T
1 + T

≈
{

1 for ‖T‖ 
 1
T for ‖T‖ 	 1

(9.11)

The asymptotes corresponding to Eq. (9.11) are relatively easy to construct. The low-frequency
asymptote, for f < fc, is 1 or 0 dB. The high-frequency asymptotes, for f > fc, follow T . The
result is shown in Fig. 9.6.

So at low frequency, where ‖ T ‖ is large, the reference-to-output transfer function is

v̂(s)
v̂re f (s)

=
1

H(s)
T (s)

1 + T (s)
≈ 1

H(s)
(9.12)

This is the desired behavior, and the feedback loop works well at frequencies where ‖ T ‖ is
large. At high frequency ( f 
 fc) where ‖ T ‖ is small, the reference-to-output transfer function
is

v̂(s)
v̂re f (s)

=
1

H(s)
T (s)

1 + T (s)
≈ T (s)

H(s)
=

Gc(s)Gvd(s)
VM

(9.13)
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Fig. 9.6 Graphical construction of the asymptotes of ‖T/(1 + T )‖. Exact curves are omitted

This is not the desired behavior; in fact, this is the gain with the feedback connection removed
(H → 0). At high frequencies, the feedback loop is unable to reject the disturbance because the
bandwidth of T is limited. The reference-to-output transfer function can be constructed on the
graph by multiplying the T/(1 + T ) asymptotes of Fig. 9.6 by 1/H.

Thus, the crossover frequency fc represents the bandwidth of the feedback system, and
within this bandwidth the closed-loop behavior is improved. Further, it can be observed from
Fig. 9.6 that feedback moves the poles of the system: T contains two poles at frequency fp1 that
are not present in T/(1 + T ), and instead T/(1 + T ) contains a pole at frequency fc. It can be
shown that one of the poles of T is moved from frequency fp1 to approximately fz, where it
cancels the zero. The second pole at fp1 is moved to approximately fc. Figure 9.6 illustrates
how, within the bandwidth of the feedback loop, the frequencies of the poles are increased and
their Q–factors are changed.

We can plot the asymptotes of ‖1/(1 + T )‖ using similar arguments. At low frequencies
where ‖T‖ 
 1, then (1 + T ) ≈ T , and hence 1/(1 + T ) ≈ 1/T At high frequencies where
‖T‖ 	 1, then (1 + T ) ≈ 1 and 1/(1 + T ) ≈ 1. So we have

1
1 + T (s)

≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

T (s)
for

∥∥∥T∥∥∥ 
 1

1 for
∥∥∥T∥∥∥ 	 1

(9.14)

The asymptotes for the T (s) example of Fig. 9.5 are plotted in Fig. 9.7.
At low frequencies where ‖ T ‖ is large, the disturbance transfer function from vg to v is

v̂(s)
v̂g(s)

=
Gvg(s)

1 + T (s)
≈

Gvg(s)

T (s)
(9.15)

Again, Gvg(s) is the original transfer function, with no feedback. The closed-loop transfer func-
tion has magnitude reduced by the factor 1/‖T‖. So if, for example, we want to reduce this trans-
fer function by a factor of 20 at 120 Hz, then we need a loop gain ‖ T ‖ of at least 20 ⇒ 26 dB
at 120 Hz. The disturbance transfer function from vg to v can be constructed on the graph, by
multiplying the asymptotes of Fig. 9.7 by the asymptotes for Gvg(s).
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Similar arguments apply to the output impedance. The closed-loop output impedance at low
frequencies is

v̂(s)

− îload(s)
=

Zout(s)
1 + T (s)

≈ Zout(s)
T (s)

(9.16)

The output impedance is also reduced in magnitude by a factor of 1/‖T‖ at frequencies below
the crossover frequency.

At high frequencies ( f > fc) where ‖ T ‖ is small, then 1/(1 + T ) ≈ 1, and

v̂(s)
v̂g(s)

=
Gvg(s)

1 + T (s)
≈ Gvg(s)

v̂(s)

−îload(s)
=

Zout(s)
1 + T (s)

≈ Zout(s)
(9.17)

This is the same as the original disturbance transfer function and output impedance. So the
feedback loop has essentially no effect on the disturbance transfer functions at frequencies above
the crossover frequency.

Figure 9.8a illustrates an example of a buck converter having a loop gain T (s) given by

T (s) = H(s)Gvd(s)/VM (9.18)

This simple example contains no compensator. The L–C filter of the buck converter introduces
resonant poles at frequency f = fp1, and the capacitor equivalent series resistance RC leads
to a zero at frequency fz. The feedback sensor block H(s) contains a high-frequency pole at
f = fp2. Hence, this example exhibits a loop gain T (s) identical to Eq. (9.10); let us assume that
the element values lead to the magnitude plotted in Fig. 9.5. Hence, the quantity ‖1/(1 + T )‖ is
given by the plot of Fig. 9.7.
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Fig. 9.8 Construction of the closed-loop output impedance of a simple buck regulator: (a) feedback
system, (b) open-loop (solid line) and closed-loop (dashed line) output impedance asymptotes

We can construct the Bode plot of the open-loop output impedance Zout by setting v̂g and d̂
to zero in Fig. 9.8a and then finding the impedance between the output terminals; the result is:

Zout(s) = sL
∥∥∥R

∥∥∥
(
RC +

1
sC

)
(9.19)

The approximate Bode diagram of the open-loop output impedance is constructed in Fig. 9.8b,
for the typical case with RC 	 R. The closed-loop output impedance is next constructed by mul-
tiplying the open-loop output impedance of Fig. 9.8b by the ‖1/(1 + T )‖ asymptotes of Fig. 9.7,
with the result illustrated in Fig. 9.8b. At frequencies greater than the crossover frequency fc,
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the output impedance is unaffected by the feedback loop. At frequencies immediately below
fc, the feedback loop reduces the output impedance and the ‖1/(1 + T )‖ term introduces a
+ 20 dB/decade slope to ‖Zout/(1 + T )‖. At f = fz, the zero of Zout is cancelled by the pole of
1/(1 + T ), and hence no change in slope is observed in the closed-loop output impedance plot.
Likewise, at f = fp1, the resonant poles of Zout are cancelled by the resonant zeroes of 1/(1+T ),
and again there is no change in the slope of ‖Zout/(1 + T )‖. These cancellations occur because
the power stage circuit introduces the same poles into Gvd(s) and Zout(s).

Another example is given later in this chapter, in which a feedback compensator circuit
introduces poles and zeroes into T (s) that are not present in Zout(s). As a result, the closed-
loop output impedance exhibits poles and zeroes induced by the compensator dynamics within
‖1/(1 + T )‖.

9.4 Stability

It is well known that adding a feedback loop can cause an otherwise stable system to become
unstable. Even though the transfer functions of the original converter, Eq. (9.1), as well as of
the loop gain T (s), contain no right half-plane poles, it is possible for the closed-loop transfer
functions of Eq. (9.4) to contain right half-plane poles. The feedback loop then fails to regulate
the system at the desired quiescent operating point, and oscillations are usually observed. It is
important to avoid this situation. And even when the feedback system is stable, it is possible
for the transient response to exhibit undesirable ringing and overshoot. The stability problem
is discussed in this section, and a method for ensuring that the feedback system is stable and
well-behaved is explained.

When feedback destabilizes the system, the denominator (1+T (s)) terms in Eq. (9.4) contain
roots in the right half-plane (i.e., with positive real parts). If T (s) is a rational fraction, that is,
the ratio N(s)/D(s) of two polynomial functions N(s) and D(s), then we can write

T (s)
1 + T (s)

=

N(s)
D(s)

1 +
N(s)
D(s)

=
N(s)

N(s) + D(s)

1
1 + T (s)

=
1

1 +
N(s)
D(s)

=
D(s)

N(s) + D(s)

(9.20)

So T (s)/(1+T (s)) and 1/(1+T (s)) contain the same poles, given by the roots of the polynomial
(N(s)+D(s)). A brute-force test for stability is to evaluate (N(s)+D(s)), and factor the result to
see whether any of the roots have positive real parts. However, for all but very simple loop gains,
this involves a great deal of work. A more illuminating method is given by the Nyquist stability
theorem, in which the number of right half-plane roots of (N(s) + D(s)) can be determined
by testing T (s) [82, 83]. This theorem is discussed in Sect. 9.4.2. Often, a special case of the
theorem known as the phase margin test is sufficient for designing most voltage regulators; the
simpler phase margin test is discussed first.
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9.4.1 The Phase Margin Test

The crossover frequency fc is defined as the frequency where the magnitude of the loop gain is
unity:

∥∥∥T ( j2π fc)
∥∥∥ = 1⇒ 0 dB (9.21)

To compute the phase margin ϕm, the phase of the loop gain T is evaluated at the crossover
frequency, and 180◦ is added. Hence,

ϕm = 180◦ + ∠T ( j2π fc) (9.22)

If there is exactly one crossover frequency, and if the loop gain T (s) contains no right half-plane
poles, then the quantities 1/(1 + T ) and T/(1 + T ) contain no right half-plane poles when
the defined in Eq. (9.22) is positive. Thus, using a simple test on T (s), we can determine the
stability of T/(1 + T ) and 1/(1 + T ). This is an easy-to-use design tool—we simply ensure that
the phase of T is greater than −180◦ at the crossover frequency.

When there are multiple crossover frequencies, the phase margin test may be ambiguous.
Also, when T contains right half-plane poles (i.e., the original open-loop system is unstable),
then the phase margin test cannot be used. In either case, the more general Nyquist stability
theorem (Sect. 9.4.2) must be employed.

The loop gain of a typical stable system is shown in Fig. 9.9. It can be seen that ∠T ( j2π fc) =
−112◦. Hence, ϕm = 180◦ − 112◦ = +68◦. Since the phase margin is positive, T/(1 + T ) and
1/(1 + T ) contain no right half-plane poles, and the feedback system is stable.

The loop gain of an unstable system is sketched in Fig. 9.10. For this example, ∠T ( j2π fc) =
−230◦. The phase margin is ϕm = 180◦ − 230◦ = −50◦. The negative phase margin implies that
T/(1 + T ) and 1/(1 + T ) each contain at least one right half-plane pole.
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Fig. 9.9 Magnitude and phase of the loop gain of a stable system. The phase margin ϕm is positive
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Fig. 9.10 Magnitude and phase of the loop gain of an unstable system. The phase margin ϕm is negative

9.4.2 The Nyquist Stability Criterion

The Nyquist Stability Criterion is a rigorous and general technique to evaluate stability of a
closed-loop system, based on its loop gain. This technique determines the number of poles of
the closed-loop transfer functions T/(1+T ) and 1/(1+T ) that lie in the right half of the complex
s-plane, based on a plot of the loop gain T (s) that can be derived from its Bode plot. The phase
margin test of Sect. 9.4.1 is based on the Nyquist plot, and is a useful but not entirely general
test for stability. In some cases, including several encountered later in this textbook, the more
general Nyquist stability test must be employed.

The Nyquist Stability Criterion is based on the conformal mapping of a contour Γ that
encloses the right half (positive real portion) of the complex s-plane. The contour is mapped
through the loop gain transfer function T (s). Encirclements of the −1 point by the mapped
contour are employed to count the number of right half-plane poles that are present in the
closed-loop transfer functions. The subsections below present a derivation, the precise rules for
application, and some important examples.

The Principle of the Argument

Let us consider a transfer function T (s) having a zero at s = s1:

T (s) = (s − s1) (9.23)

Let us also consider a closed contour Γ in the complex s-plane that encircles the point s1 as
illustrated in Fig. 9.11a. The complex variable s is varied to follow the path Γ, beginning at
some point a and proceeding around the contour in the clockwise direction through points b, c,
and back to a. For the example T (s) of Eq. (9.23), the value of T (s) at some point s is seen to
be the vector extending from s1 to s, having magnitude and phase as illustrated in Fig. 9.11a.
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Fig. 9.11 Principle of the argument, example 1: (a) a closed contour Γ in the complex s plane, (b)
mapping of the contour Γ through the transfer function T (s) of Eq. (9.23), (c) variation of the phase of
T (s), as s varies around the contour Γ

As sketched in Fig. 9.11c, at s = a the phase ∠T is 0◦. As s varies along the contour, through
b, c, and then back to a, the phase ∠T decreases, and becomes −360◦ after one complete traverse
of contour Γ. This net phase change of −360◦ indicates that the zero at s1 lies inside contour Γ.

Figure 9.11b contains a plot of T (s) as s varies around the contour Γ; the magnitude ‖T‖
and phase ∠T are identified and are identical to the quantities identified in Fig. 9.11a. This
plot is a conformal mapping of the contour Γ through the transfer function T (s); conformal
mappings preserve local angles. The mapped contour T (Γ) encircles the origin of the T (s) plane,
as indicated by the net change of −360◦ in ∠T (s).

Figure 9.12a illustrates a second contour Γ′ that does not enclose the zero of T (s) at s1. As
illustrated in Fig. 9.12c, after one complete traverse of contour Γ′, the net change in ∠T is zero.
The mapped contour T (Γ′) is illustrated in Fig. 9.12b; this contour does not encircle the origin
of the T (s) plane.

The phase of a complex function is sometimes referred to as its argument. Cauchy’s princi-
ple of the argument tells us that when the closed contour Γ encloses the zero s1, then the phase
∠T (s) exhibits a net change of −360◦ as s traverses Γ once in the clockwise direction. This is
equivalent to saying that the mapped contour T (Γ) encircles the origin of the T plane.

Next let us consider a transfer function T (s) that contains multiple poles and zeroes:

T (s) = Tre f
(s − z1) (s − z2) · · ·
(s − p1) (s − p2) · · · (9.24)

As usual, we can express the phase of T (s) as a sum of terms that arise from each zero or pole,
as follows:
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Fig. 9.12 Principle of the argument, example 2: (a) a closed contour Γ′ in the complex s plane, (b)
mapping of the contour Γ′ through the transfer function T (s) of Eq. (9.23), (c) variation of the phase of
T (s), as s varies around the contour Γ′. Since the zero at s = s1 does not lie inside contour Γ′, there is no
net change in the phase of T , and the mapped contour T (Γ′) does not encircle the origin of the T plane

∠T (s) = ∠(s − z1) + ∠(s − z2) + · · · − ∠(s − p1) − ∠(s − p2) − · · · (9.25)

We can again define a closed contour Γ in the complex s plane, and examine how the phase T (s)
changes as s traverses the contour once in the clockwise direction. Each zero of T (s) that lies
inside the contour will cause a net change of −360◦ in ∠T , and each pole of T (s) lying inside
the contour will cause a net change of +360◦ in ∠T . If a total of Z zeroes and P poles lie inside
the contour Γ, then ∠T will exhibit a net phase shift of −N360◦, where

N = Z − P (9.26)

The mapped contour T (Γ) will encircle the origin of the T (s) plane N times in the clockwise
direction.

Thus, the principle of the argument provides us with a tool to determine the number of poles
and zeroes that lie inside a contour Γ.

The Nyquist Contour

It is desired to determine whether the closed-loop transfer functions of Eq. (9.20) contain un-
stable poles that lie in the right half of the complex plane. To accomplish this, we can define a
contour Γ that encloses the complete right half-plane, then employ the principle of the argument
to test the number of closed-loop poles that are enclosed by this contour.
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Fig. 9.13 The Nyquist contour, which encloses the
right half of the complex s plane

Im(s)

Re(s)

A

B

C

Figure 9.13 illustrates a contour Γ called the Nyquist contour. This contour is traversed in
the clockwise direction, and the region enclosed to the right of the contour is the right half of the
complex s plane. The Nyquist contour is comprised of three parts. Segment ΓA is the positive
part of the imaginary axis, in which

s = jω with ω ∈ (0,∞) (9.27)

Segment ΓB can be chosen to be a semicircular arc that lies to the right of all closed-loop poles,
defined as follows:

s = Rejθ with R→ ∞ and θ ∈ (+90◦,−90◦) (9.28)

Segment ΓC is the negative part of the imaginary axis, in which

s = − jω with ω ∈ (∞, 0) (9.29)

Segment ΓC is the complex conjugate of segment ΓA.
If a transfer function F(s) contains Z zeroes and P poles in the right half of the complex

plane, then the mapping F(Γ) of the Nyquist contour will encircle the origin of the F(s) plane
N = (Z − P) times.

Stability Test

The closed-loop transfer functions of Eq. (9.20) contain the denominator polynomial N(s)+D(s),
whose roots are the closed-loop poles. It is desired to test whether this polynomial contains roots
in the right half of the complex s-plane. Note from Eq. (9.20) that these roots are the zeroes of
the quantity (1 + T (s)), and additionally that the poles of (1 + T (s)) coincide with the poles
of T (s). Hence we could map the Nyquist contour of Fig. 9.13 through the transfer function
(1 + T (s)), and evaluate the number of encirclements of the origin.

In the complex plane, the quantity (1+T (s)) is simply equal to the quantity T (s) shifted to the
right by one unit. If the mapped Nyquist contour (1+T (Γ)) encircles the origin, then the contour
T (Γ) encircles the −1 point. So one could map the Nyquist contour Γ of Fig. 9.13 through the
loop gain T (s) and count the number of encirclements N of the −1 point by T (Γ). The number of
encirclements N is related to the number of poles in the right half-plane according to N = Z−P,
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where Z is the number of right half-plane poles of the closed-loop gains T/(1+ T ) or 1/(1+ T ),
and P is the number of right half-plane poles present in the original loop gain T (s).

If the original open-loop system is stable, so that T (s) contains no right half-plane poles,
then P = 0. In this common case N = Z: the number of encirclements of the −1 point by T (Γ)
is equal to the number of right half-plane closed-loop poles in T/(1 + T ) or 1/(1 + T ).

A Basic Example

As a first example, let us consider a loop gain T (s) having three poles:

T (s) =
T0(

1 +
s
ω1

) (
1 +

s
ω2

) (
1 +

s
ω3

) (9.30)

The magnitude and phase Bode plot of T (s) is sketched in Fig. 9.14 for some specific values of
T0, ω1, ω2, and ω3. For this example, T (s) exhibits a crossover frequency ωc with phase margin
ϕm as illustrated.

Figure 9.15a illustrates the first part of the Nyquist plot, in which segment ΓA defined by
Eq. (9.27) is mapped through the loop gain. Since s = jω along ΓA, this amounts to a polar
plot of T ( jω) that corresponds to the magnitude and phase data of the Bode plot in Fig. 9.14.
At ω = 0, the loop gain has magnitude T0 and phase 0◦, so that the Nyquist plot begins on the
positive real axis at T = T0. As ω increases, the magnitude decreases and the phase becomes
negative as illustrated.

At the crossover frequency fc, the loop gain has magnitude 1 and phase (−180◦ + ϕm). The
contour T ( jω) crosses the unit circle at this point, as illustrated in Fig. 9.15a. At frequencies
above fc the magnitude continues to decrease, and the contour T ( jω) tends towards the origin.

The second portion of the Nyquist contour ΓB is defined by Eq. (9.28). To evaluate how the
loop gain T (s) maps the contour ΓB, we first substitute s = Rejθ into Eq. (9.30):
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Fig. 9.14 Bode plot of loop gain T (s) for the example of Eq. (9.30)
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Fig. 9.15 Nyquist plot for the loop gain of Fig. 9.14: (a) mapping of the contour ΓA through the loop
gain T (s), (b) mapping of the complete Nyquist contour through the loop gain T (s)

T (Rejθ) =
T0(

1 +
Rejθ

ω1

) (
1 +

Rejθ

ω2

) (
1 +

Rejθ

ω3

) (9.31)

Next, we let R→ ∞. This causes the denominator of Eq. (9.31) to tend to infinity in magnitude,
which causes the magnitude of T to tend to zero. This portion of the Nyquist plot collapses to
the origin.

The third portion of the Nyquist plot involves mapping the segment ΓC defined by Eq. (9.29)
through the loop gain T (s). This portion of the Nyquist contour is a polar plot of T (− jω), which
is the complex conjugate of T ( jω). Hence this plot is easily sketched by reflecting the T ( jω)
plot about the real axis, as illustrated in Fig. 9.15b.

We can now determine the number of encirclements of the −1 point by T (Γ). Examination
of Fig. 9.15b shows that the −1 point lies outside the contour T (Γ) and hence there are no
encirclements: N = 0. Since the original loop gain T (s) contains no right half-plane poles,
P = 0. According to Eq. (9.26), Z = 0 so the closed-loop transfer functions contain no right
half-plane poles, and the feedback loop is stable.

If the phase margin ϕm identified in Fig. 9.14 had been negative, then the contour T (Γ) would
appear as illustrated in Fig. 9.16. The plot of T ( jω) crosses the unit circle in the third quadrant.
In this case, the Nyquist plot of Fig. 9.16b encircles the −1 point twice: N = 2. Hence Z = 2
and the closed-loop transfer functions contain two RHP poles. The feedback loop is unstable.
For this example, the original T (s) contained three poles in the left half of the complex s-plane;
in the closed-loop transfer function T/(1 + T ), two of these poles have moved into the right
half-plane, while one pole remains in the left half of the complex s-plane.

Example 2: Three Crossover Frequencies

As a second example, let us consider a loop gain having a low-frequency real pole at f = f1,
and higher-frequency resonant poles at frequency f = f2 that is just beyond the (first) crossover
frequency:

T (s) =
T0(

1 +
s
ω1

) ⎛⎜⎜⎜⎜⎜⎝1 + s
Qω2

+

(
s
ω2

)2⎞⎟⎟⎟⎟⎟⎠
(9.32)
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Fig. 9.16 Nyquist plot for an unstable system: (a) mapping of the contour ΓA through the loop gain T (s),
with negative phase margin ϕm, (b) mapping of the complete Nyquist contour through the loop gain T (s)
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Fig. 9.17 Bode plot of loop gain T (s) for the example of Eq. (9.32). The loop gain exhibits three crossover
frequencies

A Bode plot of the loop gain for this case is illustrated in Fig. 9.17. The resonant poles at
f2 cause the magnitude of T increase above 0 dB in the vicinity of f2. Consequently, there are
three crossover frequencies (designated 1, 2, and 3). We could associate a phase margin with
each crossover frequency; for the plot of Fig. 9.17, the phase margins associated with crossover
frequencies 1 and 2 are positive, while the phase margin associated with crossover frequency 3
is negative. Hence the simple phase margin test is ambiguous, and it is necessary to sketch the
Nyquist plot to correctly determine whether this loop gain leads to a stable system.

Figure 9.18 contains the Nyquist plot corresponding to the Bode plot of Fig. 9.17. Fig-
ure 9.18a contains the mapped contour T (ΓA) = T ( jω), with crossover points 1, 2, and 3 iden-
tified. Figure 9.18b contains the mapping of the complete Nyquist contour. It can be seen that
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Fig. 9.18 Nyquist plot for the example having three crossover frequencies (Fig. 9.17): (a) mapping of
the contour ΓA through the loop gain T (s), (b) mapping of the complete Nyquist contour through the loop
gain T (s)

the −1 point is encircled twice. Hence, the closed-loop transfer functions contain two poles in
the right half of the complex plane, and this feedback system is unstable.

Example 3: Integrator in Feedback Loop

If the Nyquist contour Γ passes through one or more singularities of the loop gain T (s), then the
conformal mapping property is lost, and the arguments of the above sections no longer apply.
This case can occur when the loop gain T (s) contains one or more poles lying on the imaginary
axis. A common example is the use of an integrator in the compensator (see Sect. 9.5.2), leading
to a pole at the origin. An example of a loop gain containing a pole at the origin is:

T (s) =
1(

s
ω0

) (
1 +

s
ω1

) (
1 +

s
ω2

) (9.33)

The corner frequencies ω0, ω1, and ω2 are positive and real in this example. This special case
can be handled by redefining the Nyquist contour of Fig. 9.13 as illustrated in Fig. 9.19. A fourth
segment ΓD is added, to jog the contour around the singularity. Segment ΓD is defined to be a
semicircular arc as follows:

s = ε e jθ with ε → 0 and θ ∈ (−90◦,+90◦) (9.34)

The loop gain T (s) of Eq. (9.33) contains no poles inside the modified Nyquist contour of
Fig. 9.19. Hence the number of right half-plane poles of the closed-loop transfer function
T/(1 + T ) is equal to the number of encirclements of the −1 point by the mapped modified
Nyquist contour T (Γ).

The magnitude and phase Bode plot of T (s) is sketched in Fig. 9.20 for some specific values
of ω0, ω1, and ω2. For this example, T (s) exhibits a crossover frequency fc with phase margin
ϕm as illustrated.

Figure 9.21a illustrates the first part of the Nyquist plot, in which segment ΓA is mapped
through the loop gain T (s). Along this segment, s = jω with ω varying from ε (→ 0) to∞.
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Fig. 9.19 Modification of the Nyquist contour to
handle the special case in which the loop gain in-
cludes a pole at the origin. Segment ΓD defined by
Eq. (9.34) routes the Nyquist contour around the pole
at s = 0. The locations of poles of Eq. (9.33) are
marked x
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Fig. 9.20 Bode plot of loop gain T (s) for the example of Eq. (9.33)

Segment ΓB is again defined by Eq. (9.28), and this segment again maps to the origin. Seg-
ment ΓC is the complex conjugate of ΓC . The mapping of contours ΓA, ΓB, and ΓC through
the loop gain T (s) is illustrated in Fig. 9.21b. It can be seen that this contour is not closed; to
complete the mapped contour, ΓD must be incorporated.

Substitution of the mapping defined by Eq. (9.34) into the loop gain of Eq. (9.33) leads to:

T (εe jθ) =
1(

εe jθ

ω0

) (
1 +
εe jθ

ω1

) (
1 +
εe jθ

ω2

) (9.35)

As ε tends to zero, the pole terms associated with the corner frequencies ω1 and ω2 tend to 1.
Equation (9.35) then reduces to

T (εe jθ) =
ω0 e− jθ

ε
(9.36)

As ε tends to zero, the magnitude of Eq. (9.36) tends to infinity. As θ varies from −90◦ to
+90◦, the phase of the mapped contour varies from +90◦ to −90◦. The complete contour is
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Fig. 9.21 Nyquist plot for the example of an integrator in the feedback loop (Fig. 9.20): (a) mapping of
the contour ΓA through the loop gain T (s), (b) mapping of the contours ΓA, ΓB, and ΓC through the loop
gain T (s), (c) mapping of complete modified Nyquist contour

illustrated in Fig. 9.21c. It can be seen that the mapped contour is now closed, and that there
are no encirclements of the −1 point provided that the phase margin is positive. The contour of
Fig. 9.21c represents a stable system.

Summary: Nyquist Stability Criterion

Thus, the Nyquist stability criterion is closely related to the Bode plot of the loop gain. The
segment ΓA corresponds to letting s = jω, and the mapping of ΓA through the loop gain T (s)
constitutes a polar plot of T ( jω). The number of right half-plane poles of the closed-loop trans-
fer functions T/(1+T ) and 1/(1+T ) is rigorously discerned via determination of the number of
encirclements of the −1 point by the Nyquist contour mapped through the loop gain T (s). This
explains the origins of the phase margin test, and also provides a stability test for more complex
cases such as loop gains having multiple crossover frequencies.
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9.4.3 The Relationship Between Phase Margin and Closed-Loop Damping Factor

How much phase margin is necessary? Is a worst-case phase margin of 1◦ satisfactory? Of
course, good designs should have adequate design margins, but there is another important reason
why additional phase margin is needed. A small phase margin (in T ) causes the closed-loop
transfer functions T/(1 + T ) and 1/(1 + T ) to exhibit resonant poles with high Q in the vicinity
of the crossover frequency. The system transient response exhibits overshoot and ringing. As
the phase margin is reduced these characteristics become worse (higher Q, longer ringing) until,
for ϕm ≤ 0◦, the system becomes unstable.

Let us consider a loop gain T (s) which is well-approximated, in the vicinity of the crossover
frequency, by the following function:

T (s) =
1(

s
ω0

) (
1 +

s
ω2

) (9.37)

Magnitude and phase asymptotes are plotted in Fig. 9.22. This function is a good approximation
near the crossover frequency for many common loop gains, in which ‖ T ‖ approaches unity gain
with a −20 dB/decade slope, with an additional pole at frequency f2 = ω2/2π. Any additional
poles and zeroes are assumed to be sufficiently far above or below the crossover frequency, such
that they have negligible effect on the system transfer functions near the crossover frequency.

Note that, as f2 → ∞, the phase margin ϕm approaches 90◦. As f2 → 0, ϕm → 0◦. So as f2
is reduced, the phase margin is also reduced. Let’s investigate how this affects the closed-loop
response via T/(1 + T ). We can write

T (s)
1 + T (s)

=
1

1 +
1

T (s)

=
1

1 +
s
ω0
+

s2

ω0ω2

(9.38)
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Fig. 9.22 Magnitude and phase asymptotes for the loop gain T of Eq. (9.37)
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using Eq. (9.37). By putting this into the standard normalized quadratic form, one obtains

T (s)
1 + T (s)

=
1

1 +
s

Qωc
+

(
s
ωc

)2
(9.39)

where

ωc =
√
ω0ω2 = 2π fc

Q =
ω0

ωc
=

√
ω0

ω2

So the closed-loop response contains quadratic poles at fc, the geometric mean of f0 and f2.
These poles have a low Q-factor when f0 	 f2. In this case, we can use the low-Q approxima-
tion to estimate their frequencies:

Qωc = ω0 (9.40)
ωc

Q
= ω2

Magnitude asymptotes are plotted in Fig. 9.23 for this case. It can be seen that these asymptotes
conform to the rules of Sect. 9.3 for constructing T/(1+T ) by the algebra-on-the-graph method.

Next consider the high-Q case. When the pole frequency f2 is reduced, reducing the phase
margin, then the Q-factor given by Eq. (9.39) is increased. For Q > 0.5, resonant poles occur at
frequency fc. The magnitude Bode plot for the case f2 < f0 is given in Fig. 9.24. The frequency
fc continues to be the geometric mean of f2 and f0, and fc now coincides with the crossover
(unity-gain) frequency of the ‖ T ‖ asymptotes. The exact value of the closed-loop gain T/(1+T )
at frequency fc is equal to Q = f0/ fc. As shown in Fig. 9.24, this is identical to the value of the
low-frequency −20 dB/decade asymptote ( f0/ f ), evaluated at frequency fc. It can be seen that
the Q-factor becomes very large as the pole frequency f2 is reduced.

The asymptotes of Fig. 9.24 also follow the algebra-on-the-graph rules of Sect. 9.3, but the
deviation of the exact curve from the asymptotes is not predicted by the algebra-on-the-graph
method.
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Fig. 9.23 Construction of magnitude asymptotes of the closed-loop transfer function T/(1 + T ), for the
low-Q case
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Fig. 9.24 Construction of magnitude asymptotes of the closed-loop transfer function T/(1 + T ), for the
high-Q case

These two poles with Q-factor appear in both T/(1+T ) and 1/(1+T ). We need an easy way
to predict the Q-factor. We can obtain such a relationship by finding the frequency at which the
magnitude of T is exactly equal to unity. We then evaluate the exact phase of T at this frequency,
and compute the phase margin. This phase margin is a function of the ratio f0/ f2, or Q2. We can
then solve to find Q as a function of the phase margin. The result is

Q =

√
cosϕm

sinϕm

ϕm = tan−1

√
1 +

√
1 + 4Q4

2Q4

(9.41)

This function is plotted in Fig. 9.25, with Q expressed in dB. It can be seen that obtaining real
poles (Q < 0.5) requires a phase margin of at least 76◦. To obtain Q = 1, a phase margin of 52◦

is needed. The system with a phase margin of 1◦ exhibits a closed-loop response with very high
Q! With a small phase margin, T ( jω) is very nearly equal to −1 in the vicinity of the crossover
frequency. The denominator (1 + T ) then becomes very small, causing the closed-loop transfer
functions to exhibit a peaked response at frequencies near the crossover frequency fc.

Figure 9.25 is the result for the simple loop gain defined by Eq. (9.37). However, this loop
gain is a good approximation for many other loop gains that are encountered in practice, in
which ‖ T ‖ approaches unity gain with a −20 dB/decade slope, with an additional pole at fre-
quency f2. If all other poles and zeroes of T (s) are sufficiently far above or below the crossover
frequency, then they have negligible effect on the system transfer functions near the crossover
frequency, and Fig. 9.25 gives a good approximation for the relationship between ϕm and Q.

Another common case is the one in which ‖ T ‖ approaches unity gain with a −40 dB/decade
slope, with an additional zero at frequency f2. As f2 is increased, the phase margin is decreased
and Q is increased. It can be shown that the relation between ϕm and Q is exactly the same, Eq.
(9.41).
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Fig. 9.25 Relationship between loop-gain phase margin ϕm and closed-loop peaking factor Q

A case where Fig. 9.25 fails is when the loop gain T (s) contains three or more poles at or
near the crossover frequency. The closed-loop response then also contains three or more poles
near the crossover frequency, and these poles cannot be completely characterized by a single
Q-factor. Additional work is required to find the behavior of the exact T/(1 + T ) and 1/(1 + T )
near the crossover frequency, but nonetheless it can be said that a small phase margin leads to a
peaked closed-loop response.

9.4.4 Transient Response vs. Damping Factor

One can solve for the unit-step response of the T/(1 + T ) transfer function, by multiplying
Eq. (9.39) by 1/s and then taking the inverse Laplace transform. The result for Q > 0.5 is

v̂(t) = 1 +
2Qe−ωct/2Q√

4Q2 − 1
sin

⎡⎢⎢⎢⎢⎢⎣
√

4Q2 − 1
2Q

ωct + tan−1
( √

4Q2 − 1
)⎤⎥⎥⎥⎥⎥⎦ (9.42)

For Q < 0.5, the result is

v̂(t) = 1 − ω2

ω2 − ω1
e−ω1t − ω1

ω1 − ω2
e−ω2t (9.43)

with

ω1, ω2 =
ωc

2Q

(
1 ±

√
1 − 4Q2

)
(9.44)

These equations are plotted in Fig. 9.26 for various values of Q.
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Fig. 9.26 Unit-step response of the second-order system, Eqs. (9.42) and (9.43), for various values of Q

According to Eq. (9.39), when f2 > 4 f0, the Q-factor is less than 0.5, and the closed-loop
response contains a low-frequency and a high-frequency real pole. The transient response in
this case, Eq. (9.43), contains decaying-exponential functions of time, of the form

Ae(pole)t (9.45)

This is called the “overdamped” case. With very low Q, the low-frequency pole leads to a slow
step response.

For f2 = 4 f0, the Q-factor is equal to 0.5. The closed-loop response contains two real poles
at frequency 2 f0. This is called the “critically damped” case. The transient response is faster
than in the overdamped case, because the lowest-frequency pole is at a higher frequency. This is
the fastest response that does not exhibit overshoot. At ωct = π radians (t = 1/2 fc), the voltage
has reached 82% of its final value. At ωct = 2π radians (t = 1/ fc), the voltage has reached
98.6% of its final value.

For f2 < 4 f0, the Q-factor is greater than 0.5. The closed-loop response contains complex
poles, and the transient response exhibits sinusoidal-type waveforms with decaying amplitude,
Eq. (9.42). The rise time of the step response is faster than in the critically damped case, but the
waveforms exhibit overshoot. The peak value of v(t) is

peak v̂(t) = 1 + e−π/
√

4Q2−1 (9.46)
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This is called the “underdamped” case. A Q-factor of 1 leads to an overshoot of 16.3%, while
a Q-factor of 2 leads to a 44.4% overshoot. Large Q-factors lead to overshoots approaching
100%.

The exact transient response of the feedback loop may differ from the plots of Fig. 9.26,
because of additional poles and zeroes in T , and because of differences in initial conditions.
Nonetheless, Fig. 9.26 illustrates how high-Q poles lead to overshoot and ringing. In most power
applications, overshoot is unacceptable. For example, in a 3.3 V computer power supply, the
voltage must not be allowed to overshoot to 5 or 6 volts when the supply is turned on—this
would likely destroy all of the integrated circuits in the computer! So the Q-factor must be
sufficiently low, often 0.5 or less, corresponding to a phase margin of at least 76◦.

9.4.5 Load Step Response vs. Damping Factor

Usually we also are interested in the response of the output voltage to a step change in load cur-
rent. Let us consider the case where the closed-loop output impedance can be well approximated
by a second-order function of the form

Zout(s) =

(
sR0

ωc

)

1 +
s

Qωc
+

(
s
ωc

)2
(9.47)

This constitutes an effective parallel R − L − C impedance having characteristic impedance R0,
resonant frequency fc, and Q-factor Q. Also consider that the load current takes a step change
of magnitude I0, with the following Laplace transform:

îload =
I0

s
(9.48)

One can multiply Eqs. (9.47) and (9.48), and then invert the Laplace transform to derive an
expression for the output voltage response v̂(t). For Q < 0.5, the result is:

v̂(t) = − I0R0Q√
1 − 4Q2

(
e−ω1t − e−ω2t

)
(9.49)

with ω1 and ω2 defined as in Eq. (9.44). For the high-Q case Q > 0.5, the result is:

v̂(t) = − I0R02Q√
4Q2 − 1

e−ωct/2Q sin

⎛⎜⎜⎜⎜⎜⎝
√

4Q2 − 1
2Q

ωct

⎞⎟⎟⎟⎟⎟⎠ (9.50)

These equations are plotted in Fig. 9.27 for various values of Q and for I0R0 = 1. For non-unity
I0R0, the curves can be multiplied by I0R0: the peak deviation in v̂(t) is proportional to the
magnitude of the current step I0 multiplied by the characteristic impedance R0. For Q < 0.5, the
peak voltage deviation has magnitude slightly less than I0R0Q. At Q = 0.5, the peak voltage
deviation is approximately −0.368 I0R0. As Q → ∞, the peak voltage deviation tends to −I0R0.
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Fig. 9.27 Response of the second-order system to a unit step change in load current, Eqs. (9.49)
and (9.50), for various values of Q. These curves are plotted for I0R0 = 1

9.5 Regulator Design

Let’s now consider how to design a regulator system, to meet specifications or design goals re-
garding rejection of disturbances, transient response, and stability. Typical dc regulator designs
are defined using specifications such as the following:

1. Effect of load current variations on the output voltage regulation. The output voltage must
remain within a specified range when the load current varies in a prescribed way. This
amounts to a limit on the maximum magnitude of the closed-loop output impedance of
Eq. (9.6), repeated below

v̂(s)

− îload(s)

∣∣∣∣∣∣ v̂g=0
v̂re f=0

=
Zout(s)

1 + T (s)
(9.51)

If, over some frequency range, the open-loop output impedance Zout has magnitude that
exceeds the limit, then the loop gain T must be sufficiently large in magnitude over the
same frequency range, such that the magnitude of the closed-loop output impedance given
in Eq. (9.51) is less than the given limit.

2. Effect of input voltage variations (for example, at the second harmonic of the ac line fre-
quency) on the output voltage regulation. Specific maximum limits are usually placed on
the amplitude of variations in the output voltage at the second harmonic of the ac line fre-
quency (120 Hz or 100 Hz). If we know the magnitude of the rectification voltage ripple
which appears at the converter input (as v̂g), then we can calculate the resulting output volt-
age ripple (in v̂) using the closed loop line-to-output transfer function of Eq. (9.5), repeated
below
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v̂(s)
v̂g(s)

∣∣∣∣∣∣ v̂re f=0
îload=0

=
Gvg(s)

1 + T (s)
(9.52)

The output voltage ripple can be reduced by increasing the magnitude of the loop gain at
the ripple frequency. In a typical good design, ‖ T ‖ is 20 dB or more at 120 Hz, so that the
transfer function of Eq. (9.52) is at least an order of magnitude smaller than the open-loop
line-to-output transfer function ‖Gvg ‖.

3. Transient response time. When a specified large disturbance occurs, such as a large step
change in load current or input voltage, the output voltage may undergo a transient. Dur-
ing this transient, the output voltage typically deviates from its specified allowable range.
Eventually, the feedback loop operates to return the output voltage within tolerance. The
time required to do so is the transient response time; typically, the response time can be
shortened by increasing the feedback loop crossover frequency.

4. Overshoot and ringing. As discussed in Sect. 9.4.4, the amount of overshoot and ringing
allowed in the transient response may be limited. Such a specification implies that the phase
margin must be sufficiently large.

Each of these requirements imposes constraints on the loop gain T (s). Therefore, the design
of the control system involves modifying the loop gain. As illustrated in Fig. 9.2, a compensator
network is added for this purpose. Several well-known strategies for design of the compensator
transfer function Gc(s) are discussed below.

9.5.1 Lead (PD) compensator

This type of compensator transfer function is used to improve the phase margin. A zero is added
to the loop gain, at a frequency fz sufficiently far below the crossover frequency fc, such that
the phase margin of T (s) is increased by the desired amount. The lead compensator is also
called a proportional-plus-derivative, or PD, controller—at high frequencies, the zero causes
the compensator to differentiate the error signal. It often finds application in systems originally
containing a two-pole response. By use of this type of compensator, the bandwidth of the feed-
back loop (i.e., the crossover frequency fc) can be extended while maintaining an acceptable
phase margin.

A side effect of the zero is that it causes the compensator gain to increase with frequency,
with a +20 dB/decade slope. So steps must be taken to ensure that ‖T ‖ remains equal to unity
at the desired crossover frequency. Also, since the gain of any practical amplifier must tend to
zero at high frequency, the compensator transfer function Gc(s) must contain high-frequency
poles. These poles also have the beneficial effect of attenuating high-frequency noise. Of partic-
ular concern are the switching frequency harmonics present in the output voltage and feedback
signals. If the compensator gain at the switching frequency is too great, then these switching
harmonics are amplified by the compensator, and can disrupt the operation of the pulse-width
modulator (see Sect. 7.3). So the compensator network should contain poles at a frequency less
than the switching frequency. These considerations typically restrict the crossover frequency
fc to be less than approximately 10% of the converter switching frequency fs. In addition, the
circuit designer must take care not to exceed the gain-bandwidth limits of available operational
amplifiers.
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Fig. 9.28 Magnitude and phase asymptotes of the PD compensator transfer function Gc of Eq. (9.53)

The transfer function of the lead compensator therefore contains a low-frequency zero and
several high-frequency poles. A simplified example containing a single high-frequency pole is
given in Eq. (9.53) and illustrated in Fig. 9.28.

Gc(s) = Gc0

(
1 +

s
ωz

)

(
1 +

s
ωp

) (9.53)

The maximum phase occurs at a frequency fϕmax given by the geometrical mean of the pole and
zero frequencies:

fϕmax =

√
fz fp (9.54)

To obtain the maximum improvement in phase margin, we should design our compensator so
that the frequency fϕmax coincides with the loop gain crossover frequency fc. The value of the
phase at this frequency can be shown to be

∠Gc

(
fϕmax

)
= tan−1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1
2

√
fp

fz
− 1

2

√
fz
fp

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (9.55)

This equation is plotted in Fig. 9.29. Equation (9.55) can be inverted to obtain

fp

fz
=

1 + sin(θ)
1 − sin(θ)

(9.56)

where θ = ∠Gc( fϕmax). Equations (9.55) and (9.53) imply that, to optimally obtain a compen-
sator phase lead of θ at frequency fc, the pole and zero frequencies should be chosen as follows:
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Fig. 9.29 Maximum phase lead θ vs. frequency ratio fp/ fz for the lead compensator

fz = fc

√
1 − sin(θ)
1 + sin(θ)

fp = fc

√
1 + sin(θ)
1 − sin(θ)

(9.57)

When it is desired to avoid changing the crossover frequency, the magnitude of the compen-
sator gain is chosen to be unity at the loop gain crossover frequency fc. This requires that Gc0

be chosen according to the following formula:

Gc0 =

√
fz
fp

(9.58)

It can be seen that Gc0 is less than unity, and therefore the lead compensator reduces the dc
gain of the feedback loop. Other choices of Gc0 can be selected when it is desired to shift the
crossover frequency fc; for example, increasing the value of Gc0 causes the crossover frequency
to increase. If the frequencies fp and fz are chosen as in Eq. (9.57), then fϕmax of Eq. (9.53) will
coincide with the new crossover frequency fc.

The Bode diagram of a typical loop gain T (s) containing two poles is illustrated in Fig. 9.30.
The phase margin of the original T (s) is small, since the crossover frequency fc is substantially
greater than the pole frequency f0. The result of adding a lead compensator is also illustrated.
The lead compensator of this example is designed to maintain the same crossover frequency but
improve the phase margin.
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9.5.2 Lag (PI) Compensator

This type of compensator is used to increase the low-frequency loop gain, such that the output
is better regulated at dc and at frequencies well below the loop crossover frequency. As given
in Eq. (9.59) and illustrated in Fig. 9.31, an inverted zero is added to the loop gain, at frequency
fL.

Gc(s) = Gc∞

(
1 +
ωL

s

)
(9.59)

If fL is sufficiently lower than the loop crossover frequency fc, then the phase margin is un-
changed. This type of compensator is also called a proportional-plus-integral, or PI, controller.
At low frequencies, the inverted zero causes the compensator to integrate the error signal.

To the extent that the compensator gain can be made arbitrarily large at dc, the dc loop gain
T (0) becomes arbitrarily large. This causes the dc component of the error signal to approach
zero. In consequence, the steady-state output voltage is perfectly regulated, and the disturbance-
to-output transfer functions approach zero at dc. Such behavior is easily obtained in practice,
with the compensator of Eq. (9.59) realized using a conventional operational amplifier.

Although the PI compensator is useful in nearly all types of feedback systems, it is an
especially simple and effective approach for systems originally containing a single pole. For the
example of Fig. 9.32, the original uncompensated loop gain is of the form

Tu(s) =
Tu0(

1 +
s
ω0

) (9.60)

The compensator transfer function of Eq. (9.59) is used, so that the compensated loop gain is
T (s) = Tu(s) Gc(s). Magnitude and phase asymptotes of T (s) are also illustrated in Fig. 9.32.
The compensator high-frequency gain Gc∞ is chosen to obtain the desired crossover frequency
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Fig. 9.32 Compensation of a loop gain containing a single pole, using a lag (PI) compensator. The loop
gain magnitude is increased

fc. If we approximate the compensated loop gain by its high-frequency asymptote, then at high
frequencies we can write

∥∥∥T∥∥∥ ≈ Tu0Gc∞(
f
f0

) (9.61)

At the crossover frequency f = fc, the loop gain has unity magnitude. Equation (9.61) predicts
that the crossover frequency is

fc ≈ Tu0Gc∞ f0 (9.62)



382 9 Controller Design

0 dB

20 dB

40 dB

f

Gc Tu0
fL f0

T

fc

1
1 + T

fL f0
1

Gc Tu0

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz

|| ||

Fig. 9.33 Construction of ‖1/(1 + T )‖, for the PI-compensated example of Fig. 9.32

Hence, to obtain a desired crossover frequency fc, we should choose the compensator gain Gc∞
as follows:

Gc∞ =
fc

Tu0 f0
(9.63)

The corner frequency fL is then chosen to be sufficiently less than fc, such that an adequate
phase margin is maintained.

Magnitude asymptotes of the quantity 1/(1 + T (s)) are constructed in Fig. 9.33. At frequen-
cies less than fL, the PI compensator improves the rejection of disturbances. At dc, where the
magnitude of Gc approaches infinity, the magnitude of 1/(1+T ) tends to zero. Hence, the closed-
loop disturbance-to-output transfer functions, such as Eqs. (9.51) and (9.52), tend to zero at dc.

9.5.3 Combined (PID) Compensator

The advantages of the lead and lag compensators can be combined, to obtain both wide band-
width and zero steady-state error. At low frequencies, the compensator integrates the error sig-
nal, leading to large low-frequency loop gain and accurate regulation of the low-frequency com-
ponents of the output voltage. At high frequency (in the vicinity of the crossover frequency),
the compensator introduces phase lead into the loop gain, improving the phase margin. Such a
compensator is sometimes called a PID controller.

A typical Bode diagram of a practical version of this compensator is illustrated in Fig. 9.34.
The compensator has transfer function

Gc(s) = Gcm

(
1 +
ωL

s

) (
1 +

s
ωz

)

(
1 +

s
ωp1

) (
1 +

s
ωp2

) (9.64)

The inverted zero at frequency fL functions in the same manner as the PI compensator. The
zero at frequency fz adds phase lead in the vicinity of the crossover frequency, as in the PD
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compensator. The high-frequency poles at frequencies fp1 and fp2 must be present in practical
compensators, to cause the gain to roll off at high frequencies and to prevent the switching ripple
from disrupting the operation of the pulse-width modulator. The loop gain crossover frequency
fc is chosen to be greater than fL and fz, but less than fp1 and fp2.

9.5.4 Design Example

To illustrate the design of PI and PD compensators, let us consider the design of a combined
PID compensator for the dc–dc buck converter system of Fig. 9.35. The input voltage vg(t) for
this system has nominal value 28 V. It is desired to supply a regulated 15 V to a 5 A load. The
load is modeled here with a 3 Ω resistor. An accurate 5 V reference is available.

The first step is to select the feedback gain H(s). The gain H is chosen such that the regulator
produces a regulated 15 V dc output. Let us assume that we will succeed in designing a good
feedback system, which causes the output voltage to accurately follow the reference voltage.
This is accomplished via a large loop gain T , which leads to a small error voltage: ve ≈ 0.
Hence, Hv ≈ vre f So we should choose

H =
Vre f

V
=

5
15
=

1
3

(9.65)

The quiescent duty cycle is given by the steady-state solution of the converter:

D =
V
Vg
=

15
28
= 0.536 (9.66)

The quiescent value of the control voltage, Vc, must satisfy Eq. (7.85). Hence,

Vc = DVM = 2.14 V (9.67)

Thus, the quiescent conditions of the system are known. It remains to design the compensator
gain Gc(s).
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Fig. 9.36 System small-signal ac model, design example

A small-signal ac model of the regulator system is illustrated in Fig. 9.36. The buck con-
verter ac model is represented in canonical form. Disturbances in the input voltage and in the
load current are modeled. For generality, reference voltage variations v̂re f are included in the
diagram; in a dc voltage regulator, these variations are normally zero.
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The open-loop converter transfer functions are discussed in the previous chapters. The open-
loop control-to-output transfer function is

Gvd(s) =
V
D

1

1 + s
L
R
+ s2LC

(9.68)

The open-loop control-to-output transfer function contains two poles, and can be written in the
following normalized form:

Gvd(s) = Gd0
1

1 +
s

Q0ω0
+

(
s
ω0

)2
(9.69)

By equating like coefficients in Eqs. (9.68) and (9.69), one finds that the dc gain, corner fre-
quency, and Q-factor are given by

Gd0 =
V
D
= 28 V

f0 =
ω0

2π
=

1

2π
√

LC
= 1 kHz (9.70)

Q0 = R

√
C
L
= 9.5⇒ 19.5 dB

In practice, parasitic loss elements, such as the capacitor equivalent series resistance (esr),
would cause a lower Q-factor to be observed. Figure 9.37 contains a Bode diagram of Gvd(s).
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Fig. 9.37 Converter small-signal control-to-output transfer function Gvd, design example
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The open-loop line-to-output transfer function is

Gvg(s) = D
1

1 + s
L
R
+ s2LC

(9.71)

This transfer function contains the same poles as in Gvd(s), and can be written in the normalized
form

Gvg(s) = Gg0
1

1 +
s

Q0ω0
+

(
s
ω0

)2
(9.72)

with Gg0 = D. The open-loop output impedance of the buck converter is

Zout(s) = R
∥∥∥∥ 1

sC

∥∥∥∥sL =
sL

1 + s
L
R
+ s2LC

(9.73)

Use of these equations to represent the converter in block-diagram form leads to the com-
plete system block diagram of Fig. 9.38. The loop gain of the system is

T (s) = Gc(s)

(
1

VM

)
Gvd(s)H(s) (9.74)

Substitution of Eq. (9.69) into (9.74) leads to

T (s) =

(
Gc(s)H(s)

VM

) (V
D

) 1⎛⎜⎜⎜⎜⎜⎝1 + s
Q0ω0

+

(
s
ω0

)2⎞⎟⎟⎟⎟⎟⎠
(9.75)

The closed-loop disturbance-to-output transfer functions are given by Eqs. (9.5) and (9.6).

Fig. 9.38 System block diagram, design example
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The uncompensated loop gain Tu(s), with unity compensator gain, is sketched in Fig. 9.39.
With Gc(s) = 1, Eq. (9.75) can be written

Tu(s) = Tu0
1

1 +
s

Q0ω0
+

(
s
ω0

)2
(9.76)

where the dc gain is

Tu0 =
HV

DVM
= 2.33⇒ 7.4 dB (9.77)

The uncompensated loop gain has a crossover frequency of approximately 1.8 kHz, with a
phase margin of less than five degrees.

Let us design a compensator, to attain a crossover frequency of fc = 5 kHz, or one twentieth
of the switching frequency. From Fig. 9.39, the uncompensated loop gain has a magnitude at
5 kHz of approximately Tu0( f0/ fc)2 = 0.093⇒ −20.6 dB. So to obtain unity loop gain at 5 kHz,
our compensator should have a 5 kHz gain of +20.6 dB. In addition, the compensator should
improve the phase margin, since the phase of the uncompensated loop gain is nearly −180◦ at
5 kHz. So a lead (PD) compensator is needed. Let us (somewhat arbitrarily) choose to design for
a phase margin of 52◦. According to Fig. 9.25, this choice leads to closed-loop poles having a Q-
factor of 1. The unit step response, Fig. 9.26, then exhibits a peak overshoot of 16%. Evaluation
of Eq. (9.57), with fc = 5 kHz and θ = 52◦, leads to the following compensator pole and zero
frequencies:

fz = (5 kHz)

√
1 − sin(52◦)
1 + sin(52◦)

= 1.7 kHz (9.78)

fp = (5 kHz)

√
1 + sin(52◦)
1 − sin(52◦)

= 14.5 kHz
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To obtain a compensator gain of 20.6 dB⇒ 10.7 at 5 kHz, the low-frequency compensator gain
must be

Gc0 =

(
fc
f0

)2 1
Tu0

√
fz
fp
= 3.7⇒ 11.3 dB (9.79)

A Bode diagram of the PD compensator magnitude and phase is sketched in Fig. 9.40.
With this PD controller, the loop gain becomes

T (s) = Tu0Gc0

(
1 +

s
ωz

)

(
1 +

s
ωp

) ⎛⎜⎜⎜⎜⎜⎝1 + s
Q0ω0

+

(
s
ω0

)2⎞⎟⎟⎟⎟⎟⎠
(9.80)

The compensated loop gain is sketched in Fig. 9.41. It can be seen that the phase of T (s) is
approximately equal to 52◦ over the frequency range of 1.4 kHz to 17 kHz. Hence variations
in component values, which cause the crossover frequency to deviate somewhat from 5 kHz,
should have little impact on the phase margin. In addition, it can be seen from Fig. 9.41 that the
loop gain has a dc magnitude of Tu0Gc0 ⇒ 18.7 dB.

Asymptotes of the quantity 1/(1 + T ) are constructed in Fig. 9.42. This quantity has a dc
asymptote of −18.7 dB. Therefore, at frequencies less than 1 kHz, the feedback loop attenu-
ates output voltage disturbances by 18.7 dB. For example, suppose that the input voltage vg(t)
contains a 100 Hz variation of amplitude 1 V. With no feedback loop, this disturbance would
propagate to the output according to the open-loop transfer function Gvg(s), given in Eq. (9.72).
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Fig. 9.42 Construction of ‖1/(1 + T )‖ for the PD-compensated design example of Fig. 9.41

At 100 Hz, this transfer function has a gain essentially equal to the dc asymptote D = 0.536.
Therefore, with no feedback loop, a 100 Hz variation of amplitude 0.536 V would be observed
at the output. In the presence of feedback, the closed-loop line-to-output transfer function of Eq.
(9.5) is obtained; for our example, this attenuates the 100 Hz variation by an additional factor of
18.7 dB⇒ 8.6. The 100 Hz output voltage variation now has magnitude 0.536/8.6 = 0.062 V.
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Fig. 9.43 PID compensator transfer function, Eq. (9.81)

The low-frequency regulation can be further improved by addition of an inverted zero, as
discussed in Sect. 9.5.2. A PID controller, as in Sect. 9.5.3, is then obtained. The compensator
transfer function becomes

Gc(s) = Gcm

(
1 +

s
ωz

) (
1 +

ωL

s

)
(
1 +

s
ωp

) (9.81)

The Bode diagram of this compensator gain is illustrated in Fig. 9.43. The pole and zero frequen-
cies fz and fp are unchanged, and are given by Eq. (9.78). The midband gain Gcm is chosen to be
the same as the previous Gc0, Eq. (9.79). Hence, for frequencies greater than fL, the magnitude
of the loop gain is unchanged by the inverted zero. The loop continues to exhibit a crossover
frequency of 5 kHz.

So that the inverted zero does not significantly degrade the phase margin, let us (somewhat
arbitrarily) choose fL to be one-tenth of the crossover frequency, or 500 Hz. The inverted zero
will then increase the loop gain at frequencies below 500 Hz, improving the low-frequency regu-
lation of the output voltage. The loop gain of Fig. 9.44 is obtained. The magnitude of the quantity
1/(1 + T ) is also constructed. It can be seen that the inverted zero at 500 Hz causes the magni-
tude of 1/(1+T) at 100 Hz to be reduced by a factor of approximately (100 Hz)/(500 Hz) = 1/5.
The total attenuation of 1/(1+ T ) at 100 Hz is −32.7 dB. A 1 V, 100 Hz variation in vg(t) would
now induce a 12 mV variation in v(t). Further improvements could be obtained by increasing
fL; however, this would require redesign of the PD portion of the compensator to maintain an
adequate phase margin.

The line-to-output transfer function is constructed in Fig. 9.45. Both the open-loop transfer
function Gvg(s), Eq. (9.72), and the closed-loop transfer function Gvg(s)/(1 + T (s)), are con-
structed using the algebra-on-the-graph method. The two transfer functions coincide at frequen-
cies greater than the crossover frequency. At frequencies less than the crossover frequency fc,
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Fig. 9.44 Construction of ‖T‖ and ‖1/(1 + T )‖ with the PID compensator of Fig. 9.43
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Fig. 9.45 Comparison of open-loop line-to-output transfer function Gvg and the closed-loop line-to-
output transfer function of Eq. (9.82)

the closed-loop transfer function is reduced by a factor of T (s). It can be seen that the poles
of Gvg(s) are cancelled by zeroes of 1/(1 + T ). Hence the closed-loop line-to-output transfer
function is approximately

Gvg(s)

(1 + T (s))
≈ D

Tu0Gcm

1(
1 +

ωL

s

) (
1 +

s
ωz

) (
1 +

s
ωc

) (9.82)



392 9 Controller Design

So the algebra-on-the-graph method allows simple approximate disturbance-to-output closed-
loop transfer functions to be written. Armed with such an analytical expression, the system
designer can easily compute the output disturbances, and can gain the insight required to shape
the loop gain T (s) such that system specifications are met. Computer simulations can then
be used to judge whether the specifications are met under all operating conditions, and over
expected ranges of component parameter values. Results of computer simulations of the design
example described in this section can be found in Sect. 15.4.2.

9.6 Measurement of Loop Gains

It is a good engineering practice to measure the loop gains of prototype feedback systems. The
objective of such an exercise is to verify that the system has been correctly modeled. If so, then
provided that a good controller design has been implemented, then the system behavior will
meet expectations regarding transient overshoot (and phase margin), rejection of disturbances,
dc output voltage regulation, etc. Unfortunately, there are reasons why practical system proto-
types are likely to differ from theoretical models. Phenomena may occur that were not accounted
for in the original model, and that significantly influence the system behavior. Noise and elec-
tromagnetic interference (EMI) can be present, which cause the system transfer functions to
deviate in unexpected ways.

So let us consider the measurement of the loop gain T (s) of the feedback system of Fig. 9.46.
We will make measurements at some point A, where two blocks of the network are connected
electrically. In Fig. 9.46, the output port of block 1 is represented by a Thevenin-equivalent net-
work, composed of the dependent voltage source G1v̂e and output impedance Z1. Block 1 is
loaded by the input impedance Z2 of block 2. The remainder of the feedback system is repre-
sented by a block diagram as shown. The loop gain of the system is

T (s) = G1(s)

(
Z2(s)

Z1(s) + Z2(s)

)
G2(s)H(s) (9.83)

Measurement of this loop gain presents several challenges not present in other frequency
response measurements.

Fig. 9.46 It is desired to determine the loop gain T (s) experimentally, by making measurements at point A
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Fig. 9.47 Measurement of loop gain by breaking the loop

In principle, one could break the loop at point A, and attempt to measure T (s) using the
transfer function measurement method of the previous chapter. As illustrated in Fig. 9.47, a dc
supply voltage VCC and potentiometer would be used, to establish a dc bias in the voltage vx,
such that all of the elements of the network operate at the correct quiescent point. Ac voltage
variations in vz(t) are coupled into the injection point via a dc blocking capacitor. Any other
independent ac inputs to the system are disabled. A network analyzer is used to measure the
relative magnitudes and phases of the ac components of the voltages vy(t) and vx(t):

Tm(s) =
v̂y(s)

v̂x(s)

∣∣∣∣∣v̂re f=0
v̂g=0

(9.84)

The measured gain Tm(s) differs from the actual gain T (s) because, by breaking the connection
between blocks 1 and 2 at the measurement point, we have removed the loading of block 2 on
block 1. Solution of Fig. 9.47 for the measured gain Tm(s) leads to

Tm(s) = G1(s)G2(s)H(s) (9.85)

Equations (9.83) and (9.85) can be combined to express Tm(s) in terms of T (s):

Tm(s) = T (s)

(
1 +

Z1(s)
Z2(s)

)
(9.86)

Hence,
Tm(s) ≈ T (s) provided that ‖Z2‖ 
 ‖Z1‖ (9.87)

So to obtain an accurate measurement, we need to find an injection point where loading is
negligible over the range of frequencies to be measured.

Other difficulties are encountered when using the method of Fig. 9.47. The most serious
problem is adjustment of the dc bias using a potentiometer. The dc loop gain is typically very
large, especially when a PI controller is used. A small change in the dc component of vx(t) can
therefore lead to very large changes in the dc biases of some elements in the system. So it is
difficult to establish the correct dc conditions in the circuit. The dc gains may drift during the
experiment, making the problem even worse, and saturation of the error amplifier is a common
complaint. Also, we have seen that the gains of the converter can be a function of the quiescent
operating point; significant deviation from the correct operating point can cause the measured
gain to differ from the loop gain of actual operating conditions.



394 9 Controller Design

9.6.1 Voltage Injection

An approach that avoids the dc biasing problem [84] is illustrated in Fig. 9.48. The voltage
source vz(t) is injected between blocks 1 and 2, without breaking the feedback loop. Ac vari-
ations in vz(t) again excite variations in the feedback system, but dc bias conditions are deter-
mined by the circuit. Indeed, if vz(t) contains no dc component, then the biasing circuits of the
system itself establish the quiescent operating point. Hence, the loop gain measurement is made
at the actual system operating point.

The injection source is modeled in Fig. 9.48 by a Thevenin equivalent network, containing
an independent voltage source with source impedance Zs(s). The magnitudes of vz and Zs are
irrelevant in the determination of the loop gain. However, the injection of vz does disrupt the
loading of block 2 on block 1. Hence, a suitable injection point must be found, where the loading
effect is negligible.

To measure the loop gain by voltage injection, we connect a network analyzer to measure
the transfer function from v̂x to v̂y. The system independent ac inputs are set to zero, and the
network analyzer sweeps the injection voltage v̂z(t) over the intended frequency range. The
measured gain is

Tv(s) =
v̂y(s)

v̂x(s)

∣∣∣∣∣v̂re f=0
v̂g=0

(9.88)

Let us solve Fig. 9.48, to compare the measured gain Tv(s) with the actual loop gain T (s)
given by (9.83). The error signal is

v̂e(s) = −H(s)G2(s)v̂x(s) (9.89)

The voltage v̂y can be written

− v̂y(s) = G1(s)v̂e(s) − î(s)Z1(s) (9.90)

where î(s)Z1(s) is the voltage drop across the source impedance Z1. Substitution of Eq. (9.89)
into (9.90) leads to

− v̂y(s) = −v̂x(s)G2(s)H(s)G1(s) − î(s)Z1(s) (9.91)

Fig. 9.48 Measurement of loop gain by voltage injection
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But î(s) is

î(s) =
v̂x(s)
Z2(s)

(9.92)

Therefore, Eq. (9.91) becomes

v̂y(s) = v̂x(s)

(
G1(s)G2(s)H(s) +

Z1(s)
Z2(s)

)
(9.93)

Substitution of Eq. (9.93) into (9.88) leads to the following expression for the measured gain
Tv(s):

Tv(s) = G1(s)G2(s)H(s) +
Z1(s)
Z2(s)

(9.94)

Equations (9.83) and (9.94) can be combined to determine the measured gain Tv(s) in terms of
the actual loop gain T (s):

Tv(s) = T (s)

(
1 +

Z1(s)
Z2(s)

)
+

Z1(s)
Z2(s)

(9.95)

Thus, Tv(s) can be expressed as the sum of two terms. The first term is proportional to the actual
loop gain T (s), and is approximately equal to T (s) whenever ‖ Z1 ‖ 	 ‖ Z2 ‖. The second term
is not proportional to T (s), and limits the minimum T (s) that can be measured with the voltage
injection technique. If Z1/Z2 is much smaller in magnitude than T (s), then the second term can
be ignored, and Tv(s) ≈ T (s). At frequencies where T (s) is smaller in magnitude than Z1/Z2,
the measured data must be discarded. Thus,

Tv(s) ≈ T (s) (9.96)

provided
(i) ‖Z1(s)‖ 	 ‖Z2(s)‖

and

(ii) ‖T (s)‖ 

∥∥∥∥∥Z1(s)

Z2(s)

∥∥∥∥∥
Again, note that the value of the injection source impedance Zs is irrelevant.

As an example, consider voltage injection at the output of an operational amplifier, having
a 50 Ω output impedance, which drives a 500 Ω effective load. The system in the vicinity of the
injection point is illustrated in Fig. 9.49. So Z1(s) = 50 Ω and Z2(s) = 500 Ω. The ratio Z1/Z2

is 0.1, or −20 dB. Let us further suppose that the actual loop gain T (s) contains poles at 10 Hz
and 100 kHz, with a dc gain of 80 dB. The actual loop gain magnitude is illustrated in Fig. 9.50.

Voltage injection would result in measurement of Tv(s) given in Eq. (9.95). Note that
(
1 +

Z1(s)
Z2(s)

)
= 1.1⇒ 0.83 dB (9.97)

Hence, for large ‖ T ‖, the measured ‖Tv‖ deviates from the actual loop gain by less than 1 dB.
However, at high frequency where ‖ T ‖ is less than −20 dB, the measured gain differs sig-
nificantly. Apparently, Tv(s) contains two high-frequency zeroes that are not present in T (s).
Depending on the Q-factor of these zeroes, the phase of Tv at the crossover frequency could be
influenced. To ensure that the phase margin is correctly measured, it is important that Z1/Z2 be
sufficiently small in magnitude.
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Fig. 9.49 Voltage injection example
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Fig. 9.50 Comparison of measured loop gain Tv and actual loop gain T , voltage injection example. The
measured gain deviates at high frequency

9.6.2 Current Injection

The results of the preceding paragraphs can also be obtained in dual form, where the loop gain
is measured by current injection [84]. As illustrated in Fig. 9.51, we can model block 1 and the
analyzer injection source by their Norton equivalents, and use current probes to measure îx and
îy. The gain measured by current injection is

Ti(s) =
îy(s)

ix(s)

∣∣∣∣∣∣v̂re f=0
v̂g=0

(9.98)
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Fig. 9.51 Measurement of loop gain by current injection

Fig. 9.52 Current injection using Thevenin-equivalent source

It can be shown that

Ti(s) = T (s)

(
1 +

Z2(s)
Z1(s)

)
+

Z2(s)
Z1(s)

(9.99)

Hence,

Ti(s) ≈ T (s) provided

(i) ‖ Z2(s) ‖ 	 ‖ Z1(s) ‖, and (9.100)

(ii) ‖T (s)‖ 

∥∥∥∥∥Z2(s)

Z1(s)

∥∥∥∥∥
So to obtain an accurate measurement of the loop gain by current injection, we must find a
point in the network where block 2 has sufficiently small input impedance. Again, note that the
injection source impedance Zs does not affect the measurement. In fact, we can realize iz by
use of a Thevenin-equivalent source, as illustrated in Fig. 9.52. The network analyzer injection
source is represented by voltage source v̂z and output resistance Rs. A series capacitor, Cb, is
inserted to avoid disrupting the dc bias at the injection point.

9.6.3 Measurement of Unstable Systems

When the prototype feedback system is unstable, we are even more eager to measure the loop
gain—to find out what went wrong. But measurements cannot be made while the system oscil-
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Fig. 9.53 Measurement of an unstable loop gain by voltage injection

lates. We need to stabilize the system, yet measure the original unstable loop gain. It is possible
to do this by recognizing that the injection source impedance Zs does not influence the measured
loop gain [84]. As illustrated in Fig. 9.53, we can even add additional resistance Rext, effectively
increasing the source impedance Zs. The measured loop gain Tv(s) is unaffected.

Adding series impedance generally lowers the loop gain of a system, leading to a lower
crossover frequency and a more positive phase margin. Hence, it is usually possible to add a
resistor Rext that is sufficiently large to stabilize the system. The gain Tv(s), Eq. (9.88), continues
to be approximately equal to the original unstable loop gain, according to Eq. (9.96). To avoid
disturbing the dc bias conditions, it may be necessary to bypass Rext with inductor Lext. If the
inductance value is sufficiently large, then it will not influence the stability of the modified
system.

9.7 Summary of Key Points

1. Negative feedback causes the system output to closely follow the reference input, according
to the gain 1/H(s). The influence on the output of disturbances and variation of gains in the
forward path is reduced.

2. The loop gain T (s) is equal to the products of the gains in the forward and feedback paths.
The loop gain is a measure of how well the feedback system works: a large loop gain leads
to better regulation of the output. The crossover frequency fc is the frequency at which the
loop gain T has unity magnitude, and is a measure of the bandwidth of the control system.

3. The introduction of feedback causes the transfer functions from disturbances to the out-
put to be multiplied by the factor 1/(1 + T (s)). At frequencies where T is large in mag-
nitude (i.e., below the crossover frequency), this factor is approximately equal to 1/T (s).
Hence, the influence of low-frequency disturbances on the output is reduced by a factor of
1/T (s). At frequencies where T is small in magnitude (i.e., above the crossover frequency),
the factor is approximately equal to 1. The feedback loop then has no effect. Closed-loop
disturbance-to-output transfer functions, such as the line-to-output transfer function or the
output impedance, can easily be constructed using the algebra-on-the-graph method.

4. Stability can be assessed using the phase margin test. The phase of T is evaluated at the
crossover frequency, and the stability of the important closed-loop quantities T/(1+T ) and
1/(1 + T ) is then deduced. Inadequate phase margin leads to ringing and overshoot in the
system transient response, and peaking in the closed-loop transfer functions.
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5. Compensators are added in the forward paths of feedback loops to shape the loop gain, such
that desired performance is obtained. Lead compensators, or PD controllers, are added to
improve the phase margin and extend the control system bandwidth. PI controllers are
used to increase the low-frequency loop gain, to improve the rejection of low-frequency
disturbances and reduce the steady-state error.

6. Loop gains can be experimentally measured by use of voltage or current injection. This
approach avoids the problem of establishing the correct quiescent operating conditions in
the system, a common difficulty in systems having a large dc loop gain. An injection point
must be found where interstage loading is not significant. Unstable loop gains can also be
measured.

Problems

9.1 Derive both forms of Eq. (9.41).
9.2 The flyback converter system of Fig. 9.54 contains a feedback loop for regulation of the

main output voltage v1. An auxiliary output produces voltage v2. The dc input voltage vg

lies in the range 280 V ≤ vg ≤ 380 V. The compensator network has transfer function

Gc(s) = Gc∞

(
1 +

ω1

s

)

where Gc∞ = 0.05, and f1 = ω1/2π = 400 Hz.
(a) What is the steady-state value of the error voltage ve(t)? Explain your reasoning.
(b) Determine the steady-state value of the main output voltage v1.
(c) Estimate the steady-state value of the auxiliary output voltage v2.
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Fig. 9.54 Flyback converter system of Problem 9.2
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9.3 In the boost converter system of Fig. 9.55, all elements are ideal. The compensator has
gain Gc(s) = 250/s.

+

+

vvg

Boost converter
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Pulse-width
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12 
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48 V

5 V

H(s) = 1
24

Fig. 9.55 Boost converter system of Problem 9.3

(a) Construct the Bode plot of the loop gain T (s) magnitude and phase. Label values of
all corner frequencies and Q-factors, as appropriate.

(b) Determine the crossover frequency and phase margin.
(c) Construct the Bode diagram of the magnitude of 1/(1 + T ), using the algebra-on-the-

graph method. Label values of all corner frequencies and Q-factors, as appropriate.
(d) Construct the Bode diagram of the magnitude of the closed-loop line-to-output trans-

fer function. Label values of all corner frequencies and Q-factors, as appropriate.
9.4 A certain inverter system has the following loop gain

T (s) = T0

(
1 +

s
ωz

)

(
1 +

s
ω1

) (
1 +

s
ω2

) (
1 +

s
ω3

)

and the following open-loop line-to-output transfer function

Gvg(s) = Gg0
1(

1 +
s
ω1

) (
1 +

s
ω3

)

where
T0 = 100 ω1 = 500 rad/ sec
ω2 = 1000 rad/ sec ω3 = 24000 rad/ sec
ωz = 4000 rad/ sec Gg0 = 0.5

The gain of the feedback connection is H(s) = 0.1.
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(a) Sketch the magnitude and phase asymptotes of the loop gain T (s). Determine numer-
ical values of the crossover frequency in Hz and phase margin in degrees.

(b) Construct the magnitude asymptotes of the closed-loop line-to-output transfer func-
tion. Label important features.

(c) Construct the magnitude asymptotes of the closed-loop transfer function from the
reference voltage to the output voltage. Label important features.

9.5 The forward converter system of Fig. 9.56a is constructed with the element values shown.
The quiescent value of the input voltage is Vg = 380 V. The transformer has turns ratio
n1/n3 = 4.5. The duty cycle produced by the pulse-width modulator is restricted to the
range 0 ≤ d(t) ≤ 0.5. Within this range, d(t) follows the control voltage vc(t) according to

d(t) =
1
2

vc(t)
VM

with VM = 3 V.
(a) Determine the quiescent values of: the duty cycle D, the output voltage V , and the

control voltage Vc.
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Fig. 9.56 Forward converter system of Problem 9.5: (a) system diagram, (b) modeling the op amp circuit
using a block diagram
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(b) The op-amp circuit and feedback connection can be modeled using the block diagram
illustrated in Fig. 9.56b, with H(s) = R2/(R1 + R2). Determine the transfer functions
Gc(s) and Gr(s).

(c) Sketch a block diagram which models the small-signal ac variations of the complete
system, and determine the transfer function of each block. Hint: the transformer mag-
netizing inductance has negligible influence on the converter dynamics, and can be
ignored. The small-signal models of the forward and buck converters are similar.

(d) Construct a Bode plot of the loop gain magnitude and phase. What is the crossover
frequency? What is the phase margin?

(e) Construct the Bode plot of the closed-loop line-to-output transfer function magnitude
∥∥∥∥∥∥

v̂
v̂g

∥∥∥∥∥∥
Label important features. What is the gain at 120 Hz? At what frequency do distur-
bances in vg have the greatest influence on the output voltage?

9.6 In the voltage regulator system of Fig. 9.56, described in Problem 9.5, the input voltage
vg(t) contains a 120 Hz variation of peak amplitude 10 V.
(a) What is the amplitude of the resulting 120 Hz variation in v(t)?
(b) Modify the compensator network such that the 120 Hz output voltage variation has

peak amplitude less than 25 mV. Your modification should leave the dc output voltage
unchanged, and should result in a crossover frequency no greater than 10 kHz.

9.7 Design of a boost converter with current feedback and a PI compensator. In some appli-
cations, it is desired to control the converter input terminal current waveform. The boost
converter system of Fig. 9.57 contains a feedback loop which causes the converter input
current ig(t) to be proportional to a reference voltage vre f (t). The feedback connection is a
current sense circuit having gain H(s) = 0.2 volts per ampere. A conventional pulse width
modulator circuit (Fig. 7.29) is employed, having a sawtooth waveform with peak–peak
amplitude of VM = 3 V. The quiescent values of the inputs are: Vg = 120 V, Vre f = 2 V.
All elements are ideal.
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Fig. 9.57 Boost converter system with current feedback, Problem 9.7
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(a) Determine the quiescent values D, V , and Ig.
(b) Determine the small-signal transfer function

Gid(s) =
îg(s)

d̂(s)

(c) Sketch the magnitude and phase asymptotes of the uncompensated (Gc(s) = 1) loop
gain.

(d) It is desired to obtain a loop gain magnitude of at least 35 dB at 120 Hz, while main-
taining a phase margin of at least 72◦. The crossover frequency should be no greater
than fs/10 = 10 kHz. Design a PI compensator that accomplishes this. Sketch the
magnitude and phase asymptotes of the resulting loop gain, and label important fea-
tures.

(e) For your design of part (d), sketch the magnitude of the closed-loop transfer function

îg(s)

v̂re f (s)

Label important features.
9.8 Design of a buck regulator to meet closed-loop output impedance specifications. The buck

converter with control system illustrated in Fig. 9.58 is to be designed to meet the follow-
ing specifications. The closed-loop output impedance should be less than 0.2 Ω over the
entire frequency range 0 to 20 kHz. To ensure that the transient response is well-behaved,
the poles of the closed-loop transfer functions, in the vicinity of the crossover frequency,
should have Q-factors no greater than unity. The quiescent load current ILOAD can vary
from 5 A to 50 A, and the above specifications must be met for every value of ILOAD in
this range. For simplicity, you may assume that the input voltage vg does not vary. The
loop gain crossover frequency fc may be chosen to be no greater than fs/10, or 10 kHz.
You may also assume that all elements are ideal. The pulse-width modulator circuit obeys
Eq. (7.85).

+

+

vvg

+

Compensator
vref

HvPulse-width
modulator

vc

Transistor
gate driver

Gc (s)

H(s)

ve

H(s) = 0.1fs = 100 kHz

L

1 mH

C
200 μF

VM = 4 V

5 V

iload

Rload
Zout

100 V

Fig. 9.58 Buck regulator system, Problem 9.8
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(a) What is the intended dc output voltage V? Over what range does the effective load
resistance RLOAD vary?

(b) Construct the magnitude asymptotes of the open-loop output impedance Zout(s). Over
what range of frequencies is the output impedance specification not met? Hence, de-
duce how large the minimum loop gain T (s) must be in magnitude, such that the
closed-loop output impedance meets the specification. Choose a suitable crossover
frequency fc.

(c) Design a compensator network Gc(s) such that all specifications are met. Additionally,
the dc loop gain T (s) should be at least 20 dB. Specify the following:
(i) Your choice for the transfer function Gc(s)

(ii) The worst-case closed-loop Q
(iii) Bode plots of the loop gain T (s) and the closed-loop output impedance, for load

currents of 5 A and 50 A. What effect does variation of RLOAD have on the closed-
loop behavior of your design?

(d) Design a circuit using resistors, capacitors, and an op amp to realize your compensator
transfer function Gc(s).

9.9 Design of a buck–boost voltage regulator. The buck–boost converter of Fig. 9.59 operates
in the continuous conduction mode, with the element values shown. The nominal input
voltage is Vg = 48 V, and it is desired to regulate the output voltage at −15 V. Design the
best compensator that you can, which has high crossover frequency (but no greater than
10% of the switching frequency), large loop gain over the bandwidth of the feedback loop,
and phase margin of at least 52◦.

(a) Specify the required value of H. Sketch Bode plots of the uncompensated loop gain
magnitude and phase, as well as the magnitude and phase of your proposed compen-
sator transfer function Gc(s). Label the important features of your plots.

(b) Construct Bode diagrams of the magnitude and phase of your compensated loop gain
T (s), and also of the magnitude of the quantities T/(1 + T ) and 1/(1 + T ).

(c) Discuss your design. What prevents you from further increasing the crossover fre-
quency? How large is the loop gain at 120 Hz? Can you obtain more loop gain at
120 Hz?

+ L C R

+

vvg

fs = 200 kHz

220 μF 5 50 μH

++

Compensator
vref

HvPulse-width
modulator

vc

Transistor
gate driver

Gc (s)

H(s)

ve

VM = 3 V

5 V

Fig. 9.59 Buck–boost voltage regulator system, Problem 9.9
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Fig. 9.60 Experimental measurement of loop gain, Problem 9.10: (a) measurement via voltage injection,
(b) measured data

9.10 The loop gain of a certain feedback system is measured, using voltage injection at a point
in the forward path of the loop as illustrated in Fig. 9.60a. The data in Fig. 9.60b is obtained.
What is T (s)? Specify T (s) in factored pole-zero form, and give numerical values for
all important features. Over what range of frequencies does the measurement give valid
results?
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Basic Magnetics Theory

Magnetics are an integral part of every switching converter. Often, the design of the magnetic
devices cannot be isolated from the converter design. The power electronics engineer must
not only model and design the converter, but must model and design the magnetics as well.
Modeling and designing of magnetics for switching converters is the topic of Part III of this
book.

In this chapter, basic magnetics theory is reviewed, including magnetic circuits, inductor
modeling, and transformer modeling [85–89]. Loss mechanisms in magnetic devices are de-
scribed. Winding eddy currents and the proximity effect, a significant loss mechanism in high-
current high-frequency windings, are explained in detail [90–95]. Inductor design is introduced
in Chap. 11, and transformer design is covered in Chap. 12.

10.1 Review of Basic Magnetics

10.1.1 Basic Relationships

The basic magnetic quantities are illustrated in Fig. 10.1. Also illustrated are the analogous, and
perhaps more familiar, electrical quantities. The magnetomotive force F , or scalar potential,
between two points x1 and x2 is given by the integral of the magnetic field H along a path
connecting the points:

F =

∫ x2

x1

H · d� (10.1)

where d� is a vector length element pointing in the direction of the path. The dot product yields
the component of H in the direction of the path. If the magnetic field is of uniform strength H
passing through an element of length � as illustrated, then Eq. (10.1) reduces to

F = H� (10.2)

This is analogous to the electric field of uniform strength E, which induces a voltage V = E�
between two points separated by distance �.
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Fig. 10.1 Comparison of magnetic field H, MMF F , flux Φ, and flux density B, with the analogous
electrical quantities E, V , I, and J

Figure 10.1 also illustrates a total magnetic flux Φ passing through a surface S having area
Ac. The total flux Φ is equal to the integral of the normal component of the flux density B over
the surface

Φ =

∫
sur f ace S

B · dA (10.3)

where dA is a vector area element having direction normal to the surface. For a uniform flux
density of magnitude B as illustrated, the integral reduces to

Φ = BAc (10.4)

Flux density B is analogous to the electrical current density J, and flux Φ is analogous to the
electric current I. If a uniform current density of magnitude J passes through a surface of area
Ac, then the total current is I = JAc.

Faraday’s law relates the voltage induced in a winding to the total flux passing through the
interior of the winding. Figure 10.2 illustrates flux Φ(t) passing through the interior of a loop of

Fig. 10.2 The voltage v(t) induced in a loop of
wire is related by Faraday’s law to the derivative
of the total fluxΦ(t) passing through the interior
of the loop
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Fig. 10.3 Illustration of Lenz’s law in a shorted
loop of wire. The fluxΦ(t) induces current i(t), which
in turn generates flux Φ′(t) that tends to oppose
changes in Φ(t)

Flux (t)

Induced current
i(t)

Shorted
loop

Induced
flux (t)

wire. The loop encloses cross-sectional area Ac. According to Faraday’s law, the flux induces a
voltage v(t) in the wire, given by

v(t) =
dΦ(t)

dt
(10.5)

where the polarities of v(t) and Φ(t) are defined according to the right-hand rule, as in Fig. 10.2.
For a uniform flux distribution, we can express v(t) in terms of the flux density B(t) by substitu-
tion of Eq. (10.4):

v(t) = Ac
dB(t)

dt
(10.6)

Thus, the voltage induced in a winding is related to the fluxΦ and flux density B passing through
the interior of the winding.

Lenz’s law states that the voltage v(t) induced by the changing flux Φ(t) in Fig. 10.2 is of the
polarity that tends to drive a current through the loop to counteract the flux change. For example,
consider the shorted loop of Fig. 10.3. The changing flux Φ(t) passing through the interior of
the loop induces a voltage v(t) around the loop. This voltage, divided by the impedance of the
loop conductor, leads to a current i(t) as illustrated. The current i(t) induces a flux Φ′(t), which
tends to oppose the changes in Φ(t). Lenz’s law is invoked later in this chapter, to provide a
qualitative understanding of eddy current phenomena.

Ampere’s law relates the current in a winding to the magnetomotive force F and magnetic
field H. The net MMF around a closed path of length �m is equal to the total current passing
through the interior of the path. For example, Fig. 10.4 illustrates a magnetic core, in which a
wire carrying current i(t) passes through the window in the center of the core. Let us consider
the closed path illustrated, which follows the magnetic field lines around the interior of the core.
Ampere’s law states that∮

closed path
H · d� = total current passing through interior of path (10.7)

Fig. 10.4 The net MMF around
a closed path is related by Am-
pere’s law to the total current passing
through the interior of the path
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(a)
B

Hμ0

(b)
B

H

μ

Fig. 10.5 B–H characteristics: (a) of free space or air, (b) of a typical magnetic core material

The total current passing through the interior of the path is equal to the total current passing
through the window in the center of the core, or i(t). If the magnetic field is uniform and of
magnitude H(t), then the integral is H(t)�m. So for the example of Fig. 10.4, Eq. (10.7) reduces
to

F (t) = H(t)�m = i(t) (10.8)

Thus, the magnetic field strength H(t) is related to the winding current i(t). We can view
winding currents as sources of MMF. Equation (10.8) states that the MMF around the core,
F (t) = H(t)�m, is equal to the winding current MMF i(t). The total MMF around the closed
loop, accounting for both MMFs, is zero.

The relationship between B and H, or equivalently between Φ and F , is determined by the
core material characteristics. Figure 10.5a illustrates the characteristics of free space, or air:

B = μ0H (10.9)

The quantity μ0 is the permeability of free space, and is equal to 4π · 10−7 Henries per meter
in MKS units. Figure 10.5b illustrates the B–H characteristic of a typical iron alloy under high-
level sinusoidal steady-state excitation. The characteristic is highly nonlinear, and exhibits both
hysteresis and saturation. The exact shape of the characteristic is dependent on the excitation,
and is difficult to predict for arbitrary waveforms.

For purposes of analysis, the core material characteristic of Fig. 10.5b is usually modeled by
the linear or piecewise-linear characteristics of Fig. 10.6. In Fig. 10.6a, hysteresis and saturation
are ignored. The B–H characteristic is then given by

B = μH

μ = μrμ0 (10.10)

The core material permeability μ can be expressed as the product of the relative permeability μr

and of μ0. Typical values of μr lie in the range 103 to 105.
The piecewise-linear model of Fig. 10.6b accounts for saturation but not hysteresis. The

core material saturates when the magnitude of the flux density B exceeds the saturation flux
density Bsat. For | B | < Bsat, the characteristic follows Eq. (10.10). When | B | > Bsat, the
model predicts that the core reverts to free space, with a characteristic having a much smaller
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(a)
B

H

μ = μr μ0

(b)
B

H

μ

Bsat

sat

Fig. 10.6 Approximation of the B–H characteristics of a magnetic core material: (a) by neglecting both
hysteresis and saturation, (b) by neglecting hysteresis

slope approximately equal to μ0. Square-loop materials exhibit this type of abrupt-saturation
characteristic, and additionally have a very large relative permeability μr. Soft materials exhibit
a less abrupt saturation characteristic, in which μ gradually decreases as H is increased. Typical
values of Bsat are 1 to 2 Tesla for iron laminations and silicon steel, 0.5 to 1 Tesla for powdered
iron and molypermalloy materials, and 0.25 to 0.5 Tesla for ferrite materials.

Unit systems for magnetic quantities are summarized in Table 10.1. The MKS system is
used throughout this book. The unrationalized CGS system also continues to find some use.
Conversions between these systems are listed.

Table 10.1 Units for magnetic quantities

Quantity MKS Unrationalized CGS Conversions

Core material equation B = μ0μrH B = μrH
B Tesla Gauss 1 T = 104G
H Ampere/meter Oersted 1 A/m = 4π · 10−3 Oe

Φ Weber Maxwell
1 Wb = 108Mx
1 T = 1 Wb/m2

Figure 10.7 summarizes the relationships between the basic electrical and magnetic quanti-
ties of a magnetic device. The winding voltage v(t) is related to the core flux and flux density
via Faraday’s law. The winding current i(t) is related to the magnetic field strength via Ampere’s
law. The core material characteristics relate B and H.

We can now determine the electrical terminal characteristics of the simple inductor of
Fig. 10.8a. A winding of n turns is placed on a core having permeability μ. Faraday’s law states
that the flux Φ(t) inside the core induces a voltage vturn(t) in each turn of the winding, given by

vturn(t) =
dΦ(t)

dt
(10.11)

Since the same flux Φ(t) passes through each turn of the winding, the total winding voltage is
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Fig. 10.7 Summary of the steps in
determination of the terminal electri-
cal i–v characteristics of a magnetic
element

v(t)

i(t)

B(t), (t)

H(t), F (t)

Terminal
characteristics

Core
characteristics

Fig. 10.8 Inductor example:
(a) inductor geometry, (b) appli-
cation of Ampere’s law
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v(t) = nvturn(t) = n
dΦ(t)

dt
(10.12)

Equation (10.12) can be expressed in terms of the average flux density B(t) by substitution of
Eq. (10.4):

v(t) = nAc
dB(t)

dt
(10.13)

where the average flux density B(t) is Φ(t)/Ac.
The use of Ampere’s law is illustrated in Fig. 10.8b. A closed path is chosen which follows

an average magnetic field line around the interior of the core. The length of this path is called
the mean magnetic path length �m. If the magnetic field strength H(t) is uniform, then Ampere’s
law states that H�m is equal to the total current passing through the interior of the path, that is,
the net current passing through the window in the center of the core. Since there are n turns of
wire passing through the window, each carrying current i(t), the net current passing through the
window is ni(t). Hence, Ampere’s law states that

H(t)�m = ni(t) (10.14)
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Let us model the core material characteristics by neglecting hysteresis but accounting for
saturation, as follows:

B =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Bsat for H ≥ Bsat/μ
μH for |H| < Bsat/μ
−Bsat for H ≤ −Bsat/μ

(10.15)

The B–H characteristic saturated slope μ0 is much smaller than μ, and is ignored here. A char-
acteristic similar to Fig. 10.6b is obtained. The current magnitude Isat at the onset of saturation
can be found by substitution of H = Bsat/μ into Eq. (10.14). The result is

Isat =
Bsat�m

μn
(10.16)

We can now eliminate B and H from Eqs. (10.13) to (10.15), and solve for the electrical terminal
characteristics. For |I| < Isat, B = μH. Equation (10.13) then becomes

v(t) = μnAc
dH(t)

dt
(10.17)

Substitution of Eq. (10.14) into Eq. (10.17) to eliminate H(t) then leads to

v(t) =
μn2Ac

�m

di(t)
dt

(10.18)

which is of the form

v(t) = L
di(t)
dt

(10.19)

with

L =
μn2Ac

�m
(10.20)

So the device behaves as an inductor for |I| < Isat. When |I| > Isat, then the flux density B(t) =
Bsat is constant. Faraday’s law states that the terminal voltage is then

v(t) = nAc
dBsat

dt
= 0 (10.21)

When the core saturates, the magnetic device behavior approaches a short circuit. The device
behaves as an inductor only when the winding current magnitude is less than Isat. Practical
inductors exhibit some small residual inductance due to their nonzero saturated permeabilities;
nonetheless, in saturation the inductor impedance is greatly reduced, and large inductor currents
may result.

10.1.2 Magnetic Circuits

Figure 10.9a illustrates uniform flux and magnetic field inside an element having permeability
μ, length �, and cross-sectional area Ac. The MMF between the two ends of the element is

F = H� (10.22)
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(a)
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+
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μAc

(b)
F

R

Fig. 10.9 An element containing magnetic flux (a), and its equivalent magnetic circuit (b)

Since H = B/μ and B = Φ/Ac, we can express F as

F =
�

μAc
Φ (10.23)

This equation is of the form
F = ΦR (10.24)

with

R =
�

μAc
(10.25)

Equation (10.24) resembles Ohm’s law. This equation states that the magnetic flux through
an element is proportional to the MMF across the element. The constant of proportionality,
or the reluctance R, is analogous to the resistance R of an electrical conductor. Indeed, we
can construct a lumped-element magnetic circuit model that corresponds to Eq. (10.24), as in
Fig. 10.9b. In this magnetic circuit model, voltage and current are replaced by MMF and flux,
while the element characteristic, Eq. (10.24), is represented by the analog of a resistor, having
reluctance R.

Complicated magnetic structures, composed of multiple windings and multiple heteroge-
neous elements such as cores and air gaps, can be represented using equivalent magnetic circuits.
These magnetic circuits can then be solved using conventional circuit analysis, to determine the
various fluxes, MMFs, and terminal voltages and currents. Kirchhoff’s laws apply to magnetic
circuits, and follow directly from Maxwell’s equations. The analog of Kirchhoff’s current law
holds because the divergence of B is zero, and hence magnetic flux lines are continuous and
cannot end. Therefore, any flux line that enters a node must leave the node. As illustrated in
Fig. 10.10, the total flux entering a node must be zero. The analog of Kirchhoff’s voltage law
follows from Ampere’s law, Eq. (10.7). The left-hand-side integral in Eq. (10.7) is the sum of the
MMFs across the reluctances around the closed path. The right-hand-side of Eq. (10.7) states
that currents in windings are sources of MMF. An n-turn winding carrying current i(t) can be
modeled as an MMF source, analogous to a voltage source, of value ni(t). When these MMF
sources are included, the total MMF around a closed path is zero.

Consider the inductor with air gap of Fig. 10.11a. A closed path following the magnetic field
lines is illustrated. This path passes through the core, of permeability μ and length �c, and across
the air gap, of permeability μ0 and length �g. The cross-sectional areas of the core and air gap
are approximately equal. Application of Ampere’s law for this path leads to

Fc +Fg = ni (10.26)
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(a)

1

2
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Node (b)

1

2

3

Node 1 = 2 + 3

Fig. 10.10 Kirchhoff’s current law, applied to magnetic circuits: the net flux entering a node must be
zero. (a) physical element, in which three legs of a core meet at a node; (b) magnetic circuit model

Fig. 10.11 Inductor with air gap example: (a) physical geometry; (b) magnetic circuit model

where Fc and Fg are the MMFs across the core and air gap, respectively. The core and air gap
characteristics can be modeled by reluctances as in Fig. 10.9 and Eq. (10.25); the core reluctance
Rc and air gap reluctance Rg are given by

Rc =
�c

μAc

Rg =
�g

μ0Ac
(10.27)

A magnetic circuit corresponding to Eqs. (10.26) and (10.27) is given in Fig. 10.11b. The wind-
ing is a source of MMF, of value ni. The core and air gap reluctances are effectively in series.
The solution of the magnetic circuit is

ni = Φ(Rc +Rg) (10.28)

The flux Φ(t) passes through the winding, and so we can use Faraday’s law to write

v(t) = n
dΦ(t)

dt
(10.29)

Use of Eq. (10.28) to eliminate Φ(t) yields
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Fig. 10.12 Effect of air gap on the
magnetic circuit Φ vs. ni characteris-
tics. The air gap increases the current
Isat at the onset of core saturation
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 = BAc

ni  Hc

Bsat Ac

sat Ac

nIsat1 nIsat2

v(t) =
n2

Rc +Rg

di(t)
dt

(10.30)

Therefore, the inductance L is

L =
n2

Rc +Rg
(10.31)

The air gap increases the total reluctance of the magnetic circuit, and decreases the inductance.
Air gaps are employed in practical inductors for two reasons. With no air gap (Rg = 0),

the inductance is directly proportional to the core permeability μ. This quantity is dependent on
temperature and operating point, and is difficult to control. Hence, it may be difficult to construct
an inductor having a well-controlled value of L. Addition of an air gap having a reluctance Rg

greater than Rc causes the value of L in Eq. (10.31) to be insensitive to variations in μ.
Addition of an air gap also allows the inductor to operate at higher values of winding current

i(t) without saturation. The total flux Φ is plotted vs. the winding MMF ni in Fig. 10.12. Since
Φ is proportional to B, and when the core is not saturated ni is proportional to the magnetic field
strength H in the core, Fig. 10.12 has the same shape as the core B–H characteristic. When the
core is not saturated, Φ is related to ni according to the linear relationship of Eq. (10.28). When
the core saturates, Φ is equal to

Φsat = BsatAc (10.32)

The winding current Isat at the onset of saturation is found by substitution of Eq. (10.32)
into (10.28):

Isat =
BsatAc

n
(Rc +Rg) (10.33)

The Φ-ni characteristics are plotted in Fig. 10.12 for two cases: (a) air gap present, and (b) no
air gap (Rg = 0). It can be seen that Isat is increased by addition of an air gap. Thus, the air gap
allows increase of the saturation current, at the expense of decreased inductance.

10.2 Transformer Modeling

Consider next the two-winding transformer of Fig. 10.13. The core has cross-sectional area Ac,
mean magnetic path length �m, and permeability μ. An equivalent magnetic circuit is given in
Fig. 10.14. The core reluctance is
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Fig. 10.13 A two-winding trans-
former
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n1
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+
v1(t)

i1(t)

+
v2(t)

i2(t)

n2
turns

Fig. 10.14 Magnetic circuit that models the
two-winding transformer of Fig. 10.13

R =
�m

μAc
(10.34)

Since there are two windings in this example, it is necessary to determine the relative polarities
of the MMF generators. Ampere’s law states that

Fc = n1i1 + n2i2 (10.35)

The MMF generators are additive, because the currents i1 and i2 pass in the same direction
through the core window. Solution of Fig. 10.14 yields

ΦR = n1i1 + n2i2 (10.36)

This expression could also be obtained by substitution of Fc = ΦR into Eq. (10.35).

10.2.1 The Ideal Transformer

In the ideal transformer, the core reluctance R approaches zero. The causes the core MMF
Fc = ΦR also to approach zero. Equation (10.35) then becomes

0 = n1i1 + n2i2 (10.37)

Also, by Faraday’s law, we have

v1 = n1
dΦ
dt

(10.38)

v2 = n2
dΦ
dt

Note that Φ is the same in both equations above: the same total flux links both windings. Elimi-
nation of Φ leads to
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Fig. 10.15 Ideal transformer symbol

dΦ
dt
=

v1

n1
=

v2

n2
(10.39)

Equations (10.37) and (10.39) are the equations of the ideal transformer:

v1

n1
=

v2

n2
and n1i1 + n2i2 = 0 (10.40)

The ideal transformer symbol of Fig. 10.15 is defined by Eq. (10.40).

10.2.2 The Magnetizing Inductance

For the actual case in which the core reluctance R is nonzero, we have

ΦR = n1i1 + n2i2 with v1 = n1
dΦ
dt

(10.41)

Elimination of Φ yields

v1 =
n2

1

R

d
dt

[
i1 +

n2

n1
i2

]
(10.42)

This equation is of the form

v1 = LM
diM

dt
(10.43)

where

LM =
n2

1

R

iM = i1 +
n2

n1
i2 (10.44)

are the magnetizing inductance and magnetizing current, referred to the primary winding. An
equivalent circuit is illustrated in Fig. 10.16.

Figure 10.16 coincides with the transformer model introduced in Chap. 6. The magnetizing
inductance models the magnetization of the core material. It is a real, physical inductor, which
exhibits saturation and hysteresis. All physical transformers must contain a magnetizing induc-
tance. For example, suppose that we disconnect the secondary winding. We are then left with
a single winding on a magnetic core—an inductor. Indeed, the equivalent circuit of Fig. 10.16



10.2 Transformer Modeling 421

Fig. 10.16 Transformer model including magnetizing inductance

predicts this behavior, via the magnetizing inductance. The magnetizing current causes the ratio
of the winding currents to differ from the turns ratio.

The transformer saturates when the core flux density B(t) exceeds the saturation flux den-
sity Bsat. When the transformer saturates, the magnetizing current iM(t) becomes large, the
impedance of the magnetizing inductance becomes small, and the transformer windings be-
come short circuits. It should be noted that large winding currents i1(t) and i2(t) do not necessar-
ily cause saturation: if these currents obey Eq. (10.37), then the magnetizing current is zero and
there is no net magnetization of the core. Rather, saturation of a transformer is a function of the
applied volt-seconds. The magnetizing current is given by

iM(t) =
1

LM

∫
v1(t)dt (10.45)

Alternatively, Eq. (10.45) can be expressed in terms of the core flux density B(t) as

B(t) =
1

n1Ac

∫
v1(t)dt (10.46)

The flux density and magnetizing current will become large enough to saturate the core when the
applied volt-seconds λ1 is too large, where λ1 is defined for a periodic ac voltage waveform as

λ1 =

∫ t2

1
v1(t)dt (10.47)

The limits are chosen such that the integral is taken over the positive portion of the applied
periodic voltage waveform.

To fix a saturating transformer, the flux density should be decreased by increasing the num-
ber of turns, or by increasing the core cross-sectional area Ac. Adding an air gap has no effect on
saturation of conventional transformers, since it does not modify Eq. (10.46). An air gap simply
makes the transformer less ideal, by decreasing LM and increasing iM(t) without changing B(t).
Saturation mechanisms in transformers differ from those of inductors, because transformer satu-
ration is determined by the applied winding voltage waveforms, rather than the applied winding
currents.

10.2.3 Leakage Inductances

In practice, there is some flux which links one winding but not the other, by “leaking” into the
air or by some other mechanism. As illustrated in Fig. 10.17, this flux leads to leakage induc-
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Fig. 10.17 Leakage flux in a two-winding transformer: (a) transformer geometry, (b) an equivalent sys-
tem

Fig. 10.18 Two-winding transformer equivalent circuit, including magnetizing inductance referred to
primary, and primary and secondary leakage inductances

tance, i.e., additional effective inductances that are in series with the windings. A topologically
equivalent structure is illustrated in Fig. 10.17b, in which the leakage fluxes Φ�1 and Φ�2 are
shown explicitly as separate inductors.

Figure 10.18 illustrates a transformer electrical equivalent circuit model, including series
inductors L�1 and L�2 which model the leakage inductances. These leakage inductances cause
the terminal voltage ratio v2(t)/v1(t) to differ from the ideal turns ratio n2/n1. In general, the
terminal equations of a two-winding transformer can be written
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[
v1(t)
v2(t)

]
=

[
L11 L12

L12 L22

]
d
dt

[
i1(t)
i2(t)

]
(10.48)

The quantity L12 is called the mutual inductance, and is given by

L12 =
n1n2

R
=

n2

n1
LM (10.49)

The quantities L11 and L22 are called the primary and secondary self-inductances, given by

L11 = L�1 +
n1

n2
L12

L22 = L�2 +
n2

n1
L12 (10.50)

Note that Eq. (10.48) does not explicitly identify the physical turns ratio n2/n1. Rather, Eq.
(10.48) expresses the transformer behavior as a function of electrical quantities alone. Equa-
tion (10.48) can be used, however, to define the effective turns ratio

ne =

√
L22

L11
(10.51)

and the coupling coefficient

k =
L12√
L11L22

(10.52)

The coupling coefficient k lies in the range 0 ≤ k ≤ 1, and is a measure of the degree of
magnetic coupling between the primary and secondary windings. In a transformer with perfect
coupling, the leakage inductances L�1 and L�2 are zero. The coupling coefficient k is then equal
to 1. Construction of low-voltage transformers having coupling coefficients in excess of 0.99
is quite feasible. When the coupling coefficient is close to 1, then the effective turns ratio ne is
approximately equal to the physical turns ratio n2/n1.

10.3 Loss Mechanisms in Magnetic Devices

10.3.1 Core Loss

Energy is required to effect a change in the magnetization of a core material. Not all of this en-
ergy is recoverable in electrical form; a fraction is lost as heat. This power loss can be observed
electrically as hysteresis of the B–H loop.

Consider an n-turn inductor excited by periodic waveforms v(t) and i(t) having frequency f .
The net energy that flows into the inductor over one cycle is

W =
∫

one cycle
v(t)i(t)dt (10.53)
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We can relate this expression to the core B–H characteristic: substitute B(t) for v(t) using Fara-
day’s law, Eq. (10.13), and substitute H(t) for i(t) using Ampere’s law, i.e., Eq. (10.14):

W =
∫

one cycle

(
nAc

dB(t)
dt

) (
H(t)�m

n

)
dt (10.54)

= (Ac�m)
∫

one cycle
H dB

The term Ac�m is the volume of the core, while the integral is the area of the B–H loop:

(energy lost per cycle) = (core volume)(area of B − H loop) (10.55)

The hysteresis power loss PH is equal to the energy lost per cycle, multiplied by the excitation
frequency f :

PH = ( f )(Ac�m)
∫

one cycle
H dB (10.56)

To the extent that the size of the hysteresis loop is independent of frequency, hysteresis loss
increases directly with operating frequency.

Flux
(t)

Core

i(t)

Eddy
current

Fig. 10.19 Eddy currents in an iron core

Magnetic core materials are iron alloys that,
unfortunately, are also good electrical conduc-
tors. As a result, ac magnetic fields can cause
electrical eddy currents to flow within the core
material itself. An example is illustrated in
Fig. 10.19. The ac flux Φ(t) passes through the
core. This induces eddy currents i(t) which, ac-
cording to Lenz’s law, flow in paths that oppose
the time-varying flux Φ(t). These eddy currents
cause i2R losses in the resistance of the core ma-
terial. The eddy current losses are especially sig-
nificant in high-frequency applications.

According to Faraday’s law, the ac flux Φ(t) induces voltage in the core, which drives the
current around the paths illustrated in Fig. 10.19. Since the induced voltage is proportional to
the derivative of the flux, the voltage magnitude increases directly with the excitation frequency
f . If the impedance of the core material is purely resistive and independent of frequency, then
the magnitude of the induced eddy currents also increases directly with f . This implies that
the i2R eddy current losses should increase as f 2. In power ferrite materials, the core material
impedance magnitude actually decreases with increasing f . Over the useful frequency range,
the eddy current losses typically increase faster than f 2.

There is a basic tradeoff between saturation flux density and core loss. Use of a high oper-
ating flux density leads to reduced size, weight, and cost. Silicon steel and similar materials ex-
hibit saturation flux densities of 1.5 to 2 T. Unfortunately, these core materials exhibit high core
loss. In particular, the low resistivity of these materials leads to high eddy current loss. Hence,
these materials are suitable for filter inductor and low-frequency transformer applications. The
core material is produced in laminations or thin ribbons, to reduce the eddy current magnitude.
Other ferrous alloys may contain molybdenum, cobalt, or other elements, and exhibit somewhat
lower core loss as well as somewhat lower saturation flux densities.
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Iron alloys are also employed in powdered cores, containing ferromagnetic particles of suf-
ficiently small diameter such that eddy currents are small. These particles are bound together
using an insulating medium. Powdered iron and molybdenum permalloy powder cores exhibit
typical saturation flux densities of 0.6 to 0.8 T, with core losses significantly lower than lam-
inated ferrous alloy materials. The insulating medium behaves effectively as a distributed air
gap, and hence these cores have relatively low permeability. Powder cores find application as
transformers at frequencies of several kHz, and as filter inductors in high frequency (100 kHz)
switching converters.
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Fig. 10.20 Typical core loss data for a high-frequency
power ferrite material. Power loss density is plotted vs.
peak ac flux density ΔB, for sinusoidal excitation

Amorphous alloys exhibit low hys-
teresis loss. Core conductivity and eddy
current losses are somewhat lower than
ferrous alloys, but higher than ferrites.
Saturation flux densities in the range 0.6
to 1.5 T are obtained.

Ferrite cores are ceramic materi-
als having low saturation flux den-
sity, 0.25 to 0.5 T. Their resistivities
are much higher than other materi-
als, and hence eddy current losses are
much smaller. Manganese-zinc ferrite
cores find widespread use as induc-
tors and transformers in converters hav-
ing switching frequencies of 10 kHz to
1 MHz. Nickel-zinc ferrite materials can
be employed at yet higher frequencies.

Figure 10.20 contains typical total
core loss data, for a certain ferrite ma-
terial. Power loss density, in Watts per
cubic centimeter of core material, is plot-
ted as a function of sinusoidal excitation
frequency f and peak ac flux density ΔB.
At a given frequency, the core loss Pf e

can be approximated by an empirical function of the form

Pf e = Kf e(ΔB)βAc�m (10.57)

The parameters Kf e and β are determined by fitting Eq. (10.57) to the manufacturer’s published
data. Typical values of β for ferrite materials operating in their intended range of ΔB and f lie
in the range 2.6 to 2.8. The constant of proportionality Kf e increases rapidly with excitation
frequency f . The dependence of Kf e on f can also be approximated by empirical formulae that
are fitted to the manufacturer’s published data; a fourth-order polynomial or a function of the
form Kf e0 f ξ are sometimes employed for this purpose. Parameters in empirical formulae fitted
to data measured under sinusoidal excitation can be used to improve prediction of ferrite core
loss with nonsinusoidal waveforms, as described in [96].
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10.3.2 Low-Frequency Copper Loss

R

i(t)

Fig. 10.21 Winding
equivalent circuit that
models copper loss

Significant loss also occurs in the resistance of the copper windings.
This is also a major determinant of the size of a magnetic device: if
copper loss and winding resistance were irrelevant, then inductor and
transformer elements could be made arbitrarily small by use of many
small turns of small wire.

Figure 10.21 contains an equivalent circuit of a winding, in which
element R models the winding resistance. The copper loss of the
winding is

Pcu = I2
rmsR (10.58)

where Irms is the rms value of i(t). The dc resistance of the winding
conductor can be expressed as

R = ρ
�b
Aw

(10.59)

where Aw is the wire bare cross-sectional area, and �b is the length
of the wire. The resistivity ρ is equal to 1.724 · 10−6Ω-cm for soft-
annealed copper at room temperature. This resistivity increases to 2.3 · 10−6Ω-cm at 100◦C.

If a core has a mean length per turn given by MLT , then an n turn winding on this core will
have length �b = nMLT . The resistance of this winding will be:

R = ρ
n(MLT )

Aw
(10.60)

Appendix B contains tables of the mean lengths per turn of standard ferrite core shapes, as
well as the areas of standard American wire gauges.

10.4 Eddy Currents in Winding Conductors

Eddy currents also cause power losses in winding conductors. This can lead to copper losses
significantly in excess of the value predicted by Eqs. (10.58) and (10.59). The specific conductor
eddy current mechanisms are called the skin effect and the proximity effect. These mechanisms
are most pronounced in high-current conductors of multi-layer windings, particularly in high-
frequency converters.

10.4.1 Introduction to the Skin and Proximity Effects

Figure 10.22a illustrates a current i(t) flowing through a solitary conductor. This current induces
magnetic flux Φ(t), whose flux lines follow circular paths around the current as shown. Accord-
ing to Lenz’s law, the ac flux in the conductor induces eddy currents, which flow in a manner
that tends to oppose the ac flux Φ(t). Figure 10.22b illustrates the paths of the eddy currents.
It can be seen that the eddy currents tend to reduce the net current density in the center of the
conductor, and increase the net current density near the surface of the conductor.

The current distribution within the conductor can be found by solution of Maxwell’s equa-
tions. For a sinusoidal current i(t) of frequency f , the result is that the current density is greatest
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(a)

i(t)

Wire

(t)

Eddy
currents

(b)

i(t)

Wire

Eddy
currents

Current
density

Fig. 10.22 The skin effect: (a) current i(t) induces flux Φ(t), which in turn induces eddy currents in
conductor; (b) the eddy currents tend to oppose the current i(t) in the center of the wire, and increase the
current on the surface of the wire
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Fig. 10.23 Penetration depth δ, as a function of frequency f , for copper wire

at the surface of the conductor. The current density is an exponentially decaying function of
distance into the conductor, with characteristic length δ known as the penetration depth or skin
depth. The penetration depth is given by

δ =
√

ρ

πμ f
(10.61)

For a copper conductor, the permeability μ is equal to μ0, and the resistivity ρ is given in
Sect. 10.3.2. At 100◦C, the penetration depth of a copper conductor is

δ =
7.5√

f
cm (10.62)

with f expressed in Hz. The penetration depth of copper conductors is plotted in Fig. 10.23, as
a function of frequency f . For comparison, the wire diameters d of standard American Wire
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Gauge (AWG) conductors are also listed. It can be seen that d/δ = 1 for AWG #40 at approxi-
mately 500 kHz, while d/δ = 1 for AWG #22 at approximately 10 kHz.

The skin effect causes the resistance and copper loss of solitary large-diameter wires to
increase at high frequency. High-frequency currents do not penetrate to the center of the con-
ductor. The current crowds at the surface of the wire, the inside of the wire is not utilized, and
the effective wire cross-sectional area is reduced. However, the skin effect alone is not sufficient
to explain the increased high-frequency copper losses observed in multiple-layer transformer
windings.
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Fig. 10.24 The proximity effect in adja-
cent copper foil conductors. Conductor 1
carries current i(t). Conductor 2 is open-
circuited

A conductor that carries a high-frequency current
i(t) induces copper loss in an adjacent conductor by
a phenomenon known as the proximity effect. Fig-
ure 10.24 illustrates two copper foil conductors that are
placed in close proximity to each other. Conductor 1
carries a high-frequency sinusoidal current i(t), whose
penetration depth δ is much smaller than the thickness
h of conductors 1 or 2. Conductor 2 is open-circuited,
so that it carries a net current of zero. However, it is
possible for eddy currents to be induced in conductor
2 by the current i(t) flowing in conductor 1.

The current i(t) flowing in conductor 1 generates
a flux Φ(t) in the space between conductors 1 and 2;
this flux attempts to penetrate conductor 2. By Lenz’s
law, a current is induced on the adjacent (left) side of
conductor 2, which tends to oppose the flux Φ(t). If
the conductors are closely spaced, and if h 
 δ, then
the induced current will be equal and opposite to the
current i(t), as illustrated in Fig. 10.24.

Since conductor 2 is open-circuited, the net current
in conductor 2 must be zero. Therefore, a current +i(t) flows on the right-side surface of con-
ductor 2. So the current flowing in conductor 1 induces a current that circulates on the surfaces
of conductor 2.

Figure 10.25 illustrates the proximity effect in a simple transformer winding. The primary
winding consists of three series-connected turns of copper foil, having thickness h 
 δ, and
carrying net current i(t). The copper foil is a strip of copper whose width is the same as the
height of the core window; this strip is wound around a leg of the core. Consequently, each
turn of this foil comprises one layer of the winding, as illustrated in Fig. 10.25b. The secondary
winding is identical; to the extent that the magnetizing current is small, the secondary turns
carry net current −i(t). The windings pass through the window of a magnetic core; the magnetic
core material encloses the mutual flux of the transformer.

The high-frequency sinusoidal current i(t) flows on the right surface of primary layer 1,
adjacent to layer 2. This induces a copper loss in layer 1, which can be calculated as follows.
Let Rdc be the dc resistance of layer 1, given by Eq. (10.59), and let I be the rms value of
i(t). The skin effect causes the copper loss in layer 1 to be equal to the loss in a conductor of
thickness δ with uniform current density. This reduction of the conductor thickness from h to δ
effectively increases the resistance by the same factor. Hence, layer 1 can be viewed as having
an “ac resistance” given by
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Fig. 10.25 A simple transformer example illustrating the proximity effect: (a) effective core geometry
(left) and winding geometry (top view) (right), (b) winding geometry (side view of core window) with one
turn per layer, (c) distribution of currents on surfaces of conductors

Rac =
h
δ

Rdc (10.63)

The copper loss in layer 1 is
P1 = I2Rac (10.64)

The proximity effect causes a current to be induced in the adjacent (left-side) surface of
primary layer 2, which tends to oppose the flux generated by the current of layer 1. If the



430 10 Basic Magnetics Theory

conductors are closely spaced, and if h 
 δ, then the induced current will be equal and opposite
to the current i(t), as illustrated in Fig. 10.25c. Hence, current −i(t) flows on the left surface of
the second layer. Since layers 1 and 2 are connected in series, they must both conduct the same
net current i(t). As a result, a current +2i(t) must flow on the right-side surface of layer 2.

The current flowing on the left surface of layer 2 has the same magnitude as the current of
layer 1, and hence the copper loss is the same: P1. The current flowing on the right surface of
layer 2 has rms magnitude 2I; hence, it induces copper loss (2I)2Rac = 4P1. The total copper
loss in primary layer 2 is therefore

P2 = P1 + 4P1 = 5P1 (10.65)

The copper loss in the second layer is five times as large as the copper loss in the first layer!
The current 2i(t) flowing on the right surface of layer 2 induces a flux 2Φ(t) as illustrated

in Fig. 10.25c. This causes an opposing current −2i(t) to flow on the adjacent (left) surface of
primary layer 3. Since layer 3 must also conduct net current i(t), a current +3i(t) flows on the
right surface of layer 3. The total copper loss in layer 3 is

p3 = (22 + 32)P1 = 13P1 (10.66)

Likewise, the copper loss in layer m of a multiple-layer winding can be written

Pm = I2
[
(m − 1)2 + m2

] (h
δ

Rdc

)
(10.67)

It can be seen that the copper loss compounds very quickly in a multiple-layer winding.
The total copper loss in the three-layer primary winding is P1 + 5P1 + 13P1, or 19P1. More

generally, if the winding contains a total of M layers, then the total copper loss is

P = I2

(
h
δ

Rdc

) M∑
m=1

[(m − 1)2 + m2]

= I2

(
h
δ

Rdc

)
M
3

(2M2 + 1) (10.68)

If a dc or low-frequency ac current of rms amplitude I were applied to the M-layer winding, its
copper loss would be Pdc = I2MRdc. Hence, the proximity effect increases the copper loss by
the factor

FR =
P

Pdc
=

1
3

(
h
δ

)
(2M2 + 1) (10.69)

This expression is valid for a foil winding having h 
 δ.
As illustrated in Fig. 10.25c, the surface currents in the secondary winding are symmetrical,

and hence the secondary winding has the same conduction loss.
The example above and the associated equations are limited to h 
 δ and to the winding

geometry shown. The equations do not quantify the behavior for h ∼ δ, nor for round conductors,
nor are the equations sufficiently general to cover the more complicated winding geometries
often encountered in the magnetic devices of switching converters. Optimum designs may, in
fact, occur with conductor thicknesses in the vicinity of one penetration depth. The discussions
of the following sections allow computation of proximity losses in more general circumstances.
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10.4.2 Leakage Flux in Windings

As described above, an externally applied magnetic field will induce eddy currents to flow in
a conductor, and thereby induce copper loss. To understand how magnetic fields are oriented
in windings, let us consider the simple two-winding transformer illustrated in Fig. 10.26. In
this example, the core has large permeability μ 
 μ0. The primary winding consists of eight
turns of wire arranged in two layers, and each turn carries current i(t) in the direction indicated.
The secondary winding is identical to the primary winding, except that the current polarity is
reversed.

Flux lines for typical operation of this transformer are sketched in Fig. 10.26b. As described
in Sect. 10.2, a relatively large mutual flux is present, which magnetizes the core. In addition,
leakage flux is present, which does not completely link both windings. Because of the symmetry
of the winding geometry in Fig. 10.26, the leakage flux runs approximately vertically through
the windings.

To determine the magnitude of the leakage flux, we can apply Ampere’s law. Consider the
closed path taken by one of the leakage flux lines, as illustrated in Fig. 10.27. Since the core has

(a)

x

y

Primary
winding

Secondary
winding{

Core
μ > μ0

{

(b)

Leakage flux

Mutual
flux

M

Fig. 10.26 Two-winding transformer example: (a) core and winding geometry, (b) typical flux distribu-
tion

Fig. 10.27 Analysis of leakage flux us-
ing Ampere’s law, for the transformer of
Fig. 10.26
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Fig. 10.28 MMF diagram for the trans-
former winding example of Figs. 10.26
and 10.27

large permeability, we can assume that the MMF induced in the core by this flux is negligible,
and that the total MMF around the path is dominated by the MMF F (x) across the core window.
Hence, Ampere’s law states that the net current enclosed by the path is equal to the MMF across
the air gap:

Enclosed current = F (x) = H(x)�w (10.70)

where �w is the height of the window as shown in Fig. 10.27. The net current enclosed by the
path depends on the number of primary and secondary conductors enclosed by the path, and is
therefore a function of the horizontal position x. The first layer of the primary winding consists
of 4 turns, each carrying current i(t). So when the path encloses only the first layer of the
primary winding, then the enclosed current is 4i(t) as shown in Fig. 10.28. Likewise, when the
path encloses both layers of the primary winding, then the enclosed current is 8i(t). When the
path encloses the entire primary, plus layer 2 of the secondary winding, then the net enclosed
current is 8i(t) − 4i(t) = 4i(t). The MMF F (x) across the core window is zero outside the
winding, and rises to a maximum of 8i(t) at the interface between the primary and secondary
windings. Since H(x) = F (x)/�w, the magnetic field intensity H(x) is proportional to the sketch
of Fig. 10.28.

It should be noted that the shape of the F (x) curve in the vicinity of the winding conductors
depends on the distribution of the current within the conductors. Since this distribution is not
yet known, the F (x) curve of Fig. 10.28 is arbitrarily drawn as straight line segments.

In general, the magnetic fields that surround conductors and lead to eddy currents must be
determined using finite element analysis or other similar methods. However, in a large class
of coaxial solenoidal winding geometries, the magnetic field lines are nearly parallel to the
winding layers. As shown below, we can then obtain an analytical solution for the proximity
losses.

10.4.3 Foil Windings and Layers

The winding symmetry described in the previous section allows simplification of the analysis.
For the purposes of determining leakage inductance and winding eddy currents, a layer consist-
ing of n� turns of round wire carrying current i(t) can be approximately modeled as an effective
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Fig. 10.29 Approximating a
layer of round conductors as an
effective foil conductor

(a) (b) (c) (d )

d

lw

h h

h

single turn of foil, which carries current n�i(t). The steps in the transformation of a layer of round
conductors into a foil conductor are formalized in Fig. 10.29 [90, 92–95]. The round conduc-
tors are replaced by square conductors having the same copper cross-sectional area, Fig. 10.29b.
The thickness h of the square conductors is therefore equal to the bare copper wire diameter,
multiplied by the factor

√
π/4:

h =

√
π
4

d (10.71)

These square conductors are then joined together, into a foil layer (Fig. 10.29c). Finally, the
width of the foil is increased, such that it spans the width of the core window (Fig. 10.29d).
Since this stretching process increases the conductor cross-sectional area, a compensating factor
η must be introduced such that the correct dc conductor resistance is predicted. This factor,
sometimes called the conductor spacing factor or the winding porosity, is defined as the ratio of
the actual layer copper area (Fig. 10.29a) to the area of the effective foil conductor of Fig. 10.29d.
Porosity is less than unity: 0 ≤ η ≤ 1. The porosity effectively increases the resistivity ρ of the
conductor, and thereby increases its skin depth:

δ′ =
δ
√
η

(10.72)

If a layer of width �w contains n� turns of round wire having diameter d, then the winding
porosity η is given by

η =

√
π
4

d
n�
�w

(10.73)

A typical value of η for round conductors that span the width of the winding bobbin is 0.8.
In the following analysis, the factor ϕ is given by h/δ for foil conductors, and by the ratio of
the effective foil conductor thickness h to the effective skin depth δ′ for round conductors as
follows:

ϕ =
h

δ′
=
√
η

√
π
4

d
δ

(10.74)
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10.4.4 Power Loss in a Layer

Fig. 10.30 The power loss is determined
for a uniform layer. Uniform tangential
magnetic fields H(0) and H(h) are applied
to the layer surfaces

In this section, the average power loss P in a uni-
form layer of thickness h is determined. As illustrated
in Fig. 10.30, the magnetic field strengths on the left
and right sides of the conductor are denoted H(0) and
H(d), respectively. It is assumed that the component of
magnetic field normal to the conductor surface is zero.
These magnetic fields are driven by the magnetomotive
forces F (0) and F (h), respectively. Sinusoidal wave-
forms are assumed, and rms magnitudes are employed.
It is further assumed here that H(0) and H(h) are in
phase; the effect of a phase shift is treated in [94].

With these assumptions, Maxwell’s equations are
solved to find the current density distribution in the
layer. The power loss density is then computed, and
is integrated over the volume of the layer to find the
total copper loss in the layer [94]. The result is

P=Rdc
ϕ

n2
�

[(
F 2(h)+F 2(0)

)
G1(ϕ)−4F (h)F (0)G2(ϕ)

]

(10.75)

where n� is the number of turns in the layer, and Rdc is
the dc resistance of the layer. The functions G1(ϕ) and
G2(ϕ) are

G1(ϕ) =
sinh(2ϕ) + sin(2ϕ)
cosh(2ϕ) − cos(2ϕ)

G2(ϕ) =
sinh(ϕ) cos(ϕ) + cosh(ϕ) sin(ϕ)

cosh(2ϕ) − cos(2ϕ)
(10.76)

If the winding carries current of rms magnitude I, then we can write

F (h) −F (0) = n�I (10.77)

Let us further express F (h) in terms of the winding current I, as

F (h) = mn�I (10.78)

The quantity m is therefore the ratio of the MMF F (h) to the layer ampere-turns n�I. Then,

F (0)
F (h)

=
m − 1

m
(10.79)

The power dissipated in the layer, Eq. (10.75), can then be written

P = I2RdcϕQ′(ϕ, m) (10.80)
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Fig. 10.31 Increase of layer copper loss due to the proximity effect, as a function of ϕ and MMF ratio m,
for sinusoidal excitation

where
Q′(ϕ, m) = (2m2 − 2m + 1)G1(ϕ) − 4m(m − 1)G2(ϕ) (10.81)

We can conclude that the proximity effect increases the copper loss in the layer by the factor

P
I2Rdc

= ϕQ′(ϕ, m) (10.82)

Equation (10.82), in conjunction with the definitions (10.81), (10.78), (10.76), and (10.74), can
be plotted using a computer spreadsheet or small computer program. The result is illustrated in
Fig. 10.31, for several values of m.

It is illuminating to express the layer copper loss P in terms of the dc power loss Pdc|ϕ=1 that
would be obtained in a foil conductor having a thickness ϕ = 1. This loss is found by dividing
Eq. (10.82) by the effective thickness ratio ϕ:

P
Pdc|ϕ=1

= Q′(ϕ, m) (10.83)

Equation (10.83) is plotted in Fig. 10.32. Large copper loss is obtained for small ϕ simply
because the layer is thin and hence the dc resistance of the layer is large. For large m and
large ϕ, the proximity effect leads to large power loss; Eq. (10.67) predicts that Q′(ϕ, m) is
asymptotic to m2 + (m − 1)2 for large ϕ. Between these extremes, there is a value of ϕ which
minimizes the layer copper loss.
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Fig. 10.32 Layer copper loss, relative to the dc loss in a layer having effective thickness of one penetra-
tion depth

10.4.5 Example: Power Loss in a Transformer Winding

Let us again consider the proximity loss in a conventional transformer, in which the primary
and secondary windings each consist of M layers. The normalized MMF diagram is illustrated
in Fig. 10.33. As given by Eq. (10.82), the proximity effect increases the copper loss in each
layer by the factor ϕQ′(ϕ, m). The total increase in primary winding copper loss Ppri is found
by summation over all of the primary layers:

FR =
Ppri

Ppri,dc
=

1
M

M∑
m=1

ϕQ′(ϕ, m) (10.84)

Fig. 10.33 Conventional two-
winding transformer example. Each
winding consists of M layers
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Owing to the symmetry of the windings in this example, the secondary winding copper loss is
increased by the same factor. Upon substituting Eq. (10.81) and collecting terms, we obtain

FR =
ϕ

M

M∑
m=1

[
m2 (2G1(ϕ) − 4G2(ϕ)) − m (2G1(ϕ) − 4G2(ϕ)) +G1(ϕ)

]
(10.85)

The summation can be expressed in closed form with the help of the identities

M∑
m=1

m =
M(M + 1)

2
(10.86)

M∑
m=1

m2 =
M(M + 1)(2M + 1)

6

Use of these identities to simplify Eq. (10.85) leads to

FR = ϕ

[
G1(ϕ) +

2
3

(
M2 − 1

)
(G1(ϕ) − 2G2(ϕ))

]
(10.87)

This expression is plotted in Fig. 10.34, for several values of M. For large ϕ, G1(ϕ) tends to
1, while G2(ϕ) tends to 0. It can be verified that FR then tends to the value predicted by Eq.
(10.69).
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Fig. 10.34 Increased total winding copper loss in the two-winding transformer example, as a function of
ϕ and number of layers M, for sinusoidal excitation
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Fig. 10.35 Transformer example winding total copper loss, relative to the winding dc loss for layers
having effective thicknesses of one penetration depth

We can again express the total primary power loss in terms of the dc power loss that would
be obtained using a conductor in which ϕ = 1. This loss is found by dividing Eq. (10.87) by ϕ:

Ppri

Ppri,dc

∣∣∣
ϕ=1

= G1(ϕ) +
2
3

(
M2 − 1

)
(G1(ϕ) − 2G2(ϕ)) (10.88)

This expression is plotted in Fig. 10.35, for several values of M. Depending on the number of
layers, the minimum copper loss for sinusoidal excitation is obtained for ϕ near to, or somewhat
less than, unity.

10.4.6 Interleaving the Windings

One way to reduce the copper losses due to the proximity effect is to interleave the windings.
Figure 10.36 illustrates the MMF diagram for a simple transformer in which the primary and
secondary layers are alternated, with net layer current of magnitude i. It can be seen that each
layer operates with F = 0 on one side, and F = i on the other. Hence, each layer operates
effectively with m = 1. Note that Eq. (10.75) is symmetric with respect to F (0) and F (h);
hence, the copper losses of the interleaved secondary and primary layers are identical. The
proximity losses of the entire winding can therefore be determined directly from Figs. 10.34
and 10.35, with M = 1. It can be shown that the minimum copper loss for this case (with
sinusoidal currents) occurs with ϕ = π/2, although the copper loss is nearly constant for any
ϕ ≥ 1, and is approximately equal to the dc copper loss obtained when ϕ = 1. It should be
apparent that interleaving can lead to significant improvements in copper loss when the winding
contains several layers.
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Fig. 10.36 MMF diagram for a simple transformer with interleaved windings. Each layer operates with
m = 1

Fig. 10.37 A partially interleaved two-winding transformer, illustrating fractional values of m. The MMF
diagram is constructed for the low-frequency limit

Partial interleaving can lead to a partial improvement in proximity loss. Figure 10.37 illus-
trates a transformer having three primary layers and four secondary layers. If the total current
carried by each primary layer is i(t), then each secondary layer should carry current 0.75i(t).
The maximum MMF again occurs in the spaces between the primary and secondary windings,
but has value 1.5i(t).

To determine the value for m in a given layer, we can solve Eq. (10.79) for m:

m =
F (h)

F (h) −F (0)
(10.89)

The above expression is valid in general, and Eq. (10.75) is symmetrical in F (0) and F (h).
Interchanging F (0) and F (h) leads to a different value for m but does not change the result of
Eq. (10.81). When F(0) is greater in magnitude than F (h), it is convenient to interchange the
roles of F (0) and F (h), so that the plots of Figs. 10.31 and 10.32 can be employed.

In the leftmost secondary layer of Fig. 10.37, the layer carries current – 0.75i. The MMF
changes from 0 to – 0.75i. The value of m for this layer is found by evaluation of Eq. (10.89):
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m =
F (h)

F (h) −F (0)
=
−0.75i
−0.75i − 0

= 1 (10.90)

The loss in this layer, relative to the dc loss of this secondary layer, can be determined using the
plots of Figs. 10.31 and 10.32 with m = 1. For the next secondary layer, we obtain

m =
F (h)

F (h) −F (0)
=

−1.5i
−1.5i − (−0.75i)

= 2 (10.91)

Hence the loss in this layer can be determined using the plots of Figs. 10.31 and 10.32 with
m = 2. The next layer is a primary winding layer. Its value of m can be expressed as

m =
F (0)

F (0) −F (h)
=

−1.5i
−1.5i − (−0.5i)

= 1.5 (10.92)

The loss in this layer, relative to the dc loss of this primary layer, can be determined using the
plots of Figs. 10.31 and 10.32 with m = 1.5. The center layer has an m of

m =
F (h)

F (h) −F (0)
=

0.5i
0.5i − (−0.5i)

= 0.5 (10.93)

The loss in this layer, relative to the dc loss of this primary layer, can be determined using
the plots of Figs. 10.31 and 10.32 with m = 0.5. The remaining layers are symmetrical to the
corresponding layers described above, and have identical copper losses. The total loss in the
winding is found by summing the losses described above for each layer.

Interleaving windings can significantly reduce the proximity loss when the primary and
secondary currents are in phase. However, in some cases such as the transformers of the flyback
and SEPIC converters, the winding currents are out of phase. Interleaving then does little to
reduce the MMFs and magnetic fields in the vicinity of the windings, and hence the proximity
loss is essentially unchanged. It should also be noted that Eqs. (10.75) to (10.83) assume that the
winding currents are in phase. General expressions for out of phase currents, as well as analysis
of a flyback example, are given in [94].

The above procedure can be used to determine the high-frequency copper losses of more
complicated multiple-winding magnetic devices. The MMF diagrams are constructed, and then
the power loss in each layer is evaluated using Eq. (10.82). These losses are summed, to find
the total copper loss. The losses induced in electrostatic shields can also be determined. Several
additional examples are given in [94].

It can be concluded that, for sinusoidal currents, there is an optimal conductor thickness in
the vicinity of ϕ = 1 that leads to minimum copper loss. It is highly advantageous to minimize
the number of layers, and to interleave the windings. The amount of copper in the vicinity of the
high-MMF portions of windings should be kept to a minimum. Core geometries that maximize
the width �w of the layers, while minimizing the overall number of layers, lead to reduced
proximity loss.

Use of Litz wire is another means of increasing the conductor area while maintaining low
proximity losses. Tens, hundreds, or more strands of small-gauge insulated copper wire are bun-
dled together, and are externally connected in parallel. These strands are twisted, or transposed,
such that each strand passes equally through each position inside and on the surface of the bun-
dle. This prevents the circulation of high-frequency currents between strands. To be effective,
the diameter of the strands should be sufficiently less than one skin depth. Also, it should be
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pointed out that the Litz wire bundle itself is composed of multiple layers. The disadvantages
of Litz wire are its increased cost, and its reduced fill factor. The name “Litz” is derived from
the German word Litzendraht, or braided.

10.4.7 PWM Waveform Harmonics

The pulse-width modulated waveforms encountered in switching converters contain significant
harmonics, which can lead to increased proximity losses. The effect of harmonics on the losses
in a layer can be determined via field harmonic analysis [94], in which the MMF waveforms
F (0, t) and F (d, t) of Eq. (10.75) are expressed in Fourier series. The power loss of each indi-
vidual harmonic is computed as in Sect. 10.4.4, and the losses are summed to find the total loss
in a layer. For example, the PWM waveform of Fig. 10.38 can be represented by the following
Fourier series:

i(t) = I0 +

∞∑
j=1

√
2 I j cos ( jωt) (10.94)

where

I j =

√
2 Ipk

jπ
sin ( jπD)

with ω = 2π/Ts. This waveform contains a dc component I0 = DIpk, plus harmonics of rms
magnitude I j proportional to 1/ j. The transformer winding current waveforms of most switch-
ing converters follow this Fourier series, or a similar series.

Fig. 10.38 Pulse-width modulated wind-
ing current waveform

t

i(t)
Ipk

DTs Ts0

Effects of waveforms harmonics on proximity losses are discussed in [92–94]. The dc com-
ponent of the winding currents does not lead to proximity loss, and should not be included in
proximity loss calculations. Failure to remove the dc component can lead to significantly pes-
simistic estimates of copper loss. The skin depth δ is smaller for high-frequency harmonics than
for the fundamental, and hence the waveform harmonics exhibit an increased effective ϕ. Let
ϕ1 be given by Eq. (10.74), in which δ is found by evaluation of Eq. (10.61) at the fundamen-
tal frequency. Since the penetration depth δ varies as the inverse square-root of frequency, the
effective value of ϕ for harmonic j is

ϕ j =
√

jϕ1 (10.95)

In a multiple-layer winding excited by a current waveform whose fundamental component has
ϕ = ϕ1 close to 1, harmonics can significantly increase the total copper loss. This occurs
because, for m > 1, Q′(ϕ, m) is a rapidly increasing function of ϕ in the vicinity of 1. When
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ϕ1 is sufficiently greater than 1, then Q′(ϕ, m) is nearly constant, and harmonics have less
influence on the total copper loss.

For example, suppose that the two-winding transformer of Fig. 10.33 is employed in a con-
verter such as the forward converter, in which a winding current waveform i(t) can be well
approximated by the Fourier series of Eq. (10.94). The winding contains M layers, and has dc
resistance Rdc. The copper loss induced by the dc component is

Pdc = I2
0Rdc (10.96)

The copper loss Pj ascribable to harmonic j is found by evaluation of Eq. (10.87) with ϕ = ϕ j:

Pj = I2
j Rdc

√
j ϕ1

[
G1

( √
j ϕ1

)
+

2
3

(M2 − 1)
(
G1

( √
j ϕ1

)
− 2G2

( √
j ϕ1

))]
(10.97)

The total copper loss in the winding is the sum of losses arising from all components of the
harmonic series:

Pcu

DI2
pkRdc

= D +
2ϕ1

Dπ2

∞∑
j=1

sin2( jπD)

j
√

j

[
GI

( √
j ϕ1

)
+

2
3

(M2 − 1)
(
G1

( √
j ϕ1

)
− 2G2

( √
j ϕ1

))]

(10.98)
In Eq. (10.98), the copper loss is expressed relative to the loss DI2

pkRdc predicted by a low-
frequency analysis. This expression can be evaluated by use of a computer program or computer
spreadsheet.

To explicitly quantify the effects of harmonics, we can define the harmonic loss factor FH

as

FH =

∞∑
j=1

Pj

P1
(10.99)

with Pj given by Eq. (10.97). The total winding copper loss is then given by

Pcu = I2
0Rdc + FHFRI2

1Rdc (10.100)

with FR given by Eq. (10.87). The harmonic factor FH is a function not only of the winding
geometry, but also of the harmonic spectrum of the winding current waveform. The harmonic
factor FH is plotted in Fig. 10.39 for several values of D, for the simple transformer example.
The total harmonic distortion (THD) of the example current waveforms are: 48% for D = 0.5,
76% for D = 0.3, and 191% for D = 0.1. The waveform THD is defined as

THD =

√
∞∑
j=2

I2
j

I1
(10.101)

It can be seen that harmonics significantly increase the proximity loss of a multi-layer winding
when ϕ1 is close to 1. For sufficiently small ϕ1, the proximity effect can be neglected, and FH

tends to the value 1 + (THD)2. For large ϕ1, the harmonics also increase the proximity loss;
however, the increase is less dramatic than for ϕ1 near 1 because the fundamental component
proximity loss is large. It can be concluded that, when the current waveform contains high THD
and when the winding contains several layers or more, then proximity losses can be kept low
only by choosing ϕ1 much less than 1. Interleaving the windings allows a larger value of ϕ1 to
be employed.
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Fig. 10.39 Increased proximity
losses induced by PWM waveform
harmonics, forward converter exam-
ple: (a) at D = 0.1, (b) at D = 0.3,
(c) at D = 0.5
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10.5 Several Types of Magnetic Devices, Their B–H Loops,
and Core vs. Copper Loss

A variety of magnetic elements are commonly used in power applications, which employ the
properties of magnetic core materials and windings in different ways. As a result, quite a few
factors constrain the design of a magnetic device. The maximum flux density must not saturate
the core. The peak ac flux density should also be sufficiently small, such that core losses are
acceptably low. The wire size should be sufficiently small, to fit the required number of turns
in the core window. Subject to this constraint, the wire cross-sectional area should be as large
as possible, to minimize the winding dc resistance and copper loss. But if the wire is too thick,
then unacceptable copper losses occur owing to the proximity effect. An air gap is needed when
the device stores significant energy. But an air gap is undesirable in transformer applications. It
should be apparent that, for a given magnetic device, some of these constraints are active while
others are not significant.

Thus, design of a magnetic element involves not only obtaining the desired inductance or
turns ratio, but also ensuring that the core material does not saturate and that the total power loss
is not too large. Several common power applications of magnetics are discussed in this section,
which illustrate the factors governing the choice of core material, maximum flux density, and
design approach.

10.5.1 Filter Inductor

A filter inductor employed in a CCM buck converter is illustrated in Fig. 10.40a. In this ap-
plication, the value of inductance L often is chosen such that the inductor current ripple peak
magnitude Δi is a small fraction of the full-load inductor current dc component I, as illustrated

(a)

+

L

i(t)

(b) i(t)

t0 DTs
Ts

I iL

Fig. 10.40 Filter inductor employed in a CCM buck converter: (a) circuit schematic, (b) inductor current
waveform
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Fig. 10.41 Filter inductor: (a) structure, (b) magnetic circuit model

Fig. 10.42 Filter inductor minor B–H
loop

B

Hc0

Hc

Hc

Bsat

filter inductor

large excitation

B

in Fig. 10.40b. As illustrated in Fig. 10.41, an air gap is employed that is sufficiently large to
prevent saturation of the core by the peak current I + Δi.

The core magnetic field strength Hc(t) is related to the winding current i(t) according to

Hc(t) =
ni(t)
�c

Rc

Rc +Rg
(10.102)

where �c is the magnetic path length of the core. Since Hc(t) is proportional to i(t), Hc(t) can be
expressed as a large dc component Hc0 and a small superimposed ac ripple ΔHc, where

Hc0 =
nI
�c

Rc

Rc +Rg
(10.103)

ΔHc =
nΔi
�c

Rc

Rc +Rg

A sketch of B(t) vs. Hc(t) for this application is given in Fig. 10.42. This device operates with
the minor B–H loop illustrated. The size of the minor loop, and hence the core loss, depends on
the magnitude of the inductor current ripple Δi. The copper loss depends on the rms inductor
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current ripple, essentially equal to the dc component I. Typically, the core loss can be ignored,
and the design is driven by the copper loss. The maximum flux density is limited by saturation of
the core. Proximity losses are negligible. Although a high-frequency ferrite material can be em-
ployed in this application, other materials having higher core losses and greater saturation flux
density lead to a physically smaller device. Design of a filter inductor in which the maximum
flux density is a specified value is considered in the next chapter.

10.5.2 AC Inductor

An ac inductor employed in a resonant converter is illustrated in Fig. 10.43. In this application,
the high-frequency current variations are large. In consequence, the B(t) − H(t) loop illustrated
in Fig. 10.44 is large. Core loss and proximity loss are usually significant in this application. The
maximum flux density is limited by core loss rather than saturation. Both core loss and copper
loss must be accounted for in the design of this element, and the peak ac flux density ΔB is a
design variable that is typically chosen to minimize the total loss. A high-frequency material
having low core loss, such as ferrite, is normally employed. Design of magnetics such as this, in
which the ac flux density is a design variable that is chosen in a optimal manner, is considered
in Chap. 12.

(a)
L

i(t)

(b) i(t)

t

i

i

Fig. 10.43 Ac inductor, resonant converter example: (a) resonant tank circuit, (b) inductor current wave-
form

Fig. 10.44 Operational B–H loop of an
ac inductor

B

Hc Hc

Bsat

operation as
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10.5.3 Transformer

Figure 10.45 illustrates a conventional transformer employed in a switching converter. Magneti-
zation of the core is modeled by the magnetizing inductance LM . The magnetizing current iM(t)
is related to the core magnetic field H(t) according to Ampere’s law

H(t) =
niM(t)
�m

(10.104)

However, iM(t) is not a direct function of the winding currents i1(t) or i2(t). Rather, the mag-
netizing current is dependent on the applied winding voltage waveform v1(t). Specifically, the
maximum ac flux density is directly proportional to the applied volt-seconds λ1. A typical B–H
loop for this application is illustrated in Fig. 10.46.

In the transformer application, core loss and proximity losses are usually significant. Typ-
ically the maximum flux density is limited by core loss rather than by saturation. A high-
frequency material having low core loss is employed; in a transformer-isolated switching con-
verter, ferrite typically is used. Both core and copper losses must be accounted for in the design
of the transformer. The design must also incorporate multiple windings. Transformer design
with flux density optimized for minimum total loss is described in Chap. 12.

(a)

n1 : n2

+

v1(t)

+

v2(t)

i1(t) i2(t)

LM

iM(t)

(b)

iM(t)

t

iM

v1(t) Area 1

Fig. 10.45 Conventional transformer: (a) equivalent circuit, (b) typical primary voltage and magnetizing
current waveforms

Fig. 10.46 Operational B–H loop of a
conventional transformer

operation as
conventional
transformer
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2n1Ac

n1 imp
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10.5.4 Coupled Inductor

A coupled inductor is a filter inductor having multiple windings. Figure 10.47a illustrates cou-
pled inductors in a two-output forward converter. The inductors can be wound on the same core,
because the winding voltage waveforms are proportional. The inductors of the SEPIC and Ćuk
converters, as well as of multiple-output buck-derived converters and some other converters, can
be coupled. The inductor current ripples can be controlled by control of the winding leakage
inductances [97, 98]. Dc currents flow in each winding as illustrated in Fig. 10.47b, and the net
magnetization of the core is proportional to the sum of the winding ampere-turns:

Hc(t) =
n1i1(t) + n2i2(t)

�c

Rc

Rc +Rg
(10.105)

As in the case of the single winding filter inductor, the size of the minor B–H loop is proportional
to the total current ripple (Fig. 10.48). Small ripple implies small core loss, as well as small
proximity loss. An air gap is employed, and the maximum flux density is typically limited by
saturation.

(a) n1
+

v1

n2
turns

i1

+

v2

i2

+vg

(b) i1(t)

I1
i1

i2(t)

t

I2
i2

Fig. 10.47 Coupling the output filter inductors of a two-output forward converter: (a) schematic, (b)
typical inductor current waveforms
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Fig. 10.48 Coupled inductor minor
B–H loop
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10.5.5 Flyback Transformer

As discussed in Chap. 6, the flyback transformer functions as an inductor with two windings.
The primary winding is used during the transistor conduction interval, and the secondary is used
during the diode conduction interval. A flyback converter is illustrated in Fig. 10.49a, with the
flyback transformer modeled as a magnetizing inductance in parallel with an ideal transformer.
The magnetizing current iM(t) is proportional to the core magnetic field strength Hc(t). Typical
DCM waveforms are given in Fig. 10.49b.

Since the flyback transformer stores energy, an air gap is needed. Core loss depends on
the magnitude of the ac component of the magnetizing current. The B–H loop for discontinuous
conduction mode operation is illustrated in Fig. 10.50. When the converter is designed to operate
in DCM, the core loss is significant. The peak ac flux density ΔB is then chosen to maintain an
acceptably low core loss. For CCM operation, core loss is less significant, and the maximum
flux density may be limited only by saturation of the core. In either case, winding proximity
losses are typically quite significant. Unfortunately, interleaving the windings has little impact
on the proximity loss because the primary and secondary winding currents are out of phase.

(a)

+
LM

+

v

vg

n1 : n2

iMi1 i2

(b) i1(t) i1,pk

i2(t)

t
iM(t)

t

i1,pk

Fig. 10.49 Flyback transformer: (a) converter schematic, with transformer equivalent circuit; (b) DCM
current waveforms
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Fig. 10.50 Operational B–H loop of a
DCM flyback transformer

10.6 Summary of Key Points

1. Magnetic devices can be modeled using lumped-element magnetic circuits, in a manner
similar to that commonly used to model electrical circuits. The magnetic analogs of electri-
cal voltage V , current I, and resistance R are magnetomotive force (MMF) F , flux Φ, and
reluctance R, respectively.

2. Faraday’s law relates the voltage induced in a loop of wire to the derivative of flux passing
through the interior of the loop.

3. Ampere’s law relates the total MMF around a loop to the total current passing through the
center of the loop. Ampere’s law implies that winding currents are sources of MMF, and
that when these sources are included, then the net MMF around a closed path is equal to
zero.

4. Magnetic core materials exhibit hysteresis and saturation. A core material saturates when
the flux density B reaches the saturation flux density Bsat.

5. Air gaps are employed in inductors to prevent saturation when a given maximum current
flows in the winding, and to stabilize the value of inductance. The inductor with air gap
can be analyzed using a simple magnetic equivalent circuit, containing core and air gap
reluctances and a source representing the winding MMF.

6. Conventional transformers can be modeled using sources representing the MMFs of each
winding, and the core MMF. The core reluctance approaches zero in an ideal transformer.
Nonzero core reluctance leads to an electrical transformer model containing a magnetizing
inductance, effectively in parallel with the ideal transformer. Flux that does not link both
windings, or “leakage flux,” can be modeled using series inductors.

7. The conventional transformer saturates when the applied winding volt-seconds are too large.
Addition of an air gap has no effect on saturation. Saturation can be prevented by increasing
the core cross-sectional area, or by increasing the number of primary turns.

8. Magnetic materials exhibit core loss, due to hysteresis of the B–H loop and to induced eddy
currents flowing in the core material. In available core materials, there is a tradeoff between
high saturation flux density Bsat and high core loss Pf e. Laminated iron alloy cores exhibit
the highest Bsat but also the highest Pf e, while ferrite cores exhibit the lowest Pf e but also
the lowest Bsat. Between these two extremes are powdered iron alloy and amorphous alloy
materials.

9. The skin and proximity effects lead to eddy currents in winding conductors, which increase
the copper loss Pcu in high-current high-frequency magnetic devices. When a conductor has
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thickness approaching or larger than the penetration depth δ, magnetic fields in the vicinity
of the conductor induce eddy currents in the conductor. According to Lenz’s law, these eddy
currents flow in paths that tend to oppose the applied magnetic fields.

10. The magnetic field strengths in the vicinity of the winding conductors can be determined by
use of MMF diagrams. These diagrams are constructed by application of Ampere’s law, fol-
lowing the closed paths of the magnetic field lines which pass near the winding conductors.
Multiple-layer noninterleaved windings can exhibit high maximum MMFs, with resulting
high eddy currents and high copper loss.

11. An expression for the copper loss in a layer, as a function of the magnetic field strengths
or MMFs surrounding the layer, is given in Sect. 10.4.4. This expression can be used in
conjunction with the MMF diagram, to compute the copper loss in each layer of a winding.
The results can then be summed, yielding the total winding copper loss. When the effective
layer thickness is near to or greater than one skin depth, the copper losses of multiple-layer
noninterleaved windings are greatly increased.

12. Pulse-width modulated winding currents contain significant total harmonic distortion; this
can lead to a further increase of copper loss. The increase in proximity loss caused by
current harmonics is most pronounced in multiple-layer noninterleaved windings, with an
effective layer thickness near one skin depth.

Problems

10.1 The core illustrated in Fig. 10.51a is 1 cm thick. All legs are 1 cm wide, except for the
right-hand side vertical leg, which is 0.5 cm wide. You may neglect nonuniformities in
the flux distribution caused by turning comers.

(a)

Core relative permeability μr = 1000
n1 = 10

3 cm 3 cm

3 cm

3
cm 0.5 cm

1 cm
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n
1
 turns

3
cm
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(b)

n1 = 10

i1

n
1

turns

n2 = 20

i2

n
2

turns

Fig. 10.51 Problem 10.1

(a) Determine the magnetic circuit model of this device, and label the values of all re-
luctances in your model.

(b) Determine the inductance of the winding.
A second winding is added to the same core, as shown in Fig. 10.51b.

(c) Modify your model of part (a) to include this winding.
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(d) The electrical equations for this circuit may be written in the form
[

v1

v2

]
=

[
L11 L12

L12 L22

]
d
dt

[
i1
i2

]

Use superposition to determine analytical expressions and numerical values for L11,
L12, and L22.

10.2 Two windings are placed as illustrated in Fig. 10.52a on a core of uniform cross-sectional
area Ac = 1 cm2. Each winding has 50 turns. The relative permeability of the core is
μr = 104.

Fig. 10.52 Problem 10.2

(a)

5 cm

5 cm

5 cm

i2+
v2

i1
+
v1

(b)

L+

(c)

L

(a) Sketch an equivalent magnetic circuit, and determine numerical values for each reluc-
tance.

(b) Determine the self-inductance of each winding.
(c) Determine the inductance L+ obtained when the windings are connected in series as

in Fig. 10.52b.
(d) Determine the inductance L− obtained when the windings are connected in anti-series

as in Fig. 10.52c.
10.3 All three legs of the magnetic device illustrated in Fig. 10.53 are of uniform cross-

sectional area AC . Legs 1 and 2 each have magnetic path length 3�, while leg 3 has
magnetic path length �. Both windings have n turns. The core has permeability μ 
 μ0.

Fig. 10.53 Magnetic core for
Problem 10.3
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(a) Sketch a magnetic equivalent circuit, and give analytical expressions for all element
values. A voltage source is connected to winding 1, such that v1(t) is a square wave
of peak value Vmax and period Ts. Winding 2 is open-circuited.

(b) Sketch i1(t) and label its peak value.
(c) Find the flux ϕ2(t) in leg 2. Sketch ϕ2(t) and label its peak value.
(d) Sketch v2(t) and label its peak value.

10.4 The magnetic device illustrated in Fig. 10.54a consists of two windings, which can re-
place the two inductors in a Ćuk, SEPIC, or other similar converter. For this problem, all
three legs have the same uniform cross-sectional area Ac. The legs have gaps of lengths
g1, g2, and g3, respectively. The core permeability μ is very large. You may neglect fring-
ing flux. Legs 1 and 2 have windings containing n1 and n2 turns, respectively.

(a)
i2

+
v2

i1
+
v1

n1
turns

n2
turns

Gap
length

g
1

g
3

Gap
length
g

2

(b)

+ R V

+

Vg

i1 i2
n1

turns
n2

turns

Fig. 10.54 Magnetic core and converter for Problem 10.4

(a) Derive a magnetic circuit model for this device, and give analytical expressions for
each reluctance in your model. Label the polarities of the MMF generators.

(b) Write the electrical terminal equations of this device in the matrix form
[

v1

v2

]
=

[
L11 L12

L12 L22

]
d
dt

[
i1
i2

]

and derive analytical expressions for L11, L12, and L22.
(c) Derive an electrical circuit model for this device, and give analytical expressions

for the turns ratio and each inductance in your model, in terms of the turns and
reluctances of part (a).
This single magnetic device is to be used to realize the two inductors of the Ćuk
converter, as in Fig. 10.54b.
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(d) Sketch the voltage waveforms v1(t) and v2(t), making the linear-ripple approxima-
tion as appropriate. You may assume that the converter operates in the continuous
conduction mode.

(e) The voltage waveforms of part (d) are applied to your model of parts (b) and (c).
Solve your model to determine the slopes of the inductor current ripples during in-
tervals DTs and D′Ts. Sketch the steady-state inductor current waveforms i1(t) and
i2(t), and label all slopes.

(f) By skillful choice of n1/n2 and the air gap lengths, it is possible to make the induc-
tor current ripple Δi in either i1(t) or i2(t) go to zero. Determine the conditions on
n1/n2, g1, g2, and g3 that cause the current ripple in i2(t) to become zero. Sketch the
resulting i1(t) and i2(t), and label all slopes.

It is possible to couple the inductors in this manner, and cause one of the inductor cur-
rent ripples to go to zero, in any converter in which the inductor voltage waveforms are
proportional.

10.5 Over its usable operating range, a certain permanent magnet material has the B–H char-
acteristics illustrated by the solid line in Fig. 10.55. The magnet has length �m = 0.5 cm,
and cross-sectional area 4 cm2. Bm = 1 T. Derive an equivalent magnetic circuit model
for the magnet, and label the numerical values of the elements.

Fig. 10.55 B–H characteristic of the per-
manent magnet material for Problem 10.5

B

H

μ = 1.06 μ0

Bm

10.6 The two-transistor forward converter of Fig. 6.29 operates with Vg = 300 V, V = 28 V,
switching frequency fs = 100 kHz, and turns ratio n = 0.25. The dc load power is
250 W. The transformer uses an EC41 ferrite core; relevant data for this core is listed
in Appendix B. The core loss is given by Fig. 10.20. The primary winding consists of
44 turns of #21 AWG wire, and the secondary winding is composed of 11 turns of #15
AWG wire. Data regarding the American wire gauge is also listed in Appendix B. For this
problem, you may assume that ΔB = Bmax/2, and you may neglect skin and proximity
losses. You may assume that the magnetizing current and the output filter inductor current
are very small.

(a) Estimate the core loss of this transformer
(b) Determine the copper loss of this transformer. You may neglect proximity losses.

10.7 The two-transistor forward converter of Fig. 6.29 operates in CCM with Vg = 300 V,
V = 28 V, switching frequency fs = 100 kHz, and turns ratio n = 0.25. The dc load
power is 250 W. The transformer uses an EC41 ferrite core; relevant data for this core is
listed in Appendix B. This core has window height �w = 2.78 cm. The primary winding
consists of 44 turns of #24 AWG wire, and the secondary winding is composed of 11
turns of #14 AWG wire. Each winding comprises one layer. Data regarding the American
wire gauge is also listed in Appendix B. The winding operates at room temperature.
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(a) Determine the primary and secondary copper losses induced by the dc components
of the winding currents.

(b) Determine the primary and secondary copper losses induced by the fundamental
components of the winding currents.

(c) Determine the primary and secondary copper losses induced by the second harmonic
components of the winding currents.

10.8 The winding currents of the transformer in a high-voltage inverter are essentially sinu-
soidal, with negligible harmonics and no dc components. The primary winding consists
of one layer containing 10 turns of round copper wire. The secondary winding consists
of 250 turns of round copper wire, arranged in ten layers. The operating frequency is
f = 50 kHz, and the winding porosity is 0.8. Determine the primary and secondary wire
diameters and wire gauges that minimize the total copper loss.

10.9 A certain three-winding transformer contains one primary and two secondaries. The oper-
ating frequency is 40 kHz. The primary winding contains a total of 60 turns of #26 AWG,
arranged in three layers. The secondary windings each consist of five turns of copper
foil, one turn per layer. The foil thickness is 0.25 mm. The primary layers have porosity
0.8, while the secondary layer porosity is 1. The primary winding carries a sinusoidal
current having rms value I, while each secondary carries rms current 6I. The windings
are not interleaved: the primary winding is closest to the center leg of the core, followed
by secondary winding #1, followed by secondary winding #2.

(a) Sketch an MMF diagram illustrating the magnetic fields in the vicinity of each wind-
ing layer.

(b) Determine the increased copper loss, due to the proximity effect, in each layer.
(c) Determine the ratio of copper loss to dc copper loss, FR, for the entire transformer

windings.
(d) In this application, it is not feasible to interleave the primary winding with the other

windings. However, changing the conductor size is permissible. Discuss how the
windings could be better optimized.

10.10 A transformer winding contains a four-layer primary winding, and two two-layer sec-
ondary windings. Each layer of the primary winding carries total current I. Each layer
of secondary winding #1 carries total current 1.5I. Each layer of secondary winding #2
carries total current 0.5I. All currents are sinusoidal. The effective relative conductor
thickness is ϕ = 2. The windings are partially interleaved, in the following order: two
primary layers, followed by both layers of secondary #1, followed by both layers of sec-
ondary #2, and finally the two remaining primary layers. You may assume that the core
has negligible reluctance.

(a) Sketch an MMF diagram for this winding arrangement.
(b) Each primary layer has dc resistance Rdc−p, and each secondary layer has dc resis-

tance Rdc−s. Determine the increased copper loss, due to the proximity effect, for
each layer.

(c) Determine the increase in total transformer copper loss, due to the proximity effect.

10.11 A transformer is connected to a voltage source and a load as illustrated in Fig. 10.56.
The primary winding is excited by the voltage v1(t) whose waveform is illustrated in
Fig. 10.57. The switching frequency is fs = 1/Ts = 200 kHz, and the duty cycle is
D = 1/3. The load current is a 200 kHz sinusoid having amplitude 5 A rms.
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Fig. 10.56 Transformer circuit of
Problem 10.11 +

n1:n2

v1(t daol)

Fig. 10.57 Primary volt-
age waveform v1(t) for Prob-
lem 10.11 t

v1(t) +24 V

TsDTs

The transformer consists of a ferrite PQ 26/25 core, with flat copper (ribbon) windings.
The primary winding consists of two turns of flat copper of rectangular cross-section,
with a copper width of 1.25 cm and a copper thickness of 0.07 cm. The secondary wind-
ing consists of eight turns of flat copper also of rectangular cross-section, with a copper
width of 1.25 cm and a copper thickness of 0.017 cm. Each turn comprises one layer in
the winding. You may assume that the transformer operates at a temperature of 100◦C.
The core loss data for this core operating at 200 kHz is plotted in Fig. 10.58.

Fig. 10.58 Core loss vs. peak ac
flux density for Problem 10.11
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The primary and secondary windings are interleaved as follows:
• Three layers of secondary
• One layer of primary
• Two layers of secondary
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• One layer of primary
• Three layers of secondary

(a) Find the peak ac flux density ΔB and the core loss Pf e for this transformer.
(b) Find the dc resistance Rdc and ϕ for each layer.
(c) Sketch the MMF diagram for this transformer, and find the effective m for each layer.
(d) Compute the total power loss in each layer, and the total transformer loss, in Watts.

10.12 The windings in the transformer shown in Fig. 10.59 are realized using copper foil layers
arranged as shown in Fig. 10.60. The primary has two turns, each consisting of a layer of
copper foil carrying high-frequency sinusoidal current 2i. The secondary has four turns,

Fig. 10.59 Transformer of Prob-
lem 10.12

2:4

primary secondary

2 i i

pri1 pri2sec1 sec2 sec3 sec4

Core

MMF
F(x)

x

Fig. 10.60 MMF diagram for a simple transformer with interleaved windings. Each layer operates with
m = 1
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each consisting of a layer of copper foil carrying current i. The foil thickness is much
greater than the penetration depth δ, i.e., ϕ 
 1. The windings are partially interleaved
as illustrated in Fig. 10.60. The copper loss due to a current i through a copper layer of
thickness δ is equal to P.

(a) Sketch the current distribution in the layers, and the MMF diagram for this winding
arrangement.

(b) Find the total copper loss in the transformer, in terms of P.
(c) It is desired to rearrange the winding layers to minimize the total copper loss. Sketch

how the layers should be arranged, sketch the corresponding MMF diagram, and
compute the total loss in terms of P.

10.13 A single-output forward converter contains a transformer having a noninterleaved sec-
ondary winding with four layers. The converter operates at D = 0.3 in CCM, with a
secondary winding current waveform similar to Fig. 10.38.

(a) Estimate the value of ϕ1 that minimizes the secondary winding copper losses.
(b) Determine the resulting secondary copper loss, relative to I2

rmsRdc.

10.14 A schematic diagram and waveforms of the isolated SEPIC, operating in CCM, are given
in Figs. 6.39 and 6.40.

(a) Do you expect the SEPIC transformer to contain an air gap? Why or why not?
(b) Sketch the SEPIC transformer B–H loop, for CCM operation.
(c) For CCM operation, do you expect core loss to be significant? Explain your reason-

ing.
(d) For CCM operation, do you expect winding proximity losses to be significant? Ex-

plain your reasoning.
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Inductor Design

This chapter treats the design of magnetic elements such as filter inductors, using the geomet-
rical constant (Kg) method. With this method, the maximum flux density Bmax is specified in
advance, and the element is designed to attain a given copper loss.

The design of a basic filter inductor is discussed in Sects. 11.1 and 11.1.5. In the filter
inductor application, it is necessary to obtain the required inductance, avoid saturation, and
obtain an acceptable low dc winding resistance and copper loss. The geometrical constant Kg is
a measure of the effective magnetic size of a core, when dc copper loss and winding resistance
are the dominant constraints [4, 99]. Design of a filter inductor involves selection of a core
having a Kg sufficiently large for the application, then computing the required air gap, turns,
and wire size. A first-pass filter inductor design procedure is given. Values of Kg for common
ferrite core shapes are tabulated in Appendix B. In practice, the Kg method might be employed
to find a starting estimate of an inductor design. Details of the winding geometry would be
examined, and all losses computed. Design iterations can then further optimize the design.

Extension of the Kg method to multiple-winding elements is covered in Sect. 11.3. In appli-
cations requiring multiple windings, it is necessary to optimize the wire sizes of the windings
so that the overall copper loss is minimized. It is also necessary to write an equation that relates
the peak flux density to the applied waveforms or to the desired winding inductance. Again, a
simple step-by-step transformer design approach is given.

The goal of the Kg approach of this chapter is the design of a magnetic device having a given
copper loss. Core loss is not specifically addressed in the Kg approach, and Bmax is a given fixed
value. In the next chapter, the flux density is treated as a design variable to be optimized. This
allows the overall loss (i.e., core loss plus copper loss) to be minimized.

11.1 Filter Inductor Design Constraints

A filter inductor employed in a CCM buck converter is illustrated in Fig. 11.1a. In this appli-
cation, the value of inductance L is usually chosen such that the inductor current ripple peak
magnitude Δi is a small fraction of the full-load inductor current dc component I, as illustrated
in Fig. 11.1b. As illustrated in Fig. 11.2, an air gap is employed that is sufficiently large to pre-
vent saturation of the core by the peak current I + Δi.
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(a)

+

L

i(t)

(b) i(t)

t0 DTs
Ts

I iL

Fig. 11.1 Filter inductor employed in a CCM buck converter: (a) circuit schematic, (b) inductor current
waveform

Fig. 11.2 Filter inductor: (a) structure, (b) magnetic circuit model

Let us consider the design of the filter inductor illustrated in Figs. 11.1 and 11.2. It
is assumed that the core and proximity losses are negligible, so that the inductor losses

Fig. 11.3 Filter inductor
equivalent circuit

are dominated by the low-frequency copper losses. The inductor
can therefore be modeled by the equivalent circuit of Fig. 11.3, in
which R represents the dc resistance of the winding. It is desired
to obtain a given inductance L and given winding resistance R.
The inductor should not saturate when a given worst-case peak
current Imax is applied. Note that specification of R is equivalent
to specification of the copper loss Pcu, since

Pcu = I2
rms R (11.1)

The influence of inductor winding resistance on converter effi-
ciency and output voltage is modeled in Chap. 3.
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Fig. 11.4 Filter inductor: (a) assumed geometry, (b) magnetic circuit

It is assumed that the inductor geometry is topologically equivalent to Fig. 11.4a. An equiv-
alent magnetic circuit is illustrated in Fig. 11.4b. The core reluctance Rc and air gap reluctance
Rg are

Rc =
�c

μcAc

Rg =
�g

μ0Ac

(11.2)

where �c is the core magnetic path length, Ac is the core cross-sectional area, μc is the core
permeability, and �g is the air gap length. It is assumed that the core and air gap have the same
cross-sectional areas. Solution of Fig. 11.4b yields

ni = Φ(Rc +Rg) (11.3)

Usually, Rc 	 Rg, and hence Eq. (11.3) can be approximated as

ni ≈ ΦRg (11.4)

The air gap dominates the inductor properties. Four design constraints now can be identified.

11.1.1 Maximum Flux Density

Given a peak winding current Imax, it is desired to operate the core flux density at a maximum
value Bmax. The value of Bmax is chosen to be less than the worst-case saturation flux density
Bsat of the core material.

Substitution of Φ = BAc into Eq. (11.4) leads to

ni = BAcRg (11.5)

Upon letting I = Imax and B = Bmax, we obtain

nImax = BmaxAcRg = Bmax
�g

μ0
(11.6)

This is the first design constraint. The turns ratio n and the air gap length �g are unknowns.
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11.1.2 Inductance

The given inductance value L must be obtained. The inductance is equal to

L =
n2

Rg
=

μ0Acn2

�g
(11.7)

This is the second design constraint. The turns ratio n, core area Ac, and gap length �g are
unknown.

Fig. 11.5 The winding must fit in
the core window area

Core window
area WA

Wire bare area
AW

Core

11.1.3 Winding Area

As illustrated in Fig. 11.5, the winding must fit through the window, i.e., the hole in the center
of the core. The cross-sectional area of the conductor, or bare area, is AW . If the winding has n
turns, then the area of copper conductor in the window is

nAW (11.8)

If the core has window area WA, then we can express the area available for the winding conduc-
tors as

KuWA (11.9)

where Ku is the window utilization factor, or fill factor. Hence, the third design constraint can
be expressed as

KuWA ≥ nAW (11.10)

The fill factor Ku is the fraction of the core window area that is filled with copper. Ku must
lie between zero and one. As discussed in [99], there are several mechanism that cause Ku to be
less than unity. Round wire does not pack perfectly; this reduces Ku by a factor of 0.7 to 0.55,
depending on the winding technique. The wire has insulation; the ratio of wire conductor area
to total wire area varies from approximately 0.95 to 0.65, depending on the wire size and type
of insulation. The bobbin uses some of the window area. Insulation may be required between
windings and/or winding layers. Typical values of Ku for cores with winding bobbins are 0.5
for a simple low-voltage inductor, 0.25 to 0.3 for an off-line transformer, 0.05 to 0.2 for a
high-voltage transformer supplying several kV, and 0.65 for a low-voltage foil transformer or
inductor.
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11.1.4 Winding Resistance

The resistance of the winding is

R = ρ
�b
AW

(11.11)

where ρ is the resistivity of the conductor material, �b is the length of the wire, and AW is the
wire bare area. The resistivity of copper at room temperature is 1.724 · 10−6Ω-cm. The length
of the wire comprising an n-turn winding can be expressed as

�b = n(MLT) (11.12)

where (MLT) is the mean-length-per-turn of the winding. The mean-length-per-turn is a function
of the core geometry. Substitution of Eq. (11.12) into (11.11) leads to

R = ρ
n(MLT)

AW
(11.13)

This is the fourth constraint.

11.1.5 The Core Geometrical Constant Kg

The four constraints, Eqs. (11.6), (11.7), (11.10), and (11.13), involve the quantities Ac,WA, and
MLT , which are functions of the core geometry, the quantities Imax, Bmax, μ0, L,Ku,R, and ρ,
which are given specifications or other known quantities, and n, �g, and AW , which are unknowns.
Elimination of the unknowns n, �g, and AW leads to the following equation:

A2
cWA

(MLT)
≥

ρL2I2
max

B2
maxRKu

(11.14)

The quantities on the right side of this equation are specifications or other known quantities.
The left side of the equation is a function of the core geometry alone. It is necessary to choose
a core whose geometry satisfies Eq. (11.14).

The quantity

Kg =
A2

cWA

(MLT)
(11.15)

is called the core geometrical constant. It is a figure-of-merit that describes the effective elec-
trical size of magnetic cores, in applications where copper loss and maximum flux density are
specified. Tables are included in Appendix B that lists the values of Kg for several standard
families of ferrite cores. Kg has dimensions of length to the fifth power.

Equation (11.14) reveals how the specifications affect the core size. Increasing the induc-
tance or peak current requires an increase in core size. Increasing the peak flux density allows
a decrease in core size, and hence it is advantageous to use a core material that exhibits a high
saturation flux density. Allowing a larger winding resistance R, and hence larger copper loss,
leads to a smaller core. Of course, the increased copper loss and smaller core size will lead to a
higher temperature rise, which may be unacceptable. The fill factor Ku also influences the core
size.

Equation (11.15) reveals how core geometry affects the core capabilities. An inductor capa-
ble of meeting increased electrical requirements can be obtained by increasing either the core
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area Ac, or the window area WA. Increase of the core area requires additional iron core material.
Increase of the window area implies that additional copper winding material is employed. We
can trade iron for copper, or vice versa, by changing the core geometry in a way that maintains
the Kg of Eq. (11.15).

11.2 The Kg Method: A First-Pass Design

The procedure developed in Sect. 11.1 is summarized below. This simple filter inductor de-
sign procedure should be regarded as a first-pass approach. Numerous issues have been ne-
glected, including detailed insulation requirements, conductor eddy current losses, temperature
rise, roundoff of number of turns, etc.

The following quantities are specified, using the units noted:

Wire resistivity ρ (Ω-cm)
Peak winding current Imax (A)
Inductance L (H)
Winding resistance R (Ω)
Winding fill factor Ku

Maximum operating flux density Bmax (T)

The core dimensions are expressed in cm:

Core cross-sectional area Ac (cm2)
Core window area WA (cm2)
Mean length per turn MLT (cm)

The use of centimeters rather than meters requires that appropriate factors be added to the
design equations.

1. Determine core size

Kg ≥
ρL2I2

max

B2
maxRKu

108 (cm5) (11.16)

Choose a core which is large enough to satisfy this inequality. Note the values of Ac,WA, and
MLT for this core. The resistivity ρ of copper wire is 1.724 · 10−6Ω-cm at room temperature,
and 2.3 · 10−6Ω-cm at 100◦C.

2. Determine number of turns

n =
LImax

BmaxAc
104 (11.17)

with Ac expressed in cm2 and Bmax expressed in T.

3. Determine air gap length

�g =
μ0Acn2

L
10−4 (m) (11.18)

with Ac expressed in cm2. The permeability of free space is μ0 = 4π · 10−7 H/m. The air gap
length is given in meters. The value expressed in Eq. (11.18) is approximate, and neglects fring-
ing flux and other nonidealities. Generally fringing flux increases the inductance, and hence a
somewhat longer gap would be needed to achieve the specified inductance.
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Core manufacturers sell gapped cores. Rather than specifying the air gap length, the equiva-
lent quantity AL is used. AL is equal to the inductance, in mH, obtained with a winding of 1000
turns. When AL is specified, it is the core manufacturer’s responsibility to obtain the correct gap
length. Equation (11.18) can be modified to yield the required AL, as follows:

AL =
10B2

maxA2
c

LI2
max

(mH/1000 turns) (11.19)

where Ac is given in cm2, L is given in Henries, and Bmax is given in Tesla.

4. Evaluate wire size

AW ≤
KuWA

n
(cm2) (11.20)

Select wire with bare copper area less than or equal to this value. An American Wire Gauge
table is included in Appendix B.

As a check, the winding resistance can be computed:

R =
ρn(MLT)

Aw
(Ω) (11.21)

11.3 Multiple-Winding Magnetics Design via the Kg Method

The Kg method can be extended to the case of multiple-winding magnetics, such as the trans-
formers and coupled inductors described in Sects. 10.5.3 to 10.5.5. The desired turns ratios, as
well as the desired winding voltage and current waveforms, are specified. In the case of a cou-
pled inductor or flyback transformer, the magnetizing inductance is also specified. It is desired
to select a core size, number of turns for each winding, and wire sizes. It is also assumed that
the maximum flux density Bmax is given.

With the Kg method, a desired copper loss is attained. In the multiple-winding case, each
winding contributes some copper loss, and it is necessary to allocate the available window area
among the various windings. In Sect. 11.3.1 below, it is found that total copper loss is minimized
if the window area is divided between the windings according to their apparent powers. This
result is employed in the following sections, in which an optimized Kg method for coupled
inductor design is developed.

11.3.1 Window Area Allocation

The first issue to settle in design of a multiple-winding magnetic device is the allocation of the
window area AW among the various windings. It is desired to design a device having k windings
with turns ratios n1 : n2 : . . . : nk. These windings must conduct rms currents I1, I2, . . . , Ik

respectively. It should be noted that the windings are effectively in parallel: the winding voltages
are ideally related by the turns ratios

v1(t)
n1
=

v2(t)
n2
= · · · = vk(t)

nk
(11.22)

However, the winding rms currents are determined by the loads, and in general are not related
to the turns ratios. The device is represented schematically in Fig. 11.6.
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Fig. 11.6 It is desired to optimally allocate the win-
dow area of a k–winding magnetic element to min-
imize low-frequency copper losses, with given rms
winding currents and turns ratios

n1  :  n2

:  nk

rms current
I1

rms current
I2

rms current
Ik

Fig. 11.7 Basic core topology, in-
cluding window area WA enclosed by
core (a). The window is allocated to
the various windings (b) to minimize
low-frequency copper loss

(a) Core
Window area WA

Core mean length
per turn (MLT )

Wire resistivity 

Fill factor Ku

(b)

Total window
area WA

Winding 1 allocation
1WA

Winding 2 allocation
2WA

etc.

{
{

The relevant geometrical parameters are summarized in Fig. 11.7a. It is necessary to allocate
a portion of the total window area WA to each winding, as illustrated in Fig. 11.7b. Let α j be the
fraction of the window area allocated to winding j, where

0 < α j < 1
α1 + α2 + · · · + αk = 1

(11.23)

The low-frequency copper loss Pcu, j in winding j depends on the dc resistance Rj of winding
j, as follows:

Pcu, j = I2
j R j (11.24)

The resistance of winding j is

Rj = ρ
� j

AW, j
(11.25)
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where ρ is the wire resistivity, � j is the length of the wire used for winding j, and AW, j is the
cross-sectional area of the wire used for winding j. These quantities can be expressed as

� j = n j(MLT) (11.26)

AW, j =
WAKuα j

n j
(11.27)

where (MLT) is the winding mean-length-per-turn, and Ku is the winding fill factor. Substitution
of these expressions into Eq. (11.25) leads to

Rj = ρ
n2

j (MLT)

WAKuα j
(11.28)

The copper loss of winding j is therefore

Pcu, j =
n2

j i
2
jρ(MLT)

WAKuα j
(11.29)

The total copper loss of the k windings is

Pcu,tot = Pcu,1 + Pcu,2 + · · · + Pcu,k =
ρ(MLT)
WAKu

k∑
j=1

⎛⎜⎜⎜⎜⎜⎝
n2

j I
2
j

α j

⎞⎟⎟⎟⎟⎟⎠ (11.30)

It is desired to choose the α js such that the total copper loss Pcu,tot is minimized. Let us consider
what happens when we vary one of the αs, say α1, between 0 and 1.

When α1 = 0, then we allocate zero area to winding 1. In consequence, the resistance
of winding 1 tends to infinity. The copper loss of winding 1 also tends to infinity. On the other
hand, the other windings are given maximum area, and hence their copper losses can be reduced.
Nonetheless, the total copper loss tends to infinity.

When α1 = 1, then we allocate all of the window area to winding 1, and none to the other
windings. Hence, the resistance of winding 1, as well as its low-frequency copper loss, is mini-
mized. But the copper losses of the remaining windings tend to infinity.

As illustrated in Fig. 11.8, there must be an optimum value of α1 that lies between these
two extremes, where the total copper loss is minimized. Let us compute the optimum values of
α1,α2, . . . ,αk using the method of Lagrange multipliers. It is desired to minimize Eq. (11.30),
subject to the constraint of Eq. (11.23). Hence, we define the function

Fig. 11.8 Variation of copper losses
with α1

1

Copper
loss

10

Pcu,tot

P
cu,1

P cu,2
+

P cu
,3

+
...

+
P cu

,k
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f (α1,α2, · · · ,αk, ξ) = Pcu,tot(α1,α2, · · · ,αk) + ξg(α1,α2, · · · ,αk) (11.31)

where

g(α1,α2, · · · ,αk) = 1 −
k∑

j=1

α j (11.32)

is the constraint that must equal zero, and ξ is the Lagrange multiplier. The optimum point is
the solution of the system of equations

∂ f (α1,α2, · · · ,αk, ξ)
∂α1

= 0

∂ f (α1,α2, · · · ,αk, ξ)
∂α2

= 0

... (11.33)
∂ f (α1,α2, · · · ,αk, ξ)

∂αk
= 0

∂ f (α1,α2, · · · ,αk, ξ)
∂ξ

= 0

The solution is

ξ =
ρ(MLT)
WAKu

⎛⎜⎜⎜⎜⎜⎜⎝
k∑

j=1

n jI j

⎞⎟⎟⎟⎟⎟⎟⎠
2

= Pcu,tot (11.34)

αm =
nmIm

k∑
j=1

n jI j

(11.35)

This is the optimal choice for the αs, and the resulting minimum value of Pcu,tot.
According to Eq. (11.22), the winding voltages are proportional to the turns ratios. Hence,

we can express the αms in the alternate form

αm =
VmIm

k∑
j=1

VjI j

(11.36)

by multiplying and dividing Eq. (11.35) by the quantity Vm/nm. It is irrelevant whether rms or
peak voltages are used. Equation (11.36) is the desired result. It states that the window area
should be allocated to the various windings in proportion to their apparent powers. The numer-
ator of Eq. (11.36) is the apparent power of winding m, equal to the product of the rms current
and the voltage. The denominator is the sum of the apparent powers of all windings.

As an example, consider the PWM full-bridge transformer having a center-tapped secondary,
as illustrated in Fig. 11.9. This can be viewed as a three-winding transformer, having a single
primary-side winding of n1 turns, and two secondary-side windings, each of n2 turns. The wind-
ing current waveforms i1(t), i2(t), and i3(t) are illustrated in Fig. 11.10. Their rms values are
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Ii1(t)

n1 turns { } n2 turns

} n2 turns

i2(t)

i3(t)

Fig. 11.9 PWM full-bridge transformer example

Fig. 11.10 Transformer wave-
forms, PWM full-bridge trans-
former example
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√
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I
√

D (11.37)

I2 = I3 =

√
1

2Ts

∫ 2TS

0
i22(t)dt = 1

2 I
√

1 + D (11.38)

Substitution of these expressions into Eq. (11.35) yields

α1 =
1⎛⎜⎜⎜⎜⎝1 +

√
1 + D

D

⎞⎟⎟⎟⎟⎠
(11.39)

α2 = α3 =
1
2

1⎛⎜⎜⎜⎜⎝1 +
√

D
1 + D

⎞⎟⎟⎟⎟⎠
(11.40)

If the design is to be optimized at the operating point D = 0.75, then one obtains

α1 = 0.396

α2 = 0.302 (11.41)

α3 = 0.302
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So approximately 40% of the window area should be allocated to the primary winding, and
30% should be allocated to each half of the center-tapped secondary. The total copper loss at
this optimal design point is found from evaluation of Eq. (11.34):

Pcu,tot =
ρ(MLT)
WAKu

⎛⎜⎜⎜⎜⎜⎜⎝
3∑

j=1

n jI j

⎞⎟⎟⎟⎟⎟⎟⎠
2

=
ρ(MLT)n2

2I2

WAKu

(
1 + 2D + 2

√
D(1 + D)

) (11.42)

11.3.2 Coupled Inductor Design Constraints

Let us now consider how to design a k-winding coupled inductor, as discussed in Sect. 10.5.4
and illustrated in Fig. 11.11. It is desired that the magnetizing inductance be a specified value
LM , referred to winding 1. It is also desired that the numbers of turns for the other windings be
chosen according to desired turns ratios. When the magnetizing current iM(t) reaches its maxi-
mum value IM,max, the coupled inductor should operate with a given maximum flux density Bmax.
With rms currents I1, I2, . . . , Ik applied to the respective windings, the total copper loss should
be a desired value Pcu given by Eq. (11.34). Hence, the design procedure involves selecting the
core size and number of primary turns so that the desired magnetizing inductance, the desired
flux density, and the desired total copper loss are achieved. Other quantities, such as air gap
length, secondary turns, and wire sizes, can then be selected. The derivation follows the deriva-
tion for the single-winding case (Sect. 11.1), and incorporates the window area optimization of
Sect. 11.3.1.

The magnetizing current iM(t) can be expressed in terms of the winding currents i1(t), i2(t),
. . . , ik(t) by solution of Fig. 11.11a (or by use of Ampere’s Law), as follows:

iM(t) = i1(t) +
n2

n1
i2(t) + · · · + nk

n1
ik(t) (11.43)

Fig. 11.11 A k–winding magnetic device, with specified turns ratios and waveforms: (a) electrical circuit
model, (b) magnetic circuit model
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By solution of the magnetic circuit model of Fig. 11.11b, we can write

n1iM(t) = B(t)Ac ·Rg (11.44)

This equation is analogous to Eq. (11.4), and assumes that the reluctance Rg of the air gap is
much larger than the reluctance Rc of the core. As usual, the total flux Φ(t) is equal to B(t)Ac.
Leakage inductances are ignored.

To avoid saturation of the core, the instantaneous flux density B(t) must be less than the
saturation flux density of the core material, Bsat. Let us define IM,max as the maximum value
of the magnetizing current iM(t). According to Eq. (11.44), this will lead to a maximum flux
density Bmax given by

n1IM,max = BmaxAc ·Rg = Bmax
�g

μ0
(11.45)

For a value of IM,max given by the circuit application, we should use Eq. (11.45) to choose the
turns n1 and gap length �g such that the maximum flux density Bmax is less than the satura-
tion density Bsat. Equation (11.45) is similar to Eq. (11.6), but accounts for the magnetizations
produced by multiple-winding currents.

The magnetizing inductance LM , referred to winding 1, is equal to

LM =
n2

1

Rg
= n2

1

μ0Ac

�g
(11.46)

This equation is analogous to Eq. (11.7).
As shown in Sect. 11.3.1, the total copper loss is minimized when the core window area WA

is allocated to the various windings according to Eq. (11.35) or (11.36). The total copper loss is
then given by Eq. (11.34). Equation (11.34) can be expressed in the form

Pcu =
ρ(MLT)n2

1I2
tot

WAKu
(11.47)

where

Itot =

k∑
j=1

n j

n1
I j (11.48)

is the sum of the rms winding currents, referred to winding 1.
We can now eliminate the unknown quantities �g and n1 from Eqs. (11.45), (11.46),

and (11.47). Equation (11.47) then becomes

Pcu =
ρ(MLT)L2

MI2
tot I

2
M,max

B2
maxA2

cWAKu
(11.49)

We can now rearrange this equation, by grouping terms that involve the core geometry on the
left-hand side, and specifications on the right-hand side:

A2
cWA

(MLT)
=

ρL2
MI2

tot I
2
M,max

B2
maxKuPcu

(11.50)

The left-hand side of the equation can be recognized as the same Kg term defined in Eq. (11.15).
Therefore, to design a coupled inductor that meets the requirements of operating with a given
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maximum flux density Bmax, given primary magnetizing inductance LM , and with a given total
copper loss Pcu, we must select a core that satisfies

Kg ≥
ρL2

MI2
tot I

2
M,max

B2
maxKuPcu

(11.51)

Once such a core is found, then the winding 1 turns and gap length can be selected to satisfy
Eqs. (11.45) and (11.46). The turns of windings 2 through k are selected according to the desired
turns ratios. The window area is allocated among the windings according to Eq. (11.35), and the
wire gauges are chosen using Eq. (11.27).

The procedure above is applicable to design of coupled inductors. The results are applicable
to design of flyback and SEPIC transformers as well, although it should be noted that the proce-
dure does not account for the effects of core or proximity loss. It also can be extended to design
of other devices, such as conventional transformers—doing so is left as a homework problem.

11.3.3 First-Pass Design Procedure

The following quantities are specified, using the units noted:

Wire effective resistivity ρ (Ω-cm)

Total rms winding currents, referred to winding 1 Itot =
k∑

j=1

n j

ni
I j (A)

Peak magnetizing current, referred to winding 1 IM,max (A)
Desired turns ratios n2/n1, n3/n1, etc.
Magnetizing inductance, referred to winding 1 LM (H)
Allowed total copper loss Pcu (W)
Winding fill factor Ku

Maximum operating flux density Bmax (T)

The core dimensions are expressed in cm:

Core cross-sectional area Ac (cm2)
Core window area WA (cm2)
Mean length per turn MLT (cm)

The use of centimeters rather than meters requires that appropriate factors be added to the
design equations.

1. Determine core size

Kg ≥
ρL2

MI2
tot I

2
M,max

B2
maxPcuKu

108 (cm5) (11.52)

Choose a core which is large enough to satisfy this inequality. Note the values of Ac,WA, and
MLT for this core. The resistivity ρ of copper wire is 1.724 · 10−6Ω · cm at room temperature,
and 2.3 · 10−6Ω · cm at 100◦C.
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2. Determine air gap length

�g =
μ0LMI2

M,max

B2
maxAc

104 (m) (11.53)

Here, Bmax is expressed in Tesla, Ac is expressed in cm2, and �g is expressed in meters. The
permeability of free space is μ0 = 4π · 10−7 H/m. This value is approximate, and neglects
fringing flux and other nonidealities.

3. Determine number of winding 1 turns

n1 =
LMIM,max

BmaxAc
104 (11.54)

Here, Bmax is expressed in Tesla and Ac is expressed in cm2.

4. Determine number of secondary turns
Use the desired turns ratios:

n2 =

(
n2

n1

)
n1

n3 =

(
n3

n1

)
n1

...

(11.55)

5. Evaluate fraction of window area allocated to each winding

α1 =
n1I1

n1Itot

α2 =
n2I2

n1Itot
(11.56)

...

αk =
nkIk

n1Itot

6. Evaluate wire sizes

Aw1 ≤
α1KuWA

n1

Aw2 ≤
α2KuWA

n2

... (11.57)

Select wire with bare copper area less than or equal to these values. An American Wire Gauge
table is included in Appendix B.



474 11 Inductor Design

11.4 Examples

11.4.1 Coupled Inductor for a Two-Output Forward Converter

As a first example, let us consider the design of coupled inductors for the two-output forward
converter illustrated in Fig. 11.12. This element can be viewed as two filter inductors that are
wound on the same core. The turns ratio is chosen to be the same as the ratio of the output
voltages. The magnetizing inductance performs the function of filtering the switching harmon-
ics for both outputs, and the magnetizing current is equal to the sum of the reflected winding
currents.

(a)

n1
+

v1

n2
turns

i1

+

v2

i2

+vg

Output 1
28 V
4 A

Output 2
12 V
2 Afs = 200 kHz

(b)

n
1  : n

2

+

v1

i1

+

v2

i2

LM
iM

Coupled
inductor
model

vM

(c)
iM(t)

vM(t)

IM

0

0

1

iM

D Ts

Fig. 11.12 Two-output forward converter example: (a) circuit schematic, (b) coupled inductor model
inserted into converter secondary-side circuit, (c) magnetizing current and voltage waveforms of coupled
inductor, referred to winding 1

At the nominal full-load operating point, the converter operates in the continuous conduction
mode with a duty cycle of D = 0.35. The switching frequency is 200 kHz. At this operating
point, it is desired that the ripple in the magnetizing current have a peak magnitude equal to
20% of the dc component of magnetizing current.
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The dc component of the magnetizing current IM is

IM = I1 +
n2

n1
I2

= (4 A) +
12
28

(2 A) (11.58)

= 4.86 A

The magnetizing current ripple ΔiM can be expressed as

ΔiM =
V1D′Ts

2LM
(11.59)

Since we want ΔiM to be equal to 20% of IM , we should choose LM as follows:

LM =
V1D′Ts

2ΔiM

=
(28 V)(1 − 0.35)(5 μs)

2(4.86 A)(20%)
(11.60)

= 47 μH

The peak magnetizing current, referred to winding 1, is therefore

IM,max = IM + ΔiM = 5.83 A (11.61)

Since the current ripples of the winding currents are small compared to the respective dc com-
ponents, the rms values of the winding currents are approximately equal to the dc components:
I1 = 4 A, I2 = 2 A. Therefore, the sum of the rms winding currents, referred to winding 1, is

Itot = I1 +
n2

n1
I2 = 4.86 A (11.62)

For this design, it is decided to allow 0.75 W of copper loss, and to operate the core at a max-
imum flux density of 0.25 Tesla. A fill factor of 0.4 is assumed. The required Kg is found by
evaluation of Eq. (11.52), as follows:

Kg ≥
(1.724 · 10−6Ω − cm)(47 μH)2(4.86 A)2(5.83 A)2

(0.25 T)2(0.75 W)(0.4)
108 (11.63)

= 16 · 10−3 cm5

A ferrite PQ 20/16 core is selected, which has a Kg of 22.4 · 10−3 cm5. From Appendix B, the
geometrical parameters for this core are Ac = 0.62 cm2,WA = 0.256 cm2, and MLT = 4.4 cm.

The air gap is found by evaluation of Eq. (11.53) as follows:

�g =
μ0LMI2

M,max

B2
maxAc

104

=
(4π · 10−7H/m)(47 μH)(5.83 A)2

(0.25 T)2(0.62 cm2)
104 (11.64)

= 0.52 mm



476 11 Inductor Design

In practice, a slightly longer air gap would be necessary, to allow for the effects of fringing flux
and other nonidealities. The winding 1 turns are found by evaluation of Eq. (11.54):

n1 =
LMIM,max

BmaxAc
104

=
(47 μH)(5.83 A)

(0.25 T)(0.62 cm2)
104 (11.65)

= 17.6 turns

The winding 2 turns are chosen according to the desired turns ratio:

n2 =

(
n2

n1

)
n1

=

(
12
28

)
(17.6) (11.66)

= 7.54 turns

The numbers of turns are rounded off to n1 = 17 turns, n2 = 7 turns (18:8 would be another
possible choice). The window area WA is allocated to the windings according to the fractions
from Eq. (11.56):

α1 =
n1I1

n1Itot
=

(17)(4 A)
(17)(4.86 A)

= 0.8235

α2 =
n2I2

n1Itot
=

(7)(2 A)
(17)(4.86 A)

= 0.1695

(11.67)

The wire sizes can therefore be chosen as follows:

Aw1 ≤
α1KuWA

n1
=

(0.8235)(0.4)(0.256 cm2)
(17)

= 4.96 · 10−3 cm2

use AWG #21

(11.68)

Aw2 ≤
α2KuWA

n2
=

(0.1695)(0.4)(0.256 cm2)
(7)

= 2.48 · 10−3 cm2

use AWG #24

11.4.2 CCM Flyback Transformer

As a second example, let us design the flyback transformer for the converter illustrated in
Fig. 11.13. This converter operates with an input voltage of 200 V, and produces an full-load
output of 20 V at 5 A. The switching frequency is 150 kHz. Under these operating conditions, it
is desired that the converter operate in the continuous conduction mode, with a magnetizing cur-
rent ripple equal to 20% of the dc component of magnetizing current. The duty cycle is chosen
to be D = 0.4, and the turns ratio is n2/n1 = 0.15. A copper loss of 1.5 W is allowed, not in-
cluding proximity effect losses. To allow room for isolation between the primary and secondary
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Fig. 11.13 Flyback transformer
design example: (a) converter
schematic, (b) typical
waveforms
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windings, a fill factor of Ku = 0.3 is assumed. A maximum flux density of Bmax = 0.25 T is used;
this value is less than the worst-case saturation flux density Bsat of the ferrite core material.

By solution of the converter using capacitor charge balance, the dc component of the mag-
netizing current can be found to be

IM =

(
n2

n1

)
1
D′

V
R
= 1.25 A (11.69)

Hence, the magnetizing current ripple should be

ΔiM = (20%)IM = 0.25 A (11.70)
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and the maximum value of the magnetizing current is

IM,max = IM + ΔiM = 1.5 A (11.71)

To obtain this ripple, the magnetizing inductance should be

LM =
VgDT s

2ΔiM
(11.72)

= 1.07 mH

The rms value of the primary winding current is found using Eq. (A.6) of Appendix A, as fol-
lows:

I1 = IM

√
D

√
1 +

1
3

(
ΔiM

IM

)2

= 0.796 A (11.73)

The rms value of the secondary winding current is found in a similar manner:

I2 =
n1

n2
IM

√
D′

√
1 +

1
3

(
ΔiM

IM

)2

= 6.50 A (11.74)

Note that I2 is not simply equal to the turns ratio multiplied by I1. The total rms winding current
is equal to:

Itot = I1 +
n2

n1
I2 = 1.77 A (11.75)

We can now determine the necessary core size. Evaluation of Eq. (11.52) yields

Kg ≥
ρL2

MI2
tot I

2
M,max

B2
maxPcuKu

108

=
(1.724 · 10−6Ω − cm)(1.07 · 10−3 H)2(1.77 A)2(1.5 A)2

(0.25 T)2(1.5 W)(0.3)
108 (11.76)

= 0.049 cm5

The smallest EE core listed in Appendix B that satisfies this inequality is the EE30, which has
Kg = 0.0857 cm5. The dimensions of this core are

Ac 1.09 cm2

WA 0.476 cm2

MLT 6.6 cm
�m 5.77 cm

(11.77)

The air gap length �g is chosen according to Eq. (11.53):

�g =
μ0LMI2

M,max

B2
maxAc

104

=
(4π · 10−7H/m)(1.07 · 10−3 H)(1.5 A)2

(0.25 T)2(1.09 cm2)
104 (11.78)

= 0.44 mm
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The number of winding 1 turns is chosen according to Eq. (11.54), as follows:

n1 =
LMIM,max

BmaxAc
104

=
(1.07 · 10−3 H)(1.5 A)

(0.25 T)(1.09 cm2)
104 (11.79)

= 58.7 turns

Since an integral number of turns is required, we roundoff this value to

n1 = 59 (11.80)

To obtain the desired turns ratio, n2 should be chosen as follows:

n2 =

(
n2

n1

)
n1

= (0.15)59 (11.81)

= 8.81

We again round this value off, to
n2 = 9 (11.82)

The fractions of the window area allocated to windings 1 and 2 are selected in accordance with
Eq. (11.56):

α1 =
I1

Itot
=

(0.796 A)
(1.77 A)

= 0.45

α2 =
n2I2

n1Itot
=

(9)(6.5 A)
(59)(1.77 A)

= 0.55 (11.83)

The wire gauges should therefore be

AW1 ≤
α1KuWA

n1
= 1.09 · 10−3 cm2 —use #28 AWG

AW2 ≤
α2KuWA

n2
= 8.88 · 10−3 cm2 —use #19 AWG (11.84)

The above American Wire Gauges are selected using the wire gauge table given at the end of
Appendix B.

The above design does not account for core loss or copper loss caused by the proximity
effect. Let us compute the core loss for this design. Figure Fig. 11.14 contains a sketch of the
B–H loop for this design. The flux density B(t) can be expressed as a dc component (determined
by the dc value of the magnetizing current IM), plus an ac variation of peak amplitude ΔB that
is determined by the current ripple ΔiM . The maximum value of B(t) is labeled Bmax; this value
is determined by the sum of the dc component and the ac ripple component. The core material
saturates when the applied B(t) exceeds Bsat; hence, to avoid saturation, Bmax should be less
than Bsat. The core loss is determined by the amplitude of the ac variations in B(t), i.e., by ΔB.
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Fig. 11.14 B–H loop for the flyback transformer
design example
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Fig. 11.15 Variation of flux density B(t), fly-
back transformer example
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The ac component ΔB is determined using Faraday’s law, as follows. Solution of Faraday’s
law for the derivative of B(t) leads to

dB(t)
dt
=

vM(t)
n1Ac

(11.85)

As illustrated in Fig. 11.15, the voltage applied during the first subinterval is vM(t) = Vg. This
causes the flux density to increase with slope

dB(t)
dt
=

Vg

n1Ac
(11.86)

Over the first subinterval 0 < t < DT s, the flux density B(t) changes by the net amount 2ΔB.
This net change is equal to the slope given by Eq. (11.86), multiplied by the interval length DT s:

ΔB =

(
Vg

2n1Ac

)
(DT s) (11.87)

Upon solving for ΔB and expressing Ac in cm2, we obtain

ΔB =
VgDT s

2n1Ac
104 (11.88)
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Fig. 11.16 Determination of core loss density for the flyback transformer design example

For the flyback transformer example, the peak ac flux density is found to be

ΔB =
(200 V)(0.4)(6.67 μs)

2(59)(1.09 cm2)
104 (11.89)

= 0.041 T

To determine the core loss, we next examine the data provided by the manufacturer for the
given core material. A typical plot of core loss is illustrated in Fig. 11.16. For the values of ΔB
and switching frequency of the flyback transformer design, this plot indicates that 0.04 W will
be lost in every cm3 of the core material. Of course, this value neglects the effects of harmonics
on core loss. The total core loss Pfe will therefore be equal to this loss density, multiplied by the
volume of the core:

Pfe = (0.04 W/cm3)(Ac�m)

= (0.04 W/cm3)(1.09 cm2)(5.77 cm) (11.90)

= 0.25 W

This core loss is less than the copper loss of 1.5 W, and neglecting the core loss is often war-
ranted in designs that operate in the continuous conduction mode and that employ ferrite core
materials.

11.5 Summary of Key Points

1. A variety of magnetic devices are commonly used in switching converters. These devices
differ in their core flux density variations, as well as in the magnitudes of the ac winding cur-
rents. When the flux density variations are small, core loss can be neglected. Alternatively,
a low-frequency material can be used, having higher saturation flux density.
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2. The core geometrical constant Kg is a measure of the magnetic size of a core, for appli-
cations in which copper loss is dominant. In the Kg design method, flux density and total
copper loss are specified. Design procedures for single-winding filter inductors and for con-
ventional multiple-winding transformers are derived.

Problems

11.1 A simple buck converter operates with a 50 kHz switching frequency and a dc input volt-
age of Vg = 40 V. The output voltage is V = 20 V. The load resistance is R ≥ 4 Ω.

(a) Determine the value of the output filter inductance L such that the peak-to-average
inductor current ripple Δi is 10% of the dc component I.

(b) Determine the peak steady-state inductor current Imax.
(c) Design an inductor which has the values of L and Imax from parts (a) and (b). Use a

ferrite EE core, with Bmax = 0.25 T. Choose a value of winding resistance such that
the inductor copper loss is less than or equal to 1 W at room temperature. Assume
Ku = 0.5. Specify: core size, gap length, wire size (AWG), and number of turns.

11.2 A boost converter operates at the following quiescent point: Vg = 28 V,V = 48 V, Pload =

150 W, fs = 100 kHz. Design the inductor for this converter. Choose the inductance value
such that the peak current ripple is 10% of the dc inductor current. Use a peak flux density
of 0.225 T, and assume a fill factor of 0.5. Allow copper loss equal to 0.5% of the load
power, at room temperature. Use a ferrite PQ core. Specify: core size, air gap length, wire
gauge, and number of turns.

11.3 Extension of the Kg approach to design of two-winding transformers. It is desired to de-
sign a transformer having a turns ratio of 1 : n. The transformer stores negligible energy,
no air gap is required, and the ratio of the winding currents i2(t)/i1(t) is essentially equal
to the turns ratio n. The applied primary volt-seconds λ1 are defined for a typical PWM
voltage waveform v1(t) in Fig. 10.45b; these volt-seconds should cause the maximum flux
density to be equal to a specified value Bmax = ΔB. You may assume that the flux density
B(t) contains no dc bias, as in Fig. 10.46. You should allocate half of the core window area
to each winding. The total copper loss Pcu is also specified. You may neglect proximity
losses.

(a) Derive a transformer design procedure, in which the following quantities are specified:
total copper loss Pcu, maximum flux density Bmax, fill factor Ku, wire resistivity ρ, rms
primary current I1, applied primary volt-seconds λ1, and turns ratio 1:n. Your procedure
should yield the following data: required core geometrical constant Kg, primary and
secondary turns n1 and n2, and primary and secondary wire areas Aw1 and Aw2.

(b) The voltage waveform applied to the transformer primary winding of the Ćuk converter
(Fig. 6.42c) is equal to the converter input voltage Vg while the transistor conducts, and
is equal to −VgD/(1 − D) while the diode conducts. This converter operates with a
switching frequency of 100 kHz, and a transistor duty cycle D equal to 0.4. The dc
input voltage is Vg = 120 V, the dc output voltage is V = 24 V, and the load power
is 200 W. You may assume a fill factor of Ku = 0.3. Use your procedure of part (a) to
design a transformer for this application, in which Bmax = 0.15 T, and Pcu = 0.25 W at
100◦C. Use a ferrite PQ core. Specify: core size, primary and secondary turns, and wire
gauges.
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11.4 Coupled inductor design. The two-output forward converter of Fig. 10.47a employs
secondary-side coupled inductors. An air gap is employed.
Design a coupled inductor for the following application: V1 = 5 V,V2 = 15 V, I1 =

20 A, I2 = 4 A,D = 0.4. The magnetizing inductance should be equal to 8 μH, referred to
the 5 V winding. You may assume a fill factor Ku of 0.5. Allow a total of 1 W of copper
loss at 100◦C, and use a peak flux density of Bmax = 0.2 T. Use a ferrite EE core. Specify:
core size, air gap length, number of turns, and wire gauge for each winding.

11.5 Flyback transformer design. A flyback converter operates with a 160 Vdc input, and pro-
duces a 28 Vdc output. The maximum load current is 2 A. The transformer turns ratio is
8:1. The switching frequency is 100 kHz. The converter should be designed to operate in
the discontinuous conduction mode at all load currents. The total copper loss should be
less than 0.75 W.

(a) Choose the value of transformer magnetizing inductance LM such that, at maximum
load current, D3 = 0.1 (the duty cycle of subinterval 3, in which all semiconductors are
off). Please indicate whether your value of LM is referred to the primary or secondary
winding. What is the peak transistor current? The peak diode current?

(b) Design a flyback transformer for this application. Use a ferrite pot core with Bmax =

0.25 Tesla, and with fill factor Ku = 0.4. Specify: core size, primary and secondary
turns and wire sizes, and air gap length.

(c) For your design of part (b), compute the copper losses in the primary and secondary
windings. You may neglect proximity loss.

(d) For your design of part (b), compute the core loss. Loss data for the core material is
given by Fig. 10.20. Is the core loss less than the copper loss computed in Part (c)?
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Transformer Design

In the design methods of the previous chapter, copper loss Pcu and maximum flux density Bmax

are specified, while core loss Pf e is not specifically addressed. This approach is appropriate for
a number of applications, such as the filter inductor in which the dominant design constraints
are copper loss and saturation flux density. However, in a substantial class of applications, the
operating flux density is limited by core loss rather than saturation. For example, in a conven-
tional high-frequency transformer, it is usually necessary to limit the core loss by operating at a
reduced value of the peak ac flux density ΔB.

Design of core loss-limited magnetic devices is characterized by finding the ac flux density
that minimizes total core plus copper loss. Typically, this optimization problem also involves
optimization of the winding geometry to control ac proximity losses, and possibly incorpora-
tion of other constraints such as galvanic isolation. Consequently, multiple design iterations are
required. In this chapter, the basic design equations are developed, and a first-pass design that
minimizes the total core loss plus dc copper loss is found. The winding geometry can then be
estimated, and ac proximity losses can be analyzed as described in Sect. 10.4. The design can
then be iterated as needed.

This chapter covers the general transformer design problem. It is desired to design a k-
winding transformer as illustrated in Fig. 12.1. Both copper loss Pcu and core loss Pf e are mod-
eled. As the operating flux density is increased (by decreasing the number of turns), the copper
loss is decreased but the core loss is increased. We will determine the operating flux density that
minimizes the total power loss Ptot = Pf e + Pcu.

It is possible to generalize the core geometrical constant Kg design method, derived in the
previous chapter, to treat the design of magnetic devices when both copper loss and core loss
are significant. This leads to the geometrical constant Kg f e, a measure of the effective magnetic
size of core in a transformer design application. Several examples of transformer designs via
the Kg f e method are given in this chapter. A similar procedure is also derived, for design of
single-winding inductors in which core loss is significant.
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Fig. 12.1 A k-winding transformer, in which
both core loss and copper loss are significant
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+
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12.1 Transformer Design: Basic Constraints

As in the case of the filter inductor design, we can write several basic constraining equations.
These equations can then be combined into a single equation for selection of the core size. In
the case of transformer design, the basic constraints describe the core loss, flux density, copper
loss, and total power loss vs. flux density. The flux density is then chosen to optimize the total
power loss.

12.1.1 Core Loss

As described in Chap. 10, the total core loss Pf e depends on the peak ac flux density ΔB, the
operating frequency f , and the volume of the core. At a given frequency, we can approximate
the core loss by a function of the form

Pf e = Kf e(ΔB)βAc�m (12.1)

Again, Ac is the core cross-sectional area, �m is the core mean magnetic path length, and hence
Ac�m is the volume of the core. Kf e is a constant of proportionality which depends on the
operating frequency. The exponent β is determined from the core manufacturer’s published
data. Typically, the value of β for ferrite power materials is approximately 2.6; for other core
materials, this exponent lies in the range 2 to 3. Equation (12.1) generally assumes that the
applied waveforms are sinusoidal; effects of waveform harmonic content are ignored here.

12.1.2 Flux Density

An arbitrary periodic primary voltage waveform v1(t) is illustrated in Fig. 12.2. The volt-seconds
applied during the positive portion of the waveform is denoted λ1:

λ1 =

∫ t2

t1

v1(t)dt (12.2)

These volt-seconds, or flux-linkages, cause the flux density to change from its negative peak to
its positive peak value. Hence, from Faraday’s law, the peak value of the ac component of the
flux density is
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Fig. 12.2 An arbitrary transformer pri-
mary voltage waveform, illustrating the
volt-seconds applied during the positive
portion of the cycle

area 1

v1(t)

t1 t2 t

ΔB =
λ1

2n1Ac
(12.3)

Note that, for a given applied voltage waveform and λ1, we can reduce ΔB by increasing the
primary turns n1. This has the effect of decreasing the core loss according to Eq. (12.1). However,
it also causes the copper loss to increase, since the new windings will be comprised of more
turns of smaller wire. As a result, there is an optimal choice for ΔB, in which the total loss is
minimized. In the next sections, we will determine the optimal ΔB. Having done so, we can
then use Eq. (12.3) to determine the primary turns n1, as follows:

n1 =
λ1

2ΔBAc
(12.4)

It should also be noted that, in some converter topologies such as the forward converter with
conventional reset winding, the flux density B(t) and the magnetizing current iM(t) are not al-
lowed to be negative. In consequence, the instantaneous flux density B(t) contains a dc bias.
Provided that the core does not approach saturation, this dc bias does not significantly affect
the core loss: core loss is determined by the ac component of B(t). Equations (12.2) to (12.4)
continue to apply to this case, since ΔB is the peak value of the ac component of B(t).

12.1.3 Copper Loss

As shown in Sect. 11.3.1, the total copper loss is minimized when the core window area WA is
allocated to the various windings according to their relative apparent powers. The total copper
loss is then given by Eq. (11.34). This equation can be expressed in the form

Pcu =
ρ(MLT )n2

1I2
tot

WAKu
(12.5)

where

Itot =

k∑
j=1

n j

n1
I j (12.6)
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is the sum of the rms winding currents, referred to winding 1. Use of Eq. (12.4) to eliminate n1

from Eq. (12.5) leads to

Pcu =

⎛⎜⎜⎜⎜⎝ρλ
2
1I2

tot

4Ku

⎞⎟⎟⎟⎟⎠
(

(MLT )
WAA2

c

) (
1
ΔB

)2

(12.7)

The right-hand side of Eq. (12.7) is grouped into three terms. The first group contains specifi-
cations, while the second group is a function of the core geometry. The last term is a function
of ΔB, to be chosen to optimize the design. It can be seen that copper loss varies as the inverse
square of ΔB; increasing ΔB reduces Pcu.

The increased copper loss due to the proximity effect is not explicitly accounted for in this
design procedure. In practice, the proximity loss must be estimated after the core and winding
geometries are known. However, the increased ac resistance due to proximity loss can be ac-
counted for in the design procedure. The effective value of the wire resistivity ρ is increased by
a factor equal to the estimated ratio Rac/Rdc. When the core geometry is known, the engineer
can attempt to implement the windings such that the estimated Rac/Rdc is obtained. Several
design iterations may be needed.

12.1.4 Total Power Loss vs. ΔB

The total power loss Ptot is found by adding Eqs. (12.1) and (12.7):

Ptot = Pf e + Pcu (12.8)

The dependence of Pf e, Pcu, and Ptot on ΔB is sketched in Fig. 12.3.

Fig. 12.3 Dependence of cop-
per loss, core loss, and total loss
on peak ac flux density
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12.1.5 Optimum Flux Density

Let us now choose the value of ΔB that minimizes Eq. (12.8). At the optimum ΔB, we can write

dPtot

d(ΔB)
=

dPf e

d(ΔB)
+

dPcu

d(ΔB)
= 0 (12.9)

Note that the optimum does not necessarily occur where Pf e = Pcu. Rather, it occurs where

dPf e

d(ΔB)
= − dPcu

d(ΔB)
(12.10)
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The derivatives of the core and copper losses with respect to ΔB are given by

dPf e

d(ΔB)
= βKf e(ΔB)(β−1)Ac�m (12.11)

dPcu

d(ΔB)
= −2

⎛⎜⎜⎜⎜⎝ρλ
2
1I2

tot

4Ku

⎞⎟⎟⎟⎟⎠
(

(MLT )
WAA2

c

)
(ΔB)−3 (12.12)

Substitution of Eqs. (12.11) and (12.12) into Eq. (12.10), and solution for ΔB, leads to the opti-
mum flux density

ΔB =

⎡⎢⎢⎢⎢⎣ρλ
2
1I2

tot

2Ku

(MLT )

WAA3
c�m

1
βKf e

⎤⎥⎥⎥⎥⎦
(

1
β+2

)

(12.13)

The resulting total power loss is found by substitution of Eq. (12.13) into (12.1), (12.8),
and (12.9). Simplification of the resulting expression leads to

Ptot =
[
Ac�mKf e

]( 2
β+2

) ⎡⎢⎢⎢⎢⎣ρλ
2
1I2

tot

4Ku

(MLT )
WAA2

c

⎤⎥⎥⎥⎥⎦
(

β
β+2

) ⎡⎢⎢⎢⎢⎢⎢⎣
(
β

2

)−( β
β+2

)
+

(
β

2

)( 2
β+2

)⎤⎥⎥⎥⎥⎥⎥⎦ (12.14)

This expression can be regrouped, as follows:

WA(Ac)(2(β−1)/β)

(MLT )�(2/β)
m

⎡⎢⎢⎢⎢⎢⎢⎣
(

β
2

)−( β
β+2

)
+

(
β
2

)( 2
β+2

)⎤⎥⎥⎥⎥⎥⎥⎦
−
( β+2

β

)

=
ρλ2

1I2
totK

(2/β)
f e

4Ku(Ptot)((β+2)/β)
(12.15)

The terms on the left side of Eq. (12.15) depend on the core geometry, while the terms on
the right side depend on specifications regarding the application (ρ, Itot, λ1, Ku, Ptot) and the
desired core material (Kf e, β). The left side of Eq. (12.15) can be defined as the core geometrical
constant Kg f e:

Kg f e =
WA(Ac)(2(β−1)/β)

(MLT )�(2/β)
m

⎡⎢⎢⎢⎢⎢⎢⎣
(
β

2

)−( β
β+2

)
+

(
β

2

)( 2
β+2

)⎤⎥⎥⎥⎥⎥⎥⎦
−
(
β+2
β

)

(12.16)

Hence, to design a transformer, the right side of Eq. (12.15) is evaluated. A core is selected
whose Kg f e exceeds this value:

Kg f e ≥
ρλ2

1I2
totK

(2/β)
f e

4Ku(Ptot)((β+2)/β)
(12.17)

The quantity Kg f e is similar to the geometrical constant Kg used in the previous chapter to
design magnetics when core loss is negligible. Kg f e is a measure of the magnetic size of a core,
for applications in which core loss is significant. Unfortunately, Kg f e depends on β, and hence
the choice of core material affects the value of Kg f e. However, the β of most high-frequency
ferrite materials lies in the narrow range 2.6 to 2.8, and Kg f e varies by no more than ±5% over
this range. Appendix B lists the values of Kg f e for various standard ferrite cores, for the value
β = 2.7.

Once a core has been selected, then the values of Ac, WA, �m, and MLT are known. The
peak ac flux density ΔB can then be evaluated using Eq. (12.13), and the primary turns n1 can be
found using Eq. (12.4). The number of turns for the remaining windings can be computed using
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the desired turns ratios. The various window area allocations are found using Eq. (11.35). The
wire sizes for the various windings can then be computed as discussed in the previous chapter,

Aw, j =
KuWAα j

n j
(12.18)

where Aw, j is the wire area for winding j.

12.2 A First-Pass Transformer Design Procedure

The procedure developed in the previous sections is summarized below. As in the filter inductor
design procedure of the previous chapter, this simple transformer design procedure should be
regarded as a first-pass approach. Numerous issues have been neglected, including detailed
insulation requirements, conductor eddy current losses, temperature rise, roundoff of number of
turns, etc.

The following quantities are specified, using the units noted:

Wire effective resistivity ρ (Ω-cm)

Total rms winding currents, referred to primary Itot =
k∑

j=1

n j

ni
I j (A)

Desired turns ratios n2/n1, n3/n1, etc.
Applied primary volt-seconds λ1 =

∫
positive
portion

o f cycle

v1(t) dt (V-sec)

Allowed total power dissipation Ptot (W)
Winding fill factor Ku

Core loss exponent β

Core loss coefficient Kf e (W/cm3Tβ)

The core dimensions are expressed in cm:

Core cross-sectional area Ac (cm2)
Core window area WA (cm2)
Mean length per turn MLT (cm)
Magnetic path length �m (cm)
Peak ac flux density ΔB (Tesla)
Wire areas Aw1, Aw2, . . . (cm2)

The use of centimeters rather than meters requires that appropriate factors be added to the
design equations.

12.2.1 Procedure

1. Determine core size.

Kg f e ≥
ρλ2

1I2
totK

(2/β)
f e

4Ku(Ptot)((β+2)/β)
108 (12.19)

Choose a core that is large enough to satisfy this inequality. If necessary, it may be possible
to use a smaller core by choosing a core material having lower loss, i.e., smaller Kf e.
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2. Evaluate peak ac f lux density.

ΔB =

⎡⎢⎢⎢⎢⎣108 ρλ
2
1I2

tot

2Ku

(MLT )

WAA3
c�m

1
βKf e

⎤⎥⎥⎥⎥⎦
(

1
β+2

)

(12.20)

Check whether ΔB is greater than the core material saturation flux density. If the core op-
erates with a flux dc bias, then the dc bias plus ΔB should not exceed the saturation flux
density. Proceed to the next step if adequate margins exist to prevent saturation. Otherwise,
(1) repeat the procedure using a core material having greater core loss, or (2) use the Kg

design method, in which the maximum flux density is specified.
3. Evaluate primary turns.

n1 =
λ1

2ΔBAc
104 (12.21)

4. Choose numbers o f turns f or other windings.
According to the desired turns ratios:

n2 = n1

(
n2

n1

)

n3 = n1

(
n3

n1

)
(12.22)

...

5. Evaluate f raction o f window area allocated to each winding.

α1 =
n1I1

n1Itot

α2 =
n2I2

n1Itot

... (12.23)

αk =
nkIk

n1Itot

6. Evaluate wire sizes.

Aw1 ≤
α1KuWA

n1

Aw2 ≤
α2KuWA

n2
(12.24)

...

Choose wire gauges to satisfy these criteria.

A winding geometry can now be determined, and copper losses due to the proximity effect
can be evaluated. If these losses are significant, it may be desirable to further optimize the
design by reiterating the above steps, accounting for proximity losses by increasing the effective
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wire resistivity to the value ρe f f = ρcuPcu/Pdc, where Pcu is the actual copper loss including
proximity effects, and Pdc is the copper loss obtained when the proximity effect is negligible.

If desired, the power losses and transformer model parameters can now be checked. For the
simple model of Fig. 12.4, the following parameters are estimated:

Magnetizing inductance, referred to winding 1: LM =
μn2

1Ac

�m

Peak ac magnetizing current, referred to winding 1: iM,pk =
λ1

2LM
Winding resistances:

R1 =
ρn1(MLT )

Aw1

R2 =
ρn2(MLT )

Aw2

...

The core loss, copper loss, and total power loss can be determined using Eqs. (12.1), (12.7),
and (12.8), respectively.

n1  :  n2

:  nk

R1 R2

Rk

i1(t) i2(t)

ik(t)

LM

iM(t)

Fig. 12.4 Computed elements of simple transformer model

12.3 Examples

12.3.1 Example 1: Single-Output Isolated Ćuk Converter

As an example, let us consider the design of a simple two-winding transformer for the Ćuk
converter of Fig. 12.5. This transformer is to be optimized at the operating point shown, corre-
sponding to D = 0.5. The steady-state converter solution is Vc1 = Vg, Vc2 = V . The desired
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transformer turns ratio is n = n1/n2 = 5. The switching frequency is fs = 200 kHz, correspond-
ing to Ts = 5 μs. A ferrite pot core is to be used; at 200 kHz, the chosen ferrite core material is
described by the following parameters: Kf e = 24.7 W/Tβcm3, β = 2.6. A fill factor of Ku = 0.5
is assumed. Total power loss of Ptot = 0.25 W is allowed. Copper wire, having a resistivity of
ρ = 1.724 · 10−6Ω-cm, is to be used.

+

+

V
5 V

Vg

25 V

n : 1

I
20 A

Ig

4 A

+

v2(t)v1(t)

+

i1(t) i2(t)

vC2(t) ++  vC1(t)

Fig. 12.5 Isolated Ćuk converter example

Fig. 12.6 Waveforms, Ćuk
converter transformer design
example

v1(t)

i1(t)

i2(t)

DTs

Area 1VC1

C2

D Ts

I/n

g

I

g

Transformer waveforms are illustrated in Fig. 12.6. The applied primary volt-seconds are

λ1 = DT sVc1 = (0.5)(5 μ sec)(25 V) (12.25)

= 62.5 V − μ sec

The primary rms current is

I1 =

√
D
( I
n

)2
+ D′(Ig)2 = 4A (12.26)
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It is assumed that the rms magnetizing current is much smaller than the rms winding currents.
Since the transformer contains only two windings, the secondary rms current is equal to

I2 = nI1 = 20 A (12.27)

The total rms winding current, referred to the primary, is

Itot = I1 +
1
n

I2 = 8 A (12.28)

The core size is evaluated using Eq. (12.19):

Kg f e ≥
(1.724 · 10−6)(62.5 · 10−6)2(8)2(24.7)(2/26)

4(0.5)(0.25)(4.6/2.6)
108

= 0.00295 (12.29)

The pot core data of Appendix B lists the 2213 pot core with Kg f e = 0.0049 for β = 2.7.
Evaluation of Eq. (12.16) shows that Kg f e = 0.0047 for this core, when β = 2.6. In any event,
2213 is the smallest standard pot core size having Kg f e ≤ 0.00295. The increased value of
Kg f e should lead to lower total power loss. The peak ac flux density is found by evaluation of
Eq. (12.20), using the geometrical data for the 2213 pot core:

ΔB =

[
108 (1.724 · 10−6)(62.5 · 10−6)2(8)2

2(0.5)
(4.42)

(0.297)(0.635)3(3.15)
1

(2.6)(24.7)

](1/4.6)

(12.30)

= 0.0858Tesla

This flux density is considerably less than the saturation flux density of approximately 0.35
Tesla. The primary turns are determined by evaluation of Eq. (12.21):

n1 = 104 (62.5 · 10−6)
2(0.0858)(0.635)

(12.31)

= 5.74 turns

The secondary turns are found by evaluation of Eq. (12.22). It is desired that the transformer
have a 5:1 turns ratio, and hence

n2 =
n1

n
= 1.15 turns (12.32)

In practice, we might select n1 = 5 and n2 = 1. This would lead to a slightly higher ΔB and
slightly higher loss.

The fraction of the window area allocated to windings 1 and 2 are determined using
Eq. (12.23):

α1 =
(4A)
(8A)

= 0.5 (12.33)

α2 =
( 1

5 )(20A)

(8A)
= 0.5

For this example, the window area is divided equally between the primary and secondary wind-
ings, since the ratio of their rms currents is equal to the turns ratio. We can now evaluate the
primary and secondary wire areas, via Eq. (12.24):
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Aw1 =
(0.5)(0.5)(0.297)

(5)
= 14.8 · 10−3cm2

Aw2 =
(0.5)(0.5)(0.297)

(1)
= 74.2 · 10−3cm2 (12.34)

The wire gauge is selected using the wire table of Appendix B. AWG #16 has area 13.07 ·
10−3cm2, and is suitable for the primary winding. AWG #9 is suitable for the secondary winding,
with area 66.3 · 10−3cm2. These are very large conductors, and one turn of AWG #9 is not
a practical solution! We can also expect significant proximity losses, and significant leakage
inductance. In practice, interleaved foil windings might be used. Alternatively, Litz wire or
several parallel strands of smaller wire could be employed.

It is a worthwhile exercise to repeat the above design at several different switching fre-
quencies, to determine how transformer size varies with switching frequency. As the switching
frequency is increased, the core loss coefficient Kf e increases. Figure 12.7 illustrates the trans-
former pot core size, for various switching frequencies over the range 25 kHz to 1 MHz, for this
Ćuk converter example using P material with Ptot < 0.25 W. Peak flux densities in Tesla are also
plotted. For switching frequencies below 250 kHz, increasing the frequency causes the core size
to decrease. This occurs because of the decreased applied volt-seconds λ1. Over this range, the
optimal ΔB is essentially independent of switching frequency; the ΔB variations shown occur
owing to quantization of core sizes.

For switching frequencies greater than 250 kHz, increasing frequency causes greatly in-
creased core loss. Maintaining Ptot ≤ 0.25W then requires that ΔB be reduced, and hence the
core size is increased. The minimum transformer size for this example is apparently obtained at
250 kHz.
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Fig. 12.7 Variation of transformer size (bar chart) with switching frequency, Ćuk converter example.
Optimum peak ac flux density (data points) is also plotted

In practice, several matters complicate the dependence of transformer size on switching
frequency. Figure 12.7 ignores the winding geometry and copper losses due to winding eddy
currents. Greater power losses can be allowed in larger cores. Use of a different core material
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may allow higher or lower switching frequencies. The same core material, used in a different
application with different specifications, may lead to a different optimal frequency. Nonetheless,
examples have been reported in the literature [100–103] in which ferrite transformer size is
minimized at frequencies ranging from several hundred kilohertz to several megahertz. More
detailed design optimizations can be performed using computer optimization programs [104,
105].

12.3.2 Example 2: Multiple-Output Full-Bridge Buck Converter

As a second example, let us consider the design of transformer T1 for the multiple-output full-
bridge buck converter of Fig. 12.8. This converter has a 5 V and a 15 V output, with maximum
loads as shown. The transformer is to be optimized at the full-load operating point shown, corre-
sponding to D = 0.75. Waveforms are illustrated in Fig. 12.9. The converter switching frequency
is fs = 150 kHz. In the full-bridge configuration, the transformer waveforms have fundamental
frequency equal to one-half of the switching frequency, so the effective transformer frequency
is 75 kHz. Upon accounting for losses caused by diode forward voltage drops, one finds that the
desired transformer turns ratios n1 : n2 : n3 are 110:5: 15. A ferrite EE consisting of Magnetics,
Inc. P-material is to be used in this example; at 75 kHz, this material is described by the follow-
ing parameters: Kf e = 7.6 W/Tβcm3, β = 2.6. A fill factor of Ku = 0.25 is assumed in this
isolated multiple-output application. Total power loss of Ptot = 4 W, or approximately 0.5% of
the load power, is allowed. Copper wire, having a resistivity of ρ = 1.724 · 10−6Ω-cm, is to be
used.

The applied primary volt-seconds are

λ1 = DT sVg = (0.75)(6.67 μ sec)(160 V) = 800 V − μ sec (12.35)

The primary rms current is

I1 =

(
n2

n1
I5V +

n3

n1
I15V

) √
D = 5.7A (12.36)

:  n2

+

v1(t)
+

D1

Q1

D2Q2

D3

Q3

D4Q4

i1(t)

+
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I5V

100 Ai2a(t)

+
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:  n3
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Fig. 12.8 Multiple-output full-bridge isolated buck converter example
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Fig. 12.9 Transformer waveforms, full-bridge converter example

The 5 V secondary windings carry rms current

I2 =
1
2

I5 V

√
1 + D = 66.1A (12.37)

The 15 V secondary windings carry rms current

I3 =
1
2

I15V

√
1 + D = 9.9A (12.38)

The total rms winding current, referred to the primary, is

Itot =
∑
all5

windings

n j

n1
I j = I1 + 2

n2

n1
I2 + 2

n3

n1
I3 (12.39)

= 14.4A

The core size is evaluated using Eq. (12.19):

Kg f e ≥
(1.724 · 10−6)(800 · 10−6)2(14.4)2(7.6)(2/2.6)

4(0.25)(4)(4.6/2.6)
108 (12.40)

= 0.00937

The EE core data of Appendix B lists the EE40 core with Kg f e = 0.0118 for β = 2.7. Evaluation
of Eq. (12.16) shows that Kg f e = 0.0108 for this core, when β = 2.6. In any event, EE40 is the
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smallest standard EE core size having Kg f e ≤ 0.00937. The peak ac flux density is found by
evaluation of Eq. (12.20), using the geometrical data for the EE40 core:

ΔB =

[
108 (1.724 · 10−6)(800 · 10−6)2(14.4)2

2(0.25)
(8.5)

(1.1)(1.27)3(7.7)
1

(2.6)(7.6)

](1/46)

(12.41)

= 0.23 Tesla

This flux density is less than the saturation flux density of approximately 0.35 Tesla. The primary
turns are determined by evaluation of Eq. (12.21):

n1 = 104 (800 · 10−6)
2(0.23)(1.27)

(12.42)

= 13.7 turns

The secondary turns are found by evaluation of Eq. (12.22). It is desired that the transformer
have a 110:5:15 turns ratio, and hence

n2 =
5

110
n1 = 0.62 turns (12.43)

n3 =
5

110
n1 = 1.87 turns (12.44)

In practice, we might select n1 = 22, n2 = 1, and n3 = 3. This would lead to a reduced ΔB
with reduced core loss and increased copper loss. Since the resulting ΔB is suboptimal, the total
power loss will be increased. According to Eq. (12.3), the peak ac flux density for the EE40 core
will be

ΔB =
(800 · 10−6)
2(22)(1.27)

104 = 0.143 Tesla (12.45)

The resulting core and copper loss can be computed using Eqs. (12.1) and (12.7):

Pf e = (7.6)(0.143)2.6(1.27)(7.7) = 0.47 W (12.46)

Pcu =
(1.724 · 10−6)(800 · 10−6)2(14.4)2

4(0.25)
(8.5)

(1.1)(1.27)2

1
(0.143)2

108 (12.47)

= 5.4 W

Hence, the total power loss would be

Ptot = Pf e + Pcu = 5.9 W (12.48)

Since this is 50% greater than the design goal of 4 W, it is necessary to increase the core size.
The next larger EE core is the EE50 core, having Kg f e of 0.0284. The optimum ac flux density
for this core, given by Eq. (12.3), is ΔB = 0.14 T; operation at this flux density would require
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n1 = 12 and would lead to a total power loss of 2.3 W. With n1 = 22, calculations similar to
Eqs. (12.45) to (12.48) lead to a peak flux density of ΔB = 0.08 T. The resulting power losses
would then be Pf e = 0.23 W, Pcu = 3.89 W, Ptot = 4.12 W.

With the EE50 core and n1 = 22, the fraction of the available window area allocated to the
primary winding is given by Eq. (12.23) as

α1 =
I1

Itot
=

5.7
14.4

= 0.396 (12.49)

The fraction of the available window area allocated to each half of the 5 V secondary winding
should be

α2 =
n2I2

n1Itot
=

5
110

66.1
14.4

= 0.209 (12.50)

The fraction of the available window area allocated to each half of the 15 V secondary winding
should be

α3 =
n3I3

n1Itot
=

15
110

9.9
14.4

= 0.094 (12.51)

The primary wire area Aw1, 5 V secondary wire area Aw2, and 15 V secondary wire area Aw3 are
then given by Eq. (12.24) as

Aw1 =
α1KuWA

n1
=

(0.396)(0.25)(1.78)
(22)

= 8.0 · 10−3cm2

⇒ AWG#19

Aw2 =
α2KuWA

n2
=

(0.209)(0.25)(1.78)
(1)

= 930 · 10−3cm2 (12.52)

⇒ AWG#8

Aw3 =
α3KuWA

n3
=

(0.094)(0.25)(1.78)
(3)

= 13.9 · 10−3cm2

⇒ AWG#16

It may be preferable to wind the 15 V outputs using two #19 wires in parallel; this would lead
to the same area Aw3 but would be easier to wind. The 5 V windings could be wound using
many turns of smaller paralleled wires, but it would probably be easier to use a flat copper foil
winding. If insulation requirements allow, proximity losses could be minimized by interleaving
several thin layers of foil with the primary winding.

12.4 AC Inductor Design

The transformer design procedure of the previous sections can be adapted to handle the design
of other magnetic devices in which both core loss and copper loss are significant. A procedure
is outlined here for design of single-winding inductors whose waveforms contain significant
high-frequency ac components (Fig. 12.10). An optimal value of ΔB is found, which leads to
minimum total core plus copper loss. The major difference is that we must design to obtain a
given inductance, using a core with an air gap. The constraints and a step-by-step procedure are
briefly outlined below.
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Fig. 12.10 Ac inductor, in which copper loss and core loss are significant: (a) definition of terminal
quantities, (b) core geometry, (c) arbitrary terminal waveforms

12.4.1 Outline of Derivation

As in the filter inductor design procedure of the previous chapter, the desired inductance L must
be obtained, given by

L =
μ0Acn2

�g
(12.53)

The applied voltage waveform and the peak ac component of the flux density ΔB are related
according to

ΔB =
λ

2nAc
(12.54)

The copper loss is given by

Pcu =
ρn2(MLT )

KuWA
I2 (12.55)

where I is the rms value of i(t). The core loss Pf e is given by Eq. (12.1).
The value of ΔB that minimizes the total power loss Ptot = Pcu + Pf e is found in a manner

similar to the transformer design derivation. Equation (12.54) is used to eliminate n from the
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expression for Pcu. The optimal ΔB is then computed by setting the derivative of Ptot to zero.
The result is

ΔB =

[
ρλ2I2

2Ku

(MLT )

WAA3
c�m

1
βKf e

]( 1
β+2

)
(12.56)

which is essentially the same as Eq. (12.13). The total power loss Ptot is evaluated at this value
of ΔB, and the resulting expression is manipulated to find Kg f e. The result is

Kg f e ≥
ρλ2I2K(2/β)

f e

2Ku(Ptot)((β+2)/β)
(12.57)

where Kg f e is defined as in Eq. (12.16). A core that satisfies this inequality is selected.

12.4.2 First-Pass AC Inductor Design Procedure

The units of Sect. 12.2 are employed here.

1. Determine core size.

Kg f e ≥
ρλ2I2K(2/β)

f e

2Ku(Ptot)((β+2)/β)
108 (12.58)

Choose a core that is large enough to satisfy this inequality. If necessary, it may be possible
to use a smaller core by choosing a core material having lower loss, that is, smaller Kf e.

2. Evaluate peak ac f lux density.

ΔB =

[
108 ρλ

2I2

2Ku

(MLT )

W4A3
c�m

1
βKf e

]( 1
β+2

)
(12.59)

3. Number o f turns.

n =
λ

2ΔBAc
104 (12.60)

4. Air gap length.

�g =
μ0Acn2

L
10−4 (12.61)

with Ac specified in cm2 and �g expressed in meters. Alternatively, the air gap can be indi-
rectly expressed via AL(mH/1000 turns):

AL =
L
n2

109 (12.62)

5. Check f or saturation.
If the inductor current contains a dc component Idc, then the maximum total flux density
Bmax is greater than the peak ac flux density ΔB. The maximum total flux density, in Tesla,
is given by

Bmax = ΔB +
LIdc

nAc
104 (12.63)

If Bmax is close to or greater than the saturation flux density Bsat, then the core may saturate.
The filter inductor design procedure of the previous chapter should then be used, to operate
at a lower flux density.
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6. Evaluate wire size.

Aw ≤
KuWA

n
(12.64)

A winding geometry can now be determined, and copper losses due to the proximity effect
can be evaluated. If these losses are significant, it may be desirable to further optimize the
design by reiterating the above steps, accounting for proximity losses by increasing the
effective wire resistivity to the value ρe f f = ρcuPcu/Pdc, where Pcu is the actual copper loss
including proximity effects, and Pdc is the copper loss predicted when the proximity effect
is ignored.

7. Check power loss.

Pcu =
ρn(MLT )

Aw
I2

Pf e = Kf e(ΔB)βAc�m (12.65)

Ptot = Pcu + Pf e

12.5 Summary

1. In a multiple-winding transformer, the low-frequency copper losses are minimized when
the available window area is allocated to the windings according to their apparent powers,
or ampere-turns.

2. As peak ac flux density is increased, core loss increases while copper losses decrease. There
is an optimum flux density that leads to minimum total power loss. Provided that the core
material is operated near its intended frequency, then the optimum flux density is less than
the saturation flux density. Minimization of total loss then determines the choice of peak ac
flux density.

3. The core geometrical constant Kg f e is a measure of the magnetic size of a core, for appli-
cations in which core loss is significant. In the Kg f e design method, the peak flux density
is optimized to yield minimum total loss, as opposed to the Kg design method where peak
flux density is a given specification.

Problems

12.1 Forward converter inductor and transformer design. The objective of this problem set is
to design the magnetics (two inductors and one transformer) of the two-transistor, two-
output forward converter shown in Fig. 12.11. The ferrite core material to be used for all
three devices has a saturation flux density of approximately 0.3 T at 120◦C. To provide a
safety margin for your designs, you should use a maximum flux density Bmax that is no
greater than 75% of this value. The core loss at 100 kHz is described by Eq. (12.1), with
the parameter values β = 2.6 and Kf e = 50W/Tβcm3. Calculate copper loss at 100◦C.

Steady-state converter analysis and design. You may assume 100% efficiency and ideal
lossless components for this section.
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Fig. 12.11 Two-output forward converter of Problem 12.1

(a) Select the transformer turns ratios so that the desired output voltages are obtained
when the duty cycle is D = 0.4.

(b) Specify values of L1 and L2 such that their current ripples Δi1 and Δi2 are 10% of their
respective full-load current dc components I1 and I2.

(c) Determine the peak and rms currents in each inductor and transformer winding.

Inductor design. Allow copper loss of 1 W in L1 and 0.4 W in L2. Assume a fill factor
of Ku = 0.5. Use ferrite EE cores—tables of geometrical data for standard EE core sizes
are given in Appendix B. Design the output filter inductors L1 and L2. For each inductor,
specify:

(i) EE core size
(ii) Air gap length

(iii) Number of turns
(iv) AWG wire size

Transformer design. Allow a total power loss of 1 W. Assume a fill factor of Ku = 0.35
(lower than for the filter inductors, to allow space for insulation between the windings).
Use a ferrite EE core. You may neglect losses due to the skin and proximity effects, but you
should include core and copper losses. Design the transformer, and specify the following:

(i) EE core size
(ii) Turns n1, n2, and n3

(iii) AWG wire size for the three windings

Check your transformer design:

(iv) Compute the maximum flux density. Will the core saturate?
(v) Compute the core loss, the copper loss of each winding, and the total power loss
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12.2 A single-transistor forward converter operates with an input voltage Vg = 160 V, and
supplies two outputs: 24 V at 2 A, and 15 V at 6 A. The duty cycle is D = 0.4. The turns
ratio between the primary winding and the reset winding is 1:1. The switching frequency
is 100 kHz. The core material loss equation parameters are β = 2.7, Kf e = 50. You may
assume a fill factor of 0.25. Do not allow the core maximum flux density to exceed 0.3 T.
Design a transformer for this application, having a total power loss no greater than 1.5 W
at 100◦C. Neglect proximity losses. You may neglect the reset winding. Use a ferrite PQ
core. Specify: core size, peak ac flux density, wire sizes, and number of turns for each
winding. Compute the core and copper losses for your design.

12.3 Flyback/SEPIC transformer design. The “transformer” of the flyback and SEPIC convert-
ers is an energy storage device, which might be more accurately described as a multiple-
winding inductor. The magnetizing inductance Lp functions as an energy-transferring in-
ductor of the converter, and therefore the “transformer” normally contains an air gap. The
converter may be designed to operate in either the continuous or discontinuous conduction
mode. Core loss may be significant. It is also important to ensure that the peak current in
the magnetizing inductance does not cause saturation.

A flyback transformer is to be designed for the following two-output flyback converter
application:

Input: 160 Vdc
Output 1: 5 Vdc at 10 A
Output 2: 15 Vdc at l A
Switching frequency: 100 kHz
Magnetizing inductance Lp: 1.33 mH, referred to primary
Turns ratio: 160: 5: 15
Transformer power loss: Allow 1 W total

(a) Does the converter operate in CCM or DCM? Referred to the primary winding, how
large are (i) the magnetizing current ripple Δi, (ii) the magnetizing current dc compo-
nent I, and (iii) the peak magnetizing current Ipk?

(b) Determine (i) the rms winding currents, and (ii) the applied primary volt-seconds λ1.
Is λ1 proportional to Ipk?

(c) Modify the transformer and ac inductor design procedures of this chapter, to derive a
general procedure for designing flyback transformers that explicitly accounts for both
core and copper loss, and that employs the optimum ac flux density that minimizes
the total loss.

(d) Give a general step-by-step design procedure, with all specifications and units clearly
stated.

(e) Design the flyback transformer for the converter of part (a), using your step-by-step
procedure of Part (d). Use a ferrite EE core, with β = 2.7 and Kf e = 50W/Tβcm3.
Specify: core size, air gap length, turns, and wire sizes for all windings.

(f) For your final design of part (e), what are (i) the core loss, (ii) the total copper loss,
and (iii) the peak flux density?

12.4 Over the intended range of operating frequencies, the frequency dependence of the core
loss coefficient Kf e of a certain ferrite core material can be approximated using a mono-
tonically increasing fourth-order polynomial of the form
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Kf e( f ) = Kf e0
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)2
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(
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+ a4

(
f
f0

)4⎞⎟⎟⎟⎟⎟⎠
where Kf e0, a1, a2, a3, a4, and f0 are constants. In a typical converter transformer ap-
plication, the applied primary volt-seconds λ1 varies directly with the switching period
Ts = 1/ f . It is desired to choose the optimum switching frequency such that Kg f e, and
therefore the transformer size, are minimized.

(a) Show that the optimum switching frequency is a root of the polynomial
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β

) (
f
f0

)3

+ a4
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Next, a core material is chosen whose core loss parameters are

β = 2.7 Kf e0 = 7.6

f0 = 100 kHz

a1 = −1.3 a2 = 5.3

a3 = −0.5 a4 = 0.075

The polynomial fits the manufacturer’s published data over the range 10 kHz<f<1 MHz.

(b) Sketch Kf e vs. f
(c) Determine the value of f that minimizes Kg f e.
(d) Sketch Kg f e( f )/Kg f e(100 kHz), over the range 100 kHz ≤ f ≤ 1 MHz. How sensitive

is the transformer size to the choice of switching frequency?

12.5 Transformer design to attain a given temperature rise. The temperature rise ΔT of the cen-
ter leg of a ferrite core is directly proportional to the total power loss Ptot of a transformer:
ΔT = RthPtot, where Rth is the thermal resistance of the transformer under given environ-
mental conditions. You may assume that this temperature rise has minimal dependence
on the distribution of losses within the transformer. It is desired to modify the Kg f e trans-
former design method, such that temperature rise ΔT replaces total power loss Ptot as a
specification. You may neglect the dependence of the wire resistivity ρ on temperature.

(a) Modify the n-winding transformer Kg f e design method, as necessary. Define a new
core geometrical constant Kth that includes Rth.

(b) Thermal resistances of ferrite EC cores are listed in Sect. B.3 of Appendix B. Tabulate
Kth for these cores, using β = 2.7.

(c) A 750 W single-output full-bridge isolated buck dc–dc converter operates with con-
verter switching frequency fs = 200 kHz, dc input voltage Vg = 400 V, and dc output
voltage V = 48 V. The turns ratio is 6:1. The core loss equation parameters at 100
kHz are Kf e = 10 W/Tβcm3 and β = 2.7. Assume a fill factor of Ku = 0.3. You may
neglect proximity losses. Use your design procedure of parts (a) and (b) to design a
transformer for this application, in which the temperature rise is limited to 20◦C. Spec-
ify: EC core size, primary and secondary turns, wire sizes, and peak ac flux density.
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Techniques of Design-Oriented Analysis: The
Feedback Theorem

13.1 Introduction to Part IV

Part IV of this text develops analytical tools needed to understand and design larger power
electronic systems. It builds on the basic modeling and analysis techniques developed in Part II
to analyze and simulate complex feedback circuits, including those having input EMI filters,
current-mode control, or digital control.

As introduced in Chap. 8, Design-Oriented Analysis (D-OA) is a collection of analytical
tools that aid the analysis of complex circuits and systems, with the goal of deriving tractable
equations that are useful for design. Part IV covers three more advanced techniques of D-OA
that are based on linear superposition and the null double injection analysis technique. The
goal of these techniques is the further development of analytical tools that aid in the design of
complex analog systems, including development of additional approximation methods and of
more powerful analytical methods.

The closed-loop switching regulator block diagram studied in Sect. 9.1 employs idealized
blocks that do not explicitly represent input and output impedances or bidirectional signal flow.
While this often is a useful approach, there are cases where interactions between circuit ele-
ments are not easily characterized as unidirectional blocks that do not significantly load each
other. Middlebrook’s General Feedback Theorem [106] is a general technique that allows de-
termination of loop gains and other important transfer functions of a circuit, without need for
identification of blocks. This technique can be viewed as a generalization of the loop gain mea-
surement techniques described in Sect. 9.6, to perform analytical “thought experiments” to find
the transfer functions obtained by null double injection in the feedback circuit.

The single-loop version of the feedback theorem is derived in Sect. 13.2, based on linear
superposition and null double injection. Two common circuit examples are then examined. The
effect of the bandwidth of a practical op amp on the behavior of a PD compensator circuit is
determined in Sect. 13.3. The feedback theorem is employed to find the closed-loop transfer
functions of a buck regulator in Sect. 13.4. This analysis is extended in Chap. 17 to examine
the effect of an input EMI filter on a buck regulator, and in Chap. 18 to examine the effect of an
EMI filter on a current-mode regulator system.

Averaged switch modeling is a subset of the subject of averaged converter modeling, and
leads to results that are equivalent to the models developed in Chap. 8. This technique is par-
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ticularly well suited to SPICE-based simulation of converters, and is developed in Chap. 14.
Averaged switch modeling also exposes the fundamental direct and indirect power conversion
mechanisms that are inherent in high-efficiency electronic power conversion circuits. Averaged
switch modeling is extended to ac modeling of the discontinuous conduction mode in Chap. 15.

The Extra Element Theorem exposes how a known transfer function is changed by addition
of a new network element; this theorem is introduced in Chap. 16. A classic application of the
EET is the addition of an input EMI filter to a closed-loop switching regulator, and damping of
this filter so that it does not degrade regulator performance and stability. Input filter analysis and
design is covered in Chap. 17. The n–Extra Element Theorem (n–EET) is an extension of the
EET to cover the simultaneous addition of multiple elements to a circuit. A useful application
of the n–EET is the treatment of all reactive components as extra elements: a transfer function
can be written as a normalized rational fraction with little or no algebra.

Current-mode control is a popular approach to control of switching converters, in which the
peak transistor current replaces the duty cycle as the control variable that is commanded by the
compensator output. This approach contains an inherent inner current feedback loop, which can
improve control response but complicates the analysis. The Tan model [107] of current-model
control systems is developed in Chap. 18.

With the advent of high-performance low-cost microcontrollers, digital control of switch-
ing converters has proliferated. Digital control techniques for switching power converters are
introduced in Chap. 19. The basic issues of sampling, quantization, and discrete time effects are
described and characterized. Techniques for design of digital compensators are developed.

13.2 The Feedback Theorem

Middlebrook’s Feedback Theorem is an application of the technique of null double injection, to
derive the important transfer functions of a closed-loop feedback circuit. In the presence of the
input signal source, a test source is injected at a suitable point within the feedback circuit, and
key quantities are derived under conditions of setting one of the independent inputs to zero, or
of adjusting the two independent sources such that a dependent signal is nulled to zero. The null
double injection technique relies on linear superposition to find the desired transfer functions
under these null or zeroed conditions. The feedback theorem is stated in Sect. 13.2.1, and is
derived in Sect. 13.2.2.

13.2.1 Basic Result

Consider the feedback circuit represented by Fig. 13.1. The independent input source of this
circuit is ui(s) and the output is uo(s) (the generic symbol u is employed; these signals may be
voltages, currents, or other quantities). The circuit includes a feedback loop having loop gain
T (s); in the laboratory, we could measure this loop gain using the voltage injection method of
Sect. 9.6.1 or the current injection method of Sect. 9.6.2. Voltage or current injection using a
source uz(s) is also illustrated in Fig. 13.1.
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y(s)+ +
Input
ui(s)

Output
uo(s)

Injection
uz(s)

Error
signal ux(s)

Loop gain T(s)

+

Fig. 13.1 A feedback circuit contains an input source ui(s), output uo(s), and injection source uz(s)

As noted in Sects. 9.6.1 and 9.6.2, the accuracy of the loop gain measured via the injec-
tion method depends on the degree of loading at the injection point, according to Eqs. (9.96)
and (9.100). In a practical laboratory experiment, some inaccuracy may be unavoidable. How-
ever, for the purposes of theoretical analysis, we may choose to inject at an ideal injection point
where the impedance inequalities (9.96) or (9.100) are exactly satisfied. In such an analytical
“thought experiment,” we inject at a point immediately following an ideal voltage source or cur-
rent source whose value depends directly on the error signal of the feedback loop. Specifically,
we inject at an ideal point that satisfies both of the following criteria:

• A signal uz is injected directly after a source uy that is proportional to the error signal of the
feedback loop.
• The forward portion of the feedback loop must contain no parallel paths that allow the

amplified error signal to reach the output without passing through the ideal injection point.
If the injection point is shorted to ground, i.e., if ux = 0, then none of the amplified error
signal should reach the output.

Injection at an ideal point satisfying both of the above requirements will lead to an exact expres-
sion for the physical loop gain T (s).

The system of Fig. 13.1 contains two independent sources, ui(s) and the injection source
uz(s). There are three dependent quantities: the output uo(s), and the signals uy(s) and ux(s),
immediately before and after the injection source. Note the minus sign associated with uy in
Fig. 13.1: this is needed to cancel the minus sign associated with negative feedback and obtain
the correct loop gain polarity. We can define thought experiments in which an independent
source is set to zero, or in which a dependent source is nulled. These thought experiments allow
solution for the gains G∞(s), G0(s), T (s), and Tn(s), and finally for the overall transfer function:

G(s) =
uo

ui
= G∞

T
1 + T

+G0
1

1 + T
(13.1)

Each thought experiment is described in detail below.
Loop gain T (s): The input ui(s) is set to zero. In the presence of the injection source uz(s),

the circuit is solved for the loop gain T (s):

T (s) =
uy(s)

ux(s)

∣∣∣∣∣∣
ui=0

(13.2)
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In practice, we assume that we know ux(s), and follow how it propagates around the feedback
loop to find uy(s). When the above conditions for an ideal injection point are satisfied, then the
resulting T (s) will have the physical interpretation of the circuit loop gain.

Ideal forward gain G∞(s): In the presence of the input ui(s), the signal uz(s) is injected
and is adjusted as necessary to null uy(s). Under these conditions, referred to as null double
injection, the circuit is solved to find uo(s). The ideal forward gain is

G∞(s) =
uo(s)
ui(s)

∣∣∣∣∣∣
uy→

null
0

(13.3)

The quantity uy is dependent on both independent sources ui and uz, and hence there is some
choice of ui and uz that will cause uy to be nulled to zero. Note that nulling uy is not the same
as shorting uy: the null condition takes place in the original circuit, and results from a specific
selection of values of the independent sources. Specifically, nulling uy effectively also nulls the
error signal because of the conditions satisfied by the ideal injection point. Hence G∞ is the gain
from the input ui to the output uo under the condition that the error signal is nulled to zero: the
output is perfectly regulated. It can be verified that the gain G(s) of Eq. (13.1) reduces to G∞
under the condition that T → ∞.

If the feedback circuit employs a conventional operational amplifier, then nulling vy is equiv-
alent to employing the principle of virtual ground, in accordance with common practice in the
analysis of op amp circuits. In an op amp circuit with negative feedback, G∞ coincides with the
gain when an ideal op amp is present.

Gain G0(s): In this thought experiment, null double injection is performed as follows: in the
presence of the input ui(s), the signal uz(s) is injected and is adjusted as necessary to null ux(s).
Under these conditions, the circuit is solved to find uo(s). The gain G0 is

G0(s) =
uo(s)
ui(s)

∣∣∣∣∣∣
ux→

null
0

(13.4)

Note that nulling ux effectively prevents the amplified error signal from reaching the output,
because of the conditions satisfied by the ideal injection point. Hence G0 is the gain from the
input ui to the output uo under the condition that the feedback loop does not control the output.
It can be verified that the gain G(s) of Eq. (13.1) reduces to G0 under the condition that T → 0.

The physical interpretation of G0 depends on the quantity being analyzed. For an amplifier
in which ui and uo are the input and output voltages, G0 has the interpretation of direct forward
transmission through the feedback path. With ux nulled, there is no way for the input signal to
reach the output via the forward path of the loop, and so G0 must result from signals reaching the
output by flowing (backwards!) through the feedback path. In the case of disturbance transfer
functions such as a closed-loop Zout or Gvg, the G0 term represents the open-loop disturbance
transfer function.

Null loop gain Tn(s): In the presence of the input ui(s), the signal uz(s) is injected and
is adjusted as necessary to null the output uo(s). Note that this is another case of null double
injection. Under these conditions, the circuit is solved for the null loop gain Tn(s):

Tn(s) =
uy(s)

ux(s)

∣∣∣∣∣∣
uo→

null
0

(13.5)
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Solution for Tn is similar to the analysis of T , although it is usually somewhat simpler because
Tn does not depend on the load impedance. The null loop gain Tn has less physical interpretation
than does T ; it is related to the other above quantities according to the reciprocity relationship:

Tn(s)
T (s)

=
G∞(s)
G0(s)

(13.6)

Hence one can solve for three of the four gains, whichever is easiest, then employ the reci-
procity relationship to find the fourth gain. Finally, the overall closed-loop gain G(s) is found
by evaluation of Eq. (13.1).

13.2.2 Derivation

The basic results of Sect. 13.2.1 can be derived through the use of superposition and null double
injection in the several thought experiments described.

+ ue(s) uo(s)ui(s)
iz

ixiy

0

Fig. 13.2 Current injection iz = uz at an ideal injection point in a feedback loop. The original condition
is illustrated, in which iz is set to zero

Original condition: uz = 0, in the presence of the input ui. Figure 13.2 illustrates current
injection at an ideal injection point, with the original condition iz = 0. In this case, the closed-
loop forward gain G(s) is given by

uo

∣∣∣∣
uz=0
= Gui (13.7)

This is the definition of G(s). Additionally, under this condition we can express ix and iy in terms
of the input ui:

ix

∣∣∣∣
iz=0
= −iy

∣∣∣∣
iz=0
= Ga(s)ui (13.8)

For the current injection illustrated in Fig. 13.2, ux = ix and uy = iy. Equation (13.8) is the
definition of Ga(s). Both G(s) and Ga(s) are unknowns at this point. It is desired to eliminate
Ga, and to solve for G.

Injection of uz: Figure 13.3 illustrates the case in which the input ui is set to zero, and
current injection iz = uz is applied. Under these conditions, we can express iy as some function
of ix as follows:
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iy
∣∣∣∣
ui=0
= T (s) ix

∣∣∣∣
ui=0

(13.9)

This is the definition of the loop gain T (s).
Under these conditions, we can also express the quantities ix and iy as functions of the

injection source iz, by writing the node equation at the injection point:

ix + iy = iz (13.10)

By substitution of Eq. (13.9) into Eq. (13.10) and solution for ix and iy, we can find that

+ ue(s) uo(s)ui(s)
iz

ixiy

0

Fig. 13.3 Current injection iz = uz, with the input ui set to zero

ix

∣∣∣∣
ui=0
=

1
1 + T

iz (13.11)

iy
∣∣∣∣
ui=0
=

T
1 + T

iz (13.12)

Also under these conditions, we can express the output uo in terms of the injection source iz as

uo

∣∣∣∣
ui=0
= Gb(s) ix

∣∣∣∣
ui=0
=

Gb

1 + T
iz (13.13)

This is the definition of Gb. It is desired to eliminate Gb.
In the presence of both ui and uz = iz: we can employ superposition to express the depen-

dent quantities ix, iy, and uo as functions of the two independent inputs ui and iz. For ix, we can
write

ix = ix

∣∣∣∣
iz=0
+ ix

∣∣∣∣
ui=0

(13.14)

Substitution of Eqs. (13.8) and (13.11) into Eq. (13.14) leads to the general expression for ix:

ix = Ga ui +
1

1 + T
iz (13.15)

We can find a similar expression for iy:

iy = iy
∣∣∣∣
iz=0
+ iy

∣∣∣∣
ui=0

(13.16)
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Substitution of Eqs. (13.8) and (13.12) into Eq. (13.16) leads to the general expression for iy:

iy = −Ga ui +
T

1 + T
iz (13.17)

The output uo can be expressed via superposition as

uo = uo

∣∣∣∣
iz=0
+ uo

∣∣∣∣
ui=0

(13.18)

Substitution of Eqs. (13.7) and (13.13) into Eq. (13.18) leads to the general expression for uo:

uo = G ui +
Gb

1 + T
iz (13.19)

Next, we perform the “thought experiments” described in Sect. 13.2.1.

+ ue(s) uo(s)ui(s)
iz

ixiy

0

0

Fig. 13.4 In the presence of ui, adjust iz = uz to null iy

Null double injection, nulling iy: In the presence of the input ui, adjust iz as necessary to
null iy, as illustrated in Fig. 13.4. Under these conditions, Eq. (13.17) becomes

0 = −Ga ui +
T

1 + T
iz
∣∣∣∣
iy→

null
0

(13.20)

and Eq. (13.19) becomes

uo

∣∣∣∣
iy→

null
0
= G ui +

Gb

1 + T
iz
∣∣∣∣
iy→

null
0

(13.21)

Elimination of iz from Eqs. (13.20) and (13.21) leads to

uo

∣∣∣∣
iy→

null
0
= Gui +

GaGb

T
ui (13.22)

We can define

G∞ = G +
GaGb

T
(13.23)
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Hence
uo

∣∣∣∣
iy→

null
0
= G∞ui (13.24)

In this thought experiment, we adjust iz as necessary to null iy. Since iy is directly proportional
to the error signal, nulling iy also nulls the error signal. Hence the gain G∞ has the physical
interpretation of the ideal forward gain of the loop, with zero error.

Null double injection, nulling ix: In the presence of the input ui, adjust iz as necessary to
null ix, as illustrated in Fig. 13.5. Under these conditions, Eq. (13.15) becomes

0 = Ga ui +
1

1 + T
iz
∣∣∣∣
ix→

null
0

(13.25)

Equation (13.19) becomes

uo

∣∣∣∣
ix→

null
0
= G ui +

Gb

1 + T
iz
∣∣∣∣
ix→

null
0

(13.26)

Elimination of iz from Eqs. (13.25) and (13.26) leads to

ue(s) uo(s)ui(s)
iz

ixiy

0

G0(s)

Fig. 13.5 In the presence of ui, adjust iz = uz to null ix

uo

∣∣∣∣
ix→

null
0
= Gui −GaGbui (13.27)

We can define
G0 = G −GaGb (13.28)

Hence
uo

∣∣∣∣
ix→

null
0
= G0ui (13.29)

In this thought experiment, we adjust iz as necessary to null ix. Consequently, there is no trans-
mission of the amplified error signal through the forward path: ix = 0. In the system depicted in
Fig. 13.5, the only other way to obtain a nonzero output is via the feedback path, assuming that
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signals are capable of propagating in either direction through this path. Hence, the gain G0 has
the physical interpretation of direct forward transmission through the feedback path.

In later examples, we will see that G0 may have the interpretation of the open-loop gain
from disturbances to the output. In these examples, the system architecture is more complex
than is envisioned in Fig. 13.5.

+ ue(s) uo(s)ui(s)
iz

ixiy

0

Fig. 13.6 In the presence of ui, adjust iz = uz to null uo

Null double injection, nulling uo: In the presence of the input ui, adjust iz as necessary to
null uo, as illustrated in Fig. 13.6. Note that the output uo is not shorted. For example, in the
case where the output uo is a voltage, this null condition implies that zero current flows through
the load impedance, and any current produced by the output block must flow directly into the
feedback path.

Under these conditions, Eq. (13.19) becomes

0 = G ui +
Gb

1 + T
iz
∣∣∣∣
uo→

null
0

(13.30)

Equation (13.15) becomes

ix = Ga ui +
1

1 + T
iz
∣∣∣∣
uo→

null
0

(13.31)

And Eq. (13.17) becomes

iy = −Ga ui +
T

1 + T
iz
∣∣∣∣
uo→

null
0

(13.32)

We can eliminate ui and iz
∣∣∣∣
uo→

null
0

from the above equations, and solve for the relationship between

iy and ix under the condition that the output uo is nulled. After performing some algebra, we
obtain the following result:

iy
∣∣∣∣
uo→

null
0
=

TG +GaGb

G −GaGb
ix

∣∣∣∣
uo→

null
0

(13.33)

We can define

Tn =
iy
ix

∣∣∣∣
uo→

null
0
=

TG +GaGb

G −GaGb
(13.34)
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The null loop gain Tn is the transfer function from ix to iy under the condition that, in the
presence of the input ui, the injection source iz is adjusted to null the output uo. The null loop
gain Tn has less physical interpretation than the loop gain T ; it is similar except that the effects
of output loading are removed. Hence Tn is somewhat simpler to compute than T . The next
paragraphs give a simple way to relate T and Tn, and hence computation of Tn can be a useful
step in the computation of T .

Final result: With the above definitions, one can solve the feedback circuit for the quantities
G0, G∞, T , and Tn. One can determine the closed-loop transfer function G in terms of these
quantities, by eliminating the intermediate quantities Ga and Gb from the above equations and
solving for G in terms of G0, G∞, T , and Tn. From Eq. (13.28), we have

G0 = G −GaGb (13.35)

From Eq. (13.23),

G∞ = G +
GaGb

T
(13.36)

which can be rewritten as
G∞T = TG +GaGb (13.37)

From Eq. (13.34), we have

Tn =
TG +GaGb

G −GaGb
(13.38)

Substitution of Eqs. (13.35) and (13.37) into Eq. (13.38) leads to the reciprocity relationship

Tn =
G∞T
G0

or
Tn

T
=

G∞
G0

(13.39)

This important relationship implies that we need only to solve for three of the gains G0, G∞, T ,
and Tn; the fourth can be found from Eq. (13.39). Further, if the three gains are expressed in
factored pole-zero form, then the fourth gain that results from Eq. (13.39) will also be factored.

Now eliminate the quantity GaGb from Eqs. (13.35) and (13.36), and use the result to solve
Eqs. (13.35) to (13.39) for G. After a few lines of algebra, the following result is obtained:

G = G∞

(
1 +

1
Tn

)

(
1 +

1
T

) = G∞
T

1 + T
+G0

1
1 + T

(13.40)

This is the desired expression for the closed-loop gain G. Note that, for large loop gain,

G → G∞ for ‖T‖ → ∞ (13.41)

So G∞ is the closed-loop forward gain with large loop gain. For small loop gain,

G → G0 for ‖T‖ → 0 (13.42)

Hence G0 is the closed-loop forward gain when the loop gain tends to zero.
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(a)

+
+vin

+

vout

R1

R2

R3

RL

C

(b)

v+

vout

Ro

+

v

Gop(s) (v+  v )

+

Fig. 13.7 Op amp PD compensator circuit example: (a) circuit schematic, (b) op amp equivalent circuit
model

13.3 Example: Op Amp PD Compensator Circuit

As a first example of application of the feedback theorem, let us analyze the op amp circuit
illustrated in Fig. 13.7a. With an ideal op amp, this lead-lag circuit exhibits a transfer func-
tion having a zero and pole, and is suitable as a PD compensator in feedback loops requiring
improvement of phase margin. To examine the impact of the frequency response and output
impedance of a practical op amp, we will model the op amp using the equivalent circuit il-
lustrated in Fig. 13.7b. The positive and negative input ports are modeled with infinite input
impedance, and a Thevenin-equivalent circuit models the output port. The op amp gain is

Gop(s) =
Gop0(

1 +
s
ω1

) (13.43)

For this example, the op amp model values are

Gop0 = 105 ⇒ 100 dB f1 =
ω1

2π
= 10 Hz

Ro = 50 Ω
This typical op amp internal gain Gop exhibits a dc gain of 100 dB and a pole at 10 Hz; its
magnitude Bode plot is given in Fig. 13.8. The op amp unity gain frequency is 1 MHz: for
frequencies above 10 Hz, the magnitude asymptote follows the equation

‖Gop‖ ≈
1 MHz

f
(13.44)

The element values are
R1 = 1.6 kΩ R2 = 16 Ω RL = 100 Ω

R3 = 1.6 kΩ C = 0.1 μF
To analyze this feedback circuit, we insert the op amp model of Fig. 13.7b into the circuit of
Fig. 13.7a, leading to the equivalent circuit illustrated in Fig. 13.9.

To apply the feedback theorem, we first identify an ideal injection point. The error signal of
this op amp feedback circuit can be taken to be the op amp differential input voltage (v+ − v−):
when this voltage is zero, the op amp circuit operates ideally with zero error. In the op amp
model of Fig. 13.7b, the dependent voltage source is proportional to (v+−v−), and hence we can
employ voltage injection immediately following this source as illustrated in Fig. 13.9: this will
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f

f1

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz 1 MHz

60 dB

40 dB

20 dB

80 dB

100 dB

120 dB

0 dB

Gop0
|| Gop ||

Fig. 13.8 The op amp internal gain exhibits a single-pole response with a unity gain frequency of 1 MHz

cause vy to be directly proportional to the error signal (v+ − v−). With this choice of injection
point, we can solve the circuit to find G0, G∞, T , and Tn as described in Sect. 13.2.1.

The ideal forward gain G∞ is found according to Eq. (13.3). For this example, we obtain

G∞(s) =
vout(s)
vin(s)

∣∣∣∣∣∣
vy→

null
0

(13.45)

As with all examples of null double injection, the key to easily solving for this gain is to begin
with the null condition and its implications. When vy is nulled, the dependent voltage source
−Gopv− is also nulled, which implies that v− is nulled. Hence, the current i f can be related to
the input voltage vin as follows:

+vin

+

vout

R1

R2 R3

RL

C Ro

+
v

op(s) v

v+ = 0

+

+

vxvy

+

vz

if

Fig. 13.9 PD compensator circuit, with the op amp equivalent circuit model inserted. Voltage injection
at the output of the dependent voltage source is included
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i f = −
vin − v−

R1

∥∥∥∥
(
R2 +

1
sC

)

∣∣∣∣∣∣∣∣∣∣∣∣
v−→

null
0

= − vin

R1

∥∥∥∥
(
R2 +

1
sC

) (13.46)

The null condition also allows us to easily relate the output voltage vout to i f :

vout = v− + i f R3

∣∣∣
v−→

null
0

= i f R3 (13.47)

Substitution of Eq. (13.46) into (13.47) leads to the expression for G∞:

G∞ = −
R3

R1

∥∥∥∥
(
R2 +

1
sC

) = −R3

R1

1 + s (R1 + R2) C
1 + sR2C

(13.48)

For this op amp circuit example, the steps in determination of G∞ coincide with use of the
“virtual ground” principle commonly employed in beginning circuit analysis classes: nulling vy

leads to v+ = v−. The above analysis then follows. Indeed, the null double injection analysis of
G∞ can be viewed as a generalization to arbitrary feedback circuits.

Substitution of numerical values into Eq. (13.48) reveals that G∞ contains a DC gain G∞0,
zero at frequency f2, and pole at frequency f3, as follows:

f

|| G∞ ||
G∞0 = 1

⇒ 0 dB

∠ G∞

0

100 Hz

+20 dB/decade

f2 /10

10f2
10 kHz

1 MHz10 Hz 100 Hz 1 kHz 10 kHz 100 kHz

|| G∞ || ∠ G∞

0 dB

20 dB

40 dB

60 dB

0

45

90

f2
1 kHz

f3
100 kHz

+ 45 /decade /decade

Fig. 13.10 Bode plot of G∞, op amp example



522 13 Techniques of Design-Oriented Analysis: The Feedback Theorem

‖G∞0‖ =
R3

R1
= 1⇒ 0 dB (13.49)

f2 =
1

2π (R1 + R2) C
= 1 kHz (13.50)

f3 =
1

2πR2C
= 100 kHz (13.51)

A Bode plot of G∞ is given in Fig. 13.10. This transfer function is typical of a PD compensator
that might be employed to improve the phase margin of a switching converter feedback system
having a crossover frequency in the vicinity of 10 kHz.

The loop gain T (s) is found according to Eq. (13.2). For this example, we obtain

T (s) =
vy(s)

vx(s)

∣∣∣∣∣∣
vin=0

(13.52)

Under the condition that the input voltage vin is set to zero, the equivalent circuit of Fig. 13.9
reduces to Fig. 13.11.

+

vout

R1

R2 R3

RL

C Ro

+
v

op(s) v

+

+

vxvy

+

vz

Fig. 13.11 Determination of loop gain T (s)

To find the loop gain T (s), we take vx as given and solve the circuit for vy. This can be done
in several steps: first find the transfer function from vx to vout, then the transfer function from
vout to v−, and then the transfer function from v− to vy. The loop gain can then be expressed as

T (s) =

(
vout

vx

) (
v−

vout

) ( vy

v−

)
(13.53)

The first two terms of Eq. (13.53) are voltage divider transfer functions, while the third is the
op amp internal gain Gop. Hence we can express Eq. (13.53) as:

T (s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
RL

∥∥∥∥
[
R3 + R1

∥∥∥∥
(
R2 +

1
sC

)]

Ro + RL

∥∥∥∥
[
R3 + R1

∥∥∥∥
(
R2 +

1
sC

)]
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸��������������������������������������︷︷��������������������������������������︸
vout

vx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
R1

∥∥∥∥
(
R2 +

1
sC

)

R3 + R1

∥∥∥∥
(
R2 +

1
sC

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸�����������������������︷︷�����������������������︸
v−

vout

(
Gop(s)

)
︸���︷︷���︸

vy

v−

(13.54)
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We could simplify this expression via algebraic manipulations, to express T (s) in factored form.
However, it is easier to find the factored T (s) by use of the reciprocity relationship, Eq. (13.39).
Hence, the construction of the Bode plot of T (s) is reserved for later, after G0 and Tn have been
found.

The direct forward transmission gain G0(s) is found as defined in Ex. (13.4). For this exam-
ple, we obtain

G0(s) =
vout(s)
vin(s)

∣∣∣∣∣∣
vx→

null
0

(13.55)

In the model of Fig. 13.9, in the presence of the input vin we adjust the injection source vz

such that vx is nulled. Under these conditions, the dependent voltage source −Gopv− does not
influence the output, and the circuit reduces to Fig. 13.12, with Ro effectively in parallel with RL.

+vin

+

vout

R1

R2 R3

RL

C

Ro

Fig. 13.12 Determination of direct forward transmission through feedback path, G0

It can be seen that G0 is a voltage divider transfer function:

G0(s) =
vout(s)
vin(s)

∣∣∣∣∣∣
vx→

null
0

=
Ro

∥∥∥RL

Ro

∥∥∥RL + R3 + R1

∥∥∥
(
R2 +

1
sC

) (13.56)

This expression can be simplified via algebraic manipulation to the following factored form:

G0(s) =
Ro

∥∥∥RL

R1 + R3 + Ro

∥∥∥RL

1 + sC (R1 + R2)

1 + sC
(
R2 + R1

∥∥∥ (R3 + Ro

∥∥∥RL

)) (13.57)

The expression for G0 is in the following standard normalized form:

G0 = G00

(
1 +

s
ω2

)

(
1 +

s
ω4

) (13.58)
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with

G00 =
Ro

∥∥∥RL

R1 + R3 + Ro

∥∥∥RL

= 0.0103⇒ −39.7 dB

f2 =
ω2

2π
=

1
2πC (R1 + R2)

= 1 kHz (13.59)

f4 =
ω4

2π
=

1

2πC
(
R2 + R1

∥∥∥ (R3 + Ro

∥∥∥RL

)) = 1930 Hz

Figure 13.13 contains the Bode plot of G0(s). ‖G0‖ is small in this example, and is unlikely to
influence G(s) over frequencies of interest. However, this computation assists in determination
of the factored T (s).

The null loop gain Tn(s) is found as defined in Eq. (13.5). For this example, we obtain

Tn(s) =
vy(s)

vx(s)

∣∣∣∣∣∣
vo→

null
0

(13.60)

In the model of Fig. 13.14: in the presence of the input vin, we adjust the injection source vz such
that the output vout is nulled. Under these conditions, we find the transfer function from vx to vy.
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Fig. 13.13 Bode plot of the magnitude of G0
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Fig. 13.14 Determination of null loop gain Tn
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The null condition implies that there is no voltage across the load resistor RL and hence
there is no current through the load resistor. The op amp output current is

i f =
vx

Ro
(13.61)

Since the load current is zero, the current i f flows through R3. Since the load voltage is zero, we
can express v− as:

v− = −i f R3 (13.62)

The voltage vy is related to v− by the op amp gain Gop:

vy = Gop(s)v− (13.63)

Hence, we can express the null loop gain as

Tn(s) =

(
1

Ro

)
︸︷︷︸

i f

vx

(−R3)︸︷︷︸
v−

i f

(
Gop(s)

)
︸���︷︷���︸

vy

v−

(13.64)

The expression for Tn is considerably simpler than the expression for T , because the load
impedance does not affect Tn. The null loop gain contains the same poles as Gop(s).

We can now employ the reciprocity relationship, Eq. (13.39), to find a factored expression
for the loop gain T (s):

T =
G0Tn

G∞
(13.65)

Insertion of Eqs. (13.64), (13.58), and (13.48) into Eq. (13.65) leads to the following expression
for the loop gain:

T (s) =

(
−R3

Ro
Gop(s)

)
︸�����������︷︷�����������︸

Tn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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(
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s
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)

(
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s
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)
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︸��������������︷︷��������������︸
G0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−R1

R3

(
1 +

s
ω3

)

(
1 +

s
ω2

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸���������������︷︷���������������︸
1

G∞

= T0

(
1 +

s
ω3

)

(
1 +

s
ω1

) (
1 +

s
ω4

) (13.66)

with

T0 =
R1

Ro
Gop0G00

= 33000⇒ 90.7 dB (13.67)
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Figure 13.15 contains a sketch of the magnitude and phase asymptotes of this loop gain. It can
be seen that T (s) contains a DC gain of 90.7 dB, poles at 10 Hz and 1.9 kHz, and a zero at 100
kHz. The crossover frequency fc can be estimated using the magnitude asymptote between the
1.9 kHz pole and the 100 kHz zero; over this range of frequencies, we can express the magnitude
asymptote as:

f

T0 ⇒ 90.7 dB

∠ T

100 kHz1 Hz 10 Hz 100 Hz 1 kHz 10 kHz

|| T || ∠ T

0

f1
10 Hz

f3

/decade

40 dB

20 dB

0 dB

60 dB

80 dB

100 dB

f4
1.9 kHz

fc

ϕm

Fig. 13.15 Sketch of the magnitude and phase asymptotes of the loop gain T (s)

T (s) = T0

⎛⎜⎜⎜⎜⎜⎝1 +
�
���
s
ω3

⎞⎟⎟⎟⎟⎟⎠
(
���1 +

s
ω1

) (
���1 +

s
ω4

)

‖T‖ ≈ T0
(1)(
ω

ω1

) (
ω

ω4

) (13.68)

At the crossover frequency fc, the magnitude of T is equal to unity. Insertion of ω = ωc with
‖T‖ = 1 into Eq. (13.68) leads to

1 = T0
ω1ω4

ω2
c

(13.69)

Hence the crossover frequency is

fc =
ωc

2π
=
√

T0 f1 f4

= 25.2 kHz (13.70)
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We can estimate the phase margin as follows. Since the crossover frequency is more than a
decade above both pole frequencies, the poles contribute a total of −180◦ to ∠T ( fc). The zero at
f3 = 100 kHz contributes phase

tan−1 fc
f3
= 14.2◦ (13.71)

Hence, the phase of T at the crossover frequency is

∠T ( fc) = −180◦ + 14.2◦ = −165.8◦ (13.72)

The phase margin is
ϕm = 180◦ + ∠T ( fc) = 14.2◦ (13.73)

Although the phase margin is positive, it is not very large. This implies that the closed-loop
transfer function T/(1+T ) contains complex poles at fc having high Q determined by evaluation
of Eq. (9.41):

Q =

√
cosϕm

sinϕm
= 4⇒ 12 dB (13.74)
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Fig. 13.16 Graphical construction of the closed-loop transfer function T/(1 + T )

The graphical construction method can now be employed to construct the closed-loop trans-
fer function T/(1 + T ) according to Eq. (9.11). The result is illustrated in Fig. 13.16. Below the
crossover frequency fc, ‖T‖ is large and hence T/(1 + T ) is approximately equal to 1. There
are two poles at the crossover frequency, having Q factor given by Eq. (13.74). At frequencies
above fc, the transfer function ‖T/(1 + T )‖ follows ‖T‖.
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Fig. 13.17 Graphical construction of the closed-loop transfer function G

Finally, the closed-loop transfer function G = vout/vin can be found using Eq. (13.1), with
the result illustrated in Fig. 13.17. G is given by

G = G∞
T

1 + T
+G0

1
1 + T

(13.75)

The term G0/(1 + T ) is small, and is found to be insignificant below 30 MHz. Hence G follows
G∞ below the crossover frequency, where T/(1 + T ) ≈ 1. The T/(1 + T ) term introduces its
resonance at the crossover frequency, and G differs significantly from G∞ at frequencies above
fc. The op amp is unable to produce the required gain at frequencies above 25 kHz, causing
the closed-loop transfer function to differ significantly from the prediction obtained using the
traditional op amp virtual ground principle.

If this op amp circuit is employed as a PD compensator in a switching converter feedback
loop, the compensator resonance at 25 kHz may seriously degrade the stability of the converter
feedback loop. The resonance may introduce additional converter crossover frequencies, and the
converter phase margin at frequencies approaching or exceeding 25 kHz may be substantially
reduced. It would be possible to make G follow G∞ at higher frequencies by employing an op
amp whose unity gain frequency is larger: the PD circuit fc could be increased from 25 kHz to
100 kHz by increasing the op amp unity gain frequency from 1 MHz to 4 MHz.

13.4 Example: Closed-Loop Regulator

As a second example, consider application of the feedback theorem to the closed-loop buck
regulator of Sect. 9.5.4, with the compensator circuit of Fig. 15.29. Figure 13.18 shows the
small-signal canonical model of the CCM converter power stage (from Fig. 7.38), along with
the feedback and PID compensator circuit, and with injection v̂z applied.

The output of this system is taken to be the output voltage v. There are three independent
inputs: the reference voltage vre f , the power input vg, and the load current variation iload. In
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Fig. 13.18 Application of feedback theorem to buck regulator example

the small-signal model, we can employ superposition to express the output perturbation v̂ as a
function of input perturbations v̂re f , v̂g, and îload:

v̂(s) = Gr(s)v̂re f (s) +Gg(s)v̂g(s) − Zoîload (13.76)

The closed-loop transfer functions Gr, Gg, and Zo can each be found through application of the
feedback theorem, and can be expressed in the form of Eq. (13.1). Specifically, we can express
Eq. (13.76) as:

v̂(s) =

(
G∞r

T
1 + T

+G0r
1

1 + T

)
v̂re f (s) +

(
G∞g

T
1 + T

+G0g
1

1 + T

)
v̂g(s)

−
(
Z∞o

T
1 + T

+ Z0o
1

1 + T

)
îload (13.77)

The terms G∞r and G0r are found using the feedback theorem with v̂g and îload set to zero, and
the terms G∞g and G0g are found using the feedback theorem with v̂re f and îload set to zero. The
terms Z∞o and Z0o are found using the feedback theorem with v̂g and v̂re f set to zero. The loop
gain T is found with v̂g, v̂re f , and îload all set to zero. In the following analysis, the operational
amplifier is treated as ideal.

The closed-loop reference-to-output ideal forward gain G∞r(s) is found with v̂g and îload set
to zero and with v̂y nulled:

G∞r(s) =
v̂

v̂re f

∣∣∣∣∣∣ v̂g=0, îload=0
v̂y→

null
0

(13.78)
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Fig. 13.19 Determination of G∞r

The small-signal model with these conditions is illustrated in Fig. 13.19. Nulling v̂y in the pres-
ence of v̂re f causes the negative input of the ideal op amp v̂− to be equal to v̂re f . But v̂− and v̂
are related according to the voltage divider ratio of the feedback network:

v̂− = v̂
Z2

∥∥∥Z3

Z2

∥∥∥Z3 + Z1
= v̂re f (13.79)

where the error amplifier impedances are

Z1 = R1 +

(
R2

∥∥∥ 1
sC2

)
(13.80)

Z2 = R4 (13.81)

Z3 = R3 +
1

sC3
(13.82)

Therefore, G∞r is equal to:

G∞r =
Z2

∥∥∥Z3 + Z1(
Z2

∥∥∥Z3

) (13.83)

At dc, this gain reduces to

G∞r(0) =
R4 + R1 + R2

R4
(13.84)

In a dc regulator having constant vre f , the dynamics of Eq. (13.83) are irrelevant, and the ideal
output voltage is equal to G∞r(0)Vre f . When the reference can vary, then the poles and zeroes
of Eq. (13.83) may introduce significant dynamics.
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Fig. 13.20 Determination of G0r

The direct forward transmission through the feedback path G0r is

G0r(s) =
v̂

v̂re f

∣∣∣∣∣∣ v̂g=0, îload=0
v̂x→

null
0

(13.85)

The small-signal model with these conditions is illustrated in Fig. 13.20. Nulling v̂x causes no
amplified error signal to reach the output v̂ via the forward path of the loop: nulling v̂x also nulls
d̂, and hence the d̂ sources of the power stage model are also zero. As illustrated in Fig. 13.20,
the secondary voltage of the ideal transformer model becomes zero.

The v̂re f signal can nonetheless have a small influence on the output v̂. With the assumption
that the op amp is ideal, its positive and negative input terminals are equal and hence v̂− = v̂re f .
The output voltage v̂ is related to v̂− = v̂re f through the voltage divider ratio

v̂ = v̂−
Zout

Zout + Z1
(13.86)

where the converter open-loop output impedance is

Zout = R
∥∥∥ 1

sC

∥∥∥sLe (13.87)

and the feedback network impedance Z1 is given by Eq. (13.80). Hence, G0r is

G0r =
Zout

Zout + Z1
(13.88)

Thus, the direct forward transmission of the reference signal through the feedback path is
nonzero.
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Fig. 13.21 Magnitude and phase Bode plots of the transfer functions G∞r, G0r, and Gr for the buck
regulator example. Dashed curves: ideal reference-to-output gain G∞r and direct forward transmission
through feedback path G0r. Solid curves: reference-to-output transfer function Gr

Figure 13.21 contains plots of the transfer functions G∞r, G0r, and Gr for the power stage
element values of Sect. 9.5.4 and the compensator circuit values of Fig. 15.29. Specifically,
the power stage parameters are L = 50 μH, C = 500 μF, R = 3Ω, Vg = 28 V, V = 15 V.
The compensator and feedback circuit parameters are Vre f = 5 V, VM = 4 V, R1 = 11 kΩ,
R2 = 85 kΩ, R3 = 120 kΩ, R4 = 47 kΩ, C2 = 1.1 nF, C3 = 2.7 nF. It can be seen that the transfer
function Gr(s) follows the ideal gain G∞r(s) from dc up to the 5 kHz bandwidth of the feedback
loop, in accordance with the description of Sect. 9.2.2. The direct forward transmission term
G0r is small and does not influence Gr(s) at frequencies below half of the switching frequency.

The ideal forward gain from v̂g to the output v̂ is

G∞g(s) =
v̂
v̂g

∣∣∣∣∣∣ v̂re f=0, îload=0
v̂y→

null
0

(13.89)
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Fig. 13.22 Determination of G∞g

The small-signal model with these conditions is illustrated in Fig. 13.22. Nulling v̂y in the pres-
ence of v̂re f = 0 causes v̂− to be zero. Consequently the voltage across R4 and also across the
R3 − C3 branches are zero, and so there is no current through those elements. This implies
that there is no current through the R1 − R2 − C2 branch, and hence no voltage across it either.
Therefore the output voltage v̂ must be zero. So

G∞g = 0 (13.90)

In the limit of infinite loop gain, v̂g variations do not influence the output v̂.
The gain G0g is the open-loop disturbance transfer function from v̂g to v̂, and is defined as

G0g(s) =
v̂
v̂g

∣∣∣∣∣∣ v̂re f=0, îload=0
v̂x→

null
0

(13.91)

The small-signal model with these conditions is illustrated in Fig. 13.23. Nulling v̂x causes d̂ to
be zero. Consequently the voltage at the output of the dc transformer model is equal to Mv̂g.
The output voltage is equal to this voltage multiplied by the filter transfer function He(s). So

G0g = MHe(s) (13.92)

The gain G0g coincides with the open-loop line-to-output transfer function Gvg(s).
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Fig. 13.23 Determination of G0g

Figure 13.24 contains plots of the transfer functions G0g and Gg, again for the power stage
element values of Sect. 9.5.4 and the compensator circuit values of Fig. 15.29. The closed-loop
line-to-output transfer function Gg(s) follows the open-loop disturbance transfer function Gvg =

G0g above the crossover frequency of 5 kHz, as discussed in Sect. 9.2.1. Below the crossover
frequency, Gg is reduced by the factor 1/(1 + T ).

The quantity Z∞o is the regulator output impedance under the conditions that the feedback
loop operates ideally, with zero error. Z∞o is defined as:

Z∞o(s) = − v̂

îload

∣∣∣∣∣∣ v̂re f=0, v̂g=0
v̂y→

null
0

(13.93)

Figure 13.25 illustrates the small-signal model under these conditions. With v̂re f set to zero and
with v̂y nulled, v̂− is also nulled. Then there is no voltage across the elements R4, R3, or C3,
and hence the currents through these elements are zero. Consequently the currents through the
elements R1, R2, and C2 are zero, and hence the voltages across these elements are also nulled.
Therefore v̂ = v̂− = 0. So the regulator ideal output impedance is

Z∞o(s) = − 0

îload
= 0 (13.94)

When the regulator operates ideally, load current disturbances do not affect the output voltage.
The quantity Z0o is the regulator output impedance under open-loop conditions, with v̂x set

to zero. Z0o is defined as:

Z0o(s) = − v̂

îload

∣∣∣∣∣∣ v̂re f=0, v̂g=0
v̂x=0

(13.95)
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Fig. 13.24 Magnitude and phase Bode plots of the transfer functions G0g and Gg for the buck regulator
example. Dashed curves: disturbance transfer function G0g = Gvg. Solid curves: closed-loop line-to-output
transfer function Gg

Figure 13.26 illustrates the small-signal model under these conditions. With v̂re f set to zero and
with v̂x set to zero, d̂ is zero and the transformer voltage is zero. Since v̂re f is zero, v̂− = 0. The
output impedance is then

Z0o(s) = − v̂

îload
= Zout

∥∥∥Z1 (13.96)

where Zout is the power stage output impedance given by Eq. (13.87) and Z1 is the feedback
network impedance given by Eq. (13.80). In the usual case where Zout is much smaller than Z1,
this expression reduces to Zout.

Figure 13.27 contains plots of the transfer functions Z0o and Zo for the power stage element
values of Sect. 9.5.4 and the compensator circuit values of Fig. 15.29. The closed-loop output
impedance Zo(s) follows the open-loop output impedance Zout = Z0o above the crossover fre-
quency of 5 kHz, as discussed in Sect. 9.2.1. Below the crossover frequency, Zo is reduced by
the factor 1/(1 + T ) relative to Zout.
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Fig. 13.25 Determination of ideal output impedance Z∞o

Fig. 13.26 Determination of open-loop output impedance Z0o
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Fig. 13.27 Magnitude and phase Bode plots of the transfer functions Z0o and Zo for the buck regulator
example. Dashed curves: disturbance transfer function Z0o = Zout. Solid curves: closed-loop line-to-output
transfer function Zo

The loop gain T (s) is

T (s) =
v̂y

v̂x

∣∣∣∣∣∣ v̂re f=0, îload=0
v̂g=0

(13.97)

The small-signal model with these conditions is illustrated in Fig. 13.28. To find T (s), we begin
with the signal v̂x, and find how it propagates around the loop to the v̂y point. Under these
conditions, the output voltage v̂ is equal to v̂x multiplied by the PWM gain (1/VM) and by the
converter control-to-output gain Gvd(s).
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Fig. 13.28 Determination of loop gain T (s)

v̂ = Gvd(s)

(
1

VM

)
v̂x (13.98)

By solution of the model of Fig. 13.28, the power stage control-to-output transfer function is

Gvd(s) = e(s)MHe(s) (13.99)

with He(s) equal to the transfer function of the canonical model Le–C output filter.
With v̂re f set to zero, the ideal op amp causes v̂− = 0, and hence there is no current through

R4. The transfer function from v̂ to v̂y is given by the inverting amplifier formula:

v̂y

v̂
=

Z3

Z1
(13.100)

where Z1 is given by Eq. (13.80) and Z3 is given by Eq. (13.82). The loop gain is the product of
Eqs. (13.98) and (13.100):

T (s) = Gvd(s)

(
1

VM

) (
Z3

Z1

)
(13.101)

Figure 13.29 contains plots of the loop gain T (s) for the power stage element values of
Sect. 9.5.4 and the compensator circuit values of Fig. 15.29.

In summary, the closed-loop transfer function from the reference v̂re f to the output v̂ is

Gr(s) =
Z2

∥∥∥Z3

Z1 +
(
Z2

∥∥∥Z3

) T
1 + T

+
Zout

Z1 + Zout

1
1 + T

(13.102)
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Fig. 13.29 Magnitude and phase Bode plots of the loop gain T (s) for the buck regulator example

The closed-loop transfer function from input voltage disturbances v̂g to the output v̂ is

Gg(s) =
MHe

1 + T
(13.103)

The closed-loop output impedance is

Zo =
Zout

∥∥∥Z1

1 + T
(13.104)

with T given by Eq. (13.101). The canonical model parameters of Table 7.1 for the buck con-
verter are substituted as appropriate into the above expressions.

This closed-loop regulator example includes three independent sources: the reference v̂re f

and disturbances v̂g and îload. Superposition is employed to apply the feedback theorem three
times, once for each independent input, and we find a G0 and G∞ term associated with each
source. The G∞r term has the physical interpretation of the ideal closed-loop gain from the
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reference to the output, and corresponds to the 1/H term identified in Sect. 9.2.2. The G0r term
has the physical interpretation of direct forward transmission from v̂re f through the feedback
path to the output. The disturbance transfer function G0g is the open-loop line-to-output transfer
function, and coincides with Gvg(s) of the open-loop converter. In this example, G∞g is zero:
when the feedback loop operates ideally, no v̂g disturbances reach the output.

The feedback theorem provides a general way to define and determine the loop gain T .
Although we have found three closed-loop transfer functions from the three independent sources
to the output, there is a single physical feedback loop in the system, and a single expression for
the loop gain.

13.5 Summary of Key Points

1. The Feedback Theorem employs null double injection and linear superposition to determine
closed-loop gains and other important transfer functions of a feedback circuit, without need
to break the circuit into blocks that are noninteracting and unidirectional. An ideal injec-
tion point is identified, and then certain “thought experiments” are performed that lead to
derivation of analytical expressions for the important transfer functions of the closed-loop
circuit.

2. A given closed-loop gain G(s) is expressed in terms of an ideal gain G∞ (the limiting
transfer function with infinite loop gain), a gain G0 (the limiting transfer function for zero
loop gain), and the loop gain T . The Feedback Theorem provides a simplified framework
for deriving these quantities.

3. An operational amplifier circuit intended for use as a PD compensator is analyzed using
the Feedback Theorem. In this example, the G∞ gain is found to be the transfer function
when the op amp is ideal. The G0 gain arises from direct forward transmission of the input
signal through the feedback path. The actual transfer function G is found to deviate signif-
icantly from G∞ at high frequencies where the op amp has insufficient internal gain; this
can significantly degrade the behavior of the PD compensator.

4. A closed-loop buck converter with PID compensator circuit is analyzed via the Feedback
Theorem, to derive the closed-loop transfer functions from the reference input and line input
to the output, as well as the closed-loop output impedance. This example illustrates how
the Feedback Theorem is useful for analyzing closed-loop disturbance transfer functions as
well as the reference-to-output transfer function.

Problems

13.1 A feedback amplifier is shown in Fig. 13.30 including voltage injection vz suitable for
application of the Feedback Theorem. The objective in this problem is to solve for the
amplifier gain

G =
vo

vi

∣∣∣∣∣
vz=0

using the Feedback Theorem. Derive expressions for G∞, T , G0, and Tn, and show that the
reciprocity relationship holds. Your expressions should be in terms of the circuit parameter
values R1, R2, C, Ro, Ao.
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Fig. 13.30 Feedback amplifier of Problem 13.1

13.2 A feedback amplifier is shown in Fig. 13.31 including current injection iz suitable for
application of the Feedback Theorem. The objective in this problem is to solve for the
amplifier gain

G =
vo

vi

∣∣∣∣∣
iz=0

using the Feedback Theorem. Derive expressions for G∞, T , G0, and Tn, and show that the
reciprocity relationship holds. Your expressions should be in terms of the circuit parameter
values R1, C, and gm.

Fig. 13.31 Feedback amplifier of Problem 13.2

13.3 Figure 13.32 shows a PI compensator circuit in the closed-loop switching voltage regu-
lator of Problem 9.5. The PI compensator is constructed around an op amp provided in
a standard PWM controller chip. The input to the compensator is the regulator output
voltage v, and the output of the compensator is voltage vc. The reference voltage Vre f is
constant. The purpose of this problem is to show how the Feedback Theorem can be used
in the design of the PI compensator circuit. The closed-loop transfer function of interest is

G(s) =
v̂c

v̂

∣∣∣∣∣∣
v̂re f=0
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Fig. 13.32 PI compensator constructed around a transconductance amplifier, Problem 13.3

(a) Assuming the op amp in Fig. 13.32 is ideal, show that

G∞(s) =
v̂c

v̂

∣∣∣∣∣∣
ideal op−amp

= G∞∞
(
1 +

ω1

s

)

and derive expressions for the salient features of G∞(s) in terms of R1, R2, R3, C3.
Compute the numerical values for G∞∞ and f1. Note that the assumption that the op
amp is ideal (in a negative-feedback circuit) is equivalent to the assumption that the
error signal is nulled in the Feedback Theorem terms. Hence, the transfer function
found in this part of the problem is equal to G∞ of the Feedback Theorem.

Assuming G(s) ≈ G∞(s), the closed-loop voltage regulator shown in Problem 9.5 should
be stable with adequate phase margin. A designer made this assumption, built the circuit,
and expected to obtain stable operation with well regulated output voltage. In lab experi-
ments, however, the switched-mode voltage regulator is found to be unstable, producing
oscillating voltages and currents. Knowing that you are familiar with the Feedback Theo-
rem, the designer asks you for assistance.
Looking through the PWM controller datasheet, you realize that the op amp provided
is not really a standard op amp with a large voltage gain and a low output impedance
but instead a transconductance amplifier, which can be modeled as a controlled current
source, as shown in Fig. 13.33.

Fig. 13.33 Model of the transconductance amplifier in Problem 13.3
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Furthermore, you find that the transconductance gm of the amplifier can be as low as
gmmin = 100 μA/V and as high as gmmax = 1 mA/V due to process and temperature
variations. You realize that the problem is well suited for application of the Feedback
Theorem and you proceed in several steps to address the stability problem encountered by
the designer.
(b) Using the current injection technique, find analytical expressions for Go, T , and Tn

in the PI compensator of Fig. 13.32, taking into account the amplifier model shown
in Fig. 13.33. Express the transfer functions in the standard factored pole-zero forms,
and derive expressions for the salient features in terms of R1, R2, R3, C3, and gm. Show
that the reciprocity relationship holds.

(c) Using the results of part (b), derive an expression for the closed-loop transfer function
G(s), and show that G(s) can be written as

G(s) =
v̂c

v̂

∣∣∣∣∣∣
v̂re f=0

= G′∞∞

(
1 +
ω′1
s

)

Calculate and put in a table numerical values for G′∞∞ and f ′1 for the two extreme
values of gm, gmmin and gmmax, and compare these values to G∞∞ and f1 found in
part (a). Explain why the switched-mode voltage regulator using the compensator of
Fig. 13.32 may become unstable.

(d) Suggest how to change the component values in the PI compensator in Fig. 13.32 so
that G∞(s) remains the same as found in part (a), and so that the compensator gain G(s)
closely approximates the ideal G∞(s) for all possible values of the transconductance
gm.

13.4 A model of an op amp is shown in Fig. 13.7b. In the model, Ro = 100Ω, and

Gop(s) = Ao
1(

1 +
s
ω1

) (
1 +

s
ω2

)

where Ao = 105 → 100 dB, f1 = 10 Hz, and f2 = 1 MHz.
a) The op amp is used to construct closed-loop amplifiers with three different ideal

closed-loop gains: (i) G∞ = 1, G∞ = −1, and (iii) G∞ = 10. Sketch circuit diagrams
of these three closed-loop amplifiers and choose resistance values.

b) For each of the closed-loop amplifiers considered in part (a), sketch the magnitude
and phase responses of the loop gain T (s) and determine numerical values for the
crossover frequency and the phase margin.

c) For each of the closed-loop amplifiers considered in part (a), derive an expression
for the closed-loop gain G(s) using the Feedback Theorem. Your expression should
be in the standard normalized form. Sketch the magnitude and phase responses and
annotate the plots with salient features of G(s) .

13.5 A point-of-load (POL) voltage regulator using a synchronous buck converter is shown in
Fig. 13.34. Losses can be neglected except for the losses due to the inductor resistance RL

and the capacitor equivalent series resistance Resr. The PID compensator is constructed
around an op amp. In this problem, you may assume that the op amp has ideal charac-
teristics. The pulse-width modulator has a very large input resistance, so that a voltage
injection source v̂z can be ideally inserted between the compensator and the PWM.
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Fig. 13.34 Synchronous buck voltage regulator with a PID compensator, Problems 13.5 and 13.6

a) Derive an expression for the loop gain T (s). The expression should be in standard
normalized form. Salient features of T (s) should be expressed in terms of the circuit
parameters shown in Fig. 13.34. Plot the magnitude and phase responses of the loop
gain, and determine numerical values for the crossover frequency fc and the phase
margin ϕm.

b) In this part of the problem, the objective is to determine the closed-loop output
impedance Zo(s) = −v̂/îload of the POL voltage regulator using the Feedback The-
orem. Derive expressions for Z∞o, Z0o, and the null loop gain Tnz in standard normal-
ized forms. Show that the reciprocity relationship holds. Plot the magnitude and phase
responses of Zo(s).

c) In this part of the problem, the objective is to determine the closed-loop line-to-output
transfer function Gg(s) = v̂/v̂g using the Feedback Theorem. Derive expressions for
G∞g, G0g, and the null loop gain Tng in standard normalized forms. Show that the
reciprocity relationship holds. Plot the magnitude and phase responses of Gg(s).

d) In this part of the problem, the objective is to determine the closed-loop reference-
to-output response Gr(s) = v̂/v̂re f using the Feedback Theorem. Derive expressions
for G∞r, G0r, and the null loop gain Tnr in standard normalized forms. Show that the
reciprocity relationship holds. Plot the magnitude and phase responses of Gr(s).

e) Modify the PID compensator circuit so that T (s) remains exactly the same as found
in part (a), and so that the ideal reference-to-output response has unity gain at all
frequencies, i.e., so that G∞r = 1.

13.6 A model of the op amp used to construct the PID compensator in the voltage regulator of
Fig. 13.34 is shown in Fig. 13.7b. In the model, Ro = 0, and

Gop(s) =
ωGBW

s
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where fGBW is the unity gain frequency, also referred to as the gain-bandwidth product
of the op amp. The objective in this problem is to examine how finite fGBW of the op
amp affects closed-loop performance of the voltage regulator in Fig. 13.34. The transfer
function of interest is the PID compensator gain

Gc(s) = − v̂c

v̂

a) For the closed-loop amplifier that implements the PID compensator, derive expres-
sions for the loop gain Tc(s), the ideal forward gain Gc∞, and the direct forward
transmission Gc0. The expressions should be in terms of the circuit parameters shown
in Fig. 13.34 and ωGBW . Overlay Bode plots of the magnitude and phase of Gc for
three different values of fGBW : (i) fGBW = 1 MHz, (ii) fGBW = 10 MHz, and (iii)
fGBW = 25 MHz.

b) Consider loop gain T (s) in the voltage regulator of Fig. 13.34, taking into account
Gc(s) found in part (a). Overlay Bode plots of the magnitude and phase of T (s) for the
three different values of fGBW considered in part (a). For each fGBW , calculate numeri-
cal values of the crossover frequency fc and the phase margin ϕm, and compare to the
results obtained assuming an ideal op amp, i.e., assuming that Gc = Gc∞. Comment on
how large the gain-bandwidth product of the op amp should be so that the impact on
the closed-loop performance of the voltage regulator in Fig. 13.34 can be neglected.

13.7 Do Problem 9.7. Verify the result for the closed-loop transfer function îg(s)/v̂re f (s) using
the Feedback Theorem. Then, using the Feedback Theorem, derive an expression for the
closed-loop input admittance

Yg =
îg
v̂g

Plot the magnitude and phase responses of Yg. In what range of frequencies is the magni-
tude of Yg approximately equal to the ideal Yg∞.

13.8 Do Problem 9.8. Then find the closed-loop output impedance Zo using the Feedback
Theorem and verify that the specifications are met: magnitude of the closed-loop output
impedance should be less than 0.2 Ω over the entire frequency range 0 to 20 kHz.

13.9 Do Problem 9.9. Then, using the Feedback Theorem, derive an expression for the closed-
loop reference-to-output response Gr = v̂/v̂re f . Plot the magnitude and phase responses
of Gr. Over what range of frequencies is the magnitude of Gr approximately equal to the
ideal Gr∞?
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Circuit Averaging, Averaged Switch Modeling, and
Simulation

Circuit averaging is another well-known technique for derivation of converter equivalent cir-
cuits. Rather than averaging the converter state equations, with the circuit averaging technique
we average the converter waveforms directly. All manipulations are performed on the circuit
diagram, instead of on its equations, and hence the circuit averaging technique gives a more
physical interpretation to the model. Since circuit averaging involves averaging and small-signal
linearization, it is equivalent to state-space averaging. However, in many cases circuit averaging
is easier to apply, and allows the small-signal ac model to be written almost by inspection. The
circuit averaging technique can also be applied directly to a number of different types of con-
verters and switch elements, including phase-controlled rectifiers, PWM converters operated in
discontinuous conduction mode or with current programming, and quasi-resonant converters—
these are described in later chapters. However, in other cases it may lead to involuted models
that are less easy to analyze and understand. To overcome this problem, the circuit averaging
and state-space averaging approaches can be combined. Circuit averaging was developed be-
fore state-space averaging, and is described in [16]. Because of its generality, there was a later
resurgence of interest in circuit averaging of switch networks [70–76, 108].

The techniques of circuit averaging and averaged switch modeling are developed in
Sect. 14.1. These techniques are employed to model SEPIC and boost converter examples, and
both dc and small-signal ac converter models are developed.

The averaged switch model also exposes the fundamental energy conversion process by
which a switched-mode circuit can convert power from one voltage to another with high effi-
ciency: dc or low-frequency ac is converted (inverted) to high-frequency ac by the switching
of the PWM transistor. This ac power is then converted back (rectified) to dc or low-frequency
ac by the diode or other switching element. This power is called the indirect power that flows
within the converter. Indirect power and its relationship to the averaged switch model is dis-
cussed in Sect. 14.1.4.

The averaged switch model lends itself well to simulation. When the semiconductor switches
are replaced with an averaged switch model, circuit simulation programs such as SPICE are able
to plot small-signal ac transfer functions of switching converter systems. This is a very useful
application of the averaged switch modeling approach. SPICE simulation of converters operat-
ing in the continuous conduction mode is developed in Sect. 14.3. Averaged switch modeling
of converters operating in the discontinuous conduction mode is developed in Chap. 15, along
with averaged simulations of DCM.
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14.1 Circuit Averaging and Averaged Switch Modeling

The key step in circuit averaging is to replace the converter switches with voltage and current
sources, to obtain a time-invariant circuit topology. The waveforms of the voltage and current
generators are defined to be identical to the switch waveforms of the original converter. Once
a time-invariant circuit network is obtained, then the converter waveforms can be averaged
over one switching period to remove the switching harmonics. Any nonlinear elements in the
averaged circuit model can then be perturbed and linearized, leading to the small-signal ac
model.

In Fig. 14.1, the switching elements are separated from the remainder of the converter. The
converter therefore consists of a switch network containing the converter switching elements,
and a time-invariant network containing the reactive and other remaining elements. Figure 14.1
illustrates the simple case in which there are two single-pole single-throw (SPST) switches;
the switches can then be represented using a two-port network. In more complicated systems
containing multiple transistors or diodes, such as in polyphase converters, the switch network
may contain more than two ports.

+

Time-invariant network
containing converter reactive   elements

C L

+     vC(t)
iL(t)

R

+

v (t)vg(t)

Power input Load

Switch network

po
rt
 1

port 2

d(t)Control
input

+

v1(t)

+

v2(t)

i1(t) i2(t)

Fig. 14.1 A switching converter can be viewed as a switch network connected to a time-invariant network

The central idea of the averaged switch modeling approach is to find an averaged circuit
model for the switch network. The resulting averaged switch model can then be inserted into
the converter circuit to obtain a complete averaged circuit model of the converter. An important
advantage of the averaged switch modeling approach is that the same model can be used in many
different converter configurations. It is not necessary to rederive an averaged circuit model for
each particular converter. Furthermore, in many cases, the averaged switch model simplifies
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Fig. 14.2 Schematic of the SEPIC, arranged in the form of Fig. 14.1
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Fig. 14.3 Switch network terminal waveforms in the CCM SEPIC

converter analysis and yields good intuitive understanding of the converter steady-state and
dynamic properties.

The first step in the process of finding an averaged switch model for a switch network is
to sketch the converter in the form of Fig. 14.1, in which a switch network containing only the
converter switching elements is explicitly defined. The CCM SEPIC example shown in Fig. 14.2
is used to illustrate the process. There is usually more than one way to define the two ports of the
switch network; a natural way to define the two-port switch network of the SEPIC is illustrated
in Fig. 14.2. The switch network terminal waveforms v1(t), i1(t), v2(t), and i2(t) are illustrated
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in Fig. 14.3 for CCM operation. Note that it is not necessary that the ports of the switch network
be electrically connected within the switch network itself. Furthermore, there is no requirement
that any of the terminal voltage or current waveforms of the switch network be nonpulsating.

14.1.1 Obtaining a Time-Invariant Circuit

The next step of the circuit averaging technique is to replace the switch network with dependent
voltage and current sources, so that the circuit connections do not vary in time. The switch
network defined in the SEPIC is shown in Fig. 14.4a. As with any two-port network, two of the
four terminal voltages and currents can be taken as independent inputs to the switch network.
The remaining two voltages and/or currents are viewed as dependent outputs of the switch
network. In general, the choice of independent inputs is arbitrary, as long as the inputs can
indeed be independent in the given converter circuit. For CCM operation, one can choose one
terminal current and one terminal voltage as the independent inputs. For this example, let us
select i1(t) and v2(t) as the switch network independent inputs. In addition, the duty cycle d(t)
is the independent control input. Hence the dependent outputs are taken to be v1(t) and i2(t).

In Fig. 14.4b, the ports of the switch network are replaced by dependent voltage and current
sources. The waveforms of these dependent sources are defined to be identical to the actual
dependent outputs v1(t) and i2(t) given in Fig. 14.3. Since all waveforms in Fig. 14.4b match the
waveforms of Figs. 14.4a and 14.3, the circuits are electrically equivalent. So far, no approxima-
tions have been made.

14.1.2 Circuit Averaging

The next step is determination of the average values of the switch network terminal waveforms
in terms of the converter state variables (inductor currents and capacitor voltages) and the con-
verter independent inputs (such as the input voltage and the transistor duty cycle). The basic
assumption is made that the natural time constants of the converter network are much longer
that the switching period Ts. This assumption coincides with the requirement for small switch-
ing ripple. One may average the waveforms over a time interval which is short compared to the
system natural time constants, without significantly altering the system response [16]. Hence,
when the basic assumption is satisfied, it is a good approximation to average the converter wave-
forms over the switching period Ts. The resulting averaged model predicts the low-frequency
behavior of the system, while neglecting the high-frequency switching harmonics. In the SEPIC
example, by use of the usual small-ripple approximation, the average values of the switch net-
work terminal waveforms of Fig. 14.3 can be expressed in terms of the independent inputs and
the state variables as follows:

〈v1(t)〉Ts = d′(t)
(〈vC1(t)〉Ts + 〈vC2(t)〉Ts

)
(14.1)

〈i1(t)〉Ts = d(t)
(〈iL1(t)〉Ts + 〈iL2(t)〉Ts

)
(14.2)

〈v2(t)〉TS = d(t)
(〈vC1(t)〉Ts + 〈vC2(t)〉Ts

)
(14.3)

〈i2(t)〉Ts = d′(t)(〈iL1(t)〉Ts + 〈iL2(t)〉Ts ) (14.4)

We have selected 〈i1(t)〉Ts and 〈v2(t)〉Ts as the independent inputs of the averaged switch network.
The dependent outputs of the averaged switch network are then 〈i2(t)〉Ts and 〈v1(t)〉Ts . The next
step is to express, if possible, the switch network dependent outputs 〈i2(t)〉Ts and 〈v1(t)〉Ts as
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Fig. 14.4 Derivation of the averaged switch model for the CCM SEPIC: (a) switch network; (b) switch
network where the switches are replaced with dependent sources whose waveforms match the switch
terminal dependent waveforms; (c) large-signal, nonlinear averaged switch model obtained by averaging
the switch network terminal waveforms in (b); (d) dc and ac small-signal averaged switch model
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functions solely of the switch network independent inputs 〈i1(t)〉Ts , 〈v2(t)〉Ts , and the control
input d(t). In this step, the averaged switch outputs should not be written as functions of other
converter signals such as 〈vg(t)〉Ts , 〈vC1(t)〉Ts , 〈vC2(t)〉Ts , 〈iL1(t)〉Ts , 〈iL2(t)〉Ts , etc.

We can use Eqs. (14.2) and (14.3) to write

〈iL1(t)〉Ts + 〈iL2(t)〉TS =
〈i1(t)〉Ts

d(t)
(14.5)

〈vC1(t)〉Ts + 〈vC2(t)〉Ts =
〈v2(t)〉Ts

d(t)
(14.6)

Substitution of these expressions into Eqs. (14.1) and (14.4) leads to

〈v1(t)〉Ts =
d′(t)
d(t)
〈v2(t)〉Ts (14.7)

〈i2(t)〉Ts =
d′(t)
d(t)
〈i1(t)〉Ts (14.8)

The averaged equivalent circuit for the switch network, that corresponds to Eqs. (14.7) and (14.8),
is illustrated in Fig. 14.4c. Upon completing the averaging step, the switching harmonics have
been removed from all converter waveforms, leaving only the dc and low-frequency ac compo-
nents. This large-signal, nonlinear, time-invariant model is valid for frequencies sufficiently less
than the switching frequency. Averaging the waveforms of Fig. 14.3 modifies only the switch
network; the remainder of the converter circuit is unchanged. Therefore, the averaged circuit
model of the converter is obtained simply by replacing the switch network with the averaged
switch model. The switch network of Fig. 14.4a can be identified in any two-switch converter,
such as the buck, boost, buck–boost, SEPIC, or Ćuk. If the converter operates in continuous con-
duction mode, the derivation of the averaged switch model follows the same steps, and the result
shown in Fig. 14.4c is the same for all of these converter topologies. This means that the model
of Fig. 14.4c can be used as a general large-signal averaged switch model for all two-switch
converters operating in CCM.

14.1.3 Perturbation and Linearization

The model of Fig. 14.4c is nonlinear, because the dependent generators given by Eqs. (14.7)
and (14.8) are nonlinear functions of d(t), 〈i2(t)〉TS , and 〈v1(t)〉TS . To construct a small-signal ac
model, we perturb and linearize Eqs. (14.7) and (14.8) in the usual fashion. Let

d(t) = D + d̂(t)

〈v1(t)〉Ts = V1 + v̂1(t)

〈i1(t)〉Ts = I1 + î1(t) (14.9)

〈v2(t)〉TS = V2 + v̂2(t)

〈i2(t)〉Ts = I2 + î2(t)

With these substitutions, Eq. (14.7) becomes

(D + d̂)(V1 + v̂1) = (D′ − d̂)(V2 + v̂2) (14.10)
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Fig. 14.5 Linearization of the dependent voltage
source

Fig. 14.6 Linearization of the dependent current
source

It is desired to solve for the dependent quantity V1+ v̂1. Equation (14.10) can be manipulated
as follows:

D(V1 + v̂1) = D′(V2 + v̂2) − d̂(V1 + V2) − d̂v̂1 − d̂v̂2 (14.11)

The terms d̂(t)v̂1(t) and d̂(t)v̂2(t) are nonlinear, and are small in magnitude provided that the ac
variations are much smaller than the quiescent values [as in Eq. (7.33)]. When the small-signal
assumption is satisfied, these terms can be neglected. Upon eliminating the nonlinear terms and
solving for the switch network dependent output V1 + v̂1, we obtain

(V1 + v̂1) =
D′

D
(V2 + v̂2) − d̂

(V1 + V2

D

)
(14.12)

=
D′

D
(V2 + v̂2) − d̂

( V1

DD′

)

The term (V1/DD′)d̂(t) is driven by the control input d̂2 and hence can be represented by an
independent voltage source as in Fig. 14.5. The term (D′/D)(V2 + v̂2(t)) is equal to the constant
value (D′/D) multiplied by the port 2 independent voltage (V2 + v̂2(t)). This term is represented
by a dependent voltage source in Fig. 14.5. This dependent source will become the primary
winding of an ideal transformer.

In a similar manner, substitution of the relationships (14.9) into Eq. (14.8) leads to:

(D + d̂)(I2 + î2) = (D′ − d̂)(I1 + î1) (14.13)

The terms î1(t)d̂(t) and î2(t)d̂(t) are nonlinear, and can be neglected when the small-signal as-
sumption is satisfied. Elimination of the nonlinear terms, and solution for I2 + î2, yields

(I2 + î2) =
D′

D
(I1 + î1) − d̂

( I1 + I2

D

)
(14.14)

=
D′

D
(I1 + î1) − d̂

( I2

DD′

)
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Fig. 14.7 A dc and small-signal ac averaged circuit model of the CCM SEPIC

The term (I2/DD′)d̂(t) is driven by the control input d̂(t), and is represented by an indepen-
dent current source in Fig. 14.6. The term (D′/D)(I1 + î1(t)) is dependent on the port 1 current
(I1 + î1(t)). This term is modeled by a dependent current source in Fig. 14.6; this source will
become the secondary winding of an ideal transformer. Equations (14.12) and (14.14) describe
the averaged switch network model of Fig. 14.4d. Note that the model contains both dc and
small-signal ac terms: one equivalent circuit is used for both the dc and the small-signal ac
models. The transformer symbol contains both a solid line indicating that it is an ideal trans-
former capable of passing dc voltages and currents, and a sinusoidal line which indicates that
small-signal ac variations are modeled. The averaged switch model of Fig. 14.4d reveals that the
switch network performs the functions of: (i) transformation of dc and small-signal ac voltage
and current levels according to the D′:D conversion ratio and (ii) introduction of ac voltage and
current variations into the converter circuit, driven by the control input d(t). When this model
is inserted into Fig. 14.2, the dc and small-signal ac SEPIC model of Fig. 14.7 is obtained. This
model can now be solved to determine the steady-state voltages and currents as well as the
small-signal converter transfer functions.

The reference directions of the switch network waveforms in Figs. 14.2 and 14.3 are defined
such that these waveforms are positive or zero for this example. The dc components of the
averaged waveforms of Figs. 14.4 and 14.7 lead to average power flowing into port 1 of the
switch network, and flowing out of port 2. Since no losses are modeled, the averaged switch
network is lossless (for d̂ = 0), and the port 1 input power is equal to the port 2 output power,
with voltages and currents transformed by the switch network conversion ratio D/D′.

In summary, the circuit averaging method involves replacing the switch network with equiv-
alent voltage and current sources, such that a time-invariant network is obtained. The converter
waveforms are then averaged over one switching period to remove the switching harmonics.
The large-signal model is perturbed and linearized about a quiescent operating point, to obtain
a dc and a small-signal averaged switch model. Replacement of the switch network with the
averaged switch model yields a complete averaged circuit model of the converter.
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14.1.4 Indirect Power

The averaged switch models of Figs. 14.1, 14.4d, and 14.7 contain a dc transformer that transfers
average power from input port 1 to output port 2 of the switch network. Yet, in the original
circuits of Figs. 14.4a and 14.2, there is no direct connection between the transistor port 1 and
the diode port 2. What is the physical mechanism in the circuit that leads to transmission of
average power between ports 1 and 2? The existence and operation of such a mechanism are
key to the validity and justification of the averaged switch model.

Let us examine in more detail the power flowing into port 1 of the switch network, as defined
by the port 1 voltage v1(t) and current i1(t) waveforms of Fig. 14.3. The instantaneous power
flowing into port 1 can be expressed as:

p1(t) = v1(t)i1(t) (14.15)

We can express the instantaneous voltage v1(t) and current i1(t) in terms of their dc (average)
components and high-frequency ac (switching) components as follows:

v1(t) = 〈v1(t)〉Ts + ṽ1(t)

i1(t) = 〈i1(t)〉Ts + ĩ1(t) (14.16)

where ṽ1(t) and ĩ1(t) are the high-frequency switching components of v1(t) and i1(t), respectively.
By definition, these quantities are purely ac and have zero average:

〈ṽ1(t)〉Ts = 0

〈ĩ1(t)〉Ts = 0 (14.17)

The dc or low-frequency components of v1(t) and i1(t) are 〈v1(t)〉Ts and 〈i1(t)〉Ts , averaged ac-
cording to Eq. (7.3) as usual. We can express the port 1 instantaneous power as

p1(t) =
(〈v1〉Ts + ṽ1(t)

) (〈i1〉Ts + ĩ1(t)
)

= 〈v1〉Ts〈i1〉Ts + 〈v1〉Ts ĩ1(t) + 〈i1〉Ts ṽ1(t) + ṽ1(t)ĩ1(t) (14.18)

The net energy flowing into port 1 over one switching period is

P1 = 〈p1(t)〉Ts (14.19)

In this discussion, we do not model losses and consider the transistor as an ideal switch. With
this ideal switch assumption, the average port 1 power is zero:

P1 = 〈p1(t)〉Ts = 0 (14.20)

Now substitute Eq. (14.18) into Eq. (14.20). Equation (14.17) implies that the cross-product
terms 〈v1〉Ts ĩ1(t) and 〈i1〉Ts ṽ1(t) have zero average. Hence we obtain

0 = 〈v1〉Ts〈i1〉Ts + 〈ṽ1(t)ĩ1(t)〉Ts (14.21)



556 14 Circuit Averaging, Averaged Switch Modeling, and Simulation
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Fig. 14.8 Circuit modeling only the switching-frequency components of the converter waveforms

This can be rearranged as
〈v1〉Ts〈i1〉Ts = −〈ṽ1(t)ĩ1(t)〉Ts (14.22)

The quantity 〈v1〉Ts〈i1〉Ts is the dc power flowing into the switch network port 1 of the averaged
model. Equation (14.22) shows that the transistor operating as an ideal switch converts this into
ac average power 〈ṽ1(t)ĩ1(t)〉Ts that flows out of port 1. This ac average power is transmitted at
the switching frequency and its harmonics (see Sect. 20.1 for a detailed explanation of average
power in nonsinusoidal systems). The transistor behaves as an inverter, converting dc power
into ac power at the switching frequency. This ac power is called indirect power [9, 109].

The ac components ṽ1(t) and ĩ1(t) are not included in the averaged model, and hence the
averaged model is unable to represent how the ac power flows through the converter. We could
sketch a circuit that models the high-frequency components of the converter waveforms, such
as ṽ1(t), ĩ1(t), etc. Figure 14.8 is obtained from Fig. 14.2 by the dc (average) components of
the converter waveforms to zero; the remaining signals of the circuit occur at the switching
frequency and its harmonics. It is assumed that vg(t) contains only dc, so the input voltage
source is set to zero. As noted above, port 1 of the switch network becomes a source of switching
harmonics and ac power.

Figure 14.9 illustrates the waveforms ṽ1(t), ĩ1(t), ṽ2(t), and ĩ2(t), for operation in continuous
conduction mode with small ripple in the inductor currents and capacitor voltages. Under these
conditions, the inductors behave nearly as open circuits at the switching frequency, and the
capacitors behave nearly as short circuits. In consequence, the indirect power flows out of port
1, through capacitor C1, and into port 2.

We can write the equations of the instantaneous and average power in port 2 of the switch
network in a similar manner. The instantaneous power flowing out of port 2 is

p2(t) = v2(t)i2(t) (14.23)
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Fig. 14.9 Switching-frequency components of the switch network waveforms, SEPIC example

The reference polarities of v2(t) and i2(t) have been chosen such that both of these waveforms
are positive. In consequence, positive p2(t) represents generated power that flows out of switch
network port 2. The instantaneous voltage v2(t) and current i2(t) are expressed in terms of their
dc (average) components and high-frequency ac (switching) components as follows:

v2(t) = 〈v2〉Ts + ṽ2(t)

i2(t) = 〈i2〉Ts + ĩ2(t) (14.24)

By definition, ṽ2(t) and ĩ2(t) are purely ac and have zero average:

〈ṽ2(t)〉Ts = 0

〈ĩ2(t)〉Ts = 0 (14.25)

The port 2 instantaneous power is

p2(t) =
(〈v2〉Ts + ṽ2(t)

) (〈i2〉Ts + ĩ2(t)
)

= 〈v2〉Ts〈i2〉Ts + 〈v2〉Ts ĩ2(t) + 〈i2〉Ts ṽ2(t) + ṽ2(t)ĩ2(t) (14.26)

The net energy flowing out of port 2 over one switching period is

P2 = 〈p2(t)〉Ts (14.27)

Again, we do not model losses and consider the diode as an ideal switch. With this ideal switch
assumption, the average port 2 power is zero:

P2 = 〈p2(t)〉Ts = 0 (14.28)
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Now substitute Eq. (14.26) into Eq. (14.28). Equation (14.25) implies that the cross-product
terms 〈v2〉Ts ĩ2(t) and 〈i2〉Ts ṽ2(t) have zero average. Hence we obtain

0 = 〈v2〉Ts〈i2〉Ts + 〈ṽ2(t)ĩ2(t)〉Ts (14.29)

This can be rearranged as
〈v2〉Ts〈i2〉Ts = −〈ṽ2(t)ĩ2(t)〉Ts (14.30)

So port 2 behaves as a rectifier that converts the ac indirect power flowing into port 2 (from the
remainder of the converter) into dc power. This dc power flows out of port 2, and is the port 2
power of the averaged model.

Thus, dc power flows into port 1 of the switch network. The switching transistor performs
the function of inversion, converting the dc power into ac indirect power that flows out of switch
network port 1 and through the remainder of the converter circuit including its reactive elements.
This ac indirect power then flows into port 2 of the switch network, where the switching diode
performs the function of rectification to convert the indirect power back to dc. This dc power
constitutes the port 2 power of the averaged switch model.

It can be observed that the process of average switch modeling requires assumptions to be
made about the time-invariant network and the waveforms of its reactive elements, which are
then employed in modeling the switch network itself. The derivation summarized in Fig. 14.4
relies on these assumptions. For example, when the inductor current or capacitor voltage ripple
is large, then the switch network models of Figs. 14.4c,d are not valid averaged representations
of the switch network of Fig. 14.4a. Additional analysis is required, that accounts for how the
reactive elements respond to the operation of the switch network, and how the ac indirect power
propagates out of the switch network port 1, through the converter reactive elements, and into
the switch network port 2. Averaged switch models for the discontinuous conduction mode are
developed in Chap. 15, and for resonant switch converters in Chap. 23.

In converters that include a dc path between the converter input Vg and output V terminals
for at least one subinterval, the indirect power can be smaller than the converter input power.
The remaining power is called direct power; the direct power flows from the converter input
to the output without the intermediate steps of high-frequency inversion and rectification. The
buck and boost converters exhibit direct power flow, while the buck–boost, SEPIC, Ćuk, and all
transformer-isolated converters do not. In general, we expect the indirect power conversion path
to incur higher loss than direct conversion: direct power is subject only to dc conduction losses,
while indirect power conversion incurs dc conduction losses as well as magnetics ac losses and
semiconductor switching loss. Hence, converters that operate with a lower fraction of indirect
power conversion can be expected to exhibit higher efficiency.

14.2 Additional Configurations of Switch Networks

The switch network of Fig. 14.4a can be identified in all two-switch converters, including buck,
boost, SEPIC, Ćuk, etc. As illustrated in Fig. 14.10, a complete averaged circuit model of the
converter can be constructed simply by replacing the switch network with the averaged switch
model. For example, Fig. 14.11 shows an averaged circuit model of the boost converter obtained
by identifying the switch network of Fig. 14.4a and replacing the switch network with the model
of Fig. 14.4d.
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Fig. 14.10 Construction of an averaged circuit model for a two-switch converter operating in CCM: (a)
the converter circuit with the general two-switch network identified; (b) dc and ac small-signal averaged
circuit model obtained by replacing the switch network with the averaged model

So far, we have described derivation of the averaged switch model for the general two-switch
network where the ports of the switch network coincide with the switch ports. No connections
are assumed between the switches within the switch network itself. As a result, this switch
network and its averaged model can be used to easily construct averaged circuit models of
many two-switch converters, as illustrated in Fig. 14.10. It is important to note, however, that
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Fig. 14.11 Construction of an averaged circuit model for an ideal boost converter example: converter
circuit with the switch network of Fig. 14.4a identified; (b) a dc and small-signal ac averaged circuit
model obtained by replacing the switch network with the model of Fig. 14.4d

the definition of the switch network ports is not unique. Different definitions of the switch
network lead to equivalent, but not identical, averaged switch models. The alternative forms of
the averaged switch model may result in simpler circuit models, or models that provide better
physical insight. Two alternative averaged switch models, better suited for analyses of boost
and buck converters, are described in this section.

Consider the ideal boost converter of Fig. 14.12a. The switch network contains the transis-
tor and the diode, as in Fig. 14.11a, but the switch network ports are defined differently. Let us
proceed with the derivation of the corresponding averaged switch model. The switch network
terminal waveforms are shown in Fig. 14.12b. Since i1(t) and v2(t) coincide with the converter
inductor current and capacitor voltage, it is convenient to choose these waveforms as the inde-
pendent inputs to the switch network. The steps in the derivation of the averaged switch model
are illustrated in Fig. 14.13.

First, we replace the switch network with dependent voltage and current generators as illus-
trated in Fig. 14.13b. The voltage generator v1(t) models the dependent voltage waveform at the
input port of the switch network, i.e., the transistor voltage. As illustrated in Fig. 14.12b, v1(t)
is zero when the transistor conducts, and is equal to v2(t) when the diode conducts:

v1(t) =

{
0, 0 < t < dTs

v2(t), dTs < t < Ts
(14.31)

When v1(t) is defined in this manner, the inductor voltage waveform is unchanged. Likewise,
i2(t) models the dependent current waveform at port 2 of the network, i.e., the diode current. As
illustrated in Fig. 14.12b, i2(t) is equal to zero when the transistor conducts, and is equal to i1(t)
when the diode conducts:
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Fig. 14.12 An ideal boost converter example: (a) converter circuit showing another possible definition
of the switch network; (b) terminal waveforms of the switch network

i2(t) =

{
0, 0 < t < dTs

i1(t), dTs < t < Ts
(14.32)

With i2(t) defined in this manner, the capacitor current waveform is unchanged. Therefore, the
original converter circuit shown in Fig. 14.12a and the circuit obtained by replacing the switch
network of Fig. 14.13a with the switch network of Fig. 14.13b are electrically identical. So far,
no approximations have been made. Next, we remove the switching harmonics by averaging all
signals over one switching period, as in Eq. (7.3). The results are

〈v1(t)〉Ts = d′(t)〈v2(t)〉Ts (14.33)

〈i2(t)〉Ts = d′(t)〈i1(t)〉Ts

Here we have assumed that the switching ripples of the inductor current and capacitor voltage
are small, or at least linear functions of time. The averaged switch model of Fig. 14.13c is
now obtained. This is a large-signal, nonlinear model, which can replace the switch network in
the original converter circuit, for construction of a large-signal nonlinear circuit model of the
converter. The switching harmonics have been removed from all converter waveforms, leaving
only the dc and low-frequency ac components.
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Fig. 14.13 Derivation of the averaged switch model for the CCM boost of Fig. 14.12: (a) switch network;
(b) switch network where the switches are replaced with dependent sources whose waveforms match
the switch terminal dependent waveforms; (c) large-signal, nonlinear averaged switch model obtained
by averaging the switch network terminal waveforms in (b); (d) dc and ac small-signal averaged switch
network model
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The model can be linearized by perturbing and linearizing the converter waveforms about a
quiescent operating point, in the usual manner. Let

〈vg(t)〉TS = Vg + v̂g(t)

d(t) = D + d̂(t)⇒ d′(t) = D′ − d̂(t)

〈i(t)〉Ts = 〈i1(t)〉Ts = I + î(t) (14.34)

〈v(t)〉Ts = 〈v2(t)〉Ts = V + v̂(t)

〈v1(t)〉Ts = V1 + v̂1(t)

〈i2(t)〉Ts = I2 + î2(t)

The nonlinear voltage generator at port 1 of the averaged switch network has value

(D′ − d̂(t))(V + v̂(t)) = D′(V + v̂(t)) − Vd̂(t) − v̂(t)d̂(t) (14.35)

The term v̂(t)d̂(t) is nonlinear, and is small in magnitude provided that the ac variations are
much smaller than the quiescent values [as in Eq. (7.33)]. When the small-signal assumption is
satisfied, this term can be neglected. The term Vd̂(t) is driven by the control input, and hence can
be represented by an independent voltage source. The term D′(V + v̂(t)) is equal to the constant
value D′ multiplied by the output voltage (V + v̂(t)). This term is dependent on the output
capacitor voltage; it is represented by a dependent voltage source. This dependent source will
become the primary winding of an ideal transformer.

The nonlinear current generator at the port 2 of the averaged switch network is treated in a
similar manner. Its current is

(D′ − d̂(t))(I + î(t)) = D′(I + î(t)) − Id̂(t) − î(t)d̂(t) (14.36)

The term î(t)d̂(t) is nonlinear, and can be neglected provided that the small-signal assumption is
satisfied.

The term Id̂(t) is driven by the control input d̂(t), and is represented by an independent
current source. The term D′(I + î(t)) is dependent on the inductor current (I + î(t)). This term is
modeled by a dependent current source; this source will become the secondary winding of an
ideal transformer.

Upon elimination of the nonlinear terms, and replacement of the dependent generators
with an ideal D′:1 transformer, the combined dc and small-signal ac averaged switch model
of Fig. 14.13d is obtained. Figure 14.14 shows the complete averaged circuit model of the boost
converter.

It is interesting to compare the models of Figs. 14.11b and 14.14. The two averaged circuit
models of the boost converter are equivalent—they result in the same steady-state solution,
and the same converter transfer functions. However, since both ports of the switch network in
Fig. 14.12a share the same reference ground, the resulting averaged circuit model in Fig. 14.14
is easier to solve, and gives better physical insight into steady-state operation and dynamics of
the boost converter. The circuit model of Fig. 14.14 reveals that the switch network performs the
functions of: (i) transformation of dc and small-signal ac voltage and current levels according
to the D′:1 conversion ratio and (ii) introduction of ac voltage and current variations into the
converter circuit, driven by the control input d(t). The model of Fig. 14.14 obtained using the
circuit averaging approach is identical to the model of Fig. 7.18b obtained using the basic ac
modeling technique of Sect. 7.2.
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Fig. 14.14 Dc and small-signal ac averaged circuit model of the boost converter

(a)

+

L

C R

+

v(t)vg(t)

i(t)
+

v2(t)

i1(t) i2(t)

Switch  network

+

v1(t)

(b)

t

i1(t)

dTs Ts
0

0
0

i2

t

v2(t)

dTs Ts
0

0
0

v1

i1(t) Ts

i2(t) Ts

v2(t) Ts

Fig. 14.15 Buck converter example: (a) converter circuit, (b) switch waveforms

Next, we consider the CCM buck converter of Fig. 14.15, where the switch network ports
are defined to share a common ground terminal. The derivation of the corresponding averaged
switch model follows the same steps as in the SEPIC and the boost examples. Let us select
v1(t) and i2(t) as the independent terminal variables of the two-port switch network, since these
quantities coincide with the applied converter input voltage vg(t) and the inductor current i(t),
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Fig. 14.16 Averaged switch modeling, buck converter example: (a) dc and small-signal ac averaged
switch model; (b) Averaged circuit model of the buck converter obtained by replacement of the switch
network by the averaged switch model

respectively. We then need to express the averaged dependent terminal waveforms 〈i1(t)〉Ts and
〈v2(t)〉Ts as functions of the control input d(t) and of 〈v1(t)〉Ts and 〈i2(t)〉Ts . Upon averaging the
waveforms of Fig. 14.15b, one obtains

〈i1(t)〉Ts = d(t)〈i2(t)〉Ts (14.37)

〈v2(t)〉TS = d(t)〈v1(t)〉TS

Perturbation and linearization of Eq. (14.37) then leads to

I1 + î1(t) = D(I2 + î2(t)) + I2 d̂(t) (14.38)

V2 + v̂2(t) = D(V1 + v̂1(t)) + V1 d̂(t)

An equivalent circuit corresponding to Eq. (14.38) is illustrated in Fig. 14.16a. Replacement
of the switch network in Fig. 14.15a with the averaged switch model of Fig. 14.16a leads to the
converter averaged circuit model of Fig. 14.16b. The circuit model of Fig. 14.16b reveals that the
switch network performs the functions of: (i) transformation of dc and small-signal ac voltage
and current levels according to the 1:D conversion ratio and (ii) introduction of ac voltage and
current variations into the converter circuit, driven by the control input d(t). The model is easy
to solve for both dc conversion ratio and small-signal frequency responses. It is identical to the
model shown in Fig. 7.18a.

The three basic switch networks—the buck switch network, the boost switch network, and
the general two-switch network—together with the corresponding averaged switch models are
shown in Fig. 14.17.
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Fig. 14.17 Three basic switch networks, and their CCM dc and small-signal ac averaged switch models:
(a) the buck switch network, (b) the boost switch network, and (c) the general two-switch network

14.3 Simulation of Averaged Circuit Models

Computer simulation can be a powerful tool in the engineering design process. Starting from
design specifications, an initial design typically includes selection of system and circuit config-
urations, as well as component types and values. In this process, component and system models
are constructed based on vendor-supplied data, and by applications of analysis and modeling
techniques. These models, validated by experimental data whenever possible, are the basis upon
which the designer can choose parameter values and verify the achieved performance against
the design specifications. One must take into account the fact that actual parameter values will
not match their nominal values because of inevitable production tolerances, changes in environ-
mental conditions (such as temperature), and aging. In the design verification step, worst-case
analysis (or other reliability and production yield analysis) is performed to judge whether the
specifications are met under all conditions, i.e., for expected ranges of component parameter
values. Computer simulation is very well suited for this task: using reliable models and appro-
priate simulation setups, the system performance can be tested for various sets of component
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parameter values. One can then perform design iterations until the worst-case behavior meets
specifications, or until the system reliability and production yield are acceptably high.

In the design verification of power electronic systems by simulation, it is often necessary to
use component and system models of various levels of complexity:

1. Detailed, complex models that attempt to accurately represent physical behavior of devices.
Such models are necessary for tasks that involve finding switching times, details of switch-
ing transitions and switching loss mechanisms, or instantaneous voltage and current stresses.
Component vendors often provide libraries of such device models. To complete a detailed
circuit model, one must also carefully examine effects of packaging and board interconnects.
With fast switching power semiconductors, simulation time steps of a few nanoseconds or
less may be required, especially during on/off switching transitions. Because of the com-
plexity of detailed device models, and the fine time resolution, the simulation tasks can
be time consuming. In practice, time-domain simulations using detailed device models are
usually performed on selected parts of the system, and over relatively short time intervals.
Tools available to perform transient simulations of switched-mode power converter using
detailed device models include variants of SPICE [110] such as LTspice and PSpice.

2. Simplified device models. Since an on/off switching transition usually takes a small fraction
of a switching cycle, the basic operation of switching power converters can be explained
using simplified, idealized device models. For example, a MOSFET can be modeled as a
switch with a small (ideally zero) on-resistance Ron when on, and a very large off-resistance
(ideally an open circuit) when off. Such simplified models yield physical insight into the ba-
sic operation of switching power converters, and provide the starting point for developments
of analytical models described throughout this book. Simplified device models are also
useful for time-domain simulations aimed at verifying converter and controller operation,
switching ripples, current and voltage stresses, and responses to load or input transients.
Since device models are simple, and details of switching transitions are ignored, tasks that
require simulations over many switching cycles can be completed efficiently using circuit
simulators. Various approaches have been developed to support fast transient simulation of
switching power converters based on idealized, piecewise-linear device models [111–117],
or a combination of piecewise-linear and nonlinear models [118]. Simulation tools based
on piecewise-linear device models include PLECS and SIMPLIS.

3. Averaged converter models. Averaged models that are well suited for prediction of converter
steady-state and dynamic responses are discussed throughout this book. These models are
essential design tools because they provide physical insight and lead to analytical results
that can be used in the design process to select component parameter values for a given
set of specifications. In the design verification step, simulations of averaged converter mod-
els can be performed to test for losses and efficiency, steady-state voltages and currents,
stability, and large-signal transient responses. Since switching transitions and ripples are
removed by averaging, simulations over long time intervals and over many sets of param-
eter values can be completed efficiently. As a result, averaged models are also well suited
for simulations of large electronic systems that include switching converters. Furthermore,
since large-signal averaged models are nonlinear, but time-invariant, small-signal ac simu-
lations can be used to generate various frequency responses of interest. Selected references
on averaged converter modeling for simulation include [119–129].

Based on the material presented in Sect. 14.1, averaged switch models for computer simula-
tion of converters operating in continuous conduction mode are described in this section. It is
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assumed that the reader is familiar with basics of SPICE circuit simulations. SPICE subcircuit
netlists are included to help explain details of model implementation and simulation analysis
options. Usually, instead of writing netlists, the user would enter circuit diagrams and analysis
options from a front-end schematic capture tool.

14.3.1 Simulation Model of the Ideal CCM Averaged Switch Network

The central idea of the averaged switch modeling described in Sect. 14.1 is to identify a switch
network in the converter, and then to find an averaged circuit model. The resulting averaged
switch model can then be inserted into the converter circuit to obtain a complete model of the
converter. An important feature of the averaged switch modeling approach is that the same
model can be used in many different converter configurations; it is not necessary to rederive an
averaged equivalent circuit for each particular converter. This feature is also very convenient for
construction of averaged circuit models for simulation. A general-purpose subcircuit represents
a large-signal nonlinear averaged switch model. The converter averaged circuit for simulation is
then obtained by replacing the switch network with this subcircuit. Based on the discussion in
Sect. 14.1, subcircuits that represent CCM averaged switch models are described in this section.

The large-signal averaged switch model for the general two-switch network of Fig. 14.4a is
shown in Fig. 14.4c. A SPICE subcircuit implementation of this model is shown in Fig. 14.18.
The subcircuit has five nodes. The transistor port of the averaged switch network is connected
between the nodes 1 and 2, while the diode port is comprised of nodes 3 and 4. The duty ratio
d = v(5) is the control input to the subcircuit at the node 5. The quantity v(5) is a voltage that
is equal to the duty cycle, and that lies in the range zero to one volt. Figure 14.18c shows the
netlist of the subcircuit. The netlist consists of only four lines of code and several comment
lines (the lines starting with ∗). The .subckt line defines the name (CCM1) of the subcircuit and
the interface nodes. The value of the controlled voltage source Et, which models the transistor
port of the averaged switch network, is written according to Eq. (14.7):

〈v1(t)〉Ts =
d′(t)
d(t)
〈v2(t)〉Ts (14.39)

Note that v(3, 4) in the subcircuit of Fig. 14.18 is equal to the switch network independent input
〈v2(t)〉Ts . Also, d(t) = v(5), and d′(t) = 1 − d(t) = 1 − v(5). The value of the controlled current
source Gd, which models the diode port, is computed according to Eq. (14.8):

〈i2(t)〉Ts =
d′(t)
d(t)
〈i1(t)〉Ts (14.40)

The switch network independent input 〈i1(t)〉Ts equals the current i(Et) through the controlled
voltage source Et. The .ends line completes the subcircuit netlist.

An advantage of the subcircuit CCM1 of Fig. 14.18 is that it can be used to construct an av-
eraged circuit model for simulation of any two-switch PWM converter operating in continuous
conduction mode, subject to the assumptions that the switches can be considered ideal, and that
the converter does not include a step-up or step-down transformer. The subcircuit can be further
refined to remove these limitations. In converters with an isolation transformer, the right-hand
side of Eqs. (14.39) and (14.40) should be divided by the transformer turns ratio.

A disadvantage of the model in Fig. 14.18 is that Eqs.(14.39) and (14.40) have a disconti-
nuity at duty cycle equal to zero. In applications of the subcircuit, it is necessary to restrict the
duty-cycle to the range 0 < Dmin ≤ d ≤ 1.
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****************************************************************
* Subcircuit: CCM1
* Application: two-switch PWM converters
* Limitations: ideal switches, CCM only, no transformer
****************************************************************
* Parameters: none
****************************************************************
* Nodes:
* 1: transistor positive (drain for an n-channel MOS)
* 2: transistor negative  (source for an n-channel MOS)
* 3: diode cathode
* 4: diode anode
* 5: duty cycle control input
****************************************************************
.subckt CCM1 1  2  3  4  5
Et 1 2 value={(1-v(5))*v(3,4)/v(5)}
Gd 4 3 value={(1-v(5))*i(Et)/v(5)}
.ends
****************************************************************

(c)

Fig. 14.18 Averaged switch model CCM1: (a) the general two-switch network; (b) symbol for the aver-
aged switch subcircuit model; (c) SPICE netlist of the subcircuit

14.3.2 Averaged Switch Modeling and Simulation of Conduction Losses

An averaged switch model can be refined to include switch conduction losses. Consider again
the SEPIC of Fig. 14.2. Suppose that the transistor on-resistance is Ron and the diode forward
voltage drop VD are approximately constant. In this example, all other conduction or switching
losses are neglected. Our objective is to derive an averaged switch model that includes conduc-
tion losses caused by the voltage drops across Ron and VD. Let us define the switch network as in
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Fig. 14.19 The switch network terminal voltages v1(t) and v2(t) for the case when the transistor on-
resistance is Ron and the diode forward voltage drop is VD

Fig. 14.4a. The waveforms of the switch network terminal currents are the same as in Fig. 14.3,
but the voltage waveforms are affected by the voltage drops across Ron and VD as shown in
Fig. 14.19. We select i1(t) and v2(t) as the switch network independent inputs, as in Sect. 14.1.1.
The average values of v1(t) and v2(t) can be found as follows:

〈v1(t)〉Ts = d(t)Ron
(〈iL1(t)〉Ts + 〈iL2(t)〉Ts

)
+ d′(t)

(〈vC1(t)〉Ts + 〈vC2(t)〉TS + VD
)

(14.41)

〈v2(t)〉Ts = d(t)
(〈vC1(t)〉Ts + 〈vC2(t)〉Ts − Ron

(〈iL1(t)〉Ts + 〈iL2(t)〉Ts

))
+ d′(t)(−VD) (14.42)

Next, we proceed to eliminate 〈iL1(t)〉Ts , 〈iL2(t)〉Ts , 〈vC1(t)〉Ts , and 〈vC2(t)〉Ts , to write the above
equations in terms of the averaged independent terminal currents and voltages of the switch
network. By combining Eqs. (14.41) and (14.42), we obtain:

〈vC1(t)〉Ts + 〈vC2(t)〉Ts = 〈v1(t)〉Ts + 〈v2(t)〉Ts (14.43)

Since the current waveforms are the same as in Fig. 14.3, Eq. (14.5) can be used here:

〈iL1(t)〉TS + 〈iL2(t)〉Ts =
〈i1(t)〉TS

d(t)
(14.44)

Substitution of Eqs. (14.43) and (14.44) into Eq. (14.41) results in:

〈v1(t)〉Ts = Ron〈i1(t)〉Ts + d′(t)(〈v1(t)〉Ts + 〈v2(t)〉Ts + VD) (14.45)

Equation (14.45) can be solved for the voltage 〈v1(t)〉Ts :

〈v1(t)〉Ts =
Ron

d(t)
〈i1(t)〉TS +

d′(t)
d(t)

(〈v2(t)〉Ts + VD
)

(14.46)
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The expression for the averaged current 〈i2(t)〉Ts is given by Eq. (14.8) derived in Sect. 14.1.2:

〈i2(t)〉Ts =
d′(t)
d(t)
〈i1(t)〉Ts (14.47)

Equations (14.46) and (14.47) constitute the averaged terminal relations of the switch network.
An equivalent circuit corresponding to these relationships is shown in Fig. 14.20. The genera-
tors that depend on the transistor duty cycle d(t) are combined into an ideal transformer with
the turns ratio d′(t):d(t). This part of the model is the same as in the averaged switch model de-
rived earlier for the switch network with ideal switches. The elements Ron/d and VD model the
conduction losses in the switch network. This is a large-signal, nonlinear model. If desired, this
model can be perturbed and linearized in the usual manner, to obtain a small-signal ac switch
model.

+

v2(t) Ts

i1(t) Ts
+

v1(t) Ts

i2(t) Tsd (t) : d(t)

+

Ron
d(t) VD

Fig. 14.20 Large-signal averaged switch model for the general two-switch network of Fig. 14.17c. This
model includes conduction losses due to the transistor on-resistance Ron and the diode forward voltage
drop VD

14.3.3 Inclusion of Switch Conduction Losses in Simulations

Let us modify the model of Fig. 14.18 to include switch conduction losses. Figure 14.21 shows
simple device models that include transistor and diode conduction losses in the general two-
switch network of Fig. 14.18a. The transistor is modeled as an ideal switch in series with an
on-resistance Ron. The diode is modeled as an ideal diode in series with a forward voltage drop
VD and resistance RD.

Construction of dc equivalent circuits to find dc conversion ratio and efficiency of convert-
ers is discussed in Chap. 3. Derivation of an averaged switch model that includes conduction
losses arising from Ron and VD is described in Sect. 14.3.2. Following the same averaged switch
modeling approach, we can find the following relationships that describe the averaged switch
model for the switch network of Fig. 14.21:

〈v1(t)〉Ts =

(
Ron

d(t)
+

d′(t)RD

d2(t)

)
〈i1(t)〉Ts +

d′(t)
d(t)

(〈v2(t)〉Ts + VD
)

(14.48)

〈i2(t)〉Ts
=

d′(t)
d(t)
〈i1(t)〉Ts

(14.49)
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Fig. 14.21 Switch network model that includes conduction loss elements Ron, VD, and RD

A subcircuit implementation of the averaged switch model described by Eqs. (14.48) and (14.49)
is shown in Fig. 14.22 The subcircuit terminal nodes are the same as in the CCM1 subcircuit:
the transistor port is between the nodes 1 and 2; the diode port is between the nodes 3 and
4; the duty ratio d = v(5) is the control input to the subcircuit at the node 5. Two controlled
voltage sources in series, Er and Et, are used to generate the port 1 (transistor) averaged voltage
according to Eq. (14.48). The controlled voltage source Er models the voltage drop across the
equivalent resistance Ron/d(t)+d′(t)RD/d2(t) in Eq. (14.48). Note that this equivalent resistance
is a nonlinear function of the switch duty cycle d(t). The controlled voltage source Et shows
how the port 1 (transistor) averaged voltage depends on the port 2 (diode) averaged voltage.
The controlled current source Gd models the averaged diode current according to Eq. (14.49).
The subcircuit CCM2 has three parameters (Ron, VD, and RD) that can be specified when the
subcircuit is used in a converter circuit. The default values of the subcircuit parameters, Ron =

0, VD = 0, and RD = 0, are defined in the .subckt line. These values correspond to the ideal
case of no conduction losses.

The model of Fig. 14.22 is based on the simple device models of Fig. 14.21. It is assumed
that inductor current ripples are small and that the converter operates in continuous conduction
mode. Many practical converters, however, must operate in discontinuous conduction mode at
low duty cycles where the diode forward voltage drop is comparable to or larger than the output
voltage. In such cases, the model of Fig. 14.21, which includes VD as a fixed voltage generator,
gives incorrect, physically impossible results for polarities of converter voltages and currents,
losses, and efficiency.

14.3.4 Example: SEPIC DC Conversion Ratio and Efficiency

Let us consider an example of how the subcircuit CCM2 can be used to generate dc conversion
ratio and efficiency curves for a CCM converter. As an example, Figure 14.23 shows a SEPIC
averaged circuit model. The converter circuit can be found in Fig. 6.39a, or in Fig. 14.2. To con-
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(b) **************************************************************
* MODEL: CCM2
* Application: two-switch PWM converters, includes 
*              conduction losses due to Ron, VD, RD
* Limitations: CCM only, no transformer
**************************************************************
* Parameters:
*      Ron = transistor on-resistance
*      VD = diode forward voltage drop
*      RD = diode on-resistance
**************************************************************
* Nodes:
* 1: transistor positive (drain for an n-channel MOS)
* 2: transistor negative (source for an n-channel MOS)
* 3: diode cathode
* 4: diode anode
* 5: duty cycle control input
**************************************************************
.subckt CCM2 1  2  3  4  5
+params: Ron=0 VD=0 RD=0
Er 1 1x value={i(Et)*(Ron+(1-v(5))*RD/v(5))/v(5)}
Et 1x 2 value={(1-v(5))*(v(3,4)+VD)/v(5)}
Gd 4 3 value={(1-v(5))*i(Et)/v(5)}
.ends
**************************************************************

Fig. 14.22 Subcircuit implementation of the CCM averaged switch model that includes conduction
losses: (a) circuit symbol; (b) SPICE netlist for the subcircuit

struct the averaged circuit model for simulation, the switch network is replaced by the subcircuit
CCM2. In the converter netlist shown in Fig. 14.23, the Xswitch line shows how the subcircuit is
connected to other parts of the converter. The switch duty cycle is set by the voltage source Vc.
All other parts of the converter circuit are simply copied to the averaged circuit model. Induc-
tor winding resistances RL1 = 0.5Ω and RL2 = 0.1Ω are included to model copper losses of
the inductors L1 and L2, respectively. The switch conduction loss parameters are defined by the
.param line in the netlist: Ron = 0, VD = 0.8V, RD = 0.05Ω. Notice how these values are passed
to the subcircuit CCM2 in the Xswitch line. In this example, all other losses in the converter are
neglected. A dc sweep analysis (see the .dc line in the netlist) is set to vary the dc voltage source
Vc from 0.1 V to 1 V, in 0.01 V increments, which corresponds to varying the switch duty cycle
over the range from D = 0.1 to D = 1. The range of duty cycles from zero to 0.1 is not covered
because of the model discontinuity problem at D = 0 (discussed in Sect. 14.3.1), and because
the model predictions for conduction losses at low duty cycles are not valid, as discussed in
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Xswitch

*
.param  Ron=0.0 VD=0.8 RD=0.05
* Analysis setup:
.dc lin Vc 0.1 1 0.01
.step lin PARAM Ron 0 1 0.5

* Converter netlist:
Vg 1 0 50V
L1 1 2x  800u
RL1 2x 2 0.5
L2 0 3x 100uH
RL2 3x 3 0.1
C1 2 3 100uF
C2 4 0 100uF
Xswitch 2 0 4 3 5 CCM2
+params: Ron={Ron} VD={VD} RD={RD}
Rload 4 0 50

* Duty cycle input:
Vc  5 0 0.5

Fig. 14.23 SEPIC simulation example: (a) schematic; (b) SPICE netlist

Sect. 14.3.3. The dc sweep analysis is repeated for values of the switch on-resistance in the
range from Ron = 0Ω to Ron = 1Ω in 0.5 Ω increments (see the .step line in the netlist).

Simulation results for the dc output voltage V and the converter efficiency η are shown in
Fig. 14.24. Several observations can be made based on the modeling approach and discussions
presented in Chapter 3. At low duty cycles, efficiency drops because the diode forward voltage
drop is comparable to the output voltage. At higher duty cycles, the converter currents increase,
so that the conduction losses increase. Eventually, for duty cycles approaching 1, both the out-
put voltage and the efficiency approach zero. Given a desired dc output voltage and efficiency,
the plots in Fig. 14.24 can be used to select the transistor with an appropriate value of the on-
resistance.
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Fig. 14.24 SEPIC simulation example: (a) dc conversion ratio; (b) efficiency

14.3.5 Example: Transient Response of a Buck–Boost Converter

In addition to steady-state conversion characteristics, it is often of interest to investigate con-
verter transient responses. For example, in voltage regulator designs, it is necessary to verify
whether the output voltage remains within specified limits when the load current takes a step
change. As another example, during a start-up transient when the converter is powered up, con-
verter components can be exposed to significantly higher stresses than in steady state. It is of
interest to verify that component stresses are within specifications or to make design modifi-
cations to reduce the stresses. In these examples, transient simulations can be used to test for
converter responses.
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Fig. 14.25 Buck–boost converter example

Transient simulations can be performed on the converter switching circuit model or on the
converter averaged circuit model. As an example, let us apply these two approaches to investi-
gate a start-up transient response of the buck–boost converter shown in Fig. 14.25.

Figure 14.26 shows a switching circuit model of the buck–boost converter. The inductor
winding resistance RL is included to model the inductor copper losses. The MOSFET is mod-
eled as a voltage-controlled switch S q1 controlled by a pulsating voltage source vc. The switch
.model line specifies the switch on-resistance Ron = 50 mΩ, and the switch off-resistance
Ro f f = 10 MΩ. The switch is on when the controlling voltage vc is greater than Von = 6 V, and
off when the controlling voltage vc is less than Vo f f = 4 V. The pulsating source vc has the pulse
amplitude equal to 10 V. The period is Ts = 1/ fs = 10 μs, the rise and fall times are tr = t f = 100
ns, and the pulse width is tp = 7.9 μs. The switch duty cycle is D = (tp + 0.5(tr + t f ))/Ts = 0.8.
The built-in nonlinear SPICE model is used for the diode. In the diode .model statement, only
the parameter Is is specified, to set the forward voltage drop across the diode. The switch and the
diode models used in this example are very simple. Conduction losses are modeled in a simple
manner, and details of complex device behavior during switching transitions are neglected.

Therefore, the circuit model of Fig. 14.26 cannot be used to examine switching transitions or
to predict switching losses in the converter. Nevertheless, basic switching operation is modeled,
and a transient simulation can be used to find out how the converter waveforms evolve in time
over many switching cycles. Transient simulation parameters are defined by the .tran line: the
output time step is 1 μs, the final simulation time is 1.2 ms, the output waveforms are generated
from the start of simulation at time equal to zero, and the maximum allowed time step is 1 μs.
The uic (“use initial conditions”) option tells the simulator to start with all capacitor voltages
and inductor currents equal to the specified initial values. For example, ic=0 in the L1 line sets
the initial inductor current to zero. In SPICE, the default initial conditions are always zero, so
that ic=0 statements can be omitted.
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(b) Vg 1 0 15V
Sq1 1 2 5 0 switch
D1 3 2 diode 
RL 2 4 0.1
L1 4 0 15uH ic=0
C1 3 0 50uF ic=0
R 3 0 20
Vc 5 0 pulse 
+(0 10V 0us 100ns 100ns 7.9us 10us) 
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+(Ron=0.05 Roff=10meg Von=6V Voff=4V)
.model diode d (Is=1e-12)
.tran 1u 1.2m 0m 1u uic

Fig. 14.26 Buck–boost converter simulation example: (a) schematic of switching circuit model; (b)
SPICE netlist

An averaged circuit model of the buck–boost converter is shown in Fig. 14.27. This circuit
model is obtained by replacing the switch network in the converter of Fig. 14.25 by the CCM2
subcircuit. Notice that the circuits and the netlists of Fig. 14.26 and Fig. 14.27 are very simi-
lar. The only difference is that the switching devices in the converter circuit of Fig. 14.26 are
replaced by the CCM2 subcircuit Xswitch in Fig. 14.27. Also, the pulsating source vc(t) in the
switching circuit is replaced by a constant voltage source vc equal to the switch duty cycle
D = 0.8.

The inductor current and the capacitor voltage waveforms during the start-up transient are
shown in Fig. 14.28. For comparison, the waveforms obtained by transient simulation of the
switching converter circuit shown in Fig. 14.26, and by simulation of the averaged circuit model
of Fig. 14.27 are shown. Switching ripples can be observed in the waveforms obtained by sim-
ulation of the switching circuit model. The converter transient response is governed by the
converter natural time constants. Since these time constants are much longer than the switch-
ing period, the converter start-up transient responses in Fig. 14.28 take many switching cycles
to reach the steady state. In the results obtained by simulation of the averaged circuit model,
the switching ripples are removed, but the low-frequency portions of the converter transient re-
sponses, which are governed by the natural time constants of the converter network, match very
closely the responses obtained by simulation of the switching circuit.
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Fig. 14.27 Buck–boost converter simulation example: (a) schematic of averaged circuit model; (b)
SPICE netlist

Based on the results shown in Fig. 14.28, we can see that converter components are exposed
to significantly higher current stresses during the start-up transient than during steady state op-
eration. The problem of excessive stresses in the start-up transient is quite typical for switching
power converters. Practical designs usually include a “soft-start” circuit, where the switch duty
cycle is slowly increased from zero to the steady-state value to reduce start-up transient stresses.

This simulation example illustrates how an averaged circuit model can be used in place of a
switching circuit model to investigate converter large-signal transient responses. An advantage
of the averaged circuit model is that transient simulations can be completed much more quickly
because the averaged model is time invariant, and the simulator does not spend time computing
the details of the fast switching transitions. This advantage can be important in simulations of
larger electronic systems that include switching power converters.

Converter averaged circuit models are nonlinear but time-invariant. This brings up another
important advantage of averaged simulation models: SPICE ac simulations can be used to lin-
earize the model numerically, and generate small-signal frequency responses of interest. The ac
simulations can be easily performed over ranges or dc operating points or sets of parameter val-
ues. This is not possible with switching circuit models. Examples of small-signal ac simulations
are given in Chap. 15.
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Fig. 14.28 Inductor current (a) and output voltage (b) waveforms obtained by transient simulation of
the switching converter circuit shown in Fig. 14.26 and by simulation of the averaged circuit model of
Fig. 14.27

14.4 Summary of Key Points

1. The circuit averaging approach to converter modeling requires that the switch elements be
replaced by dependent sources having waveforms identical to those of the actual switches.
The converter waveforms then are averaged, and an averaged equivalent circuit model is
obtained. This approach provides the theoretical basis for averaged switch modeling, in
which the switch network of a converter is replaced by an averaged switch model, resulting
in an averaged converter equivalent circuit.

2. Averaged switch modeling effectively replaces the switch elements of a CCM converter
with a dc transformer model. A small-signal ac switch model can additionally provide an ac
equivalent circuit for the converter. While these models may acquire a form that is different
from those of earlier chapters, the models are equivalent and yield the same predictions of
operating points and small-signal transfer functions.
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3. The averaged switch approach is especially convenient for SPICE-based computer simula-
tion. The switching elements are replaced by an averaged subcircuit. Typically the simula-
tion runs much faster and is less prone to diverge. Models may include losses, dynamics,
and be embedded in a larger system.

4. Indirect power is the portion of the converter input power that is converted to high frequency
by the switch network, temporarily stored in reactive elements, converted back to dc or low
frequency by the switch network, and output to the load. These processes incur ac loss that
may significantly impact the converter efficiency.

Problems

14.1 Use the circuit averaging to derive the dc and small-signal ac equivalent circuit of the
buck converter with input filter, illustrated in Fig. 2.33. All elements are ideal.

14.2 Circuit averaging of the bridge inverter circuit of Fig. 14.29a.

(a)

+
L

C

R

+    v(t)

2

1
i(t)

vg(t)

1

2

(b)

+

L

C R

+

v(t)vg(t)
+i1(t) v1(t)

Fig. 14.29 Bridge inverter, Problem 14.2: (a) circuit, (b) large-signal averaged model

(a) Show that the converter of Fig. 14.29a can be written in the electrically identical
form shown in Fig. 14.29b. Sketch the waveforms i1(t) and v1(t).

(b) Use the circuit averaging method to derive a large-signal averaged model for this
converter.

(c) Perturb and linearize your circuit model of part (b), to obtain a single equivalent
circuit that models dc and small-signal ac signals in the bridge inverter.

14.3 Use the circuit averaging method to derive an equivalent circuit that models dc and small-
signal ac signals in the buck–boost converter. You may assume that the converter operates
in the continuous conduction mode, and that all elements are ideal.
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(a) Give a time-invariant electrically identical circuit, in which the switching elements
are replaced by equivalent voltage and current sources. Define the waveforms of the
sources.

(b) Derive a large-signal averaged model for this converter.
(c) Perturb and linearize your circuit model of part (b), to obtain a single equivalent

circuit that models dc and small-signal ac signals in the buck–boost converter.
14.4 In a two-switch PWM converter operating in CCM, the transistor switch absorbs dc

power Pdc and delivers ac power Pac = Pdc to the rest of the circuit. On the other hand,
the rectifier switch absorbs Pac from the circuit, and delivers Pdc. The converter dc output
power Pout can be written in the form

Pout = Pdirect + Pindirect

where Pindirect equals the ac power Pac processed by the switches. Reference polarities
are selected so that Pout > 0, Pdirect > 0, Pindirect > 0. You may assume that losses can
be neglected. Derive expressions for the output power Pout and for the indirect power
Pindirect as functions of Vg, Iload, and D, and expressions for Pindirect/Pout and Pdirect/Pout

as functions of the dc conversion ratio M = V/Vg for two cases:
a) Buck converter shown in Fig. 4.8.
b) Ćuk converter shown Fig. 2.20.

14.5 Use the averaged switch modeling technique to derive an ac equivalent circuit model for
the buck–boost converter of Fig. 7.42:
(a) Replace the switches in Fig. 7.42 with the averaged switch model given in Fig. 14.17c.
(b) Compare your result with the model given in Fig. 7.16b. Show that the two models

predict the same small-signal line-to-output transfer function Gvg(s) = v̂/v̂g.
14.6 Modify the CCM dc and small-signal ac averaged switch models of Fig. 14.17, to account

for MOSFET on-resistance Ron and diode forward voltage drop VD.
14.7 Use the averaged switch modeling technique to derive a dc and ac equivalent circuit

model for the flyback converter of Fig. 7.19. You can neglect all losses and the trans-
former leakage inductances.

(a) Define a switch network containing the transistor Q1 and the diode D1 as in
Fig. 14.4a. Derive a large-signal averaged switch model of the switch network. The
model should account for the transformer turns ratio n.

(b) Perturb and linearize the model you derived in part (a) to obtain the dc and ac small-
signal averaged switch model. Verify that for n = 1 your model reduces to the model
shown in Fig. 14.4d.

(c) Using the averaged switch model you derived in part (b), sketch a complete dc and
small-signal ac model of the flyback converter. Solve the model for the steady-state
conversion ratio M(D) = V/Vg.

(d) The averaged switch models you derived in parts (a) and (b) could be used in other
converters having an isolation transformer. Which ones?

14.8 An ideal buck converter operates with input voltage Vg, output current Iload, and duty
cycle D. Derive expressions for the output power and for the indirect power, as functions
of Vg, Iload, and D.
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14.9 Ideal buck, boost, and buck–boost converters operate with input voltage Vg, output cur-
rent Iload, and duty cycle D. For each converter, derive expressions for the ratio of indirect
power to output power Pindirect/Pload.

14.10 In the flyback converter of Fig. 7.19, the transistor on-resistance is Ron, and the diode
forward voltage drop is VD. Other losses and the transformer leakage inductances can be
neglected. Derive a dc and small-signal ac averaged switch model for the switch network
containing the transistor Q1 and the diode D1. The model should account for the on-
resistance Ron, the diode forward voltage drop VD, and the transformer turns ratio n.

14.11 In the boost converter of Fig. 14.30a, the v1(t) and i2(t) waveforms of Fig. 14.30b are
observed. During the transistor turn-on transition, a reverse current flows through the
diode which removes the diode stored charge. As illustrated in Fig. 14.30b, the reverse
current spike has area −Qr and duration tr. The inductor winding has resistance RL. You
may neglect all losses other than the switching loss due to the diode stored charge and
the conduction loss due to the inductor winding resistance.
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+
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+
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0
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dTs

t

0

i1

i2(t)
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v2 v2

0

i1

Area r

Fig. 14.30 Boost converter and waveforms illustrating reverse recovery of the diode. Averaged switch
modeling in this converter is addressed in Problem 14.11
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(a) Derive an averaged switch model for the boost switch network in Fig. 14.30a.
(b) Use your result of part (a) to sketch a dc equivalent circuit model for the boost

converter.
(c) The diode stored charge can be expressed as a function of the current I1 as:

Qr = kq

√
I1

while the reverse recovery time tr is approximately constant. Given Vg = 100 V, D =
0.5, fs = 100 kHz, kq = 100nC/A1/2, tr = 100 ns, RL = 0.1 Ω, use a dc sweep
simulation to plot the converter efficiency as a function of the load current ILOAD in
the range:

1A ≤ ILOAD ≤ 10A
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AC and DC Equivalent Circuit Modeling of the
Discontinuous Conduction Mode

So far, we have derived equivalent circuit models for dc–dc pulse-width modulation (PWM)
converters operating in the continuous conduction mode. As illustrated in Fig. 15.1, the basic
dc conversion property is modeled by an effective dc transformer, having a turns ratio equal to
the conversion ratio M(D). This model predicts that the converter has a voltage-source output
characteristic, such that the output voltage is essentially independent of the load current or
load resistance R. We have also seen how to refine this model, to predict losses and efficiency,
converter dynamics, and small-signal ac transfer functions. We found that the transfer functions
of the buck converter contain two low-frequency poles, owing to the converter filter inductor
and capacitor. The control-to-output transfer functions of the boost and buck–boost converters
additionally contain a right half-plane zero. Finally, we have seen how to utilize these results in
the design of converter control systems.

What are the basic dc and small-signal ac equivalent circuits of converters operating in the
discontinuous conduction mode (DCM)? It was found in Chap. 5 that, in DCM, the output volt-
age becomes load-dependent: the conversion ratio M(D, K) is a function of the dimensionless
parameter K = 2L/RT s, which in turn is a function of the load resistance R. So the converter
no longer has a voltage-source output characteristic, and hence the dc transformer model is less
appropriate.

In Sect. 15.1, a buck–boost DCM converter example is used to introduce DCM converter ac
waveforms and averaged dynamics. It is shown that the moving average of the inductor voltage
waveform is zero or approximately zero at all times, which is why, in practice, high-frequency
inductor dynamics can usually be neglected in DCM, and DCM converters exhibit simpler,
reduced-order dynamic responses compared to operation in the continuous conduction mode.

Based on the approximation that the moving average of the inductor voltage waveform is
zero at all times, the averaged switch modeling approach [70–74, 126, 130, 131] is employed
in Sect. 15.2 to derive equivalent circuits of the DCM switch network. It is shown that the loss-
free resistor model [132–134] is the averaged switch model of the DCM switch network. This
equivalent circuit represents the steady-state and large-signal dynamic characteristics of the
DCM switch network, in a clear and simple manner. In the discontinuous conduction mode, the
average transistor voltage and current obey Ohm’s law, and hence the transistor is modeled by an
effective resistor Re. The average diode voltage and current obey a power source characteristic,
with power equal to the power effectively dissipated in Re. Therefore, the diode is modeled with
a dependent power source.
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Fig. 15.1 The objective of this chapter is the derivation of large-signal dc and small-signal ac equivalent
circuit models for converters operating in the discontinuous conduction mode

Section 15.4 addresses simulation models for converters that may operate in CCM or DCM.
An average switch model that automatically switches between modes is derived, and this model
is implemented in SPICE.

Since most converters operate in discontinuous conduction mode at some operating points,
small-signal ac DCM models are needed, to prove that the control systems of such converters are
correctly designed. In Sect. 15.3, a small-signal model of the DCM switch network is derived
by linearization of the loss-free resistor model. The transfer functions of DCM converters are
quite different from their respective CCM transfer functions. The basic DCM buck, boost, and
buck–boost converters essentially exhibit simple single-pole transfer functions [15, 135], while
high-frequency dynamics can usually be neglected. So the basic converters operating in DCM
are easy to control; for this reason, converters are sometimes purposely operated in DCM for
all loads. The transfer functions of higher-order converters such as the DCM Ćuk or SEPIC
are considerably more complicated; but again, one pole is shifted to high frequency, where
it has negligible practical effect. This chapter concludes, in Sect. 15.5, with a discussion of
high-frequency dynamics of DCM converters. The more detailed analysis predicts that the high-
frequency dynamics of DCM converters are related to the sampling process associated with
the pulse-width modulator, and the nature of the response of the inductor current to duty-cycle
perturbations [136]. This behavior can be modeled by an effective pole in the vicinity of the
switching frequency.

15.1 Introduction to DCM Converter Dynamics

Consider the buck–boost converter of Fig. 15.2. The transistor switch duty cycle is modulated
by a sinusoidal PWM input signal,

vc(t) = Vc + Vm sinωmt (15.1)
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Fig. 15.2 Buck–boost converter example. The transistor switch duty cycle is modulated by the PWM
input signal vc(t)

where the modulation frequency fm = ωm/(2π) is much smaller than the converter switching
frequency fs. Figure 15.3 shows the converter switching and averaged waveforms over a modu-
lation period. In this example, the inductor current ripple is so large that the converter operates
in DCM at all times. As shown in Fig. 15.3b, inductor current waveform iL(t) consists of trian-
gular pulses that start from zero and end at zero within a switching period. As expected, the
moving average of the inductor current, 〈iL(t)〉Ts

, retains low-frequency dynamics of the induc-
tor current, including a dc component and an ac component in response to the sinusoidally
modulated transistor duty cycle. Similarly, the moving average of the output voltage, 〈v(t)〉Ts

includes a dc component V , and an ac variation resulting from the sinusoidally modulated duty
cycle, while the switching ripple in v(t) is removed, as shown in Fig. 15.3c. It is of particular
interest to examine the inductor voltage switching and averaged waveforms shown in Fig. 15.3d.
The switching waveform vL(t) is a pulsating waveform that follows the DCM pattern described
in Chap. 5,

vL(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
vg(t) during d1Ts when transistor is on and diode is off
v(t) during d2Ts when transistor is off and diode is on
0 during d3Ts when both transistor and diode are off

(15.2)

where d1 is the transistor switch duty cycle and d1 + d2 + d3 = 1.
One may observe that the moving average 〈v(t)〉Ts

is either equal to zero or is close to zero
at all times. To explain the DCM inductor dynamics, consider the inductor current and the
averaged inductor voltage waveforms shown in Fig. 15.4 over a couple of switching periods. As
a result of duty-cycle modulation, the transistor duty cycle in the second period is Δd longer
than the duty cycle d1 in the first period. For an averaging interval centered around time t, the
moving average of vL(t) can be found as

〈vL(t)〉Ts
=

1
Ts

∫ t+Ts/2

t−Ts/2
vL(τ)dτ =

L
Ts

(iL(t + Ts/2) − iL(t − Ts/2)) (15.3)

For the example shown in Fig. 15.4,

iL(t − Ts/2) = iL(t + Ts/2) = 0 (15.4)
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Fig. 15.3 Switching and averaged waveforms in the buck–boost converter of Fig. 15.2. In this example,
the converter parameters are Vg = 10 V, L = 5 μH, C = 22 μF, fs = 1/Ts = 100 kHz, R = 30Ω, PWM gain
1/VM = 1 V−1, vc(t) = 0.4 + 0.1 sin(ωmt), modulation frequency fm = fs/20 = 5 kHz

and hence
〈vL(t)〉Ts

= 0 (15.5)

It follows from Eq. (15.3) that 〈vL(t)〉Ts
= 0 whenever iL(t + Ts/2) = iL(t − Ts/2), which is

always the case over portions of a switching period in DCM—even when the converter is not
in equilibrium. In the examples of Figs. 15.3 or 15.4, 〈vL(t)〉Ts

� 0 only during time intervals of
length d2Ts and only when duty cycle varies between successive switching periods. Referring to
Fig. 15.3d, the nonzero pulses in 〈vL(t)〉Ts

� 0 clearly contain a small low-frequency component
in response to the duty-cycle modulation. However, as discussed further in Sect. 15.5, the rela-
tively short, relatively low amplitude nonzero pulses in 〈vL(t)〉Ts

, which are related to sampling
effects and high-frequency dynamics, do not affect the dominant, low-frequency DCM dynam-
ics significantly. In conclusion, in DCM, we can simply assume that the inductor volt-seconds
balance holds not only in equilibrium but at all times:

〈vL(t)〉Ts
=

1
Ts

∫ t+Ts/2

t−Ts/2
vL(τ)dτ ≈ 0 (15.6)
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Fig. 15.4 DCM inductor current iL(t) and the moving average 〈vL(t)〉Ts
of the inductor voltage

In the next section, following the averaged switch modeling approach, the approximation given
by Eq. (15.6) is used to derive dc and ac models of DCM converters.

15.2 DCM Averaged Switch Model

Consider the buck–boost converter of Fig. 15.5. Let us follow the averaged switch model-
ing approach of Sect. 14.1, to derive an equivalent circuit that models the averaged terminal
waveforms of the switch network. The general two-switch network and its terminal quantities
v1(t), i1(t), v2(t), and i2(t) are defined as illustrated in Fig. 15.5, consistent with Fig. 14.4a. The
inductor and switch network voltage and current waveforms are illustrated in Fig. 15.6, for DCM
operation.

During the subinterval d1Ts, while the transistor conducts, the inductor current increases
from zero with a slope of vg(t)/L. At the end of this subinterval, the inductor current iL(t) attains
the peak value given by

ipk =
vg

L
d1Ts (15.7)

+
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vvg
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v1 v2
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Fig. 15.5 Buck–boost converter example, with switch network terminal quantities identified
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Fig. 15.6 Inductor and switch network voltage and current waveforms

During the next subinterval, while the diode conducts, the inductor current decreases with a
slope equal to v(t)/L. This subinterval ends when the inductor current drops to zero and the
diode becomes reverse-biased. The length of this subinterval is d2Ts. The inductor current and
the inductor voltage then remain zero for the balance d3Ts of the switching period.

A DCM averaged switch model can be derived with reference to the waveforms of Fig. 15.6.
The averaging interval of length Ts, centered around time t is highlighted.
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Following the approach of Sect. 14.1.2, let us find the average values of the switch network
terminal waveforms v1(t), v2(t), i1(t), and i2(t) in terms of the converter state variables (inductor
currents and capacitor voltages), the input voltage vg(t), and the subinterval lengths d1 and d2.

To find the average switch network input voltage 〈v1(t)〉Ts , or the average transistor voltage,
it is convenient to start from a converter voltage loop equation

v1 = vg − vL (15.8)

Averaging applied to Eq. (15.8) yields

〈v1〉Ts
= 〈vg〉Ts

− 〈vL〉Ts
(15.9)

Taking the approximation Eq. (15.6) into account, we have

〈v1〉Ts
= 〈vg〉Ts

(15.10)

For the averaging interval shown in Fig. 15.6, one may note that 〈vL〉Ts
= 0 exactly.

Similar analysis, based on the voltage loop equation v2 = vL − v, leads to the following
expression for the average diode voltage:

〈v2〉Ts
= 〈−v〉Ts

(15.11)

The average switch network input current 〈i1(t)〉Ts is found by integrating the i1(t) waveform
of Fig. 15.6 over one switching period:

〈i1(t)〉Ts =
1
Ts

t+Ts/2∫

t−Ts/2

i1(t)dt =
q1

Ts
(15.12)

The integral q1 is equal to the area under the i1(t) waveform during the first subinterval. This
area is easily evaluated using the triangle area formula:

q1 =

t+Ts/2∫

t−Ts/2

i1(t)dt =
1
2

(d1Ts)(ipk) (15.13)

Substitution of Eqs. (15.7), (15.13), and (15.10) into Eq. (15.12) gives

〈i1(t)〉Ts =
d2

1Ts

2L
〈vg(t)〉Ts =

d2
1Ts

2L
〈v1(t)〉Ts (15.14)

Note that 〈i1(t)〉TS is not equal to d1〈iL(t)〉TS . Since the inductor current ripple is not small, it is
necessary to sketch the actual input current waveform, including the large switching ripple, and
then correctly compute the average as in Eqs. (15.12) to (15.14).

The average diode current 〈i2(t)〉TS is found in a manner similar to that used above for
〈i1(t)〉TS :

〈i2(t)〉Ts =
1
Ts

t+Ts/2∫

t−Ts/2

i2(t)dt =
q2

Ts
(15.15)
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The integral q2 is equal to the area under the i2(t) waveform during the d2Ts subinterval. This
area is evaluated using the triangle area formula:

q2 =

t+Ts/2∫

t−Ts/2

i2(t)dt =
1
2

(d2Ts)(ipk) (15.16)

Substitution of Eqs. (15.7), (15.16), and (15.10) into Eq. (15.15) leads to:

〈i2(t)〉TS =
d1d2Ts

2L
〈vg(t)〉Ts =

d1d2Ts

2L
〈v1(t)〉Ts (15.17)

Equations (15.10), (15.11), (15.14), and (15.17) constitute the averaged terminal equations of
the switch network in the DCM buck–boost converter. In these equations, it remains to express
the subinterval length d2 in terms of the switch duty cycle d1 = d, and the converter averaged
waveforms. Considering the averaging interval shown in Fig. 15.6, we note that iL(t − Ts/2) =
iL(t+Ts/2) = 0. There is no net change in inductor current, and no net volt-seconds are applied to
the inductor over this averaging interval. In other words, the average inductor voltage computed
over the averaging interval shown in Fig. 15.6 is zero,

〈vL(t)〉Ts = d1〈vg(t)〉TS + d2〈v(t)〉Ts = 0 (15.18)

Based on the approximation given by Eq. (15.5) we conclude that Eq. (15.18) can be used to
find the length of the d2Ts subinterval in general, even when the converter is not in equilibrium:

d2(t) = −d1(t)
〈vg(t)〉TS

〈v(t)〉Ts

(15.19)

Substitution of Eq. (15.19) into Eqs. (15.14) and (15.17) allows us to obtain simple expressions
for the averaged terminal waveforms of the switch network in the discontinuous conduction
mode:

〈i1(t)〉Ts =
d2

1Ts

2L
〈v1(t)〉Ts (15.20)

〈i2(t)〉Ts =
d2

1Ts

2L

〈v1(t)〉2Ts

〈v2(t)〉Ts

(15.21)

Let us next construct an equivalent circuit corresponding to the averaged switch network
equations (15.20) and (15.21). The switch network input port is modeled by Eq. (15.20). This
equation states that the average input current 〈i1(t)〉Ts is proportional to the applied input voltage
〈v1(t)〉Ts . In other words, the low-frequency components of the switch network input port obey
Ohm’s law:

〈i1(t)〉Ts =
〈v1(t)〉Ts

Re(d1)
(15.22)

where the effective resistance Re is

Re(d1) =
2L

d2
1Ts

(15.23)
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Fig. 15.7 Equivalent circuit that models the average wave-
forms of the switch input (transistor) port

An equivalent circuit is illustrated in Fig. 15.7. During the d1Ts subinterval, the slope of the in-
put current waveform i1(t) is proportional to the input voltage 〈vg(t)〉Ts = 〈v1(t)〉Ts , as illustrated
in Fig. 15.6. As a result, the peak current ipk, the total charge q1, and the average input current
〈i1(t)〉Ts , are also proportional to 〈v1(t)〉Ts . Of course, there is no physical resistor inside the con-
verter. Indeed, if the converter elements are ideal, then no heat is generated inside the converter.
Rather, the power apparently consumed by Re is transferred to the switch network output port.

The switch network output (diode) port is modeled by Eq. (15.21), or

〈i2(t)〉Ts〈v2(t)〉Ts =
〈v1(t)〉2Ts

Re(d1)
= 〈p(t)〉Ts (15.24)

Note that 〈v1(t)〉2Ts
/Re is the average power 〈p(t)〉Ts apparently consumed by the effective resis-

tor Re(d1). Equation (15.24) states that this power flows out of the switch network output port.
So the switch network consumes no net power—its average input and output powers are equal.

Equation (15.24) can also be derived by consideration of the inductor stored energy. During
the first subinterval, the inductor current increases from 0 to ipk. In the process, the inductor
stores the following energy:

1
2

Li2pk =
〈v1〉2Ts

d2
1T 2

s

2L
=
〈v1〉2Ts

Re(d1)
Ts (15.25)

Here, ipk has been expressed in terms of 〈v1(t)〉Ts using Eqs. (15.7) and (15.10). This energy
is transferred from the source vg, through the switch network input terminals (i.e., through the
transistor), to the inductor. During the second subinterval, the inductor releases all of its stored
energy through the switch network output terminals (i.e., through the diode), to the output. The
average output power can therefore be expressed as the energy transferred per cycle, divided by
the switching period:

〈p(t)〉Ts =

⎛⎜⎜⎜⎜⎜⎝
〈v1〉2Ts

Re(d1)
Ts

⎞⎟⎟⎟⎟⎟⎠
(

1
Ts

)
=
〈v1〉2Ts

Re(d1)
(15.26)

This power is transferred to the load, and hence

〈v〉Ts〈i2〉Ts = 〈v2〉Ts〈i2〉Ts = 〈p(t)〉Ts =
〈v1〉2Ts

Re(d1)
(15.27)

This result coincides with Eq. (15.24).
The average power 〈p(t)〉Ts is independent of the load characteristics, and is determined

solely by the effective resistance Re and the applied switch network input terminal voltage or
current. In other words, the switch network output port behaves as a source of power, equal
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(a)

p(t)

+

v(t)

i(t)
(b)

v(t)i(t) = p(t)

v(t)

i(t)

Fig. 15.8 The dependent power source: (a) schematic symbol, (b) i–v characteristic

(a)

p(t)

+

v(t)

–

i(t)
(b)

v(t)i(t) = – p(t)

v(t)

i(t)

Fig. 15.9 The dependent power sink: (a) schematic symbol, (b) i–v characteristic

to the power apparently consumed by the effective resistance Re. This behavior is represented
schematically by the dependent power source symbol illustrated in Fig. 15.8. In any lossless
two-port network, when the voltage and current at one port are independent of the character-
istics of the external network connected to the second port, then the second port must exhibit
a dependent power source characteristic [133]. This situation arises in a number of common
power-processing applications, including switch networks operating in the discontinuous con-
duction mode.

The power source characteristic illustrated in Fig. 15.8b is symmetrical with respect to volt-
age and current; in consequence, the power source exhibits several unique properties. Similar to
the voltage source, the ideal power source must not be short-circuited; otherwise, infinite current
occurs. And similar to the current source, the ideal power source must not be open-circuited, to
avoid infinite terminal voltage. The power source must be connected to a load capable of ab-
sorbing the power p(t), and the operating point is defined by the intersection of the load and
power source i–v characteristics.

We can define a power sink element similarly, with reversal of the direction of power flow.
The schematic symbol for this element is illustrated in Fig. 15.9, with its i–v characteristic.
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(a)

P1

P2 P3

P1 + P2 + P3

(b)

P1P1

n1 : n2

Fig. 15.10 Circuit manipulations of power source elements: (a) combination of series- and parallel-
connected power sources into a single equivalent power source, (b) invariance of the power source to
reflection through an ideal transformer of arbitrary turns ratio

As illustrated in Fig. 15.10a, series-and parallel-connected power sources can be combined
into a single power source, equal to the sum of the powers of the individual sources. Fig-
ure 15.10b illustrates how reflection of a power source through a transformer, having an arbi-
trary turns ratio, leaves the power source unchanged. Power sources are also invariant to duality
transformations.

The averaged large-signal model of the general two-switch network in DCM is illustrated
in Fig. 15.11b. The input port behaves effectively as resistance Re. The instantaneous power
apparently consumed by Re is transferred to the output port, and the output port behaves as a
dependent power source. This lossless two-port network is called the loss-free resistor model
(LFR) [132]. The loss-free resistor represents the basic power conversion properties of DCM
switch networks [134]. It can be shown that the loss-free resistor models the averaged prop-
erties of DCM switch networks not only in the buck–boost converter, but also in other PWM
converters.

When the switch network of the DCM buck–boost converter is replaced by the averaged
model of Fig. 15.11b, the converter equivalent circuit of Fig. 15.12 is obtained. Upon setting all
averaged waveforms to their quiescent values, and letting the inductor and capacitor become a
short-circuit and an open-circuit, respectively, we obtain the dc model of Fig. 15.13.
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(a)

+

v2(t)

+

v1(t)

i1(t) i2(t)

(b) i2(t) Ts

+

v2(t) Tsv1(t) Ts

i1(t) Ts

Re(d1)

+ p(t)
Ts

Fig. 15.11 The general two-switch network (a), and the corresponding averaged switch model in the
discontinuous conduction mode (b). The average transistor waveforms obey Ohm’s law, while the average
diode waveforms behave as a dependent power source

Fig. 15.12 Replacement of the switch network of the DCM buck–boost converter with the loss-free
resistor model

Systems containing power sources or loss-free resistors can usually be easily solved, by
equating average source and load powers. For example, in the dc network of Fig. 15.13, the
power flowing into the converter input terminals is

P =
V2

g

Re
(15.28)

The power flowing into the load resistor is

P =
V2

R
(15.29)
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P

Re(D)+ R

+

VVg

I1

Fig. 15.13 Dc network example containing a loss-free resistor model

The loss-free resistor model states that these two powers must be equal:

P =
V2

g

Re
=

V2

R
(15.30)

Solution for the voltage conversion ratio M = V/Vg yields

V
Vg
= ±

√
R
Re

(15.31)

Equation (15.31) is a general result, valid for any converter that can be modeled by a loss-free
resistor and that drives a resistive load. Other arguments must be used to determine the polarity
of V/Vg. In the buck–boost converter shown in Fig. 15.5, the diode polarity indicates that V/Vg

must be negative. The steady-state value of Re is

Re(D) =
2L

D2Ts
(15.32)

where D is the quiescent transistor duty cycle. Substitution of Eq. (15.32) into (15.31) leads to

V
Vg
= −

√
D2TsR

2L
= − D
√

K
(15.33)

with K = 2L/RT s. This equation coincides with the previous steady-state result given in Ta-
ble 5.2.

Similar arguments apply when the waveforms contain ac components. For example, con-
sider the network of Fig. 15.14, in which the voltages and currents are periodic functions of time.
The rms values of the waveforms can be determined by simply equating the average source and
load powers. The average power flowing into the converter input port is

Pav =
V2

g,rms

Re
(15.34)

where Pav is the average power consumed by the effective resistance Re. No average power is
consumed by capacitor C, and hence the average power Pav must flow entirely into the load
resistor R:

Pav =
V2

rms

R
(15.35)
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p(t)
Re

+ R

+

v(t)vg(t)

i1(t) i2(t)

C

Fig. 15.14 Ac network example containing a loss-free resistor model

Upon equating Eqs. (15.34) and (15.35), we obtain

Vrms

Vg,rms
=

√
R
Re

(15.36)

Thus, the rms terminal voltages obey the same relationship as in the dc case.
Averaged equivalent circuits of the DCM buck, boost, and buck–boost converters, as well

as the DCM Ćuk and SEPIC converters, are listed in Fig. 15.15. In each case, the averaged tran-
sistor waveforms obey Ohm’s law, and are modeled by an effective resistance Re. The averaged
diode waveforms follow a power source characteristic, equal to the power effectively dissipated
in Re. For the buck, boost, and buck–boost converters, Re is given by

Re =
2L

d2Ts
(15.37)

For the Ćuk and SEPIC converters, Re is given by

Re =
2(L1‖L2)

d2Ts
(15.38)

Here, d is the transistor duty cycle.
Steady-state conditions in the converters of Fig. 15.15 are found by letting the inductors and

capacitors become short circuits and open circuits, respectively, and then solving the resulting dc
circuits with d(t) = D. The buck–boost, Ćuk, and SEPIC then reduce to the circuit of Fig. 15.13.
The buck and boost converters reduce to the circuits of Fig. 15.16. Equilibrium conversion ratios
M = V/Vg of these converters are summarized in Table 15.1, as functions of Re(D). It can be
shown that these converters operate in the discontinuous conduction mode whenever the load
current I is less than the critical current Icrit:

I > Icrit for CCM

I < Icrit for DCM (15.39)

For all of these converters, Icrit is given by

Icrit =
1 − D

D

Vg

Re(D)
(15.40)
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Fig. 15.15 Averaged large-signal equivalent circuits of five basic converters operating in the discontinu-
ous conduction mode
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(a)

P

Re(D)

+ R

+

VVg

(b)

PRe(D)+ R

+

VVg

Fig. 15.16 Dc equivalent circuits representing the buck (a) and boost (b) converters operating in DCM

Table 15.1 CCM and DCM conversion ratios of basic converters

Converter M, CCM M, DCM

Buck D
2

1 +
√

1 + 4Re
/
R

Boost
1

1 − D

1 +
√

1 + 4R
/
Re

2

Buck–boost, Ćuk
−D

1 − D
−
√

R
Re

SEPIC
D

1 − D

√
R
Re

15.3 Small-Signal AC Modeling of the DCM Switch Network

The next step is construction of a small-signal equivalent circuit model for converters operating
in the discontinuous conduction mode. In the large-signal ac equivalent circuits of Fig. 15.15,
the averaged switch networks are nonlinear. Hence, construction of a small-signal ac model
involves perturbation and linearization of the loss-free resistor network. The signals in the large-
signal averaged DCM switch network model of Fig. 15.17a are perturbed about a quiescent
operating point, as follows:
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Fig. 15.17 Averaged models of the general two-switch network in a converter operating in DCM: (a)
large-signal model, (b) small-signal model

d(t) = D + d̂(t)

〈v1(t)〉Ts = V1 + v̂1(t)

〈i1(t)〉Ts = I1 + î1(t) (15.41)

〈v2(t)〉Ts = V2 + v̂2(t)

〈i2(t)〉Ts = I2 + î2(t)

Here, D is the quiescent value of the transistor duty cycle, V1 is the quiescent value of the
applied average transistor voltage 〈v1(t)〉Ts , etc. The quantities d̂(t), v̂1(t), etc., are small ac vari-
ations about the respective quiescent values. It is desired to linearize the average switch network
terminal equations (15.20) and (15.21).

Equations (15.20) and (15.21) express the average terminal currents 〈i1(t)〉Ts and 〈i2(t)〉Ts as
functions of the transistor duty cycle d(t) = d1(t) and the average terminal voltages 〈v1(t)〉Ts and
〈v2(t)〉Ts . Upon perturbation and linearization of these equations, we will therefore find that î1(t)
and î2(t) are expressed as linear functions of d̂(t), v̂1(t), and v̂2(t). So the small-signal switch
network equations can be written in the following form:

î1 =
v̂1

r1
+ j1d̂ + g1v̂2

î2 = −
v̂2

r2
+ j2d̂ + g2v̂1 (15.42)

These equations describe the two-port equivalent circuit of Fig. 15.17b.
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The parameters r1, j1, and g1 can be found by Taylor expansion of Eq. (15.20), as described
in Sect. 7.2.8. The average transistor current 〈i1(t)〉Ts , Eq. (15.20), can be expressed in the fol-
lowing form:

〈i1(t)〉Ts =
〈v1(t)〉Ts

Re(d(t))
= f1

(〈v1(t)〉Ts , 〈v2(t)〉Ts , d(t)
)

(15.43)

Let us expand this expression in a three-dimensional Taylor series, about the quiescent operating
point (V1, V2, D):

I1 + î1(t) = f1(V1, V2, D) + v̂1(t)
∂ f1(v1,V2,D)

∂v1

∣∣∣∣∣
v1=V1

+v̂2(t)
∂ f1(V1, v2,D)

∂v2

∣∣∣∣∣
v2=V2

+ d̂(t)
∂ f1(V1,V2, d)

∂d

∣∣∣∣∣
d=D

(15.44)

+higher − order nonlinear terms

For simplicity of notation, the angle brackets denoting average values are dropped in the above
equation. The dc terms on both sides of Eq. (15.44) must be equal:

I1 = f1(V1, V2, D) =
V1

Re(D)
(15.45)

As usual, we linearize the equation by discarding the higher-order nonlinear terms. The remain-
ing first-order linear ac terms on both sides of Eq. (15.44) are equated:

î1(t) = v̂1(t)
1
r1
+ v̂2(t)g1 + d̂(t) j1 (15.46)

where

1
r1
=
∂ f1(v1,V2,D)

∂v1

∣∣∣∣∣
v1=V1

=
1

Re(D)
(15.47)

g1 =
∂ f1(V1, v2,D)

∂v2

∣∣∣∣∣
v2=V2

= 0 (15.48)

j1 =
∂ f1(V1,V2, d)

∂d

∣∣∣∣∣
d=D
= − V1

R2
e(D)

∂Re(d)
∂d

∣∣∣∣∣∣
d=D

(15.49)

=
2V1

DRe(D)

Thus, the small-signal input resistance r1 is equal to the effective resistance Re, evaluated at
the quiescent operating point. This term describes how variations in 〈v1(t)〉Ts affect 〈i1(t)〉Ts ,
via Re(D). The small-signal parameter g1 is equal to zero, since the average transistor current
〈i1(t)〉TS is independent of the average diode voltage 〈v2(t)〉Ts . The small-signal gain j1 describes
how duty-cycle variations, which affect the value of Re(d), lead to variations in 〈i1(t)〉Ts .

In a similar manner, 〈i2(t)〉Ts from Eq. (15.21) can be expressed as

〈i2(t)〉Ts =
〈v1(t)〉2Ts

Re(d(t))〈v2(t)〉Ts

= f2
(〈v1(t)〉Ts , 〈v2(t)〉Ts , d(t)

)
(15.50)

Expansion of the function f2(v1, v2, d) in a three-dimensional Taylor series about the quiescent
operating point leads to
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I2 + î2(t) = f2(V1, V2, D) + v̂1(t)
∂ f2(v1,V2,D)

∂v1

∣∣∣∣∣
v1=V1

+v̂2(t)
∂ f2(V1, v2,D)

∂v2

∣∣∣∣∣
v2=V2

+ d̂(t)
∂ f2(V1,V2, d)

∂d

∣∣∣∣∣
d=D

(15.51)

+higher − order nonlinear terms

By equating the dc terms on both sides of Eq. (15.51), we obtain

I2 = f2(V1, V2, D) =
V2

1

Re(D)V2
(15.52)

The higher-order nonlinear terms are discarded, leaving the following first-order linear ac terms:

î2(t) = v̂2(t)

(
− 1

r2

)
+ v̂1(t)g2 + d̂(t) j2 (15.53)

with

1
r2
= − ∂ f2(V1, v2,D)

∂v2

∣∣∣∣∣
v2=V2

=
1
R
=

1
M2Re(D)

(15.54)

g2 =
∂ f2(v1,V2,D)

∂v1

∣∣∣∣∣
v1=V1

=
2

MRe(D)
(15.55)

j2 =
∂ f2(V1,V2, d)

∂d

∣∣∣∣∣
d=D
= −

V2
1

R2
e(D)V2

∂Re(d)
∂d

∣∣∣∣∣∣
d=D

(15.56)

=
2V1

DMRe(D)

The output resistance r2 describes how variations in 〈v2(t)〉Ts influence 〈i2(t)〉Ts . As illustrated
in Fig. 15.18, r2 is determined by the slope of the power source characteristic, evaluated at the
quiescent operating point. For a linear resistive load, r2 = R. For any type of load, it is true

Fig. 15.18 The small-signal output resistance r2 is determined by the slope of the power source charac-
teristic at the quiescent operating point
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Table 15.2 Small-signal DCM switch model parameters

Switch network g1 j1 r1 g2 j2 r2

General
two-switch,
Fig. 15.11a

0
2V1

DRe
Re

2
MRe

2V1

DMRe
M2Re

Buck, Fig. 15.21a − 1
Re

2(1 − M)V1

DRe
Re

2 − M
MRe

2(1 − M)V1

DMRe
M2Re

Boost,
Fig. 15.21b

− 1
(M − 1)2Re

2MV1

D(M − 1)Re

(M − 1)2

M2
Re

2M − 1
(M − 1)2Re

2V1

D(M − 1)Re
(M − 1)2Re

Fig. 15.19 Small-signal ac model of the DCM buck–boost converter obtained by insertion of the switch
network two-port small-signal model into the original converter circuit

that r2 = M2Re(D). The parameters j2 and g2 describe how variations in the duty cycle d(t)
and in the average transistor voltage 〈v1(t)〉Ts (which influence the average power 〈p(t)〉Ts ) lead
to variations in the average diode current 〈i2(t)〉Ts . Values of the small-signal parameters in the
DCM switch model of Fig. 15.17b are summarized in the top row of Table 15.2.

A small-signal model of the DCM buck–boost converter is obtained by replacing the transis-
tor and diode of the converter with the switch model of Fig. 15.17b. The result is illustrated in
Fig. 15.19. This equivalent circuit can now be solved using conventional linear circuit analysis
techniques, to determine the transfer functions and other small-signal quantities of interest.

The small-signal equivalent circuit models of Fig. 15.19 contain two dynamic elements: ca-
pacitor C and inductor L. Control-to-output transfer functions obtained by solving this equiv-
alent circuit model have two poles. It has been shown [71, 74, 126, 130, 131] that one of the
poles, due to the capacitor C, appears at a low frequency, while the other pole (and a RHP
zero) due to the inductor L, occurs at much higher frequency, close to or above the converter
switching frequency. The small-signal equivalent circuit models have been derived from the
large-signal averaged switch network equations (15.20) and (15.21). These equations are based
on the approximation in Eq. (15.5), which states that the average inductor voltage, and there-
fore its small-signal ac voltage, is zero. This contradicts predictions of the resulting small-signal
model in Fig. 15.19. As a result, we expect that the models derived in this section can be used to
predict low-frequency dynamics, while predictions of the high-frequency dynamics due to the
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+

+ C R

DCM switch network small-signal ac model

r1 j1d g1v2 g2v1 j2d r2 vv̂ ˆ ˆ ˆ ˆ ˆg

Fig. 15.20 Low-frequency ac model obtained by neglecting inductor L dynamics. The buck, boost, or
buck–boost converters can be modeled, by employing the appropriate parameters from Table 15.2

inductor L are of questionable validity. The origins, analysis, and more accurate predictions of
high-frequency dynamics of DCM converters are discussed in Sect. 15.5.

A simple approximate way to determine the low-frequency small-signal transfer functions is
to neglect the inductor high-frequency dynamics by simply shorting L in the equivalent circuit
of Fig. 15.19. The simplified, first-order model is shown in Fig. 15.20.

The small-signal switch model can be employed to model other DCM converters, by simply
replacing the transistor and diode with ports 1 and 2, respectively, of the two-port model of
Fig. 15.17b. An alternative approach, which yields more convenient results in the analysis of
the buck and boost converters, is to define the switch network as illustrated in Figs. 15.21a,b,
respectively. These switch networks can also be modeled using the two-port small-signal equiv-
alent circuit of Fig. 15.21c; however, new expressions for the parameters r1, j1, g1, etc., must be
derived. These expressions are again found by linearizing the equations of the averaged switch
network terminal currents.

Table 15.2 lists the small-signal parameters for the buck switch network of Fig. 15.21a (mid-
dle row) and for the boost switch network of Fig. 15.21b (bottom row). Insertion of the small-
signal two-port model into the DCM buck and boost converters, together with shorting L to
neglect the inductor high-frequency dynamics, leads to the same equivalent circuits shown in
Fig. 15.20. The model parameters are given in Table 15.2.

The control-to-output transfer function Gvd(s) is found by letting v̂g = 0 in Fig. 15.20. Solu-
tion for v̂ then leads to

Gvd(s) =
v̂

d̂

∣∣∣∣∣
v̂g=0
=

Gd0(
1 +

s
ωp

) (15.57)

with

Gd0 = j2(R‖r2)

ωp =
1

(R‖r2)C
(15.58)

The line-to-output transfer function Gvg(s) is found by letting d̂ = 0 in Fig. 15.20. One then
obtains

Gvg(s) =
v̂
v̂g

∣∣∣∣∣∣
d̂=0

=
Gg0(

1 +
s
ωp

) (15.59)
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(a)
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v1(t)

(b)
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v2(t)

i1(t) i2(t)
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v1(t)

(c)

+ +

v̂ ˆ ˆ1
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2 g2v
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Fig. 15.21 A convenient way to model the switch networks of DCM buck and boost converters: (a)
defined terminal quantities of the DCM buck switch network, (b) defined terminal quantities of the boost
switch network, (c) two-port small-signal ac model. The model parameters are given in Table 15.2

with
Gg0 = g2(R‖r2) = M (15.60)

Expressions for Gd0, Gg0, and ωp are listed in Table 15.3, for the DCM buck, boost, and buck–
boost converters with resistive loads [15, 135].

The ac modeling approach described in this section is both general and useful. The transistor
and diode of a DCM converter can be simply replaced by the two-port network of Fig. 15.17b,
leading to the small-signal ac model. Alternatively, the switch network can be defined as in
Fig. 15.21a or b, and then modeled by the same two-port network, Fig. 15.21c. The small-signal
converter model can then be solved via conventional circuit analysis techniques, to obtain the
small-signal transfer functions of the converter.
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Table 15.3 Salient features of DCM converter small-signal transfer functions

Converter Gd0 Gg0 ωp

Buck
2V
D

1 − M
2 − M

M
2 − M

(1 − M)RC

Boost
2V
D

M − 1
2M − 1

M
2M − 1

(M − 1)RC

Buck–boost
V
D

M
2

RC

15.3.1 Example: Control-to-Output Frequency Response of a DCM Boost Converter

As a simple numerical example, let us find the small-signal control-to-output transfer function
of a DCM boost converter having the following element and parameter values:

R = 12Ω

L = 5 μH (15.61)

C = 470 μF

fs = 100 kHz

The output voltage is regulated to be V = 36 V. It is desired to determine Gvd(s) at the operating
point where the load current is I = 3 A and the dc input voltage is Vg = 24 V.

The effective resistance Re(D) is found by solution of the dc equivalent circuit of Fig. 15.16b.
Since the load current I and the input and output voltages V and Vg are known, the power source
value P is

P = I(V − Vg) = (3 A)(36 V − 24 V) = 36 W (15.62)

The effective resistance is therefore

Re =
V2

g

P
=

(24 V)2

36 W
= 16 Ω (15.63)

The steady-state duty cycle D can now be found using Eq. (15.37):

D =

√
2L

ReTs
=

√
2(5 μH)

(16 Ω)(10 μs)
= 0.25 (15.64)

The expressions given in Table 15.3 for Gd0 and ωp of the boost converter can now be evaluated:

Gd0 =
2V
D

M − 1
2M − 1

=
2(36 V)
(0.25)

(
(36 V)
(24 V)

− 1

)

(
2

(36 V)
(24 V)

− 1

) = 72 V⇒ 37 dBV

fp =
ωp

2π
=

2M − 1
2π(M − 1)RC

=

(
2

(36 V)
(24 V)

− 1

)

2π

(
(36 V)
(24 V)

− 1

)
(12 Ω)(470μF)

= 112 Hz (15.65)
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Fig. 15.22 Magnitude and phase of the control-to-output transfer function, DCM boost example. Solid
lines: function and its asymptotes, approximate single-pole response predicted by the model of Fig. 15.20.
Dashed lines: more accurate response that includes high-frequency inductor dynamics

A Bode diagram of the control-to-output transfer function is constructed in Fig. 15.22. The
solid lines illustrate the magnitude and phase predicted by the approximate single-pole model
of Fig. 15.20. The dashed lines are the predictions of the more accurate model discussed in
Sect. 15.5, which include a second pole at f2 = 64 kHz and a RHP zero at fz = 127 kHz, arising
from the inductor dynamics. Since the switching frequency is 100 kHz, the accuracy of the
model at these frequencies cannot be guaranteed. Nonetheless, in practice, the lagging phase
asymptotes arising from the inductor dynamics can be observed beginning at f2/10 = 6.4 kHz.

15.4 Combined CCM/DCM Averaged Switch Simulation Model

All converters containing a diode rectifier operate in discontinuous conduction mode (DCM)
if the load current is sufficiently low. In some cases, converters are purposely designed to op-
erate in DCM. It is therefore of interest to develop averaged models suitable for simulation of
converters that may operate in either CCM or DCM.

Figure 15.23 illustrates the general two-switch network, and the corresponding large-signal
averaged models in CCM and DCM. The CCM averaged switch model, which is derived in
Sect. 14.1, is an ideal transformer with d′:d turns ratio. In DCM, the large-signal averaged
switch model is a loss-free resistor, as derived in Sect. 15.2. Our objective is to construct a
combined CCM/DCM averaged switch model that reduces to the model of Fig. 15.23a or to
the model of Fig. 15.23c depending on the operating mode of the converter. Let us define an
effective switch conversion ratio μ(t), so that the averaged switch model in both modes has the
same form as in CCM, as shown in Fig. 15.24. If the converter operates in CCM, then the switch
conversion ratio μ(t) is equal to the switch duty cycle d(t),

μ = d (15.66)
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Fig. 15.23 Summary of averaged switch modeling: (a) general two-switch network, (b) averaged switch
model in CCM, and (c) averaged switch model in DCM

If the converter operates in DCM, then the effective switch conversion ratio can be computed so
that the terminal characteristics of the averaged switch model of Fig. 15.24 match the terminal
characteristics of the loss-free resistor model of Fig. 15.23c. Matching the port 1 characteristics
gives

〈v1(t)〉Ts =
1 − μ

μ
〈v2(t)〉Ts = Re〈i1(t)〉Ts

(15.67)

which can be solved for the switch conversion ratio μ,

μ =
1

1 +
Re〈i1(t)〉Ts

〈v2(t)〉Ts

(15.68)
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Fig. 15.24 A general averaged switch model using the equivalent switch conversion ratio μ

It can be verified that matching the port 2 characteristics of the models in Figs. 15.23c and 15.24
gives exactly the same result for the effective switch conversion ratio in DCM.

The switch conversion ratio μ(t) can be considered a generalization of the duty cycle d(t)
of CCM switch networks. Based on this approach, models and results developed for converters
in CCM can be used not only for DCM but also for other operating modes or even for other
converter configurations by simply replacing the switch duty cycle d(t) with the appropriate
switch conversion ratio μ(t) [71–74]. For example, if M(d) is the conversion ratio in CCM, then
M(μ), with μ given by Eq. (15.68), is the conversion ratio in DCM. The switch conversion ratio
in DCM depends on the averaged terminal voltage and current, as well as the switch duty cycle
d through the effective resistance Re = 2L/d2Ts. If the converter is completely unloaded, then
the average transistor current 〈i1(t)〉Ts is zero, and the DCM switch conversion ratio becomes
μ = 1. As a result, the dc output voltage attains the maximum possible value V = VgM(1). This
is consistent with the results of the steady-state DCM analyses in Chap. 5 and Sect. 15.2.

To construct a combined CCM/DCM averaged switch model based on the general averaged
switch model of Fig. 15.24, it is necessary to specify which of the two expressions for the switch
conversion ratio to use: Eq. (15.66), which is valid in CCM, or Eq. (15.68), which is valid in
DCM. At the CCM/DCM boundary, these two expressions must give the same result, μ = d. If
the load current decreases further, the converter operates in DCM, the average switch current
〈i1(t)〉Ts decreases, and the DCM switch conversion ratio in Eq. (15.68) becomes greater than
the switch duty cycle d. We conclude that the correct value of the switch conversion ratio, which
takes into account operation in CCM or DCM, is the larger of the two values computed using
Eq. (15.66) and Eq. (15.68).

Figure 15.25 shows an implementation of the combined CCM/DCM model as a SPICE sub-
circuit CCM-DCM1. This subcircuit has the same five interface nodes as the subcircuits CCM1
and CCM2 of Sect. 14.3.1 The controlled sources Et and Gd model the port 1 (transistor) and
port 2 (diode) averaged characteristics, as shown in Fig. 15.24. The switch conversion ratio μ is
equal to the voltage v(u) at the subcircuit node u. The controlled voltage source Eu computes the
switch conversion ratio as the greater of the two values obtained from Eqs. (15.66) and (15.68).
The controlled current source Ga, the zero-value voltage source Va, and the resistor Ra form
an auxiliary circuit to ensure that the solution found by the simulator has the transistor and the
diode currents with correct polarities, 〈i1(t)〉Ts > 0, 〈i2(t)〉Ts > 0. The subcircuit parameters are
the inductance L relevant for CCM/DCM operation, and the switching frequency fs. The default
values in the subcircuit are arbitrarily set to L = 100μH and fs = 100 kHz.
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(a) i2(t) Ts

v2(t) Ts
v1(t) Ts

i1(t) Ts

d

+ +1
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3

4
5

CCM-DCM1

(b) *****************************************************************
* MODEL: CCM-DCM1
* Application: two-switch PWM converters, CCM or DCM
* Limitations: ideal switches, no transformer
*****************************************************************
* Parameters:
*      L = equivalent inductance for DCM
*      fs = switching frequency
*****************************************************************
* Nodes:
* 1: transistor positive (drain for an n-channel MOS)
* 2: transistor negative  (source for an n-channel MOS)
* 3: diode cathode
* 4: diode anode
* 5: duty cycle control input
*****************************************************************
.subckt CCM-DCM1 1  2  3  4  5
+ params: L=100u fs=1E5
Et 1 2 value={(1-v(u))*v(3,4)/v(u)}
Gd 4 3 value={(1-v(u))*i(Et)/v(u)}
Ga 0 a value={MAX(i(Et),0)}
Va a b
Ra b 0 1k
Eu u 0 table {MAX(v(5),
+ v(5)*v(5)/(v(5)*v(5)+2*L*fs*i(Va)/v(3,4)))} (0 0) (1 1)
.ends
*****************************************************************

Fig. 15.25 Implementation of the combined CCM-DCM averaged switch model: (a) schematic symbol,
(b) SPICE netlist

The SPICE subcircuit CCM-DCM1 of Fig. 15.25 can be used for dc, ac, and transient sim-
ulations of PWM converters containing a transistor switch and a diode switch. This subcircuit
is included in the model library switch.lib. It can be modified further for use in converters with
isolation transformer.

15.4.1 Example: CCM/DCM SEPIC Frequency Responses

As another example, consider the SEPIC of Fig. 15.26. According to Eq. (15.39), this converter
operates in CCM if

V
R
>

1 − D
D

Vg

Re(D)
(15.69)
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Fig. 15.26 SEPIC example
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Fig. 15.27 SEPIC simulation example: averaged circuit model

where Re(D) is given by Eq. (15.38). Upon neglecting losses in the converter, one finds that the
CCM conversion ratio is

V
Vg
≈ D

1 − D
(15.70)

When Eqs. (15.38) and (15.70) are substituted into Eq. (15.69), the condition for operation in
CCM becomes:

R <
2(L1‖L2)

(1 − D)2Ts
= 46 Ω (15.71)

Figure 15.27 shows the averaged circuit model obtained by replacing the switch network
with the CCM-DCM1 subcircuit of Fig. 15.25. A part of the circuit netlist is included in
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Fig. 15.27. The connections and the parameters of the CCM-DCM1 subcircuit are defined by
the Xswitch line. In the SEPIC, the inductance parameter L = 83.3 μH is equal to the parallel
combination of L1 and L2. The voltage source vc sets the quiescent value of the duty cycle to
D = 0.4, and the small-signal ac value to d̂ = 1. Ac simulation is performed on a linearized cir-
cuit model, so that amplitudes of all small-signal ac waveforms are directly proportional to the
amplitude of the ac input, regardless of the input ac amplitude value. For example, the control-
to-output transfer function is Gvd = v̂/d̂, where v̂ = v(4) in the circuit of Fig. 15.27a. We can set
the input ac amplitude to 1, so that the control-to-output transfer function Gvd can be measured
directly as v(5). This setup is just for convenience in finding small-signal frequency responses
by simulation. For measurements of converter transfer functions in an experimental circuit (see
Sect. 8.5), the actual amplitude of the small-signal ac variation d̂ would be set to a fraction of
the quiescent duty cycle D. Parameters of the ac simulation are set by the .ac line in the netlist:
the signal frequency is swept from the minimum frequency of 5 Hz to the maximum frequency
of 50 kHz in 201 points per decade.

Figure 15.28 shows magnitude and phase responses of the control-to-output transfer func-
tion obtained by SPICE ac simulations for two different values of the load resistance: R = 40Ω,
for which the converter operates in CCM, and R = 50Ω, for which the converter operates
in DCM. For these two operating points, the quiescent (dc) voltages and currents in the cir-
cuit are nearly the same. Nevertheless, the frequency responses are qualitatively very different
in the two operating modes. In CCM, the converter exhibits a fourth-order response with two
pairs of high-Q complex-conjugate poles and a pair of complex-conjugate zeroes. Another RHP
(right half-plane) zero can be observed at frequencies approaching 50 kHz. In DCM, there is
a dominant low-frequency pole followed by a pair of complex-conjugate poles and a pair of

Fig. 15.28 Magnitude and phase responses of the control-to-output transfer function obtained by simu-
lation of the SEPIC example, for two values of load resistance. For R = 50Ω, the converter operates in
DCM (solid lines), and for R = 40Ω the converter operates in CCM (dashed lines)
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complex-conjugate zeroes. The frequencies of the complex poles and zeroes are very close in
value. High-frequency dynamics contribute additional phase lag at higher frequencies.

In the design of a feedback controller around a converter that may operate in CCM or in
DCM, one should take into account that the crossover frequency, the phase margin, and the
closed-loop responses can be substantially different depending on the operating mode. This
point is illustrated by the example of the next section.

15.4.2 Example: Loop Gain and Closed-Loop Responses of a Buck Voltage Regulator

A controller design for a buck converter example is discussed in Sect. 9.5.4. The converter and
the block diagram of the controller are shown in Fig. 9.35. This converter system is designed to
regulate the dc output voltage at V = 15 V for the load current up to 5 A. Let us test this design
by simulation. An averaged circuit model of a practical realization of the buck voltage regulator
described in Sect. 9.5.4 is shown in Fig. 15.29. The MOSFET and the diode switch are replaced
by the averaged switch model implemented as the CCM-DCM1 subcircuit. The pulse-width
modulator with VM = 4 V is modeled according to the discussion in Sect. 7.3 as a dependent
voltage source Epwm controlled by the PWM input voltage vx. The value of Epwm is equal to
1/VM = 0.25 times the PWM input voltage vx, with a limit for the minimum value set to 0.1
V, and a limit for the maximum value set to 0.9 V. The output of the pulse-width modulator is
the control duty-cycle input to the CCM-DCM1 averaged switch subcircuit. Given the specified
limits for Epwm, the switch duty cycle d(t) can take values in the range:

Dmin ≤ d(t) ≤ Dmax (15.72)
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Fig. 15.29 Buck voltage regulator example
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where Dmin = 0.1, and Dmax = 0.9. Practical PWM integrated circuits often have a limit
Dmax < 1 for the maximum possible duty cycle. The voltage sensor and the compensator are im-
plemented around an op amp LM324. With very large loop gain in the system, the steady-state
error voltage is approximately zero, i.e., the dc voltages at the plus and the minus inputs of the
op amp are almost the same,

v(5) = vre f (15.73)

As a result, the quiescent (dc) output voltage V is set by the reference voltage vre f and the
voltage divider comprised of R1, R2, R4:

V
R4

R1 + R2 + R4
= vre f = 5 V (15.74)

By setting the ac reference voltage v̂re f to zero, one can find the combined transfer function of
the voltage sensor and the compensator as:

H(s)Gc(s) =
v̂y

v̂
=

R3 +
1

sC3

R1 + R2

∥∥∥∥ 1
sC2

(15.75)

This transfer function can be written in factored pole-zero form as

GcmH

(
1 +

s
ωz

) (
1 +

ωL

s

)
(
1 +

s
ωp

) (15.76)

where

GcmH =
R3

R1 + R2
(15.77)

fz =
ωz

2π
=

1
2πR2C2

(15.78)

fL =
ωL

2π
=

1
2πR3C3

(15.79)

fp =
ωP

2π
=

1
2π (R1‖R2) C2

(15.80)

The design described in Sect. 9.5.4 resulted in the following values for the gain and the corner
frequencies:

GcmH = 3.7(1/3) = 1.23, fz = 1.7 kHz, fL = 500 Hz, fP = 14.5 kHz (15.81)

Eqs. (15.74) and (15.77) to (15.81) can be used to select the circuit parameter values. Let us
(somewhat arbitrarily) choose C2 = 1.1 nF. Then, from Eq. (15.78), we have R2 = 85 kΩ, and
Eq. (15.80) yields R1 = 11 kΩ. From Eq. (15.77) we obtain R3 = 120 kΩ, and Eq. (15.79) gives
C3 = 2.7 kΩ. Finally, R4 = 47 kΩ is found from Eq. (15.74). The voltage regulator design can
now be tested by simulations of the circuit in Fig. 15.29.
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Loop gains can be obtained by simulation using exactly the same techniques described in
Sect. 9.6 for experimental measurement of loop gains [137]. Let us apply the voltage injection
technique of Sect. 9.6.1. An ac voltage source vz is injected between the compensator output and
the PWM input. This is a good injection point since the output impedance of the compensator
built around the op amp is small, and the PWM input impedance is very large (infinity in the
circuit model of Fig. 15.29). With the ac source amplitude set (arbitrarily) to 1, and no other ac
sources in the circuit, ac simulations are performed to find the loop gain as

T (s) =
v̂y

v̂x
= −v(6)

v(7)
(15.82)

To perform ac analysis, the simulator first solves for the quiescent (dc) operating point. The
circuit is then linearized at this operating point, and small-signal frequency responses are com-
puted for the specified range of signal frequencies. Solving for the quiescent operating point
involves numerical solution of a system of nonlinear equations. In some cases, the numerical
solution does not converge and the simulation is aborted with an error message. In particular,
convergence problems often occur in circuits with feedback, especially when the loop gain at dc
is very large. This is the case in the circuit of Fig. 15.29. To help convergence when the simula-
tor is solving for the quiescent operating point, one can specify approximate or expected values
of node voltages using the .nodeset line as shown in Fig. 15.29. In this case, we know by design
that the quiescent output voltage is close to 15 V (v(3) = 15), that the negative input of the op
amp is very close to the reference (v(5) = 5), and that the quiescent duty cycle is approximately
D = V/Vg = 0.536, so that v(8) = 0.536 V. Given these approximate node voltages, the numeri-
cal solution converges, and the following quiescent operating points are found by the simulator
for two values of the load resistance R:

R = 3Ω, v(3) = 15.2 V, v(5) = 5.0 V, v(7) = 2.173 V, v(8) = 0.543 V, D = 0.543 (15.83)

R = 25Ω, v(3) = 15.2 V, v(5) = 5.0 V, v(7) = 2.033 V, v(8) = 0.508 V, D = 0.508 (15.84)

For the nominal load resistance R = 3Ω, the converter operates in CCM, so that D = V/Vg. For
R = 25Ω, the same dc output voltage is obtained for a lower value of the quiescent duty cycle,
which means that the converter operates in DCM.

The magnitude and phase responses of the loop gain found for the operating points given
by Eqs. (15.83) and (15.84) are shown in Fig. 15.30. For R = 3Ω, the crossover frequency is
fc = 5.3 kHz, and the phase margin is φM = 47o, very close to the values ( fc = 5 kHz, φM =

52◦) that we designed for in Sect. 9.5.4. At light load, for R = 25Ω, the loop gain responses are
considerably different because the converter operates in DCM. The crossover frequency drops
to fc = 390 Hz, while the phase margin is φM = 55◦.

The magnitude responses of the line-to-output transfer function are shown in Fig. 15.31,
again for two values of the load resistance, R = 3Ω and R = 25Ω. The open-loop responses are
obtained by braking the feedback loop at node 8, and setting the dc voltage at this node to the
quiescent value D of the duty cycle. For R = 3Ω, the open-loop and closed-loop responses can
be compared to the theoretical plots shown in Fig. 9.45. At 100 Hz, the closed-loop magnitude
response is 0.012 ⇒ −38 dB. A 1 V, 100 Hz variation in vg(t) would induce a 12 mV variation
in the output voltage v(t). For R = 25Ω, the closed-loop magnitude response is 0.02⇒ −34 dB,
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Fig. 15.30 Loop gain in the buck voltage regulator example
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Fig. 15.31 Line-to-output response of the buck voltage regulator example

which means that the 1 V, 100 Hz variation in vg(t) would induce a 20 mV variation in the
output voltage. Notice how the regulator performance in terms of rejecting the input voltage
disturbance is significantly worse at light load than at the nominal load.

A test of the transient response to a step change in load is shown in Fig. 15.32. The load
current is initially equal to 1.5 A, and increases to iLOAD = 5 A at t = 0.1 ms. When the converter
is operated in open-loop at constant duty cycle, the response is governed by the natural time
constants of the converter network. A large undershoot and long lightly damped oscillations can
be observed in the output voltage. With the feedback loop closed, the controller dynamically
adjusts the duty cycle d(t) trying to maintain the output voltage constant. The output voltage
drops by about 0.2 V, and it returns to the regulated value after a short, well-damped transient.
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Fig. 15.32 Load transient response of the buck voltage regulator example

The voltage regulator example of Fig. 15.29 illustrates how the performance can vary sig-
nificantly if the regulator is expected to supply a wide range of loads. In practice, further tests
would also be performed to account for expected ranges of input voltages, and variations in
component parameter values. Design iterations may be necessary to ensure that performance
specifications are met under worst-case conditions.

15.5 High-Frequency Dynamics of Converters in DCM

As discussed in Sect. 15.3, transfer functions of converters operating in discontinuous conduc-
tion mode exhibit a dominant low-frequency pole. To correctly model the high-frequency dy-
namics of DCM converters, the approximation given by Eq. (15.5) must be removed, i.e., one
must account for the fact that the ac voltage across the inductor is not zero [130]. In this section,
we show that the high-frequency dynamics of DCM converters are related to the sampling pro-
cess associated with the pulse-width modulator and the nature of the response of the inductor
current to duty-cycle perturbations [136].

Figure 15.33 shows details of steady-state and small-signal perturbed waveforms in a DCM
converter. During the switching period shown, the inductor current ramps up from zero with a
slope m1, and then ramps down to zero with a slope m2. It is assumed that converter voltages do
not change appreciably so that the slopes m1 and m2 can be considered constant.

The PWM input signal vc(t) has a steady-state dc component Vc and a small-signal ac per-
turbation v̂c. During the switching period shown in Fig. 15.33, the transistor switch gate-drive
waveform is extended by d̂Ts, where d̂ = v̂c/VM and VM is the amplitude of the PWM ramp.
Figure 15.33d shows that the perturbation in the transistor gate-drive waveform is a pulse of
length d̂Ts, which occurs at the modulated edge of the gate-drive waveform. As a result, a per-
turbation in the inductor current waveform is observed. It is important to note that the converter
waveforms are unaffected by the ac perturbation v̂c until the modulated (trailing) edge of the



15.5 High-Frequency Dynamics of Converters in DCM 619

Ts
VM

Vc+ v̂c
Vc

iL+ îL

iL

m1 m2

d̂Ts

(m1+m2)d̂Ts

D2Ts

îL
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Fig. 15.33 Steady-state and small-signal perturbed waveforms in a DCM converter

gate-drive signal. As shown in Fig. 15.33e, the inductor current ac perturbation is a trapezoidal
pulse starting at the modulated edge of the gate-drive signal and extending over a time interval
approximately equal to D2Ts.

(m1+m2)d̂Ts

D2Ts

îL

d̂Tsd (t)

t

t

Fig. 15.34 Impulse response of the small-signal perturbed inductor current waveforms in a DCM con-
verter

In the small-signal limit, d̂Ts is very short, and the transitions in îL can be neglected. Hence,
as illustrated in Fig. 15.34, the response from the perturbation in the gate-drive waveform to the
inductor current perturbation can be viewed as a response from an impulse d̂Tsδ(t) to a pulse of
amplitude (m1 + m2)d̂Ts and length D2Ts. It should be noted that the unit impulse δ(t) occurs
at the modulated edge of the gate-drive waveform. The impulse represents the small-signal
sampling process that occurs at the modulated edge in the pulse-width modulator.



620 15 Equivalent Circuit Modeling of the Discontinuous Conduction Mode

We are now in a position to explain the nature of the high-frequency dynamics of DCM
converters in frequency domain. Let us derive a control-to-inductor current transfer function
Gic(s) = îL/v̂c based on the time-domain waveforms shown in Figs. 15.33 and 15.34. In the
derivations, a sampled variable x is denoted by a star, x∗.

In general, given a small-signal perturbation v̂c(t), the corresponding duty-cycle perturbation
is a sampled variable

d̂∗(t) =
v̂c(t)
VM

k→+∞∑
k→−∞

δ(t − kTs) (15.85)

The Laplace transform of Eq. (15.85) yields

d̂∗(s) =
1

VM

1
Ts

k→+∞∑
k→−∞

v̂c(s − jkωs) (15.86)

where ωs = 2π fs. In time domain, the impulse response of the inductor current perturbation is
shown in Fig. 15.34,

îL = (m1 + m2)d̂Ts (h(t) − h(t − D2Ts)) (15.87)

where h(t) is the unit step function. The small-signal inductor current response resembles the
response of a sample-and-hold to an impulse, i.e., a translation from a sampled variable to
a continuous-time variable. Given the sampled nature of the duty-cycle perturbation, and the
continuous-time nature of the converter states, it is appropriate to refer to the response in
Eq. (15.87) as an equivalent hold [77].

The Laplace transform of the impulse response in Eq. (15.87) can be used to find the transfer
function of the equivalent hold for the inductor current perturbation:

L
(
îL(t)

)
= (m1 + m2)d̂Ts

1 − e−sD2Ts

s
(15.88)

From (15.86) and (15.88), it follows that

î∗L(s) =
(m1 + m2)Ts

VM

1 − e−sD2Ts

s
1
Ts

k→+∞∑
k→−∞

v̂c(s − jkωs) (15.89)

Given the sampled-data nature of a pulse-width modulated converter, it is not surprising that
the inductor current spectrum consists of an infinite sum of responses to the images of v̂c(s).
Since we are interested only in the converter responses at frequencies well below the switching
frequency, a control-to-inductor current "transfer function" can be obtained by retaining only
the low-frequency (k = 0) portion of the spectrum of îL(s),

Gic(s) =
îL

v̂c
=

(m1 + m2)
VM

1 − e−sD2Ts

s
(15.90)

Note that the transfer function (15.90) is not a standard rational function of s. Instead, the
transfer function contains an e−sDTs term, which is a result of the sampling process and the
equivalent hold response illustrated in Fig. 15.34. From Eq. (15.90), an approximate rational
transfer function can be obtained using an approximation known as the Padé approximation
[138]. The first-order Padé approximation is given by:
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e−sD2Ts ≈
1 − s
ω2

1 +
s
ω2

, (15.91)

where

f2 =
ω2

2π
=

1
πD2Ts

=
1

D2

fs

π
. (15.92)

Applying (15.91) to (15.90) yields an approximate control-to-inductor current transfer function,
including high-frequency dynamics,

Gic(s) ≈ (m1 + m2)D2Ts

VM

1

1 +
s
ω2

(15.93)

where the pole frequency is given by Eq. (15.92). This expression for the high-frequency pole is
general, valid for all basic converters operating in DCM. Since 0 < D2 < 1, Eq. (15.92) implies
that the high-frequency pole is always greater than approximately one third of the switching
frequency. Taking the steady-state solution for D2 into account, the pole frequency can be found
in terms of the conversion ratio M and the duty cycle D. For the basic converters, the results are
summarized in Table 15.4. Although the derivation in this section has been focused on Gic(s)
only, the same high-frequency pole can be found in all other DCM converter transfer functions.

Table 15.4 High-frequency pole in DCM converter control-to-output transfer functions

Converter High-frequency pole f2

Buck
M

D(1 − M)
fs

π

Boost
M − 1

D
fs

π

Buck–boost
|M|
D

fs

π

It is important to reiterate that the high-frequency pole in frequency responses is an ap-
proximation to the responses represented by the converter time-domain dynamics illustrated
in Fig. 15.34. In response to a duty-cycle perturbation, the inductor current perturbation is a
pulse of length D2Ts. The longer the equivalent hold pulse, the longer time delay is between
the duty-cycle perturbation and the perturbations in converter waveforms. In frequency domain,
this corresponds to additional phase lag due to a lower frequency f2 in the converter control-to-
output responses. Since the equivalent hold extends over a fraction of a switching period, the
resulting pole f2 is very high, and the additional phase lag can usually be ignored in practice.
The behavior discussed in Sect. 8.2.3, leading to the right half-plane zero in frequency responses
of boost or buck–boost CCM converters, is present in DCM converters as well. An increase in
duty cycle, for example, results in the output voltage temporarily moving in the opposite direc-
tion. However, in DCM converters this opposite-direction transient is also limited to a fraction
of a switching period and has essentially no impact on the design or stability of control loops
around DCM converters.
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15.6 Summary of Key Points

1. In the discontinuous conduction mode, the average transistor voltage and current are pro-
portional, and hence obey Ohm’s law. An averaged equivalent circuit can be obtained by re-
placing the transistor with an effective resistor Re(d). The average diode voltage and current
obey a power source characteristic, with power equal to the power effectively dissipated by
Re. In the averaged equivalent circuit, the diode is replaced with a dependent power source.

2. The two-port lossless network consisting of an effective resistor and power source, which
results from averaging the transistor and diode waveforms of DCM converters, is called
a loss-free resistor. This network models the basic power-processing functions of DCM
converters, much in the same way that the ideal dc transformer models the basic functions
of CCM converters.

3. The large-signal averaged model can be solved under equilibrium conditions to determine
the quiescent values of the converter currents and voltages. Average power arguments can
often be used.

4. A small-signal ac model for the DCM switch network can be derived by perturbing and
linearizing the loss-free resistor network. The result has the form of a two-port y-parameter
model. The model describes the small-signal variations in the transistor and diode currents,
as functions of variations in the duty cycle and in the transistor and diode ac voltage varia-
tions.

5. To simplify the ac analysis of the DCM buck and boost converters, it is convenient to define
two other forms of the small-signal switch model, corresponding to the switch networks
of Figs. 15.21a and 15.21b. These models are also y-parameter two-port models, but have
different parameter values.

6. The inductor dynamics of the DCM buck, boost, and buck–boost converters occur at high
frequency, above or just below the switching frequency. Hence, in most cases the high-
frequency inductor dynamics can be ignored. In the small-signal ac model, the inductance
L is set to zero, and the remaining model is solved relatively easily for the low-frequency
converter dynamics. The DCM buck, boost, and buck–boost converters exhibit transfer func-
tions containing essentially a single low-frequency dominant pole.

7. The high-frequency dynamics of DCM converters are related to the sampling process asso-
ciated with the pulse-width modulator and the nature of the response of the inductor current
to duty-cycle perturbations.

Problems

15.1 Averaged switch modeling of a flyback converter. The converter of Fig. 15.35 operates in
the discontinuous conduction mode. The two-winding inductor has a l:n turns ratio and
negligible leakage inductance, and can be modeled as an ideal transformer in parallel with
primary-side magnetizing inductance Lp.

(a) Sketch the transistor and diode voltage and current waveforms, and derive expressions
for their average values.

(b) Sketch an averaged model for the converter that includes a loss-free resistor network,
and give an expression for Re(d).
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Fig. 15.35 Flyback converter, Problem 15.1

(c) Solve your model to determine the voltage ratio V/Vg in the discontinuous conduction
mode.

(d) Over what range of load current I is your answer of part (c) valid? Express the DCM
boundary in the form I < Icirt(D, Re, Vg, n).

(e) Derive an expression for the small-signal control-to-output transfer function Gvd(s).
You may neglect inductor dynamics.

15.2 Averaged switch modeling of a nonisolated Watkins–Johnson converter. The converter
of Fig. 15.36 operates in the discontinuous conduction mode. The two-winding inductor
has a 1:1 turns ratio and negligible leakage inductance, and can be modeled as an ideal
transformer in parallel with magnetizing inductance L.

+ L

+

vvg

Q1

D1

1:
1

C R

Fig. 15.36 Watkins–Johnson converter, Problem 15.2

(a) Sketch the transistor and diode voltage and current waveforms, and derive expressions
for their average values.

(b) Sketch an averaged model for the converter that includes a loss-free resistor network,
and give an expression for Re(d).

(c) Solve your model to determine the converter conversion ratio M(D) = V/Vg in the
discontinuous conduction mode. Over what range of load currents is your expression
valid?

15.3 Sketch the steady-state output characteristics of the buck–boost converter: plot the output
voltage V vs. the load current I, for several values of duty cycle D. Include both CCM and
DCM operation, and clearly label the boundary between modes.
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15.4 In the network of Fig. 15.37, the power source waveform p(t) is given by

p(t) = 1000 cos2 377t

The circuit operates in steady state. Determine the rms resistor voltage VR,rms.

+

vR(t)p(t) R
20 

L1
7 mH

L2
7 mH

C1

C2

30 μF

300 μF

Fig. 15.37 Network with a power source, Problem 15.4

15.5 Verify the expressions for Gd0 and ωp given in Table 15.3.
15.6 A certain buck converter operates with an input voltage of Vg = 28 V and an output

voltage of V = 15 V. The load resistance is R = 10Ω. Other element and parameter values
are L = 8μH, C = 220μF, fs = 150kHz.

(a) Determine the value of Re.
(b) Determine the quiescent duty cycle D.
(c) Sketch a Bode plot of the control-to-output transfer function Gvd(s). Label the values

of all salient features. You may neglect inductor dynamics.

15.7 Using the approach of Sect. 15.5, determine the control-to-output transfer function Gvd(s)
of a boost converter. Do not make the approximation L ≈ 0.

(a) Derive analytical expressions for the dc gain Gd0 and the RHP zero frequency ωz, as
functions of M, Re, D, Vg, L, C, and R.

(b) With the assumption that C is sufficiently large and that L is sufficiently small, the
poles of Gvd(s) can be factored using the low-Q approximation. Do so, and express
the two poles as functions of M, D, L, C, and R. Show that the low-frequency pole
matches the expression in Table 15.3, and that the high-frequency pole is given by the
expression in Table 15.4.
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Techniques of Design-Oriented Analysis: Extra
Element Theorems

Middlebrook’s Extra Element Theorem (EET) is a powerful technique of Design-Oriented Anal-
ysis that aids in the analysis of complex circuits and systems, with the goal of deriving tractable
equations that are useful for design. As with the Feedback Theorem of Chap. 13, it is based on
linear superposition and the null double injection analysis technique.

The Extra Element Theorem exposes how a known transfer function is changed by addition
of a new network element. Section 16.1 contains a derivation by null double injection, and
Sect. 16.2 describes several examples of its use. This theorem is the basis for the Chap. 17
analysis of converter input filters. The EET is employed in Sect. 16.2.3 to gain an understanding
of how to damp the internal resonance of the SEPIC.

The n-Extra Element Theorem (n-EET) is an extension of the EET to cover the simultaneous
addition of multiple elements to a circuit. A useful application of the n-EET is the treatment of
all reactive components as extra elements: a transfer function can be written as a normalized
rational fraction with little or no algebra. This powerful technique can substantially extend the
engineer’s ability to perform tractable paper analysis and design of complex dynamical circuits.
Section 16.3 describes this technique without proof, and includes several examples.

16.1 Extra Element Theorem

The Extra Element Theorem of R. D. Middlebrook [139–141] shows how a transfer function is
changed by the addition of an impedance to the network. The theorem allows one to determine
the effects of this extra element on any transfer function of interest, without solving the system
all over again. The Extra Element Theorem is a powerful technique of design-oriented analysis.
It leads to impedance inequalities which guarantee that an element does not substantially alter
a transfer function. The Extra Element Theorem is employed in Chap. 17, where it leads to a
relatively simple methodology for designing input filters that do not degrade the loop gains of
switching regulators. It is also employed in Sect. 22.4, to determine how the load resistance af-
fects the properties of a resonant inverter. In this section, Middlebrook’s Extra Element Theorem
is derived, based on the principle of superposition. Its application is illustrated via examples.
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Fig. 16.1 How an added element changes a transfer function G(s): (a) original conditions, before addition
of new element; (b) addition of element having impedance Z(s)

16.1.1 Basic Result

Consider the linear circuit of Fig. 16.1a. This network contains an input vin(s) and an output
vout(s). In addition, it contains a port whose terminals are open-circuited. It is assumed that the
transfer function from vin(s) to vout(s) is known, and is given by

vout(s)
vin(s)

= G(s)
∣∣∣∣∣
Z(s)→∞

(16.1)

The Extra Element Theorem tells us how the transfer function G(s) is modified when an
impedance Z(s) is connected between the terminals at the port, as in Fig. 16.1b. The result is

vout(s)
vin(s)

=

(
G(s)

∣∣∣∣∣
Z(s)→∞

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

ZN(s)
Z(s)

1 +
ZD(s)
Z(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (16.2)

The right-hand side terms involving Z(s) account for the influence of Z(s) on G(s), and are
known as the correction factor.

The Extra Element Theorem also applies to the dual form illustrated in Fig. 16.2. In this
form, the transfer function is initially known under the conditions that the port is short-circuited.
In Fig. 16.2b, the short circuit is replaced by the impedance Z(s). In this case, the addition of
the impedance Z(s) causes the transfer function to become

vout(s)
vin(s)

=

(
G(s)

∣∣∣∣∣
Z(s)→0

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

Z(s)
ZN(s)

1 +
Z(s)

ZD(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (16.3)

The ZN(s) and ZD(s) terms in Eqs. (16.2) and (16.3) are identical. By equating the G(s)
expressions of Eqs. (16.2) and (16.3), one can show that

G(s)
∣∣∣
Z(s)→∞

G(s)
∣∣∣
Z(s)→0

=
ZD(s)
ZN(s)

(16.4)
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Fig. 16.2 The dual form of the Extra Element Theorem, in which the extra element replaces a short
circuit: (a) original conditions; (b) addition of element having impedance Z(s)

This is known as the reciprocity relationship.
The quantities ZN(s) and ZD(s) can be found by measuring impedances at the port. The

term ZD(s) is the Thevenin equivalent impedance seen looking into the port, also known as the
driving-point impedance. As illustrated in Fig. 16.3a, this impedance is found by setting the
independent source vin(s) to zero, and then measuring the impedance between the terminals of
the port:

ZD(s) =
v(s)
i(s)

∣∣∣∣∣
vin(s)=0

(16.5)

Thus, ZD(s) is the impedance between the port terminals when the input vin(s) is set to zero.
Determination of the impedance ZN(s) is illustrated in Fig. 16.3b. The term ZN(s) is found

under the conditions that the output vout(s) is nulled to zero. A current source i(s) is connected
to the terminals of the port. In the presence of the input signal vin(s), the current i(s) is adjusted
so that the output vout(s) is nulled to zero. Under these conditions, the quantity ZN(s) is given
by

ZN(s) =
v(s)
i(s)

∣∣∣∣∣
vout(s)→

null
0

(16.6)

Note that nulling the output is not the same as shorting the output. If one simply shorted the
output, then a current would flow through the short, which would induce voltage drops and
currents in other elements of the network. These voltage drops and currents are not present
when the output is nulled. The null condition of Fig. 16.3b does not employ any connections to
the output of the circuit. Rather, the null condition is achieved by adjustment of the independent
sources vin(s) and i(s) in a special way that causes the output vout(s) to be zero. By superposition,
vout(s) can be expressed as a linear combination of vin(s) and i(s); therefore, for a given vin(s), it
is always possible to choose an i(s) that will cause vout(s) to be zero. Under these null conditions,
ZN(s) is measured as the ratio of v(s) to i(s). In practice, the circuit analysis to find ZN(s) is
simpler than analysis of ZD(s), because the null condition causes many of the signals within the
circuit to be zero. Several examples are given in Sect. 16.2.

The input and output quantities need not be voltages, but could also be currents or other
signals that can be set or nulled to zero. The next section contains a derivation of the Extra
Element Theorem with a general input u(s) and output y(s).
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(a)

ZD(s) = v(s)
i(s) vin(s) = 0

Port
Short-circuit

Linear circuit

Input Output

{

vin(s) = 0

+

vout(s)

–

i(s)

+  v(s)  –

(b)

ZN(s) = v(s)
i(s) vout(s) 0

Port

Linear circuit

Input Output

+

vout(s)  0

–

i(s)

+  v(s)  –

+
–vin(s)

Fig. 16.3 Determination of the quantities ZN(s) and ZD(s): (a) ZD(s) is the driving-point impedance at
the port, and is measured with the input vin(s) set to zero; (b) ZN(s) is the impedance seen at the port under
the condition that the output is nulled

16.1.2 Derivation

Figure 16.4a illustrates a general linear system having an input u(s) and an output y(s). In addi-
tion, the system contains an electrical port having voltage v(s) and current i(s), with the polari-
ties illustrated. Initially, the port is open-circuited: i(s) = 0. The transfer function of this system,
with the port open-circuited, is

Gold(s) =
y(s)
u(s)

∣∣∣∣∣
i(s)=0

(16.7)

The objective of the Extra Element Theorem is to determine the new transfer function G(s) that
is obtained when an impedance Z(s) is connected to the port:

G(s) =
y(s)
u(s)

(16.8)

The situation is illustrated in Fig. 16.4b. It can be seen that the conditions at the port are now
given by

v(s) = −i(s)Z(s) (16.9)
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Fig. 16.4 Modification of a linear network by addition of an extra element: (a) original system; (b)
modified system, with impedance Z(s) connected at an electrical port

To express the new transfer function G(s) in Eq. (16.8) in terms of the original transfer function
Gold(s) of Eq. (16.7), we use current injection at the port, as illustrated in Fig. 16.5. There
are now two independent inputs: the input u(s) and the independent current source i(s). The
dependent quantities y(s) and v(s) can be expressed as functions of these independent inputs
using the principle of superposition:

y(s) = Gold(s)u(s) +Gi(s)i(s) (16.10)

v(s) = Gv(s)u(s) + ZD(s)i(s) (16.11)

Fig. 16.5 Current injection at the electrical port, by
addition of independent current source i(s)

u(s) y(s)

i(s)

+  v(s)  –

Port

Linear network

Input Output

where

Gold(s) =
y(s)
u(s)

∣∣∣∣∣
i(s)=0

(16.12)

Gi(s) =
y(s)
i(s)

∣∣∣∣∣
u(s)=0

(16.13)

ZD(s) =
v(s)
i(s)

∣∣∣∣∣
u(s)=0

(16.14)

Gv(s) =
v(s)
u(s)

∣∣∣∣∣
i(s)=0

(16.15)
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are the transfer functions from the independent inputs to the respective dependent quantities y(s)
and v(s).

The transfer function G(s) can be found by elimination of v(s) and i(s) from the system of
equations (16.9) to (16.11), and solution for y(s) as a function of u(s). The result is

G(s) =
y(s)
u(s)

= Gold(s) − Gv(s)Gi(s)
Z(s) + ZD(s)

(16.16)

This intermediate result expresses the new transfer function G(s) as a function of the original
transfer function Gold(s) and the extra element Z(s), as well as the quantities ZD(s), Gv(s), and
Gi(s).

Equation (16.14) gives a direct way to find the quantity ZD(s). ZD(s) is the driving-point
impedance at the port, when the input u(s) is set to zero. This quantity can be found either by
conventional circuit analysis or simulation, or by laboratory measurement.

Although Gv(s) and Gi(s) could also be determined from the definitions (16.13) and (16.15),
it is preferable to eliminate these quantities, and instead express G(s) as a function of the
impedances at the given port. This can be accomplished via the following thought experiment.
In the presence of the input u(s), we adjust the independent current source i(s) in the special
way that causes the output y(s) to be nulled to zero. The impedance ZN(s) is defined as the ratio
of v(s) to i(s) under these null conditions:

ZN(s) =
v(s)
i(s)

∣∣∣∣∣
y(s)→

null
0

(16.17)

The value of i(s) that achieves the null condition y(s) →
null

0 can be found by setting y(s) = 0 in

Eq. (16.10), as follows:
[Gold(s)u(s) +Gi(s)i(s)] →

null
0 (16.18)

Hence, the output y(s) is nulled when the inputs u(s) and i(s) are related as follows:

u(s)
∣∣∣∣∣
y(s)→

null
0
= − Gi(s)

Gold(s)
i(s)

∣∣∣∣∣
y(s)→

null
0

(16.19)

Under this null condition, the voltage v(s) is given by

v(s)
∣∣∣
y(s)→

null
0
= Gv(s)u(s)

∣∣∣
y(s)→

null
0
+ ZD(s)i(s)

∣∣∣
y(s)→

null
0

=

(
−Gv(s)Gi(s)

Gold(s)
+ ZD(s)

)
i(s)

∣∣∣∣∣∣
y(s)→

null
0

(16.20)

which follows from Eqs. (16.11) and (16.19). Substitution of Eq. (16.17) into Eq. (16.20) yields

v(s)
∣∣∣∣∣
y(s)→

null
0
= ZN(s)i(s)

∣∣∣∣∣
y(s)→

null
0
=

(
−Gv(s)Gi(s)

Gold(s)
+ ZD(s)

)
i(s)

∣∣∣∣∣
y(s)→

null
0

(16.21)

Hence,

ZN(s) = ZD(s) − Gv(s)Gi(s)
Gold(s)

(16.22)
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Solution for the quantity Gv(s)Gi(s) yields

Gv(s)Gi(s) = (ZD(s) − ZN(s))Gold(s) (16.23)

Thus, the unknown quantities Gv(s) and Gi(s) can be related to ZN(s) and ZD(s), which are
properties of the port at which the new impedance Z(s) will be connected, and to the original
transfer function Gold(s).

The final step is to substitute Eq. (16.23) into Eq. (16.16), leading to

G(s) = Gold(s) − ZD(s) − ZN(s)
Z(s) + ZD(s)

Gold(s) (16.24)

This expression can be simplified as follows:

G(s) = Gold(s)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

ZN(s)
Z(s)

1 +
ZD(s)
Z(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (16.25)

or,

G(s) =

(
G(s)

∣∣∣∣∣
Z(s)→∞

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

ZN(s)
Z(s)

1 +
ZD(s)
Z(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (16.26)

This is the desired result. It states how the transfer function G(s) is modified by addition of the
extra element Z(s). The right-most term in Eq. (16.26) is called the correction factor; this term
gives a quantitative measure of the change in G(s) arising from the introduction of Z(s).

Derivation of the dual result, Eq. (16.3), follows similar steps.

16.1.3 Discussion

The general form of the Extra Element Theorem makes it useful for designing a system such that
unwanted circuit elements do not degrade the desirable system performance already obtained.
For example, suppose that we already know some transfer function or similar quantity G(s),
under simplified or ideal conditions, and have designed the system such that this quantity meets
specifications. We can then use the Extra Element Theorem to answer the following questions:

• What is the effect of a parasitic element Z(s) that was not included in the original analysis?
• What happens if we later decide to add some additional components having impedance Z(s)

to the system?
• Can we establish some conditions on Z(s) that ensure that G(s) is not substantially changed?

A common application of the Extra Element Theorem is the determination of conditions
on the extra element that guarantee that the transfer function G(s) is not significantly altered.
According to Eqs. (16.2) and (16.26), this will occur when the correction factor is approximately
equal to unity. The conditions are

‖Z( jω)‖ 
 ‖ZN( jω)‖
‖Z( jω)‖ 
 ‖ZD( jω)‖ (16.27)
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This gives a formal way to show when an impedance can be ignored: one can plot the
impedances ‖ZN( jω)‖ and ‖ZD( jω))‖, and compare the results with a plot of ‖Z( jω)‖. The
impedance Z(s) can be ignored over the range of frequencies where the inequalities (16.27) are
satisfied.

For the dual case in which the new impedance is inserted where there was previously a short
circuit, Eq. (16.3), the inequalities are reversed:

‖Z( jω)‖ 	 ‖ZN( jω)‖
‖Z( jω)‖ 	 ‖ZD( jω)‖ (16.28)

This equation shows how to limit the magnitude ‖Z( jω)‖, to avoid significantly changing the
transfer function G(s).

For quantitative design, Eqs. (16.27) and (16.28) raise an additional question: By what factor
should ||Z( jω)|| exceed (or be less than) ||ZN( jω)|| and ||ZD( jω)||, in order for the inequalities
of Eq. (16.27) or (16.28) to be well satisfied? This question can be answered by plotting the
magnitudes and phases of the correction factor terms, as a function of the magnitudes and
phases of (Z/ZN) and (Z/ZD).

Figure 16.6 shows contours of constant ||1 + Z/ZN ||, as a function of the magnitude and
phase of Z/ZN . Figure 16.7 shows similar contours of constant ∠(1 + Z/ZN). It can be seen
that, when ||Z/ZN || is less than – 20 dB, then the maximum deviation caused by the numerator
(1 + Z/ZN) term is less than ±1 dB in magnitude, and less than ±7◦ in phase. For ||Z/ZN || less
than −10 dB, the maximum deviation caused by the numerator (1 + Z/ZN) term is less than
±3.5 dB in magnitude, and less than ±20◦ in phase.

Figures 16.8 and 16.9 contain contours of constant ||1/(1 + Z/ZD)|| and ∠1/(1 + Z/ZD), re-
spectively, as a function of the magnitude and phase of Z/ZD. These plots contain minus signs
because the terms appear in the denominator of the correction factor; otherwise, they are identi-
cal to Figs. 16.6 and 16.7. Again, for ||Z/ZD|| less than – 20 dB, the maximum deviation caused
by the denominator (1+Z/ZD) term is less than ±1 dB in magnitude, and less than ±7◦ in phase.
For ||Z/ZD|| less than – 10 dB, the maximum deviation caused by the denominator (1 + Z/ZD)
term is less than ±3.5 dB in magnitude, and less than ±20◦ in phase.

16.2 EET Examples

16.2.1 A Simple Transfer Function

The first example illustrates how the Extra Element Theorem can be used to find a transfer
function essentially by inspection. We are given the circuit illustrated in Fig. 16.10. It is desired
to solve for the transfer function

G(s) =
v2(s)
v1(s)

(16.29)

and to express this transfer function in factored pole-zero form. One way to do this is to employ
the Extra Element Theorem, treating the capacitor C as an “extra” element. As illustrated in
Fig. 16.11, the electrical port is taken to be at the location of the capacitor, and the “original
conditions” are taken to be the case when the capacitor impedance is infinite, i.e., an open
circuit. Under these original conditions, the transfer function is given by the voltage divider
composed of resistors R1, R3, and R4. Hence, G(s) can be expressed as
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v2(s)
v1(s)

= G(s) =

(
R4

R1 + R3 + R4

) (1 + ZN

Z

)
(
1 +

ZD

Z

) (16.30)

where Z(s) is the capacitor impedance 1/sC.
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Fig. 16.10 R–C circuit example of
Sect. 16.2.1 +

–

R1

C

+

v2(s)

–

v1(s)
R2

R3

R4

Fig. 16.11 Manipulation of the cir-
cuit of Fig. 16.10 into the form of
Fig. 16.1

+
–

R1

C

+

v2(s)

–

v1(s)
R2

R3

R4

+      v(s)      –
i(s)

Linear circuit

port

The impedance ZD(s) is the Thevenin equivalent impedance seen at the port where the ca-
pacitor is connected. As illustrated in Fig. 16.12a, this impedance is found by setting the inde-
pendent source v1(s) to zero, and then determining the impedance between the port terminals.
The result is

ZD = R2 + R1|| (R3 + R4) (16.31)

Figure 16.12b illustrates determination of the impedance ZN(s). A current source i(s) is con-
nected to the port, in place of the capacitor. In the presence of the input v1(s), the current source
i(s) is adjusted so that the output v2(s) is nulled. Under these null conditions, the impedance
ZN(s) is found as the ratio of v(s) to i(s).

It is easiest to find ZN(s) by first determining the effect of the null condition on the signals
in the circuit. Since v2 is nulled to zero, there is no current through the resistor R4. Since R3 is
connected in series with R4, there is also no current through R3, and hence no voltage across R3.
Therefore, the voltage v3 in Fig. 16.12b is equal to v2, i.e.,

v3 = v2 →
null

0 (16.32)

Therefore, the voltage v is given by iR2. The impedance ZN is

ZN(s) =
v(s)
i(s)

∣∣∣∣∣
v2→

null
0
= R2 (16.33)
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(a) R1

+

v2(s)

–

v1(s) = 0
R2

R3

R4

port

ZD(s)

(b) R1

+

v2(s)  0

–

R2

R3

R4

port

+
–v1(s)

+      v(s)      –

i(s)

ZN(s) = v(s)
i(s) v2(s) 0

v3(s)

Fig. 16.12 Measurement of the quantities ZN(s) and ZD(s): (a) determination of ZD(s); (b) determination
of ZN(s)

Note that, in general, the independent sources v1 and i are nonzero during the ZN measurement.
For this example, the null condition implies that the current i(s) flows entirely through the path
composed of R2, R1, and v1.

The transfer function G(s) is found by substitution of Eqs. (16.31) and (16.33) into
Eq. (16.30):

G(s) =

(
R4

R1 + R3 + R4

)
(1 + sCR2)

(1 + sC [R2 + R1|| (R3 + R4)])
(16.34)

For this example, the result is obtained in standard normalized pole-zero form, because the
capacitor is the only dynamic element in the circuit, and because the “original conditions,” in
which the capacitor impedance tends to an open circuit, coincide with dc conditions in the
circuit. A similar procedure can be applied to write the transfer function of a circuit, containing
an arbitrary number of reactive elements, in normalized form via the n-Extra Element Theorem
of Sect. 16.3.
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16.2.2 An Unmodeled Element

In the simple R–L–C low-pass filter illustrated in Fig. 16.13, the capacitor dielectric loss, contact
(termination) resistance, and foil resistance are modeled by a series resistance Resr known as the
capacitor equivalent series resistance (ESR). Physical capacitors can contain significant ESR,
which can degrade performance and can also lead to failure when the power loss I2

rmsResr causes
excessive temperature rise within the capacitor. The presence of ESR also alters the filter transfer
function. In first-pass analysis of the transfer function, the ESR often is ignored (“unmodeled”);
later, it may be desired to include the effects of this element in the analysis. The object of this
simple example is to include the ESR in the filter transfer function, as an extra element.

The filter transfer function G(s) is defined as

G(s) =
v2

v1
(16.35)

Fig. 16.13 R–L–C filter example

L

C

R

+

v2
v1

+
Resr

For the case Resr → 0, the filter transfer function is

G(s)
∣∣∣∣∣
Resr→0

=
1

1 +
sL
R
+ s2LC

(16.36)

We can therefore employ the Extra Element Theorem to determine how nonzero ESR changes
G(s). As illustrated in Fig. 16.14, we view the “original circuit” as the case where the ESR is
a short circuit, and addition of the “extra element” constitutes breaking this short circuit at the
port as shown.

L

C

R

+

v2
v1

+

Port

Fig. 16.14 Treating the capacitor ESR as an extra element

In the presence of the ESR, the transfer function becomes

G(s) =

(
G(s)

∣∣∣∣∣
Resr→0

)
(
1 +

Z(s)
ZN(s)

)

(
1 +

Z(s)
ZD(s)

) (16.37)

where Z(s) is equal to Resr.
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(a) L

C

R

+

v2(s)

ZD(s)

v1(s) = 0

(b) L

C

R

+

v2  0v1
+

i
+
v

Fig. 16.15 Capacitor ESR example: (a) determination of ZD(s); (b) determination of ZN(s)

Figure 16.15a illustrates determination of ZD(s). The input source v1(s) is set to zero, and
the impedance between the terminals of the port is found. It can be seen that the impedance
ZD(s) reduces to the capacitor impedance, in series with the parallel combination of the inductor
impedance and the load resistance R:

ZD(s) =
1

sC
+
(
R
∥∥∥ sL

)
=

1 +
sL
R
+ s2LC

sC
(
1 +

sL
R

) (16.38)

Figure 16.15b illustrates determination of ZN(s). In the presence of the input source v1(s), a
current i(s) is injected at the port as shown. This current is adjusted such that the output v2(s) is
nulled. Under these conditions, the quantity ZN(s) is given by v(s)/i(s). It can be seen that when
v2(s) is nulled, the voltage v(s) is equal to the current i(s) multiplied by the capacitor impedance
1/sC. Therefore,

ZN(s) =
v(s)
i(s)

∣∣∣∣∣
v2(s)→

null
0
=

1
sC

(16.39)

Note that, in general, i(s) will not be equal to zero during the ZN(s) measurement. The null con-
dition is achieved by setting the source i(s) equal to the value −v1(s)/sL. Thus, in the presence
of nonzero Resr, the transfer function G(s) can be expressed as follows:

G(s) =

(
G(s)

∣∣∣∣∣
Resr→0

)
(
1 +

Resr

ZN(s)

)

(
1 +

Resr

ZD(s)

)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

1 +
sL
R
+ s2LC

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1 + sCResr))(

1 +
Resr

ZD(s)

) (16.40)
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It can be seen that the correction factor adds a zero at frequency ωz = 1/ResrC, arising from the
ZN term. The denominator ZD term may additionally modify the transfer function; the denomi-
nator term has negligible effect provided that

Resr 	 ‖ZD‖ (16.41)

We can now plot the impedance inequalities (16.28) to examine how addition of Resr

changes G(s). The magnitudes of ZD(s) and ZN(s) are constructed in Fig. 16.16 for the values
L = 100 μH,C = 1 μF,R = 100Ω, and Resr = 2Ω, using the approximate graphical construction
approach of Sect. 8.3.

ZN is equal to the capacitor impedance; at low frequency, Resr 	 ‖ZN‖. However, at high
frequency ‖ZN‖ becomes small, and it is unavoidable that Resr becomes greater than ‖ZN‖. This
leads to the zero at frequency fz, as noted previously.

1 MHz100 kHz10 kHz1 kHz100 Hz

1
ωC

Resr = 2 W

|| ZD ||

ωL40 dB

20 dB

0 dB

60 dB

80 dB

100 W

10 W

1 W

0.1 W

1 kW

10 kW

R

|| ZN ||

f0

fz

Q = 10

1W

R0 = 10 W

16 kHz

Fig. 16.16 Construction of the magnitude impedance Bode plots of ZN , ZD, and Resr

For the values given, ‖ZD‖ 
 Resr at all frequencies except in the vicinity of the resonant
frequency f0. In consequence, the denominator ZD term of Eq. (16.40) is substantially equal
to one, except near this resonant frequency. At the resonant frequency f0, ZD is approximately
equal to 1Ω, so that the denominator ZD term becomes equal to

(
1 +

Resr

ZD(s)

)
=

(
1 +

2Ω
1Ω

)
= 3 (16.42)

This effectively reduces the transfer function Q–factor from 10 to approximately 10/3 = 3.33.
By multiplying out Eq. (16.40), it can be verified that the exact transfer function G(s) can

be expressed as

G(s) =
(1 + sCResr)

1 + s
(L
R
+ ResrC

)
+ s2LC

(R + Resr

R

) (16.43)

The effect of the denominator ZD term is to reduce the exact Q-factor from 10 to 3.37, and to
reduce the resonant frequency f0 from 15.9 kHz to 15.8 kHz.
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16.2.3 SEPIC Example

As a third example, let us consider derivation and design of the small-signal transfer func-
tions of the SEPIC. A small-signal SEPIC model is derived using average switch modeling
in Sect. 14.1.3, with the result given in Fig. 14.7 and reproduced in Fig. 16.17. Analysis of the
transfer function Gvd(s) is tedious because of the convoluted nature of the circuit that results
from averaged switch modeling. The Extra Element Theorem gives an alternate approach to
solution of this circuit, leading to a simplified interpretation of the transfer functions. This ap-
proach also leads to insight into how to damp the internal resonance of this fourth-order system,
so that the small-signal transfer functions are better behaved.

The difficulty in solution of the model of Fig. 16.17 arises from element C1, which provides
a path parallel to the DC transformer to couple the input and output sections of the model. If
this element were not present, solution of the circuit would be considerably simpler. Therefore,
the strategy employed in this section is to let C1 become an open circuit, and solve the much
simpler model that is obtained. The Extra Element Theorem is then employed to incorporate
the effects of C1 into the transfer functions such as Gvd(s). We define

Gvd−bb =
v̂

d̂

∣∣∣∣∣
C1→0

(16.44)

The Extra Element Theorem predicts that this transfer function can be written as follows:

Gvd = Gvd−bb

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

ZN

Z

1 +
ZD

Z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (16.45)

with Z = 1/sC1. The quantities ZN , and ZD are found using the Extra Element Theorem.
The impedance ZD is the driving-point impedance at the port where C1 is connected. Equa-
tions (16.44)–(16.45) state that the control-to-output transfer function of the SEPIC is equal to
that of an effective buck–boost converter Gvd−bb, multiplied by a correction factor that accounts
for the effects of C1 and its associated resonances.

+

L1

C2

C1

L2 R

+ D : D

+
VC1  + C1

IL1 + L1

Vg + g

IL2 + L2

VC2 + C2

V1

DD I2

DD

Fig. 16.17 The small-signal averaged switch model of the SEPIC, Fig. 14.7
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+ D′ : D
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DD'
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DD'
d

Vg + vg VC 2 + vC2

+

Fig. 16.18 When C1 → 0, the SEPIC model reduces to an effective buck–boost converter

When we let C1 tend to an open circuit, the SEPIC model of Fig. 16.17 can be reduced
to the effective buck–boost converter model illustrated in Fig. 16.18. The transfer functions of
this circuit can now be found in the usual manner, as described in Chaps. 7 and 8. The transfer
function from d̂ to v̂ is found by setting the v̂g source to zero and solving for v̂, with the following
result:

Gvd−bb(s) =
Vg

D′2

1 − s
L1

R

( D
D′

)2

1 + s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
L2 +

( D
D′

)2
L1

R

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ s2C2

(
L2 +

( D
D′

)2
L1

)
(16.46)

This expression is of the form

Gvd−bb(s) = Gd0

1 − s
ωz

1 +
s

Qoωo
+

(
s
ωo

)2
(16.47)

with

Gd0 =
Vg

D′2

ωo =
1√

C2

(
L2 +

( D
D′

)2
L1

) (16.48)

Qo = R

√√√√√ C2

L2 +

( D
D′

)2
L1

ωz =
R
L1

(
D′

D

)2

(RHP)

Thus, Gvd−bb contains quadratic poles and a RHP zero.
Derivation of ZN is illustrated in Fig. 16.19. The v̂g source is set to zero. In the presence of

d̂, a current îtest is injected into the port where C1 would be connected. The sources are adjusted
to null the output v̂.
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Fig. 16.19 Derivation of ZN

The quantity ZN is given by

ZN =
v̂test

îtest

∣∣∣∣∣
v̂→

null
0

(16.49)

To analyze this circuit, we start with the null condition, and follow the signals towards the in-
jection port. With the output voltage nulled v̂ →

null
0, the current in the load resistance R and the

output capacitance C2 are also nulled. This implies that the current in the transformer secondary
and primary windings are determined solely by the d̂I2/DD′ current source of the averaged
switch model. Consequently, the primary current is d̂I2/D′2 as shown. Additionally, the injec-
tion current îtest flows entirely through inductor L2, and the voltage across L2 is equal to sL2 îtest.
This voltage also appears across the transformer secondary, and can be employed to find the
transformer primary voltage. This allows us to express the inductor L1 voltage as:

v̂L1 = −
V1d̂
DD′

− sL2 îtest
D′

D
(16.50)

We can also write the loop equation

v̂test + v̂L1 = sL2 îtest (16.51)

Finally, we can write the node equation

v̂L1

sL1
+

d̂I2

D′2
+ îtest = 0 (16.52)



16.2 EET Examples 643

Elimination of v̂L1 and d̂ from Eqs. 16.50, 16.51, and 16.52, and solution for v̂test/îtest, leads to
the following expression for ZN :

ZN(s) = s (L1 + L2)

(
1 − s

L1‖L2

R
D

D′2

)

(
1 − s

D2L1

D′2R

) (16.53)

This equation is of the form

ZN(s) = s (L1 + L2)

(
1 − s
ωzN

)

(
1 − s
ωz

) (16.54)

It should be noted that a null impedance such as ZN is not a passive or driving-point impedance,
and it is possible for this impedance to be negative or to contain RHP poles or zeroes. Equa-
tion (16.53) predicts that ZN exhibits a low-frequency asymptote given by the series combina-
tion s(L1 + L2), which is purely inductive and exhibits phase of +90◦. ZN contains a RHP zero
and a RHP pole; the RHP pole coincides with the RHP zero ωz of Gvd−bb. The high-frequency
asymptote is given by sL2/D, which also is purely inductive with +90◦ phase.

The quantity ZD is the driving-point impedance seen at the capacitor C1 port, with the v̂g

and d̂ sources set to zero. As illustrated in Fig. 16.20, a test current îtest is injected at the port,
and the port voltage v̂test is measured. Since there are no null conditions associated with ZD, this
quantity generally depends on all elements, and therefore the algebra is more complex.

Fig. 16.20 Derivation of ZD
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With some analysis and careful algebra, one can show that

ZD(s) = s(L1 + L2)

(
1 + s

L1‖L2

D′2R
+ s2 L1‖L2

D′2
C2

)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 + s

L2 +

( D
D′

)2
L1

R
+ s2 C2

(
L2 +

( D
D′

)2
L1

)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16.55)

This expression is of the form

ZD(s) = s(L1 + L2)

⎛⎜⎜⎜⎜⎜⎝1 + s
QzDωzD

+

(
s
ωzD

)2⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝1 + s

Qoωo
+

(
s
ωo

)2⎞⎟⎟⎟⎟⎟⎠
(16.56)

with

ωzD =
D′

√
(L1‖L2)C2

(16.57)

QzD = D′R

√
C2

L1‖L2
(16.58)

The quantities Gvd−bb and ZD have identical denominator polynomials.
Thus, the low-frequency asymptote of ZD is equal to s (L1 + L2). This asymptote is purely

inductive, with a phase of +90◦. There are mid-frequency quadratic poles and zeroes; these
may cause the mid-frequency asymptotes to become resistive or capacitive. The high-frequency
asymptote is

s (L1 + L2)

(
ωp

ωz

)2

= s
( L1

D′2

∥∥∥∥∥ L2

D2

)
(16.59)

which again is purely inductive with phase of +90◦.

16.2.4 Damping the SEPIC Internal Resonances

Consider a SEPIC having the following element values: input voltage Vg = 18 V, output volt-
age V = 24 V, switching frequency fs = 100 kHz, inductances L1 = 100 μH, L2 = 50 μH,
capacitances C1 = 22 μF, C2 = 220 μF, and load resistance R = 5 Ω. With these element
values, Eq. 16.48 predicts that Gvd−bb contains complex poles at fo = 711 Hz with Qo = 4.9.
Additionally, Gvd−bb contains a RHP zero at 4.5 kHz.

The impedances ZN (Eq. (16.53)), ZD (Eq. (16.56)), and Z = 1/sC1 are plotted in Fig. 16.21.
At frequencies below approximately 2 kHz, the capacitor C1 impedance is much greater in mag-
nitude that either ZN or ZD. Hence the correction factor in Eq. (16.45) is approximately equal to
1, and the SEPIC Gvd is equal to the Gvd−bb of the effective buck–boost model. At frequencies
above approximately 6 kHz, the capacitor C1 impedance is much smaller in magnitude than
both ZN and ZD. For this case, Eq. (16.45) reduces to:
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Fig. 16.21 Magnitude and phase Bode plots of the impedances ZN , ZD, and Z = 1/sC1 for the undamped
SEPIC example. Dashed curves: ZN and ZD. Solid curves: Z

Gvd → Gvd−bb

1 +
ZN

Z

1 +
ZD

Z

∣∣∣∣∣∣∣∣∣∣
Z→0

= Gvd−bb

(
ZN

ZD

)
(16.60)

Since ZN and ZD are both inductive above 6 kHz, the ratio (ZN/ZD) is constant, and hence Gvd

is equal to Gvd−bb scaled by this constant.
The impedance ‖Z‖ is equal in magnitude to ‖ZN‖ or ‖ZD‖ at 3 to 4 kHz. Note that the phase

of the capacitor impedance ∠Z is −90◦, while the impedances ZN and ZD are essentially induc-
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tive and have phases of approximately +90◦. Hence, at 3 to 4 kHz, the phases of Z/ZN and Z/ZD

are approximately 180◦, while the magnitudes are approximately equal to one. In the vicinity
of these frequencies, the correction factor in Eq. (16.45) can vary substantially, according to
Figs. 16.6 to 16.9. We expect the numerator and denominator terms of the correction factor to
contain resonances at these frequencies.

Figure 16.22 contains a Bode plot of the control-to-output transfer functions Gvd−bb(s) and
Gvd(s). The effective buck–boost model contains resonant poles and a RHP zero, leading to
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Fig. 16.22 Magnitude and phase Bode plots of the undamped control-to-output transfer function, SEPIC
example. Dashed curves: response of the effective buck–boost model Gvd−bb. Solid curves: response of
SEPIC, including correction factor, Gvd
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Fig. 16.23 Addition of damping network elements Rb and Cb to the SEPIC

a high-frequency phase asymptote of −270◦. The correction factor contributes two additional
high–Q poles and two RHP zeroes, in the vicinity of 3 kHz. These terms contribute an additional
−360◦ of phase at high frequencies. Consequently, it is problematic to achieve an adequate phase
margin in a feedback loop having a crossover frequency above 3 kHz.

The dynamics of the SEPIC can be considerably improved by addition of a damping network
to C1, as illustrated in Fig. 16.23. This causes the “extra” impedance Z(s) to become:

Z(s) =
1

sC1

∥∥∥∥∥
(
Rb +

1
sCb

)
(16.61)

The element values are chosen so that the impedance Z is dominated by the damping resistor
Rb in the vicinity of the frequencies where ‖Z‖ is equal to ‖ZN‖ or ‖ZD‖. The phase of Z tends
closer to 0◦, causing the phases of Z/ZN and Z/ZD to tend towards 90◦. According to Figs. 16.6
to 16.9, the variation in the correction factor is much less extreme in this case. The damping
network reduces the Q–factors of the poles and zeroes of the correction factor, and can also
move its RHP zeroes into the left half-plane.

Capacitor Cb is a dc blocking capacitor that prevents a dc voltage from being applied to
resistor Rb. This reduces the power loss that otherwise would be induced in Rb. The impedance
of capacitor Cb should be substantially smaller than Rb at the frequencies where ‖Z‖ is close to
‖ZN‖ or ‖ZD‖. Damping networks such as this Rb–Cb network are discussed in more detail in
Chap. 17.

Figure 16.24 illustrates construction of the asymptotes of the impedances ZN and ZD for this
example. Asymptotes for the impedance Z, including the Rb − Cb damping network designed
as described above, are overlayed. Again, the damping resistor Rb dominates the impedance Z
at the frequencies where ‖Z‖ is equal to ‖ZN‖ or ‖ZD‖. The values of Rb and Cb can now be
selected so that these Z asymptotes are obtained.

A Bode plot of a damped Z, using the values C1 = 22μF, Rb = 2Ω, and Cb = 100μF, is
illustrated in Fig. 16.25. The magnitude of Z is now equal to the magnitudes of ZN or ZD at
frequencies in the vicinity of 2 kHz. At this frequency range, the phase of the damped Z is now
approximately −45◦.
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Fig. 16.24 Construction of the magnitude asymptotes for ZN , ZD, and the damped Z

Figure 16.26 compares the resulting Gvd(s) with Gvd−bb(s). It can be observed that the Q–
factors of the correction factor poles and zeroes are substantially reduced, and the RHP zeroes
have moved to the left half-plane. These poles and zeroes nearly cancel. The magnitude and
phase of Gvd(s) now is approximately equal to that of the effective buck–boost converter model.

The SEPIC control-to-output transfer function Gvd(s) naturally contains four poles and three
RHP zeroes. The Extra Element Theorem approach shows how this transfer function can be
viewed as a simpler effective buck–boost transfer function Gvd−bb(s) containing two poles and
one RHP zero, multiplied by a correction factor that accounts for the additional poles and zeroes.
Further, the Extra Element Theorem approach provides a framework for designing a damping
network that causes the correction factor poles and zeroes to approximately cancel. The result-
ing Gvd(s) is then approximately equal to the much simpler Gvd−bb(s).

16.3 The n-Extra Element Theorem

The n Extra Element Theorem (nEET) is an extension of Middlebrook’s Extra Element Theorem
to the case when multiple extra elements are added simultaneously to a circuit. Its major appli-
cation is to write transfer functions directly as rational fractions, without need to perform loop
and node analysis and algebraic manipulations. This is accomplished by treating each reactive
component as an “extra” element that is added to the dc gain of the network. The method gives
a physical interpretation to the coefficients of L and C in the standard normalized form of the
transfer function, and it allows complex transfer functions to be derived nearly by inspection.

Use of the basic nEET to derive transfer functions is described here without proof, beginning
with a simple example. Extensions involving inverted forms as special cases are also described.
For a derivation and more general treatment of the nEET, the interested reader is referred to
[141, 142].
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Fig. 16.25 Magnitude and phase Bode plots of the impedances ZN , ZD, and Z for the damped SEPIC
example. Dashed curves: ZN and ZD. Solid curves: Z

16.3.1 Introduction to the n-EET

Given a linear network containing n inductors and m capacitors, it is desired to find a transfer
function G(s) = y(s)/u(s). It is assumed here that this transfer function can be written as a
rational fraction referenced to a dc gain, as follows:

G(s) = Gdc
1 + a1s + a2s2 + . . . + an+msn+m

1 + b1s + b2s2 + . . . + bn+msn+m
(16.62)
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Fig. 16.26 Effects of R–C damping network on the control-to-output transfer function, SEPIC exam-
ple. Dashed curves: response of the effective buck–boost model Gvd−bb. Solid curves: response of SEPIC,
including correction factor, Gvd

Special cases whose transfer functions cannot be written in this manner, such as when G(s)
contains poles or zeroes at the origin, are treated in a later section. The method used here
employs a generalization of the Extra Element Theorem, in which all of the inductors and
capacitors are treated as “extra” elements, and are added simultaneously. The zeroes of G(s) are
found with the output nulled in the presence of the input, while the poles are found with the
input set to zero. The method allows the coefficients a1, a2, . . . an+m, b1, b2, . . . bn+m to be found
by evaluating the resistances seen looking into the inductor or capacitor ports under various
special conditions.
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Let us first define the following terminology:

DC state: the DC state of an inductor is a short circuit, and the DC state of a capacitor is an
open circuit.
HF state: the high-frequency (HF) state of an inductor is an open circuit, and the HF state
of a capacitor is a short circuit.

In the terminology of the Extra Element Theorem, the “original gain” of the circuit is the refer-
ence dc gain Gdc = G(0), found with all dynamic elements set to their DC states. The transfer
function s-coefficients depend on how the reactive elements change to their HF states, as ex-
plained below.

The general form of the coefficient of sk has dimensions (Hz)−k, and is a sum of products
of all combinations of terms of the form RxCi and Lj/Ry which contain the proper dimensions.
The Rx and Ry terms are found by application of the nEET, with injection at the terminals of the
corresponding reactive element. In the case of denominator coefficients, the input source u(s) is
set to zero. For numerator coefficients, the transfer function output y(s) is nulled.

+v1

R1

R2

L

C

+

v2

Fig. 16.27 R–L–C circuit example

Consider the low-pass filter circuit of Fig. 16.27. It is desired to compute the transfer func-
tion G(s) = v2(s)/v1(s). This transfer function contains two poles and no zeroes (why?), and
can be written in the following form:

G(s) = Gdc
1

1 + b1s + b2s2
(16.63)

The dimensions of b1 are (Hz)−1. The two possible terms in b1 are

L
Ra

and RbC (16.64)

The dimensions of b2 are (Hz)−2. The only possible term in b2 is of the form:
(

L
Rc

)
(RdC) (16.65)

The nEET shows us how to easily find Ra, Rb, Rc, and Rd.
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The dc gain Gdc is found by setting both reactive elements to their DC states, i.e., the induc-
tor is set to a short circuit and the capacitor is set to an open circuit. Under these conditions, the
transfer function G(s) reduces to that of a voltage divider:

Gdc =
R2

R1 + R2
(16.66)

As with the ZD term of the EET, the terms in the denominator polynomial are found with
the input source v1 set to zero. The inductor and capacitor are treated as extra elements, and the
circuit of Fig. 16.28 is obtained.

R1

R2

L

C

Port
A

Port
B

Fig. 16.28 R–L–C circuit example: use of the nEET to find the denominator terms

Since the circuit contains two reactive elements, the denominator is a second-order polyno-
mial that can be written in the following form:

denominator = 1 + s

(
L
Ra
+ RbC

)
+ s2

(
L
Rc

RdC

)
(16.67)

The resistance Ra is the resistance seen at the inductor port (Port A), with the capacitor set to
its DC state: Port B is treated as an open circuit. Under these conditions, the resistance between
the terminals of Port A is the series combination of R1 and R2:

Ra = R1 + R2 (16.68)

In a similar manner, the resistance Rb is the resistance seen at the capacitor port (Port B) with
the inductor set to its DC state: Port A is treated as a short circuit. Under these conditions, the
resistance between the terminals of Port B is the parallel combination of R1 and R2:

Rb = R1

∥∥∥R2 (16.69)

For the coefficient of s2, there are two possible approaches that in principle lead to the same
result. We can choose one of the terms (either Rc or Rd) to be the same as the corresponding s1

term. For example, let us select the term associated with the inductor port, Rc, to be the same as
in the s1 coefficient:

Rc = Ra = R1 + R2 (16.70)
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Then Rd is the resistance looking into the capacitor port (Port B), with the inductor set to its
high-frequency state, or open-circuited. With Port A open-circuited, the resistance between the
terminals of Port B is seen to be

Rd = R2 (16.71)

Therefore, the transfer function G(s) is

G(s) =
R2

R1 + R2

1

1 + s

(
L

R1 + R2
+ R1

∥∥∥R2C

)
+ s2

(
LC

R2

R1 + R2

) (16.72)

Thus, the coefficients in the transfer function can be found using some simple rules, without
need for algebraic analysis. The reader may wish to verify the result of Eq. (16.72) via conven-
tional analysis, and compare the amount of work required.

16.3.2 Procedure for DC-Referenced Functions

As illustrated in the simple example above, the denominator terms are found by setting the
input u(s) to zero, and evaluating the resistance seen at the given port under specific conditions.
The numerator terms are found by null double injection in the presence of the input u(s), to
null the output y(s). For a network containing a total of p independent reactive elements, the
numerator and denominator polynomials may contain terms of order up to sp. Terms within
these polynomials of order sq could include some or all combinations of the sums of products
of reactive elements taken q at a time. The numerator and denominator polynomials are of the
following form:

1 + s

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

Li

Ri
+

m∑
i=1

RiCi

⎞⎟⎟⎟⎟⎟⎠ + s2

(∑∑ LiL j

RiR j-i
+
∑∑ Li

Ri
C jR j-i +

∑∑
CiRiC jR j-i

)

+ s3

(∑∑∑ LiL jLk

RiR j-iRk-i j
+
∑∑∑ LiL j

RiR j-i
CkRk-i j +

∑∑∑ Li

Ri
C jR j-iCkRk-i j

+
∑∑∑

CiRiC jR j-iCkRk-i j

)
+ s4 . . . (16.73)

The nEET tells us how to easily find the resistances Ri, Rj-i, etc., in the above polynomial. In
Eq. (16.73), the first subscript of each resistance (before the hyphen) denotes the port where
the resistance is measured, while any additional subscripts (after the hyphen) denote ports that
are set to their high-frequency states during this measurement. The order of these additional
subscripts is irrelevant. The coefficients are determined using the following specific conditions:

Coefficients of s1: Ri is the resistance seen at port i with all other ports set to their DC
states.
Coefficients of s2: Ri is the same term as in the corresponding coefficient of s1, i.e., the
resistance seen at port i with all other ports set to their DC states. Rj-i is the resistance seen
at port j, with all other ports except port i set to their DC states. Port i is set to its HF state.
Coefficients of s3: Ri and Rj-i are the same terms appearing in the coefficients of s2. Rk-i j is
the resistance seen at port k, with all other ports except ports i and j set to their DC states.
Ports i and j are set to their HF states.
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Higher-order terms: the above process continues for higher-order terms. The highest-order
term will be measured at one port, with all other ports set to their HF states.

The orders of the terms in the above equation are irrelevant; for example, it can be shown by
reciprocity that Ri- jR j = Rj-iRi (with a similar result for higher-order terms). This implies that
it does not matter which reactive element is set to the high-frequency state: either one can be
chosen, and the appropriate resistance terms found, leading to a consistent result. Again, each
term (e.g., Ri) is found by current injection at the connections to the corresponding reactive
element (e.g., in place of L1). For denominator terms, the transfer function input is set to zero.
For numerator terms, the output is nulled by adjusting the current injection at the port, in the
presence of the transfer function input source. For each coefficient, it is necessary to derive only
one new term; the other terms are identical to the corresponding terms in a previous lower-order
coefficient.

By following the above rules, the transfer function can be written directly, without need
for algebraic manipulations. Admittedly, some practice is required to become facile with these
rules; nonetheless, the effort required to write exact expressions for complex circuits can be
considerably reduced.

16.4 n-EET Examples

16.4.1 Two-Section L–C Filter

As another example of the nEET, consider the two-section L–C filter of Fig. 16.29. Since this
circuit has four reactive elements, we expect the transfer function G(s) = v2(s)/v1(s) to have
four poles. We also expect the high-frequency asymptote to have a −80 dB/decade slope: at high
frequency each inductor tends to an open circuit and each capacitor tends to a short circuit, with
each element leading to reduction of the gain of the path between the input and output of the
filter. Hence, we expect that this filter circuit contains no zeroes.

+v1

L1 L2

R

+

v2C1 C2

Fig. 16.29 Two-section L–C filter example

The DC gain Gdc is found by setting all reactive elements to their dc states; the input is then
directly connected to the output, and so Gdc is equal to one. Thus the transfer function is of the
form:

G(s) =
1

1 + b1s + b2s2 + b3s3 + b4s4
(16.74)
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Fig. 16.30 Two-section L–C filter
example: finding the denominator
terms
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The denominator polynomial is found when the input v1(s) is set to zero. The circuit can
then be written as in Fig. 16.30. We now apply the procedure of Sect. 16.3.2 to this circuit,
finding the driving-point impedances at the ports with the other ports set to their DC or HF
states as required. The results are summarized in Table 16.1.

Table 16.1 Derivation of Denominator Terms, Two-Section L–C Filter Example

Term
States of Ports / Reactive Elements

ResultL1 L2 C1 C2

Port A Port B Port C Port D

sL1

Ra
Measurement DC/short DC/open DC/open Ra = R

sL2

Rb
DC/short Measurement DC/open DC/open Rb = R

sC1Rc DC/short DC/short Measurement DC/open Rc = 0
sC2Rd DC/short DC/short DC/open Measurement Rd = 0

s2 L1L2

RaRb-a
HF/open Measurement DC/open DC/open Rb-a = ∞

s2 L1

Ra
C1Rc-a HF/open DC/short Measurement DC/open Rc-a = R

s2 L1

Ra
C2Rd-a HF/open DC/short DC/open Measurement Rd-a = R

s2 L2

Rb
C1Rc-b DC/short HF/open Measurement DC/open Rc-b = 0

s2 L2

Rb
C2Rd-b DC/short HF/open DC/open Measurement Rd-b = R

s2C1RcC2Rd-c DC/short DC/short HF/short Measurement Rd-c = 0

s3 L1

Ra
C1Rc-a

L2

Rb-ac
HF/open Measurement HF/short DC/open Rb-ac = R

s3 L1

Ra
C2Rd-a

L2

Rb-ad
HF/open Measurement DC/open HF/short Rb-ad = ∞

s3 L1

Ra
C2Rd-a C1Rc-ad HF/open DC/short Measurement HF/short Rc-ad = 0

s3 L2

Rb
C2Rd-b C1Rc-bd DC/short HF/open Measurement HF/short Rc-bd = 0

s4 L1

Ra
C1Rc-a

L2

Rb-ac
C2Rd-abc HF/open HF/open HF/short Measurement Rd-abc = R
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Fig. 16.31 Finding Ra
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For the denominator term sL1/Ra, the coefficient Ra is the resistance between the Port a
terminals, with the reactive elements of the remaining ports set to their dc states. As illustrated
in Fig. 16.31, inductor L2 at Port b becomes a short circuit, while capacitors C1 and C2 at Ports
c and d become open circuits. It can be seen that Ra is equal to R. The remaining s1 terms of
Table 16.1 are left to the reader to verify.

Fig. 16.32 Finding Rb-a
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Figure 16.32 illustrates determination of Rb-a, as needed in the denominator term

s2

(
L1

Ra

) (
L2

Rb-a

)
(16.75)

The Ra term coincides with the result derived in the previous paragraph. The term Rb-a is the
resistance between the Port b terminals, with the element L1 at Port a set to its high-frequency
state (an open circuit). The remaining reactive elements C1 and C2 are set to their dc states
(open circuits). It can be seen that Port b becomes an open circuit under these conditions, and
hence Rb-a = ∞. In consequence, the denominator s2 term of Eq. (16.75) is equal to zero. The
remaining s2 terms of Table 16.1 are left to the reader to verify.

Let us consider next the denominator term s3L1L2C1/Rx. One way to approach solu-
tion for this term is to apply the result of the previous paragraph to express this term as
s3(L1/Ra)(L2/Rb-a)(C1Rc-ab). However, since the result of the previous paragraph was Rb-a = ∞,
such an approach will lead to an indeterminate result with Rc-ab = ∞ (try it!). Instead, we should
base our approach on an s2 term that is nonzero. By examination of Table 16.1, one can see that
the term s2(L1/Ra)(C1Rc-a) is nonzero. Therefore, let us determine Rb-ac, as needed to express
this denominator term as s3(L1/Ra)(C1Rc-a)(L2/Rb-ac). As illustrated in Fig. 16.33, the quantity
Rb-ac is equal to the resistance between the Port b terminals when L1 and C1 are set to their high-
frequency states, and C2 remains in its dc state. It can be seen that Rb-ac = R. The remaining s3

terms of Table 16.1 are also left to the reader to verify.
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Fig. 16.33 Finding Rb-ac
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There is a single s4 term. To find this term, we should begin with a nonzero s3 term. The
result of the previous paragraph is such a term. Hence, let us express the s4 term in the form
s4(L1/Ra)(C1Rc-a)(L2/Rb-ac)(C2Rd-abc). As illustrated in Fig. 16.34, the quantity Rd-abc is the re-
sistance between the Port d terminals when the elements at Ports a, b, and c are set to their
high-frequency states. By examination of Fig. 16.34, it can be seen that Rd-abc = R.

Fig. 16.34 Finding Rd-abc
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The results of Table 16.1 predict that the denominator polynomial is

denominator = 1 + s
(L1

R
+

L2

R
+C1· 0 +C2· 0

)
+

s2
(L1

R
L2

∞ +
L1

R
C1R +

L1

R
C2R +

L2

R
C1· 0 +

L2

R
C2R +C1· 0 C2· 0

)
+

s3
(L1

R
C1R

L2

R
+

L1

R
L2

∞C2R +
L1

R
C2RC1· 0 +

L2

R
C2RC1· 0

)
+

s4
(L1

R
L2

R
C1RC2R

)
(16.76)

Upon elimination of terms that evaluate to zero, the transfer function G(s) can then be written
as:

G(s) =
1

1 + s
(L1 + L2

R

)
+ s2

(
L1 (C1 +C2) + L2C2

)
+ s3

(L1L2C1

R

)
+ s4

(
L1L2C1C2

) (16.77)

Thus, the coefficients in the transfer function of this somewhat complex fourth-order filter circuit
are found through a sequence of simple circuit evaluations. With practice, one can perform these
evaluations quickly using the schematic of Fig. 16.30. Additionally, terms derived in other ways
can be checked using this approach. The nEET approach is particularly advantageous when
circuit contains multiple resistors and more complex interconnections.
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It should also be noted that, if we had not had the insight that G(s) contains no zeroes, we
could have employed the procedure of Sect. 16.3.2 to compute the numerator polynomial. We
would have found that the numerator terms of order s1 to s4 are zero.

16.4.2 Bridge-T Filter Example

As a third example, consider the Bridge-T filter circuit of Fig. 16.35. Conventional analysis of
the transfer function G(s) = v2(s)/v1(s) for this circuit is somewhat onerous because of element
C2. Let us derive this transfer function using the nEET.

Since there are two reactive elements, we expect G(s) to contain two poles. Additionally, we
expect the high-frequency asymptote of G(s) to be equal to one because capacitor C2 tends to
zero impedance at high frequency, shorting the output to the input. Therefore G(s) must contain
two zeroes, so that its high-frequency magnitude asymptote has a slope of 0 dB/decade. Hence
the transfer function is of the form

G(s) = Gdc
1 + a1s + a2s2

1 + b1s + b2s2
(16.78)

Analysis requires application of the procedure of Sect. 16.3.2 twice. First, null double injection
is employed to find the numerator polynomial under the conditions that the output v2 is nulled.
A subscript N is appended to the resistance names, to distinguish these numerator terms from

Fig. 16.35 Bridge-T filter example

+v1

R1

R3

+

v2

R2

C1

C2

the similarly named denominator terms. Second the procedure of Sect. 16.3.2 is applied under
the conditions that the input v1 is set to zero, to find the denominator polynomial. A subscript
D is appended to the names of the denominator resistance terms.

First consider determination of the zeroes of G(s). The numerator polynomial can be ex-
pressed in the form:

numerator = 1 + s (C1RNa +C2RNb) + s2C1RNa-bC2RNb (16.79)

Here, capacitor C1 is connected at Port a and capacitor C2 is connected at Port b.
Figure 16.36 illustrates the determination of RNa. Capacitor C2 is set to its dc state (open

circuit at Port b). In the presence of the input source v1, a current source itest is applied at Port a,
and the two sources are adjusted to null the output v2. One follows this null condition towards
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Fig. 16.36 Determination of
numerator RNa
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the injection point to find the Port a voltage vtest. With the output voltage nulled, the current
through resistor R3 is also nulled. Since there is no current through the open-circuited Port b,
the current through resistor R2 must also be nulled. By Ohm’s law, the voltage across R2 is zero,
and hence the voltage vtest is zero. Therefore, the numerator RNa is

RNa =
vtest

itest

∣∣∣∣∣
v2→

null
0
= 0 (16.80)

The quantity RNb is found in a similar manner. In the presence of the input v1, current injection
is applied at the C2 port (Port b) and adjusted to null the output v2. Capacitor C1 is set to its dc
state, and hence Port a becomes an open circuit. This measurement is illustrated in Fig. 16.37.
Since the current through resistor R3 is nulled to zero, the current itest must flow through resistors
R2 and R1. Therefore the voltage vtest is equal to itest(R1 + R2), and the numerator RNb is given
by:

RNb =
vtest

itest

∣∣∣∣∣
v2→

null
0
= R1 + R2 (16.81)

Fig. 16.37 Determination of
numerator RNb
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To find RNa-b, the current itest is injected at Port a, and capacitor C2 is set to its high-
frequency state (Port b is shorted). The independent sources v1 and itest are adjusted to null
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the output v2. This experiment is illustrated in Fig. 16.38. For this particular circuit, the shorting
of Port b causes the output v2 to be equal to the input v1, and hence the output null condition
cannot be achieved unless the input voltage source v1 is zero. Under this condition, the current
itest flows through the parallel combination of R1 and R2, and hence vtest is equal to itestR1‖R2.
The numerator RNa-b is given by

RNa-b =
vtest

itest

∣∣∣∣∣
v2→

null
0
= R1

∥∥∥R2 (16.82)

Upon insertion of Eqs. (16.80)–(16.82) into Eq. (16.79), one finds that the numerator polyno-
mial is given by

numerator = 1 + sC2 (R1 + R2) + s2C1C2R1R2 (16.83)

Next consider determination of the poles of G(s). The denominator polynomial can be ex-
pressed in the form:

denominator = 1 + s (C1RDa +C2RDb) + s2C1RDa-bC2RDb (16.84)

The driving-point resistances RDa, RDb, and RDa-b are found with the input source v1 set to zero.
Figure 16.39 illustrates the determination of RDa. Capacitor C2 is set to its dc state (open

circuit at Port b), and the input source v1 is set to zero (short circuit). The resistance between
the Port a terminals is found, with the result

RDa = R1

∥∥∥ (R2 + R3) (16.85)

Fig. 16.38 Determination of
numerator RNa-b
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Fig. 16.39 Determination of
denominator RDa
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The quantity RDb is found in a similar manner: it is the resistance between the Port (b) terminals
with capacitor C1 set to its dc state (open circuit at Port a) and with the input source v1 set to
zero. The result is

RDb = R3

∥∥∥ (R1 + R2) (16.86)

Figure 16.40 illustrates the determination of RDa-b. Capacitor C2 is set to its high-frequency
state (short circuit at Port b), and the input source v1 is set to zero (short circuit). The resistance
between the Port a terminals is found, with the result

RDa-b = R1

∥∥∥R2 (16.87)

Fig. 16.40 Determination of
denominator RDa-b

R1

R3

R2

Port
b

HF/short

Port
a

RDa-b

Hence, the denominator polynomial is

denominator = 1 + s
[
C1

(
R1

∥∥∥ (R2 + R3)
)
+C2

(
R3

∥∥∥ (R1 + R2)
)]
+

s2
[
C1C2

(
R1

∥∥∥ (R2 + R3)
) (

R1

∥∥∥R2

)]
(16.88)

Finally, the dc gain Gdc is found by setting all reactive elements to their dc states, and then
solving for the transfer function. The result is found using the voltage divider formula to obtain

Gdc =
R3

R1 + R2 + R3
(16.89)

The complete transfer function is obtained by substitution of Eqs. (16.83), (16.88), and (16.89)
into Eq. (16.78).

16.5 Frequency Inversion

Sometimes, the dc gain of a transfer function or other function of interest is zero or infinite;
this occurs when there are poles or zeroes at the origin of the complex plane. In the power
electronics field, this is nearly always the case for impedances because we do not want the dc
or low-frequency ac current to flow through a lossy resistive element. This also often occurs in
compensator transfer functions, where PI or PID compensators are employed.
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16.5.1 Example: Damped Input Filter

For example, consider the output impedance Z(s) of the damped input filter circuit illustrated in
Fig. 16.41. To measure this output impedance, we would set the independent source v̂g to zero,
then inject a current î and measure the induced voltage v̂ as shown in Fig. 16.42. The output
impedance is then given by

Z(s) =
v̂

î

∣∣∣∣∣∣
v̂g=0

(16.90)

So we can view Z(s) as the transfer function from î to v̂. If we attempt to use the n-Extra
Element Theorem in its basic form to express Z(s), we find that the dc value of Z(s) is zero, so
that

Z(s) = 0 · numeratorpolynomial
denominatorpolynomial

(16.91)

Because the reference gain is zero, this approach does not work.
Figure 16.43 illustrates graphical construction of the output impedance asymptotes, using

the approach of Sect. 8.3, for some assumed element values with L1 
 L2. It appears that Z(s)
could be expressed with reference to the midband asymptote R, using an inverted pole at R/L2,
plus a zero at R/L1 and complex poles at ω0 = 1/

√
L1C:

Z(s) ≈ R

(
1 +

sL1

R

)
(
1 +

R
sL2

) ⎛⎜⎜⎜⎜⎜⎝1 + s
Qω0

+

(
s
ω0

)2⎞⎟⎟⎟⎟⎟⎠
(16.92)

+

L2

Cvg

L1R

Z(s)

Fig. 16.41 A damped LC filter

Fig. 16.42 Measurement of the output impedance Z(s) of the LC filter of Fig. 16.41
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Fig. 16.43 Graphical construction of typical output impedance asymptotes of the LC filter of Fig. 16.41

This suggests that, to find the exact expression for Z(s), we could employ frequency inversion
to express Z(s) with respect to the reference gain R.

This can be achieved with a generalization of the nEET to handle frequency inversion. First,
we must extend the notion of the “DC state” and “HF state” of a reactive element, to the follow-
ing:

Reference state: the reference state of a reactive element is the state (short circuit or open
circuit) that causes the transfer function to be equal to the reference gain.
Inverse state: the inverse state of a reactive element is the opposite (open circuit or short
circuit) of its reference state.

For the example of Fig. 16.42, Z(s) is equal to R when L1 is short-circuited, L2 is open-circuited,
and C is open-circuited. Hence we define these as the reference states of these elements, as
summarized in Table 16.2.

Table 16.2 Reference and Inverse States of Reactive Elements, Damped L–C Filter Example

Element Reference State Inverse State

L1 Short Open
L2 Open Short
C Open Short

The reference states of elements L1 and C coincide with their DC states, while the reference
state of L2 coincides with its HF state. We therefore treat L2 using frequency-inverted terms:
where we previously employed a term of the form

sL2

Ra
(16.93)

we now use the inverted form
Ra

sL2
(16.94)
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If the reference state of capacitor C had been its high-frequency state, then we would have
replaced terms of the form

sCRa (16.95)

with the inverted form
1

sCRa
(16.96)

We now generalize the procedure of Sect. 16.3.2, replacing DC and HF port states with ref-
erence and inverse states. The notation RN1−2, RD3−12, etc., now has the meaning that additional
subscripts after the hyphen denote ports that are set to their inverse states during measurement,
while other ports are set to their reference states. Hence Z(s) will be expressed in the form

Z(s) = R
numerator

denominator
(16.97)

The denominator may contain products having one, two, or all three reactive elements. For the
output impedance example, we obtain:

denominator = 1 +

(
sL1

RDa
+ sCRDb +

RDc

sL2

)

+

(
sCRDb

sL1

RDa−b
+ sCRDb

RDc−b

sL2
+

RDc

sL2

sL1

RDa−c

)

+

(
sCRDb

sL1

RDa−b

RDc−ab

sL2

)
(16.98)

Through the reciprocity relationship RDi− jRD j = RD j−iRDi, it is possible to express the denomi-
nator in more than one way, as in earlier examples.

Fig. 16.44 Damped L–C filter exam-
ple of Fig. 16.41: finding the output
impedance denominator terms. The inde-
pendent sources v̂g and î are set to zero

L2

C

L1

R Port
a

Port
b

Port
c

We now find the coefficients RDa through RDc−ab in the usual way, except that “DC state” is
replaced with “reference state,” and “HF state” is replaced with “inverse state.” The denominator
coefficients are found with the independent sources set to zero: v̂g = 0 and î = 0, as illustrated
in Fig. 16.44.
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Fig. 16.45 Damped L–C filter example
of Fig. 16.41: finding RDa. The resistance
seen at Port a is found with the reactive
elements at Ports b and c set to their refer-
ence states

The coefficient RDa is the resistance seen at the L1 port (Port a) when Port b (C) is
set to its reference (DC/open) state, and Port c (L2) is set to its reference (HF/open) state.
From examination of Fig. 16.45 with these conditions, it can be seen that RDa = ∞ (open
circuit).

The coefficient RDa−b is the resistance seen at the L1 port (Port a) when Port b (C) is set to its
inverse (DC/open) state, and Port c (L2) is set to its reference (HF/open) state. From examination
of Fig. 16.46 with these conditions, it can be seen that RDa−b = R.

The port states and results for the seven denominator terms are listed in Table 16.3. Deriva-
tion of the remaining terms of Table 16.3 is left for the reader. The resulting denominator is

denominator = 1 + sCR +
R

sL2
+ sCR

sL1

R
+

R
sL2

sL1

R
(16.99)

We will further simplify the denominator after the numerator has been found.

Fig. 16.46 Damped L–C filter example
of Fig. 16.41: finding RDa−b. The resis-
tance seen at Port a is found with the re-
active element at Port b set to its inverse
state (short) and Port c set to its reference
state

C: inverse
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Table 16.3 Derivation of Denominator Terms, Damped L–C Filter Example

Term
States of Ports / Reactive Elements

ResultL1 C L2

Port a Port b Port c

sL1

RDa
Measurement Reference/open Reference/open RDa = ∞

sCRDb Reference/short Measurement Reference/open RDb = R

RDc

sL2
Reference/short Reference/open Measurement RDc = R

sCRDb
sL1

RDa−b
Measurement Inverse/short Reference/open RDa−b = R

sCRDb
RDc−b

sL2
Reference/short Inverse/short Measurement RDc−b = 0

RDc

sL2

sL1

RDa−c
Measurement Reference/open Inverse/short RDa−c = R

sCRDb
sL1

RDa−b

RDc−ab

sL2
Inverse/open Inverse/short Measurement RDc−ab = 0

The numerator may also contain products having one, two, or all three reactive elements.
For the output impedance example, we obtain:

numerator = 1 +

(
sL1

RNa
+ sCRNb +

RNc

sL2

)

+

(
sL1

RNa
sCRNb−a +

sL1

RNa

RNc−a

sL2
+

RNc

sL2
sCRNb−c

)

+

(
sL1

RNa

RNc−a

sL2
sCRNb−ac

)
(16.100)

As usual, the numerator terms are found in the presence of î, with the transfer function output
( v̂ ) nulled to zero. Since in this example the output voltage coincides with the capacitor (Port
b) voltage, we expect the capacitor terms to be zero.

We again employ the generalized definitions of reference and inverse states. In the pres-
ence of î, we inject at the L1, C, or L2 port, and adjust the injection such that v̂ is nulled. The
coefficients are the resistances seen at the injection ports under these conditions.

For example, to find RNa, we inject a current at the L1 port (Port a), with C (Port b) set to its
reference state (open) and L2 set to its reference state (open). The injection current is adjusted
in the presence of the current î to null v̂, as illustrated in Fig. 16.47. With v̂ nulled to zero, it can
be seen that v̂test = îtestR, and hence RNa = R.

From examination of Fig. 16.47, it can be seen that nulling the output voltage v̂ causes the
voltages across ports b and c to be zero. Consequently, numerator terms associated with these
ports are zero, and the only nonzero numerator term is RNa. Determination of the numerator
terms is summarized in Table 16.4.
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Fig. 16.47 Determination of
numerator term RNa

Table 16.4 Derivation of Numerator Terms, Damped L–C Filter Example

Term
States of Ports / Reactive Elements

ResultL1 C L2

Port a Port b Port c

sL1

RNa
Measurement Reference/open Reference/open RNa = R

sCRNb Reference/short Measurement Reference/open RNb = 0
RNc

sL2
Reference/short Reference/open Measurement RNc = 0

sL1

RNa
sCRNb−a Inverse/open Measurement Reference/open RNb−a = 0

sL1

RNa

RNc−a

sL2
Inverse/open Reference/open Measurement RNc−a = 0

RNc

sL2
sCRNb−c Reference/short Measurement Inverse/short RNb−c = 0

sL1

RNa

RNc−a

sL2
sCRNb−ac Inverse/open Measurement Inverse/short RNb−ac = 0

The resulting expression for the output impedance is

Z(s) = R
1 +

sL1

R

1 + sRC +
R

sL2
+ s2L1C +

sL1

sL2

(16.101)

If desired, we can eliminate the inverted terms by multiplying the numerator and denominator
by the factor sL2/R to obtain

Z(s) = sL2

1 +
sL1

R

1 +
s(L1 + L2)

R
+ s2L2C +

s3L1L2C
R

(16.102)

In summary, the nEET allows us to write the transfer functions of quite complex systems
with a minimum of algebraic manipulations. Inverted forms can also be handled by definition of
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a reference gain that occurs when the reactive elements are set to reference states. This allows
us to solve the case where there are poles or zeroes at the origin.

16.5.2 Other Special Cases

It sometimes happens in application of the n-EET that all terms for an intermediate power of s
are zero. This happens in circuits having undamped resonances. When we compute the higher-
order terms, we then obtain (0 · ∞) for all terms.

Fig. 16.48 Undamped L–C filter
example +

L

Cv1

+

v2

An example is the undamped L–C filter illustrated in Fig. 16.48. The transfer function of
this circuit is

G(s) =
v2

v1
=

1
1 + s2LC

(16.103)

The n-EET encounters problems with this example because the coefficient of s1 in the denomi-
nator is zero. Hence we are unable to compute the coefficient of s2: we obtain (0 · ∞).

Fig. 16.49 Addition of dummy re-
sistor Rdum to the undamped L–C fil-
ter example

+

L

Cv1

+

v2Rdum

A solution is to insert a dummy resistor Rdum into the circuit as in Fig. 16.49; this adds a
nonzero damping term. We can then proceed with the n-EET analysis as usual, to obtain the
transfer function

G(s) =
1

1 + s

(
L

Rdum
+C · 0

)
+ s2 L

R
CR

(16.104)

=
1

1 + s
L

Rdum
+ s2LC

(16.105)

The original circuit is obtained when we let Rdum → ∞. The transfer function then becomes

G(s) =
1

1 + s2LC
(16.106)

The technique of adding dummy resistors to the circuit can allow the n-EET to be employed
when degenerate cases arise.
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Problems

16.1 Analysis of the buck–boost converter control-to-output transfer function Gvd(s) using the
Extra Element Theorem. Averaged switch modeling of the buck–boost converter leads
to the continuous conduction mode small-signal ac model illustrated in Fig. 16.50. One
approach to solving for Gvd(s) in this circuit is to employ the Extra Element Theorem,
treating inductor L as the extra element. No credit will be given for other methods.

+ D' : DI1 + i1 I2 + i2

I2

DD'
dV1 + v1

V1

DD'
d

V2 + v2

+

+

L

+vg C R

Fig. 16.50 Small-signal ac model for the CCM buck–boost converter of Problem 16.1, derived by average
switch modeling

(a) Let L→ short circuit, and determine the “original transfer function” Gd0.
(b) Determine ZN(s) and ZD(s), and hence derive the expression for Gvd(s). Express your

result in standard normalized form.
16.2 Analysis and design of a CCM SEPIC. A dc–dc SEPIC, along with nominal element val-

ues, is illustrated in Fig. 16.50. The object of this problem is to employ the Extra Element
Theorem as discussed in Sect. 16.2.3 to gain insight into the physical origins of the salient
features of the control-to-output transfer function Gvd(s), and to improve its behavior by
addition of a damping network. It is expected that your work will follow the analysis of
Sect. 16.2.3; no credit will be given for other approaches.
(a) Sketch the small-signal averaged switch model for this converter. Evaluate the numer-

ical values of the quiescent conditions in your model (i.e., the steady-state duty cycle
D and the switch model quantities I1, I2, V1, and V2).

(b) Using the simple approximation C1 → open circuit, determine the approximate
control-to-output transfer function

Gvd−bb(s) =
v̂(s)

d̂(s)

∣∣∣∣∣
C1→0

Construct the Bode plot of the magnitude and phase of this transfer function on semi-
log axes, and label salient features (corner frequencies, Q-factors, dc gain) as appro-
priate.
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+
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L1

C2

+
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C1

L2 Rvg

100 μH
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100 μF 3 Ω18 V

fs = 100 kHz

Fig. 16.51 CCM SEPIC of Problem 16.2

(c) Construct the Bode plots of ‖ZN‖ and ‖ZD‖, using semi-log axes, and label the nu-
merical values of the salient features. Overlay the capacitor C1 impedance. Hence,
estimate the frequencies of the resonant poles and zeroes in Gvd(s) induced by the in-
ternal resonance. Verify your analysis by simulation, using an averaged model to plot
the Bode plot of the exact Gvd(s).

(d) Add an Rb–Cb damping network as discussed in Sect. 16.2.4, as follows. Choose Cb =

10C1. Select Rb such that the resonant poles and zeroes are approximately centered on
the Rb asymptote of the impedance Z(s) of Eq. (16.61). Overlay the ‖Z(s)‖ asymptotes
on your Bode plots of ‖ZN‖ and ‖ZD‖. Again use averaged simulation to plot the exact
magnitude and phase of the damped Gvd(s), and verify that the internal resonance is
adequately damped.

16.3 Analysis of a CCM Ćuk Converter. A Ćuk converter is illustrated in Fig. 16.52. The ob-
jective of this problem is to employ the Extra Element Theorem to derive an expression
for the line-to-output transfer function Gvg(s), with an approach that is similar to that em-
ployed in the SEPIC example of Sect. 16.2.3. Like the SEPIC, the Ćuk converter can be
viewed as an effective buck–boost converter plus correction factor terms that account for
an additional internal resonance.

+

L1

C2 R

+

v2

C1 L2

+  v1
i1 i2

D1Q1vg

Fig. 16.52 Ćuk converter circuit of Problem 16.3

(a) Construct the average switch model for this converter operating in continuous conduc-
tion mode.

(b) If we let C1 → 0 (open circuit) in the small-signal model, then an effective buck–
boost converter is obtained. Sketch the small-signal model for this case, and find its
line-to-output transfer function Gvg−bb(s).
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(c) Apply the Extra Element Theorem to find ZN(s) and ZD(s) in the correction factor of
the line-to-output transfer function.

(d) For some values, plot Gvg.

16.4 Figure 16.53 contains a small-signal model of a boost converter that includes inductor
resistance RL.

Fig. 16.53 Large-signal dc and small-signal ac model of the CCM boost converter of Problem 16.4

(a) Use the n-Extra Element Theorem to derive an expression for the control-to-output
transfer function Gvd(s) predicted by this circuit model. No credit will be given for
other methods.

(b) Can the inductor resistance RL be used to move the right half-plane zero into the left
half-plane? Explain. What is the resulting effect on the converter efficiency? Compare
the resulting loss in RL with the load power.

16.5 A boost converter including an output capacitor equivalent series resistance RC is illus-
trated in Fig. 16.54. For continuous conduction mode operation, the small-signal ac model
for this converter can be derived by state-space averaging, with the result illustrated in
Fig. 16.55.

+ Q1

L

C
R

+

v(t)

D1

vg

iL(t)

RC +
vC(t)

Fig. 16.54 Boost converter with capacitor ESR RC , Problem 16.5
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Fig. 16.55 Small-signal ac model for the boost converter of Fig. 16.54

Use the n-Extra Element Theorem to derive an expression for the control-to-output transfer
function Gvd(s) of this converter. No credit will be given for other methods. Be sure to
explain how you derived each term. You may use the following substitutions:

Re = DD′ (R‖RC)

Ve = (D − D′) (R‖RC) IL + V

You may express your answer in terms of the following quantities: R, RC , IL, D, D′, V , Re,
Ve, L, C. It is not necessary to further simplify your answers.

16.6 Use the n-Extra Element Theorem to derive an expression for the control-to-output transfer
function Gvd(s) predicted by the SEPIC small-signal model of Fig. 16.17.

16.7 A small-signal ac model of the Ćuk converter operating in continuous conduction mode is
illustrated in Fig. 16.56. Resistors Rl1 and Rl2 model the inductor copper loss.

+vg(t)

L1

+

v(t) R

1 : DD' : 1+ +

Rl1

C1

L2Rl2

C2

d(t)V1 d(t)V1

d(t) I1 + I2

Fig. 16.56 Small-signal ac model of the Ćuk converter of Problem 16.7

Use the n-EET to determine the line-to-output transfer function Gvg(s). Your result should
be expressed as a rational fraction in s. No credit will be given for methods that do not
employ the n-EET.
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16.8 Figure. 16.57 contains the schematic of a single-section input filter with an R–C damping
network.

Fig. 16.57 Damped L–C input filter section, Problem 16.8

Use the n-EET to write the expression for the output impedance Z(s) of this network. No
credit will be given for methods that do not employ the n-EET.



17

Input Filter Design

17.1 Introduction

17.1.1 Conducted EMI

It is nearly always required that a filter be added at the power input of a switching converter. By
attenuating the switching harmonics that are present in the converter input current waveform, the
input filter allows compliance with regulations that limit conducted electromagnetic interference
(EMI). The input filter can also protect the converter and its load from transients that in the input
voltage vg(t), thereby improving the system reliability.

A simple buck converter example is illustrated in Fig. 17.1. The converter injects the pulsat-
ing current ig(t) of Fig. 17.1b into the power source vg(t). The Fourier series of ig(t) contains
harmonics at multiples of the switching frequency fs, as follows:

ig(t) = DI +
∞∑

k=1

2I
kπ

sin(kπD) cos(kωt) (17.1)

In practice, the magnitudes of the higher-order harmonics can also be significantly affected by
the current spike caused by diode reverse recovery, and also by the finite slopes of the switching
transitions. The large high-frequency current harmonics of ig(t) can interfere with television and
radio reception, and can disrupt the operation of nearby electronic equipment. In consequence,
regulations and standards exist that limit the amplitudes of the harmonic currents injected by a

(a)

+ C R

+

v

Liig 1

2
vg(t)

(b)

t

ig(t)

DTs Ts

0
0

0

i i

Fig. 17.1 Buck converter example: (a) circuit of power stage; (b) pulsating input current waveform
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(a)
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+
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Liig 1

2

iin
Lf
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vg(t)

(b)

t

ig(t)

DTs Ts

0
0

0

iin(t)

Fig. 17.2 Addition of a simple L–C low-pass filter to the power input terminals of the buck converter:
(a) circuit; (b) input current waveforms

switching converter into its power source [143–150]. As an example, if the dc inductor current
i of Fig. 17.2 has a magnitude of several Amperes, then the fundamental component (n = 1) has
an rms amplitude in the vicinity of one Ampere. Regulations may require attenuation of this
current to a value typically in the range 10 μA to 100 μA.

To meet limits on conducted EMI, it is necessary to add an input filter to the converter.
Figure 17.2 illustrates a simple single-section L–C low-pass filter, added to the input of the
converter of Fig. 17.1. This filter attenuates the current harmonics produced by the switching
converter, and thereby smooths the current waveform drawn from the power source. If the filter
has transfer function H(s) = iin/ig, then the input current Fourier series becomes

iin(t) = H(0)DI +
∞∑

k=1

‖H(k jω)‖ 2I
kπ

sin(kπD) cos(kωt + ∠H(k jω)) (17.2)

In other words, the amplitude of each current harmonic at angular frequency kω is attenuated
by the filter transfer function at the harmonic frequency, ‖H(k jω)‖. Typical requirements effec-
tively limit the current harmonics to have amplitudes less than 100 μA, and hence input filters
are often required to attenuate the current amplitudes by 80 dB or more.

To improve the reliability of the system, input filters are sometimes required to operate nor-
mally when transients or periodic disturbances are applied to the power input. Such conducted
susceptibility specifications force the designer to damp the input filter resonances, so that input
disturbances do not excite excessive currents or voltages within the filter or converter.

17.1.2 The Input Filter Design Problem

The situation faced by the design engineer is typically as follows. A switching regulator has
been designed, which meets performance specifications. The regulator was properly designed
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Fig. 17.3 Small-signal equivalent circuit models of the buck converter: (a) basic converter model, (b)
with addition of input filter

as discussed in Chap. 9, using a small-signal model of the converter power stage such as the
equivalent circuit of Fig. 17.3a. In consequence, the transient response is well damped and suffi-
ciently fast, with adequate phase margin at all expected operating points. The output impedance
is sufficiently small over a wide frequency range. The line-to-output transfer function Gvg(s), or
audiosusceptibility, is sufficiently small, so that the output voltage remains regulated in spite of
variations in v̂g(t).

Having developed a good design that meets the above goals regarding dynamic response,
the designer then addresses the problem of conducted EMI. A low-pass filter having attenua-
tion sufficient to meet conducted EMI specifications is constructed and added to the converter
input. A new problem then arises: the input filter changes the dynamics of the converter. The
transient response is modified, and the control system may even become unstable. The output
impedance may become large over some frequency range, possibly exhibiting resonances. The
audiosusceptibility may be degraded.

The problem is that the input filter affects the dynamics of the converter, often in a man-
ner that degrades regulator performance. For example, when a single-section L–C input filter is
added to a buck converter as in Fig. 17.2a, the small-signal equivalent circuit model is modified
as shown in Fig. 17.3b. The input filter elements affect all transfer functions of the converter, in-
cluding the control-to-output transfer function Gvd(s), the line-to-output transfer function Gvg(s),
and the converter output impedance Zout(s). Moreover, the influence of the input filter on these
transfer functions can be quite severe.
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Fig. 17.4 Control-to-output transfer functions predicted by the equivalent circuit models of Fig. 17.3.
Dashed lines: without input filter (Fig. 17.3a). Solid lines: with input filter (Fig. 17.3b)

As an illustration, let us examine how the control-to-output transfer function Gvd(s) of the
buck converter of Fig. 17.1 is altered when a simple L–C input filter is added as in Fig. 17.2. For
this example, the element values are chosen to be: D = 0.5, L = 100 μH, C = 100 μF, R =
3Ω, Lf = 330 μH, C f = 470 μF. Figure 17.4 contains the Bode plot of the magnitude and phase
of the control-to-output transfer function Gvd(s). The dashed lines are the magnitude and phase
before the input filter was added, generated by solution of the model of Fig. 17.3a. The complex
poles of the converter output filter cause the phase to approach −180◦ at high frequency. Usually,
this is the model used to design the regulator feedback loop and to evaluate the phase margin
(see Chap. 9). The solid lines of Fig. 17.4 show the magnitude and phase after addition of the
input filter, generated by solution of the model of Fig. 17.3b. The magnitude exhibits a “glitch”
at the resonant frequency of the input filter, and an additional −360◦ of phase shift is introduced
into the phase. It can be shown that Gvd(s) now contains an additional complex pole pair and
a complex right half-plane zero pair, associated with the input filter dynamics. If the crossover
frequency of the regulator feedback loop is near to or greater than the resonant frequency of the
input filter, then the loop phase margin will become negative and instability will result. Such
behavior is typical; consequently, input filters are notorious for destabilizing switching regulator
systems.

This chapter shows how to mitigate the stability problem, by introducing damping into the
input filter and by designing the input filter such that its output impedance is sufficiently small
[69, 151–162]. The result of these measures is that the effect of the input filter on the control-to-
output transfer function becomes negligible, and hence the converter dynamics are much better
behaved. Although analysis of the fourth-order system of Fig. 17.3b is potentially quite complex,
the approach used here simplifies the problem through use of impedance inequalities involving
the converter input impedance and the filter output impedance [151, 152]. These inequalities are
based on Middlebrook’s Extra Element Theorem of Sect. 16.1. This approach allows the engi-
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neer to gain the insight needed to effectively design the input filter. Optimization of the damping
networks of input filters, design of multiple-section filters, and the exact stability criterion, are
also discussed.

17.2 Effect of an Input Filter on Converter Transfer Functions

17.2.1 Modified Transfer Functions

The control-to-output transfer function Gvd(s) is defined as follows:

Gvd(s) =
v̂(s)

d̂(s)

∣∣∣∣∣∣
v̂g(s)=0

(17.3)

The control-to-output transfer functions of basic CCM converters with no input filters are listed
in Sect. 8.2.2.

+

+ 1 : M(D)

Le

C R

+

j(s)d (s)

e(s)d (s)

vg(s) v(s)

He(s)

Zei

Canonical Model

Lf

Cf

Hi(s)

Input Filter

Fig. 17.5 Addition of an input filter to the canonical model of a switching converter

Addition of an input filter to a switching regulator leads to the system illustrated in Fig. 17.5.
In Fig. 17.6, the input filter is represented by its Thevenin-equivalent circuit, with Hi(s) equal
to the unloaded transfer function of the filter, and Zo equal to the output impedance of the input
filter. To determine the control-to-output transfer function in the presence of the input filter,
we set v̂g(s) to zero and solve for v̂(s)/d̂(s) according to Eq. (17.3). The input filter can then be
represented simply by its output impedance Zo(s) as illustrated in Fig. 17.7. Thus, the input filter
can be treated as an extra element having impedance Zo(s), and the Extra Element Theorem of
Chap. 16.1 can be employed to determine how addition of the input filter modifies the control-
to-output transfer function. Specifically, the modified control-to-output transfer function can be
expressed as follows [151]:

Gvd(s) =

⎛⎜⎜⎜⎜⎜⎝Gvd(s)

∣∣∣∣∣∣
Zo(s)=0

⎞⎟⎟⎟⎟⎟⎠

(
1 +

Zo(s)
ZN(s)

)

(
1 +

Zo(s)
ZD(s)

) (17.4)
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Fig. 17.6 Use of Thevenin-equivalent model for the input filter

Fig. 17.7 Finding the control-to-output transfer function Gvd(s)

where
Gvd(s)

∣∣∣∣
Zo(s)=0

(17.5)

is the original control-to-output transfer function with no input filter.
Figure 17.8 illustrates determination of ZN(s). In the presence of d̂, a current îtest is injected

at the input port of the converter, and the d̂ and îtest inputs are adjusted such that the output v̂ is
nulled. Under these conditions, we find v̂test and

ZN =
v̂test

îtest

∣∣∣∣
v̂→

null
0

(17.6)

When the output v̂ is nulled, then no current flows through the load R, capacitor C, or inductor
Le. Hence there is no voltage across these elements, and the voltages across the transformer
windings are zero. With no secondary winding current, the transformer primary winding current
is zero as well. Hence we can find that

v̂test = −e(s)d̂ (17.7)

îtest = j(s)d̂ (17.8)
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Fig. 17.8 Finding ZN(s)

Therefore,

ZN =
−e(s)d̂

j(s)d̂
= −e(s)

j(s)
(17.9)

This is a general result, expressed in terms of the canonical model parameters e(s) and j(s). The
impedance ZN is the input port impedance of the converter, under the conditions that d̂ and îtest

are varied as necessary to null the output voltage v̂. Generally, ZN is negative.

Fig. 17.9 Finding ZD(s)

Figure 17.9 illustrates determination of ZD(s). The input d̂ is set to zero, and current îtest is
injected at the input port of the converter. The quantity ZD is given by

ZD =
v̂test

îtest

∣∣∣∣∣∣
d̂=0

(17.10)

Setting d̂ to zero causes the e(s)d̂ and j(s)d̂ sources to be zero. The driving-point impedance
at the injection point is equal to the canonical model filter impedance Zei, reflected through the
transformer turns ratio:

ZD(s) =
Zei(s)
M2

(17.11)
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This is a general result, expressed in terms of the canonical model parameters Zei and M. The
impedance ZD is the input port impedance of the converter, under open-loop conditions with
d̂ = 0.

A similar analysis shows that the converter open-loop output impedance can be expressed
in the form

Zout(s) =
(
Zout(s)

∣∣∣∣
Zo(s)=0

)
(
1 +

Zo(s)
Ze(s)

)

(
1 +

Zo(s)
ZD(s)

) (17.12)

where
Zout(s)

∣∣∣∣
Zo(s)=0

(17.13)

is the original converter output impedance with no input filter. The quantity Ze(s) is equal to the
converter input impedance Zi(s) under the conditions that the converter output is shorted:

Ze = Zi

∣∣∣∣
v̂=0

(17.14)

The quantity ZD(s) is again the open-loop driving-point impedance at the power input port of
the open-loop converter, given by Eq. (17.11).

17.2.2 Discussion

Equation (17.4) relates the power stage control-to-output transfer function Gvd(s) to the output
impedance Zo(s) of the input filter, and also to the quantities ZN(s) and ZD(s) measured at
the power input port of the converter. The quantity ZD(s) coincides with the open-loop input
impedance of the converter.

As described above, the quantity ZN(s) is equal to the input port impedance of the converter
power stage, under the conditions that d̂(s) is varied as necessary to null v̂(s) to zero. This is,
in fact, the function performed by an ideal controller: it varies the duty cycle as necessary to
maintain zero error of the output voltage. Therefore, ZN(s) coincides with the impedance that
would be measured at the converter power input terminals, if an ideal feedback loop perfectly
regulated the converter output voltage. Of course, Eq. (17.4) is valid in general, regardless of
whether a control system is present.

Figure 17.10 illustrates the large-signal dc behavior of a feedback loop that perfectly reg-
ulates the converter output voltage. Regardless of the applied input voltage vg(t), the output
voltage is maintained equal to the desired value V . The load power is therefore constant, and
equal to Pload = V2/R. In the idealized case of a lossless converter, the power flowing into the
converter input terminals will also be equal to Pload, regardless of the value of vg(t). Hence, the
power input terminal of the converter obeys the equation

〈vg(t)〉Ts〈ig(t)〉Ts = Pload (17.15)

This characteristic is illustrated in Fig. 17.10b, and is represented in Fig. 17.10a by the depen-
dent power sink symbol. The properties of power sources and power sinks are discussed in
detail in Chap. 15.

Figure 17.10b also illustrates linearization of the constant input power characteristic, about
a quiescent operating point. The resulting line has negative slope; therefore, the incremental
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Fig. 17.10 Power input port characteristics of an ideal switching voltage regulator: (a) equivalent circuit
model, including dependent power sink, (b) constant power characteristic of input port

(small signal) input resistance of the ideal voltage regulator is negative. For example, increasing
the voltage 〈vg(t)〉Ts causes the current 〈ig(t)〉Ts to decrease, such that the power remains constant.
This incremental resistance has the value [151, 156]:

− R
M2

(17.16)

where R is the output load resistance, and M is the conversion ratio V/Vg. For the buck, boost,
buck–boost, and other converters, the dc asymptote of ZN(s) coincides with the negative in-
cremental resistance given by Eq. (17.16). In a closed-loop switching regulator that regulates
its output voltage well, the negative incremental resistance (17.16) is the dc asymptote of the
regulator closed-loop input impedance Zi(s).

Loading of an L–C input filter and its output impedance Zo(s) by the negative incremental
resistance of Eq. (17.16) can lead to instability. Indeed, the (v̂/v̂g) transfer function of the closed-
loop regulator with input filter includes the voltage divider term

Zi(s)
Zo(s) + Zi(s)

(17.17)
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If the regulator input impedance Zi(s) is well approximated by Eq. (17.16) and the input filter is
an undamped L–C filter, then the divider ratio (17.17) contains RHP poles.

Hence, when an undamped or lightly damped input filter is connected to the regulator input
port, the input filter can interact with the negative resistance characteristic of Zi(s) to form a
negative resistance oscillator that can be viewed as the origin of input filter instabilities. It
should be noted that the regulator closed-loop input impedance Zi(s) is also affected by the
power stage reactive elements and the loop gain, and reverts to a positive impedance at high
frequencies. These additional dynamics also impact the stability of the system. A more detailed
stability analysis that accounts for the dynamics of Zi(s) is explained in Sect. 17.5.

17.2.3 Impedance Inequalities

Expressions for ZN(s), ZD(s), and Ze(s) for the basic buck, boost, and buck–boost converters are
listed in Table 17.1.

Equation (17.4) reveals that addition of the input filter causes the control-to-output transfer
function Gvd(s) to be modified by the factor

(
1 +

Zo(s)
ZN(s)

)

(
1 +

Zo(s)
ZD(s)

) (17.18)

called the correction factor. When the following inequalities are satisfied,

‖Zo‖ 	 ‖ZN‖, and (17.19)

‖Zo‖ 	 ‖ZD‖

then the correction factor has a magnitude of approximately unity, and the input filter does not
substantially alter the control-to-output transfer function [151, 152]. These inequalities limit
the maximum allowable output impedance of the input filter, and constitute useful filter design
criteria. One can sketch the Bode plots of ‖ZN( jω)‖ and ‖ZD( jω)‖, and compare with the Bode
plot of ‖Zo( jω)‖. This allows the engineer to gain the insight necessary to design an input filter
that satisfies inequalities (17.19).

Table 17.1 Input filter design criteria for basic converters

Converter ZN(s) ZD(s) Ze(s)

Buck − R
D2

R
D2

(
1 + s

L
R
+ s2LC

)

(1 + sRC)
sL
D2

Boost −D′2R
(
1 − sL

D′2R

)
D′2R

(
1 + s

L
D′2R

+ s2 LC
D′2

)

(1 + sRC)
sL

Buck–boost −D′2R
D2

(
1 − sDL

D′2R

) D′2R
D2

(
1 + s

L
D′2R

+ s2 LC
D′2

)

(1 + sRC)
sL
D2
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The buck converter example of the next section illustrates how violation of inequali-
ties (17.19) not only causes the transfer function Gvd(s) to be significantly changed, but also
can introduce resonant poles and RHP zeroes that can seriously degrade the converter loop gain
and its phase margin.

According to Eq. (17.12), the converter open-loop output impedance Zout(s) is not substan-
tially affected by the input filter when the following inequalities are satisfied:

‖Zo‖ 	 ‖Ze‖, and (17.20)

‖Zo‖ 	 ‖ZD‖
An input filter design that satisfies inequalities (17.19) but not (17.20) can be expected to leave
the loop gain unchanged, but to modify the open-loop converter output impedance. This would
lead to a modified closed-loop output impedance as well.

Similar impedance inequalities can be derived for the case of current-programmed convert-
ers [154, 155], or converters operating in the discontinuous conduction mode. Feedforward of
the converter input voltage was suggested in [157]. Analysis of the effect of an input filter on a
current-programmed converter is discussed in Sect. 18.4.4.

17.3 Buck Converter Example

Let us again consider the example of a simple buck converter with L–C input filter, as illustrated
in Fig. 17.11a. Upon replacing the converter with its small-signal model, we obtain the equiv-
alent circuit of Fig. 17.11b. Let us evaluate Eq. (17.4) for this example, to find how the input
filter modifies the control-to-output transfer function of the converter.

(a)
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Fig. 17.11 Buck converter example: (a) converter circuit, (b) small-signal model
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17.3.1 Effect of Undamped Input Filter

The quantities ZN(s) and ZD(s) can be read from Table 17.1, or can be derived from the converter
model of Fig. 17.11b using Eqs. (17.6) and (17.10) as described in Sect. 17.2. Figure 17.12a
illustrates determination of ZD based on the buck converter model Fig. 17.11b. Upon setting
d̂(s) to zero, the converter small-signal model reduces to the circuit of Fig. 17.12a. It can be
seen that ZD(s) is equal to the input impedance of the R–L–C filter, divided by the square of the
turns ratio:

ZD(s) =
1

D2

(
sL + R

∥∥∥∥ 1
sC

)
(17.21)

Construction of asymptotes for this impedance is treated in Sect. 8.4, with the results for the nu-
merical values of this example given in Fig. 17.13. The load resistance dominates the impedance
at low frequency, leading to a dc asymptote of R/D2 = 12Ω. For the high-Q case shown,
‖ZD( jω)‖ follows the output capacitor asymptote, reflected through the square of the effective
turns ratio, at intermediate frequencies. A series resonance occurs at the output filter resonant
frequency f0, given by

f0 =
1

2π
√

LC
(17.22)

For the element values listed in Fig. 17.11a, the resonant frequency is f0 = 1.6 kHz. The values
of the asymptotes at the resonant frequency f0 are given by the characteristic impedance R0,
referred to the transformer primary:

Fig. 17.12 Determination of the quantities ZN(s) and ZD(s) for the circuit of Fig. 17.11b; (a) determina-
tion of ZD(s), (b) determination of ZN(s)



17.3 Buck Converter Example 687

Fig. 17.13 Construction of ‖ZN( jω)‖ and ‖ZD( jω)‖, buck converter example

R0

D2
=

1
D2

√
L
C

(17.23)

For the element values given in Fig. 17.11a, this expression is equal to 4Ω. The Q-factor is
given by

Q =
R
R0
= R

√
C
L

(17.24)

This expression yields a numerical value of Q = 3. The value of ‖ZD( jω)‖ at the resonant fre-
quency 1.6 kHz is therefore equal to (4Ω)/(3) = 1.33Ω. At high frequency, ‖ZD( jω)‖ follows
the reflected inductor asymptote.

Figure 17.12b illustrates determination of ZN based on the buck converter model in
Fig. 17.11b. This impedance is equal to the converter input impedance under the conditions that
d̂(s) is varied to maintain the output voltage v̂(s) at zero. Figure 17.12b illustrates the derivation
of an expression for ZN(s). A test current source îtest(s) is injected at the converter input port.
The impedance ZN(s) can be viewed as the transfer function from îtest(s) to v̂test(s):

ZN(s) =
v̂test(s)

îtest(s)

∣∣∣∣∣∣
v̂−−→

null
0

(17.25)

The null condition v̂(s)−−→
null

0 greatly simplifies analysis of the circuit of Fig. 17.12b. Since the
voltage v̂(s) is zero, the currents through the capacitor and load impedances are also zero. This
further implies that the inductor current î(s) and transformer winding currents are zero, and
hence the voltage across the inductor is also zero. Finally, the voltage v̂s(s), equal to the output
voltage plus the inductor voltage, is zero.

Since the currents in the windings of the transformer model are zero, the current itest(s) is
equal to the independent source current Id̂(s):

îtest(s) = Id̂(s) (17.26)

Because v̂s(s) is equal to zero, the voltage applied to the secondary of the transformer model is
equal to the independent source voltage −Vgd̂(s). Upon dividing by the turns ratio D, we obtain
v̂test(s):

v̂test(s) = −
Vgd̂(s)

D
(17.27)
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Insertion of Eqs. (17.26) and (17.27) into Eq. (17.25) leads to the following result:

ZN(s) =

⎛⎜⎜⎜⎜⎝−Vgd̂(s)

D

⎞⎟⎟⎟⎟⎠
(Id̂(s))

= − R
D2

(17.28)

The steady-state relationship I = DVg/R has been used to simplify the above result. This equa-
tion coincides with the expression listed in Table 17.1. The Bode diagram of ‖ZN( jω)‖ is con-
structed in Fig. 17.13; this plot coincides with the dc asymptote of ‖ZD( jω)‖. The impedance
ZN is negative, and has magnitude equal to the reflected load resistance.

Fig. 17.14 Determination of the filter output
impedance Zo(s)

Lf

Cf

Zo(s)

Next, let us construct the Bode diagram of the filter output impedance Zo(s). When the inde-
pendent source v̂g(s) is set to zero, the input filter network reduces to the circuit of Fig. 17.14. It
can be seen that Zo(s) is given by the parallel combination of the inductor Lf and the capacitor
C f :

Zo(s) = sL f

∥∥∥∥ 1
sC f

(17.29)

Construction of the Bode diagram of this parallel resonant circuit is discussed in Sect. 8.3.4.
As illustrated in Fig. 17.15, the magnitude ‖Zo( jω)‖ is dominated by the inductor impedance at
low frequency, and by the capacitor impedance at high frequency. The inductor and capacitor
asymptotes intersect at the filter resonant frequency:

Fig. 17.15 Magnitude plot of the output impedance of the input filter of Fig. 17.14. Since the filter is not
damped, the Q-factor is very large
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f f =
1

2π
√

Lf C f

(17.30)

For the given values, the input filter resonant frequency is f f = 400 Hz. This filter has charac-
teristic impedance

R0 f =

√
Lf

C f
(17.31)

equal to 0.84Ω. Since the input filter is undamped, its Q-factor is ideally infinite. In practice,
parasitic elements such as inductor loss and capacitor equivalent series resistance limit the value
of Qf . Nonetheless, the impedance ‖Zo( jω)‖ is very large in the vicinity of the filter resonant
frequency f f .

The Bode plot of the filter output impedance ‖Zo( jω)‖ is overlaid on the ‖ZN( jω)‖ and
‖ZD( jω)‖ plots in Fig. 17.16, for the element values listed in Fig. 17.11a. We can now determine
whether the impedance inequalities (17.19) are satisfied. Note the design-oriented nature of
Fig. 17.16: since analytical expressions are given for each impedance asymptote, the designer
can easily adjust the component values to satisfy Eq. (17.19). For example, the values of Lf and
C f should be chosen to ensure that the asymptotes of ‖Zo( jω)‖ lie below the worst-case value
of R/D2, as well as the other asymptotes of ‖ZD( jω)‖.

It should also be apparent that it is a bad idea to choose the input and output filter reso-
nant frequencies f0 and f f to be equal, because it would then be more difficult to satisfy the
inequalities of Eq. (17.19). Instead, the resonant frequencies f0 and f f should be well separated
in value.

Since the input filter is undamped, it is impossible to satisfy the impedance inequali-
ties (17.19) in the vicinity of the input filter resonant frequency f f . Regardless of the choice
of element values, the input filter changes the control-to-output transfer function Gvd(s) in
the vicinity of frequency f f . Figures 17.17 and 17.18 illustrate the resulting correction factor
[Eq. (17.18)] and the modified control-to-output transfer function [Eq. (17.4)], respectively. At

zHk01zHk1zH001

40 dB

0 dB

20 dB || ZN ||

|| ZD ||

f

|| Zo ||

L f 1
C f

12 

Q f

1
D2C

fo = 1.59 kHz

f1 = 530 Hz

Q = 3

L
D2

R0f

10 dB

30 dB

ff = 400 Hz

R0/D2

Fig. 17.16 Impedance design criteria ‖ZN( jω)‖ and ‖ZD( jω)‖ from Fig. 17.13, with the filter output
impedance ‖Zo( jω)‖ superimposed. The design criteria of Eq. (17.19) are not satisfied at the input filter
resonance
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Fig. 17.17 Magnitude (upper plot) and phase (lower plot) of the correction factor, Eq. (17.18), for the
buck converter example of Fig. 17.11
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|| Gvd || Gvd
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zHk01zHk1

10 dB

|| Gvd ||

Gvd

Fig. 17.18 Effect of undamped input filter on the control-to-output transfer function of the buck converter
example. Dashed lines: without input filter. Solid lines: with undamped input filter

frequencies well below the input filter resonant frequency, impedance inequalities (17.19) are
well satisfied. The correction factor tends to the value 1∠0◦, and the control-to-output trans-
fer function Gvd(s) is essentially unchanged. In the vicinity of the resonant frequency f f , the
correction factor contains a pair of complex poles, and also a pair of right half-plane complex
zeroes. These cause a “glitch” in the magnitude plot of the correction factor, and they contribute
360◦ of lag to the phase of the correction factor. The glitch and its phase lag can be seen in the
Bode plot of Gvd(s). At high frequency, the correction factor tends to a value of approximately
1∠−360◦; consequently, the high-frequency magnitude of Gvd is unchanged. However, when the
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–360◦ contributed by the correction factor is added to the −180◦ contributed at high frequency
by the two poles of the original Gvd(s), a high-frequency phase asymptote of −540◦ is obtained.
If the crossover frequency of the converter feedback loop is placed near to or greater than the
input filter resonant frequency f f , then a negative phase margin is inevitable. This explains why
addition of an input filter often leads to instabilities and oscillations in switching regulators.

17.3.2 Damping the Input Filter

Let us damp the resonance of the input filter, so that impedance inequalities (17.19) are satisfied
at all frequencies.

(a)

Lf

Cf Rf

(b)

Lf

Cf

Rf

Fig. 17.19 Two attempts to damp the input filter: (a) addition of damping resistance Rf across C f , (b)
addition of damping resistance Rf in parallel with Lf

One approach to damping the filter is to add resistor Rf in parallel with capacitor C f as illus-
trated in Fig. 17.19a. The output impedance of this network is identical to the parallel resonant
impedance analyzed in Sect. 8.3.4. The maximum value of the output impedance occurs at the
resonant frequency f f , and is equal in value to the resistance Rf . Hence, to satisfy impedance
inequalities (17.19), we should choose Rf to be much less than the ‖ZN( jω)‖ and ‖ZD( jω)‖
asymptotes. The condition Rf 	 ‖ZN( jω)‖ can be expressed as:

Rf 	
R
D2

(17.32)

Unfortunately, this raises a new problem: the power dissipation in Rf . The dc input voltage Vg is
applied across resistor Rf , and therefore Rf dissipates power equal to V2

g/Rf . Equation (17.32)
implies that this power loss is greater than the load power! Therefore, the circuit of Fig. 17.19a
is not a practical solution.

One solution to the power loss problem is to place Rf in parallel with Lf as illustrated in
Fig. 17.19b. The value of Rf in Fig. 17.19b is also chosen according to Eq. (17.32). Since the dc
voltage across inductor Lf is zero, there is now no dc power loss in resistor Rf . The problem with
this circuit is that its transfer function contains a high-frequency zero. Addition of Rf degrades
the slope of the high-frequency asymptote, from −40 dB/decade to −20 dB/decade. The circuit
of Fig. 17.19b is effectively a single-pole R–C low-pass filter, with no attenuation provided by
inductor Lf .
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One practical solution is illustrated in Fig. 17.20 [152]. Dc blocking capacitor Cb is added
in series with resistor Rf . Since no dc current can flow through resistor Rf , its dc power loss is
eliminated. The value of Cb is chosen to be very large such that, at the filter resonant frequency
f f , the impedance of the Rf -Cb branch is dominated by resistor Rf . When Cb is sufficiently
large, then the output impedance of this network reduces to the output impedances of the filters
of Fig. 17.19. The impedance asymptotes for the case of large Cb are illustrated in Fig. 17.20b.

The low-frequency asymptotes of ‖ZN( jω)‖ and ‖ZD( jω)‖ in Fig. 17.13 are equal to R/D2 =

12Ω. The choice Rf = 1Ω therefore satisfies impedance inequalities (17.19) very well. The
choice Cb = 4700 μF leads to 1/2π f f Cb = 0.084Ω, which is much smaller than Rf . The re-
sulting magnitude ||Zo( jω)|| is compared with ‖ZN( jω)‖ and ‖ZD( jω)‖ in Fig. 17.21. It can be
seen that the chosen values of Rf and Cb lead to adequate damping, and impedance inequali-
ties (17.19) are now well satisfied.

Figure 17.22 illustrates how addition of the damped input filter modifies the magnitude and
phase of the control-to-output transfer function. There is now very little change in Gvd(s), and
we would expect that the performance of the converter feedback loop is unaffected by the input
filter.

(a)

Cb

Lf

Cf

Rf

(b)

1
C f

L f
ff

Rf

R0f

Fig. 17.20 A practical method to damping the input filter, including damping resistance Rf and dc block-
ing capacitor Cb: (a) circuit, (b) output impedance asymptotes
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Fig. 17.21 Impedance design criteria ‖ZN( jω)‖ and ‖ZD( jω)‖ from Fig. 17.13, with the damped filter
output impedance ‖Zo( jω)‖ of Fig. 17.20 superimposed. The design criteria of Eq. (17.19) are well satisfied
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Fig. 17.22 Effect of the damped input filter on the control-to-output transfer function of the buck con-
verter example. Dashed lines: without input filter. Solid lines: with damped input filter

17.4 Design of a Damped Input Filter

As illustrated by the example of the previous section, design of an input filter requires not
only that the filter impedance asymptotes satisfy impedance inequalities, but also that the filter
be adequately damped. Damping of the input filter is also necessary to prevent transients and
disturbances in vg(t) from exciting filter resonances. Other design constraints include attaining
the desired filter attenuation, and minimizing the size of the reactive elements. Although a large
number of classical filter design techniques are well known, these techniques do not address the
problems of limiting the maximum output impedance and damping filter resonances.

The value of the blocking capacitor Cb used to damp the input filter in Sect. 17.3.2 is ten
times larger than the value of C f , and hence its size and cost are of practical concern. Optimiza-
tion of an input filter design therefore includes minimization of the size of the elements used in
the damping networks.

Several practical approaches to damping the single-section L–C low-pass filter are illustrated
in Fig. 17.23 [152, 153, 158]. Figure 17.23a contains the Rf –Cb damping branch considered in
the previous section. In Fig. 17.23b, the damping resistor Rf is placed in parallel with the filter
inductor Lf , and a high-frequency blocking inductor Lb is placed in series with Rf . Inductor
Lb causes the filter transfer function to roll-off with a high-frequency slope of −40 dB/decade.
In Fig. 17.23c, the damping resistor Rf is placed in series with the filter inductor Lf , and the
dc current is bypassed by inductor Lb. In each case, it is desired to obtain a given amount of
damping (i.e., to cause the peak value of the filter output impedance to be no greater than a
given value that satisfies the impedance inequalities (17.19)), while minimizing the value of Cb

or Lb. This problem can be formulated in an alternate but equivalent form: for a given choice of
Cb or Lb, find the value of Rf that minimizes the peak output impedance [152]. The solutions
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Fig. 17.23 Several practical approaches
to damping the single-section input filter:
(a) Rf –Cb parallel damping, (b) Rf –Lb par-
allel damping, (c) Rf –Lb series damping
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to this optimization problem, for the three filter networks of Fig. 17.23, are summarized in this
section. In each case, the quantities f f and R0 f are defined by Eqs. (17.30) and (17.31).

Consider the filter of Fig. 17.23b, with fixed values of Lf , C f , and Lb. Figure 17.24 contains
Bode plots of the filter output impedance ‖Z0( jω)‖ for several values of damping resistance Rf .
For the limiting case Rf = ∞, the circuit reduces to the original undamped filter with infinite Qf .
In the limiting case Rf = 0, the filter is also undamped, but the resonant frequency is increased
because Lb becomes connected in parallel with Lf . Between these two extremes, there must
exist an optimum value of Rf that causes the peak filter output impedance to be minimized.
It can be shown [152, 158] that all magnitude plots must pass through a common point, and
therefore the optimum attains its peak at this point. This fact has been used to derive the design
equations of optimally damped L-C filter sections.

17.4.1 Rf –Cb Parallel Damping

Optimization of the filter network of Fig. 17.23a and Sect. 17.3.2 was described in [152]. The
high-frequency attenuation of this filter is not affected by the choice of Cb, and the high-
frequency asymptote is identical to that of the original undamped filter. The sole tradeoff in
design of the damping elements for this filter is in the size of the blocking capacitor Cb vs. the
damping achieved.
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Fig. 17.24 Comparison of output impedance curves for optimal parallel Rf –Lb damping with undamped
and several suboptimal designs. For this example, n = Lb/L = 0.516

For this filter, let us define the quantity n as the ratio of the blocking capacitance Cb to the
filter capacitance C f :

n =
Cb

C f
(17.33)

For the optimum design, the peak filter output impedance occurs at the frequency

fm = f f

√
2

2 + n
(17.34)

The value of the peak output impedance for the optimum design is

‖Zo‖mm = R0 f

√
2(2 + n)

n
(17.35)

The value of damping resistance that leads to optimum damping is described by

Qopt =
Rf

R0 f
=

√
(2 + n)(4 + 3n)

2n2(4 + n)
(17.36)

The above equations allow choice of the damping values Rf and Cb.
For example, let us redesign the damping network of Sect. 17.3.2, to achieve the same peak

output impedance ‖Zo( jω)‖mm = 1Ω, while minimizing the value of the blocking capacitance
Cb. From Sect. 17.3.2, the other parameter values are R0 f = 0.84Ω, C f = 470 μF, and Lf =

330 μH. First, we solve Eq. (17.35) to find the required value of n:
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Fig. 17.25 Comparison of the output impedances of the design with optimum parallel Rf –Cb damping,
the suboptimal design of Sect. 17.3.2, and the original undamped filter

n =
R2

0 f

‖Zo‖2mm

⎛⎜⎜⎜⎜⎜⎜⎝1 +
√

1 + 4
‖Zo‖2mm

R2
0 f

⎞⎟⎟⎟⎟⎟⎟⎠ (17.37)

Evaluation of this expression with the given numerical values leads to n = 2.5. The blocking
capacitor is therefore required to have a value of nC f = 1200 μF. This is one-quarter of the
value employed in Sect. 17.3.2. The value of Rf is then found by evaluation of Eq. (17.36),
leading to

Rf = R0 f

√
(2 + n)(4 + 3n)

2n2(4 + n)
= 0.67Ω (17.38)

The output impedance of this filter design is compared with the output impedances of the orig-
inal undamped filter of Sect. 17.3.1, and of the suboptimal design of Sect. 17.3.2, in Fig. 17.25.
It can be seen that the optimally damped filter does indeed achieve the desired peak output
impedance of 1 Ω, at the slightly lower peak frequency given by Eq. (17.34)

The Rf –Cb parallel damping approach finds significant application in dc–dc converters.
Since a series resistor is placed in series with Cb, Cb can be realized using capacitor types
having substantial equivalent series resistance, such as electrolytic and tantalum types. How-
ever, in some applications, the Rf –Lb approaches of the next subsections can lead to smaller
designs. Also, the large blocking capacitor value may be undesirable in applications having an
ac input.

17.4.2 Rf –Lb Parallel Damping

Figure 17.23b illustrates the placement of damping resistor Rf in parallel with inductor Lf . In-
ductor Lb causes the filter to exhibit a two-pole attenuation characteristic at high frequency. To
allow Rf to damp the filter, inductor Lb should have an impedance magnitude that is sufficiently
smaller than Rf at the filter resonant frequency f f . Optimization of this damping network is
described in [158].



17.4 Design of a Damped Input Filter 697

With this approach, inductor Lb can be physically much smaller than Lf . Since Rf is typi-
cally much greater than the dc resistance of Lf , essentially none of the dc current flows through
Lb. Furthermore, Rf could be realized as the equivalent series resistance of Lb at the filter reso-
nant frequency f f . Hence, this is a very simple, low-cost approach to damping the input filter.

The disadvantage of this approach is the fact that the high-frequency attenuation of the
filter is degraded: the high-frequency asymptote of the filter transfer function is increased from
1/ω2Lf C f to 1/ω2(Lf ||Lb)C f . Furthermore, since the need for damping limits the maximum
value of Lb, significant loss of high-frequency attenuation is unavoidable. To compensate, the
value of Lf must be increased. Therefore, a tradeoff occurs between damping and degradation
of high-frequency attenuation, as illustrated in Fig. 17.26. For example, limiting the degradation
of high-frequency attenuation to 6 dB leads to an optimum peak filter output impedance ||Zo||mm

of
√

6 times the original characteristic impedance R0 f . Additional damping leads to further
degradation of the high-frequency attenuation.

The optimally damped design (i.e., the choice of Rf that minimizes the peak output
impedance ‖Zo‖ for a given choice of Lb) is described by the following equations:

Qopt =
Rf

R0 f
=

√
n(3 + 4n)(1 + 2n)

2(1 + 4n)
(17.39)

where

n =
Lb

Lf
(17.40)

The peak filter output impedance occurs at frequency

fm = f f

√
1 + 2n

2n
(17.41)

Fig. 17.26
Performance attained
via optimal design procedure, par-
allel Rf –Lb circuit of Fig. 17.23b.
Optimum peak filter output
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and has the value ∥∥∥∥Zo

∥∥∥∥
mm
= R0 f

√
2n(1 + 2n) (17.42)

The attenuation of the filter high-frequency asymptote is degraded by the factor

Lf

L f

∥∥∥∥Lb

= 1 +
1
n

(17.43)

So, given an undamped Lf –C f filter having corner frequency f f , and characteristic impedance
R0 f , and given a requirement for the maximum allowable output impedance ||Zo||mm, one can
solve Eq. (17.42) for the required value of n. One can then determine the required numerical
values of Lb and Rf .

17.4.3 Rf –Lb Series Damping

Figure 17.23c illustrates the placement of damping resistor Rf in series with inductor Lf . Induc-
tor Lb provides a dc bypass to avoid significant power dissipation in Rf . To allow Rf to damp
the filter, inductor Lb should have an impedance magnitude that is sufficiently greater than Rf

at the filter resonant frequency.
Although this circuit is theoretically equivalent to the parallel damping Rf –Lb case of

Sect. 17.4.2, several differences are observed in practical designs. Both inductors must carry
the full dc current, and hence both have significant size. The filter high-frequency attenuation
is not affected by the choice of Lb, and the high-frequency asymptote is identical to that of the
original undamped filter. The tradeoff in design of this filter does not involve high-frequency
attenuation; rather, the issue is damping vs. bypass inductor size.

Design equations similar to those of the previous sections can be derived for this case. The
optimum peak filter output impedance occurs at frequency

fm = f f

√
2 + n

2(1 + n)
(17.44)

and has the value

‖Zo‖mm = R0 f

√
2(1 + n)(2 + n)

n
(17.45)

The value of damping resistance that leads to optimum damping is described by

Qopt =
R0 f

R f
=

(
1 + n

n

) √
2(1 + n)(4 + n)
(2 + n)(4 + 3n)

(17.46)

For this case, the peak output impedance cannot be reduced below
√

2 R0 f via damping.
Nonetheless, it is possible to further reduce the filter output impedance by redesign of Lf and
C f , to reduce the value of R0 f .
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17.4.4 Cascading Filter Sections

A cascade connection of multiple L–C filter sections can achieve a given high-frequency at-
tenuation with less volume and weight than a single-section L–C filter. The increased cutoff
frequency of the multiple-section filter allows use of smaller inductance and capacitance values.
Damping of each L–C section is usually required, which implies that damping of each section
should be optimized. Unfortunately, the results of the previous sections are restricted to single-
section filters. Interactions between cascaded L–C sections can lead to additional resonances
and increased filter output impedance.

It is nonetheless possible to design cascaded filter sections such that interaction between L–
C sections is negligible. In the approach described below, the filter output impedance is approxi-
mately equal to the output impedance of the last section, and resonances caused by interactions
between stages are avoided. Although the resulting filter may not be “optimal” in any sense,
insight can be gained that allows intelligent design of multiple-section filters with economical
damping of each section.

+
Existing

filter
Additional

filter
section

ZoZa itestvg
Zi1

+

vtest

Fig. 17.27 Addition of a filter section at the input of an existing filter

Consider the addition of a filter section to the input of an existing filter, as in Fig. 17.27.
Let us assume that the existing filter has been correctly designed to meet the output impedance
design criteria of Eq. (17.19): under the conditions Za(s) = 0 and v̂g(s) = 0, ‖Zo‖ is sufficiently
small. It is desired to add a damped filter section that does not significantly increase ‖Zo‖.

Middlebrook’s Extra Element Theorem of Sect. 16.1 can again be invoked, to express how
addition of the filter section modifies Zo(s):

Zo(s) =
(
Zo(s)

∣∣∣∣
Za(s)=0

)
(
1 +

Za(s)
ZN1(s)

)

(
1 +

Za(s)
ZD1(s)

) (17.47)

where
ZN1(s) = Zi1(s)

∣∣∣∣
v̂test(s)→

null
0

(17.48)

is the impedance at the input port of the existing filter, with its output port short-circuited. Note
that, in this particular case, nulling v̂test(s) is the same as shorting the filter output port because
the short-circuit current flows through the îtest source. The quantity

ZD1(s) = Zi1(s)
∣∣∣∣
îtest(s)=0

(17.49)
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is the impedance at the input port of the existing filter, with its output port open-circuited. Hence,
the additional filter section does not significantly alter Zo provided that

‖Za‖ 	 ‖ZN1‖ and

‖Za‖ 	 ‖ZD1‖ (17.50)

Bode plots of the quantities ZN1 and ZD1 can be constructed either analytically or by computer
simulation, to obtain limits of Za. When ||Za|| satisfies Eq. (17.50), then the “correction factor”
(1 + Za/ZN1)/(1 + Za/ZD1) is approximately equal to 1, and the modified Zo is approximately
equal to the original Zo.

To satisfy the design criteria (17.50), it is advantageous to select the resonant frequencies
of Za to differ from the resonant frequencies of ZD1. In other words, we should stagger-tune
the filter sections. This minimizes the interactions between filter sections, and can allow use of
smaller reactive element values.

17.4.5 Example: Two Stage Input Filter

As an example, let us consider the design of a two-stage filter using Rf –Lb parallel damping in
each section as illustrated in Fig. 17.28 [158]. It is desired to achieve the same attenuation as
the single-section filters designed in Sects. 17.3.2 and 17.4.1, and to filter the input current of
the same buck converter example of Fig. 17.11. These filters exhibit an attenuation of 80 dB at
250 kHz, and satisfy the design inequalities of Eq. (17.19) with the ‖ZN‖ and ‖ZD‖ impedances of
Fig. 17.13. Hence, let us design the filter of Fig. 17.28 to attain 80 dB of attenuation at 250 kHz.

+vg

L1

n1L1R1

C1

L2

n2L2R2

C2

Section 2 Section 1

Zo

Fig. 17.28 Two-section input filter example, employing Rf –Lb parallel damping in each section

As described in the previous section and below, it is advantageous to stagger-tune the fil-
ter sections so that interaction between filter sections is reduced. We will find that the cut-
off frequency of filter section 1 should be chosen to be smaller than the cutoff frequency of
section 2. In consequence, the attenuation of section 1 will be greater than that of section
2. Let us (somewhat arbitrarily) design to obtain 45 dB of attenuation from section 1, and
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35 dB of attenuation from section 2 (so that the total is the specified 80 dB). Let us also se-
lect n1 = n2 = n = Lb/Lf = 0.5 for each section; as illustrated in Fig. 17.26, this choice leads to
a good compromise between damping of the filter resonance and degradation of high frequency
filter attenuation. Equation (17.43) and Fig. 17.26 predict that the Rf –Lb damping network will
degrade the high-frequency attenuation by a factor of (1+1/n) = 3, or 9.5 dB. Hence, the section
1 undamped resonant frequency f f 1 should be chosen to yield 45 dB + 9.5dB = 54.5dB⇒ 533
of attenuation at 250 kHz. Since section 1 exhibits a two-pole (−40dB/decade) roll-off at high
frequencies, f f 1 should be chosen as follows:

f f 1 =
(250 kHz)
√

533
= 10.8 kHz (17.51)

Note that this frequency is well above the 1.6 kHz resonant frequency f0 of the buck converter
output filter. Consequently, the output impedance ‖Zo‖ can be as large as 3Ω, and still be well
below the ‖ZN( jω)‖ and ‖ZD( jω)‖ plots of Fig. 17.13.

Solution of Eq. (17.42) for the required section 1 characteristic impedance that leads to a
peak output impedance of 3Ω with n = 0.5 leads to

R0 f 1 =
‖Zo‖mm√
2n(1 + 2n)

=
3Ω

√
2(0.5)(1 + 2(0.5))

= 2.12Ω (17.52)

The filter inductance and capacitance values are therefore

L1 =
R0 f 1

2π f f 1
= 31.2 μH (17.53)

C1 =
1

2π f f 1R0 f 1
= 6.9 μF

The section 1 damping network inductance is

n1L1 = 15.6 μH (17.54)

The section 1 damping resistance is found from Eq. (17.39):

R1 = QoptR0 f 1 = R0 f 1

√
n(3 + 4n)(1 + 2n)

2(1 + 4n)
= 1.9Ω (17.55)

The peak output impedance will occur at the frequency given by Eq. (17.41), 15.3 kHz. The
quantities ‖ZN1( jω)‖ and ‖ZD1( jω)‖ for filter section 1 can now be constructed analytically or
plotted by computer simulation. ‖ZN1( jω)‖ is the section 1 input impedance Zi1 with the output
of section 1 shorted, and is given by the parallel combination of the sL1 and the (R1 + sn1L1)
branches. ‖ZD1( jω)‖ is the section 1 input impedance Zi1 with the output of section 1 open-
circuited, and is given by the series combination of ZN1(s) with the capacitor impedance 1/sC1.
Figure 17.29 contains plots of ‖ZN1( jω)‖ and ‖ZD1( jω)‖ for filter section 1, generated using
Spice.
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Fig. 17.29 Bode plot of ZN1 and ZN2 for filter section 1. Also shown is the Bode plot for the output
impedance Za of filter section 2

One way to approach design of filter section 2 is as follows. To avoid significantly mod-
ifying the overall filter output impedance Zo, the section 2 output impedance ||Za( jω)|| must
be sufficiently less than ||ZN1( jω)|| and ||ZD1( jω)||. It can be seen from Fig. 17.29 that, with
respect to ‖ZD1( jω)||, this is most difficult to accomplish when the peak frequencies of sections
1 and 2 coincide. It is most difficult to satisfy the ||ZN1( jω)|| design criterion when the peak
frequency of sections 2 is lower than the peak frequency of section 1. Therefore, the best choice
is to stagger-tune the filter sections, with the resonant frequency of section 1 being lower than
the peak frequency of section 2. This implies that section 1 will produce more high-frequency
attenuation than section 2. For this reason, we have chosen to achieve 45 dB of attenuation with
section 1, and 35 dB of attenuation from section 2.

The section 2 undamped resonant frequency f f 2 should be chosen in the same manner used
in Eq. (17.51) for section 1. We have chosen to select n2 = n = Lb/Lf = 0.5 for section 2; this
again means that the Rf –Lb damping network will degrade the high-frequency attenuation by
a factor of (1 + 1/n) = 3, or 9.5 dB. Hence, the section 2 undamped resonant frequency f f 2

should be chosen to yield 35 dB + 9.5 dB = 44.5 dB ⇒ 169 of attenuation at 250 kHz. Since
section 2 exhibits a two-pole (−40 dB/decade) roll-off at high frequencies, f f 2 should be chosen
as follows:

f f 2 =
(250 kHz)
√

169
= 19.25kHz (17.56)

The output impedance of section 2 will peak at the frequency 27.2 kHz, as given by Eq. (17.41).
Hence, the peak frequencies of sections 1 and 2 differ by almost a factor of 2.
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Figure 17.29 shows that, at 27.2 kHz, ‖ZD1( jω)‖ has a magnitude of roughly 3 dBΩ, and
that ‖ZN1( jω)‖ is approximately 7 dBΩ. Hence, let us design section 2 to have a peak output
impedance of 0 dBΩ ⇒ 1Ω. Solution of Eq. (17.42) for the required section 2 characteristic
impedance leads to

R0 f 2 =
‖Za‖mm√
2n(1 + 2n)

=
1Ω

√
2(0.5)(1 + 2(0.5))

= 0.71Ω (17.57)

The section 2 element values are therefore

L2 =
R0 f 2

2π f f 2
= 5.8 μH

C2 =
1

2π f f 2R0 f 2
= 11.7 μF (17.58)

n2L2 = 2.9 μH

R2 = QoptR0 f 2 = R0 f 2

√
n(3 + 4n)(1 + 2n)

2(1 + 4n)
= 0.65Ω

A Bode plot of the resulting Za is overlaid on Fig. 17.29. It can be seen that ‖Za( jω)‖ is less
than, but very close to, ‖ZD1( jω)‖ between the peak frequencies of 15 kHz and 27 kHz. The
impedance inequalities (17.50) are satisfied somewhat better below 15 kHz, and are satisfied
very well at high frequency.

The resulting filter output impedance ‖Zo( jω)‖ is plotted in Fig. 17.30, for section 1 alone
and for the complete cascaded two-section filter. It can be seen that the peak output impedance

-20 dB

-10 dB

0 dB

10 dB

20 dB

zHk001zHk01zHk1

Section 1
alone

Cascaded
sections 1 and 2

30 dB

|| ZN ||
|| ZD ||

fo

Fig. 17.30 Comparison of the impedance design criteria ‖ZN( jω)‖ and ‖ZD( jω)‖, Eq. (17.19), with the
filter output impedance ‖Zo( jω)‖. Solid line: ‖Zo( jω)‖ of cascaded design. Dashed line: ‖Zo( jω)‖ of section
1 alone



704 17 Input Filter Design

1 kHz 10 kHz 100 kHz 1 MHz

-120 dB

-100 dB

-80 dB

-60 dB

-40 dB

-20 dB

0 dB

20 dB

|| H ||

at 250 kHz

f

Fig. 17.31 Input filter transfer function, cascaded two-section design

is approximately 10 dBΩ, or roughly 3Ω. The impedance design criteria (17.19) are also shown,
and it can be seen that the filter meets these design criteria. Note the absence of resonances in
‖Zo( jω)||.

The effect of stage 2 on ‖Zo( jω)‖ is very small above 40 kHz (where inequalities (17.50) are
very well satisfied), and has moderate-to-small effect at lower frequencies. It is interesting that,
above approximately 12 kHz, the addition of stage 2 actually decreases ||Zo( jω)||. The reason
for this can be seen from Fig. 16.8: when the phase difference between ∠Za( jω) and ∠ZD1( jω)
is not too large (≤ 90◦), then the 1/(1 + Za/ZD1) term decreases the magnitude of the resulting
‖Zo( jω)‖. As can be seen from the phase plot of Fig. 17.29, this is indeed what happens. So
allowing ‖Za( jω)‖ to be similar in magnitude to ‖ZD1( jω)‖ above 12 kHz was an acceptable
design choice.

The resulting filter transfer function is illustrated in Fig. 17.31. It can be seen that it does
indeed attain the goal of 80 dB attenuation at 250 kHz.

Figure 17.32 compares the single-stage design of Sect. 17.4.1 to the two-stage design of this
section. Both designs attain 80 dB attenuation at 250 kHz, and both designs meet the impedance
design criteria of Eq. (17.19). However, the single-stage approach requires much larger filter
elements.

17.5 Stability Criteria

In the previous sections, Middlebrook’s Extra Element Theorem has been employed to gain
insight into how the addition of an input filter changes the transfer functions of a converter.
Impedance inequalities such as those discussed in Sect. 17.2.3 yield insight into how to shape
the filter output impedance so that addition of the input filter does not substantially change the
converter transfer functions Gvd(s), Gvg(s), and Zout(s). Hence we expect that addition of an
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Fig. 17.32 Comparison of single-section (a) and two-section (b) input filter designs. Both designs meet
the design criteria (17.19), and both exhibit 80 dB of attenuation at 250 kHz

input filter meeting the impedance inequalities will not change the stability of a well-designed
switching regulator. In this sense, the impedance inequalities can be viewed as design criteria
that may be conservative.

By themselves, the impedance inequalities of Sect. 17.2.3 do not define the stability bound-
ary of a closed-loop system, because these inequalities do not depend on the actual loop gain
T (s). So far, we have applied the Extra Element Theorem only to the open-loop transfer func-
tions such as Gvd(s). To determine the stability of a closed-loop switching regulator with input
filter, we need to further investigate how alteration of the transfer functions of the converter
power stage affects the stability and phase margin of the loop gain T (s).

One straightforward approach is to plot the modified loop gain including the modified Gvd(s)
of Eq. (17.4), and then apply the usual stability tests such as the phase margin test to the result.
The modified Gvg(s) and Zout(s) can be plotted as well, to check whether these quantities con-
tinue to meet the design goals. This approach is discussed in Sect. 17.5.1.

A second approach is based on comparison of the input filter source impedance Zo(s) with
the converter closed-loop input impedance Zi(s) [151]. This approach expresses the stability
boundary directly in terms of Zo(s). The loading of the input filter by Zi(s) leads to a voltage
divider term

Zi

Zi + Zo
(17.59)

that can contain RHP poles, and is the origin of the stability problem. Section 17.5.2 contains a
derivation and an example. The approaches of Sects. 17.5.1 and 17.5.2 give identical predictions
of the stability boundary.
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17.5.1 Modified Phase Margin

Let us consider again the buck converter example of Sect. 17.3. The effect of the addition of
an undamped L–C input filter on the control-to-output transfer function Gvd(s) is illustrated in
Fig. 17.18, repeated in Fig. 17.33. It can be seen that Gvd is substantially unchanged below the
input filter resonance at 400 Hz, but Gvd contains an additional 360◦ of phase lag above 400 Hz.
The undamped input filter violates the inequalities of Eq. (17.19) in the vicinity of 400 Hz.

f

|| Gvd || Gvd

00 dB

20 dB

30 dB

100 Hz

40 dB

zHk01zHk1

10 dB

|| Gvd ||

Gvd

Fig. 17.33 Effect of undamped input filter on the control-to-output transfer function Gvd(s) of the buck
converter example. Dashed lines: without input filter. Solid lines: with undamped input filter

If this converter and input filter are employed in a closed-loop regulator system having a
loop crossover frequency fc well below the input filter resonance at 400 Hz, then the phase
margin of the loop gain T (s) will be essentially unchanged by the input filter and the loop
will be stable. Violation of the impedance inequalities is irrelevant because the violation occurs
outside the bandwidth of the loop. Conversely, if the loop crossover frequency fc is near to or
greater than 400 Hz, then addition of the undamped input filter will decrease the phase margin
of the loop gain T (s) by as much as −360◦, which would lead to a negative phase margin and
instability.

Hence, one approach to determination of the stability boundary is to employ the modified
Gvd(s) to plot the modified loop gain and find its phase margin. As an example, let us consider
the closed-loop buck regulator with PID compensator designed in Sect. 9.5.4. Figure 17.34
illustrates this closed-loop system, with an added single-section input filter and Rf –Cb damping
network.

Figure 17.35 contains a plot of the magnitude of the input filter source (output) impedance
Zo, along with the impedances ZN , ZD, and Ze from Table 17.1, using the numerical values
specified in Fig. 17.34. It can be observed that ‖Zo‖ is indeed less than ‖ZN‖, ‖ZD‖, and ‖Ze‖ at
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Fig. 17.34 Closed-loop buck regulator with PID compensator, Sect. 9.5.4, with a damped input filter
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Fig. 17.35 Impedance inequalities for the regulator of Fig. 17.34

all frequencies, although the impedances are close in magnitude in the vicinity of the resonances
of the input filter (approximately 4 kHz) and the converter output filter (1 kHz).

The original and modified loop gains are plotted in Fig. 17.36. It can be observed that the ef-
fect of the input filter on the loop gain is moderate, and the loop continues to be stable. Nonethe-
less, changes are observed at frequencies where ‖Zo‖ approaches ‖ZN‖ or ‖ZD‖. At or above the 1
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Fig. 17.36 Modification of the loop gain magnitude and phase by the input filter, for the buck regulator
of Fig. 17.34

kHz resonant frequency of the buck output filter, the magnitude and phase of the loop gain T (s)
are somewhat reduced. Resonant (LHP) zeroes are introduced into T (s) at the approximately 4
kHz resonance of the input filter, which cause the loop to exhibit three crossover frequencies.
The loop also contains a pair of damped poles near 4 kHz. The phase margin is reduced, but is
still positive, and the loop continues to be stable.

Again, it should be noted that ‖Zo‖ < ‖ZN‖ is not the stability condition, but rather stability
is deduced from the loop gain plot.

Figure 17.37 illustrates modification of the input filter damping network, such that the peak
‖Zo‖ is increased. The impedance magnitudes for this case are plotted in Fig. 17.38. It can be
seen that the input filter ‖Zo‖ now significantly exceeds ‖ZN‖ and ‖ZD‖ at the input filter resonant
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Fig. 17.37 Modification of the input filter of Fig. 17.34 to reduce its damping
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Fig. 17.38 Impedance inequalities for the regulator of Fig. 17.37

frequency of 4 kHz. The resulting loop gain magnitude and phase is plotted in Fig. 17.39. The
correction factor in Eq. (17.4) introduces resonant RHP zeroes and resonant poles into T (s),
at the input filter resonant frequency. This adds an additional 360◦ of phase lag at frequencies
above 4 kHz. At the loop crossover frequency of 7 kHz, the phase margin is negative. Hence,
the converter feedback loop is unstable.
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Fig. 17.39 Modification of the loop gain magnitude and phase by the input filter, for the buck regulator
of Fig. 17.37

In summary, the impedance inequalities of Sect. 17.2.3 provide conditions that guarantee
that the loop gain and other important quantities are unchanged by addition of an input filter. The
actual stability boundary is determined by plotting the modified loop gain, and then applying the
usual stability tests such as the phase margin test. In the examples of this section, the correction
factor (Eq. (17.18)) leads to decrease of the magnitude and phase of the loop gain in the vicinity
of the crossover frequency. In the example in which damping of the input filter was inadequate,
this led to a negative phase margin and instability.
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17.5.2 Closed-Loop Input Impedance

Another useful approach for determination of the exact stability boundary is based on the load-
ing of the input filter by the closed-loop converter input impedance Zi(s). This loading leads to
a voltage divider term

Zi(s)
Zi(s) + Zo(s)

=
1

1 +
Zo(s)
Zi(s)

(17.60)

that introduces new poles into the closed-loop transfer functions of the system [151]. It is pos-
sible that these new poles lie in the right half-plane, and this can be viewed as the mechanism
by which addition of an input filter destabilizes the regulator. In this section, the Extra Ele-
ment Theorem is employed to derive how the input filter adds the additional term (17.60) to a
closed-loop transfer function of the system; the closed-loop audiosusceptibility v̂/v̂g is used as
an example but all closed-loop transfer functions of the network contain the same poles. Second,
the Feedback Theorem is employed to find an expression for the closed-loop input impedance
Zi(s). Finally, the stability of Eq. (17.60) is examined by treating Tm(s) = Zo(s)/Zi(s) as a minor
loop gain whose stability can be determined using conventional techniques such as the Nyquist
stability theorem and the phase margin test.

Effect of input filter on closed-loop transfer functions

Figure 17.40 illustrates the small-signal model of a system composed of a CCM switching
converter, its feedback system, and an input filter. A Thevenin-equivalent circuit models the
output port of the input filter, having output impedance Zo. The transfer function of the unloaded
input filter is Hi(s), and the voltage applied to the input port of the input filter is vg. The converter
power stage is modeled using the canonical model of Sect. 7.4. The compensator and PWM
transfer functions are combined into gain block A(s).

Fig. 17.40 Small-signal model of a closed-loop converter system with input filter
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In the case of no input filter, Zo(s) = 0 and Hi(s) = 1. Under these conditions, the “original”
closed-loop transfer functions can be found using the Feedback Theorem, in a manner similar
to that employed in Sect. 13.4. The “original” loop gain is found to be

T (s) = A(s)e(s)MHe(s)H(s) (17.61)

The “original” audiosusceptibility is

Gvg(s) =
MHe(s)
1 + T (s)

(17.62)

This coincides with the result of Eq. (13.103). In the presence of the input filter, the Extra
Element Theorem predicts that the audiosusceptibility becomes

G′vg(s) = Hi(s)Gvg(s)

1 +
Zo

ZNg

1 +
Zo

ZDg

(17.63)

Figure 17.41 illustrates use of the Extra Element Theorem to find the modified audiosuscepti-
bility G′vg(s). The Thevenin impedance Zo(s) is treated as the extra element, and current ît is
injected at the Zo port.

The impedance ZNg is the impedance seen at the injection port, when ît and v̂in are adjusted
such that the output voltage v̂ is nulled. The reference variation v̂re f is also set to zero:

ZNg =
v̂t

ît

∣∣∣∣∣∣v̂→
null

0

v̂re f=0

(17.64)

Fig. 17.41 Use of the Extra Element Theorem to find the modified G′vg(s)
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When v̂ is nulled, with v̂re f set to zero, the duty-cycle variation d̂ also becomes zero. Hence, the
e(s)d̂ and j(s)d̂ sources are zero. Additionally, the null condition of v̂ causes zero-current varia-
tion in the load and in the C and Le elements, so that there is no voltage across the transformer
windings and no current through the transformer windings. Hence the null condition implies
that ît = 0 and v̂t = −Hiv̂in. Therefore ZNg is

ZNg =
−Hiv̂in

0
= ∞ (17.65)

ZNg is an open circuit, and the numerator term of the correction factor (17.63) equals (1+0) = 1.
The impedance ZDg is the impedance seen at the injection port, when v̂in and v̂re f are set to

zero:

ZDg =
v̂t

ît

∣∣∣∣∣∣v̂in=0
v̂re f=0

(17.66)

The quantity ZDg is seen to be the closed-loop input impedance Zi of the regulator. Hence, the
closed-loop audiosusceptibility in Eq. (17.63) is

G′vg(s) = Hi(s)Gvg(s)
1(

1 +
Zo

Zi

) (17.67)

A similar analysis can show that the modified closed-loop output impedance contains the same
correction factor denominator term [151].

How can addition of an input filter to a stable closed-loop regulator lead to instability, i.e.,
closed-loop transfer function poles in the right half of the complex plane? In Eq. (17.67), the
quantity Gvg(s) is the closed-loop audiosusceptibility of the original regulator; we assume that
the original regulator was correctly designed so that Gvg(s) is stable and contains no right half-
plane poles. The quantity Hi is the unloaded transfer function of the filter, which we also assume
contains no right half-plane poles since the filter is a passive network. Hence the only term that
can lead to instability is the denominator correction factor term

1(
1 +

Zo

Zi

) = 1
(1 + Tm)

(17.68)

The term in Eq. (17.68) is the origin of potential instability caused by addition of the input
filter. The denominator correction factor term assumes the same mathematical form as a closed-
loop transfer function, effectively with “minor loop gain” Tm = Zo/Zi, and it is possible for the
(1+Tm) term to contain right half-plane roots. Hence the usual stability tests such as the Nyquist
stability criterion or phase margin tests can be applied to Tm.

Finding the closed-loop input admittance Yi = 1/Z Dg

We can apply the Feedback Theorem of Chap. 13 as illustrated in Fig. 17.42. A test source v̂t is
injected at the power input port of the small-signal model, and the converter input current ît is
measured. The input admittance is the transfer function from v̂t to ît:

Yi =
ît
v̂t

(17.69)
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Fig. 17.42 Use of the Feedback Theorem to find the closed-loop input admittance Yi = 1/ZDg

To determine the closed-loop Yi, source v̂z is injected after the summing node, and the Feedback
Theorem is applied to express Yi as

Yi = Yi∞
T

1 + T
+ Yi0

1
1 + T

(17.70)

The gain Yi∞ is given by

Yi∞(s) =
ît(s)
v̂t(s)

∣∣∣∣∣∣ v̂re f=0
v̂y→

null
0

(17.71)

The loop reference variation v̂re f is set to zero. In the presence of the test source v̂t, the signal v̂z

is adjusted to null v̂y. Figure 17.43 illustrates solution of the model under these conditions.
With the reference v̂re f set to zero, the nulling of v̂y implies that the output voltage v̂ is also

nulled. Hence the current through the load resistance R is nulled. Hence the currents in the effec-
tive filter elements are nulled, and there must be zero voltage across the transformer secondary.
This implies that there is zero voltage across the transformer primary, and zero current through
the e(s)d̂ source. So under the null conditions, the test voltage must be v̂t = −e(s)d̂, and the test
current must be ît = j(s)d̂. This leads to the result

Yi∞ =
j(s)d̂

−e(s)d̂
= − j(s)

e(s)
(17.72)

For the buck converter, this expression reduces to

Yi∞ = −
M2

R
(17.73)
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Fig. 17.43 Determination of Yi∞

At frequencies where the loop gain T is large in magnitude, the converter closed-loop incremen-
tal input admittance Yi is negative. The quantity 1/Yi∞ coincides with the ZN listed in Table 17.1;
when the loop gain is large then the converter closed-loop input impedance follows ZN .

The gain Yi0 is given by

Yi0(s) =
ît(s)
v̂t(s)

∣∣∣∣∣∣ v̂re f=0
v̂x→

null
0

(17.74)

The loop reference variation v̂re f is set to zero. In the presence of the test source v̂t, the signal
v̂z is adjusted such that v̂x is nulled. Figure 17.44 illustrates solution of the model under these
conditions.

With v̂x equal to zero, the duty-cycle variation d̂ is zero. Hence the canonical model sources
e(s)d̂ and j(s)d̂ become zero. The converter input admittance Yi0 is then the effective filter input
admittance 1/Zei(s), reflected through the transformer turns ratio M2:

Yi0(s) =
M2

Zei(s)
(17.75)

At frequencies where the loop gain T is small in magnitude, then the converter closed-loop
incremental input admittance Yi follows the open-loop value M2/Zei. This quantity is a passive
admittance, having phase in the range −90◦ ≤ ∠Yi ≤ +90◦. The quantity 1/Yi0 coincides with
the ZD listed in Table 17.1; when the loop gain is small then the converter closed-loop input
impedance follows ZD.

The loop gain T (s) of Eq. (17.70) is given by

T (s) =
v̂y(s)

v̂x(s)

∣∣∣∣∣ v̂re f=0
v̂t=0

(17.76)

This is the loop gain of the original closed-loop regulator, before addition of the input filter.
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Fig. 17.44 Determination of Yi0

Construction of Zi

Construction of the closed-loop input impedance Zi = 1/Yi based on the results of
Eqs. (17.70), (17.73), and (17.75). Graphical construction of Zi is illustrated in Fig. 17.45 for a
simple buck converter example. Figure 17.45a contains magnitude asymptotes of T , T/(1 + T ),
and 1/(1 + T ), constructed as described in Sect. 9.3. The loop gain for this simple example in-
cludes the resonant poles of the converter L–C filter at frequency fo, plus a high-frequency zero.
The loop crossover frequency is fc, and the phase margin of T leads to peaking with closed-loop
Q-factor Qc as described in Sect. 9.4.3.

Figure 17.45b illustrates construction of the admittance terms of Eq. (17.70). The ZN and
ZD terms of Table 17.1 are inverted to obtain their admittances, and then are multiplied by the
T/(1+ T ) and 1/(1+ T ) plots of Fig. 17.45a. Figure 17.45c contains plots of the magnitude and
phase of the converter closed-loop input impedance Zi, derived from Fig. 17.45b according to
Eq. (17.70).

At frequencies well below the original loop crossover frequency fc where the loop gain T
is large in magnitude, then T/(1 + T ) ≈ 1 and 1/(1 + T ) is small. Hence, Yi ≈ Yi∞ and Zi ≈ ZN .
As illustrated in Fig. 17.45c, Zi follows −R/M2 and has phase −180◦ at low frequency.

At frequencies well above fc where ‖T‖ 	 1, then ‖T/(1 + T )‖ 	 1 and‖1/(1 + T )‖ ≈ 1.
Hence Yi ≈ Yi0 and the closed-loop input impedance Zi follows ZD. For the example asymptotes
of Fig. 17.45, Zi follows the inductor asymptote sL/M2 at high frequency, with a phase of +90◦.

In the vicinity of the original loop crossover frequency fc, the impedance Zi transitions
between ZN and ZD. In general, the ZN and ZD asymptotes can differ at the loop crossover
frequency, and hence this transition will contain new asymptotes that are not present in ZN and
ZD alone. Depending on the phase margin of the original loop gain T , the T/(1+T ) and 1/(1+T )
terms of Eq. (17.70) may contain resonant poles and peaking in the vicinity of fc. This leads to
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Fig. 17.45 Steps in the construction of the asymptotes of the closed-loop converter input impedance
Zi(s): (a) converter loop gain T and the closed-loop quantities T/(1+T ) and 1/(1+T ); (b) the admittance
terms of Eq. (17.70); (c) the resulting magnitude and phase asymptotes of Zi(s)
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resonant zeroes in Zi = 1/Yi; therefore it is possible that ‖Zi‖ is smaller than ‖ZN‖ and ‖ZD‖ in
the vicinity of fc. Additionally, Zi contains a RHP pole at frequency fnd; at frequencies greater
than fnd, the negative sign of ZN is cancelled by the negative sign of the RHP pole, and Zi reverts
to a passive open-loop impedance. It should be noted that the RHP pole of Zi does not directly
lead to instability: when the converter is driven by a voltage source vg, the current is given by
the transfer function ig = vg/Zi. This transfer function contains a RHP zero at fnd, and exhibits
no RHP poles.

Determination of stability

Next, we can construct the minor loop gain Tm = Zo/Zi of Eq. (17.68). In Fig. 17.46, an input
filter impedance Zo is overlayed on the Zi impedance of Fig. 17.45c. As illustrated in Fig. 17.46,
the magnitude of Tm can be found by subtracting the magnitude ‖Zi‖dB from ‖Zo‖dB. At the fre-
quency or frequencies where ‖Zi‖ = ‖Zo‖, the minor loop gain Tm exhibits a crossover frequency.
The phase of Tm at a given frequency also can be found by subtracting: ∠Tm = ∠Zo − ∠Zi.

The Bode plot of the minor loop gain Tm is constructed in Fig. 17.47, based on the
impedance asymptotes of Fig. 17.46. To conform with the conventional appearance of loop gain
phase, the phase asymptotes of Tm have been shifted by −360◦; this corresponds to multiplying
Tm by e− j360◦ = 1, and does not change the result. For the specific case sketched in Fig. 17.46,
the input filter impedance ‖Zo‖ is greater than the converter closed-loop input impedance ‖Zi‖
over the frequency range from fmc1 to fmc2. As illustrated in Fig. 17.47, the minor loop gain
Tm exhibits crossover frequencies at fmc1 and fmc2, and reaches a peak magnitude of Rf M2/R
at the filter resonant frequency f f . The phase of Tm at frequency fmc1 is approximately −90◦,
corresponding to a phase margin of +90◦. The phase of Tm is approximately −270◦ at fmc2, cor-

Fig. 17.46 Superimposing the input filter impedance asymptotes Zo on the converter closed-loop input
impedance asymptotes Zi to determine the minor loop gain Tm
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Fig. 17.47 Bode plot of minor loop gain Tm for the example of Fig. 17.46

Re[Tm(jω)]

Im[Tm(jω)]

+1f = 0

f = fmc1

f = fmc2
f = ff

f → ∞
–Rf

R/M2

Fig. 17.48 Nyquist plot of minor loop gain Tm for the example of Fig. 17.46. Crosshatching denotes the
region to the right of the contour; the −1 point is enclosed

responding to a phase margin of −90◦. The minor loop gain Tm contains resonant poles at the
original loop crossover frequency fc and a right half-plane zero at frequency fnd.

With multiple crossover frequencies, determination of stability should be resolved by use
of the Nyquist plot. The positive-frequency portion of the Nyquist plot of the minor loop gain
Tm(s) is illustrated in Fig. 17.48. The minor loop gain has magnitude zero at dc. As frequency
increases, Tm increases in magnitude with approximate phase −90◦, until it reaches unity mag-
nitude at f = fmc1. In the vicinity of f = f f , Tm has magnitude greater than 1, with phase
decreasing from −90◦ towards −270◦. At frequencies greater than fmc2, Tm exhibits magnitude
less than 1. It can be seen that the −1 point is encircled once by the positive-frequency portion
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of the Nyquist plot sketched in Fig. 17.48. The negative-frequency portion of the Nyquist plot,
which is the complex conjugate (not shown in Fig. 17.48), also encircles the −1 point once.
Consequently, the closed-loop term

1
1 + Tm

=
Zi

Zo + Zi
(17.77)

contains two right half-plane poles, and is unstable. The regulator closed-loop transfer functions
such as Eq. (17.67) will also exhibit these two right half-plane poles.

It can be observed from Fig. 17.48 that the encirclements of the −1 point could be eliminated
by reducing the magnitude of the quantity Rf /(R/M2) to be less than unity. Then the Nyquist
plot no longer would encircle the −1 point, and the minor loop Tm would no longer introduce
RHP poles. This coincides with the earlier conclusion that adequate damping of the input filter
can stabilize the system.

17.5.3 Discussion

Section 17.5 describes two distinct approaches to derivation of the exact stability boundary of a
switching regulator with addition of an input filter. In Sect. 17.5.1, the Extra Element Theorem
is employed to determine the modified loop gain T ′(s). The usual gain and phase margin tests
can then be employed to ascertain the stability of the modified regulator system. By contrast,
the approach of Sect. 17.5.2 employs the Feedback Theorem to find the new closed-loop poles
induced by addition of the input filter. These poles are ascribed to a voltage divider term that
accounts for the loading of the input filter impedance Zo(s) by the closed-loop converter input
impedance Zi(s). This voltage divider term can be viewed as having an effective minor loop gain
Tm(s) = Zo(s)/Zi(s), whose stability can be ascertained using the usual techniques including
phase and gain margins and the Nyquist stability tests.

Thus, we have two distinct approaches to determination of the stability boundary of the reg-
ulator when modified by addition of an input filter. It can be verified that identical closed-loop
poles and characteristic equations are predicted by the two approaches. Hence, provided that the
original unmodified system is stable, the two approaches predict identical stability boundaries.

Finally, it should be emphasized that Sects. 17.1 to 17.4 are concerned with design of an
input filter that does not disrupt the important transfer functions of the closed-loop regulator,
while Sect. 17.5 is concerned with determination of the formal stability boundary. While these
are very different goals, it is revealing that all approaches rely on the impedances ZN and ZD

of Table 17.1, albeit in different ways. Ultimately, the impedance inequalities of Eq. (17.19) are
the governing design criteria, with the issue only being how conservative should the design be.
The engineer can employ modern tools to plot the relevant equations of all sections and produce
an informed and optimized design.

17.6 Summary of Key Points

1. Switching converters usually require input filters, to reduce conducted electromagnetic in-
terference and possibly also to meet requirements concerning conducted susceptibility.

2. Addition of an input filter to a converter alters the control-to-output and other transfer func-
tions of the converter. Design of the converter control system must account for the effects
of the input filter.
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3. If the input filter is not damped, then it typically introduces complex poles and RHP zeroes
into the converter control-to-output transfer function, at the resonant frequencies of the
input filter. If these resonant frequencies are lower than the crossover frequency of the
controller loop gain, then the phase margin will become negative and the regulator will be
unstable.

4. The input filter can be designed so that it does not significantly change the converter control-
to-output and other transfer functions. Impedance inequalities (17.19) give simple design
criteria that guarantee this. To meet these design criteria, the resonances of the input filter
must be sufficiently damped.

5. Optimization of the damping networks of single-section filters can yield significant savings
in filter element size. Equations for optimizing three different filter sections are listed.

6. Substantial savings in filter element size can be realized via cascading filter sections. The
design of noninteracting cascaded filter sections can be achieved by an approach similar to
the original input filter design method. Impedance inequalities (17.50) give design criteria
that guarantee that interactions are not substantial.

7. Another useful approach for determination of the exact stability boundary is based on the
loading of the input filter, whose output impedance is Zo(s), by the closed-loop converter
input impedance Zi(s). The stability is examined by treating Tm(s) = Zo(s)/Zi(s) as a minor
loop gain using conventional techniques such as the Nyquist stability theorem and the phase
margin test.

Problems

17.1 It is required to design an input filter for the flyback converter of Fig. 17.49. The max-
imum allowed amplitude of switching harmonics of iin(t) is 10 μA rms. Calculate the
required attenuation of the filter at the switching frequency.

+

Lp

+

v
Vg

Q1

D11:n

C RInput
filter

ig(t) n = 0.5

250 μH 100 μF

48 V

5 

iin(t)

D = 0.3
fs = 200 kHz

Fig. 17.49 Flyback converter, Problems 17.1, 17.4, 17.6, 17.8, and 17.10

17.2 In the boost converter of Fig. 17.50, the input filter is designed so that the maximum am-
plitude of switching harmonics of iin(t) is not greater than 10 μA rms. Find the required
attenuation of the filter at the switching frequency.
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33 ! F
12 48 V

Input
filter

iin(t) ig(t)

D = 0.6
fs = 200 kHz

Fig. 17.50 Boost converter, Problems 17.2, 17.5, 17.7, and 17.9

17.3 Derive the expressions for ZN and ZD in Table 17.1.
17.4 The input filter for the flyback converter of Fig. 17.49 is designed using a single Lf –C f

section. The filter is damped using a resistor Rf in series with a very large blocking
capacitor Cb.

(a) Sketch a small-signal model of the flyback converter. Derive expressions for ZN(s)
and ZD(s) using your model. Sketch the magnitude Bode plots of ZN and ZD, and
label all salient features.

(b) Design the input filter, i.e., select the values of Lf , C f , and Rf , so that: (i) the filter
attenuation at the switching frequency is at least 100 dB, and (ii) the magnitude of
the filter output impedance Zo(s) satisfies the conditions ||Zo( jω) || < 0.3 ||ZD( jω) ||
and ||Zo( jω) || < 0.3 ||ZN( jω) ||, for all frequencies.

(c) Use Spice simulations to verify that the filter designed in part (b) meets the specifi-
cations.

(d) Using Spice simulations, plot the converter control-to-output magnitude and phase
responses without the input filter, and with the filter designed in part (b). Comment
on the changes introduced by the filter.

17.5 It is required to design the input filter for the boost converter of Fig. 17.50 using a sin-
gle Lf –C f section. The filter is damped using a resistor Rf in series with a very large
blocking capacitor Cb.

(a) Sketch the magnitude Bode plots of ZN(s) and ZD(s) for the boost converter, and
label all salient features.

(b) Design the input filter, i.e., select the values of Lf , C f , and Rf , so that: (i) the
filter attenuation at the switching frequency is at least 80 dB, and (ii) the mag-
nitude of the filter output impedance Zo(s) satisfies the conditions ||Zo( jω) || <
0.2 ||ZD( jω) ||, ||Zo(ω) || < 0.2 ||ZN(ω) ||, for all frequencies.

(c) Use Spice simulations to verify that the filter designed in part (b) meets the specifi-
cations.

(d) Using Spice simulations, plot the converter control-to-output magnitude and phase
responses without the input filter, and with the filter designed in part (b). Comment
on the changes in the control-to-output responses introduced by the filter.

17.6 Repeat the filter design of Problem 17.4 using the optimum filter damping approach de-
scribed in Sect. 17.4.1. Find the values of Lf , C f , Rf , and Cb.
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17.7 Repeat the filter design of Problem 17.5 using the optimum filter damping approach of
Sect. 17.4.1. Find the values of Lf , C f , Rf , and Cb.

17.8 Repeat the filter design of Problem 17.4 using the optimum Rf –Lb parallel damping ap-
proach described in Sect. 17.4.2. Find the values of Lf , C f , Rf , and Lb.

17.9 Repeat the filter design of Problem 17.5 using the optimum Rf –Lb parallel damping ap-
proach described in Sect. 17.4.2. Find the values of Lf , C f , Rf , and Lb.

17.10 It is required to design the input filter for the flyback converter of Fig. 17.32 using two
filter sections. Each filter section is damped using a resistor in series with a blocking
capacitor.
(a) Design the input filter, i.e., select values of all circuit parameters, so that (i) the filter

attenuation at the switching frequency is at least 100 dB, and (ii) the magnitude of
the filter output impedance Zo(s) satisfies the conditions ||Zo( jω) ‖ < 0.3 ||ZD( jω) ||
and ||Zo( jω) || < 0.3 ||ZN(ω) ||, for all frequencies.

(b) Use Spice simulations to verify that the filter designed in part (a) meets the specifi-
cations.

(c) Using Spice simulations, plot the converter control-to-output magnitude and phase
responses without the input filter, and with the filter designed in part (b). Comment
on the changes introduced by the filter.

17.11 Consider the boost voltage regulator of Problem 9.3. It is required to design an input filter
for this voltage regulator. The filter should have a single Lf –C f section with optimum
damping using a resistor Rf in series with a capacitor Cb.

(a) Design the input filter, i.e., select values of all circuit parameters, so that (i) the
filter attenuation at the switching frequency fs = 200 kHz is equal to at least 80 dB,
and (ii) the magnitude of the filter output impedance Zo(s) satisfies the conditions
||Zo( jω) ‖ ≤ 0.4 ||ZD( jω) || and ||Zo( jω) || ≤ 0.4 ||ZN(ω) ||, for all frequencies.

(b) Determine the closed-loop input impedance Zi(s) of the regulator in Problem 9.3.
Examine stability of the closed-loop system by analysis of the minor loop gain
Tm(s) = Zo(s)/Zi(s), where Zo(s) is the output impedance of the input filter designed
in part (a).
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Current-Programmed Control

So far, we have discussed duty ratio control of PWM converters, in which the converter output
is controlled by direct choice of the duty ratio d(t). We have therefore developed expressions
and small-signal transfer functions that relate the converter waveforms and output voltage to the
duty ratio. This direct duty ratio control is sometimes called voltage mode control, because the
equilibrium output voltage is approximately proportional to the duty cycle in CCM.

Another control scheme which finds wide application is current programmed control [67, 69,
107, 163–175], in which the converter is controlled by choice of the transistor switch current
peak(is(t)). The control input signal is a current ic(t), and a simple control network switches the
transistor on and off such that the peak transistor current follows ic(t). The transistor duty cycle
d(t) is not directly controlled, but depends on ic(t) as well as on the converter inductor currents,
capacitor voltages, and power input voltage. Converters controlled via current programming
are said to operate in the current-programmed mode (CPM), also known as peak current mode
(PCM) control.

The block diagram of a simple current-programmed controller is illustrated in Fig. 18.1.
Control signal ic(t) and switch current is(t) waveforms are given in Fig. 18.2. A clock pulse at
the Set input of a latch initiates the switching period, causing the latch output Q to be high
and turning on the transistor switch. While the transistor conducts, its current is(t) is equal to
the inductor current iL(t); this current increases with some positive slope m1 that depends on
the value of inductance and the converter voltages. In more complicated converters, is(t) may
follow the sum of several inductor currents. Eventually, the switch current is(t) becomes equal
to the control signal ic(t). At this point, the controller turns the transistor switch off, and the in-
ductor current decreases for the remainder of the switching period. The controller measures the
switch current is(t) with some current sensor circuit, and compares is(t) to ic(t) using an analog
comparator. In practice, voltages proportional to is(t) and ic(t) are compared, with constant of
proportionality Rf . When is(t) ≥ ic(t), the comparator resets the latch, turning the transistor off
for the remainder of the switching period.

As usual, a feedback loop can be constructed for regulation of the output voltage. The output
voltage v(t) is compared to a reference voltage vre f , to generate an error signal. This error signal
is applied to the input of a compensation network, and the output of the compensator drives the
control signal ic(t)Rf . To design such a feedback system, we need to model how variations in
the control signal ic(t) and in the line input voltage vg(t) affect the output voltage v(t).
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Fig. 18.1 Current-programmed control of a buck converter. The peak transistor current replaces the duty
cycle as the control input

An advantage of the current-programmed mode is its simpler dynamics. To first order, the
small-signal control-to-output transfer function v̂(s)/îc(s) contains one less pole than v̂(s)/d̂(s).
Actually, the pole is moved to a high frequency, near the converter switching frequency.
Nonetheless, simple robust wide-bandwidth output voltage control can usually be obtained,
without the use of compensator lead networks. It is true that the current-programmed controller
requires a circuit for measurement of the switch current is(t); however, in practice such a circuit
is also required in duty ratio controlled systems, for protection of the transistor against excessive
currents during transients and fault conditions. Current-programmed control makes use of the
available current sensor information during normal operation of the converter, to obtain simpler
system dynamics. Transistor failures due to excessive switch current can then be prevented sim-
ply by limiting the maximum value of the control signal ic(t). This ensures that the transistor
will turn off whenever the switch current becomes too large, on a cycle-by-cycle basis.

An added benefit of current programming is the reduction or elimination of transformer
saturation problems in full-bridge or push-pull isolated converters. In these converters, small
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Fig. 18.2 Switch current
is(t) and control input
ic(t) waveforms, for the
current-programmed sys-
tem of Fig. 18.1
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voltage imbalances induce a dc bias in the transformer magnetizing current; if sufficiently large,
this dc bias can saturate the transformer. The dc current bias increases or decreases the tran-
sistor switch currents. In response, the current programmed controller alters the transistor duty
cycles, such that transformer volt-second balance tends to be maintained. Current-programmed
full-bridge isolated buck converters should be operated without a capacitor in series with the
transformer primary winding; this capacitor tends to destabilize the system. For the same rea-
son, current-programmed control of half-bridge isolated buck converters is generally avoided.
Commercial integrated circuits that implement current-programmed control are widely avail-
able, and operation of converters in the current-programmed mode is quite popular.

A disadvantage of current-programmed control is its susceptibility to noise in the is(t) or
ic(t) signals. This noise can prematurely reset the latch, disrupting operation of the controller. To
remove the turn-on current spike caused by the diode stored charge, a small amount of filtering
of the sensed switch current waveform is usually applied. Furthermore, CPM controllers often
include a short blanking interval at the beginning of a switching cycle. During the blanking
interval, resetting of the latch is disabled, which prevents spurious transistor turn off. It should
be noted, however, that the blanking interval imposes a lower limit on the attainable duty cycle.

This chapter is devoted to analysis, modeling and design of converters operating in current-
programmed mode. In Sect. 18.1, the system small-signal transfer functions are derived using
a simple first-order model. The averaged terminal waveforms of the switch network can be
described by a simple current source, in conjunction with a power source element. Perturbation
and linearization steps lead to a simple small-signal model.

In Sect. 18.2, stability of the current-programmed controller and its inner switch-current-
sensing loop is examined. It is found that this controller is unstable whenever converter steady-
state duty cycle D is greater than 0.5. The current programmed controller can be stabilized
by addition of an artificial ramp signal to the sensed switch current waveform. Furthermore,
addition of the artificial ramp, also known as slope compensation, improves noise immunity of
the controller.

Although the first-order model of Sect. 18.1 yields a great deal of insight into the control-to-
output transfer function and converter output impedance, it does not accurately predict the line-
to-output transfer function Gvg(s) of current-programmed buck converters. Furthermore, the
simple model does not take into account the effects of the inductor current ripple or the artificial
ramp. Hence, a more accurate averaged model is developed in Sect. 18.3, and CPM transfer
functions are derived in Sect. 18.4. Based on the more accurate averaged model, simulation
of current-programmed converters is addressed in Sect. 18.5. Design of the voltage feedback
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loop is discussed in Sect. 18.6. High-frequency responses of current-programmed converters in
continuous conduction mode are further examined in Sect. 18.7 using sampled-data modeling
techniques. Finally, Sect. 18.8 extends the modeling of current-programmed converters to the
discontinuous conduction mode.

Another approach to current programming, known as average current mode (ACM) control,
consists of constructing a feedback loop for regulation of an average converter current. This
approach is discussed in Sect. 18.9. An advantage of average current-mode control is that it
enables direct control over the converter input or output current, which is required in some
applications, including battery chargers, drivers for light emitting diodes, as well as ac grid-tied
rectifiers and inverters. Furthermore, ACM controllers have improved noise immunity, and do
not necessarily require slope compensation for stable operation over wide range of duty cycles.

18.1 A Simple First-Order Model

Once the current-programmed controller has been constructed, it is desired to design a feed-
back loop for regulation of the output voltage. As usual, this voltage feedback loop must be
designed to meet specifications regarding line disturbance rejection, transient response, output
impedance, etc. A block diagram of a typical system is illustrated in Fig. 18.3, containing an
inner current-programmed controller, with an outer voltage feedback loop.

To design the outer voltage feedback loop, an ac equivalent circuit model of the switching
converter operating in the current-programmed mode is needed. In Chap. 7, averaging was
employed to develop small-signal ac equivalent circuit models for converters operating with
duty ratio control. These models predict the circuit behavior in terms of variations d̂ in the duty
cycle. If we could find the relationship between the control signal ic(t) and the duty cycle d(t) for
the current-programmed controller, then we could adapt the models of Chap. 7, to apply to the

Compensator

+

+

R

+

v(t)vg(t)

Current
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currents

Switching converter

vref

ic(t) v(t)

Fig. 18.3 Block diagram of a converter system incorporating current-programmed control
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current-programmed mode as well. In general, the duty cycle depends not only on ic(t), but also
on the converter voltages and currents; hence, the current-programmed controller incorporates
multiple effective feedback loops as indicated in Fig. 18.3.

In this section, the averaging approach is extended, as described above, to treat current-
programmed converters. A simple first-order approximation is employed, in which it is assumed
that the current programmed controller operates ideally, and hence causes the average inductor
current 〈iL(t)〉TS to be identical to the control ic(t). This approximation is justified whenever
the inductor current ripple and artificial ramp (discussed in Sect. 18.2) have negligible magni-
tudes. The inductor current then is no longer an independent state of the system, and no longer
contributes a pole to the converter small-signal transfer functions.

This first-order model is derived in Sect. 18.1.1, using a simple algebraic approach. In
Sect. 18.1.2, a simple physical interpretation is obtained via the averaged switch modeling tech-
nique. A more accurate, but more complicated, model is described in Sect. 18.3.

18.1.1 Simple Model via Algebraic Approach: Buck–Boost Example

The power stage of a simple buck–boost converter operating in the continuous conduction mode
is illustrated in Fig. 18.4a, and its inductor current waveform is given in Fig. 18.4b. The small-
signal averaged equations for this converter, under duty-cycle control, were derived in Sect. 7.2.
The result, Eq. (7.44), is reproduced below:

(a)

+ L C R

+

v(t)vg(t)

Q1 D1

iL(t)

(b) iL(t)

ic

t0 dTs Ts

vg

L

v
L

Fig. 18.4 Buck–boost converter example: (a) power stage, (b) inductor current waveform
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L
dîL(t)

dt
= Dv̂g(t) + D′v̂(t) + (Vg − V)d̂(t)

C
dv̂(t)

dt
= −D′ îL −

v̂(t)
R
+ ILd̂(t) (18.1)

îg(t) = DîL + ILd̂(t)

The Laplace transforms of these equations, with initial conditions set to zero, are

sLîL(s) = Dv̂g(s) + D′v̂(s) + (Vg − V)d̂(s)

sCv̂(s) = −D′ îL(s) − v̂(s)
R
+ ILd̂(s) (18.2)

îg(s) = DîL(s) + lLd̂(s)

We now make the assumption that the inductor current îL(s) is identical to the programmed con-
trol current îc(s). This is valid to the extent that the controller is stable, and that the magnitudes
of the inductor current ripple and artificial ramp waveform are sufficiently small:

îL(s) ≈ îc(s) (18.3)

This approximation, in conjunction with the inductor current equation of (18.2), can now be
used to find the relationship between the control current îc(s) and the duty cycle d̂(s), as follows:

sLîc(s) ≈ Dv̂g(s) + D′v̂(s) + (Vg − V)d̂(s) (18.4)

Solution for d̂(s) yields

d̂(s) =
sLîc(s) − Dv̂g(s) − D′v̂(s)

(Vg − V)
(18.5)

This small-signal expression describes how the current-programmed controller varies the duty
cycle, in response to a given control input variation îc(s). It can be seen that d̂(s) depends
not only on îc(s), but also on the converter output voltage and input voltage variations. Equa-
tion (18.5) can now be substituted into the second and third lines of Eq. (18.2), thereby elimi-
nating d̂(s). One obtains

sCv̂(s) = −D′ îc(s) − v̂(s)
R
+ IL

sLîc(s) − Dv̂g(s) − D′v̂(s)

(Vg − V)

îg(s) = Dîc(s) + IL
sLîc(s) − Dv̂g(s) − D′v̂(s)

(Vg − V)
(18.6)

These equations can be simplified by collecting terms, and by use of the steady-state relation-
ships

V = − D
D′

Vg

IL = −
V

D′R
=

D
D′2R

Vg (18.7)
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Fig. 18.5 Construction of CPM CCM buck–boost converter equivalent circuit: (a) input port model,
corresponding to Eq. (18.9); (b) output port model, corresponding to Eq. (18.8)

Equation (18.6) then becomes

sCv̂(s) =
( sLD

D′R
− D′

)
îc(s) −

(
D
R
+

1
R

)
v̂(s) −

(
D2

D′R

)
v̂g(s) (18.8)

îg(s) =
( sLD

D′R
+ D

)
îc(s) −

(D
R

)
v̂(s) −

(
D2

D′R

)
v̂g(s) (18.9)

These are the basic ac small-signal equations for the simplified first-order model of the current-
programmed buck–boost converter. These equations can now be used to construct small-signal
ac circuit models that represent the behavior of the converter input and output ports. In
Eq. (18.8), the quantity sCv̂(s) is the output capacitor current. The îc(s) term is represented
in Fig. 18.5b by an independent current source, while the v̂g(s) term is represented by a depen-
dent current source. v̂(s)/R is the current through the load resistor, and v̂(s)D/R is the current
through an effective ac resistor of value R/D.

Equation (18.9) describes the current îg(s) drawn by the converter input port, out of the
source v̂g(s). The îc(s) term is again represented in Fig. 18.5a by an independent current source,
and the v̂(s) term is represented by a dependent current source. The quantity −v̂g(s)D2/D′R is
modeled by an effective ac resistor having the negative value −D′R/D2.

Figures 18.5a,b can now be combined into the small-signal two-port model of Fig. 18.6. The
current-programmed buck and boost converters can also be modeled by a two-port equivalent
circuit, of the same form. Table 18.1 lists the model parameters for the basic buck, boost, and
buck–boost converters.



732 18 Current-Programmed Control

+
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vg RCr1
f1(s) i c g1 v g2 vg f2(s) i c r2 v

+

Fig. 18.6 Two-port small-signal equivalent circuit used to model the current-programmed CCM buck,
boost, and buck–boost converters

Table 18.1 Current-programmed mode small-signal equivalent circuit parameters, simple model

Converter g1 f1 r1 g2 f2 r2

Buck
D
R

D
(
1 +

sL
R

)
− R

D2
0 1 ∞

Boost 0 1 ∞ 1
D′R

D′
(
1 − sL

D′2R

)
R

Buck–boost −D
R

D
(
1 +

sL
D′R

)
−D′R

D2
− D2

D′R
−D′

(
1 − sDL

D′2R

) R
D

The two-port equivalent circuit can now be solved, to find the converter transfer functions
and output impedance. The control-to-output transfer function is found by setting v̂g to zero.
Solution for the output voltage then leads to the transfer function Gvc(s):

Gvc(s) =
v̂(s)

îc(s)

∣∣∣∣∣∣
v̂g=0

= f2

(
r2‖R ‖

1
sC

)
(18.10)

Substitution of the model parameters for the buck–boost converter yields

Gvc(s) = −R
D′

1 + D

(
1 − s

DL

D′2 R

)
(
1 + s

RC
1 + D

) (18.11)

It can be seen that this transfer function contains only one pole; the pole due to the inductor
has been lost. The dc gain is now directly dependent on the load resistance R. In addition, the
transfer function contains a right half-plane zero whose corner frequency is unchanged from the
duty-cycle-controlled case. In general, introduction of current programming alters the transfer
function poles and dc gain, but not the zeroes.

The line-to-output transfer function Gvg(s) is found by setting the control input îc to zero,
and then solving for the output voltage. The result is

Gvg(s) =
v̂(s)
v̂g(s)

∣∣∣∣∣∣
îc=0

= g2

(
r2‖R ‖

1
sC

)
(18.12)

Substitution of the parameters for the buck–boost converter leads to
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Gvg(s) = − D2

1 − D2

1(
1 + s

RC
1 + D

) (18.13)

Again, the inductor pole is lost. The output impedance is

Zout(s) = r2‖R ‖
1

sC
(18.14)

For the buck–boost converter, one obtains

Zout(s) =
R

1 + D
1(

1 + s
RC

1 + D

) (18.15)

18.1.2 Averaged Switch Modeling

Additional physical insight into the properties of current programmed converters can be ob-
tained by use of the averaged switch modeling approach developed in Sect. 14.1. Consider the
buck converter of Fig. 18.7. We can define the terminal voltages and currents of the switch
network as shown. When the buck converter operates in the continuous conduction mode, the
switch network average terminal waveforms are related as follows:

〈v2(t)〉Ts = d(t)〈v1(t)〉TS

〈i1(t)〉Ts = d(t)〈i2(t)〉Ts (18.16)

We again invoke the approximation in which the inductor current exactly follows the control
current. In terms of the switch network terminal current i2, we can therefore write

〈i2(t)〉Ts ≈ 〈ic(t)〉Ts (18.17)

The duty cycle d(t) can now be eliminated from Eq. (18.16), as follows:

〈i1(t)〉Ts = d(t)〈ic(t)〉Ts =
〈v2(t)〉Ts

〈v1(t)〉TS

〈ic(t)〉TS (18.18)

+
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C R

+

v(t)vg(t)

iL(t)

+

v2(t)

i1(t) i2(t)

Switch network

+

v1(t)

Fig. 18.7 Averaged switch modeling of a current-programmed converter: CCM buck example
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Fig. 18.8 Averaged switch model of CPM buck converter

This equation can be written in the alternative form

〈i1(t)〉Ts〈v1(t)〉Ts = 〈ic(t)〉TS 〈v2(t)〉Ts = 〈p(t)〉Ts (18.19)

Equations (18.17) and (18.19) are the desired result, which describes the average terminal re-
lations of the CCM current-programmed buck switch network. Equation (18.17) states that the
average terminal current 〈i2(t)〉TS is equal to the control current 〈ic(t)〉Ts . Equation (18.19) states
that the input port of the switch network consumes average power 〈p(t)〉Ts equal to the aver-
age power flowing out of the switch output port. The averaged equivalent circuit of Fig. 18.8 is
obtained.

Figure 18.8 describes the behavior of the current programmed buck converter switch net-
work, in a simple and straightforward manner. The switch network output port behaves as a
current source of value 〈ic(t)〉TS . The input port follows a power sink characteristic, drawing
power from the source vg equal to the power supplied by the ic current source. Properties of the
power source and power sink elements are described in Chaps. 15 and 21.

Similar arguments lead to the averaged switch models of the current programmed boost
and buck–boost converters, illustrated in Fig. 18.9. In both cases, the switch network averaged
terminal waveforms can be represented by a current source of value 〈ic(t)〉Ts , in conjunction
with a dependent power source or power sink.

A small-signal ac model of the current-programmed buck converter can now be constructed
by perturbation and linearization of the switch network averaged terminal waveforms. Let

〈v1(t)〉Ts = V1 + v̂1(t)

〈i1(t)〉Ts = I1 + î1(t)

〈v2(t)〉Ts = V2 + v̂2(t) (18.20)

〈i2(t)〉Ts = I2 + î2(t)

〈ic(t)〉Ts = Ic + îc(t)

Perturbation and linearization of the 〈ic(t)〉Ts current source of Fig. 18.8 simply leads to a current
source of value îc(t). Perturbation of the power source characteristic, Eq. (18.19), leads to

(V1 + v̂1(t))(I1 + î1(t)) = (Ic + îc(t))(V2 + v̂2(t)) (18.21)

Upon equating the dc terms on both sides of this equation, we obtain

V1I1 = IcV2 ⇒ I1 = DIc (18.22)
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Fig. 18.9 Averaged models of CPM boost (a) and CPM buck–boost (b) converters, derived via averaged
switch modeling

The linear small-signal ac terms of Eq. (18.21) are

v̂1(t)I1 + V1 î1(t) = îc(t)V2 + Icv̂2(t) (18.23)

Solution for the small-signal switch network input current î1(t) yields

î1(t) = îc(t)
V2

V1
+ v̂2(t)

Ic

V1
− v̂1(t)

I1

V1
(18.24)

The small-signal ac model of Fig. 18.10 can now be constructed. The switch network output
port is again a current source, of value îc(t). The switch network input port model is obtained
by linearization of the power sink characteristic, as given by Eq. (18.24). The input port current
î1(t) is composed of three terms. The îc(t) term is modeled by an independent current source, the
v̂2(t) term is modeled by a dependent current source, and the v̂1(t) term is modeled by an effec-
tive ac resistor having the negative value −V1/I1. As illustrated in Fig. 18.11, this incremental
resistance is determined by the slope of the power sink input port characteristic, evaluated at the
quiescent operating point. The power sink leads to a negative incremental resistance because an
increase in 〈v1(t)〉Ts causes a decrease in 〈i1(t)〉Ts , such that constant 〈p(t)〉Ts is maintained.

The equivalent circuit of Fig. 18.10 can now be simplified by use of the dc relations V2 =

DV1, I2 = V2/R, I1 = DI2, I2 = Ic. Equation (18.24) then becomes
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Fig. 18.10 Small-signal model of the CCM CPM buck converter, derived by perturbation and lineariza-
tion of the switch network of Fig. 18.8
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Fig. 18.11 Origin of the input port negative incremental resistance r1: the slope of the power sink char-
acteristic, evaluated at the quiescent operating point

î1(t) = Dîc(t) +
D
R

v̂2(t) − D2

R
v̂1(t) (18.25)

Finally, we can eliminate the quantities v̂1 and v̂2 in favor of the converter terminal voltages v̂g

and v̂2 as follows. The quantity v̂1 is simply equal to v̂g. The quantity v̂2 is equal to the output
voltage v̂ plus the voltage across the inductor, sLîc(s). Hence,

v̂2(s) = v̂(s) + sLîc(s) (18.26)

With these substitutions, Eq. (18.25) becomes

î1(s) = D
(
1 + s

L
R

)
îc(s) +

D
R

v̂(s) − D2

R
v̂g(s) (18.27)

The equivalent circuit of Fig. 18.12 is now obtained. It can be verified that this equivalent circuit
coincides with the model of Fig. 18.6 and the buck converter parameters of Table 18.1.

The approximate small-signal properties of the current-programmed buck converter can now
be explained. Since the inductor is in series with the current source îc, the inductor does not
contribute to the control-to-output transfer function. The control-to-output transfer function is
determined simply by the relation
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Fig. 18.12 Simplification of the CPM buck converter model of Fig. 18.10, with dependent power source
expressed in terms of the output voltage variations

Gvc(s) =
v̂(s)

îc(s)

∣∣∣∣∣∣
v̂g=0

=

(
R ‖ 1

sC

)
(18.28)

So current programming transforms the output characteristic of the buck converter into a current
source. The power sink input characteristic of the current-programmed buck converter leads to
a negative incremental input resistance, as described above. Finally, Fig. 18.12 predicts that the
buck converter line-to-output transfer function is zero:

Gvg(s) =
v̂(s)
v̂g(s)

∣∣∣∣∣∣
îc=0

= 0 (18.29)

Disturbances in vg do not influence the output voltage, since the inductor current depends only
on ic. The current-programmed controller adjusts the duty cycle as necessary to maintain con-
stant inductor current, regardless of variations in vg. The more accurate models of Sect. 18.3
predict that Gvg(s) is not zero, but is nonetheless small in magnitude.

Similar arguments lead to the boost converter small-signal equivalent circuit of Fig. 18.13.
Derivation of this equivalent circuit is left as a homework problem. In the case of the boost
converter, the switch network input port behaves as a current source, of value ic, while the
output port is a dependent power source, equal to the power apparently consumed by the current
source ic. In the small-signal model, the current source îc appears in series with the inductor L,
and hence the converter transfer functions cannot contain poles arising from the inductor. The
switch network power source output characteristic leads to an ac resistance of value r2 = R. The
line-to-output transfer function Gvg(s) is nonzero in the boost converter, since the magnitude of

+

L

C R

+

vg ic v

iL

Ric D sL
D' 2R

vg

D'R

Fig. 18.13 Small-signal model of the CCM CPM boost converter, derived via averaged switch modeling
and the approximation iL ≈ ic
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the power source depends directly on the value of vg. The control-to-output transfer function
Gvc(s) contains a right half-plane zero, identical to the right half-plane zero of the duty-cycle-
controlled boost converter.

18.2 Oscillation for D > 0.5

The current-programmed controller of Fig. 18.1 is unstable whenever the steady-state duty cycle
is greater than 0.5. To avoid this stability problem, the controller is usually modified by addition
of an artificial ramp to the sensed switch current waveform. In this section, the stability of the
current programmed controller is analyzed. The effects of the addition of the artificial ramp
are explained, using a simple first-order discrete-time analysis. Effects of the artificial ramp on
controller noise susceptibility are also discussed.

Figure 18.14 illustrates a generic inductor current waveform of a switching converter oper-
ating in the continuous conduction mode. The inductor current changes with a slope m1 during
the first subinterval, and a slope −m2 during the second subinterval. For the basic nonisolated
converters, the slopes m1 and −m2 are given by

Buck converter

m1 =
vg − v

L
− m2 = −

v
L

Boost converter

m1 =
vg

L
− m2 =

vg − v

L
(18.30)

Buck–boost converter

m1 =
vg

L
− m2 =

v
L

With knowledge of the slopes m1 and −m2, we can determine the general relationships between
iL(0), ic, iL(Ts), and dTs.

During the first subinterval, the inductor current iL(t) increases with slope m1, until iL(t)
reaches the control signal ic. Hence,

iL(dT s) = ic = iL(0) + m1dT s (18.31)

iL(t)

ic

m1

t0 dTs Ts

iL(0) iL(Ts)2

Fig. 18.14 Inductor current waveform of a current-programmed converter operating in the continuous
conduction mode
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Solution for the duty cycle d leads to

d =
ic − iL(0)

m1Ts
(18.32)

In a similar manner, for the second subinterval we can write

iL(Ts) = iL(dT s) − m2d′Ts (18.33)

= iL(0) + m1dT s − m2d′Ts

In steady-state, iL(0) = iL(Ts), d = D, m1 = M1, and m2 = M2. Insertion of these relationships
into Eq. (18.33) yields

0 = M1DT s − M2D′Ts (18.34)

Or,
M2

M1
=

D
D′

(18.35)

Steady-state Eq. (18.35) coincides with the requirement for steady-state volt-second balance on
the inductor.

Consider now a small perturbation in iL(0):

iL(0) = IL0 + îL(0) (18.36)

IL0 is a steady-state value of iL(0), which satisfies Eqs. (18.33) and (18.34), while îL(0) is a small
perturbation such that

|îL(0)| 	 |IL0| (18.37)

It is desired to assess the stability of the current-programmed controller, by determining whether
this small perturbation eventually decays to zero. To do so, let us solve for the perturbation after
n switching periods, îL(nT s), and determine whether îL(nT s) tends to zero for large n.

iL(t)

ic

m1

t0 DTs Ts

IL0

2

2

m1 Steady-state
waveform

Perturbed
waveform

I L0 + iL(0)

dTs

D + d Ts

iL(0)
iL(Ts)

Fig. 18.15 Effect of initial perturbation îL(0) on inductor current waveform

The steady-state and perturbed inductor current waveforms are illustrated in Fig. 18.15. For
clarity, the size of the inductor current perturbation îL(0) is exaggerated. It is assumed that the
converter operates near steady-state, such that the slopes m1 and m2 are essentially unchanged.
Figure 18.15 is drawn for a positive îL(0); the quantity d̂Ts is then negative. Since the slopes of
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Fig. 18.16 Expanded view of the steady-state and perturbed inductor current waveforms, near the peak
of iL(t)

the steady-state and perturbed waveforms are essentially equal over the interval 0 < t < (D +
d̂)Ts, the difference between the waveforms is equal to îL(0) for this entire interval. Likewise, the
difference between the two waveforms is a constant îL(Ts) over the interval DT s < t < Ts, since
both waveforms then have the slope −m2. Note that îL(Ts) is a negative quantity, as sketched
in Fig. 18.15. Hence, we can solve for îL(Ts) in terms of îL(0), by considering only the interval
(D + d̂)Ts < t < DT s as illustrated in Fig. 18.16.

From Fig. 18.16, we can use the steady-state waveform to express îL(0) as the slope m1,
multiplied by the interval length −d̂Ts. Hence,

îL(0) = −m1d̂Ts (18.38)

Likewise, we can use the perturbed waveform to express îL(Ts) as the slope −m2, multiplied by
the interval length −d̂Ts:

îL(Ts) = m2d̂Ts (18.39)

Elimination of the intermediate variable d̂ from Eqs. (18.38) and (18.39) leads to

îL(Ts) = îL(0)

(
−m2

m1

)
(18.40)

If the converter operating point is sufficiently close to the quiescent operating point, then m2/m1

is given approximately by Eq. (18.35). Equation (18.40) then becomes

îL(Ts) = îL(0)
(
− D

D′

)
(18.41)

A similar analysis can be performed during the next switching period, to show that

îL(2Ts) = îL(Ts)
(
− D

D′

)
= îL(0)

(
−D

D

)2
(18.42)

After n switching periods, the perturbation becomes

îL(nTs) = îL((n − 1)Ts)
(
− D

D′

)
= îL(0)

(
− D

D′

)n
(18.43)

Note that, as n tends to infinity, the perturbation îL(nT s) tends to zero provided that the charac-
teristic value −D/D′ has magnitude less than one. Conversely, the perturbation îL(nT s) becomes
large in magnitude when the characteristic value α = −D/D′ has magnitude greater than one:
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∣∣∣îL(nT s)
∣∣∣→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 when

∣∣∣∣∣− D
D′

∣∣∣∣∣ < 1

∞ when
∣∣∣∣∣− D

D′

∣∣∣∣∣ > 1
(18.44)

Therefore, for stable operation of the current-programmed controller, we need |α| = D/D′ < 1,
or

D < 0.5 (18.45)

As an example, consider the operation of the boost converter with the steady-state terminal
voltages Vg = 20 V, V = 50 V. Since V/Vg = 1/D′, the boost converter should operate with D =
0.6. We therefore expect the current-programmed controller to be unstable. The characteristic
value will be

α = − D
D′
=

(
−0.6

0.4

)
= −1.5 (18.46)

As given by Eq. (18.43), a perturbation in the inductor current will increase by a factor of – 1.5
over every switching period. As illustrated in Fig. 18.17, the perturbation grows to −1.5 îL(0)
after one switching period, to +2.25 îL(0) after two switching periods, and to −3.375 îL(0) af-
ter three switching periods. For the particular initial conditions illustrated in Fig. 18.17, this
growing oscillation saturates the Current-programmed controller after three switching periods.
The transistor remains on for the entire duration of the fourth switching period. The inductor
current and controller waveforms may eventually become oscillatory and periodic in nature,
with period equal to an integral number of switching periods. Alternatively, the waveforms may
become chaotic. In either event, the controller does not operate as intended.

Figure 18.18 illustrates the inductor current waveforms when the output voltage is decreased
to V = 30 V. The boost converter then operates with D = 1/3, and the characteristic value
becomes

α = − D
D′
=

(
−1/3

2/3

)
= −0.5 (18.47)

Perturbations now decrease in magnitude by a factor of 0.5 over each switching period. A dis-
turbance in the inductor current becomes small in magnitude after a few switching periods.

The instability for D > 0.5 is a well-known problem of current programmed control, and
is not dependent on the converter topology. The controller can be rendered stable for all duty
cycles by addition of an artificial ramp to the sensed switch current waveform, as illustrated

iL(t)

ic

t0 Ts

IL0

2Ts 3Ts 4Ts

iL(0)

iL(0)

ˆ

ˆ

ˆ

ˆ

2.25iL(0)

iL(0)

Fig. 18.17 Unstable oscillation for D = 0.6
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Fig. 18.18 A stable transient with D = 1
3

in Fig. 18.19. This artificial ramp has the qualitative effect of reducing the gain of the inner
switch-current-sensing discrete feedback loop. The artificial ramp has slope ma as shown. The
controller now switches the transistor off when

ia(dT s) + iL(dT s) = ic (18.48)

where ia(t) is the artificial ramp waveform. Therefore, the transistor is switched off when the
inductor current iL(t) is given by

iL(dT s) = ic − ia(dT s) (18.49)

Figure 18.20 illustrates the analog comparison of the inductor current waveform iL(t) with the
quantity [ic − ia(t)].

We can again determine the stability of the current-programmed controller by analyzing the
change in a perturbation of the inductor current waveform over a complete switching period. Fig-
ure 18.21 illustrates steady-state and perturbed inductor current waveforms, in the presence of
the artificial ramp. Again, the magnitude of the perturbation îL(0) is exaggerated. The perturbed
waveform is sketched for a positive value of îL(0); this causes d̂, and usually also îL(Ts), to be
negative. If the perturbed waveforms are sufficiently close to the quiescent operating point, then
the slopes m1 and m2 are essentially unchanged, and the relationship between îL(0) and îL(Ts)
can be determined solely by consideration of the interval (D + d̂)Ts < t < DT s. The pertur-
bations îL(0) and îL(Ts) are expressed in terms of the slopes m1, m2, and ma, and the interval
length −d̂Ts, as follows:

îL(0) = −d̂Ts(m1 + ma) (18.50)

îL(Ts) = −d̂Ts(ma − m2) (18.51)

Elimination of d̂ yields

îL(Ts) = îL(0)

(
−m2 − ma

m1 + ma

)
(18.52)

A similar analysis can be applied to the nth switching period, leading to

îL(nTs) = îL((n − 1)Ts)

(
−m2 − ma

m1 + ma

)
= îL(0)

(
−m2 − ma

m1 + ma

)n

= îL(0)αn (18.53)
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Fig. 18.19 Stabilization of the current-programmed controller by addition of an artificial ramp to the
measured switch current waveform: (a) block diagram, (b) artificial ramp waveform
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Fig. 18.20 Addition of artificial ramp: the transistor is now switched off when iL(t) = ic − ia(t)
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Fig. 18.21 Steady-state and perturbed inductor current waveforms, in the presence of an artificial ramp

The evolution of inductor current perturbations is now determined by the characteristic value

α = −m2 − ma

m1 + ma
(18.54)

For large n, the perturbation magnitude tends to

| îL(nT s) | →
⎧⎪⎪⎨⎪⎪⎩

0 when |α | < 1

∞ when |α | > 1
(18.55)

Therefore, for stability of the current-programmed controller, we need to choose the slope of
the artificial ramp ma such that the characteristic value α has magnitude less than one. The
artificial ramp gives us an additional degree of freedom, which we can use to stabilize the system
for duty cycles greater than 0.5. Note that increasing the value of ma causes the numerator of
Eq. (18.54) to decrease, while the denominator increases. Therefore, the characteristic value α
attains magnitude less than one for sufficiently large ma.

In the conventional voltage regulator application, the output voltage v(t) is well regulated by
the converter control system, while the input voltage vg(t) is unknown. Equation (18.30) then
predicts that the value of the slope m2 is constant and known with a high degree of accuracy,
for the buck and buck–boost converters. Therefore, let us use Eq. (18.35) to eliminate the slope
m1 from Eq. (18.54), and thereby express the characteristic value α as a function of the known
slope m2 and the steady-state duty cycle D:

α = −
1 − ma

m2

D′

D
+

ma

m2

(18.56)

One common choice of artificial ramp slope is

ma =
1
2

m2 (18.57)

It can be verified, by substitution of Eq. (18.57) into (18.56), that this choice leads to α = −1 at
D = 1, and to |α| < 1 for 0 ≤ D < 1. This is the minimum value of ma that leads to stability for
all duty cycles. We will see in Sect. 18.3 that this choice of ma has the added benefit of causing
the ideal line-to-output transfer function Gvg(s) of the buck converter to become zero.
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Fig. 18.22 When noise perturbs a controller signal such as ic, the duty cycle is perturbed: (a) with no
artificial ramp and small inductor current ripple, the perturbation d̂ is large; (b) an artificial ramp reduces
the controller gain, thereby reducing the perturbation d̂

Another common choice of ma is
ma = m2 (18.58)

This causes the characteristic value α to become zero for all D. As a result, îL(Ts) is zero for
any îL(0) that does not saturate the controller. The system removes any error after one switching
period Ts. This behavior is known as deadbeat control, or finite settling time.

It should be noted that the above stability analysis employs a quasi-static approximation,
in which the slopes m1 and m2 of the perturbed inductor current waveforms are assumed to be
identical to the steady-state case. In the most general case, the stability and transient response
of a complete system employing current-programmed control must be assessed using a system-
wide discrete-time or sampled-data analysis. Nonetheless, in practice the above arguments are
found to be sufficient for selection of the artificial ramp slope ma.

Current-programmed controller circuits exhibit significant sensitivity to noise. The reason
for this is illustrated in Fig. 18.22a, in which the control signal ic(t) is perturbed by a small
amount of noise represented by îc. It can be seen that, when there is no artificial ramp and when
the inductor current ripple is small, then a small perturbation in ic leads to a large perturbation
in the duty cycle: the controller has high gain. When noise is present in the controller circuit,
then significant jitter in the duty-cycle waveforms may be observed. A solution is to reduce
the gain of the controller by introduction of an artificial ramp. As illustrated in Fig. 18.22b, the
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same perturbation in ic now leads to a reduced variation in the duty cycle. When the layout and
grounding of the controller circuit introduce significant noise into the duty-cycle waveform, it
may be necessary to add an artificial ramp whose amplitude is substantially greater than the
inductor current ripple.

18.3 A More Accurate Model

The simple models discussed in the Sect. 18.1 yield much insight into the low-frequency behav-
ior of current-programmed converters. Unfortunately, they do not always describe everything
that we need to know. For example, the simple model of the buck converter predicts that the
line-to-output transfer function Gvg(s) is zero. While it is true that this transfer function is usu-
ally small in magnitude, the transfer function is not equal to zero. To predict the effect of input
voltage disturbances on the output voltage, we need to compute the actual Gvg(s). Furthermore,
the simple model does not take into account the effects of inductor current ripple or artificial
ramp slope on the average value of the inductor current.

In this section, a more accurate analysis is performed, which does not rely on the approxi-
mation 〈iL(t)〉Ts ≈ ic(t). The analytical approach of [167, 168] is combined with the controller
model of [169]. A functional block diagram of the current programmed controller is constructed,
which accounts for the presence of the artificial ramp and for the inductor current ripple. This
block diagram is appended to the averaged converter models derived in Chap. 7, leading to a
complete converter CPM model. Models for the CPM buck, boost, and buck–boost converters
are listed, and the buck converter model is analyzed in detail.

18.3.1 Current Programmed Controller Model

Rather than using the approximation 〈iL(t)〉TS = 〈ic(t)〉Ts , let us derive a more accurate expres-
sion relating the average inductor current 〈iL(t)〉Ts to the control input ic(t). Application of the
moving average (7.3) to iL(t),

〈iL(t)〉Ts =
1
Ts

∫ t+Ts/2

t−Ts/2
iL(τ)dτ (18.59)

is illustrated in Fig. 18.23 under transient conditions, in which iL(0) is not equal to iL(Ts). It
can be seen that the peak value ipk of iL(t) differs from ic(t), by the magnitude of the artificial
ramp waveform at time t = dT s, that is, by madT s. Furthermore, the peak and the average
values of the inductor current waveform differ because of the inductor current ripple. As a result,
a relationship between the average inductor current 〈iL(t)〉Ts and the control input ic(t) must
involve the slope ma of the artificial ramp, the time interval dTs, as well as the inductor current
slopes m1 and m2. A difficulty arises because this relationship depends on time t in (18.59), i.e.,
on the position of the averaging window of length Ts. This is in contrast to the averaging applied
in Chap. 7 to continuous conduction mode waveforms with duty cycle d being an independent
control input, where we found that the same results are obtained regardless of the position of
the averaging window within a switching period. In current-programmed control, however, duty
cycle d is not an independent control input, but is instead determined by the value of the control
input ic(t) at dTs. Just as in the pulse-width modulator discussed in Sect. 7.3, sampling of the
control input occurs at the modulated edge of the switch control signal, at dTs. Indeed, as shown



18.3 A More Accurate Model 747

Fig. 18.23 Accurate determination of the relationship between the average inductor current 〈iL(t)〉Ts

and ic

in Fig. 18.23, it is the value of ic(dTs) that determines the duty cycle d in the switching period
shown. Hence, the proper relationship between 〈iL(t)〉Ts and ic(t) is determined by finding the
average inductor current in (18.59) at the modulator sampling time t = dTs,

〈iL〉Ts = 〈iL(dTs)〉Ts =
1
Ts

∫ (d+0.5)Ts

(d−0.5)Ts

iL(τ)dτ (18.60)

The averaging window in Eq. (18.60) is shown in Fig. 18.23 for the case d < 0.5. Averaging can
be performed by splitting the averaging window into three subintervals: from (d − 0.5)Ts to 0,
from 0 to dTs, and from dTs to (d + 0.5)Ts. Integration can be simplified by adding the areas
of the three trapezoids having mid-point heights equal to i3, i1, i2, respectively, and subtracting
the area of the trapezoid having the mid-point height of i4 and with the base extending from
(d + 0.5)Ts to Ts,

iL(dTs)〉Ts = (0.5 − d)i3 + di1 + d′i2 − (0.5 − d)i4 (18.61)

iL(dTs)〉Ts = di1 + d′i2 − (0.5 − d)(i4 − i3) (18.62)

Equation (18.62) can be simplified by noting that the time interval between the midpoints i4 and
i3 is Ts, while the time interval between the midpoints i1 and i2 is Ts/2. Since the slope between
the midpoint values is the same, i4 − i3 = 2(i2 − i1). As a result, Eq. (18.62) becomes

〈iL〉Ts = di1 + d′i2 − 2(0.5 − d)(i2 − i1)

= d′i1 + di2 (18.63)

The literature includes a number of different approaches to CPM modeling, most notably
[165, 169, 171, 172]; an important difference between these is in how they average the in-
ductor current [175]. The above relationship, originally derived in [107], differs from various
alternative expressions reported in literature. If, for example, the averaging window is centered
at t = Ts/2, extending between 0 and Ts, a different relationship 〈iL〉Ts = di1 + d′i2 is obtained
[169]. In equilibrium, i1 = i2, and this alternative expression becomes equivalent to Eq. (18.63).
Similarly, predictions of low-frequency dynamics are essentially the same. However, small but
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conceptually important differences are found in predictions of high-frequency dynamics. As dis-
cussed further in Sect. 18.7, Eq. (18.63), which is based on correctly positioning the averaging
window, leads to a small-signal averaged ac model validated by exact sampled-data analysis.
The above result is consistent with the averaging definition of Eq. (7.3).

From Fig. 18.23, it follows that the midpoint currents in Eq. (18.63) can be found as

i1 = ipk −
m1

2
dTs (18.64)

i2 = ipk −
m2

2
d′Ts (18.65)

where
ipk = ic − madTs (18.66)

Substitution of Eqs. (18.64), (18.65), and (18.66) into Eq. (18.63) yields the desired large-signal
relationship between 〈iL〉Ts and ic:

〈iL〉Ts = ic − madTs −
m1 + m2

2
dd′Ts (18.67)

This equation exposes how the inductor current ripple and the artificial ramp can cause the
average inductor current 〈iL〉Ts to differ from the control input ic.

18.3.2 Small-Signal Averaged Model

A small-signal current-programmed controller model is found by perturbation and linearization
of Eq. (18.67). Let

〈iL〉Ts = IL + îL(t)

〈ic〉Ts = ic = = Ic + îc(t)

d(t) = D + d̂(t) (18.68)

m1 = M1 + m̂1(t)

m2 = M2 + m̂2(t)

Note that it is necessary to perturb the slopes m1 and m2, since the inductor current slope depends
on the converter voltages according to Eq. (18.30). For the basic buck, boost, and buck–boost
converters, the slope variations are given by

Buck converter

m̂1 =
v̂g − v̂

L
m̂2 =

v̂
L

Boost converter

m̂1 =
v̂g

L
m̂2 =

v̂ − v̂g

L
(18.69)

Buck–boost converter

m̂1 =
v̂g

L
m̂2 = −

v̂
L
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It is assumed that ma does not vary: ma = Ma. The usual steps of ac perturbation and lin-
earization, including substitution of Eq. (18.68) into Eq. (18.67), cancellation of dc terms, and
retention of the first-order ac terms, leads to:

îL(t) = îc(t) −
(
Ma +

M1 + M2

2
(1 − 2D)

)
Tsd̂(t) − DD′Ts

2
(m̂1(t) + m̂2(t)) (18.70)

With use of the equilibrium relationship DM1 = D′M2, Eq. (18.70) can be further simplified:

îL(t) = îc(t) −
(
Ma +

M1 − M2

2

)
Tsd̂(t) − DD′Ts

2
m̂1(t) − DD′Ts

2
m̂2(t) (18.71)

Finally, solution for d̂(t) yields

d̂(t) =
1(

Ma +
M1 − M2

2

)
Ts

[
îc(t) − îL(t) − DD′Ts

2
m̂1(t) − DD′Ts

2
m̂2(t)

]
(18.72)

This is the small-signal relationship that the current-programmed controller follows, to deter-
mine d̂(t) as a function of îc(t), îL(t), m̂1(t), and m̂2(t). Since the quantities m̂1(t) and m̂2(t) de-
pend on v̂g(t) and v̂(t), according to Eq. (18.69), we can express Eq. (18.72) in the following
form:

d̂(t) = Fm

[
îc(t) − îL(t) − Fgv̂g(t) − Fvv̂(t)

]
(18.73)

where

Fm =
1(

Ma +
M1 − M2

2

)
Ts

(18.74)

Expressions for the gains Fg and Fv, for the basic buck, boost, and buck–boost converters, are
listed in Table 18.2. A functional block diagram of the current-programmed controller small-
signal model, corresponding to Eq. (18.73), is constructed in Fig. 18.24.

Current-programmed converter models can now be obtained, by combining the controller
block diagram of Fig. 18.24 with the averaged converter models derived in Chap. 7. Fig-
ures 18.25, 18.26, and 18.27 illustrate the CPM converter models obtained by combination of
Fig. 18.24 with, respectively, the buck, boost, and buck–boost models of Fig. 7.18. The current
programmed controller contains effective feedback of the inductor current îL(t) and the output
voltage v̂(t), as well as effective feedforward of the input voltage v̂g(t).

Table 18.2 Current-programmed controller gains for basic converters

Converter Fg Fv

Buck
DD′Ts

2L
0

Boost 0
DD′Ts

2L

Buck–boost
DD′Ts

2L
−DD′Ts

2L
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Fig. 18.24 Functional block diagram of the current-programmed controller
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Fig. 18.25 More accurate model of a current-programmed buck converter
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Fig. 18.26 More accurate model of a current-programmed boost converter

Fig. 18.27 More accurate model of a current-programmed buck–boost converter
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18.4 Current-Programmed Transfer Functions

Next, let us solve the models of Sect. 18.3, to determine more accurate expressions for the
control-to-output and line-to-output transfer functions of current-programmed buck, boost, and
buck–boost converters. As discussed in Chap. 8, the converter output voltage v̂ can be expressed
as a function of the duty-cycle d̂ and input voltage v̂g variations, using the transfer functions
Gvd(s) and Gvg(s):

v̂(s) = Gvd(s)d̂(s) +Gvg(s)v̂g(s) (18.75)

In a similar manner, the inductor current variation î can be expressed as a function of the duty-
cycle d̂ and input voltage v̂g variations, by defining the transfer functions Gid(s) and Gig(s):

îL(s) = Gid(s)d̂(s) +Gig(s)v̂g(s) (18.76)

where the transfer functions Gid(s) and Gig(s) are given by

Gid(s) =
îL(s)

d̂(s)

∣∣∣∣∣∣
v̂g(s)=0

Gig(s) =
îL(s)
v̂g(s)

∣∣∣∣∣∣
d̂(s)=0

(18.77)

Figure 18.28 illustrates replacement of the converter circuit models of Figs. 18.25, 18.26,
and 18.27 with block diagrams that correspond to Eqs. (18.75) and (18.76). Furthermore, an
injection source v̂z is inserted between the output of the CPM controller and the duty-cycle
input to allow finding the system transfer functions using the Feedback Theorem of Chap. 13.

The control-to-output Gvc(s) and line-to-output Gvg−cpm(s) transfer functions can now be
found, by application of the Feedback Theorem to the block diagram of Fig. 18.28. The closed-
loop control-to-output transfer function is given by

Gvc(s) =
v̂

îc

∣∣∣∣∣∣ v̂z=0
v̂g=0

= G∞vc
Ti

1 + Ti
+G0vc

1
1 + Ti

(18.78)

Fig. 18.28 Block diagram that models the current-programmed converters of Figs. 18.25, 18.26,
and 18.27
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where

Ti(s) =
v̂y

v̂x

∣∣∣∣∣∣ îc=0
v̂g=0

= Fm (Gid + FvGvd) (18.79)

is the loop gain transfer function. Note that the feedback loop comprises two paths, one through
Gid and another through Gvd and Fv blocks, both paths including the CPM modulator gain Fm.
The feedback loop through Gid can conceptually be considered the main feedback loop in a
current-programmed controller, while the feedback loop through Gvd and Fv reflects the effects
of the output voltage on the current ripple, and hence on the average inductor current. In a CPM
buck converter, Fv = 0, which means that only the main feedback loop exists.

The closed-loop control-to-output ideal forward gain G∞vc is found with v̂g = 0 and with v̂y

nulled:

G∞vc(s) =
v̂

îc

∣∣∣∣∣∣ v̂g=0
v̂y→

null
0

(18.80)

Nulling v̂y implies
îc − îL − Fvv̂ →

null
0 (18.81)

Given that Gvdv̂x = v̂ and Gidv̂x = îL, we have

îL =
Gid

Gvd
v̂ (18.82)

Substituting Eq. (18.82) into Eq. (18.81), we have

îc −
Gid

Gvd
v̂ − Fvv̂ →

null
0 (18.83)

which yields an expression for the ideal forward gain

G∞vc(s) =
v̂

îc

∣∣∣∣∣∣ v̂g=0
v̂y→

null
0

=
Gvd

Gid + FvGvd
=

FmGvd

Ti
(18.84)

Finally, the direct forward transmission through the feedback path is found with v̂g = 0 and with
v̂x nulled. By inspection,

G0vc = 0 (18.85)

Substituting Eqs. (18.79), (18.84), and (18.85) into Eq. (18.78) leads to the desired result:

Gvc(s) =
FmGvd

1 + Ti
=

FmGvd

1 + Fm(Gid + FvGvd)
(18.86)

Similarly, line-to-output transfer function can be found by application of the Feedback Theorem
to the block diagram in Fig. 18.28 with îc = 0,

Gvg−cpm(s) =
v̂
v̂g

∣∣∣∣∣∣ v̂z=0
îc=0

= G∞vg−cpm
Ti

1 + Ti
+G0vg−cpm

1
1 + Ti

(18.87)
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where

G∞vg−cpm(s) =
v̂
v̂g

∣∣∣∣∣∣ îc=0
v̂y→

null
0

=
−FmFgGvd + Fm(GvgGid −GigGvd)

Ti
(18.88)

G0vg−cpm(s) =
v̂
v̂g

∣∣∣∣∣∣ îc=0
v̂x→

null
0

= Gvg (18.89)

The current-programmed line-to-output transfer function is obtained by substitution of
Eqs. (18.79), (18.88) and (18.89) into Eq. (18.87):

Gvg−cpm(s) =
v̂(s)
v̂g(s)

∣∣∣∣∣∣
îc(s)=0

=
Gvg − FmFgGvd + Fm(GvgGid −GigGvd)

1 + Fm(Gid + FvGvd)
(18.90)

Equations (18.86) and (18.90) are general expressions for the important transfer functions of
single-inductor current-programmed converters operating in the continuous conduction mode.

18.4.1 Discussion

The controller model of Eq. (18.73) and Fig. 18.24 accounts for the differences between iL and
ic that arise by two mechanisms: the inductor current ripple and the artificial ramp. The inductor
current ripple causes the peak and average values of the inductor current to differ; this leads to a
deviation between the average inductor current and ic. Since the magnitude of the inductor cur-
rent ripple is a function of the converter input and capacitor voltages, this mechanism introduces
v̂g and v̂ dependencies into the controller small-signal block diagram. Thus, the Fg and Fv gain
blocks of Fig. 18.24 model the small-signal effects of the inductor current ripple. For operation
deep in continuous conduction mode (2L/RT s 
 1), the inductor current ripple is small. The
Fg and Fv gain blocks can then be ignored, and the inductor current ripple has negligible effect
on the current-programmed controller gain.

The artificial ramp also causes the average inductor current to differ from ic. This is modeled
by the gain block Fm. With no artificial ramp, Ma = 0, Eq. (18.74) implies that the modulator
gain Fm tends to infinity if M1 = M2, which corresponds to operation at D = 0.5. If M2 > M1

(D > 0.5), Fm becomes negative, which implies positive feedback in the current control loop.
The nature of instability and oscillations for D > 0.5, as well as the need for the artificial ramp,
have been addressed in Sect. 18.2 using discrete-time techniques. According to Eqs. (18.56)
and (18.57) an artificial ramp with Ma ≥ M2/2 results in a stable current-programmed controller
for any D, 0 ≤ D < 1. One may verify that this artificial ramp slope Ma ≥ M2/2 also results in
a finite, positive value for the modulator gain Fm for any D.

Consider operation at D < 0.5 with no artificial ramp, Ma = 0. The current-programmed
modulator gain Fm is very large if M1 and M2 are very small, i.e., if the inductor current ripple
can be neglected. The current-programmed control systems of Figs. 18.25, 18.26, and 18.27
then effectively have very large loop gain Ti, so that the signal at the input to the Fm block
(d̂/Fm) tends to zero. The block diagram then predicts that

d̂
Fm
= 0 = îc − îL − Fgv̂g − Fvv̂ (18.91)
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In the case of negligible inductor current ripple (Fg → 0 and Fv → 0), this equation further
reduces to

0 = îc − îL (18.92)

which coincides with the simple approximation employed in Sect. 18.1. Hence, the transfer
functions predicted in this section reduce to the results of Sect. 18.1 in case of no artificial ramp
and negligible inductor current ripple. In the limit when Fm → ∞, Fg → 0, and Fv → 0, the
control-to-output transfer function (18.86) reduces to

lim
Fm→∞
Fg→0
Fv→0

Gvc(s) =
Gvd

Gid
(18.93)

and the line-to-output transfer function (18.90) reduces to

lim
Fm→∞
Fg→0
Fv→0

Gvg−cpm(s) =
GvgGid −GigGvd

Gid
(18.94)

It can be verified that Eqs. (18.93) and (18.94) are equivalent to the transfer functions derived
in Sect. 18.1.

When an artificial ramp is present, then the CPM modulator gain Fm is reduced. The current-
programmed controller no longer perfectly regulates the inductor current iL, and the terms on
the right-hand side of Eq. (18.91) do not add to zero. In the extreme case of a very large artificial
ramp (large Ma and hence small Fm), the current-programmed controller degenerates to duty-
cycle control. The artificial ramp and analog comparator of Fig. 18.19 then function as a pulse-
width modulator similar to Fig. 7.29, with small-signal gain Fm. For small Fm, the control-to-
output transfer function (18.86) reduces to

lim
small Fm

Gvc(s) = FmGvd(s) (18.95)

which coincides with conventional duty-cycle control. Likewise, Eq. (18.90) reduces to

lim
small Fm

Gvg−cpm(s) = Gvg (18.96)

which is the line-to-output transfer function for conventional duty cycle control.

18.4.2 Current-Programmed Transfer Functions of the CCM Buck Converter

The control-to-output transfer function Gvd(s) and line-to-output transfer function Gvg(s) of
the CCM buck converter with duty-cycle control are tabulated in Chap. 8, by analysis of the
equivalent circuit model in Fig. 7.18a. The results are

Gvd(s) =
V
D

1
den(s)

(18.97)

Gvg(s) = D
1

den(s)
(18.98)
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where the denominator polynomial is

den(s) = 1 + s
L
R
+ s2LC (18.99)

The inductor current transfer functions Gid(s) and Gig(s) defined by Eqs. (18.76) and (18.77) are
also found by solution of the equivalent circuit model in Fig. 7.18a, with the following results:

Gid(s) =
V

DR
(1 + sRC)

den(s)
(18.100)

Gig(s) =
D
R

(1 + sRC)
den(s)

(18.101)

where den(s) is again given by Eq. (18.99).
With no artificial ramp and negligible ripple, the control-to-output transfer function reduces

to the ideal expression (18.93). Substitution of Eqs. (18.97) and (18.100) yields

lim
Fm→∞
Fg→0
Fv→0

Gvc(s) =
Gvd(s)
Gid(s)

=
R

1 + sRC
(18.102)

Under the same conditions, the line-to-output transfer function reduces to the ideal expres-
sion (18.94). Substitution of Eqs. (18.97) to (18.101) leads to

lim
Fm→∞
Fg→0
Fv→0

Gvg−cpm(s) =
Gvg(s)Gid(s) −Gvd(s)Gig(s)

Gid(s)
= 0 (18.103)

Equations (18.102) and (18.103) coincide with the expressions derived in Sect. 18.1 for the
CCM buck converter.

For arbitrary Fm, Fv, and Fg, the control-to-output transfer function is given by Eq. (18.86).
According to Table 18.2, Fv = 0 for the buck converter. Substitution of Eqs. (18.97) to (18.101)
into Eq. (18.86) yields

Gvc(s) =
FmGvd

1 + FmGid
=

Fm

(
V
D

1
den(s)

)

1 + Fm

(
V

DR
1 + sRC
den(s)

) (18.104)

Simplification leads to

Gvc(s) =
Fm

V
D

den(s) +
FmV
DR

(1 + sRC)
(18.105)

Finally, the control-to-output transfer function can be written in the following normalized form:

Gvc(s) =
Gc0

1 +
s

Qcωc
+

(
s
ωc

)2
(18.106)
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where

Gc0 =
V
D

Fm

1 +
FmV
DR

(18.107)

ωc =
1
√

LC

√
1 +

FmV
DR

(18.108)

Qc = R

√
C
L

√
1 +

FmV
DR

1 +
RCFmV

DL

(18.109)

In the above equations, the salient features Gc0, ωc, and Qc are expressed as the duty ratio-
control value, multiplied by a factor that accounts for the effects of current-programmed control.

It can be seen from Eq. (18.109) that current programming tends to reduce the Q-factor of the
poles. For large Fm, Qc varies as F−1/2

m ; consequently, the poles become real and well-separated
in magnitude. The low-Q approximation of Sect. 8.1.7 then predicts that the low-frequency pole
ωp1 becomes

ωp1 = Qcωc =
R
L

1 +
FmV
DR

1 +
RCFmV

DL

(18.110)

For large Fm, the pole frequency can be further approximated as

fp1 ≈
1

2π
1

RC
(18.111)

which coincides with the low-frequency pole predicted by the simple model of Sect. 18.1. The
low-Q approximation also predicts that the high-frequency pole ωh f becomes

ωh f ≈
ωc

Qc
=

1
RC

(
1 +

RCFmV
DL

)
(18.112)

For large Fm, the pole frequency fh f can be further approximated as

fh f ≈
1

2π
FmV
DL

(18.113)

Using Fm from Eq. (18.74), V/L = M2, and M1D = M2D′, fh f can be expressed as

fh f =
fs

π

M1 + M2

2Ma + M1 − M2
=

fs

π

1

1 + 2D

(
Ma

M2
− 1

) (18.114)

It follows that the high-frequency pole is typically predicted to lie near to or even greater than
the switching frequency fs, well above the range of frequencies where the averaged model based
on the continuous-time averaged analysis employed here can be considered valid. It should be
pointed out that the converter switching and modulator sampling processes lead to discrete-
time phenomena that affect the high-frequency behavior of the converter, as discussed further
in Sect. 18.7.
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For arbitrary Fm, Fv, and Fg, the current-programmed line-to-output transfer function
Gvg−cpm(s) is given by Eq. (18.90). In the case of the buck converter, the quantity (GvgGid −
GvdGig) is equal to zero. Furthermore, Fv = 0. Hence, Eq. (18.90) becomes

Gvg−cpm(s) =
Gvg − FmFgGvd

1 + FmGid
(18.115)

Substitution of Eqs. (18.97) to (18.101) into Eq. (18.115) yields

Gvg−cpm(s) =

D
den(s)

− FmFg
V
D

1
den(s)

1 + Fm

(
V

DR
1 + sRC
den(s)

) (18.116)

Simplification leads to

Gvg−cpm(s) =

(
D − FmFg

V
D

)

den(s) +
FmV
DR

(1 + sRC)
(18.117)

Finally, the current-programmed line-to-output transfer function can be written in the following
normalized form:

Gvg−cpm(s) =
Gg0

1 +
s

Qcωc
+

(
s
ωc

)2
(18.118)

where

Gg0 = D
1 −

FmFgV

D2

1 +
FmV
DR

= D

2Ma − M2

2Ma + M1 − M2

1 +
FmV
DR

(18.119)

The quantities Qc and ωc are given by Eqs. (18.108) and (18.109).
Equation (18.119) shows how current programming reduces the dc gain of the buck con-

verter line-to-output transfer function. For duty-cycle control (Fm → 0), Gg0 is equal to D.
Nonzero values of Fm reduce the numerator and increase the denominator of Eq. (18.119),
which tends to reduce Gg0. In the ideal case (Fm → ∞), we have already seen that Gg0 be-
comes zero. Equation (18.119) reveals that nonideal current-programmed buck converters can
also exhibit zero Gg0, if the artificial ramp slope Ma is chosen equal to M2/2. The current-
programmed controller then prevents input line voltage variations from reaching the output. The
mechanism that leads to this result is the effective feedforward of vg, inherent in the current-
programmed controller via the Fgv̂g term in Eq. (18.73). It can be seen from Fig. 18.28 that,
when FgFmGvd(s) = Gvg(s), then the feedforward path from v̂g through Fg induces variations
in the output v̂ that exactly cancel the v̂g-induced variations in the direct forward path of the
converter through Gvg(s). This cancellation occurs in the buck converter when Ma = 0.5M2.

18.4.3 Results for Basic Converters

The transfer functions of the basic buck, boost, and buck–boost converters with current-
programmed control are summarized in Tables 18.3, 18.4, 18.5. Control-to-output and line-to-
output transfer functions for both the simple model of Sect. 18.1 and the more accurate model
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Table 18.3 Summary of results for the CPM buck converter

Simple model Duty-cycle controlled transfer functions
v̂

îc

=
R

1 + sRC
Gvd(s) =

V
D

1
den(s)

Gid(s) =
V

DR
1 + sRC
den(s)

v̂
v̂g
= 0 Gvg(s) = D

1
den(s)

Gig(s) =
D
R

1 + sRC
den(s)

den(s) = 1 + s
L
R
+ s2LC

More accurate model
v̂

îc

= Gvc(s) = Gc0
1

1 +
s

Qcωc
+

(
s
ωc

)2
Gc0 =

V
D

Fm(
1 +

FmV
DR

)

ωc =
1
√

LC

√
1 +

FmV
DR

Qc = R

√
C
L

√
1 +

FmV
DR(

1 +
RCFmV

DL

)

v̂
v̂g
= Gvg−cpm(s) = Gg0

1

1 +
s

Qcωc
+

(
s
ωc

)2
Gg0 = D

(
1 −

FmFgV

D2

)

(
1 +

FmV
DR

)

Table 18.4 Summary of results for the CPM boost converter

Simple model Duty-cycle controlled transfer functions

v̂

îc

=
D′R

2

(
1 − s

L
D′2R

)
(
1 + s

RC
2

) Gvd(s) =
V
D′

(
1 − s

L
D′2R

)

den(s)
Gid(s) =

2V
D′2R

(
1 + s

RC
2

)

den(s)

v̂
v̂g
=

1
2D′

1(
1 + s

RC
2

) Gvg(s) =
1
D′

1
den(s)

Gig(s) =
1

D′2R
(1 + sRC)

den(s)

den(s) = 1 + s
L

D′2R
+ s2 LC

D′2

More accurate model

v̂

îc

= Gvc(s) = Gc0

(
1 − s

L
D′2R

)

1 +
s

Qcωc
+

(
s
ωc

)2
Gc0 =

V
D′

Fm(
1 +

2FmV
D′2R

+
FmFvV

D′

)

ωc =
D′
√

LC

√
1 +

2FmV
D′2R

+
FmFvV

D′
Qc = D′R

√
C
L

√
1 +

2FmV
D′2R

+
FmFvV

D′(
1 + RC

FmV
L
− FmFvV

D′

)

v̂
v̂g
= Gvg−cpm(s) = Gg0

1

1 +
s

Qcωc
+

(
s
ωc

)2
Gg0 =

1
D′

(
1 +

FmV
D′2R

)
(
1 +

2FmV
D′2R

+
FmFvV

D′

)
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Table 18.5 Summary of results for the CPM buck–boost converter

Simple model Duty-cycle controlled transfer functions

v̂

îc

= − D′R
(1 + D)

(
1 − s

DL
D′2R

)
(
1 + s

RC
1 + D

) Gvd(s) = − |V |
DD′

(
1 − s

DL
D′2R

)

den(s)
Gid(s) =

|V |(1 + D)
DD′2R

(
1 + s

RC
(1 + D)

)

den(s)

v̂
v̂g
= − D2

1 − D2

1(
1 + s

RC
1 + D

) Gvg(s) = − D
D′

1
den(s)

Gig(s) =
D

D′2R
(1 + sRC)

den(s)

den(s) = 1 + s
L

D′2R
+ s2 LC

D′2

More accurate model

v̂

îc

= Gvc(s) = Gc0

(
1 − s

DL
D′2R

)

1 +
s

Qcωc
+

(
s
ωc

)2
Gc0 = −

|V |
DD′

Fm(
1 +

Fm|V |(1 + D)
DD′2R

− FmFv|V |
DD′

)

ωc =
D′
√

LC

√
1 +

Fm|V |(1 + D)
DD′2R

− FmFv|V |
DD′

Qc = D′R

√
C
L

√
1 +

Fm|V |(1 + D)
DD′2R

− FmFv|V |
DD′(

1 +
Fm|V |RC

DL
+

FmFv|V |
D′

)

v̂
v̂g
= Gvg−cpm(s) = Gg0

(
1 +

s
ωgz

)

1 +
s

Qcωc
+

(
s
ωc

)2
Gg0 = −

D
D′

(
1 +

Fm|V |
D′2R

−
FmFg|V |

D2

)

(
1 +

Fm|V |(1 + D)
DD′2R

− FmFv|V |
DD′

)

ωgz =
DD′2R
|V |LFmFg

(
1 +

Fm|V |
D′2R

−
FmFg|V |

D2

)

derived in this section are listed. For completeness, the transfer functions for duty-cycle control
are included. In each case, the salient features are expressed as the corresponding quantity with
duty-cycle control, multiplied by a factor that accounts for current-programmed control.

The two poles of the line-to-output transfer functions Gvg−cpm and control-to-output transfer
functions Gvc of all three converters typically exhibit low Q-factors in CPM. The low-Q approx-
imation can be applied, as in Eqs. (18.110) to (18.113), to find the low-frequency pole. The
line-to-output transfer functions of the boost and buck–boost converters exhibit two poles and
one zero, with substantial dc gain.

18.4.4 Addition of an Input Filter to a Current-Programmed Converter

Addition of an input filter to a duty-cycle controlled converter is discussed in Chap. 17, where
it is found that effects of input filter on converter transfer functions can be evaluated using the
Extra Element Theorem of Chap. 16. In particular, Eq. (17.4) shows how the control-to-output
transfer function Gvd is modified by a correction factor, which depends on the impedance ratios
Zo/ZN and Zo/ZD, where Zo(s) is the filter output impedance, ZD(s) is the converter driving-
point input impedance, and ZN(s) is the converter input impedance determined under the con-
dition that the output voltage is nulled. The input filter design approach of Chap. 17 is based



18.4 Current-Programmed Transfer Functions 761

on meeting the impedance inequalities of Sect. 17.2.3 so that the input filter does not substan-
tially alter the control-to-output transfer function. The same approach can be applied to current-
programmed converters.

In the presence of an input filter, the CPM control-to-output transfer function is given by

Gvc(s) =
v̂

îc
=

⎛⎜⎜⎜⎜⎜⎝Gvc(s)

∣∣∣∣∣∣
Zo(s)=0

⎞⎟⎟⎟⎟⎟⎠

(
1 +

Zo(s)
ZN−cpm(s)

)

(
1 +

Zo(s)
ZD−cpm(s)

) (18.120)

where

Gvc(s)

∣∣∣∣∣∣
Zo(s)=0

(18.121)

is the CPM control-to-output transfer function without the input filter, while ZN−cpm and ZD−cpm

are input impedances of the current-programmed converter found under two different conditions
prescribed by the Extra Element Theorem. The CPM input impedances Zi−cpm can be found
using the converter models shown in Figs. 18.25, 18.26, and 18.27. As an example, small-signal
model of a current-programmed buck converter of Fig. 18.25 is shown in Fig. 18.29. The model
includes three independent sources: control input îc, input voltage v̂g, and an additional injection
source îz, which will facilitate determining ZD−cpm(s) using the Feedback Theorem of Chap. 13.
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îg îL
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îc

ZN−cpm

ZD−cpm

Fig. 18.29 Small-signal averaged model suitable for finding input impedances in the current-
programmed buck converter
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To determine ZN−cpm, the additional injection source is set to zero, îz = 0. In the presence of
îc and v̂g, the output v̂ is nulled. Under these conditions, we find

1
ZN−cpm(s)

=
îg
v̂g

∣∣∣∣∣∣
v̂→

null
0

(18.122)

Nulling the output implies nulling the inductor current, which means that Dv̂g +Vgd̂ must equal
zero. As a result, we have

d̂ = − D
Vg

v̂g (18.123)

Under the nulling condition, the input current is

îg

∣∣∣∣∣∣
v̂→

null
0

= Id̂ (18.124)

Substitution of Eq. (18.123) into Eq. (18.124) yields

1
ZN−cpm(s)

=
îg
v̂g

∣∣∣∣∣∣
v̂→

null
0

= −D2

R
=

1
ZN(s)

(18.125)

or ZN−cpm = −R/D2. The result for ZN−cpm is exactly the same as the result given by Eq. (17.28)
for ZN in duty-cycle controlled buck converters. This is not surprising since the nulling condition
v̂ →

null
0 results in exactly the same converter circuit conditions regardless of the nature of the

control input.
To determine ZD−cpm, îz = 0 and the independent control input is set to zero, îc = 0. The

converter input admittance, i.e., the inverse of ZD−cpm, is defined as follows:

1
ZD−cpm(s)

=
îg
v̂g

∣∣∣∣∣∣
îc=0

(18.126)

From the model shown in Fig. 18.29, this transfer function can be found in any number of
ways. In contrast to duty-cycle converters, where ZD is the converter open-loop input impedance,
ZD−cpm is the input impedance of a current-programmed converter, which includes feedback and
feedforward paths. It is therefore convenient to approach finding ZD−cpm using the Feedback
Theorem:

1
ZD−cpm(s)

=
1

Z∞D−cpm(s)
Ti

1 + Ti
+

1
Z0D−cpm(s)

1
1 + Ti

(18.127)

where Ti(s) is the current-programmed loop gain

Ti(s) =
îy

îx

∣∣∣∣∣∣
v̂g=0

= FmGid(s) (18.128)

Note that the injection source îz has been added to the model of Fig. 18.29 specifically for the
purpose of finding ZD−cpm using the Feedback Theorem. The ideal input admittance can be
found by nulling îy in the presence of îz and v̂g. Since îc = 0, nulling îy is equivalent to nulling
îL. Hence, the input admittance under the nulling condition is given by
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1
Z∞D−cpm(s)

=
îg
v̂g

∣∣∣∣∣∣
îy→

null
0

= −D2

R
(18.129)

It follows that Z∞D−cpm(s) = −R/D2, which the same as the result found for ZN−cpm. The ad-
mittance 1/Z0D−cpm(s) is found under the condition that îx is nulled in the presence of v̂g and îz.
Solving the circuit model in Fig. 18.29 results in

1
Z0D−cpm(s)

=
îg
v̂g

∣∣∣∣∣∣
îx→

null
0

=
D2 − FmFgDVg

Zei
−

FmFgDVg

R
(18.130)

Substitution of Eqs. (18.128), (18.129), and (18.130) into Eq. (18.127) yields an expression for
the CPM input impedance ZD−cpm. Following the discussion in Sect. 18.4.1, let us examine how
ZD−cpm depends on the converter parameters and the artificial ramp slope Ma. Consider first
operation at D < 0.5 with no artificial ramp, Ma = 0. If inductance L is relatively large, M1 and
M2 are small, and therefore CPM gain is very large. A large L implies that the inductor current
ripple is small, and that Fg ≈ 0. Large Fm implies that Ti is large and Eq. (18.127) simplifies to:

lim
Fm→∞
Fg→0

1
ZD−cpm(s)

= −D2

R
(18.131)

Next, consider the case when the artificial ramp slope equals Ma = M2/2, the minimum value
necessary to ensure stability of the CPM controlled for any duty cycle D. It can be shown that

FmFgDVg

∣∣∣
Ma=M2/2

= D2 (18.132)

so that Eq. (18.127) becomes
1

ZD−cpm(s)

∣∣∣∣∣∣
Ma=M2/2

= −D2

R
(18.133)

Therefore, for Ma = M2/2, both ZN−cpm and ZD−cpm are equal to −R/D2. For practical values of
the artificial ramp slope Ma, ZD−cpm ≈ ZN−cpm = −R/D2.

Finally, consider the case when the artificial ramp slope Ma is large, so that Fm and therefore
Ti are small. Equation (18.127) then reduces to

lim
Fm→0

1
ZD−cpm(s)

= −D2

Zei
(18.134)

which means that for large Ma the CPM input impedance ZD−cpm approaches the open-loop
input impedance ZD in Eq. (17.21) for a duty-cycle controlled converter.

Once ZN−cpm and ZD−cpm are determined, input filter design for a current-programmed con-
troller follows the approach described in Chap. 17.

18.5 Simulation of CPM Controlled Converters

In the current-programmed mode (CPM), the transistor switching is controlled so that the peak
transistor current follows a control signal. The transistor duty cycle d(t) is not directly controlled,
but depends on the CPM control input as well as on other converter voltages and currents.
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CPM

control current 1 2

d

Rf iL(t)
Ts

v1(t) Ts
v2(t) Ts

vc(t) Ts

PARAMETERS:

Rf, fs, L, Va

Inputs:

Output: duty cycle d

Fig. 18.30 Current-programmed mode (CPM) subcircuit

In this section, large-signal averaged relationships in CPM are written in a form suitable for
implementation as a subcircuit for simulation. The desired form of the CPM averaged subcircuit
model is shown in Fig. 18.30. The inputs to the subcircuit are the average control input,

〈vc(t)〉Ts = Rf 〈ic(t)〉Ts (18.135)

the sensed average inductor current Rf 〈iL(t)〉Ts , the average voltage 〈v1(t)〉Ts applied across the
inductor during the interval when the transistor is on, and the average voltage 〈v2(t)〉Ts applied
across the inductor during the interval when the rectifier is on. The model parameters include the
equivalent current-sense resistance Rf , switching frequency fs, inductance L, and the amplitude
Va of the artificial ramp,

Va = maTsRf (18.136)

given an artificial ramp having slope −ma added to the control input. In the subinterval when
the transistor is on, the inductor current increases with slope m1 given by

m1 =
〈v1(t)〉Ts

L
(18.137)

It is assumed that voltage ripples are small so that the voltage v1(t) across the inductor is ap-
proximately equal to the averaged value 〈v1(t)〉Ts . The length of this subinterval is d(t)Ts. In
the second subinterval, when the transistor is off and the rectifier is on, the inductor current
decreases with a negative slope −m2. Under the assumption that voltage ripples are small, the
slope m2 is given by

m2 =
〈v2(t)〉Ts

L
(18.138)

The CPM model output is the duty cycle d. With the inputs and the output shown in Fig. 18.30,
the CPM subcircuit can be used in combination with any of the averaged switch subcircuit mod-
els developed in Sect. 14.3 to construct an averaged simulation model for a current-programmed
converter. The CPM subcircuit model is developed first in Sect. 18.5.1 for the case when the con-
verter operates in continues conduction mode, and is then extended to include DCM operation
in Sect. 18.5.2.

18.5.1 Simulation Model for CPM Controlled Converters in CCM

Assuming operation in continuous conduction mode, the large-signal relationship between the
average inductor current 〈iL〉Ts and the control signal ic is given by Eq. (18.67),
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〈iL〉Ts = ic − madTs −
m1 + m2

2
dd′Ts (18.139)

Next, the switch duty cycle is found by solving Eq. (18.139). There are many different ways the
switch duty cycle can be expressed in terms of other quantities; although mathematically equiv-
alent, these different forms of solving for d may result in different convergence performance of
the numerical solver in the simulator. One approach is to express d as

d =
ic − 〈iL(t)〉Ts

m1 + m2

2
d′Ts + maTs

(18.140)

Using Eqs. (18.135), (18.136), (18.137), and (18.138), Eq. (18.140) can be written in the form

d =
2
(
〈vc(t)〉Ts − Rf 〈iL(t)〉Ts

)
Rf

L fs

(〈v1(t)〉Ts + 〈v2(t)〉Ts

)
d′ + 2Va

(18.141)

This implicit expression (notice that d is on both sides of the equation) is suitable for implemen-
tation in a SPICE subcircuit model, which is named CPM-CCM. The numerical solver in the
simulator is capable of computing the switch duty cycle d based on Eq. (18.141).

18.5.2 Combined CCM/DCM Simulation Model

Typical inductor current and voltage waveforms of CPM converters operating in discontinuous
conduction mode are shown in Fig. 18.31. The length of the second subinterval is d2(t)Ts. In
CCM, the second subinterval lasts until the end of the switching cycle,

d2 = 1 − d (18.142)

t

iL(t)

0

ipk

vL(t)

0

v1(t) Ts

v2(t) Ts

ic
 ma

 m2m1

t

Ts

dTs d2Ts

Fig. 18.31 Current-programmed mode waveforms in discontinuous conduction mode
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In DCM, the current drops to zero before the end of the switching period. The length of the
second subinterval can be computed from:

d2 =
ipk

m2Ts
(18.143)

If the converter operates in DCM, d2 computed from Eq. (18.143) is smaller than 1 − d. If the
converter operates in CCM, 1−d is smaller than d2 computed from Eq. (18.143). In general, the
length of the second subinterval can be found as the smaller of the two values computed using
Eqs. (18.142) and (18.143).

In the subcircuit implementation, the length of the second subinterval can therefore be com-
puted as the smaller of the values given by Eqs. (18.142) and (18.143):

d2 = min

(
1 − d,

iPk

m2Ts

)
(18.144)

By use of d2 from Eq. (18.144), Eq. (18.141) can be extended to allow for CCM or DCM opera-
tion of a current-programmed converter as follows:

d =
2
(
〈vc(t)〉Ts (d + d2) − Rf 〈iL(t)〉Ts

)
Rf

L fs

(〈v1(t)〉Ts + 〈v2(t)〉Ts

)
d2(d + d2) + 2Va(d + d2)

(18.145)

This relationship is valid for both CCM and DCM provided that the second subinterval length
d2 is computed according to Eq. (18.144). Expression (18.145) is used in the implementation of
the combined CCM/DCM subcircuit CPM.

18.5.3 Simulation Example: Frequency Responses of a Buck Converter with
Current-Programmed Control

To illustrate an application of the CPM subcircuit, let us consider the example buck converter
circuit model of Fig. 18.32. To construct this averaged circuit model in SPICE, the switches
are replaced by the CCM-DCM1 averaged switch subcircuit. The control input to the CPM
subcircuit is the independent voltage source vc. Three dependent voltage sources are used to
generate other inputs to the CPM subcircuit. The controlled voltage source Ei is proportional to
the inductor current iL. The controlled voltage source E1 is equal to v(1)−v(3), which is equal to
the voltage 〈v1(t)〉Ts applied across the inductor during the first subinterval when the transistor
is on and the diode is off. The controlled voltage source E2 is equal to v(3), which is equal to the
voltage 〈v2(t)〉Ts applied across the inductor during the second subinterval when the transistor is
off and the diode is on.

SPICE ac simulations are performed at the quiescent operating point obtained for the dc
value of the control input equal to Vc = 1.4 V. At the quiescent operating point, the switch duty
cycle is D = 0.676, the dc output voltage is V = 8.1 V, and the dc component of the inductor
current is IL = 0.81 A. The converter operates in CCM.

Magnitude and phase responses of the control-to-output transfer functions Gvc(s) = v̂/v̂c

and Gvd(s) = v̂/d̂ are shown in Fig. 18.33. The duty-cycle to output voltage transfer func-
tion Gvd(s) exhibits the familiar second-order high-Q response. Peaking in the magnitude re-
sponse and a steep change in phase from 0◦ to −180◦ occur around the center frequency of
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Fig. 18.32 CPM buck converter example: averaged circuit model
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Fig. 18.33 Comparison of CPM control with duty-cycle control, for the control-to-output frequency
response of the buck converter example
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Fig. 18.34 Comparison of CPM control with duty-cycle control, for the line-to-output frequency re-
sponse of the buck converter example

the pair of complex-conjugate poles. In contrast, the CPM control-to-output response has a
dominant low-frequency pole. The phase lag is around −90◦ in a wide range of frequencies. A
high-frequency pole contributes to additional phase lag at higher frequencies. The frequency re-
sponses of Fig. 18.33 illustrate an advantage of CPM control over duty-cycle control. Because of
the control-to-output frequency response dominated by the single low-frequency pole, it can be
much easier to close a wide-bandwidth outer voltage feedback loop around the CPM controlled
power converter than around a converter where the duty cycle is the control input. Proportional-
plus-integral (PI) controllers are commonly used in current-programmed regulators.

Another advantage of CPM control is in rejection of input voltage disturbances. Line-to-
output frequency responses for duty-cycle control and CPM control in the buck example are
compared in Fig. 18.34. The line-to-output transfer function Gvg(s) for duty-cycle control is
characterized by a dc asymptote approximately equal to the duty cycle D = 0.676. Reso-
nant poles occur at the corner frequency of the L-C filter. The line-to-output transfer function
Gvg−cpm(s) with current-programmed control is significantly reduced, and exhibits more than
30 dB of additional attenuation over the frequencies of interest. It should again be noted that the
transfer function Gvg−cpm(s) in Fig. 18.34 cannot be predicted by the simple models of Sect. 18.1;
the more accurate model of Sect. 18.3 must be employed.

It is also interesting to compare the output impedance of the converter with duty-cycle con-
trol versus CPM control. The results are shown in Fig. 18.35. The output impedance plotted
in the figure includes the load resistance of 10 Ω. For duty-cycle control, the dc asymptote of
the output impedance is dominated by the inductor winding resistance of 0.05 Ω. The inductor
becomes significant in the vicinity of 200 Hz. At the resonant frequency of the output LC filter,
significant peaking in the output impedance of the duty-cycle controlled converter can be ob-
served. At higher frequencies, the output impedance is dominated by the impedance of the filter
capacitor, which decreases with frequency.

In the current-programmed converter, the low-frequency impedance is high. It is equal to
the parallel combination of the load resistance and the CPM output resistance. Because of the
lossless damping introduced by CPM control, the series inductor does not affect the output
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Fig. 18.35 Comparison of CPM control with duty-cycle control, for the output impedance of the buck
converter example

impedance. The simple model of Sect. 18.1 predicts that the inductor branch of the circuit is
driven by a current source; this effectively removes the influence of the inductor on the out-
put impedance. The plot of Fig. 18.35 was generated using the more accurate; nonetheless, the
output impedance is accurately predicted by the simple model. It can be seen that current pro-
gramming substantially increases the converter output impedance at low frequencies. At high
frequencies the output impedances of the duty-cycle and CPM controlled converters have the
same asymptotes.

18.6 Voltage Feedback Loop Around a Current-Programmed Converter

As shown in Figs. 18.1 and 18.3 a converter system incorporating current-programmed control
often includes an outer voltage feedback loop, the purpose of which is to regulate the converter
output voltage. As discussed in Chap. 9, voltage is sensed and compared to a reference. The
error signal is processed by a voltage loop compensator, which outputs a control signal. In duty-
cycle controlled converters of Chap. 9, the control signal is the input to a pulse-width modulator,
which produces a switch control signal with duty ratio proportional to the PWM control input.
In CPM controlled converters, the control signal generated by the voltage loop compensator is
the control input vc = Rf ic for the CPM controller.

18.6.1 System Model

A complete system model, including the outer voltage loop, is shown in Fig. 18.36. The model
is very similar to the system model in Fig. 9.2 except that the pulse-width modulator model is
replaced by the CPM controller model. For the purpose of designing the voltage loop compen-
sator Gcv(s), it is convenient to make use of the closed-loop transfer function Gvc(s) = v̂/îc of the
CPM controlled converter. A block diagram of the voltage feedback loop is shown in Fig. 18.37.
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Fig. 18.36 Block diagram that models a CPM controlled converter with an outer voltage feedback loop

Fig. 18.37 Model of the outer voltage feedback loop

The design of Gcv(s) amounts to employing the techniques of Chap. 9 to shape the voltage loop
gain

Tv = HGcv(s)
1

Rf
Gvc(s) (18.146)

so that target crossover frequency fcv stability margins are attained.
With the voltage feedback loop closed around a current-programmed converter, the closed-

loop input impedance Zi can be found using the results of Sect. 18.4.4 by application of the
Feedback Theorem. As discussed in Sect. 17.5.2, the closed-loop input admittance Yi = 1/Zi

can be found from:

Yi =
1
Zi
=

1
ZN−cpm

Tv

1 + Tv
+

1
ZD−cpm

1
1 + Tv

(18.147)

where expressions for ZN−cpm and ZD−cpm are given in Sect. 18.4.4. Following the discussion in
Sect. 17.5.2, the result for the closed-loop input impedance can be used to evaluate the system
stability when the CPM converter with voltage feedback loop includes an input filter or, more
generally, when it is supplied from a source with a nonzero output impedance.

18.6.2 Design Example

To illustrate an outer voltage feedback loop design, consider the CPM controlled buck converter
shown in Fig. 18.32, with the voltage loop added as shown in Fig. 18.1. The system small-signal
model is shown in Fig. 18.36. In this example, the reference voltage is Vre f = 3 V, and the
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voltage sensing gain is set to H = 0.375, so that the output dc voltage is ideally regulated at
V = Vre f /H = 8 V. The quiescent operating point and the small-signal model parameters are
approximately the same as in the CPM buck converter considered in Sect. 18.5.3: D = 0.67,
IL = V/R = 0.8 A, Ma/M2 = 0.525, Fm = 3.2 A−1, Fg = 0.016Ω−1, Fv = 0. Table 18.3 includes
an expression for the closed-loop control-to-output voltage transfer function Gvc(s) predicted
by the more accurate CPM model,

Gvc(s) = Gc0
1

1 +
s

Qcωc
+

(
s
ωc

)2
≈ Gc0

1(
1 +

s
ωp1

) (
1 +

s
ωh f

) (18.148)

Gc0 =
V
D

Fm(
1 +

FmV
DR

) = 7.92 Ω→ 18 dBΩ

fc =
1

2π
√

LC

√
1 +

FmV
DR

= 5.9 kHz

Qc = R

√
C
L

√
1 +

FmV
DR(

1 +
RCFmV

DL

) = 0.034

fp1 = Qc fc = 201 Hz

fh f = fc/Qc = 174 kHz

As shown in Fig. 18.33, Gvc(s) exhibits a single-pole response over a wide range of frequen-
cies, so that it is relatively easy to design a wide-bandwidth voltage feedback loop with high
crossover frequency fcv using a simple proportional-integral (PI) compensator,

Gcv(s) = Gcm

(
1 +

ωzv

s

)
(18.149)

A sketch of the magnitude response of the voltage loop gain Tv of Eq. (18.146), with a PI
compensator of Eq. (18.149), is shown in Fig. 18.38. Assuming fzv < fcv < fh f , the magnitude
asymptote has −20 dB/dec slope around the crossover frequency,

||Tv|| →
H
Rf

GcoGcm
ωp1

ω
(18.150)

From Eq. (18.150) it follows that the gain Gcm can be selected to obtain the desired crossover
frequency fcv,

Gcm =
Rf

HGco

fcv

fp1
(18.151)

To achieve wide-bandwidth voltage regulation let us choose fcv = 40 kHz = fs/5. Equa-
tion (18.151) yields Gcm = 67.1. The phase margin ϕv can be evaluated based on the phase
contributions of the poles and zeroes shown in Fig. 18.38. Taking into account that fp1 << fcv,
we have

ϕv = 180◦ + ∠Tv( jω) = 180◦ − 90◦ − 90◦ + tan−1 fcv

fzv
− tan−1 fcv

fh f
(18.152)
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Fig. 18.38 Sketch of the magnitude response of the loop gain Tv using a PI compensator Gcv(s)

Fig. 18.39 Loop gain Tv in the design example of Sect. 18.6.2

For these values, tan−1( fcv/ fh f ) = 13◦. Equation (18.152) can be used to select fzv to achieve a
desired phase margin. For example, the choice fzv = fcv/3 yields

ϕv = tan−1 fcv

fzv
− tan−1 fcv

fh f
= 72◦ − 13◦ = 59◦ (18.153)

Inclusion of this PI compensator Gcv(s) results in the voltage loop gain Tv shown in Fig. 18.39.

18.7 High-Frequency Dynamics of Current-Programmed Converters

The simple model of Sect. 18.2 predicts that the inductor current iL is directly controlled by
the current command ic, which implies small-signal control-to-current transfer function equal
to unity at all frequencies,

Gic(s) =
îL

îc
≈ 1 (18.154)
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Let us compare this simple result with high-frequency predictions of the more accurate averaged
small-signal model of Sect. 18.3. At high frequencies, small-signal perturbations of capacitor
voltages become negligibly small. As a result, m̂1 ≈ 0, m̂2 ≈ 0, and inductor current slopes m1

and m2 can be considered constant, equal to the unperturbed dc values M1 and M2, respectively.
At high frequencies, the small-signal duty-cycle perturbation in Eq. (18.73) becomes

d̂(t) ≈ Fm

[
îc(t) − îL(t)

]
(18.155)

In a two-switch, single-inductor PWM converter, neglecting voltage perturbations, the duty-
cycle to inductor current transfer function can be written as

Gid =
îL

d̂
≈ M1 + M2

s
(18.156)

Combining Eqs. (18.156) and (18.155), the more accurate model of Sect. 18.3 yields the follow-
ing prediction for the control-to-current transfer function at high frequencies

Gic(s) =
îL

îc
≈ 1

1 +
s
ωh f

(18.157)

where

fh f =
1

2π
Fm(M1 + M2) =

M1 + M2

2Ma + M1 − M2

fs

π
(18.158)

Note that exactly the same result for the high-frequency pole was found in Eq. (18.114). Nei-
ther the simple model, which neglects inductor dynamics, nor the more accurate model, which
implies a single-pole response at high frequencies, predicts instability or the need for the ar-
tificial ramp discussed in Sect. 18.2. This is because the averaged small-signal models do not
take into account converter switching and modulator sampling processes, which lead to various
discrete-time phenomena in a current-programmed converter. The purpose of this section is to
examine high-frequency dynamics of CPM controlled converters using sampled-data modeling
techniques, and to compare predictions of the sampled-data model to the predictions of the
averaged small-signal models.

18.7.1 Sampled-Data Model

Figure 18.40 shows waveforms in a current-programmed converter in response to a perturbation
îc in the control current ic, with an initial perturbation in the inductor current iL(t) denoted as
îL[n − 1]. At t = DTs, in response to the îc and îL[n − 1] perturbations, the duty cycle D is
perturbed by d̂[n] and the inductor current perturbation assumes a new value îL[n] over the next
switching period Ts. Derivation of a sampled-data “transfer function” Gic = îL/îc follows the
approach described in [77], which includes taking into account sampling îc(t) to obtain discrete-
time samples îc[n], derivation of a discrete-time relationship between îc[n] and îL[n], and finding
an equivalent hold transfer function that models the process in which continuous-time inductor
current perturbation îL(t) is obtained from the samples îL[n].
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Fig. 18.40 Steady-state and perturbed waveforms in a current-programmed converter

First, we note that the Laplace transform of the samples of îc(t) equals

1
Ts

k→+∞∑
k→−∞

îc (s − jkωs) (18.159)

where îc(s) is the Laplace transform of the continuous-time control current îc(t).
Next, we proceed to derive a discrete-time relationship between îc[n] and îL[n]. Waveform

details around the sampling instant t = DTs are shown in Fig. 18.41. From the geometry of
the waveforms, the next perturbation in the inductor current îL[n] can be found in terms of the
previous perturbation îL[n− 1], the duty-cycle perturbation d̂[n] and the inductor current slopes
m1 and m2,

îL[n] = îL[n − 1] + (m1 + m2)d̂[n]Ts (18.160)

Similarly, îc[n] can be related to îL[n − 1], d̂[n], m1 and ma,

îc[n] = îL[n − 1] + (m1 + ma)d̂[n]Ts (18.161)

Eliminating d̂[n] from Eqs. (18.160) and (18.161) yields a discrete-time relationship between
îc[n] and îL[n],

îL[n] = αîL[n − 1] + (1 − α)îc[n] (18.162)

where the coefficient α depends on the inductor current and artificial ramp slopes,

α = −m2 − ma

m1 + ma
(18.163)
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Fig. 18.41 Details of the steady-state and perturbed inductor current waveforms around the sampling
instant t = DTs

which is the same as Eq. (18.54) used in the stability analysis of Sect. 18.2.
Application of theZ transform [176] to Eq. (18.162) results in

îL(z) = αîL(z)z−1 + (1 − α)îc(z) (18.164)

which yields the discrete-timeZ-domain transfer function

Gic(z) =
îL(z)

îc(z)
=

1 − α
1 − αz−1

(18.165)

A discrete-time system is stable if all poles lie inside the unit circle in the complex z plane.
Given that the transfer function Gic(z) has a pole at z = α, the stability condition becomes

|α | < 1 (18.166)

which is the same as the stability condition given by Eq. (18.55).
As shown in Fig. 18.40, in response to a discrete-time perturbation îL[n], the continuous-

time inductor current perturbation îL(t) is a pulse of amplitude îL[n] and length Ts. The transfer
function of the corresponding equivalent hold is therefore equal to the transfer function of the
zero-order hold [176],

1 − e−sTs

s
(18.167)

We now can combine Eqs. (18.165) and (18.167) to derive an expression for the sampled-data
“transfer function”

Gic(s) =
îL

îc
=

1 − α
1 − αe−sTs

1 − e−sTs

sTs
(18.168)

The first part of the expression is obtained from Eq. (18.165) by replacing z−1 with e−sTs , which
follows from the fact that a factor z−1 corresponds to delaying a signal by Ts, while the Laplace
transform of a signal delayed by Ts equals e−sTs times the Laplace transform of the signal. The
second part of the expression is the transfer function of the equivalent hold in Eq. (18.167),
while Ts in the denominator is due to sampling and retaining only the low-frequency (k = 0)
portion of the spectrum of the sampled control input îc(t) in Eq. (18.159).
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Fig. 18.42 High-frequency magnitude and phase responses of Gic based on the sampled-data model for
four values of the artificial ramp slope, Ma/M2 = 0.1, 0.5, 1 and 5

To illustrate magnitude and phase responses of the sampled-data Gic(s) in Eq. (18.168), con-
sider a buck converter example operating at fs = 100 kHz and D = 0.5. The input dc voltage
is Vg = 10 V, the output voltage is V = DVg = 5 V, and inductance is L = 5 μH. Values of
the output filter capacitance and load do not affect high-frequency control-to-inductor current
responses. The inductor current slopes are M1 = (Vg −V)/L = 1 A/μs, and M2 = V/L = 1 A/μs.
Since D = 0.5, the CPM controlled converter is stable for any Ma > 0. Magnitude and phase
responses of the sampled-data Gic(s) are evaluated by replacing s→ jω in Eq. (18.168), and the
results are shown in Fig. 18.42 for four different values of the artificial ramp slope, Ma/M2 = 0.1,
0.5, 1, and 5. In all cases, the magnitude responses start from 0 dB and phase responses start
from 0◦, matching the responses expected based on the simple averaged small-signal model.
For Ma/M2 = 0.1, α = −0.82, and the sampled-data frequency response exhibits peaking in
the magnitude response and a sharp decline in the phase response from 0◦ to −180◦ around
fs/2 = 50 kHz. For Ma = 0, which corresponds to the period-doubling stability boundary, one
may verify that the magnitude response goes to ∞ at fs/2. The peaking in the magnitude re-
sponse diminishes with increasing values of the artificial ramp slope. For very large Ma/M2,
such as Ma/M2 = 5 in Fig. 18.42, the magnitude response starts to roll off at a lower frequency,
implying an effectively reduced current control bandwidth.

18.7.2 First-Order Approximation

It can be verified that the predictions of the sampled-data model of Eq. (18.168) match ex-
perimentally measured frequency responses very well. However, the “transfer function” of
Eq. (18.168) is not a standard rational transfer function in s, and it does not offer an intuitive
design-oriented interpretation. It is therefore of interest to consider a rational transfer function
approximation of Gic(s) in Eq. (18.168). Consider the first-order Padé approximation [138] of
the term e−sTs ,
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e−sTs ≈
1 − s
ωs/π

1 +
s
ωs/π

(18.169)

Note that the approximation includes a RHP zero and a pole at the same frequency fs/π.
The magnitude response of the approximation is equal to 1 (0 dB) at all frequencies, exactly
matching the magnitude response of e− jωTs at all frequencies. Substituting Eq. (18.169) into
Eq. (18.168) yields a first-order rational transfer function approximation

Gic(s) ≈ 1

1 +
s
ωh f

(18.170)

where

fh f =
1 − α
1 + α

fs

π
=

M1 + M2

2Ma + M1 − M2

fs

π
(18.171)

which is identical to the frequency response Gic(s) predicted by the more accurate averaged
small-signal model given by Eq. (18.157). It follows that the more accurate averaged small-
signal model of Sect. 18.3 is equivalent to the first-order approximation of the sampled-data
model.

Figure 18.43 compares the magnitude and phase responses of the sampled-data model
in Eq. (18.168) to the magnitude and phase responses of the first-order approximation in
Eq. (18.170) or, equivalently, Eq. (18.157), for the same buck converter example considered
in Fig. 18.42, and for three values of the artificial ramp slope, Ma/M2 = 0.1, 0.5, and 5. For
Ma/M2 = 0.1, the first-order approximation predicts a pole at 3.2 fs, which is a very poor approx-
imation to the sampled-data model predictions. The high-frequency predictions of the first-order
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Fig. 18.43 Comparison of high-frequency Gic responses based on the sampled-data model and its first-
order approximation for three different values of the artificial ramp slope, Ma/M2 = 0.1, 0.5, and 5. The
first-order approximation responses are identical to the predictions of the more accurate CPM model
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approximation improve with increasing slope of the artificial ramp. For Ma = 0.5M2, which is
a practical choice that guarantees stability for any duty cycle D, the example of Fig. 18.43 il-
lustrates a very good match up to around fs/5. For large Ma/M2, such as Ma/M2 = 5, the
magnitude and phase responses of the first-order approximation or, equivalently, the more accu-
rate averaged small-signal model, are in very good agreement with the sampled-data model at
essentially all frequencies of interest.

18.7.3 Second-Order Approximation

As discussed in the previous subsection, the first-order approximation does not predict CPM
instability and it does not offer accurate predictions of high-frequency responses in cases when
a current-programmed converter operates close to the stability boundary. In this section, we
show how a second-order rational transfer function approximation offers a way to accurately
incorporate sampled-data effects. The second-order Padé approximation [138] of the term e−sTs

is given by

e−sTs ≈
1 − π

2
s
ωs/2

+

(
s
ωs/2

)2

1 +
π

2
s
ωs/2

+

(
s
ωs/2

)2
(18.172)

The second-order approximation includes a pair of RHP zeroes and a pair of poles having the
same Q factor and the same center frequency fs/2. As in the case of the first-order approxima-
tion, the magnitude response of the approximation is 1 (0 dB) at all frequencies. Substituting
Eq. (18.172) into Eq. (18.168), yields a second-order rational transfer function approximation

Gic(s) ≈ 1

1 +
π

2
1 + α
1 − α

s
ωs/2

+

(
s
ωs/2

)2
(18.173)

or

Gic(s) ≈ 1

1 +
1

Qh f

s
ωs/2

+

(
s
ωs/2

)2
(18.174)

where the Q-factor of the pair of poles in Gic(s) is

Qh f =
2
π

1 − α
1 + α

=
2
π

M1 + M2

2Ma + M1 − M2
=

2
π

1

1 − 2D + 2D
Ma

M2

(18.175)

and the center frequency is at fs/2. At the stability boundary, α = −1 and Qh f → ∞, which
means that the second-order approximation given by Eq. (18.173) is capable of correctly predict-
ing CPM instability. For the same buck converter example considered in Figs. 18.42 and 18.43,
Fig. 18.44 shows a comparison of the magnitude and phase responses of the second-order ap-
proximation given by Eq. (18.173) and the sampled-data model given by Eq. (18.168) for three
values of the artificial ramp slope, Ma/M2 = 0.1, 0.5, and 5. The second-order approximation
matches predictions of the sampled-data model very well at all frequencies of interest, and for
all values of the artificial ramp slope.
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Fig. 18.44 Comparison of high-frequency Gic responses based on the sampled-data model and its second-
order approximation for three different values of the artificial ramp slope, Ma/M2 = 0.1, 0.5, and 5

The more accurate averaged small-signal model of Sect. 18.3, which is equivalent to the first-
order approximation of the sampled-data model, can be extended to match predictions of the
second-order approximation. As shown in [107], one approach to extending the more accurate
model consists of replacing the modulator gain Fm in Fig. 18.24 with a single-pole response

Fm

1 +
s
ωx

(18.176)

where Fm given by Eq. (18.74) remains the same as before, while the additional modulator pole
frequency equals

fx =
π

4

(
1 − 2D + 2D

Ma

M2

)
fs (18.177)

It can be shown that inclusion of the pole at fx results in high-frequency responses consistent
with the second-order approximation of the sampled-data model. With this extension, the more
accurate averaged small-signal model is capable of predicting CPM instability and of providing
accurate predictions of CPM frequency responses at all frequencies of interest, and for all values
of the artificial ramp slope Ma. In practice, assuming an artificial ramp with a sufficiently large
slope Ma is applied, the analytical and simulation models developed in Sects. 18.3 and 18.5 can
be considered sufficiently accurate.

18.8 Discontinuous Conduction Mode

A model of current-programmed converters operating in the discontinuous conduction mode
is incorporated in the averaged simulation model described in Sect. 18.5.2. In this section, an
analytical model for current-programmed DCM converters is derived using the averaged switch
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Fig. 18.45 Current-programmed DCM buck–boost converter example

modeling approach of Sect. 15.2. It is found that the average transistor voltage and current
follow a power sink characteristic, while the average diode voltage and current obey a power
source characteristic. Perturbation and linearization of these characteristics leads to a small-
signal equivalent circuit that models CPM DCM converters. The basic DCM CPM buck, boost,
and buck–boost converters essentially exhibit single-pole transfer functions: the second pole and
the right half-plane zero appear at frequencies near to or greater than the switching frequency,
owing to the small value of L in DCM.

A DCM CPM buck–boost converter example is analyzed here. However, Eqs. (18.178)
to (18.195) are written in general form, and apply equally well to DCM CPM buck and boost
converters. The schematic of a buck–boost converter is illustrated in Fig. 18.45. The terminal
waveforms of the switch network are defined as shown: v1(t) and i1(t) are the transistor wave-
forms, while v2(t) and i2(t) are the diode waveforms. Figure 18.46 illustrates typical DCM wave-
forms, for current-programmed control with an artificial ramp having slope −ma. The inductor
current is zero at the beginning of each switching period. By solution of the transistor conduc-
tion subinterval, the programmed current ipk can be related to the transistor duty cycle d1 by

ic = ipk + mad1Ts

= (m1 + ma)d1Ts (18.178)

Solution for d1 leads to

d1(t) =
ic(t)

(m1 + ma)Ts
(18.179)

The average transistor current is found by integrating the i1(t) waveform of Fig. 18.46 over one
switching period:

〈i1(t)〉Ts =
1
Ts

∫ Ts

0
i1(τ)dτ =

q1

Ts
(18.180)

The total area q1 is equal to one-half of the peak current ipk, multiplied by the subinterval length
d1Ts. Hence,

〈i1(t)〉Ts =
1
2

ipk(t)d1(t) (18.181)



18.8 Discontinuous Conduction Mode 781

Fig. 18.46 Waveforms, CPM DCM buck–boost example

Elimination of ipk and d1, to express the average transistor current as a function of ic, leads to

〈i1(t)〉Ts =

1
2

Li2c fs

〈v1(t)〉Ts

(
1 +

ma

m1

)2
(18.182)

Finally, Eq. (18.182) can be rearranged to obtain the averaged switch network input port rela-
tionship:

〈i1(t)〉Ts〈v1(t)〉Ts =

1
2

Li2c fs

(
1 +

ma

m1

)2
= 〈p(t)〉Ts (18.183)
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Fig. 18.47 CPM DCM buck–boost converter model, derived via averaged switch modeling

Thus, the average transistor waveforms obey a power sink characteristic. When ma = 0, then
the average power 〈p(t)〉TS is a function only of L, ic, and fs. The presence of the artificial ramp
causes 〈p(t)〉TS to additionally depend on the converter voltages, via m1.

The power sink characteristic can also be explained via inductor energy arguments. During
the first subinterval, the inductor current increases from 0 to ipk. In the process, the inductor
stores the following energy:

W =
1
2

Li2pk (18.184)

The energy W is transferred from the power input vg, through the switch network input port,
to the inductor, once per switching period. This energy transfer process accounts for the power
flow

〈p(t)〉Ts = W fs =
1
2

Li2pk fs (18.185)

The switch network input port, that is, the transistor terminals, can therefore be modeled by a
power sink element, as in Fig. 18.47.

The average switch network output port current, that is, the average diode current, is

〈i2(t)〉Ts =
1
Ts

∫ Ts

0
i2(τ)dτ =

q2

Ts
(18.186)

By inspection of Fig. 18.46, the area q2 is given by

q2 =
1
2

ipkd2Ts (18.187)

The duty cycle d2 is determined by the time required for the inductor current to return to zero,
during the second subinterval. By arguments similar to those used to derive Eq. (15.19), the
duty cycle d2 can be found as follows:

d2(t) = d1(t)
〈v1(t)〉Ts

〈v2(t)〉Ts

(18.188)

Substitution of Eqs. (18.188), (18.187), and (18.185) into Eq. (18.186) yields

〈i2(t)〉Ts =
〈p(t)〉Ts

〈v2(t)〉Ts

(18.189)
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Fig. 18.48 Steady-state model of the CPM DCM buck–boost converter

The output port of the averaged switch network is therefore described by the relationship

〈i2(t)〉Ts〈v2(t)〉Ts =

1
2

Li2c(t) fs

(
1 +

ma

m1

)2
= 〈p(t)〉Ts (18.190)

In the averaged model, the diode can be replaced by a power source of value 〈p(t)〉Ts , equal to the
power apparently consumed at the switch network input port. During the second subinterval, the
inductor releases all of its stored energy through the diode, to the converter output. This results
in an average power flow of value 〈p(t)〉Ts .

A CPM DCM buck–boost averaged model is therefore as given in Fig. 18.47. In this model,
the transistor is simply replaced by a power sink of value 〈p(t)〉Ts , while the diode is replaced
by a power source also of value 〈p(t)〉Ts .

The steady-state equivalent circuit model of the CPM DCM buck–boost converter is ob-
tained by letting the inductor and capacitor tend to short- and open-circuits, respectively. The
model of Fig. 18.48 is obtained. The steady-state output voltage V can now be determined by
equating the dc load power to the converter average power 〈p(t)〉Ts . For a resistive load, one
obtains

V2

R
= P (18.191)

where the steady-state value of 〈p(t)〉Ts is given by

P =

1
2

LI2
c (t) fs

(
1 +

Ma

M1

)2
(18.192)

and where Ic is the steady-state value of the control input ic(t). Solution for V yields the follow-
ing result

V =
√

PR = Ic

√√√√√√ RL fs

2

(
1 +

Ma

M1

)2
(18.193)

for the case of a resistive load.
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Averaged models of the DCM CPM buck, boost, and other converters can be found in a
similar manner. In each case, the average transistor waveforms are shown to follow a power
sink characteristic, while the average diode waveforms follow a power source characteristic.
The resulting equivalent circuits of the CPM DCM buck and boost converters are illustrated in
Fig. 18.49. In each case, the average power is given by

〈p(t)〉Ts =

1
2

Li2c(t) fs

(
1 +

ma

m1

)2
(18.194)

with m1 defined as in Eq. (18.30).
Steady-state characteristics of the DCM CPM buck, boost, and buck–boost converters are

summarized in Table 18.6. In each case, the dc load power is Pload = VI and P is given by
Eq. (18.192). The conditions for operation of a current-programmed converter in the discontin-
uous conduction mode can be expressed as follows:

|I| > |Icrit | for CCM

|I| < |Icrit | for DCM (18.195)

where I is the dc load current. The critical load current at the CCM-DCM boundary, Icrit, is
expressed as a function of Ic and the voltage conversion ratio M = V/Vg in Table 18.6.

Table 18.6 Steady-state DCM current-programmed characteristics of basic converters

Converter M Icrit Stability range when ma = 0

Buck
Pload − P

Pload

1
2

(Ic − MmaTs) 0 ≤ M < 2
3

Boost
Pload

Pload − P

(
Ic −

M − 1
M

maTs

)

2M
0 ≤ D ≤ 1

Buck–boost
Depends on load characteristic:

Pload = P

(
Ic −

M
M − 1

maTs

)

2(M − 1)
0 ≤ D ≤ 1

In the discontinuous conduction mode, the inductor current is zero at the beginning and end
of each switching period. As a result, the current-programmed controller does not exhibit the
type of instability described in Sect. 18.2. The current programmed controllers of DCM boost
and buck–boost converters are stable for all duty cycles with no artificial ramp. However, the
CPM DCM buck converter exhibits a different type of low-frequency instability when M > 2/3
and ma = 0 that arises because the dc output characteristic is nonlinear and can exhibit two
equilibrium points when the converter drives a resistive load. The stability range can be extended
to 0 ≤ D ≤ 1 by addition of an artificial ramp having slope ma > 0.086m2, or by addition of
output voltage feedback.
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Small-signal models of DCM CPM converters can be derived by perturbation and lineariza-
tion of the averaged models of Figs. 18.47 and 18.49. The results are given in Fig. 18.50. Param-
eters of the small-signal models are listed in Tables 18.7 and 18.8.

Fig. 18.49 Averaged models of current-programmed DCM converters: (a) buck, (b) boost

The CPM DCM small-signal models of Fig. 18.50 are quite similar to the respective small-
signal models of DCM duty ratio controlled converters illustrated in Figs. 15.19 and 15.21. The
sole differences are the parameter expressions of Tables 18.7 and 18.8. Transfer functions can
be determined in a similar manner. In particular, a simple approximate way to determine the
low-frequency small-signal transfer functions of the CPM DCM buck, boost, and buck–boost
converters is to simply let the inductance L tend to zero in the equivalent circuits of Fig. 18.50.
This approximation is justified for frequencies sufficiently less than the converter switching
frequency, because in the discontinuous conduction mode the value of L is small, and hence
the pole and any RHP zero associated with L occur at frequencies near to or greater than the
switching frequency. For all three converters, the equivalent circuit of Fig. 18.51 is obtained.

Figure 18.51 predicts that the control-to-output transfer function Gvc(s) is

Gvc(s) =
v̂

îc

∣∣∣∣∣∣
v̂8=0

=
Gc0

1 +
s
ωp

(18.196)

with

Gc0 = f2(R‖r2)

ωp =
1

(R‖r2)C
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Fig. 18.50 Small-signal models of DCM CPM converters, derived by perturbation and linearization of
Figs. 18.47 and 18.49: (a) buck, (b) boost, (c) buck–boost

The line-to-output transfer function is predicted to be

Gvg(s) =
v̂
v̂g

∣∣∣∣∣∣
îc=0

=
Gg0

1 +
s
ωp

(18.197)

with
Gg0 = g2(R ‖r2)

If desired, more accurate expressions which account for inductor dynamics can be derived by
solution of the models of Fig. 18.50.

18.9 Average Current-Mode Control

Average current-mode (ACM) control is another popular current programming technique [177,
178]. A block diagram of an average current-mode controlled converter is shown in Fig. 18.52.
A sensed current signal Rf i is compared to a control signal vc = Rf ic, where Rf is the equivalent
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Table 18.7 Current-programmed DCM small-signal equivalent circuit parameters: input port

Converter g1 f1 r1

Buck
1
R

(
M2

1 − M

)
(
1 − ma

m1

)

(
1 +

ma

m1

) 2
It

Ic
−R

(
1 − M

M2

)
(
1 +

ma

m1

)

(
1 − ma

m1

)

Boost − 1
R

( M
M − 1

)
2

I
Ic

R

M2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 − M
M − 1

+
2ma/m1

1 +
ma

m1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Buck–boost 0 2
I1

Ic

−R
M2

(
1 +

ma

m1

)

(
1 − ma

m1

)

Table 18.8 Current-programmed DCM small-signal equivalent circuit parameters: output port

Converter g2 f2 r2

Buck
1
R

( M
1 − M

)
(

ma

m1
(2 − M) − M

)

(
1 +

ma

m1

) 2
I
Ic

R

(1 − M)

(
1 +

ma

m1

)

(
1 − 2M +

ma

m1

)

Boost
1
R

( M
M − 1

)
2

I2

Ic
R

(
M − 1

M

)

Buck–boost
2M
R

(
ma

m1

)

(
1 +

ma

m1

) 2
I2

Ic
R

Fig. 18.51 Simplified small-signal model obtained by letting L become zero in Fig. 18.50a,b, or c

current sensing resistance. The error signal is processed by a current loop compensator Gci(s),
which generates the control input vm for a pulse-width modulator. In response, the PWM pro-
duces a switch control signal c(t) with duty cycle d proportional to the PWM control input vm.
One may note that the current control loop shown in Fig. 18.52 follows the same basic approach
discussed in Chap. 9, except that the control objective is to regulate a converter current instead
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Fig. 18.52 Average current-mode controlled converter

of a converter voltage. Since current sensing and current loop compensator often incorporate
low-pass filtering functions, the current control loop effectively regulates the average current
〈i(t)〉Ts . Ideally,

〈i(t)〉Ts =
1

Rf
〈vc(t)〉Ts (18.198)

Average current-mode control finds significant application in PWM rectifiers and inverters; the
rectifier application is discussed further in Sect. 21.3.1.

18.9.1 System Model and Transfer Functions

To design the current loop compensator Gci(s), it is convenient to represent the system small-
signal model in a block diagram form, as shown in Fig. 18.53. The converter duty-cycle control
transfer functions are based on the averaged converter models developed in Chap. 7. For the
basic converters, these transfer functions are summarized in Tables 18.3, 18.4, 18.5. Applying
the Feedback Theorem to the model in Fig. 18.53 yields an expression for the small-signal
closed-loop response of the current î,

î =
1

Rf

Ti

1 + Ti
v̂c +Gig

1
1 + Ti

v̂g (18.199)

where the current loop gain Ti(s) is

Ti = Rf Gci
1

VM
Gid (18.200)

The closed-loop control-to-current transfer function is

Gic(s) =
î

v̂c

∣∣∣∣∣∣
v̂g=0

=
1

Rf

Ti

1 + Ti
= Gic∞

Ti

1 + Ti
(18.201)

where Gic∞ = 1/Rf is the ideal closed-loop response of the average current control loop. One
may note that the ideal closed-loop response of the average current control loop is identical
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Fig. 18.53 Block diagram that models the average current-mode control loop in Fig. 18.52

to the response predicted by the simple model of the current-programmed control discussed
in Sect. 18.1. Designing the current loop compensator Gci(s) amounts to shaping the current
loop gain Ti to achieve a desired crossover frequency fci and stability margins, following the
approaches discussed in Chap. 9.

Compared to CPM control (peak current mode) discussed in Sects. 18.8–18.8, average
current-mode control has several advantages. First, direct control over the average current is
required in some applications such as battery chargers, drivers for light emitting diodes, low-
harmonic rectifiers, and grid-tied inverters. Furthermore, low-pass filtering associated with cur-
rent sensing and Gci implies reduced sensitivity to noise and switching disturbances. Stable
operation can be achieved at any duty ratio without the need for slope compensation by addi-
tion of an artificial ramp. Limiting the current control signal vc provides a limitation on the
average but not the peak current. As a result, just as in duty-cycle controlled converters, addi-
tional circuitry is usually required to achieve cycle-by-cycle protection against excessive peak
currents during transients or fault conditions in ACM controlled converters.

In many applications, an outer voltage control loop is closed around an ACM controlled con-
verter, as shown in Fig. 18.54. In the outer voltage loop, a sensed output voltage Hv is compared
to a reference Vre f . The error signal is processed by a voltage loop compensator Gcv to produce
the control signal vc, which serves as the reference for the current control loop. A small-signal
model of the system in Fig. 18.54 is shown in Fig. 18.55.

Application of the Feedback Theorem to the inner current control loop yields the following
expression for the small-signal output voltage as a function of perturbations in vc and vg,

v̂ =

(
Gci

1
VM

Gvd
1

1 + Ti

)
v̂c +

(
Gvg(s) −

Gig

Gid
Gvd

Ti

1 + Ti

)
v̂g (18.202)

With the inner current control loop closed, the control-to-output voltage transfer function
Gvc(s) is given by

Gvc(s) =
v̂
v̂c

∣∣∣∣∣
v̂g=0
= Gci

1
VM

Gvd
1

1 + Ti
=

1
Rf

Gvd

Gid

Ti

1 + Ti
(18.203)
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Fig. 18.54 Output voltage control loop closed around an average current-mode controlled converter

Fig. 18.55 Block diagram that models the average current-mode controlled converter with an outer volt-
age control loop as shown in Fig. 18.54

For the purposes of designing the voltage loop compensator, the system block diagram of
Fig. 18.55 can now be simplified as shown in Fig. 18.56 The voltage loop compensator design
amounts to shaping the voltage loop gain

Tv = HGcvGvc (18.204)

to achieve a desired crossover frequency and stability margins using the techniques discussed
in Chap. 9.

It should be noted that the design of the two-loop system of Fig. 18.56 can be approached in
a number of different ways. In the approach described above the inner current loop is designed
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Fig. 18.56 Block diagram that models the outer voltage control loop around an average current-mode
controlled converter

first, based on the current loop gain Ti. Next, with the inner current loop closed, the control to
voltage transfer function Gvc(s) is found from Eq. (18.203), and the voltage loop compensator
is designed based on the outer voltage loop gain Tv given by Eq. (18.204). This inner-loop first,
outer-loop second design approach is illustrated by an example in the next section.

18.9.2 Design Example: ACM Controlled Boost Converter

An average current-mode controlled boost converter is shown in Fig. 18.57. The current and
voltage control loops follow the block diagram of Fig. 18.54: average inductor current is reg-
ulated in the inner current control loop, and output voltage is regulated in the outer voltage
control loop. The converter operates from Vg = 170 V, and delivers Pout = 2 kW of power at
V = 400 V. The switching frequency is fs = 100 kHz, the amplitude of the PWM saw-tooth
ramp is VM = 4 V, and the equivalent current sensing resistance is Rf = 0.25 Ω. The voltage
reference is Vre f = 3 V, and the voltage sensing gain is H = Vre f /V = 0.0075. In this example,
the objectives are to design a current loop compensator Gci to attain a crossover frequency of
fci = 10 kHz, or one tenth of the switching frequency, and then to design a voltage loop compen-
sator Gcv so that a crossover frequency of fcv = 1 kHz is obtained in the outer voltage control
loop. Converter losses can be neglected.

At the quiescent dc operating point,

D = 1 −
Vg

V
= 0.575

Ig = I =
Pout

Vg
= 11.8 A

Vc = Rf I = 2.94 V

A small-signal model of the ACM controlled boost converter is shown in Fig. 18.58. From
Eq. (18.200), the uncompensated current loop gain Tiu, with unity gain compensator Gci = 1, is

Tiu =
Rf

VM
Gid(s) (18.205)
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Fig. 18.57 Average current-mode controlled boost converter

Fig. 18.58 Small-signal model of the average current-mode controlled boost converter of Fig. 18.57

where the converter duty-cycle to inductor current transfer function Gid(s) is given by

Gid(s) =
î

d̂

∣∣∣∣∣∣
v̂g=0

= Gid0

1 +
s

ωzi

1 +
1
Q

s
ωo
+

(
s
ωo

)2
(18.206)
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Fig. 18.59 Uncompensated loop gain for the current-mode controlled boost converter of Fig. 18.57

Gid0 =
2V

D′2R
= 55.4 A→ 34.9 dbA

fzi =
1
πRC

= 121 Hz

fo =
D′

2π
√

LC
= 745 Hz

Q = D′R

√
C
L
= 12.4→ 21.8 dB

The uncompensated current loop gain is sketched in Fig. 18.59. The low-frequency gain equals

Tiu0 =
Rf

VM
Gid0 = 3.46→ 10.8 dB (18.207)

Around the target crossover frequency fci = 10 kHz, the magnitude of Tiu rolls off at
−20 dB/dec,

||Tiu|| → Tiu0
ω2

o

ωziω
=

Rf

Lω
V

VM
(18.208)

while the corresponding phase response asymptote equals −90◦. A simple gain (proportional
(P) compensator) would therefore be sufficient to achieve the desired crossover frequency with
adequate phase margin. As discussed in Sect. 9.5.2, a lag (PI) compensator offers a way to
increase the low-frequency loop gain and to achieve perfect dc regulation of the average inductor
current. Furthermore, a pole is typically added in the current loop compensator transfer function
in order to attenuate high-frequency switching ripple, and low-pass filter the sensed current
signal. A typical ACM current loop compensator transfer function is therefore given by

Gci(s) = Gcm

1 +
ωz

s

1 +
s
ωp

(18.209)

and the compensator response is sketched in Fig. 18.60.
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Fig. 18.60 Magnitude and phase responses of the current loop compensator

The compensator zero is placed below the target crossover frequency ( fzi < fci), while the
pole is placed above the crossover frequency ( fp > fci). Using Eq. (18.208), gain Gcm is selected
so that the loop gain magnitude equals 1 (0 dB) at the target crossover frequency fci,

Gcm
Rf

Lωci

V
VM
= 1 (18.210)

Hence,

Gcm =
Lωci

R f

VM

V
= 0.63 (18.211)

The phase margin can be found by adding contributions of the pole at zero of the PI compensator
(−90◦), the quadratic pole and zero in Gid (approximately −90◦), as well as the compensator zero
at fz and the pole at fp,

ϕm = 180◦ + ∠Ti( jωci) = 180◦ − 90◦ − 90◦ + tan−1

(
fci

fz

)
− tan−1

(
fci

fp

)
(18.212)

A lower fz contributes to a higher phase margin at the expense of reduced loop gain magnitude
at frequencies below fci. A higher fp contributes to a higher phase margin at the expense of
reduced attenuation of the switching ripple by the compensator. Choosing, somewhat arbitrarily,
fz = fci/2.5 = 4 kHz and fp = 2.5 fci = 25 kHz, results in the phase margin of

ϕm = 68◦ − 22◦ = 46◦ (18.213)

Magnitude and phase responses of the compensated current loop gain are shown in Fig. 18.61,
confirming that the compensator in Eq. (18.209) with Gcm = 0.63, fz = 4 kHz, and fp = 25 kHz
meets the design objectives.

The closed-loop control-to-current transfer function Gic found using Eq. (18.201) has mag-
nitude and phase responses shown in Fig. 18.62. At low frequencies, the closed-loop response
follows the ideal gain Gic∞ = 1/Rf . Given ϕm = 46◦, the closed-loop transfer function exhibits
a peaked response at frequencies near the crossover frequency fci, which is consistent with the
discussion in Sect. 9.4.3.
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Fig. 18.61 Compensated loop gain for the average current-mode controlled boost converter of Fig. 18.57
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Fig. 18.62 Closed-loop control-to-current response in the average current-mode controlled boost con-
verter of Fig. 18.57
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Fig. 18.63 Closed-loop control-to-output voltage response in the average current-mode controlled boost
converter of Fig. 18.57

Fig. 18.64 Loop gain in the voltage control loop around the average current-mode controlled boost con-
verter of Fig. 18.57

The next step is to design a voltage loop compensator Gcv to attain a crossover of fcv in the
outer voltage control loop. The design is based on the block diagram of Fig. 18.54, where Gvc is
the closed-loop control-to-output voltage transfer function found from Eq. (18.203) and shown
in Fig. 18.63. At frequencies well below the current loop crossover fci, Gvc can be approximated
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as

Gvc ≈
1

Rf

Gvd

Gid
=

D′R
2Rf

1 − s
ωz,RHP

1 +
s

ωzi

(18.214)

fz,RHP =
D′2R
2πL

= 9.2 kHz

fzi =
1
πRC

= 121 Hz

The magnitude and phase responses of the complete Gvc from Eq. (18.203) and the approximate
Gvc from Eq. (18.214) are shown in Fig. 18.63. In cases when fcv << fci, i.e., when the voltage
loop is designed conservatively, the design of the voltage loop compensator Gcv can be based
on the approximate Gvc from Eq. (18.214). Since Gvc has a dominant pole at fzi and behaves
as a single-pole transfer function around the target voltage loop crossover of fcv = 1 kHz, it is
sufficient to consider a simple PI compensator

Gcv(s) = Gvm

(
1 +

ωzv

s

)
(18.215)

where Gvm can be found from Eq. (18.204) to attain the desired crossover frequency fcv,

Gvm =
2π fcvCRf

D′H
= 16.4 (18.216)

and fzv can be selected to achieve a tradeoff between phase margin and the magnitude of Tv at
frequencies below fcv. Selecting

fzv =
fcv

3
= 333 Hz (18.217)

results in the voltage loop phase margin of

ϕmv ≈ 180◦ − 90◦ − 90◦ + tan−1 fcv

fzv
= 72◦ (18.218)

The resulting voltage loop gain is shown in Fig. 18.64.
The two-step design process illustrated by the example above is relatively simple: the inner

current loop is designed first, followed by the voltage loop design. In both loops around ACM
controlled converters, simple PI compensators are typically sufficient to achieve desired regula-
tion bandwidths with adequate stability margins. In the ACM controlled boost design example,
we followed a conservative approach where the outer voltage loop crossover frequency fcv is
set to be well below the current loop crossover frequency fci. This approach, while commonly
applied in practice, is not necessarily the only available option. Depending on application and
regulation bandwidth requirements, other approaches can be pursued in two-loop systems.
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18.10 Summary of Key Points

1. In current-programmed control, the peak switch current is(t) follows the control input ic(t).
This widely used control scheme has the advantage of a simpler control-to-output transfer
function. The line-to-output transfer functions of current-programmed buck converters are
also reduced.

2. The basic current-programmed controller is unstable when D > 0.5, regardless of the con-
verter topology. The controller can be stabilized by addition of an artificial ramp having
slope ma. When ma > 0.5m2, then the controller is stable for all duty cycles.

3. The behavior of current-programmed converters can be modeled in a simple and intuitive
manner by the first-order approximation 〈iL(t)〉TS ≈ ic(t). The averaged terminal waveforms
of the switch network can then be modeled simply by a current source of value ic, in con-
junction with a power sink or power source element. Perturbation and linearization of these
elements leads to the small-signal model. Alternatively, the small-signal converter equa-
tions derived in Chap. 7 can be adapted to cover the current-programmed mode, using the
simple approximation iL(t) ≈ ic(t).

4. The simple model predicts that one pole is eliminated from the converter line-to-output
and control-to-output transfer functions. Current programming does not alter the transfer
function zeroes. The dc gains become load-dependent.

5. The more accurate model of Sect. 18.3 correctly accounts for the difference between the av-
erage inductor current 〈iL(t)〉Ts and the control input ic(t). This model predicts the nonzero
line-to-output transfer function Gvg(s) of the buck converter. The current-programmed con-
troller behavior is modeled by a block diagram, which is appended to the small-signal
converter models derived in Chap. 7. Analysis of the resulting multiloop feedback system
Sect. 18.4 then leads to the relevant transfer functions derived.

6. The more accurate model predicts that the inductor pole occurs at the crossover frequency
fc of the effective current feedback loop gain Ti(s). The frequency fc typically occurs in the
vicinity of the converter switching frequency fs. The more accurate model also predicts that
the line-to-output transfer function Gvg(s) of the buck converter is nulled when ma = 0.5m2.

7. The more accurate averaged CPM model of Sect. 18.3 can be implemented as a SPICE
subcircuit, as shown in Sect. 18.5. The averaged CPM model can then be combined with
averaged switch models of Chap. 14 to construct averaged circuit models suitable for SPICE
simulations.

8. A converter system incorporating current-programmed control often includes an outer volt-
age feedback loop, the purpose of which is to regulate the converter output voltage. Since
current programming results in simpler control-to-output dynamics, wide-bandwidth out-
put voltage control can usually be obtained without the use of compensator lead networks,
as discussed in Sect. 18.6.

9. Current-programmed converters operating in the discontinuous conduction mode are mod-
eled in Sect. 18.8. The averaged transistor waveforms can be modeled by a power sink,
while the averaged diode waveforms are modeled by a power source. The power is con-
trolled by ic(t). Perturbation and linearization of these averaged models, as usual, leads to
small-signal equivalent circuits.

10. Neither the simple model of Sect. 18.1, which neglects inductor dynamics, nor the more
accurate model of Sect. 18.3, which implies a single-pole response at high frequencies,
predicts current-programmed instability or the need for the artificial ramp discussed in
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Sect. 18.2. Section 18.7 explains high-frequency dynamics of current-programmed con-
verters using sampled-data modeling techniques. The sampled-data model shows how the
control-to-current frequency response exhibits peaking around one half of the switching
frequency if the artificial ramps slope ma is small, ultimately leading to instability for duty
cycles greater than 0.5 if no artificial ramp is employed. Addition of artificial ramp leads
to stable operation, reduced sensitivity to noise, and frequency responses that are well pre-
dicted by the more accurate averaged model of Sect. 18.3.

11. Average current-mode (ACM) control is another popular control technique where an aver-
age current is sensed and controlled using a feedback loop around a duty-cycle controlled
converter. ACM controllers have improved noise immunity, and exhibit stable operation
over wide range of duty cycles as well as relatively simple dynamics. In addition to con-
struction of inner current control loops, ACM controllers are often used in applications that
require direct control over the converter average input or output current, such as battery
chargers, drivers for light emitting diodes, as well as grid-tied rectifiers and inverters.

Problems

18.1 A nonideal buck converter operates in the continuous conduction mode, with the values
Vg = 10 V, f2 = 100 kHz, L = 4 μH, C = 75 μF, and R = 0.25Ω. The desired full-load
output is 5 V at 20 A. The power stage contains the following loss elements: MOSFET
on-resistance Ron = 0.1 Ω, Schottky diode forward voltage drop VD = 0.5 V, inductor
winding resistance RL = 0.03 Ω.
(a) Steady-state analysis: determine the converter steady-state duty cycle D, the inductor

current ripple slopes m1 and m2, and the dimensionless parameter K = 2L/RTs.
(b) Determine the small-signal equations for this converter, for duty-cycle control.

A current-programmed controller is now implemented for this converter. An artificial
ramp is used, having a fixed slope Ma = 0.5M2, where M2 is the steady-state slope
m2 obtained with an output of 5 V at 20 A.

(c) Over what range of D is the current-programmed controller stable? Is it stable at
rated output?
Note that the nonidealities affect the stability boundary.

(d) Determine the control-to-output transfer function Gvc(s), using the simple approxi-
mation 〈iL(t)〉Ts ≈ ic(t). Give analytical expressions for the corner frequency and dc
gain. Sketch the Bode plot of Gvc(s).

18.2 Use the averaged switch modeling approach to model the CCM boost converter with
current-programmed control:
(a) Define the switch network terminal quantities as in Fig. 14.13a. With the assumption

that 〈iL(t)〉Ts ≈ ic(t), determine expressions for the average values of the switch
network terminal waveforms, and hence derive the equivalent circuit of Fig. 18.9a.

(b) Perturb and linearize your model of part (a), to obtain the equivalent circuit of
Fig. 18.13.

(c) Solve your model of part (b), to derive expressions for the control-to-output transfer
function Gvc(s) and the line-to-output transfer function Gvg(s). Express your results
in standard normalized form, and give analytical expressions for the corner frequen-
cies and dc gains.
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18.3 Use the averaged switch modeling approach to model the CCM Ćuk converter with
current-programmed control. A Ćuk converter is diagrammed in Fig. 2.20.

(a) It is desired to model the switch network with an ic current source and a dependent
power source or sink, using the approach of Sect. 18.1.2. How should the switch
network terminal voltages and currents be defined?

(b) Sketch the switch network terminal voltage and current waveforms. With the assump-
tion that 〈i1(t)〉Ts − 〈i2(t)〉Ts ≈ ic(t) (where i1 and i2 are the inductor currents defined
in Fig. 2.20), determine expressions for the average values of the switch network ter-
minal waveforms, and hence derive an equivalent circuit similar to the equivalent
circuits of Fig. 18.9.

(c) Perturb and linearize your model of part (b), to obtain a small-signal equivalent cir-
cuit similar to the model of Fig. 18.10. It is not necessary to solve your model.

18.4 The full-bridge converter of Fig. 6.20a operates with Vg = 320 V, and supplies 1000 W
to a 42 V resistive load. Losses can be neglected, the duty cycle is 0.7, and the switch-
ing period Ts defined in Fig. 6.21 is 10 μsec. L = 50 μH and C = 100 μF. A current-
programmed controller is employed, whose waveforms are referred to the secondary
side of the transformer. In the following calculations, you may neglect the transformer
magnetizing current.

(a) What is the minimum artificial ramp slope ma that will stabilize the controller at the
given operating point? Express your result in terms of m2.

(b) An artificial ramp having the slope ma = m2 is employed. Sketch the Bode plot of
the current loop gain Ti(s), and label numerical values of the corner frequencies and
dc gains. It is not necessary to re-derive the analytical expression for Ti. Determine
the crossover frequency fc.

(c) For ma = m2, sketch the Bode plots of the control-to-output transfer function Gvc(s)
and line-to-output transfer function Gvg(s), and label numerical values of the corner
frequencies and dc gains. It is not necessary to re-derive analytical expressions for
these transfer functions.

18.5 In a CCM current-programmed buck converter, it is desired to minimize the line-to-
output transfer function Gvg(s) via the choice ma = 0.5m2. However, because of com-
ponent tolerances, the value of inductance L can vary by ±10% from its nominal value
of 100 μH. Hence, ma is fixed in value while m2 varies, and ma = 0.5m2 is obtained only
at the nominal value of L. The switching frequency is 100 kHz, the output voltage is 15 V,
the load current varies over the range 2 to 4 A, and the input voltage varies over the range
22 to 32 V. You may neglect losses. Determine the worst-case (maximum) value of the
line-to-output dc gain Gvg(0).

18.6 The nonideal flyback converter of Fig. 7.19 employs current-programmed control, with
artificial ramp having slope ma. MOSFET Q1 exhibits on-resistance Ron. All current-
programmed controller waveforms are referred to the transformer primary side.

(a) Derive a block diagram which models the current-programmed controller, of form
similar to Fig. 18.24. Give analytical expressions for the gains in your block diagram.

(b) Combine your result of part (a) with the converter small-signal model. Derive a new
expression for the control-to-output transfer function Gvc(s).

18.7 A buck converter operates with current-programmed control. The element values are
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Vg = 120 V D = 0.6
R = 10 Ω fs = 100 kHz
L = 550 μH C = 100 μF

An artificial ramp is employed, having slope 0.15 A/μsec.
(a) Construct the magnitude and phase asymptotes of the control-to-output transfer

function Gvd(s) for duty-cycle control. On the same plot, construct the magnitude
and phase asymptotes of the control-to-output transfer function Gvc(s) for current-
programmed control. Compare.

(b) Construct the magnitude asymptotes of the line-to-output transfer function Gvg(s) for
duty-cycle control. On the same plot, construct the magnitude asymptotes of the line-
to-output transfer function Gvg−cpm(s) for current-programmed control. Compare.

18.8 A buck–boost converter operates in the discontinuous conduction mode. Its current-
programmed controller has no compensating artificial ramp: ma = 0.
(a) Derive an expression for the control-to-output transfer function Gvc(s), using the

approximation L ≈ O. Give analytical expressions for the corner frequency and dc
gain.

(b) Repeat part (a), with the inductor included. Show that, provided the inductor is suffi-
ciently small, then the inductor merely adds a high-frequency pole and zero to Gvc(s),
and the low-frequency pole derived in part (a) is essentially unchanged.

(c) At the CCM-DCM boundary, what is the minimum value of the RHP zero frequency?
18.9 A current-programmed boost converter interfaces a 3 V battery to a small portable 5 V

load. The converter operates in the discontinuous conduction mode, with constant tran-
sistor on-time ton and variable off-time; the switching frequency can therefore vary and
is used as the control variable. There is no artificial ramp, and the peak transistor current
ic is equal to a fixed value Ic; in practice, Ic is chosen to minimize the total loss.
(a) Sketch the transistor and diode voltage and current waveforms. Determine expres-

sions for the waveform average values, and hence derive a large-signal averaged
equivalent circuit for this converter.

(b) Perturb and linearize your model of part (a), to obtain a small-signal equivalent cir-
cuit. Note that the switching frequency fs should be perturbed.

(c) Solve your model of part (b), to derive an expression for the low-frequency control-
to-output transfer function Gv f (s) = v̂(s)/ f̂s(s). Express your results in standard nor-
malized form, and give analytical expressions for the corner frequencies and dc gains.
You may assume that L is small.

18.10 A current-programmed boost converter is employed in a low-harmonic rectifier system,
in which the input voltage is a rectified sinusoid: vg(t) = VM | sin(ωt)|. The dc output
voltage is v(t) = V > VM . The capacitance C is large, such that the output voltage
contains negligible ac variations. It is desired to control the converter such that the input
current ig(t) is proportional to vg(t) : ig(t) = vg(t)/Re, where Re is a constant, called the
“emulated resistance.” The averaged boost converter model of Fig. 18.9a suggests that
this can be accomplished by simply letting ic(t) be proportional to vg(t), according to
ic(t) = vg(t)/Re. You may make the simplifying assumption that the converter always
operates in the continuous conduction mode.
(a) Solve the model of Fig. 18.9a, subject to the assumptions listed above, to determine

the power 〈p(t)〉Ts . Find the average value of 〈p(t)〉Ts , averaged over one cycle of the
ac input vg(t).
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(b) An artificial ramp is necessary to stabilize the current-programmed controller at
some operating points. What is the minimum value of ma that ensures stability at
all operating points along the input rectified sinusoid? Express your result as a func-
tion of V and L. Show your work.

(c) The artificial ramp and inductor current ripple cause the average input current to
differ from ic(t). Derive an algebraic expression for 〈ig(t)〉Ts , as a function of ic(t)
and other quantities such as ma, vg(t), V, L, and Ts. For this part, you may assume
that the inductor dynamics are negligible. Show your work.

(d) Substitute vg(t) = VM | sin(ωt)| and ic(t) = vg(t)/Re, into your result of part (c), to
determine an expression for ig(t). How does ig(t) differ from a rectified sinusoid?

18.11 Figure 18.65 shows a buck converter with a charge controller [179]. Operation of the
charge controller is similar to operation of the current-programmed controller. At the
beginning of each switching period, at time t = 0, a short clock pulse sets the SR latch.
The logic high signal at the Q output of the latch turns the power MOSFET on. At the
same time, the logic low signal at the Q output of the latch turns the switch S s off. Current
Ksis proportional to the power MOSFET current charges the capacitor Cs. At t = dTs,
the capacitor voltage vq(t) reaches the control input voltage Rf ic, the comparator output
goes high and resets the latch. The logic low signal at the Q output of the latch turns the
power MOSFET off. At the same time, the logic high signal at the Q output of the latch
turns the switch S s on, which quickly discharges the capacitor Cs to zero.

Fig. 18.65 Buck converter with charge controller, Problem 18.11
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In this problem, the converter and controller parameters are: Vg = 24 V, fs = 1/Ts =

100 kHz, L = 60μH, C = 100 μF, R = 3 Ω, KsTs/Cs = Rf = 1 Ω. You can assume that
the converter operates in continuous conduction mode.

(a) Find expressions for the average values of the switch network terminal waveforms,
and hence derive a large-signal averaged switch model of the buck switch network
with charge control. The control input to the model is the control current ic. The
averaged switch model should consist of a current source and a power source. The
switch duty cycle d should not appear in the model.

(b) Using the averaged switch model derived in part (a), find an expression for the quies-
cent output voltage V as a function of Vg, Ic, and R. Given Ic = 2 A, find numerical
values for V, I1, I2, and the duty cycle D. For this quiescent operating point, sketch
the waveforms i1(t), i2(t), and vq(t) during one switching period.

(c) Perturb and linearize the averaged switch model from part (a) to derive a small-
signal averaged switch model for the buck switch network with charge control. Find
analytical expressions for all parameter values in terms of the converter parameters
and the quiescent operating conditions. Sketch the complete small-signal model of
the buck converter with the charge controller.

(d) Solve the model obtained in part (c) to find the control-to-output transfer function
Gvc(s) = v̂/îc. At the quiescent operating point found in part (b), construct the Bode
plot for the magnitude of Gvc and label all salient features of the magnitude response.

(e) Comment on advantages charge control may have compared to duty-cycle control or
current-programmed control.

18.12 Figure 18.66 shows a buck converter with a one-cycle controller [180]. Operation of
the one-cycle controller is similar to operation of the current-programmed controller. At
the beginning of each switching period, at time t = 0, a short clock pulse sets the SR
latch. The logic high signal at the Q output of the latch turns the power MOSFET on. At
the same time, the logic low signal at the Q output of the latch turns the switch S s off.
Current Gsv2(t) proportional to the voltage v2(t) charges the capacitor Cs. At t = dTs, the
capacitor voltage vs(t) reaches the control input voltage vc, the comparator output goes
high and resets the latch. The logic low signal at the Q output of the latch turns the power
MOSFET off. At the same time, the logic high signal at the Q output of the latch turns
the switch S s on, which quickly discharges the capacitor Cs to zero.
In this problem, the converter and controller parameters are: Vg = 24 V, fs = 1/Ts =

100 kHz, L = 60 μH, C = 100 μF, R = 3 Ω, GsTs/Cs = 1. You can assume that the
converter operates in the continuous conduction mode.

(a) Find expressions for the average values of the switch network terminal waveforms,
and hence derive a large-signal averaged switch model of the buck switch network
with one-cycle control. The control input to the model is the control voltage vc. The
switch duty cycle d should not appear in the model.

(b) Using the averaged switch model derived in part (a), find an expression for the qui-
escent output voltage V as a function of Vc. Given Vc = 10 V, find the numerical
values for V, I1, I2, and the duty cycle D. For this quiescent operating point, sketch
the waveforms i1(t), i2(t), and vs(t) during one switching period.
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Fig. 18.66 Buck converter with one-cycle controller, Problem 18.12

(c) Perturb and linearize the averaged switch model from part (a) to derive a small-signal
averaged switch model for the buck switch network with one-cycle control. Find
analytical expressions for all parameter values in terms of the converter parameters
and the quiescent operating conditions. Sketch the complete small-signal model of
the buck converter with the one-cycle controller.

(d) Solve the model obtained in part (c) to find the control-to-output transfer function
Gvc(s) = v̂/v̂c, and the line-to-output transfer function Gvg(s) = v̂/v̂g. For the qui-
escent operating point found in part (b), sketch the magnitude Bode plots of these
transfer functions, and label all salient features.

(e) Comment on advantages one-cycle control may have compared to duty-cycle con-
trol.
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Digital Control of Switched-Mode Power Converters

Digital control methods and digital controllers based on general-purpose or dedicated micro-
controllers, digital signal processors (DSP’s), or programmable logic devices have been widely
adopted in power electronics applications at relatively high-power levels, including motor drives
or grid-tied three-phase inverters and rectifiers. In these applications, digital control offers clear
technical and economic advantages in addressing complex control, management, and monitor-
ing tasks. Digital control is also applicable to ubiquitous low-to-medium power switched-mode
power conversion applications such as point-of-load (POL) regulators, non-isolated and iso-
lated dc–dc converters, single-phase power factor correction (PFC) rectifiers and inverters, etc.
In these applications, switching frequencies are typically in the range from hundreds of kilo-
hertz to multiple megahertz, and much faster dynamic responses are required. The controller
cost and the controller power consumption can easily present significant portions of the system
cost and power dissipation. In many applications, control challenges have been successfully
met by continuous advances of readily available analog controllers, using analysis, modeling,
and design techniques discussed in other chapters of this book. More recently, practical digital
control of high-frequency switched-mode power converters has moved from proof-of-concept
laboratory demonstrations [181–189], to digital PWM controller (DPWM) chips commercially
available from multiple vendors. A number of mixed-signal DPWM controller architectures and
implementation strategies have been investigated and realized in practice. For example, many
standard microcontrollers or DSP chips are now available, featuring multiple PWM and analog-
to-digital (A/D) conversion channels, allowing software-based control and power management
functions. High-performance digital control loops can also be realized using digital logic im-
plemented in field-programmable gate array (FPGA) chips or specialized integrated circuits,
together with custom DPWM and A/D blocks, while programmability, power management, and
system interface functions are delegated to embedded microcontrollers.

In addition to taking advantage of continuous and rapid advances in digital controller re-
alizations, digital control techniques have opened opportunities for advances in high-frequency
switched-mode power conversion applications. Advantages of digital control include programma-
bility of parameters and flexibility in applications. Furthermore, practical realizations of more
advanced techniques have been demonstrated, including approaches leading to improved dy-
namic responses [190–201], system identification [202–205], auto-tuning and adaptive control
methods [206–214], as well as efficiency optimization and power management functions [215–
222].
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Fig. 19.1 Digitally controlled switched-mode power converter

The purpose of this chapter is to provide an introduction to analysis, modeling, and design
of digital control for high-frequency switched-mode power converters. Figure 19.1 shows a dig-
itally controlled converter, using the synchronous buck converter as an example. The objectives
are to develop understanding of the operation of the digital PWM control loop, including the
effects of delays and quantization, to model the loop dynamics, and to enable the reader to de-
sign high-performance digital control loops. It is assumed that the reader has mastery of the
materials in the preceding chapters, especially Chaps. 7–9, but no background in discrete-time
or digital control is assumed. Signal propagation and functional blocks in the digital control
loop are discussed in Sect. 19.1. Section 19.2 presents an introduction to discrete-time systems.
Discrete-time compensator design is presented in Sect. 19.3, while Sect. 19.4 gives an introduc-
tion to digital controller implementation techniques. A more detailed treatment of the subject
of digital control of high-frequency switched-mode power converters can be found in [223].

19.1 Digital Control Loop

In the digitally controlled switching converter of Fig. 19.1, the output voltage is measured using
a sensor with gain H(s). The transfer function H(s) may include scaling and analog filtering of
the output voltage. As in the conventional analog control loop, the sensor output signal is com-
pared with a reference voltage vre f to obtain the error signal ve(t). The error signal is sampled
in time and quantized in amplitude by an analog-to-digital (A/D) converter. The A/D sampling
usually occurs at a constant rate, which is called the sampling frequency fsampling = 1/Tsampling.
Then the A/D output ve[n] is a digital word that represents the analog error signal ve at time
t = nTsampling. The A/D sampling frequency is in general synchronized with the switching fre-
quency fs, fsampling = k fs, where k is a positive integer. In practice, a common choice is to select
the sampling period to be equal to the switching period: k = 1,

Tsampling = Ts (19.1)
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Based on the discretized error signals ve[n], the digital compensator Gcd updates the duty-cycle
command signal vc[n] at the input of the digital pulse-width modulator (DPWM). Finally, given
vc[n], the DPWM outputs a switch control signal c(t) with duty cycle d[n] proportional to the
duty-cycle command vc[n]. The digital control loop is conceptually very similar to the standard
analog voltage-mode control loop discussed in Sect. 9.1, but with two significant differences
due to (1) quantization in amplitude, and (2) sampling, i.e., quantization in time.

19.1.1 A/D and DPWM Quantization

In the control loop illustrated in Fig. 19.1, the digital signals ve[n] and vc[n] are represented by
digital variables having a finite number of bits. Practical A/D converters produce digital outputs
having a limited number of bits such as 12 or 14. Digital pulse-width modulators similarly are
limited in their resolution. This section introduces the quantization characteristics of the A/D
converter and of the digital pulse-width modulator.

Analog-to-Digital Conversion

In addition to sampling in time, the A/D converter performs quantization in amplitude. Fig-
ure 19.2a shows the quantization characteristic QA/D of a standard A/D converter operating
over an analog input voltage range from 0 to a full-scale voltage VFS . The sensed analog sig-
nal Hv is quantized to an nA/D-bit digital word. The least significant bit (LSB) value of this
quantized signal is

qA/D =
VFS

2nA/D
(19.2)

where nA/D is the A/D resolution in bits. The example in Fig. 19.2a is shown for nA/D = 3.
The A/D-converted sensed analog signal is digitally subtracted from the reference voltage vre f

to obtain the digital error signal ve[n]. As an alternative, the A/D quantization can be viewed
as shown in Fig. 19.2b, where the quantization characteristic is centered around zero. Either
way, analog voltages within a zero-error bin of width qA/D produce a zero digital error signal
ve[n] = 0, which implies that the LSB resolution qA/D determines how well the output voltage
can be regulated by the digital control loop.

As an example, suppose that H = 1, and that it is desired to regulate the output dc voltage
V within ± 0.25% of Vre f = 1 V, i.e., within ± 2.5 mV. The LSB resolution must therefore meet
the condition qA/D < 5 mV. Equation (19.2) implies that the required A/D resolution in bits is

nA/D > log2

(
VFS

qA/D

)
(19.3)

Suppose VFS = 2 V, which is a typical full-scale voltage value for standard A/D converters.
Then an A/D resolution of at least nA/D = 9 bits is required to meet the dc voltage regulation
specification. When the quantization is centered around zero, as shown in Fig. 19.2b, the same
LSB resolution can be achieved but the voltage conversion range can be reduced, thus effectively
reducing the number of bits required to represent ve[n]. Such “window” A/D converters have
been described in [181, 182, 184, 193].

Digital Pulse-Width Modulation

Digital pulse-width modulation, illustrated in Fig. 19.3a, follows the same principles as the stan-
dard analog PWM described in Sect. 7.3, Fig. 7.30. The duty-cycle command signal vc[n] is
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ve

ve[n] = QA/D(ve)QA/D(Hv)

qA/D qA/D

ve[n]

Zero-error
bin

Zero-error
bin

ve[n] = ve

Hv

(a) (b)

VFS0

Fig. 19.2 A/D quantization characteristic over (a) 0 − VFS voltage range, and (b) centered around zero
error

compared with a digital saw-tooth ramp, so that the duty cycle d[n] of the output control sig-
nal c(t) is proportional to vc[n]. As shown in Fig. 19.3a, the time resolution of the c(t) pulse is
qDPWMTs where

qDPWM =
1

2nDPWM
(19.4)

and nDPWM is the DPWM resolution in bits. In the example shown in Fig. 19.3, nDPWM = 3.

vc[n]

qDPWM

d[n]

0
0

1

1

Ts

d[n]Ts
t

c(t)

(a) (b)

QDPWM(vc[n])

qDPWMTs

t0

2nDPWM −1

Fig. 19.3 Digital pulse-width modulator: (a) time-quantization of the gate-drive signal c(t) and (b) quan-
tization characteristic
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In Fig. 19.3a it is assumed that the amplitude of the digital saw-tooth ramp is 1 − 2−nDPWM

which corresponds to the equivalent DPWM gain equal to 1 V−1, i.e., VM = 1 V. The resulting
DPWM quantization characteristic is shown in Fig. 19.3b.

In a standard DPWM implementation, the digital saw-tooth ramp is generated simply by a
digital counter driven by a digital clock with frequency fclk. The DPWM timing resolution is
then determined by the clock period Tclk = 1/ fclk,

qDPWMTs = Tclk (19.5)

The duty-cycle resolution determines how precisely the converter output voltage can be posi-
tioned. For example, in a buck converter of Fig. 19.1, the dc output voltage is V = DVg. Given
the duty-cycle quantization, the output voltage positioning resolution is therefore

ΔV = qDPWMVg (19.6)

or,
ΔV
V
= qDPWM

Vg

V
=

1
2nDPWM

1
M

(19.7)

Suppose that it is desired to position the output voltage within 0.1% in a converter with
M = V/Vg = 0.2. Equation (19.7) implies that a 13-bit DPWM is required to meet the volt-
age positioning specification, while Eq. (19.5) implies that a standard DPWM implementation
would require a clock frequency

fclk = 2nDPWM fs = 8192 fs (19.8)

If, for example, fs = 1 MHz, the required time resolution is 122 ps, and the required clock
frequency is fclk = 8.192 GHz. Equation (19.8) illustrates one of the practical challenges in
implementation of digital PWM controllers for high-frequency switched-mode power convert-
ers: the high switching frequency and the need for high DPWM resolution require high sys-
tem clock frequency. This problem has been addressed using alternative DPWM implemen-
tation techniques, resulting in practical high-frequency, high-resolution DPWM realizations
[181, 182, 184, 185, 188, 224–234].

Ideal Quantization Characteristics

The A/D and the DPWM quantization characteristics are highly nonlinear, which has implica-
tions on the stability and operation of the digitally controlled converter. Until we return to the
A/D and the DPWM quantization effects in Sect. 19.4.2, we will assume that high-resolution
A/D and DPWM units are available so that quantization-induced nonlinearities in the digital
control loop can be neglected:

ve[n] = QA/D(ve(nTs)) ≈ ve(nTs)

d[n] ≈ vc[n]
VM

=
vc[n]
1 V

(19.9)

For the DPWM, a common assumption is that VM = 1 V. The ideal (very high resolution)
quantization characteristics in Eq. (19.9) imply that the A/D converter and the DPWM blocks
can be modeled simply as unity gain blocks, ve[n]/ve(nTs) = 1, d[n]/vc[n] = 1 V−1.
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Fig. 19.4 Operating waveforms in a digitally controlled switched-mode power converter

19.1.2 Sampling and Delays in the Control Loop

Figure 19.4 illustrates steady-state and transient operation of a digitally controlled converter
where Eq. (19.1) is satisfied, so that the A/D sampling rate equals the switching frequency.
Ideally, the digital sample ve[n] of the error signal equals the value of the analog error signal
ve(t) at time nTs, ve[n] = ve(nTs). The quantity controlled by the digital feedback loop is the
sampled value ve[n] of the analog error signal ve(t). Assuming a well-designed feedback loop
with very large dc loop gain, the steady-state error is driven to zero, as shown in Fig. 19.4a:

ve[n]→ 0 (19.10)

In equilibrium, the dc value Ve of the analog error signal may not be equal to zero. The dc
regulation error in the digitally controlled loop is a result of the fact that the error signal ve(t)
includes switching ripple so that the sample ve[n] is not necessarily equal to the dc value Ve.
The digitally controlled converter is a sampled-data system. With A/D sampling equal to the
switching frequency, the dc error in equilibrium can be interpreted as aliasing of the switching
ripple components to dc. The error is no larger than the amplitude of the ripple. A practical
implication is that sampling should be performed away from points in time when the sampled
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analog signal may include large noise caused by switching transitions, such as immediately
after switching events. Aliasing errors can be reduced by including an “anti-aliasing” analog
low-pass filter before the A/D converter, or by sampling the analog signal at a rate higher than
the switching frequency and performing the anti-aliasing filtering digitally.

More generally, it should be understood that A/D sampling at fs aliases any frequency com-
ponents of the analog signal beyond the Nyquist rate fs/2 back to frequencies below fs/2 [235].
Therefore, when we discuss frequency responses of the discrete-time compensator Gcd, we will
restrict our attention to frequencies up to the Nyquist frequency fs/2.

Let us now consider propagation of the signals through the digital control loop. Since the
A/D conversion is not instantaneous, the digital signal ve[n] is available to the digital controller
after a certain time interval commonly referred to as A/D conversion time. Given the updated
ve[n], the discrete-time compensator Gcd computes an update to the digital duty-cycle command
signal vc[n] at the input of the digital pulse-width modulator (DPWM). Combined, the A/D
conversion time plus the time it takes to compute vc[n], equal a controller time delay tctrl shown
in Fig. 19.4. The duty-cycle command vc[n] is held constant through the switching period, as
shown in Fig. 19.4b. In response, the digital pulse-width modulator outputs a control pulse c(t)
shown in Fig. 19.4c with duty cycle d[n], where d[n] = vc[n]/VM = vc[n], assuming VM = 1 V.
The difference ĉ(t) between the modulated and the steady-state pulse at the DPWM output is
shown in Fig. 19.4d. Note that the response ĉ(t) occurs with delay DTs after the time vc[n] is
updated, which is a result of the sampling process associated with pulse-width modulation, as
discussed in Sect. 15.5.

It is important to note that there are two sampling processes in the digital control loop of
Fig. 19.1: sampling by the A/D converter and sampling by the pulse-width modulator. The time
between the two sampling events represents the delay in the digital control loop,

td = tctrl + tmod = tctrl + DTs (19.11)

The control loop delay in Eq. (19.11) includes two components: the time tctrl required to perform
A/D conversion and the time required by the digital compensator to compute an update of the
signal vc[n] at the DPWM inputs, and the modulator delay tmod = DTs associated with the
trailing-edge digital pulse-width modulator. Other DPWM types, such as leading-edge or dual-
edge DPWM offer different modulator delays, as summarized in Table 19.1 [223]. These results
are consistent with the analysis presented in [68].

Table 19.1 Delays in regularly sampled pulse-width modulators

PWM Modulator delay tmod

Trailing-edge DTs

Leading-edge (1 − D)Ts

Dual-edge Ts/2



812 19 Digital Control of Switched-Mode Power Converters

In the frequency domain, the effect of the delay td in the digital control loop can be modeled
by applying the Laplace transform to a signal delayed by td, as follows:

L {x(t − td)} =
t→+∞∫

t→−∞

x(t − td)e−stdt =

τ→+∞∫

τ→−∞

x(τ)e−s(τ+td)dτ = e−std x(s) (19.12)

It follows that the Laplace-transform frequency-domain model of the delay td is given by

Gdelay(s) = e−std (19.13)

with magnitude response ||Gdelay( jω) || = 1, and phase response given by

∠Gdelay( jω) = −ωtd (19.14)

The phase lag of Eq. (19.14) can be significant, and should be taken into account in the design
of the discrete-time compensator. This issue is discussed further in Sect. 19.3.

19.2 Introduction to Discrete-Time Systems

The purpose of this section is to present a brief introduction to discrete-time system analysis and
modeling techniques. The techniques presented in this section enable design of the discrete-time
compensator Gcd(z) in the digitally controlled converter of Fig. 19.1.

19.2.1 Integration in Continuous Time and in Discrete Time

A standard analog control loop around a switching converter is shown in Fig. 7.1. The continuous-
time compensator Gc(s) can be designed based on the frequency-domain techniques discussed
in Chap. 9. Consider a simple integral compensator,

Gc(s) =
vc(s)
ve(s)

=
ωo

s
(19.15)

where ve is the error signal and vc is the signal applied to the input of the pulse-width modulator.
The continuous-time, s-domain transfer function Gc(s) has a pole at s = 0. In the time domain,
the output vc(t) of the compensator is an integral of the input ve(t),

vc(t) = vc(0) + ωo

t∫

0

ve(τ)dτ (19.16)

where vc(0) is the initial condition at t = 0. Figure 19.5 illustrates an example of waveforms vc(t)
and ve(t). In this example, ve(t) is a sinusoidal waveform at frequency fs/10, where fs = 1/Ts

is the sampling frequency. Let us now consider how to realize the integral compensator in the
digital controller shown in Fig. 19.1, i.e., how to compute the samples vc[n] at the discrete-time
compensator output given the discrete-time samples ve[n] = ve(nTs) at the compensator input.
First, note that the continuous-time integration in Eq. (19.16) can be written as:
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Fig. 19.5 Continuous-time and discrete-time integration

vc(t) = vc(t − Ts) + ωo

t∫

t−Ts

ve(τ)dτ . (19.17)

To reproduce Eq. (19.17) exactly, the discrete-time compensator should perform the following
calculation:

vc(nTs) = vc[n] = vc[n − 1] + ωo

nTs∫

(n−1)Ts

ve(τ)dτ (19.18)

where the integral over the interval (n − 1)Ts to Ts represents the area under the waveform ve(t)
over the sampling interval Ts between t = (n − 1)Ts and t = nTs. However, since values of ve(t)
are only available at discrete-times, the exact reproduction of the continuous-time integration in
Eq. (19.18) is not feasible. Instead, one must perform the integration approximately, using only
the available discrete-time samples of ve. One approach, based on a trapezoidal approximation
to the area under the waveform ve over a sampling period Ts, is illustrated in Fig. 19.5:

vc[n] = vc[n − 1] + ωoTs
ve[n] + ve[n − 1]

2
(19.19)

The computation of vc[n] in Eq. (19.19) is relatively simple, requiring only an addition of
ve[n − 1] and ve[n], a multiplication by a constant, and an addition of the product and the
previously computed vc[n − 1]. It is clear that Eq. (19.19) can easily be implemented in digital
logic hardware or as simple lines of code in software. Figure 19.5 shows how the samples vc[n]
obtained by the approximate discrete-time integration in Eq. (19.19) are close to, but not ex-
actly equal to the samples vc(nTs) of the analog integrator output signal vc(t). For a given ve(t),
increase of the sampling frequency causes the differences between the samples vc(nTs) of the
analog, continuous-time integration in Eq. (19.17) and the discrete-time integrator outputs vc[n]
in Eq. (19.19) to diminish.
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The trapezoidal approximation leading to Eq. (19.19) is not the only possible way to approx-
imate continuous-time integration in discrete-time. The backward Euler approximation is given
by:

vc[n] = vc[n − 1] + ωoTsve[n − 1] (19.20)

The forward Euler approximation is

vc[n] = vc[n − 1] + ωoTsve[n] . (19.21)

All three approximations find application; generally the trapezoidal approximation is more ac-
curate.

19.2.2 z-Transform and Frequency Responses of Discrete-Time Systems

Equations (19.19), (19.20), and (19.21) define three discrete-time integral compensators in
the time domain. In the previous chapters, we have extensively relied on the continuous-
time Laplace transform, s-domain transfer functions, as well as on frequency responses and
frequency-domain analysis, modeling and design techniques. It is of interest to introduce the
corresponding transforms and frequency-domain techniques developed for discrete-time sys-
tems [176]. The introduction here is intended to be very brief and at a basic level, but suffi-
cient to enable the reader to undertake digital controller designs based on the standard analog,
continuous-time background provided in the previous chapters.

In discrete-time systems, the Z-transform plays the role the Laplace transform has in
continuous-time circuits and systems. Given a discrete-time signal x[n], the Z-transform is
defined as

Z{x[n]} = x(z) =
n→+∞∑
n→−∞

x[n]z−n (19.22)

Just like the Laplace transform, theZ-transform is linear:

Z{ax[n] + by[n]} = aZ{x[n]} + bZ{y[n]} = ax(z) + by(z) (19.23)

where a and b are constants. For a variable delayed by one sampling period, the Z-transform
can be found as follows:

Z{x[n − 1]} =
n→+∞∑
n→−∞

x[n − 1]z−n =

k→+∞∑
k→−∞

x[k]z−(k+1) = z−1
k→+∞∑
k→−∞

x[k]z−k = z−1x(z) (19.24)

It follows that delaying a discrete-time signal by a sampling period in time domain is equivalent
to multiplying the Z-transform of the signal by a factor z−1. In other words, z−1 models a unit
delay in the z-domain.

Application of the Z-transform, including Eq. (19.24), to the discrete-time integrator
Eq. (19.19), yields

vc(z) = z−1vc(z) + ωoTs
ve(z) + z−1ve(z)

2
(19.25)
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Table 19.2 Transfer functions of discrete-time integrators

Approximation Gcd(z)

Trapezoidal
ωoTs

2
z + 1
z − 1

Backward Euler ωoTs
1

z − 1

Forward Euler ωoTs
z

z − 1

which leads to the discrete-time, z-domain transfer function of the discrete-time integral com-
pensator of Eq. (19.19), derived using the trapezoidal approximation in Sect. 19.2.1:

Gcd(z) =
vc(z)
ve(z)

=
ωoTs

2
1 + z−1

1 − z−1
=
ωoTs

2
z + 1
z − 1

(19.26)

Table 19.2 shows the discrete-time z-domain transfer functions for the three considered discrete-
time integrators.

For continuous-time s-domain transfer functions, such as the continuous-time integral com-
pensator Gc(s) in Eq. (19.15), we know that the response to a sinusoidal perturbation at fre-
quency ω can be found by replacing s with jω, and evaluating the magnitude and phase of
Gc( jω). In particular, as discussed in Sect. 8.1 and shown in Fig. 8.3, the Bode plot of the inte-
gral compensator magnitude response is a straight line with −20 dB/decade slope. What can be
said about the frequency responses of Gcd(z)? To answer this question, recall that z−1 models a
unit delay in the z-domain. On the other hand, similar to the approach taken to model a delay
in Eq. (19.12), applying the Laplace transform to a signal x(t) delayed by a sampling period Ts

results in

L {x(t − Ts)} =
t→+∞∫

t→−∞

x(t − Ts)e
−stdt =

τ→+∞∫

τ→−∞

x(τ)e−s(τ+Ts)dτ = e−sTs x(s) (19.27)

By comparing Eq. (19.24) and Eq. (19.27), we conclude that the frequency response of a z-
domain transfer function can be found by replacing z−1 with e−sTs , and then s with jω, as in the
case of continuous-time s-domain transfer functions:

Gcd( jω) = Gcd(z)|z→e jωTs (19.28)

Let us evaluate the frequency response of the discrete-time integral compensator in Eq. (19.26):

Gcd( jω) =
ωoTs

2
1 + e− jωTs

1 − e− jωTs
=
ωoTs

2
e jωTs/2 + e− jωTs/2

e jωTs/2 − e− jωTs/2
(19.29)

Application of Euler’s formula (e jx = cos x + j sin x) to Eq. (19.29) leads to

Gcd( jω) = − j
ωoTs

2

cos
(
ωTs

2

)

sin
(
ωTs

2

) (19.30)
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It is of interest to compare the frequency responses of Gcd( jω) in Eq. (19.30) with the frequency
response Gc( jω) of the original continuous-time integral compensator in (19.15),

Gc( jω) = − j
ωo

ω
(19.31)

The phase responses of Gcd ( jω) in Eq. (19.30) and Gc( jω) in Eq. (19.31) are exactly the same at
all frequencies. Both transfer functions exhibit −90◦ phase at all frequencies. It should be noted
that this is the case only for the discrete-time integrator based on the trapezoidal approxima-
tion. In contrast, the phase responses of the discrete-time integrator based on the forward Euler
or the backward Euler approximations differ from the phase response of the continuous-time
integrator.

To compare the magnitude responses, consider first low frequencies such that (ωTs/2) 	 1,
i.e., f 	 fs/π,

Gcd( jω)
∣∣∣∣
(ωTs/2)	1

≈ − j
(
ωoTs

2

) 1(
ωTs

2

) = − j
ωo

ω
= Gc( jω) (19.32)

Equation (19.32) shows that the magnitude response of the discrete-time integrator approxi-
mates very well the magnitude response of the continuous-time integrator at frequencies suffi-
ciently low compared to the sampling frequency ( f 	 fs/π). At higher frequencies, however,
the differences in magnitude responses increase. The mismatch in magnitude responses is visi-
ble in Fig. 19.5. In this example, f = fs/10, and the mismatches between vc[n] and the values
vc(nTs) obtained at the output of the continuous-time integrator are relatively small, but visible.
Furthermore, while ||Gc( jω)|| > 0 at all frequencies, ||Gcd( jω)|| = 0 at frequencies such that
ωTs/2 = (2k + 1)π/2: ∥∥∥Gcd( jω)

∥∥∥ = 0 , for f =
fs

2
,

3 fs

2
, · · · (19.33)

The magnitude responses of Gc(s) and Gcd(z) are compared in Fig. 19.6 for fs = 1 MHz and
fo = 100 kHz. The responses match closely at low frequencies, and depart more significantly at
frequencies approaching fs/2 and beyond.
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Fig. 19.6 Magnitude responses of the continuous-time and discrete-time integrators, fs = 1 MHz, fo =

100 kHz. The discrete-time integrator is based on the trapezoidal approximation
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19.2.3 Continuous Time to Discrete Time Mapping

Sections 19.2.1 and 19.2.2 introduced discrete-time systems using a simple integral compen-
sator example. The objective of this section is to derive discrete-time compensator transfer
functions Gcd(z) starting from more complex continuous-time compensator transfer functions
Gc(s), such as PI, PD and PID compensators discussed in Chap. 9. There are many different
continuous-time to discrete-time mapping approaches, i.e., approaches to finding Gcd(z) start-
ing from an s-domain transfer function Gc(s) [176]. Here we describe a mapping approach that
follows directly from the derivation of the discrete-time integrator in Sects. 19.2.1 and 19.2.2
using the trapezoidal approximation:

Gc(s) =
ωo

s
→ Gcd(z) =

ωoTs

2
z + 1
z − 1

(19.34)

Equation (19.34) suggests that starting from an arbitrary Gc(s), Gcd(z) can be obtained by re-
placing s as follows:

s→ 2
Ts

z − 1
z + 1

(19.35)

By use of Eq. (19.35), Gcd(z) can be found as:

Gcd(z) = Gc(s)
∣∣∣∣
s→ 2

Ts
z−1
z+1

(19.36)

The mapping defined by Eqs. (19.35) and (19.36) is known as the bilinear or Tustin mapping
[176]. Figure 19.7 illustrates several properties of the bilinear mapping. In this example, an s-
domain transfer function contains several real poles at s = 0,−α1, . . . , α5 and several zeroes at
s = 0, jβ1,− jβ1, . . . ,− jβ5. The mapping of these poles and zeroes into the z-plane is found by
solving for z in terms of s from Eq. (19.35):

z =
1 +

sTs

2

1 − sTs

2

(19.37)
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Fig. 19.7 Mapping from s-plane (a) to z-plane (b) using the bilinear method
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The origin s = 0 in the s-plane maps to z = 1 in the z-plane. Recall that a continuous-time
integrator has a pole at s = 0. Hence, a discrete-time integrator has a pole at z = +1. As shown
in Table 19.2, this is true for all discrete-time integrators. From Eq. (19.37), it can be shown
that points s = jω on the s-plane imaginary axis map to points on the unit circle || z || = 1 in
the z-plane. Points on the negative real axis in the s plane map to points on the real axis in the
z-plane between z = +1 and z = −1. The entire left half-plane in the s-plane maps to the interior
of the unit circle in the z-plane.

As an example, consider mapping the PI compensator described in Sect. 9.5.2,

Gc(s) = Gc∞

(
1 +
ωL

s

)
(19.38)

First, we employ the bilinear mapping, Eq. (19.36), to express the compensator transfer function
Gcd(z) as a function of z:

Gcd(z) = Gc∞

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

ωL(
2
T2

z − 1
z + 1

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19.39)

With some algebra, this can be expressed in pole-zero form as

Gcd(z) = Gc∞

(
1 +
ωLTs

2

) z − 1 − ωLTs/2
1 + ωLTs/2

z − 1
(19.40)

Since fL in PI compensators is usually very low compared to fs, (ωLTs/2) 	 1, Eq. (19.40) can
be simplified as follows:

Gcd(z) ≈ Gc∞
z − (1 − ωLTs)

z − 1
(19.41)

The discrete-time PI compensator has a pole at z = 1, and a real zero at approximately 1 −
ωLTs. For a given sampling frequency fs = 1/Ts, as ωL approaches zero, the discrete-time zero
tends to z = 1. In general, mapping continuous-time low-frequency poles or zeroes results in
discrete-time poles or zeroes close to the +1 point of the z-plane. This can lead to roundoff errors
and design constraints in implementation of discrete-time compensators, discussed further in
Sect. 19.4.

Figure 19.8 compares the magnitude and phase responses of the analog PI compensator
Gc(s) in Eq. (19.38), with Gc∞ = 1, fL = 20 kHz, and the discrete-time PI compensator in
Eq. (19.40) obtained by bilinear mapping with fs = 1 MHz,

Gcd(z) = 1.063
z − 0.8743

z − 1
(19.42)

One may observe that the magnitude and phase responses match very well over frequencies well
below the sampling rate fs. The responses in Fig. 19.8 are plotted up to the Nyquist frequency
fs/2 = 500 kHz.

As another example, consider mapping a PD compensator described in Sect. 9.5.1,

Gc(s) = Gc0

(
1 +

s
ωz

)

(
1 +

s
ωp

) (19.43)
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Fig. 19.8 Magnitude and phase responses of an analog, continuous-time PI compensator Gc(s), Gc∞ = 1,
fL = 20 kHz, and the discrete-time compensator Gcd(z) obtained by bilinear mapping, fs = 1 MHz

The bilinear mapping, Eq. (19.36), results in

Gcd(z) = Gc0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

2
ωzTs

1 +
2
ωpTs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
z − 1 − ωzTs/2

1 + ωzTs/2

)

(
z −

1 − ωpTs/2

1 + ωpTs/2

) (19.44)

The discrete-time PD compensator has a zero and a pole on the real z-plane axis. Suppose
that fs = 1 MHz and that it is desired to implement digitally a PD compensator with Gc0 = 1,
fz = 100 kHz, fp = 400 kHz. Note that in this case the continuous-time zero and pole frequen-
cies are not much lower than the sampling frequency fs. By substituting the numerical values
in Eq. (19.40), we get

Gcd(z) = 2.329
z − 0.5219
z + 0.1137

(19.45)

The frequency responses of Gc(s) and Gcd(z) are compared in Fig. 19.9. Since the PD compen-
sator corner frequencies are relatively high, discrepancies can be observed in both magnitude
and phase responses, especially at frequencies approaching fs/2. After reaching a maximum
phase lead at

√
fz fp = 200 kHz, the phase of Gcd drops much faster with frequency than the

phase of Gc. The magnitude of Gcd is larger than the magnitude of Gc at all frequencies of
interest, and the difference in magnitude responses increases with frequency.

A generalization of the bilinear (Tustin) mapping known as frequency prewarping [176] can
be applied to mitigate, to some extent, the differences between Gc and Gcd frequency responses
in cases when corner frequencies of interest are relatively close to fs/2. The bilinear mapping
with prewarp is performed as follows:

s→ kprewarp
2
Ts

z − 1
z + 1

. (19.46)
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Fig. 19.9 Magnitude and phase responses of an analog, continuous-time PD compensator Gc(s), Gc0 =

1, fz = 100 kHz, fp = 400 kHz, the discrete-time compensator Gcd(z) obtained by bilinear mapping,
fs = 1 MHz, and the discrete-time compensator G∗cd(z) obtained by bilinear mapping with prewarping at
fprewarp = 200 kHz

G∗cd(z) = Gc(s)|s→kprewarp
2

Ts
z−1
z+1

(19.47)

where

kprewarp =
ωprewarpTs/2

tan
(
ωprewarpTs/2

) (19.48)

is found so that the magnitude and the phase of Gc and G∗cd match exactly at a particular fre-
quency ωprewarp, ∥∥∥G∗cd( jωprewarp)

∥∥∥ = ∥∥∥Gc( jωprewarp)
∥∥∥

∠G∗cd( jωprewarp) = ∠Gc( jωprewarp)
(19.49)

Figure 19.9 shows the frequency responses of the discrete-time compensator G∗cd obtained by
bilinear mapping with the prewarp frequency fprewarp =

√
fz fp = 200 kHz. The exact match

between Gcd∗ and Gc at the prewarp frequency, and the improved match around the prewarp
frequency, are obtained at the expense of somewhat increased mismatch at lower frequencies.

As a final example in this section, consider mapping the continuous-time PID compensator
described in Sect. 9.5.3. The compensator transfer function is

Gc(s) = Gcm

(
1 +
ωL

s

) (
1 +

s
ωz

)

(
1 +

s
ωp1

) (19.50)

Compared to the transfer function in Eq. (9.64), the second pole at fp2 has been dropped from
the transfer function in Eq. (19.50). In a practical analog controller implementation, the high-
frequency pole at fp2 must be present to cause the gain to roll off at high frequencies and to
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prevent the switching ripple from disrupting the operation of the analog pulse-width modula-
tor. Furthermore, the high-frequency pole is unavoidable due to analog circuit implementation
limitations, such as the op amp gain-bandwidth product. In the digital controller realization of
Fig. 19.1, the sensed analog voltage is sampled by the A/D converter at the rate equal to the
switching frequency. As a result, the switching ripple components are not present in the digi-
tal compensator, and there is no reason to map the high-frequency pole at fp2 to discrete-time.
Instead, the high-frequency (anti-aliasing) filtering can be left in the sensing transfer function
H(s) in the analog domain, where it serves the purpose of attenuating switching ripples and
noise before A/D conversion. Using Eq. (19.47), the z-domain, discrete-time transfer function
of the PID compensator is obtained,

G∗cd(z) = Gd
(z − zL)(z − zz)
(z − 1)(z − zp)

(19.51)

where

Gd = Gcm
fp1

fz

(
1 + a

fL

fprewarp

) (
1 + a

fz
fprewarp

)

1 + a
fp1

fprewarp

(19.52)

zL =

1 − a
fL

fprewarp

1 + a
fL

fprewarp

, zz =

1 − a
fz

fprewarp

1 + a
fz

fprewarp

, zp =

1 − a
fp1

fprewarp

1 + a
fp1

fprewarp

(19.53)

a = tan

(
π

fprewarp

fs

)
(19.54)

The mapping techniques discussed in this section, and many others, are well supported
by computer tools such as MATLAB [236]. Table 19.3 summarizes the bilinear mapping
(Eqs. 19.35, 19.36) and the bilinear mapping with prewarp (Eqs. 19.46–19.48), together with
the corresponding MATLAB functions.

Table 19.3 Continuous-time to discrete-time mapping

Method mapping MATLAB function

Bilinear (Tustin) s→ 2
Ts

z − 1
z + 1

Gcd = c2d(Gc,Ts,’tustin’)

Bilinear (Tustin) with prewarp s→ kprewarp
2
Ts

z − 1
z + 1

Gcd = c2d(Gc,Ts,’prewarp’,wprewarp)
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19.3 Discrete-Time Compensator Design

The loop gain Td in a digitally controlled converter includes the sensor transfer function H(s),
the control-to-output transfer function Gvd(s), the delay modeled as Gdelay(s) = e−std , and the
compensator transfer function Gcd(z) (or G∗cd(z)). It should be noted that the loop gain does not
include a zero-order-hold. The magnitude and phase responses of the loop gain Td can be found
as

Td( jω) =
(
H(s)Gvd(s)e−std

) ∣∣∣∣
s→ jω

G∗cd(z)
∣∣∣∣
z→e jωTs

(19.55)

Compared to the loop gain in an analog voltage-mode controlled converter, Eq. (9.4) with
VM = 1, Eq. (19.55) differs in two ways: the presence of the delay, and the sampled-data discrete-
time nature of the compensator Gcd. These differences are illustrated in the following example.

Example

The objective of this example is to evaluate the loop gain frequency response in Eq. (19.55) and
to compare it to the loop gain response with an analog controller. An analog PID compensator
is designed for a synchronous buck converter operating at fs = 1 MHz switching frequency.
The analog compensator transfer function given in Eq. (9.64), with fL = 8 kHz, fz = 33 kHz,
Gcm = 5.45, fp1 = 300 kHz, fp2 = 1 MHz, results in the crossover frequency fc = 100 kHz with
52◦ phase margin. In equilibrium, V = Vre f = 1.8 V, so that D ≈ V/Vg = 0.36.

Before mapping the analog compensator to discrete-time, the high-frequency pole at fp2 is
removed from the analog compensator transfer function. This pole is instead allocated to an
analog anti-aliasing filter in voltage sensing before the A/D converter,

H(s) =
1

1 +
s
ωp2

(19.56)

Based on Gc(s) of Eq. (19.50), with the use of bilinear mapping with the prewarp frequency
equal to the target crossover frequency, a discrete-time compensator of Eq. (19.51) is obtained
from Eqs. (19.52)–(19.54):

G∗cd(z) = 27.3898
(z − 0.9493)(z − 0.8063)

(z − 1)(z − 0.01278)
(19.57)

The magnitude and phase responses of the loop gain Td, evaluated from Eq. (19.55), are shown
in Fig. 19.10 for several values of the loop delay td, in comparison to the loop gain responses
in the analog controlled converter (td = 0). The bilinear mapping with prewarp frequency equal
to the crossover frequency preserves the magnitude response very well. Furthermore, the delay
term does not affect the magnitude responses at all. As a result, the magnitude responses in
the digital control loop stay essentially the same as the loop gain magnitude response with the
analog controller, and the crossover frequency remains the same, fc ≈ 100 kHz. However, the
digital control loop delay more significantly affects the phase responses and the resulting phase
margins. The shortest considered delay td = DTs = 0.36 μs assumes a high-performance digital
controller where the A/D conversion and the compensator computations are completed very
quickly so that tctrl ≈ 0. From Eq. (19.14), the additional phase lag at the crossover frequency
is −ωctd = −13◦, which reduces the phase margin to 52◦ − 13◦ = 39◦. A delay of td = DTs +

Ts/2 = 0.86 μs, which corresponds to tctrl = Ts/2 = 0.5 μs, reduces the phase margin to 52◦ −
31◦ = 21◦. The final case is when the A/D conversion and the compensator calculations take
an entire switching period, tctrl = Ts, which is representative of a very low-performance digital
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td = 0.36 ms
td = 0.86 ms
td = 1.36 ms
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||T ||

Fig. 19.10 Loop gain magnitude and phase responses in the synchronous buck converter design example
with the analog controller (td = 0), and with digital controllers with several loop delays, td = DTs =

0.36 μs, td = DTs + 0.5Ts = 0.86 μs, td = DTs + Ts = 1.36 μs

implementation. In this case, the delay of td = DTs + Ts = 1.36 μs reduces the phase margin to
just 52◦ − 49◦ = 3◦. The example illustrates that the loop delay can be a very significant factor
in the design of high-performance, wide-bandwidth digital control loops for high-frequency
switching power converters.

19.3.1 Design Procedure

A basic discrete-time compensator design procedure is described in this section based on the
description of the digital control loop and loop delay in Sect. 19.1, the analog regulator design
of Sect. 9.5, and the continuous-time to discrete-time mapping techniques of Sect. 19.2.3. The
approach consists of four steps:

1. Find the system uncompensated loop gain Tud(s), including the anticipated delay td due to
digital implementation, as discussed in Sect. 19.1, and anti-aliasing analog filtering in H(s):

Tud(s) = H(s)Gvd(s)Gdelay(s) = H(s)Gvd(s)e−std (19.58)

2. Design an analog continuous-time compensator Gc(s) using techniques discussed in Sect. 9.5,
except that high-frequency analog roll-off poles should not be included in Gc(s). As ex-
plained further in the next section, in a PID compensator design, one may choose to position
the high-frequency pole at fp1 according to Eq. (19.68) so that the resulting discrete-time
compensator has the standard PID form of Eq. (19.69).

3. Map the analog compensator Gc(s) designed in Step 2 to the discrete-time compensator
Gcd(z) using the bilinear mapping, or to the discrete-time compensator G∗cd(s) using the
bilinear mapping with prewarp, as discussed in Sect. 19.2.3. The crossover frequency fc and



824 19 Digital Control of Switched-Mode Power Converters

the phase margin designed in Step 2 can be preserved by choosing the prewarp frequency
fprewarp equal to the target crossover frequency fc,

fprewarp = fc (19.59)

4. Evaluate magnitude and phase responses of the loop gain Td using Eq. (19.55), and ver-
ify that the design targets are met. Furthermore, closed-loop frequency responses can be
evaluated as in Eqs. (9.4), but with Td from Eq. (19.55) replacing the continuous-time loop
gain T .

5. Realize the discrete-time compensator as described in Sect. 19.4.

The digital compensator design approach described in this section is based on continuous-time
small-signal averaged converter models, standard analog design techniques, and mapping from
continuous time to discrete time. It should be noted that Eq. (19.58) is an approximation based
on standard averaging techniques. Exact converter discrete-time converter models [237] allow
applications of more advanced design techniques directly in z-domain [176]. These techniques
are described in more detail in [223].

19.3.2 Design Example

The objective is to design a discrete-time digital compensator Gcd around the synchronous buck
converter shown in Fig. 19.1. The input dc voltage is Vg = 5 V, and the objective is to precisely
regulate the output voltage to V = Vre f = 1.8 V. The inductance is L = 1 μH, with a series
resistance Rs = 30 mΩ that models a combination of MOSFET on-resistance and the inductor
winding resistance. The output filter capacitor has C = 200 μF and an equivalent series resis-
tance Resr = 0.8 mΩ. The converter operates at fs = 1 MHz switching frequency, and the load
current is between 0 A and 5 A. When the converter is unloaded (R is very large), the converter
control-to-output transfer function is

Gvd(s) = Gd0

1 +
s

ωesr

1 +
s

Qω0
+

(
s
ω0

)2
(19.60)

where Gd0 = Vg = 5 V, fesr = 1/(2πResrC) = 1 MHz, f0 ≈ 1/(2π
√

LC) = 11.3 kHz and
Q ≈

√
L/C/(Rs + Resr) = 2.3.

Let us first design an analog PID compensator to achieve a crossover frequency f = 100 kHz
with a phase margin of 52◦. Assuming H = 1, and VM = 1 V, following the design approach
exemplified in Sect. 9.5.4, we arrive at the analog PID compensator

Gc(s) = Gcm

(
1 +

ωL

s

) (
1 +

s
ωz

)

(
1 +

s
ωp1

) (
1 +

s
ωp2

) (19.61)

where Gcm = 5.45, fL = 8 kHz, fz = 33 kHz, and fp1 = 300 kHz are determined to meet the
crossover frequency and phase margin specifications, while fp2 = 1 MHz represents a high-
frequency pole in the analog control loop. The objective now is to follow the procedure outlined
in this section to design a digital controller given the same crossover frequency and phase mar-
gin specifications.
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In the introductory part of this section, we have found that the loop delay can affect the
digital control loop significantly, and that excessive loop delays make it impossible to design
wide-bandwidth digital control loops. Let us assume a high-performance digital controller im-
plementation, with the delay td = DTs = 0.36 μs in the converter operating at fs = 1 MHz. The
design objectives are the same as for the analog control loop: very large loop gain at low fre-
quencies, fc = 100 kHz crossover frequency, and 52◦ phase margin. A single-pole anti-aliasing
filter with a pole at fp2 = 1 MHz is included in the voltage sensor transfer function, Eq. (19.56).
Using the analog compensator design as a starting point, the PI corner frequency is kept the
same, fL = 8 kHz. Since the delay td introduces −13◦ phase at the target crossover frequency,
the PD compensator must be redesigned to boost the phase lead at fc to 52◦ + 13◦ = 65◦. Given
the required phase lead θ = 65◦ at fc = 100 kHz, Eq. (9.57) leads to fz = 22 kHz, fp1 = 450 kHz.
Finally, Gcm is found to achieve the target crossover frequency,

Gcm =

√
fz
fp1

(
fc
fo

)2 1
Vg
= 3.5 1/V (19.62)

Now that all parameters in the analog compensator of Eq. (19.50) have been determined,
Eqs. (19.52)–(19.54) yield the discrete-time compensator for fprewarp = fc,

G∗cd(z) = 31.7593
(z − 0.9493)(z − 0.8654)

(z − 1)(z + 0.1881)
(19.63)

Figure 19.11 compares the loop gain magnitude and phase responses in the synchronous buck
regulator design example with the analog compensator in Eq. (19.61), and with the digital con-
troller designed to take into account the loop delay td = DTs = 0.36 μs. Note that approximately
the same crossover frequency and phase margin have been achieved in the digitally controlled
regulator.

||T || (analog controller)

||Td || (digital controller)

∠Td

∠T

Fig. 19.11 Loop gain magnitude and phase responses in the synchronous buck regulator design example
with the analog controller (td = 0), and with the digital controller designed to take into account the loop
delay td = DTs = 0.36 μs
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 1 % Synchronous Buck converter parameters

 2 Vg = 5;  Vref = 1.8; D = Vref/Vg; % Input and reference voltages, duty cycle

 3 L = 1e-6;  RL = 30e-3; % Inductance and series resistance

 4 C = 200e-6;  Resr = 0.8e-3; % Capacitance and capacitor ESR

 5 fo = 1/(2*pi*sqrt(L*C)); % Pole frequency

 6 R = 1000; % Load resistance

 7 fs = 1e6; Ts = 1/fs; % Switching frequency and period

 8 

 9 s = tf('s'); z = tf('z',Ts); % Define s and z

10

11 % Open-loop control to output transfer function

12 Gvd = Vg*(Resr+1/s/C)/(Resr + 1/s/C + s*L + RL); 

13 fp2 = 1e6; H = 1/(1 + s/2/pi/fp2); % Sensor transfer function

14 Tu = H * Gvd; % Uncompensated loop gain, no delay

15

16 % Analog PID compensator

17 fc = 100e3; % Cross-over frequency

18 fL = 8e3; fz = 33e3; fp1 = 300e3; % Corner frequencies

19 Gcm = sqrt(fz/fp1)*(fc/fo)^2/Vg; % Mid-frequency gain

20 % Analog compensator transfer function

21 Gc = Gcm*(1 + 2*pi*fL/s)*(1 + s/2/pi/fz)/(1+s/2/pi/fp1); 

22 T = Gc*Tu; % Loop gain with analog compensator

23

24 % Uncompensated loop gain, including delay

25 td = D*Ts; % Delay in the digital control loop

26 Tu.IODelay = td; % Delay

27 Tud = c2d(Tu,Ts,'impulse'); % Mapping of Tu with delay 

28 % Analog PID compensator redesigned for digital implementation

29 fL = 8e3; fz = 22e3; fp1 = 450e3; % Corner frequencies

30 Gcm = sqrt(fz/fp1)*(fc/fo)^2/Vg; % Mid-frequency gain

31 Gca = Gcm*(1 + 2*pi*fL/s)*(1 + s/2/pi/fz)/(1+s/2/pi/fp1);

32 % Digital compensator transfer function

33 Gcd = c2d(Gca, Ts, 'prewarp', 2*pi*fc);

34 Td = Tud*Gcd; % Loop gain with digital compensator

35

36 % Compare magnitude and phase responses of T and Td

37 options = bodeoptions; options.Grid = 'on'; 

38 options.FreqUnits = 'Hz';  options.XLim = [100, 500e3]; 

39 bode(T, 'k', options); % Bode plot of T

40 hold on; % Overlay plots 

41 bode(Td, 'b', options); % Bode plot of Td

Fig. 19.12 A MATLAB script that generates the analog and digital loop gain Bode plots shown in
Fig. 19.11

A MATLAB script that generates the plots in Fig. 19.11 is shown in Fig. 19.12. The script
starts by assigning the converter parameters (lines 1-7), followed by definitions of complex vari-
ables s and z (line 9). Open-loop control-to-output transfer function of the buck converter Gvd(s)
and the uncompensated loop gain Tu(s) are formulated in lines 11-14. Analog PID compensator
parameters are defined in lines 16-19 followed by the analog compensator transfer function
Gc(s) in line 21 and the loop gain T (s) with the analog compensator in line 22. No delays are
included in the analog controller. In line 26, delay td = DTs is included as a property of the un-
compensated loop gain, which is then mapped to discrete-time uncompensated loop gain Tud(z)
in line 27. The analog compensator, redesigned to take the delay into account, is defined in lines
28–31, and then mapped in line 33 to obtain the compensator G∗cd(z), and the loop gain Td(z)
in line 34. Bode plots of T (s) and Td(z) are generated in lines 36-41 using the MATLAB bode
command.
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v(t) (analog controller)

v(t) (digital controller)

vc(t) (analog controller)

vc[n] (digital controller)

t [µ s]

t [µ s]

(a)

(b)

Fig. 19.13 Step-load (2.5 A to 5 A) transient responses in the synchronous buck converter example with
the analog controller (td = 0), and with the digital controller designed to take into account the loop delay
td = DTs = 0.36 μs: (a) control signals vc for the analog and digital controllers, (b) output voltage
responses v(t) for the analog and digital controllers

Figure 19.13 compares step-load (2.5 A to 5 A) transient responses. While the output volt-
age v(t) responses in Fig. 19.13b are very similar, differences can be appreciated in the control
signal responses shown in Fig. 19.13a. The digital controller produces discrete-time step-wise
waveform vc[n], while vc(t) in the analog controller is a continuous-time waveform that includes
a switching-ripple component.

19.4 Digital Controller Implementation

Digital controllers can be practically realized in a number of ways. For example, many stan-
dard microcontrollers or digital signal processing chips are now available, featuring multiple
PWM and A/D conversion channels, allowing software-based control and power management
functions. The digital controller and its digital compensation algorithm are implemented in the
firmware of these chips, using a programming language such as C. An alternative approach
consists of implementing the control loop in hardware, using field-programmable gate arrays
(FPGA) or custom integrated circuits. In combination with specialized A/D and DPWM blocks,
this approach enables high-performance designs at high switching frequencies. Controllers of
this type can be developed, realized and tested using standard digital design flow starting from
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logic functions described using a hardware description language (HDL) such as VHDL or Ver-
ilog, prototyping and experimental verifications using FPGA development platforms, ultimately
targeting relatively small, relatively low gate-count integrated circuits capable of matching or
surpassing state-of-the-art analog solutions in terms of dynamic performance, power consump-
tion and cost. This section provides an introduction to digital controller implementation issues,
with pointers to further details discussed in literature.

19.4.1 Discrete-Time Compensator Realization

Analog compensators are typically realized using RC networks around standard analog building
blocks - operational or transconductance amplifiers. A discrete-time compensator Gcd is realized
using digital building blocks: adders, multipliers, and storage elements. There are many possible
ways to arrange these building blocks to realize a given Gcd(z) [176, 223]. This section presents
two realization architectures particularly well suited for discrete-time PI or PID compensators
in the digital control loop around a converter: a cascade realization, and a parallel realization.

The cascade realization of a PID transfer function Gcd(z) in Eq. (19.51) is shown in
Fig. 19.14.

ve[n] vc[n]

zL zz zp

z−1 z−1 z−1 z−1

Gd

Anti wind-up
limiter

u1[n] u2[n] u3[n] u4[n]

Fig. 19.14 Cascade realization of the discrete-time PID compensator

The equations that can be used as a starting point in coding the compensator in microcon-
troller software or in HDL are as follows:

u1[n] = Gdve[n]

u2[n] = u1[n] − zLu1[n − 1]

u3[n] = u2[n] − zzu2[n − 1]

u4[n] = u3[n] + zpu4[n − 1]

vc[n] = u4[n] + vc[n − 1]

(19.64)

The compensator parameters, the gain Gd, the zeroes zL, zz and the pole zp, are the multiplicative
factors, which can easily be programmable. Integration, which is performed in the last step of
Eq. (19.64), includes a limiter. The purpose of the limiter is to prevent the duty-cycle command
vc[n] at the integrator output from drifting away from the allowed operating range (0 to 1, as-
suming DPWM with VM = 1). This ”anti-windup” limiter function is similar to voltage limiting
at the output of an analog compensator built around an op amp. In coding the compensator,
one must also pay attention to the number of bits allocated to digital words representing the
parameters and the signal values in order to prevent overflows or other calculation errors [223].
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Another realization of the PID compensator is the parallel form, derived by a partial fraction
expansion of Gcd:

Gcd(z) = Gd
(z − zL)(z − zz)
(z − 1)(z − zp)

= KP + Ki
1

1 − z−1
+ KD

1 − z−1

1 − zpz−1
(19.65)

where the coefficients KP, KD, and KI can be found in terms of Gd, zL, zz and zp parameters,

KP = Gd(zL + zz − zp − (2 − zp)zLzz)

KI = Gd
(1 − zL)(1 − zz)

1 − zp

Kd = Gd
(zL − zp)(zz − zp)

(1 − zp)2

(19.66)

The parallel realization is shown in Fig. 19.15.

ve[n] vc[n]

z−1

z−1

z−1

Anti wind-up
limiter

KP

KI

KD

zp

up[n]

ui[n]

ud [n]

ud1[n]

Fig. 19.15 Parallel realization of the discrete-time PID compensator

The equations serving as a starting point for microcontroller or HDL coding are as follows:

up[n] = KPve[n]

ui[n] = KIve[n] + ui[n − 1]

ud1[n] = KD(ve[n] − ve[n − 1])

ud[n] = ud1[n] + zpud[n − 1]

vc[n] = up[n] + ui[n] + ud[n]

(19.67)

Note that an anti-windup limiter is included in the integration stage.
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The discrete-time PID transfer function in Eq. (19.65) has two zeroes and two poles. One
pole is at z = 1, which correspond to the integral action in the compensator. The second pole at
z = zp corresponds to the high-frequency pole at fp1 in the continuous-time PID compensator.
From Eq. (19.53), it follows that

fp1 =
fprewarp

a
=

fprewarp

tan

(
π

fprewarp

fs

) (19.68)

results in zp = 0. In this case, the discrete-time transfer function Gcd has a simple PID form
[176], with KP, KI , and KD representing the proportional, integral, and derivative gains, respec-
tively,

Gcd(z) = Gd
(z − zL)(z − zz)

z(z − 1)
= KP + KI

1
1 − z−1

+ KD(1 − z−1) (19.69)

With zp = 0, the realization in Fig. 19.15 is simplified because ud = ud1. The simple PID form is
particularly well suited for design techniques based on tuning the gains KP, KI and KD directly
[176, 223].

19.4.2 Quantization Effects, Digital Pulse-Width Modulators and A/D Converters

Figures 19.2 and 19.3 show A/D and DPWM quantization characteristics, respectively. So far,
in modeling and design of the digital control loop, we have neglected the quantization effects
by simply assuming that very high-resolution A/D and DPWM blocks are employed, so that
Eq. (19.9) holds. It has been observed that the nonlinearities introduced by practical, finite
resolution A/D and DPWM blocks can result in persistent disturbances sometimes referred to
as ”limit cycling” [238–240]. The quantization effects, as well as basic conditions necessary to
avoid limit-cycling disturbances, are discussed in this section first, followed by an overview of
A/D and DPWM implementation approaches.

Assuming that a stable digital feedback control loop has been designed, a digitally controlled
converter is expected to operate at an equilibrium point where all controller variables have
constant values, and where all converter waveforms are periodic, with the period equal to Ts =

1/ fs. To find the equilibrium solution, consider a dc model of a digitally controlled converter,
including A/D and DPWM quantization, as shown in Fig. 19.16. This is a static model, so the
discrete-time compensator is represented by its dc gain Gcd0,

Gcd0 = Gcd(z)
∣∣∣∣
z→1

(19.70)

while H0 is the sensor dc gain. Neglecting losses, the converter is represented by an ideal
1 : M(D) transformer, where M(D) = V/Vg is the dc conversion ratio. The A/D quantiza-
tion characteristics Ve[n] = QA/D(Ve(nTs)) is shown in Fig. 19.2, while the DWPM quantization
D = QDPWM(Vc[n]) is shown in Fig. 19.3. An equilibrium solution in the model of Fig. 19.16
can be found using a graphical approach illustrated in Fig. 19.17, where the digital error signal
Ve[n] at the A/D converter output is shown as a function of the analog sample Ve = Ve(nTs) at
the A/D converter input.
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Fig. 19.16 Dc model of a digitally controlled converter, including A/D and DPWM quantization
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Fig. 19.17 Graphical approach to finding the quiescent operating point in a digitally controlled converter
with A/D converter and DPWM having (a) infinite resolution, and (b) finite resolution. Expressions for Ve

as a function of Ve[n] are shown for the synchronous buck converter example
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Consider first the case in Fig. 19.17a where very high-resolution A/D and DPWM are em-
ployed, so that quantization effects can be neglected. In this case, the equilibrium solution is
found at the intersection of the A/D characteristic:

Ve[n] = Ve (19.71)

and the dc characteristic of the components around the loop:

Ve = Vre f − VgH0Gcd0Ve[n] (19.72)

This assumes a synchronous buck converter example with M(D) = D. Elimination of Ve from
Eqs. (19.71) and (19.72) allows an equilibrium solution to be found algebraically:

Ve[n] =
Vre f

1 + VgH0Gcd0
(19.73)

When the dc gain Gcd0 is large but finite, then the equilibrium point denoted as point A in
Fig. 19.17a is achieved, which corresponds to a small but nonzero dc error. In the case when the
compensator includes an integral action, Gcd0 → ∞, then the equilibrium solution is at point B,
which corresponds to zero dc error. This is all consistent with the discussion in Sect. 9.2, which
shows how a large dc loop gain drives the regulation error to zero.

Consider next a case where practical, finite resolution A/D and DPWM elements are em-
ployed. A graphical solution is illustrated Fig. 19.17b. The A/D quantization characteristic is
now highly nonlinear, Ve[n] = QA/D(Ve), with the widths of the A/D quantization bins equal to
qA/D. Because of the DPWM quantization, the characteristic around the loop is also nonlinear:

Ve = Vre f − VgH0QDPWM(Gcd0Ve[n]) (19.74)

Again this assumes a synchronous buck converter example with M(D) = D, and dc control-to-
output gain equal to Gd0 = Vg. The widths of the horizontal bins in the characteristic around the
loop are equal to VgH0qDPWM where qDPWM = 1/2nDPWM is the LSB resolution of the DPWM.
The height of a vertical step in the characteristic given by Eq. (19.74) is equal to qDPWM/Gcd0. If
the compensator dc gain Gcd0 is finite, then the equilibrium solution is at point A in Fig. 19.17b,
on a vertical segment of the A/D characteristic. The A/D output Ve[n] can only be equal to an
integer multiple of qA/D, not a fraction of qA/D. Therefore, the equilibrium point A in Fig. 19.17b
is not feasible. Given a large, but finite dc gain of the compensator, the digitally controlled
converter does not have a fixed equilibrium point. Instead, the A/D converter output must bounce
among two or more quantization steps, resulting in a persistent disturbance (limit cycling) in
converter waveforms.

If the compensator includes an integral action, Gcd0 → ∞, the widths of the vertical steps
in the characteristic given by Eq. (19.74) vanish. The characteristic around the A/D converter
becomes a series of points, VgH0qDPWM apart on the horizontal (Ve) axis. In this case, multiple
equilibrium solutions are possible, as illustrated by two points B in Fig. 19.17b. Each one of
the two possible equilibrium solutions is inside the A/D converter zero-error bin, Ve[n] = 0. It
should be noted that the existence of multiple possible equilibrium solutions corresponding to
Ve[n] = 0 is predicated upon the assumption that the compensator includes integral action, and
that the widths of the bins due to DPWM quantization are shorter than the A/D bins,

VgH0qDPWM < qA/D (19.75)
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Equation (19.75) is a condition for the synchronous buck converter example where M(D) = D
and Gd0 = Vg. In general, a necessary condition for existence of an equilibrium solution in a
digitally controlled converter can be written as:

Gd0H0qDPWM < qA/D (19.76)

where Gd0 is the converter dc control-to-output gain.

t [µs]

t [µs]

(a)

(b)

No quantization

No quantization

Quantization:

Quantization:

qA/D = 4 mV

qA/D = 4 mV

10-bit DPWM

10-bit DPWM

vc[n]

v(t)

Fig. 19.18 Comparison of step-load (2.5 A-to-5 A) transient responses in the digitally controlled syn-
chronous buck regulator of Sect. 19.3.1 without and with quantization effects, qA/D = 4 mV, nDPWM = 10

Figure 19.18 shows a comparison of step-load transient responses in the digitally controlled
synchronous buck regulator example of Sect. 19.3.1, for the case when very high-resolution
A/D and DPWM are employed so that quantization effects can be neglected, and for a case
of practical, finite resolution components, qA/D = 4 mV, nDPWM = 10, qDWPM = 1/210,
VgH0qDPWM = 4.9 mV. The compensator includes an integral action, so that Gcd0 → ∞, but
the DPWM resolution is not sufficiently high and the condition in Eq. (19.75) is not met. The
step-load transient responses in Fig. 19.18 are similar, except that quantization effects result in
periodic limit-cycling.



834 19 Digital Control of Switched-Mode Power Converters

0 50 100 150 200
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200
1.77

1.78

1.79

1.8

1.81

t [µs]

t [µs]

(a)

(b)

No quantization

No quantization

Quantization:

Quantization:

qA/D = 4 mV

qA/D = 4 mV

12-bit DPWM

12-bit DPWM

vc[n]

v(t)

Fig. 19.19 Comparison of step-load (2.5 A-to-5 A) transient responses in the digitally controlled syn-
chronous buck regulator of Sect. 19.3.1 without and with quantization effects, qA/D = 4 mV, nDPWM = 12

If Eq. (19.75) is not satisfied, the equilibrium solution may or may not exist, depending on
whether there is a point in the characteristic given by Eq. (19.74) inside the A/D converter zero-
error bin or not. Another important observation is that limit cycling, if it does occur, is relatively
small in amplitude, in the order of the LSB resolution qA/D of the A/D converter, as illustrated
by the waveforms of Fig. 19.18.

Figure 19.19 shows a comparison of the same step-load transient responses but for the
case when the DPWM resolution is increased to 12 bits, nDPWM = 12, qDWPM = 1/212,
VgH0qDPWM = 1.2 mV, thus meeting the condition in Eq. (19.75). After a brief transient, the
regulator with practical A/D and DPWM components comes to equilibrium without limit cy-
cling. Note that, after approximately 75 μsec, the output voltage remains within the zero-error
bin, and small-amplitude ringing (undamped by feedback control) decays towards the quantized
equilibrium point.

Related to the discussion of the existence of equilibrium solutions with A/D and DPWM
quantization, it is of interest to note that the A/D quantization, in combination with the inte-
gral action in the compensator, results in an effective steady-state quantization of the duty-cycle
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Fig. 19.20 Waveforms illustrating quantization of the DPWM input signal vc[n] due to A/D quantization
and integral action of the digital compensator: (a) an impulse in error ve[n], and (b) impulse response of a
digital compensator with integral gain KI

command Vc[n]. As a result, for an equilibrium solution to exist, it is not sufficient that the com-
pensator includes integral action and that the DPWM resolution is sufficiently high. Consider
the response of an integral compensator to a unit error impulse of amplitude equal to qA/D, i.e.,
the smallest possible disturbance at the compensator input. The integrator response to this unit
impulse is a step, as shown in Fig. 19.20, where KI is the integral gain. The step amplitude in
vc[n] is equal to KIqA/D. In conclusion, because of the A/D quantization and the integral gain
KI in the compensator, the duty-cycle command signal Vc[n], and therefore the duty cycle itself,
are effectively quantized with a bin width equal to KIqA/D, regardless of how high the DPWM
resolution may be. This effective DPWM quantization has exactly the same effect on the exis-
tence of an equilibrium solution as the DPWM LSB resolution qDWPM in Eq. (19.76), which
leads to another necessary condition,

Gd0H0KIqA/D < qA/D (19.77)

or,

Gd0H0KI < 1 (19.78)

When we combine the fact that an integral action is necessary, with the conditions in Eqs. (19.76)
and (19.78), we find that the conditions for existence of an equilibrium solution in a digitally
controlled converter can be written as follows:

Gd0H0qDPWM < qA/D

0 < KI <
1

Gd0H0

(19.79)

where Gd0 is the converter dc control-to-output gain, and KI is the compensator integral gain. In
general, for any Gcd(z), KI can be found as

KI = lim
z→1

(z − 1)Gcd(z) (19.80)
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One may verify that with qA/D = 4 mV, and nDPWM = 12, the conditions in Eq. (19.79) are both
met for the compensator in the design example of Sect. 19.3.1.

If the conditions in Eq. (19.79) are met, a digitally controlled converter has at least one
equilibrium solution in the zero-error bin of the A/D converter, Ve[n] = 0. It should be under-
stood, however, that existence of an equilibrium solution is not sufficient to guarantee no limit
cycling [238–240]. With quantization effects, the converter is a complex nonlinear dynamic sys-
tem and limit-cycling disturbances can sometimes be observed even when the loop is design for
stable operation, and when the DPWM resolution and the compensator integral gain KI meet
Eq. (19.79). On the other hand, for a stable, well-designed loop with high-resolution A/D and
DPWM components, the amplitude of any limit-cycling disturbances in the output voltage is
relatively small, in the order of qA/D, as illustrated in the example of Fig. 19.18. Therefore, in
practice, such small-amplitude disturbances can often be tolerated.

Sections 19.1.1 and the discussion of quantization effects point to the need for fast, high-
resolution A/D and DPWM components in a digitally controlled regulator.

Digital Pulse-Width Modulators

Modulators with high timing resolution are required so that the converter output voltage (or
current) can be precisely regulated. Furthermore, high-resolution pulse-width modulators are
needed to avoid or to minimize the amplitude of any limit-cycle disturbances. A digital modula-
tor in combination with the converter power stage operates as a power digital-to-analog (D/A)
converter, taking digital command vc[n] as an input and producing converter voltage (or current)
as an analog output. This power-D/A view has led to a number of DPWM developments based
on techniques adopted from the signal D/A conversion area.

A traditional counter-based DPWM replicates analog pulse-width modulation as shown in
Fig. 19.3: a saw-tooth or a triangular analog waveform is replaced by a digital counter clocked at
fclk, while a digital comparator outputs the modulated waveform by comparing the counter out-
put with the digital duty-cycle command vc[n]. A counter-based DPWM of resolution nDPWM

requires a clock frequency fclk = 2nDPWM fs, where fs is the switching frequency. To achieve
high resolution at high switching frequencies, prohibitively high clock rates may be required.
To remove the need for very high clock frequencies, a fine time resolution can instead be
achieved using a tapped delay line [224]. The delay cells in the delay line can also be designed
to accomplish feed-forward compensation of the input voltage [184]. Hybrid DPWMs [225]
combine delay-line and counter approaches to achieve desirable tradeoffs between clock rate
and complexity or gate count. Various hybrid DPWM implementations have been described in
[229, 232]. Other approaches in the area of high-resolution digital pulse-width modulation can
be found in [226, 230, 232, 233]. An overview and classification of DPWM architectures and
realizations has been presented in [227].

In addition to high-resolution DPWM hardware architectures, following the power-D/A
view of a digitally controlled switched-mode power converter, ΔΣ techniques, which have been
used in signal processing and digital audio applications [241], have more recently been applied
to digitally controlled converters.

In the digital control loop, the ΔΣ modulator is placed between the discrete-time compen-
sator Gcd and the DPWM. Figure 19.21 shows a second-order ΔΣ modulator following the
“error-feedback” architecture [241]. The error-feedback architecture has an advantage of includ-
ing no delays in the forward path from the high-resolution nh-bit compensator output vch[n] to
the lower-resolution nDPWM-bit duty-cycle command vc[n] provided to the hardware DPWM
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Fig. 19.21 Second-order error-feedback ΔΣ modulator placed between the compensator and the nDPWM-
bit DPWM c can improve the effective DPWM resolution by nx = nh − nDPWM bits

component. In the ΔΣ modulator, the nDPWM most significant bits (MSB) of the nh-bit signal are
delivered to the nDPWM-bit DPWM, while the quantization error having nx = nh − nDPWM least
significant bits (LSB) is fed back through a simple digital filter. The ΔΣ modulator shifts the
quantization error (viewed as quantization noise) to high frequencies, where the noise is filtered
by the low-pass action of the switched-mode power converter. Effective resolution improve-
ments can be obtained, thus enabling digital pulse-width modulation at high frequencies and
with low power consumption [188]. For example, with a 7-10-bit hardware DPWM, the second-
order ΔΣ modulator offers about 6-7 bits of effective resolution improvement. It has also been
shown that effective resolution improvements are better with dual-edge (triangle-wave) DPWM
compared to trailing-edge (saw-tooth) DPWM [231].

In conclusion, by combining delay-line or hybrid DPWM techniques with ΔΣ modulation,
DPWM’s having very high effective resolution can be realized using relatively modest hardware
resources, even at switching frequencies in the high megahertz range.

A/D Converters

For fast control loops and precise regulation, A/D converters must have high effective resolution
around a reference, and a short conversion time. Furthermore, simplicity, low-power consump-
tion, and suitability for integration in digital VLSI processes are important. On the other hand,
linearity or wide conversion range may be compromised in order to reduce the A/D complexity.
These specifications differ from the typical requirements in standard A/D converters developed
for signal processing, open-loop sensing, or slow control system applications, which is why
various switching converter-specific A/D realizations have been investigated.

A window-flash A/D converter [182] consists of a small number of analog comparators
centered around an analog reference Vre f , with a conversion characteristic shown in Fig. 19.2b.
In some applications, as few as three A/D output levels (+qA/D, 0, and −qA/D) are sufficient,
which allows a window-flash A/D implementation using only two comparators [184]. Target-
ing implementation in digital VLSI processes, delay-line based window A/D converters have
been introduced in [181]. Instead of analog comparators, the voltage-dependent delay charac-
teristic of logic gates is used to perform voltage-to-delay and delay-to-digital conversion. Cur-
rent sensing using delay-line A/D has been proposed in [242]. The delay-line A/D concept has
been developed further in [189], where a high-performance, low-power, programmable archi-
tecture has been demonstrated. A similar approach, using a ring-oscillator A/D, targeting very
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low-power mobile applications, has been described in [185]. An alternative A/D circuit realiza-
tion approach, using threshold inverter quantization (TIQ) has been proposed in [243]. In the
TIQ A/D approach, logic inverters with programmed thresholds replace analog comparators,
enabling fast conversion and asynchronous sampling in a high-performance digital hysteretic
controller [243].

19.5 Summary of Key Points

1. Digital control has become a practical technique for high-performance switching power
conversion systems that enables higher-level control functionality in modern power man-
agement systems. These control systems include analog-to-digital converters and digital
pulse-width modulators that perform signal quantization/sampling of both amplitude and
time. These quantization effects introduce new phenomena that may limit controller perfor-
mance and that should be considered in the closed-loop design.

2. The analog system modeling, analysis, and design techniques of earlier chapters can be
adapted to the case when the controller/compensator is implemented digitally. The loop
gain Td( jω) of the digital control system includes both the gains of the analog portions
such as Gvd( jω) and H( jω) as well as the gains of the A/D converter, digital compensator,
and the DPWM.

3. An approach to incorporate the digital controller discrete-time response Gcd(z) into the
continuous-time response Gvd(s)H(s) of the analog portion of the system is developed in
this chapter. Approximations can be employed that relate the digital and analog signals
associated with integration: the trapezoidal approximation Eq. (19.35) provides a way to
connect the s-plane transfer functions of the analog portion and the z-plane transfer func-
tions of the digital portion. The magnitude and phase of the loop gain Td( jω) can be found
and plotted, and the important quantities such as the crossover frequency and phase margin
can be evaluated.

4. TheZ-transform is a well-known approach for modeling discrete-time digital systems such
as the digital compensator. This approach provides a direct and simple way to represent the
operation of digital compensators. The definition z = esTs , or the trapezoidal approxima-
tion (19.35), leads to a direct connection between the Z-transform of the digital domain
and the Laplace transform of the analog domain.

5. The converter modeling and analog controller design techniques of earlier chapters can
be employed as a starting point for design of a digital controller. The delays inherent in
the digital controller elements must be added. A PI, PD, or PID compensator is designed
as discussed in Chap. 9, that then is translated to the z-domain as discussed in Sect. 19.3.
Section 19.4 describes implementation of the compensator algorithm in digital hardware.

Problems

19.1 A microcontroller operates at fclk = 120 MHz clock frequency and has counter-based
DPWM units. Assuming trailing-edge pulse-width modulation, calculate the DPWM
resolution as the number of bits nDPWM available when the microcontroller is used to
implement a digital controller around a switched-mode power converter operating at dif-
ferent switching frequencies: (i) fs = 100 kHz, (ii) fs = 250 kHz, or (iii) fs = 1 MHz.
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19.2 A microcontroller has high-resolution DPWM units, which offer 150 ps timing resolu-
tion. Assuming trailing-edge pulse-width modulation, calculate the DPWM resolution as
the number of bits nDPWM available when the microcontroller is used to implement a dig-
ital controller around a switched-mode power converter operating at different switching
frequencies: (i) fs = 100 kHz, (ii) fs = 250 kHz, or (iii) fs = 1 MHz.

19.3 A digital controller, which includes an nDPWM-bit DPWM, is used to control a switched-
mode power converter having dc conversion ratio M(D) = V/Vg. Derive an expression
for the voltage positioning resolution pv = ΔV/V in %, where ΔV is a step in the output
voltage V that corresponds to a least significant bit (LSB) step qDPWM in duty cycle D.
The expression for pv should be in terms of M(D) and nDPWM . Based on this general
expression, derive pv as a function of D and nDPWM for the three basic conversion ratios:
(i) buck M(D) = D, (ii) boost M(D) = 1/(1−D), and (iii) buck–boost M(D) = D/(1−D).
In the three cases considered, how difficult is it to precisely position the output voltage
at high step-down or high step-up conversion ratios?

19.4 A microcontroller has A/D converters with nA/D-bit resolution and full-scale voltage
VFS . The microcontroller is used to implement a digital controller around a switched-
mode power converter so that the output voltage is regulated at V = Vre f /Ho, where Ho

is the voltage sensing gain at dc. To allow for proper operation during transients, the
A/D converter must not saturate as long as the output voltage remains within ± 10% of
the nominal output voltage V . Choose Vre f and Ho as functions of V and VFS to achieve
the best possible resolution ΔV in output voltage regulation, where ΔV corresponds to
the zero-error bin of the A/D converter. Given nA/D = 10, VFS = 2 V, and V = 12 V,
calculate numerical values for Vre f , Ho, and ΔV .

19.5 A digital controller has a window A/D converter with a number of qA/D bins centered
around an analog reference voltage Vre f . The controller is used around a switched-mode
power converter so that the output voltage is regulated at V = Vre f /Ho, where Ho is
the voltage sensing gain at dc. To allow for proper operation during transients, the A/D
converter must not saturate as long as the output voltage remains within ± 10% of the
nominal output voltage V . How many qA/D bins are required in the window A/D con-
verter? Given Vre f = 2 V, qA/D = 5 mV, and V = 12 V, calculate numerical values for Ho,
ΔV corresponding to qA/D, and the number of bins required.

19.6 An analog proportional-derivative (PD) compensator transfer function is

Gc(s) = Gc0

1 +
s
ωz

1 +
s
ωp

where Gc0 = 1, fz = 10 kHz and fp = 100 kHz. As discussed in Sect. 9.5.1, the analog
PD compensator offers the largest phase lead at fx =

√
fz fp = 31.6 kHz. You may use

MATLAB or a tool of your choice to perform mapping and calculations requested in this
problem.
(a) Construct the Bode plot of Gc(s) magnitude and phase. Calculate the magnitude (in

dB) and phase (in degrees) responses at (i) f = fz, (ii) f = fx, and (iii) f = fp.
(b) Using bilinear mapping with prewarp at fprewarp = fx, map Gc(s) to G∗cd(z). Calculate

the magnitude (in dB) and phase (in degrees) responses of G∗cd at (i) f = fz, (ii)
f = fx, and (iii) f = fp, and compare to the results obtained in part (a) for three
different sampling frequencies: fs = 500 kHz, fs = 250 kHz, and fs = 150 kHz.
Overlay Bode plots of Gc and G∗cd for the three different sampling frequencies.
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19.7 Figure 19.22 shows a boost voltage regulator similar to the closed-loop regulated boost
converter in Problem 9.3, except that the controller is implemented digitally. Converter
components can be considered ideal. The voltage sensor transfer function is

H(s) =
Ho

1 +
s
ωp

where Ho = 1/120, and fp = 10 kHz. The voltage reference is Vre f = 1 V. The full-
scale voltage of the A/D converter is VFS = 2 V. The controller employs a trailing-edge
DPWM with VM = 1 V, and an integral discrete-time compensator Gcd(z). In parts (a)–
(c) of the problem, you may assume that the A/D converter and the DPWM are very
high-resolution components with unity gains. The A/D converter is sampling the sensed
voltage vs once per switching period, and the delay in the digital control loop is td =
tmod = DTs. To construct requested Bode plots and to perform numerical calculations
you may use MATLAB or a tool of your choice.

Fig. 19.22 Digitally controlled boost converter of Problem 19.7

(a) Determine steady-state dc output voltage V , duty cycle D, and delay td in the digital
control loop.

(b) Assuming analog controller implementation with a negligible delay, design an ana-
log integral compensator Gc(s) = Kc/s, i.e., determine Kc to obtain crossover fre-
quency fc = 125 Hz. With this Gc(s), construct the Bode plot of the loop gain T (s)
magnitude and phase. Label values of all corner frequencies and Q-factors, as appro-
priate. Determine phase margin.

(c) Following the design procedure of Sect. 19.3, design a discrete-time integral compen-
sator Gcd(z) to achieve the same crossover frequency and phase margin specifications
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as in part (b). Overlay Bode plots of the magnitude and phase responses of T (s) and
Td(z) and numerically verify the values obtained for the crossover frequency and the
phase margin.

(d) Find the minimum A/D resolution nA/D and the minimum DPWM resolution nDPWM

required so that the dc output voltage is regulated to within ± 0.25 V, and so that the
necessary no-limit-cycling conditions in Eq. (19.79) are met.

Fig. 19.23 Digitally controlled forward converter of Problem 19.8

19.8 Figure 19.23 shows a digitally controlled forward converter. This closed-loop voltage
regulator is similar to the system with the analog controller in Problem 9.5. The quiescent
value of the input voltage is Vg = 380 V. The transformer has turns ratio n1/n3 = 4.5.
The duty cycle produced by the digital pulse-width modulator is restricted to the range
0 ≤ d(t) ≤ 0.5 and in that range d[n] = vc[n]/VM where VM = 1 V. The DPWM employs
dual-edge modulation and has nDPWM = 12-bit resolution. The A/D converter has nA/D =

9-bit resolution and is sampling the sensed voltage vs once per switching period Ts. The
delay in the digital control loop is td = Ts/2. The A/D converter and the DPWM have
unity gains. Converter components can be considered ideal, and parameter values are
shown in Fig. 19.23. The small-signal models and transfer functions of forward and buck
converters are similar. The transformer magnetizing inductance has negligible influence
on the converter dynamics, and can be ignored. The discrete-time compensator is

Gcd(z) = 0.1152
z − 0.91

z − 1

You may use MATLAB or a tool of your choice to perform mapping, calculations, and
plotting.
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(a) Determine the quiescent values of the duty cycle D and the output voltage V .
(b) Derive expressions for the control-to-output transfer function Gvd(s) and the uncom-

pensated loop gain Tu(s), including effects of the voltage sensor transfer function
H(s) = vs/v, and delay td in the digital control loop.

(c) Construct a Bode plot of the loop gain Td magnitude and phase. What is the crossover
frequency? What is the phase margin?

(d) Are the necessary no-limit-cycling conditions in Eq. (19.79) satisfied for the system
in Fig. 19.23?

Fig. 19.24 Digitally controlled buck–boost voltage regulator system, Problem 19.9

19.9 Design of a digitally controlled buck–boost voltage regulator. This design problem is
similar to Problem 9.9, except that the controller is implemented digitally. The buck–
boost converter of Fig. 19.24 operates in the continuous conduction mode, with the ele-
ment values shown. The nominal input voltage is Vg = 48 V, and it is desired to regu-
late the output voltage at −15 V. Design the best compensator that you can, which has
high crossover frequency (but no greater than 10% of the switching frequency), large
loop gain over the bandwidth of the feedback loop, and phase margin of at least 45◦.
The A/D converter, which has up to 12-bit resolution, nA/D ≤ 12, samples the sensed
output voltage once per switching period. The DPWM, which has up to 10-bit resolu-
tion, nDPWM ≤ 10 uses trailing-edge modulation. The delay in the digital control loop is
td = tmod = DTs. The A/D converter and the DPWM have unity gains. The sensor H(s)
has an inverting gain, and includes a single-pole anti-aliasing filter

H(s) = − H0

1 +
s
ωp

where H0 > 0 and fp = 100 kHz. In the design, you may use MATLAB or a tool of your
choice to perform mapping, plotting and calculations.
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(a) Specify the required value of H0. Select nA/D and nDPWM to achieve best possible dc
voltage regulation while meeting the necessary no-limit-cycling condition expressed
in Eq. (19.76).

(b) Design the discrete-time compensator Gcd(z). Construct Bode plots of the uncompen-
sated loop gain Tud magnitude and phase (including effects of delay in the feedback
loop), as well as the magnitude and phase of your compensator transfer function
Gcd(z). Label the important features of your plots. Verify that the no-limit-cycling
conditions expressed in Eq. (19.79) are satisfied.

(c) Construct Bode diagrams of the magnitude and phase of your compensated loop
gain Td(z), and also of the magnitude of the quantities Td/(1 + Td) and 1/(1 + Td).
Calculate crossover frequency and phase margin.

(d) Discuss your design. What prevents you from further increasing the crossover fre-
quency?

Fig. 19.25 Boost converter with analog average current-mode control

19.10 Figure 19.25 shows a boost converter with analog average current-mode control of the
inductor current. The analog compensator transfer function is

Gci(s) = Gcm

1 +
ωz

s

1 +
s
ωp

where Gcm = 0.63, fz = 4 kHz, fp = 25 kHz. The current sensing gain is Rf = 0.25Ω.
Figure 19.26 shows the same converter with average current-mode control implemented
digitally. Current sensing includes an analog single-pole anti-aliasing filter

vs

iL
= Rf

1

1 +
s
ωa

where Rf = 0.25Ω and fa = 200 kHz. In both cases, the power stage parameters are
the same and losses can be neglected. You may assume that the A/D converter and
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Fig. 19.26 Boost converter with digital average current-mode control

Fig. 19.27 Timing diagram for the digitally controlled boost converter in Fig. 19.26

the DPWM are very high-resolution components with unity gains. A timing diagram
illustrating sampling of the inductor current and operation of the digital pulse-width
modulator is shown in Fig. 19.27. Note that a dual-edge (triangle-wave) DPWM is em-
ployed. In the design of the digital controller you only need to consider the modular
delay td = tmod = Ts/2, as shown in Fig. 19.27. You may use MATLAB or a tool of your
choice to perform calculations, and to construct Bode plots.
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a) For the analog average current-mode controlled converter of Fig. 19.25, determine
the steady-state operating point, i.e., find the dc values of IL, V , D, Vc and Vre f ,
where Vre f is the reference input for the current control loop.

b) For the analog average current-mode controlled converter of Fig. 19.25, at the oper-
ating point found in part (a), plot the magnitude and phase responses of the current
loop gain Ti(s), and determine crossover frequency fci and phase margin φi.

c) For the digital average current-mode controlled converter of Fig. 19.26, determine
the steady-state operating point, i.e., find the dc values of IL, V , D, Vc[n], and Vre f .

d) Given the modulator delay td, find the additional phase lag Δφd in the digital control
loop at the frequency fci found in part (b).

e) Design a discrete-time compensator G∗cid(z) so that the crossover frequency and the
phase margin in the digitally controlled converter are the same as the values found
in part (b). Use bilinear mapping with prewarping at fci. Express G∗cid(z) in factored
pole/zero form. Show the work documenting your design process. Overlay plots of
the magnitude and phase responses of the loop gain Ti found in part (b) and the loop
gain Tid in the digitally controlled converter.
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Modern Rectifiers and Power System Harmonics



20

Power and Harmonics in Nonsinusoidal Systems

Rectification used to be a much simpler topic. A textbook could cover the topic simply by dis-
cussing the various circuits, such as the peak-detection and inductor-input rectifiers, the phase-
controlled bridge, polyphase transformer connections, and perhaps multiplier circuits. But re-
cently, rectifiers have become much more sophisticated, and are now systems rather than mere
circuits. They often include pulse-width modulated converters such as the boost converter, with
control systems that regulate the ac input current waveform. So modern rectifier technology
now incorporates many of the dc–dc converter fundamentals.

The reason for this is the undesirable ac line current harmonics, and low power factors, of
conventional peak-detection and phase-controlled rectifiers. The adverse effects of power sys-
tem harmonics are well-recognized. These effects include: unsafe neutral current magnitudes in
three-phase systems, heating and reduction of life in transformers and induction motors, degra-
dation of system voltage waveforms, unsafe currents in power factor correction capacitors, and
malfunctioning of certain power system protection elements. In a real sense, conventional rec-
tifiers are harmonic polluters of the ac power distribution system. With the widespread deploy-
ment of electronic equipment in our society, rectifier harmonics have become a significant and
measurable problem. Thus there is a need for high-quality rectifiers, which operate with high
power factor, high efficiency, and reduced generation of harmonics. Several international stan-
dards now exist that specifically limit the magnitudes of harmonic currents, for both high-power
equipment such as industrial motor drives and low-power equipment such as electronic ballasts
for fluorescent lamps and power supplies for office equipment.

This chapter treats the flow of energy in power systems containing nonsinusoidal waveforms.
Average power, rms values, and power factor are expressed in terms of the Fourier series of the
voltage and current waveforms. Harmonic currents in three-phase systems are discussed, and
present-day standards are listed. The following chapters treat harmonics and harmonic mitiga-
tion in conventional line-commutated rectifiers, high-quality rectifier circuits and their models,
and control of high-quality rectifiers.
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+Source Load

Surface S

+

v(t)

i(t)

Fig. 20.1 Observe the transmission of energy through surface S

20.1 Average Power

Let us consider the transmission of energy from a source to a load, through a given surface as
in Fig. 20.1. In the network of Fig. 20.1, the voltage waveform v(t) (not necessarily sinusoidal)
is given by the source, and the current waveform is determined by the response of the load. In
the more general case in which the source output impedance is significant, then v(t) and i(t)
both depend on the characteristics of the source and load. Balanced three-phase systems may be
treated in the same manner, on a per-phase basis, using a line current and line-to-neutral voltage.

If v(t) and i(t) are periodic, then they may be expressed as Fourier series:

v(t) = V0 +

∞∑
n=1

Vn cos(nωt −ϕn) (20.1)

i(t) = I0 +

∞∑
n=1

In cos(nωt − θn)

where the period of the ac line voltage waveform is defined as T = 2π/ω. In general, the
instantaneous power p(t) = v(t)i(t) can assume both positive and negative values at various
points during the ac line cycle. Energy then flows in both directions between the source and
load. It is of interest to determine the net energy transmitted to the load over one cycle, or

Wcycle =

∫ T

0
v(t)i(t) dt (20.2)

This is directly related to the average power as follows:

Pav =
Wcycle

T
=

1
T

∫ T

0
v(t)i(t) dt (20.3)

Let us investigate the relationship between the harmonic content of the voltage and current wave-
forms, and the average power. Substitution of the Fourier series, Eq. (20.1), into Eq. (20.3) yields

Pav =
1
T

∫ T

0

⎛⎜⎜⎜⎜⎜⎝V0 +

∞∑
n=1

Vn cos (nωt −ϕn)

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝I0 +

∞∑
n=1

In cos (nωt − θn)

⎞⎟⎟⎟⎟⎟⎠ dt (20.4)

To evaluate this integral, we must multiply out the infinite series. It can be shown that the inte-
grals of cross-product terms are zero, and the only contributions to the integral comes from the
products of voltage and current harmonics of the same frequency:
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∫ T

0
(Vn cos(nωt −ϕn)) (Im cos(mωt − θm)) dt =

⎧⎪⎪⎨⎪⎪⎩
0 if n � m

VnIn

2
cos (ϕn − θn) if n = m

(20.5)

The average power is therefore

Pav = V0I0 +

∞∑
n=1

VnIn

2
cos (ϕn − θn) (20.6)

So net energy is transmitted to the load only when the Fourier series of v(t) and i(t) contain
terms at the same frequency. For example, if v(t) and i(t) both contain third harmonic, then net
energy is transmitted at the third harmonic frequency, with average power equal to

V3I3

2
cos (ϕ3 − θ3) (20.7)

Here, V3I3/2 is equal to the rms volt-amperes of the third harmonic current and voltage. The
cos(φ3 − θ3) term is a displacement term which accounts for the phase difference between the
third harmonic voltage and current.

Fig. 20.2 Voltage, current, and in-
stantaneous power waveforms, ex-
ample 1. The voltage contains only
fundamental and the current con-
tains only third harmonic. The av-
erage power is zero

v(t) i(t)

0

0.5

1

p(t) = v(t)i(t)

Pav = 0
0

0.5

1

Some examples of power flow in systems containing harmonics are illustrated in Figs. 20.2
to 20.4. In example 1, Fig. 20.2, the voltage contains fundamental only, while the current con-
tains third harmonic only. It can be seen that the instantaneous power waveform p(t) has a zero
average value, and hence Pav is zero. Energy circulates between the source and load, but over
one cycle the net energy transferred to the load is zero. In example 2, Fig. 20.3, the voltage and
current each contain only third harmonic. The average power is given by Eq. (20.7) in this case.

In example 3, Fig. 20.4, the voltage waveform contains fundamental, third harmonic, and
fifth harmonic, while the current contains fundamental, fifth harmonic, and seventh harmonic,
as follows:
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Fig. 20.3 Voltage, current, and in-
stantaneous power waveforms, ex-
ample 2. The voltage and current
each contain only third harmonic,
and are in phase. Net energy is
transmitted at the third harmonic
frequency

v(t), i(t)

0

0.5

1

0

0.5

1
p(t) = v(t)i(t)

Pav = 0.5

Fig. 20.4 Voltage, current, and
instantaneous power waveforms,
example 3. The voltage contains
fundamental, third, and fifth
harmonics. The current contains
fundamental, fifth, and seventh
harmonics. Net energy is transmit-
ted at the fundamental and fifth
harmonic frequencies

v(t)

i(t)
0.0

0.5

1.0

p(t) = v(t)i(t)

Pav = 0.32

0.0

0.2

0.4

0.6

v(t) = 1.2 cos (ωt) + 0.33 cos(3ωt) + 0.2 cos (5ωt)

i(t) = 0.6 cos (ωt + 30◦) + 0.1 cos (5ωt + 45◦) + 0.1 cos(7ωt + 60◦) (20.8)

Average power is transmitted at the fundamental and fifth harmonic frequencies, since only
these frequencies are present in both waveforms. The average power is found by evaluation of
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Eq. (20.6); all terms are zero except for the fundamental and fifth harmonic terms, as follows:

pav =
(1.2)(0.6)

2
cos(30◦) +

(0.2)(0.1)
2

cos(45◦) = 0.32 (20.9)

The instantaneous power and its average are illustrated in Fig. 20.4.

20.2 Root-Mean-Square (RMS) Value of a Waveform

The rms value of a periodic waveform v(t) with period T is defined as

(rms value) =

√
1
T

∫ T

0
v2(t)dt (20.10)

The rms value can also be expressed in terms of the Fourier components. Insertion of Eq. (20.1)
into Eq. (20.10), and simplification using Eq. (20.5), yields

(rms value) =

√√
V2

0 +

∞∑
n=1

V2
n

2
(20.11)

Again, the integrals of the cross-product terms are zero. This expression holds when the wave-
form is a current:

(rms current) =

√√
I2
0 +

∞∑
n=1

I2
n

2
(20.12)

Thus, the presence of harmonics in a waveform always increases its rms value. In particular,
in the case where the voltage v(t) contains only fundamental while the current i(t) contains
harmonics, then the harmonics increase the rms value of the current while leaving the average
power unchanged. This is undesirable, because the harmonics do not lead to net delivery of
energy to the load, yet they increase the Irms

2R losses in the system.
In a practical system, series resistances always exist in the source, load, and/or transmission

wires, which lead to unwanted power losses obeying the expression

(rms current)2Rseries (20.13)

Examples of such loss elements are the resistance of ac generator windings, the resistance of the
wire connecting the source and load, the resistance of transformer windings, and the resistance
of semiconductor devices, and magnetics windings in switching converters. Thus, it is desired
to make the rms current as small as possible, while transferring the required amount of energy
and average power to the load.

Shunt resistances usually also exist, which cause power loss according to the relation

(rms voltage)2

Rshunt
(20.14)

Examples include the core losses in transformers and ac generators, and switching converter
transistor switching loss. Therefore, it is desired to also make the rms voltage as small as possi-
ble while transferring the required average power to the load.
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20.3 Power Factor

Power factor is a figure-of-merit that measures how effectively energy is transmitted between a
source and load network. It is measured at a given surface as in Fig. 20.1, and is defined as

power factor =
(average power)

(rms voltage)(rms current)
(20.15)

The power factor always has a value between zero and one. The ideal case, unity power factor,
occurs for a load that obeys Ohm’s Law. In this case, the voltage and current waveforms have
the same shape, contain the same harmonic spectrum, and are in phase. For a given average
power throughput, the rms current and voltage are minimized at maximum (unity) power factor,
that is, with a linear resistive load. In the case where the voltage contains no harmonics but the
load is nonlinear and contains dynamics, then the power factor can be expressed as a product of
two terms, one resulting from the phase shift of the fundamental component of the current, and
the other resulting from the current harmonics.

20.3.1 Linear Resistive Load, Nonsinusoidal Voltage

In this case, the current harmonics are in phase with, and proportional to, the voltage harmonics.
As a result, all harmonics result in the net transfer of energy to the load. The current harmonic
magnitudes and phases are

In =
Vn

R
(20.16)

θn = ϕn so cos(θn −ϕn) = 1 (20.17)

The rms voltage is again

(rms voltage) =

√√
V2

0 +

∞∑
n=1

V2
n

2
(20.18)

and the rms current is

(rms current) =

√√
I2
0 +

∞∑
n=1

I2
n

2
=

√√
V2

0

R2
+

∞∑
n=1

V2
n

2R2
(20.19)

=
1
R

(rms voltage)

By use of Eq. (20.6), the average power is

Pav = V0I0 +

∞∑
n=1

VnIn

2
cos(ϕn − θn)

=
V2

0

R
+

∞∑
n=1

V2
n

2R
(20.20)

=
1
R

(rms voltage)2



20.3 Power Factor 855

Insertion of Eqs. (20.19) and (20.20) into Eq. (20.15) then shows that the power factor is unity.
Thus, if the load is linear and purely resistive, then the power factor is unity regardless of the
harmonic content of v(t). The harmonic content of the load current waveform i(t) is identical to
that of v(t), and all harmonics result in the transfer of energy to the load. This raises the possi-
bility that one could construct a power distribution system based on nonsinusoidal waveforms
in which the energy is efficiently transferred to the load.

20.3.2 Nonlinear Dynamical Load, Sinusoidal Voltage

If the voltage v(t) contains a fundamental component but no dc component or harmonics, so
that V0 = V2 = V3 = . . . = 0, then harmonics in i(t) do not result in transmission of net energy
to the load. The average power expression, Eq. (20.6), becomes

Pav =
V1I1

2
cos(ϕ1 − θ1) (20.21)

However, the harmonics in i(t) do affect the value of the rms current:

(rms current) =

√√
I2
0 +

∞∑
n=1

I2
n

2
(20.22)

Hence, as in example 1 (Fig. 20.2), harmonics cause the load to draw more rms current from
the source, but not more average power. Increasing the current harmonics does not cause more
energy to be transferred to the load, but does cause additional losses in series resistive elements
Rseries.

Also, the presence of load dynamics and reactive elements, which causes the phase of the
fundamental components of the voltage and current to differ by (θ1 − ϕ1), also reduces the
power factor. The cos(ϕ1 − θ1) term in the average power Eq. (20.21) becomes less than unity.
However, the rms value of the current, Eq. (20.22), does not depend on the phase. So shifting
the phase of i(t) with respect to v(t) reduces the average power without changing the rms voltage
or current, and hence the power factor is reduced.

By substituting Eqs. (20.21) and (20.22) into (20.15), we can express the power factor for
the sinusoidal voltage in the following form:

(power factor) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I1√
2√

I2
0 +

∞∑
n−1

I2
n

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(cos(ϕ1 − θ1)) (20.23)

= (distortion factor)(displacement factor)

So when the voltage contains no harmonics, then the power factor can be written as the product
of two terms. The first, called the distortion factor, is the ratio of the rms fundamental compo-
nent of the current to the total rms value of the current

(distortion factor) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I1√
2√

I2
0 +

∞∑
n=1

I2
n

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

(rms fundamental current)
(rms current)

(20.24)
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Fig. 20.5 Distortion factor vs. total harmonic distortion

The second term of Eq. (20.23) is called the displacement factor, and is the cosine of the angle
between the fundamental components of the voltage and current waveforms.

The total harmonic distortion (THD) is defined as the ratio of the rms value of the waveform
not including the fundamental, to the rms fundamental magnitude. When no dc is present, this
can be written as:

(THD) =

√
∞∑

n=2
I2
n

I1
(20.25)

The total harmonic distortion and the distortion factor are closely related. Comparison of Eqs.
(20.24) and (20.25), with I0 = 0, leads to

(distortion factor) =
1√

1 + (THD)2
(20.26)

This equation is plotted in Fig. 20.5. The distortion factor of a waveform with a moderate
amount of distortion is quite close to unity. For example, if the waveform contains third har-
monic whose magnitude is 10% of the fundamental, the distortion factor is 99.5%. Increasing
the third harmonic to 20% decreases the distortion factor to 98%, and a 33% harmonic magni-
tude yields a distortion factor of 95%. So the power factor is not significantly degraded by the
presence of harmonics unless the harmonics are quite large in magnitude.

An example of a case in which the distortion factor is much less than unity is the conven-
tional peak-detection rectifier of Fig. 20.6. In this circuit, the ac line current consists of short-
duration current pulses occurring at the peak of the voltage waveform. The fundamental com-
ponent of the line current is essentially in phase with the voltage, and the displacement factor
is close to unity. However, the low-order current harmonics are quite large, close in magnitude
to that of the fundamental—a typical current spectrum is given in Fig. 20.7. The distortion fac-
tor of peak-detection rectifiers is usually in the range 55%–65%. The resulting power factor is
similar in value.

In North America, the standard 120 V power outlet is protected by a 15 A circuit breaker.
In consequence, the available load power is quite limited. Derating the circuit breaker current
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Fig. 20.6 Conventional peak-detection rectifier
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Fig. 20.7 Typical ac line current spectrum of a single-phase peak-detection rectifier. Harmonics 1 to 19
are shown

by 20%, assuming typical efficiencies for the dc–dc converter and peak- detection rectifier, and
with a power factor of 55%, one obtains the following estimate for the maximum available dc
load power:

(ac voltage) (derated breaker current) (power factor) (rectifier efficiency)

= (120V) (80% of15 A) (0.55) (0.98) (20.27)

= 776 W

The less-than-unity efficiency of a dc–dc converter would further reduce the available dc load
power. Using a peak-detection rectifier to supply a load power greater than this requires that the
user installs higher amperage and/or higher voltage service, which is inconvenient and costly.
The use of a rectifier circuit having nearly unity power factor would allow a significant increase
in available dc load power:

(ac voltage) (derated breaker current) (power factor) (rectifier efficiency)

= (120V) (80% of 15A) (0.99) (0.93) (20.28)

= 1325W

or almost twice the available power of the peak-detection rectifier. This alone can be a com-
pelling reason to employ high-quality rectifiers in commercial systems.
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Fig. 20.8 Power phasor diagram for a sinusoidal system, illustrating the voltage, current, and complex
power phasors

20.4 Power Phasors in Sinusoidal Systems

The apparent power is defined as the product of the rms voltage and rms current. Apparent
power is easily measured—it is simply the product of the readings of a voltmeter and ammeter
placed in the circuit at the given surface. Many power system elements, such as transformers,
must be rated according to the apparent power that they are able to supply. The unit of apparent
power is the volt-ampere, or VA. The power factor, defined in Eq. (20.15), is the ratio of average
power to apparent power.

In the case of sinusoidal voltage and current waveforms, we can additionally define the
complex power S and the reactive power Q. If the sinusoidal voltage v(t) and current i(t) can
be represented by the phasors V and I, then the complex power is a phasor defined as

S = VI∗ = P + jQ (20.29)

Here, I∗ is the complex conjugate of I, and j is the square root of −1. The magnitude of S, or
‖S‖, is equal to the apparent power, measured in VA. The real part of S is the average power P,
having units of watts. The imaginary part of S is the reactive power Q, having units of reactive
volt-amperes, or VARs.

A phasor diagram illustrating S, P, and Q, is given in Fig. 20.8. The angle (ϕ1 − θ1) is the
angle between the voltage phasor V and the current phasor I. (ϕ1 −θ1) is additionally the phase
of the complex power S. The power factor in the purely sinusoidal case is therefore

power factor =
P
‖S‖ = cos(ϕ1 − θ1) (20.30)

It should be emphasized that this equation is valid only for systems in which the voltage and
current are purely sinusoidal. The distortion factor of Eq. (20.24) then becomes unity, and the
power factor is equal to the displacement factor as in Eq. (20.30).

The reactive power Q does not lead to net transmission of energy between the source and
load. When reactive power is present, the rms current and apparent power are greater than
the minimum amount necessary to transmit the average power P. In an inductor, the current
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lags the voltage by 90◦, causing the displacement factor to be zero. The alternate storing and
releasing of energy in an inductor leads to current flow and nonzero apparent power, but the
average power P is zero. Just as resistors consume real (average) power P, inductors can be
viewed as consumers of reactive power Q. In a capacitor, the current leads to voltage by 90◦,
again causing the displacement factor to be zero. Capacitors supply reactive power Q, and are
commonly placed in the utility power distribution system near inductive loads. If the reactive
power supplied by the capacitor is equal to the reactive power consumed by the inductor, then
the net current (flowing from the source into the capacitor-inductive-load combination) will be
in phase with the voltage, leading unity power factor and minimum rms current magnitude.

It will be seen in the next chapter that phase-controlled rectifiers produce a nonsinusoidal
current waveform whose fundamental component lags the voltage. This lagging current does
not arise from energy storage, but it does nonetheless lead to a reduced displacement factor,
and to rms current and apparent power that are greater than the minimum amount necessary to
transmit the average power.

20.5 Harmonic Currents in Three-Phase Systems

The presence of harmonic currents can also lead to some special problems in three-phase sys-
tems. In a four-wire three-phase system, harmonic currents can lead to large currents in the
neutral conductors, which may easily exceed the conductor rms current rating. Power factor
correction capacitors may experience significantly increased rms currents, causing them to fail.
In this section, these problems are examined, and the properties of harmonic current flow in
three-phase systems are derived.

20.5.1 Harmonic Currents in Three-Phase Four-Wire Networks

Let us consider the three-phase four-wire network of Fig. 20.9. In general, we can express the
Fourier series of the line currents and line-neutral voltages as follows:

ia(t) = Ia0 +

∞∑
k=1

Iak cos(kωt − θak)

ib(t) = Ib0 +

∞∑
k=1

Ibk cos(k(ωt − 120◦) − θbk) (20.31)

ic(t) = Ic0 +

∞∑
k=1

Ick cos(k(ωt + 120◦) − θck)

van(t) = Vm cos(ωt)

vbn(t) = Vm cos(ωt − 120◦) (20.32)

vCn(t) = Vm cos(ωt + 120◦)
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Fig. 20.9 Current flow in a three-phase four-wire network

The neutral current is therefore in = ia + ib + ic, or

in(t) = Ia0 + Ib0 + Ic0 +
∞∑

k=1

[
Iak cos(kωt − θak) + Ibk cos(k(ωt − 120◦) − θbk) + Ick cos(k(ωt + 120◦) − θck)

]
(20.33)

When the load is unbalanced (even though the voltages are balanced and undistorted), we can
say little else about the neutral and line currents. If the load is unbalanced and nonlinear, then
the line and neutral currents may contain harmonics of any order, including even and triplen
harmonics.

Equation (20.33) is considerably simplified in the case where the loads are balanced. A
balanced nonlinear load is one in which Iak = Ibk = Ick = Ik and θak = θbk = θck = θk, for all
k; that is, the harmonics of the three phases all have equal amplitudes and phase shifts. In this
case, Eq. (20.33) reduces to

in(t) = 3I0 +

∞∑
k=3,6,9,···

3Ik cos(kωt − θk) (20.34)

Hence, the fundamental and most of the harmonics cancel out, and do not appear in the neutral
conductor. Thus, it is in the interests of the utility to balance their nonlinear loads as well as
their harmonics.

But not all of the harmonics cancel out of Eq. (20.34): the dc and triplen (triple-n, or
3, 6, 9, . . .) harmonics add rather than cancel. The rms neutral current is

in,rms = 3

√√
I2
0 +

∞∑
k=3,6,9,···

I2
k

2
(20.35)

Example
A balanced nonlinear load produces line currents containing fundamental and 20% third

harmonic: ian(t) = I1 cos(ωt − θ1) + 0.2I1 cos(3ωt − θ3). Find the rms neutral current, and
compare its amplitude to the rms line current amplitude.
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Solution:

in,rms = 3

√
(0.2I1)2

2
=

0.6I1√
2

i1,rms =

√
I2
1 + (0.2I1)2

2
=

I1√
2

√
1 + 0.04 ≈ I1√

2
(20.36)

So the neutral current magnitude is 60% of the line current magnitude! The triplen harmonics in
the three phases add, such that 20% third harmonic leads to 60% third harmonic neutral current.
Yet the presence of the third harmonic has very little effect on the rms value of the line current.
Significant unexpected neutral current flows.

20.5.2 Harmonic Currents in Three-Phase Three-Wire Networks

If there is no neutral connection to the wye-connected load, as in Fig. 20.10, then in(t) must
be zero. If the load is balanced, then Eq. (20.34) still applies, and therefore the dc and triplen
harmonics of the load currents must be zero. Therefore, the line currents ia, ib, and ic cannot
contain triplen or dc harmonics. What happens is that a voltage is induced at the load neutral
point n′, containing dc and triplen harmonics, which eliminates the triplen and dc load current
harmonics.

This result is true only when the load is balanced. With an unbalanced load, all harmonics
can appear in the line currents, including triplen and dc. In practice, the load is never exactly
balanced, and some small amounts of third harmonic line currents are measured.

With a delta-connected load as in Fig. 20.11, there is also no neutral connection, so the line
currents cannot contain triplen or dc components. But the loads are connected line-to-line, and
are excited by undistorted sinusoidal voltages. Hence triplen harmonic and dc currents do, in
general, flow through the nonlinear loads. Therefore, these currents simply circulate around the
delta. If the load is balanced, then again no triplen harmonics appear in the line currents.

+

+

+
van(t)

vbn(t)

vcn(t)

a

c

b

nIdeal

source
Nonlinear

loads

ia(t)

ic(t)

in(t) = 0

ib(t)

+
vn'n

n'

Fig. 20.10 Current flow in a three-phase three-wire wye-connected network
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Fig. 20.11 A balanced nonlinear delta-connected load may generate triplen current harmonics. These
harmonics circulate around the delta, but do not flow through the lines if the load phases are balanced

20.5.3 Harmonic Current Flow in Power Factor Correction Capacitors

Harmonic currents tend to flow through shunt-connected power factor correction capacitors. To
some extent, this is a good thing because the capacitors tend to low-pass filter the power sys-
tem currents, and prevent nonlinear loads from polluting the entire power system. The flow of
harmonic currents is then confined to the nonlinear load and local power factor correction ca-
pacitors, and voltage waveform distortion is reduced. High-frequency harmonic currents tend to
flow through shunt capacitors because the capacitor impedance decreases with frequency, while
the inductive impedance of transmission lines increases with frequency. In this sense, power fac-
tor correction capacitors mitigate the effects of harmonic currents arising from nonlinear loads
in much the same way that they mitigate the effects of reactive currents that arise from inductive
loads.

esr

C

Fig. 20.12 Capacitor
equivalent circuit. Losses
are modeled by an equiv-
alent series resistance
(ESR)

But the problem is that the power factor correction capacitors
may not be rated to handle these harmonic currents, and hence there
is a danger that the capacitors may overheat and fail when they are
exposed to significant harmonic currents. The loss in capacitors is
modeled using an equivalent series resistance (ESR) as shown in
Fig. 20.12. The ESR models dielectric loss (hysteresis of the dielec-
tric D − E loop), contact resistance, and foil and lead resistances.
Power loss occurs, equal to irms

2(esr). Dielectric materials are typi-
cally poor conductors of heat, so a moderate amount of power loss
can cause a large temperature rise in the center of the capacitor. In
consequence, the rms current must be limited to a safe value.

Typical power factor correction capacitors are rated by voltage V ,
frequency f , and reactive power in kVARs. These ratings are com-
puted from the capacitance C and safe rms current Irms, assuming
undistorted sinusoidal waveforms, as follows:

rated rms voltageVrms =
Irms

2πfC
(20.37)
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rated rms voltage =
I2
rms

2πfC
(20.38)

In an undistorted system, the rms current, and hence also the capacitor ESR loss, cannot in-
crease unless the rms voltage is also increased. But high-frequency harmonics can lead to larger
rms currents without an increased voltage. Any harmonics that flow result in increased rms cur-
rent beyond the expected value predicted by Eq. (20.37). If the capacitor is not rated to handle
additional power loss, then failure or premature aging can occur.

Problems

20.1 Passive rectifier circuit. In the passive rectifier circuit of Fig. 20.13, L is very large, such
that the inductor current i(t) is essentially dc. All components are ideal.

+

vR(t)

+

V

ig(t)

S1 S2

L

C R
40 

vg(t)
230 Vrms

50 Hz

i(t)

Fig. 20.13 Passive rectifier circuit of Problem 20.1

(a) Determine the dc output voltage, current, and power.
(b) Sketch the ac line current waveform ig(t) and the rectifier output voltage waveform

vR(t).
(c) Determine the ac line current rms magnitude, fundamental rms magnitude, and third

harmonic rms magnitude. If it is required that the third harmonic magnitude be less
than 2.3 A rms, would this rectifier network conform?

(d) Determine the power factor, measured at surfaces S 1 and S 2.

20.2 The three-phase rectifier of Fig. 20.14 is connected to a balanced 60 Hz 3ø ac480V (rms,
line-line) sinusoidal source as shown. All elements are ideal. The inductance L is large,
such that the current i(t) is essentially constant, with negligible 360 Hz ripple.

(a) Sketch the waveform vd(t).
(b) Determine the dc output voltage V
(c) Sketch the line current waveforms ia(t), ib(t), and ic(t).
(d) Find the Fourier series of ia(t).
(e) Find the distortion factor, displacement factor, power factor, and line current THD.
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+

V

ia(t)

ib(t)

ic(t)

a

b

c

Balanced

480 V

Fig. 20.14 Three-phase rectifier circuit of Problem 20.2

20.3 Harmonic pollution police. In the network of Fig. 20.15, voltage harmonics are observed
at the indicated surface. The object of this problem is to decide whether to blame the
source or the load for the observed harmonic pollution. Either the source element or the
load element contains a nonlinearity that generates harmonics, while the other element is
linear.

+

daoLecruoS

vs(t)

Surface
S

+

v(t)

i(t)

Z1

Z2

Fig. 20.15 Single-phase power system of Problems 20.3 to 20.5

(a) Consider first the case where the load is a passive linear impedance Z2(s), and hence
its phase lies in the range −90◦ ≤ ∠Z2(iω) ≤ +90◦ for all positive ω. The source
generates harmonics. Express the average power P in the form

P =
∞∑

n=0

Pn

where Pn is the average power transmitted to the load by harmonic number n. What
can you say about the polarities of the Pns?

(b) Consider next the case where the load is nonlinear, while the source is linear and can
be modeled by a Thevenin-equivalent sinusoidal voltage source and linear impedance
Z1(s). Again express the average power P as a sum of average powers, as in part (a).
What can you say about the polarities of the Pns in this case?

(c) The following Fourier series are measured:
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Harmonic number
v(t) i(t)

Magnitude Phase Magnitude Phase

1 230 V 0◦ 6 A −20◦

3 20 V 180◦ 4 A 20◦

5 8 V 60◦ 1 A −110◦

Who do you accuse? Explain your reasoning.
20.4 For the network and waveforms of Problem 20.3, determine the power factor at the indi-

cated surface, and the average power flowing to the load. Harmonics higher in frequency
than the fifth harmonic are negligible in magnitude.

20.5 Repeat Problem 20.3(c), using the following Fourier series:

Harmonic number
v(t) i(t)

Magnitude Phase Magnitude Phase

1 120 V 0◦ 5 A 25◦

3 4 V 60◦ 0.5 A 40◦

5 2 V −160◦ 0.2 A −100◦

20.6 A balanced three-phase wye-connected load is constructed using a 20 Ω resistor in each
phase. This load is connected to a balanced three-phase wye-connected voltage source,
whose fundamental voltage component is 380 Vrms line-to-line. In addition, each (line-to-
neutral) voltage source produces third and fifth harmonics. Each harmonic has amplitude
20 Vrms, and is in phase with the (line-to-neutral) fundamental.

(a) The source and load neutral points are connected, such that a four-wire system is
obtained. Find the Fourier series of the line currents and the neutral current.

(b) The neutral connection is broken, such that a three-wire system is obtained. Find the
Fourier series of the line currents. Also find the Fourier series of the voltage between
the source and load neutral points.



21

Pulse-Width Modulated Rectifiers

To obtain low ac line current THD, the passive techniques described in the previous chapter
rely on low-frequency transformers and/or reactive elements. The large size and weight of these
elements are objectionable in many applications. This chapter covers active techniques that
employ converters having switching frequencies much greater than the ac line frequency. The
reactive elements and transformers of these converters are small, because their sizes depend on
the converter switching frequency rather than the ac line frequency.

Instead of making do with conventional diode rectifier circuits, and dealing after-the-fact
with the resulting low-frequency harmonics, let us consider now how to build a rectifier that
behaves as ideally as possible, without generation of line current harmonics. In this chapter,
the properties of the ideal rectifier are explored, and a model is described. The ideal rectifier
presents an effective resistive load to the ac power line; hence, if the supplied ac voltage is
sinusoidal, then the current drawn by the rectifier is also sinusoidal and is in phase with the
voltage. Converters that approximate the properties of the ideal rectifier are sometimes called
power factor corrected, because their input power factor is essentially unity [244].

The boost converter, as well as a variety of other converters, can be controlled such that
a near-ideal rectifier system is obtained. This is accomplished by control of a high-frequency
switching converter, such that the ac line current waveform follows the applied ac line voltage.
Both single-phase and three-phase rectifiers can be constructed using PWM techniques. A typ-
ical dc power supply system that is powered by the single-phase ac utility contains three major
power-processing elements. First, a high-frequency converter with a wide-bandwidth input cur-
rent controller functions as a near-ideal rectifier. Second, an energy storage capacitor smooths
the pulsating power at the rectifier output, and a low-bandwidth controller causes the average
input power to follow the power drawn by the load. Finally, a dc–dc converter provides a well-
regulated dc voltage to the load. In this chapter, single-phase rectifier systems are discussed,
expressions for rms currents are derived, and various converter approaches are compared.

The techniques developed in earlier chapters for modeling and analysis of dc–dc converters
are extended in this chapter to treat the analysis, modeling, and control of low-harmonic rec-
tifiers. The CCM models of Chap. 3 are used to compute the average losses and efficiency of
CCM PWM converters operating as rectifiers. The results yield insight that is useful in power
stage design. Several converter control schemes are known, including peak current program-
ming, average current control, critical conduction mode control, and nonlinear carrier control.
Ac modeling of the rectifier control system is also covered.
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21.1 Properties of the Ideal Rectifier

It is desired that the ideal single-phase rectifier presents a resistive load to the ac system. The ac
line current and voltage will then have the same waveshape and will be in phase. Unity power
factor rectification is the result. Thus, the rectifier input current iac(t) should be proportional to
the applied input voltage vac(t):

iac(t) =
vac(t)

Re
(21.1)

where Re is the constant of proportionality. An equivalent circuit for the ac port of an ideal
rectifier is therefore an effective resistance Re, as shown in Fig. 21.1a. Re is also known as the
emulated resistance. It should be noted that the presence of Re does not imply the generation
of heat: the power apparently “consumed” by Re is actually transferred to the rectifier dc output
port. Re simply models how the ideal rectifier loads the ac power system.

Output regulation is accomplished by variation of the effective resistance Re, and hence the
value of Re must depend on a control signal vcontrol(t) as in Fig. 21.1b. This allows variation of
the rectifier power throughput, since the average power consumed by Re is

Pav =
V2

ac,rms

Re(vcontrol)
(21.2)

(a)

Re

+

vac(t)

iac(t) (b)

Re(vcontrol)

+

vac(t)

iac(t)

vcontrol

(c)

Re(vcontrol)

+

vac(t)

iac(t)

vcontrol

v(t)

i(t)

+p(t) = vac
2/Re

Ideal rectifier (LFR)

ac
input

dc
output

Fig. 21.1 Development of the ideal rectifier equivalent circuit model: (a) input port resistor emulation;
(b) the value of the emulated resistance, and hence the power throughput, is controllable; (c) output port
power source characteristic, and complete model
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Note that changing Re results in a time-varying system, with generation of harmonics. To avoid
generation of significant amounts of harmonics and degradation of the power factor, variations
in Re and in the control input must be slow with respect to the ac line frequency.

To the extent that the rectifier is lossless and contains negligible internal energy storage,
the instantaneous power flowing into Re must appear at the rectifier output port. Note that the
instantaneous power throughput

p(t) =
v2

ac(t)
Re (vcontrol(t))

(21.3)

is dependent only on vac(t) and the control input vcontrol(t), and is independent of the character-
istics of the load connected to the output port. Hence, the output port must behave as a source
of constant power, obeying the relationship

v(t)i(t) = p(t) =
v2

ac(t)
Re

(21.4)

The dependent power source symbol of Fig. 21.2a is used to denote such an output characteristic.
As illustrated in Fig. 21.1c, the output port is modeled by a power source that is dependent on
the instantaneous power flowing into Re.

Thus, a two-port model for the ideal unity-power-factor single-phase rectifier is as shown in
Fig. 21.1c [132, 133, 245]. The two port model is also called a loss-free resistor (LFR) because
(1) its input port obeys Ohm’s law, and (2) power entering the input port is transferred directly
to the output port without loss of energy. The defining equations of the LFR are as follows:

iac(t) =
vac(t)

Re(vcontrol)
(21.5)

v(t)i(t) = p(t) (21.6)

p(t) =
v2

ac(t)
Re (vcontrol)

(21.7)

(a)

p(t)

+

v(t)

i(t)

(b)

p(t)

+

v(t)

i(t)

(c)

v(t)i(t) = p(t)

v(t)

i(t)

Fig. 21.2 The dependent power source: (a) power source schematic symbol, (b) power sink schematic
symbol, (c) i–v characteristic of power source
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When the LFR output port is connected to a resistive load of value R, the dc output rms voltages
and currents Vrms and Irms are related to the ac input rms voltages and currents Vac,rms and Iac,rms

as follows:

Vrms

Vac,rms
=

√
R
Re

(21.8)

Iac,rms

Irms
=

√
R
Re

(21.9)

The properties of the power source and loss-free resistor network are discussed in Chap. 15.
Regardless of the specific converter implementation, any single-phase rectifier having near-ideal
properties can be modeled using the LFR two-port model.

21.2 Realization of a Near-Ideal Rectifier

Feedback can be employed to cause a converter that exhibits controlled dc transformer charac-
teristics to obey the LFR equations. In the single-phase case, the simplest and least expensive
approach employs a full-wave diode rectifier network, cascaded by a dc–dc converter, as in
Fig. 21.3. The dc–dc converter is represented by an ideal dc transformer, as discussed in Chap. 3.
A control network varies the duty cycle, as necessary to cause the converter input current ig(t)
to be proportional to the applied input voltage vg(t) as in Eq. (21.1). The effective turns ratio of
the ideal transformer then varies with time. Ideal waveforms are illustrated in Fig. 21.4. If the
applied input voltage vac(t) is sinusoidal,

vac(t) = VM sin(ωt) (21.10)

then the rectified voltage vg(t) is
vg(t) = VM | sin(ωt)| (21.11)

1 : M (d(t))

Controller

d(t)

Rvac(t)

iac(t) +

vg(t)

ig(t)

ig

vg

+

v(t)

i(t)

C

Fig. 21.3 Synthesis of an ideal rectifier by varying the duty cycle of a PWM dc–dc converter
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v(t)

t

vac(t)

t

iac(t)

ig(t)

V

VM

vg(t) VM

M(t)

Mmin

VM /Re

Fig. 21.4 Waveforms of the rectifier system of
Fig. 21.3

It is desired that the converter output volt-
age be a constant dc value v(t) = V . The con-
verter conversion ratio must therefore be

M(d(t)) =
v(t)
vg(t)

=
V

VM | sin(ωt)| (21.12)

This expression neglects the converter dy-
namics. As can be seen from Fig. 21.4, the
controller must cause the conversion ratio
to vary between infinity (at the ac line volt-
age zero crossings) and some minimum value
Mmin (at the peaks of the ac line voltage wave-
form). Mmin is given by

Mmin =
V

VM
(21.13)

Any converter topology whose ideal conver-
sion ratio can be varied between these limits
can be employed in this application.

To the extent that the dc–dc converter is
ideal (i.e., if the losses can be neglected and
there is negligible low-frequency energy stor-
age), the instantaneous input and output pow-
ers are equal. Hence, the output current i(t) in
Fig. 21.3 is given by

i(t) =
vg(t)ig(t)

V
=

v2
g(t)

VRe
(21.14)

Substitution of Eq. (21.11) into Eq. (21.14)
then leads to

i(t) =
V2

M

VRe
sin2(ωt)

=
V2

M

2VRe
(1 − cos(2ωt)) (21.15)

Hence, the converter output current contains a dc component and a component at the second
harmonic of the ac line frequency. One of the functions of capacitor C in Fig. 21.3 is to filter
out the second harmonic component of i(t), so that the load current (flowing through resistor R)
is essentially equal to the dc component

I = 〈i(t)〉TL =
V2

M

2VRe
(21.16)

where TL is the period of the applied ac line voltage.
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The average power is

P =
V2

M

2Re
(21.17)

The above equations are generally valid for PWM converters used as single-phase low-harmonic
rectifiers.

21.2.1 CCM Boost Converter

A system based on the CCM boost converter is illustrated in Fig. 21.5 [244, 246, 247]. Ideally,
the boost converter can produce any conversion ratio between one and infinity. Hence, the boost
converter is capable of producing the M(d(t)) given by Eq. (21.12), provided that V ≥ VM .
Further, the boost converter can produce very low THD, with better transistor utilization than
other approaches.

If the boost converter operates in continuous conduction mode, and if the inductor is small
enough that its influence on the low-frequency components of the converter waveforms is neg-
ligible, then the duty ratio should follow M(d(t)) = 1/(1− d(t)). This implies that the duty ratio
should follow the function

d(t) = 1 −
vg(t)

V
(21.18)

This expression is true only in the continuous conduction mode. The boost converter operates
in the continuous conduction mode provided that the inductor current ripple

Δig(t) =
vg(t)d(t)Ts

2L
(21.19)

is greater than the average inductor current, or

〈ig(t)〉Ts =
vg(t)

Re
(21.20)

Hence, the converter operates in CCM when

〈ig(t)〉Ts > Δig(t) ⇒ d(t) <
2L

ReTs
(21.21)

Boost converter

Controller

Rvac(t)

iac(t) +

vg(t)

ig(t)

ig(t)vg(t)

+

v(t)

i(t)

Q1

L

C

D1

d(t)

Fig. 21.5 Rectifier system based on the boost converter
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Substitution of Eq. (21.18) into (21.21) and solution for Re leads to

Re <
2L

Ts(1 −
vg(t)

V
)

for CCM (21.22)

Since vg(t) varies according to Eq. (21.11), Eq. (21.22) may be satisfied at some points on the ac
line cycle, and not at others. Since 0 ≤ vg(t) ≤ VM , we can conclude that the converter operates
in CCM over the entire ac line cycle when

Re <
2L
Ts

(21.23)

Equations (21.18) and (21.22) then hold for all t. The converter always operates in DCM when

Re >
2L

Ts

(
1 − VM

V

) (21.24)

For Re between these limits, the converter operates in DCM when vg(t) is near zero, and in CCM
when vg(t) approaches VM .

The static input characteristics of the open-loop boost converter are sketched in Fig. 21.6.
The input current ig(t) is plotted vs. input voltage vg(t), for various duty cycles d(t). In CCM,
the input characteristics of the boost converter are described by

vg(t)

V
= 1 − d(t) in CCM (21.25)
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Fig. 21.6 Static input characteristics of the boost converter. A typical linear resistive input characteristic
is superimposed
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To obtain a general plot, we can normalize the input current and input voltage as follows:

mg(t) =
vg(t)

V
(21.26)

jg(t) =
2L

VT s
ig(t) (21.27)

Equation (21.25) then becomes
mg(t) = 1 − d(t) (21.28)

This equation is independent of the input current ig(t), and hence is represented by vertical lines
in Fig. 21.6.

Fig. 21.7 Averaged equivalent circuit
model of the boost converter operating in
DCM, derived in Chap. 15

p(t)+

+

Vvg(t) +2L
d 2Ts

p(t)
V vg(t)ig(t)

To derive the boost input characteristic for DCM operation, we can solve the steady-state
equivalent circuit model of Fig. 15.16b (reproduced in Fig. 21.7). Beware: the natural DCM
effective resistance of Chap. 15, Re = 2L/d2Ts, does not necessarily coincide with the emulated
resistance Re = vg/ig of Eq. (21.1). In this chapter, the quantity Re is defined according to
Eq. (21.1). Solution of Fig. 21.7 for the input current ig(t) leads to:

ig(t) =
vg(t)(
2L

d2Ts

) + p(t)
V − vg(t)

(21.29)

The instantaneous power consumed by the effective resistor in the model of Fig. 21.7 is

p(t) =
v2

g(t)(
2L

d2Ts

) (21.30)

Substitution of Eq. (21.30) into Eq. (21.29) and simplification leads to

2L
VT s

ig(t)

(
1 −

vg(t)

V

)
= d2(t)

vg(t)

V
in DCM (21.31)

Normalization of this equation according to Eqs. (21.26) and (21.27) yields

jg(t)
(
1 − mg(t)

)
= d2mg(t) (21.32)

This equation describes the curved (DCM) portions of the Fig. 21.6 input characteristics, for
low ig(t).
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To express the CCM/DCM mode boundary as a function of vg(t) and ig(t), Eqs. (21.1) and
(21.22) can be combined, leading to

2L
VT s

ig(t) >

(
vg(t)

V

) (
1 −

vg(t)

V

)
for CCM (21.33)

Normalization of this equation, according to Eqs. (21.26) and (21.27), results in

jg(t) > mg(t)(1 − mg(t)) for CCM (21.34)

This equation describes a parabola having roots at mg = 0 and mg = 1, with the maximum value
jg = 0.25 at mg = 0.5. The mode boundary equation is plotted as a dashed line in Fig. 21.6.

The complete boost converter input characteristics in Fig. 21.6 have been plotted using
Eqs.(21.28), (21.32), and (21.34). Figure 21.6 also illustrates the desired linear resistive input
characteristic, Eq. (21.1). For the value of Re illustrated, the converter operates in DCM for vg(t)
near zero, and in CCM for vg(t) near VM . The intersections of boost input characteristics with
the desired linear input characteristic illustrate how the controller must choose the duty cycle at
various values of vg(t).

Other converters capable of producing the M(d(t)) of Eq. (21.12) include the buck–boost,
SEPIC, and Ćuk converters. The boost, SEPIC, and Ćuk converters share the desirable property
of nonpulsating input current, and hence require minimal input EMI filtering. The SEPIC pro-
duces a non-inverted output voltage. Isolated versions of these converters (see Chap. 6) are also
sometimes employed [248–250]. Schemes involving the parallel resonant converter, as well as
several types of quasi-resonant converters, are also documented in the literature [251–254].

The open-loop boost converter, when operated in discontinuous conduction mode, is also
sometimes used as an approximation of an ideal rectifier. The DCM effective resistance
2L/d2(t)Ts of Fig. 21.7 is then taken as an approximation of the desired emulated resistance
of Eq. (21.1). The model differs from that of the ideal rectifier model of Fig. 21.1c in that the
power source is connected between the input and output terminals. As a result, harmonics are
present in the input current waveform. For example, if vg(t) is a rectified sinusoid, then the cur-
rent through the effective resistance 2L/d2(t)Ts will also be a rectified sinusoid. However, the
input current 〈ig(t)〉Ts is now equal to the sum of the current through Re and the current flow-
ing through the power source element. Since the power source is a nonlinear element, 〈ig(t)〉Ts

contains harmonics. For large C, the output voltage is essentially constant. The input current
waveform is then given by Eq. (21.31). If V is sufficiently large, then the term (1 − vg(t)/V)
is approximately equal to one, and the harmonics in 〈ig(t)〉Ts are small. The zero crossings of
vg(t), p(t), and 〈ig(t)〉Ts coincide. So although the DCM boost converter generates some current
harmonics, it is nonetheless possible to construct a low harmonic rectifier that meets harmonic
limits. Again, this approach has the disadvantages of the increased peak currents of DCM, and
the need for additional filtering of the high-frequency pulsating input currents.

A similar approach is to operate the boost converter at the boundary between the continuous
and discontinuous conduction modes. This approach is known as “critical conduction mode” op-
eration. It eliminates the distortion mechanism described above, but requires variable switching-
frequency control. This approach is quite popular at low-power levels, and is described further
in Sect. 21.3.3.

Other converters not capable of producing the M(d(t)) of Eq. (21.12), such as the buck
converter, are sometimes employed as the dc–dc converter of Fig. 21.3. Distortion of the ac line
current waveform must then occur. Nonetheless, at low-power levels it may be possible to meet
the applicable ac line current harmonic standards using such an approach.



876 21 Pulse-Width Modulated Rectifiers

21.2.2 Simulation Example: DCM Boost Rectifier

When a boost DCM converter operates at a constant switch duty cycle, the input current approx-
imately follows the input voltage. The DCM effective resistance 2L/d2(t)Ts is an approximation
of the emulated resistance Re of the DCM boost rectifier. Ac line current harmonics are not zero,
but the rectifier can still be designed to meet harmonic limits. In this section we consider a DCM
boost rectifier example and test its performance by simulation.

An averaged circuit model of the boost DCM rectifier is shown in Fig. 21.8. Full-wave
rectified 120 Vrms, 50 Hz ac line voltage is applied to the input of the boost converter. The
converter switches are replaced by the CCM-DCM1 averaged switch subcircuit. It is desired to
regulate the dc output voltage at V = 300 V at output power up to Pout = 120 W across the load
R. The switching frequency is fs = 100 kHz. Let us select the inductance L so that the converter
always operates in DCM. From Eq. (21.24), the condition for DCM is as follows:

L <

(
1 − VM

V

)
Re

2 fs
(21.35)

where Re is the emulated resistance of the rectifier and VM is the peak of the ac line voltage.
When line current harmonics and losses are neglected, the rectifier emulated resistance Re at the
specified load power P is

Re =
V2

M

2P
(21.36)

Given VM = 170 V and Re found from Eq. (21.36), Eq. (21.35) gives L < 260μ H. The se-
lected inductance is L = 200μ H. A low-bandwidth voltage feedback loop is closed around the
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Fig. 21.8 DCM boost rectifier example



21.2 Realization of a Near-Ideal Rectifier 877

0 2 ms 4 ms 6 ms 8 ms 10 ms 12 ms 14 ms 16 ms 18 ms 20 ms

305 V

2 A
iac(t)

t

300 V

295 V

1 A

v(t)

2 ms 4 ms 6 ms 8 ms 10 ms 12 ms 14 ms 16 ms 18 ms 20 ms
t

Fig. 21.9 Output voltage and ac line current in the DCM boost rectifier example

converter to regulate the dc output voltage. The output voltage is sensed and compared to the
reference vre f . A PI compensator is constructed around the LM324 op amp. The output vcontrol

of the compensator is the input to the pulse-width modulator. By adjusting the switch duty ratio
d, vcontrol adjusts the emulated resistance Re = 2L/d2Ts of the rectifier, and thereby controls the
power taken from the ac line. In steady state, the input power matches the output power. The
dc output voltage V is regulated at the value set by the reference voltage vre f and the voltage
divider composed of R1 and R2, as follows:

V = vre f
R1 + R2

R1
= 300V (21.37)

Modeling of the low-bandwidth voltage regulation loop is discussed in Sect. 21.4.2.
It is of interest to find ac line current harmonics. First, a long SPICE transient simulation is

performed to reach steady-state operation. Then, current harmonics are computed using Fourier
analysis applied to the ac line current waveform iac(t) during one line cycle in steady state. Fig-
ure 21.9 shows the steady-state ac line current and output voltage obtained for R = 900Ω, i.e.,
for 100 W of output power. The output voltage has a dc component equal to 300 V, and an
ac ripple component at twice the line frequency. The peak-to-peak voltage ripple at twice the
line frequency is approximately 8 V, which compares well with the value (7 V) found from
Eq. (21.94). The ac line current has noticeable distortion. The spectrum of the ac line current is
shown in Fig. 21.10. The largest harmonic, the third, has an amplitude of 16.6% of the funda-
mental, and the total harmonic distortion is 16.7%.

We can also examine what happens if the rectifier is overloaded. The steady-state ac line
current waveform for the case when the load resistance is R = 500Ω, and the output power is
180 W, is shown in Fig. 21.11. The boost converter operates in CCM near the peak of the ac line
voltage; this results in current spikes and significant harmonic distortion.
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Fig. 21.10 Spectrum of the ac line current in the DCM boost rectifier
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Fig. 21.11 Ac line current of the DCM boost rectifier example, when the output is overloaded

21.2.3 DCM Flyback Converter

In Chap. 15, the loss-free resistor network is used to model converters operating in discon-
tinuous conduction mode. This suggests that DCM converters can also be used as near-ideal
rectifiers. Indeed, the buck–boost, flyback, SEPIC, and Ćuk converters, when operated in dis-
continuous conduction mode without additional control, inherently behave as natural loss-free
resistors. The DCM effective resistance Re found in Chap. 15 to be equal to 2L/D2Ts, then
coincides with the rectifier emulated resistance of Eq. (21.1). At low-power levels, this can be
an effective and low-cost approach. Inrush current limiting is also inherent in this approach,
and isolation and scaling via a turns ratio are provided by the transformer. Disadvantages are
the increased peak currents of DCM, and the need for additional filtering of the high-frequency
pulsating input currents.

A simple low-harmonic rectifier system based on the transformer-isolated flyback converter
is illustrated in Fig. 21.12 [245]. The ac line voltage is connected through an input EMI filter to a
bridge rectifier and a flyback converter. The flyback converter is operated at constant switching
frequency fs and constant duty cycle D. The converter is designed such that it operates in the
discontinuous conduction mode under all conditions. The input EMI filter smooths the pulsating
input current waveform, so that iac(t) is approximately sinusoidal.
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Fig. 21.12 Low-harmonic rectifier system incorporating a flyback converter that operates in the discon-
tinuous conduction mode
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Fig. 21.13 Averaged equivalent circuit that models the system of Fig. 21.12

The flyback converter is replaced by its averaged equivalent circuit in Fig. 21.13. As dis-
cussed in Chap. 15, the terminal waveforms of the flyback converter have been averaged over
the switching period Ts, resulting in the loss-free resistor model. This model illustrates how the
DCM flyback converter presents a resistive load to the ac input. It also illustrates how the power
flow can be controlled, by variation of D to control the value of the emulated resistance Re.

To design this converter, one must select the value of inductance to be sufficiently small,
such that the converter operates in DCM at all points on the ac sine wave, at maximum load.
If we denote the lengths of the transistor conduction interval, diode conduction interval, and
discontinuous interval as DT s, d2Ts, and d3Ts, respectively, then the converter operates in DCM
provided that d3 is greater than zero. This implies that

d2(t) < 1 − D (21.38)

By volt-second balance on the transformer magnetizing inductance, we can express d2(t) as

d2(t) = D
vg(t)

nV
(21.39)

Substitution of Eq. (21.39) into Eq. (21.38) and solution for D yields
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D <
1(

1 +
vg(t)

nV

) (21.40)

During a given switching period, the converter will operate in DCM provided that the above
inequality is satisfied. The worst case occurs when the rectified sinusoid vg(t) is equal to its
peak value VM . The inequality then becomes

D <
1(

1 +
VM

nV

) (21.41)

If Eq. (21.41) is satisfied, then the converter operates in DCM at all points on the ac line sinu-
soid.

In steady state, the dc output voltage is given by Eq. (21.8). Upon substitution of the expres-
sion for Re and solution for D, this equation becomes

D =
2nV
VM

√
L

RT s
(21.42)

Insertion of this relationship into Eq. (21.41), and solution for L, yields

L < Lcrit =
RT s

4

(
1 +

nV
VM

)2
(21.43)

For variations in load R and peak ac input voltage VM , the worst case will occur at minimum R
(maximum power) and minimum VM . Hence, the designer should choose L to satisfy

L < Lcrit−min =
RminTs

4

(
1 +

nV
VM−min

)2
(21.44)

If this equation is violated, then at maximum load power and minimum input voltage amplitude,
the convert will operate in CCM near the peak of the ac sinewave. This will lead to an input
current waveform having substantial distortion.

21.3 Control of the Current Waveform

A wide variety of approaches are known for active control of the input current waveform to
attain input resistor emulation [177, 178, 255–272]. Average current control [177, 178], input
voltage feedforward [177], current-programmed control [258–261], hysteretic control and crit-
ical conduction mode control [262–266], and nonlinear carrier control [267–269] are briefly
surveyed here. Other approaches include sliding-mode control [270], charge control [271], and
ASDTIC control [272].
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Fig. 21.14 Sensing and control of the average input current of a boost converter

21.3.1 Average Current Control

Average current control is a popular method of implementing control of the input current wave-
form in a low-harmonic rectifier. This approach works in both continuous and discontinuous
conduction modes, and can produce high-quality current waveforms over a wide range of in-
put voltages and load powers. The problems of crossover distortion, found in some competing
schemes such as current programmed control, are largely avoided. Several popular integrated
circuits are available that implement average current control. Small-signal modeling of average
current controlled converters is discussed in Sect. 18.9.

Figure 21.14 illustrates average current control of the input current waveform 〈ig(t)〉Ts in a
boost converter. The input current ig(t) flows through a shunt resistor. The voltage across this
shunt resistor is amplified by an op amp circuit. This op amp circuit contains a low-pass filter
characteristic that attenuates the high-frequency switching harmonics. The output voltage va(t)
of the op amp circuit is proportional to the low-frequency average value of ig(t):

va(t) = Rs〈ig(t)〉Ts (21.45)

This signal is compared to the reference voltage vr(t), to produce an error signal that drives
the compensator network and pulse-width modulator as illustrated. If the feedback loop is well
designed, then the error signal is small:

va(t) ≈ vr(t) (21.46)

The average current controller causes the sensed current ig(t) to follow the reference wave-
form vr(t).

To cause the input current to be proportional to the input voltage, the reference voltage
vr(t) is derived from the sensed input voltage waveform, as in Fig. 21.15. The current reference
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Fig. 21.15 Average current control of a boost converter, to obtain a low-harmonic rectifier

signal vr(t) is derived from the sensed input voltage vg(t), and hence has a sinusoidal waveshape.
Hence, the average current controller causes the average input current ig(t) to be proportional to
the input voltage vg(t). The multiplier illustrated in Fig. 21.15 allows adjustment of the constant
of proportionality, so that the magnitude of the emulated resistance can be controlled via a
control signal vcontrol(t). Let us assume that the multiplier terminal equations are

vr(t) = kxvg(t)vcontrol(t) (21.47)

Then the emulated resistance is

Re =
vg(t)

ig(t)
=

(
vr(t)

kxvcontrol(t)

)

(
va(t)
Rs

) (21.48)

Here, Eqs. (21.47) and (21.45) have been used to eliminate vg and ig. Substitution of Eq. (21.46)
leads to the result

Re(vcontrol(t)) =
Rs

kxvcontrol(t)
(21.49)

Hence, if the feedback loop is well designed, then the system of Fig. 21.15 can be represented
by the LFR model as in Fig. 21.16. The average current controller scheme of Fig. 21.15 and
the model of Fig. 21.16 are independent of the dc–dc converter topology, and can be applied to
systems containing CCM boost, buck–boost, Ćuk, SEPIC, and other topologies.

Average power flow and the output voltage are regulated by variation of the emulated re-
sistance Re, in average current control as well as in most other schemes. This is usually ac-
complished by use of a multiplier in the input voltage sensing path, as shown in Fig. 21.17.
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Fig. 21.16 Model of the system of Fig. 21.5, based on the loss-free resistor model of Fig. 21.1c, which
predicts the low-frequency system waveforms. This model assumes that the feedback loop of Fig. 21.15
operates ideally
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Fig. 21.17 Average current control incorporating a multiplier for regulation of the output voltage

This control loop continually adjusts Re to maintain balance of the average rectifier power
Pav = V2

g,rms/Re and the load power Pload, such that the following relation is obeyed:

Pav =
V2

g,rms

Re
= Pload (21.50)

Average current control works quite well. Its only disadvantages are the need to sense the aver-
age input current, rather than the transistor current, and the need for a multiplier in the controller
circuit.
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Most average current control implementations include provisions for feedforward of the in-
put voltage amplitude. This allows disturbances in the ac input voltage amplitude to be canceled
out by the controller, such that the dc output voltage is unaffected.

Combination of Eqs. (21.47), (21.49), and (21.50), and solution for vref 1(t) leads to

vref 1(t) =
Pavvg(t)Rs

V2
g,rms

(21.51)

This equation shows how the reference voltage should be varied to maintain a given rectifier
average power throughput Pav. Apparently, it is necessary to divide by the square of the rms
input voltage amplitude. A controller that implements Eq. (21.51) is illustrated in Fig. 21.18.
The multiplier block of Fig. 21.17 has been generalized to perform the function kvxy/z2. It is
somewhat complicated to compute the rms value of a general ac waveform; however, the ac
input voltage vg(t) normally is sinusoidal with negligible harmonics. Hence, the peak value of
vg(t) is directly proportional to its rms value, and we can use the peak value VM in place of
Vg,rms. So the controller of Fig. 21.18 produces the reference voltage

vref 1(t) =
kvvcontrol(t)vg(t)

V2
M

(21.52)

Comparison of Eqs. (21.51) and (21.52) leads to the conclusion that

Pav =
kvvcontrol(t)

2Rs
(21.53)

So the average power throughput is directly controlled by vcontrol(t), and is independent of the
input voltage vg(t).
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Feedforward can cause the rectifier dc output voltage to be less sensitive to variations in the
ac line voltage. A disadvantage is the ac line current distortion introduced by variations in the
voltage produced by the peak detector.

To aid in the design of the inner feedback loop that controls the ac line current waveshape, a
converter model is needed that describes how the converter average input current depends on the
duty cycle. We would prefer to apply the averaged small-signal modeling techniques of Chap. 7
here. The problem is that the variations in the duty cycle d(t), as well as in the ac input voltage
vg(t) and current ig(t), are not small. As a result, in general the small-signal assumptions are
violated, and we are faced with the design of a control system that exhibits significant nonlinear
time-varying behavior.

When the rectifier operates near periodic steady state, the output voltage v(t) of a well-
designed system exhibits small variations. So we can write

〈v(t)〉Ts = V + v̂(t) (21.54)

with
|v̂(t)| 	 |V | (21.55)

In other words, the small-signal assumption continues to be valid with respect to the rectifier
output voltage. In the case of the boost converter, this allows us to linearize the converter input
characteristics.

Following the approach of Chap. 7, we can express the average inductor voltage of the boost
converter as

L
d〈ig(t)〉Ts

dt
= 〈vg(t)〉Ts − d′(t)〈v(t)〉TS (21.56)

This equation contains the nonlinear term d′(t)〈v(t)〉Ts . Substitution of Eq. (21.54) into (21.56)
yields

L
d〈ig(t)〉Ts

dt
= 〈vg(t)〉Ts − d′(t)V − d′(t)v̂(t) (21.57)

When Eq. (21.55) is satisfied, then the nonlinear term −d′(t)v̂(t) is much smaller in magnitude
than the linear term −d′(t)V Therefore, we can discard the nonlinear term to obtain

L
d〈ig(t)〉Ts

dt
= 〈vg(t)〉Ts − d′(t)V (21.58)

This linear differential equation is valid even though ig(t), vg(t), and d(t) contain large variations.
An equivalent circuit corresponding to Eq. (21.58) is given in Fig. 21.19. This circuit pre-

dicts that the averaged control-to-input-current and input-voltage-to-input-current transfer func-
tions are described by

Fig. 21.19 Linearized model describing the
boost converter input dynamics, corresponding to
Eq. (21.58) +

L

+ d (t)Vvg(t) Ts

ig(t) Ts
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ig(s) =
V
sL

d(s) +
1
sL

vg(s)

= Gid(s)d(s) +Gig(s)vg(s) (21.59)

where ig(s) is the Laplace transform of 〈ig(t)〉Ts and vg(s) is the Laplace transform of 〈vg(t)〉Ts .
So the input characteristics of the boost rectifier can be linearized, even though the ac input
variations are not small.

Unfortunately, Eq. (21.55) is not sufficient to linearize the equations describing the input
characteristics of the buck–boost, SEPIC, Ćuk, and most other single-phase rectifiers. The con-
trol system design engineer must then deal with a truly nonlinear time-varying dynamical sys-
tem.

One approach that is sometimes suggested employs the quasi-static approximation [273,
274]. It is assumed that the ac line variations are much slower than the rectifier system dynamics,
such that the rectifier always operates near equilibrium. The quiescent operating point changes
slowly along the input sinusoid; an equilibrium analysis can be performed to find expressions
for the slowly-varying “equilibrium” duty ratio and converter voltages and currents. The small-
signal dc–dc converter transfer functions derived in Chaps. 7 and 8 are evaluated using this
time-varying operating point. The converter poles, zeroes, and gains are found to vary along the
ac input sinusoid. An average current controller is designed using these time-varying transfer
functions, such that the current loop gain has a positive phase margin at all operating points.

We expect that the quasi-static approximation should be valid if the rectifier system dynam-
ics are sufficiently fast, and it is reasonable to anticipate that high-frequency PWM converters
have dynamics that are much faster than the ac line frequency. The problem is that no good
condition on system parameters, which can justify the approximation, is known for the basic
converter topologies. There is room for additional research in this area.

It is well-understood in the field of control systems that when the rectifier system dynamics
are not sufficiently fast, the quasi-static approximation yields neither sufficient nor necessary
conditions for stability of the resulting design. Time-varying “loop gains” that always have
a positive phase margin may nonetheless be unstable, and a negative phase margin does not
always imply instability. Such phenomena are sometimes observed in rectifier systems. Even
worse, it is difficult to justify the use of the Laplace transform on rectifiers described by time-
varying differential equations, unless the quasi-static approximation can be validated.

21.3.2 Current-Programmed Control

Another well-known approach to attaining input resistor emulation is the use of current-
programmed control. As illustrated in Fig. 21.20, the programmed current ic(t) is made propor-
tional to the ac input voltage. This causes the average inductor current, and hence also 〈ig(t)〉Ts ,
to approximately follow vg(t). As in average current control, a multiplier is used to adjust the
emulated resistance and average power flow; the control signal vcontrol(t) is typically used to sta-
bilize the dc output voltage magnitude. Several rectifier control ICs are commercially available,
which implement current-programmed control.

As discussed in Chap. 18, several mechanisms cause the average inductor current and hence
also 〈ig(t)〉Ts to differ from the programmed ic(t). These mechanisms introduce crossover distor-
tion and line current harmonics. An artificial ramp having sufficiently large slope ma is necessary
to stabilize the current-programmed boost converter when it operates in CCM with d(t) > 0.5.
The addition of this ramp causes 〈ig(t)〉TS to differ from ic(t). Additional deviation is introduced
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Fig. 21.20 Current-programmed control of a boost rectifier

by the inductor current ripple. Both mechanisms are most pronounced when the inductor current
is small, near the zero crossings of the ac line waveforms.

The static input characteristics, that is, the average input current vs. the input voltage, of the
current-programmed boost converter are given by

〈ig(t)〉Ts =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
vg(t)

Li2c(t) fsV

2(V − vg(t))(vg(t) + maL)2
in DCM

ic(t) −
(
1 −

vg(t)

V

) (
ma +

vg(t)

2L

)
Ts in CCM

(21.60)

The converter operates in the continuous conduction mode when

〈ig(t)〉Ts >
TsV
2L

vg(t)

V

(
1 −

vg(t)

V

)
(21.61)

In terms of the control current ic(t), the condition for operation in CCM can be expressed

ic(t) >
TsV

L

(
maL

V
+

vg(t)

V

) (
1 −

vg(t)

V

)
(21.62)

In the conventional current-programmed rectifier control scheme, the control current ic(t) is
simply proportional to the ac input voltage:

ic(t) =
vg(t)

Re
(21.63)
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Fig. 21.21 Static input characteristics of a current-programmed boost converter, with minimum stabiliz-
ing artificial ramp as in Eq. (21.64)

where Re is the emulated resistance that would be obtained if the average input current exactly
followed the reference current ic(t). The static input characteristics given by Eqs. (21.60) to
(21.63) are plotted in Fig. 21.21. The average input current 〈ig(t)〉Ts is plotted as a function of
the applied input voltage vg(t), for several values of emulated resistance Re. The region near the
CCM-DCM boundary is shown. The curves are plotted for a fixed artificial ramp having slope

ma =
V
2L

(21.64)

This is the minimum value of artificial ramp that stabilizes the boost current-programmed con-
troller at all static operating points. Decreasing ma below this value leads to instability at oper-
ating points in the continuous conduction mode at low vg(t)/V .

To obtain resistor emulation, it is desired that the static input characteristics be linear and
pass through the origin. It can be seen from Fig. 21.21 that this is not the case: the curves are
reasonably linear in the continuous conduction mode, but exhibit significant curvature as the
CCM-DCM boundary is approached. The resulting average current waveforms are summarized
in Fig. 21.22.

To minimize the line current THD, it is apparent that the converter should be designed
to operate deeply in the continuous conduction mode for most of the ac line cycle. This is
accomplished with emulated resistances Re that are much smaller than Rbase = 2L/Ts. In ad-
dition, the artificial ramp slope ma should be no greater than otherwise necessary. In practice,
THD of 5% to 10% can easily be obtained in rectifiers that function over a narrow range of
rms input voltages and load currents. However, low THD cannot be obtained at all operating
points in universal-input rectifiers; THD of 20% to 50% may be observed at maximum ac input
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Fig. 21.22 Input current waveforms predicted by the static input characteristics of Fig. 21.21, compared
with a pure sinusoid. Curves are plotted for the case VM = 0.8V , with minimum stabilizing artificial ramp

voltage. This problem can be solved by biasing the current reference waveform. Design of
current-programmed rectifiers is discussed in [258–261], and some strategies for solving this
problem are addressed in [258].

21.3.3 Critical Conduction Mode and Hysteretic Control

Another control scheme sometimes used in low-harmonic rectifiers, as well as in dc–dc con-
verters and dc-ac inverters, is hysteretic control. Rather than operating at a fixed switching fre-
quency and duty cycle, the hysteretic controller switches the transistor on and off as necessary
to maintain a waveform within given limits. A special case of hysteretic control, called critical
conduction mode control, is implemented in several commercially available ICs, and is popular
for low-harmonic rectifiers rated below several hundred Watts [262–264].

An example is the sinusoid of Fig. 21.23a, in which the boost converter input current is con-
trolled to follow a sinusoidal reference with a±10% tolerance. The inductor current increases
when the transistor is on, and decreases when the transistor is off. So this hysteretic controller
switches the transistor on whenever the input current falls below 90% of the reference input.
The controller switches the transistor off whenever the input current exceeds 110% of the ref-
erence. Hysteretic controllers tend to have simple implementations. However, they have the
disadvantages of variable switching frequency and reduced noise immunity.

Another example of hysteretic control is the waveform of Fig. 21.23b. The lower limit is
chosen to be zero, while the upper limit is twice the reference input. This controller operates the
boost converter at the boundary between the continuous and discontinuous conduction modes.
An alternative control scheme that generates the same waveform simply operates the transistor
with constant on-time: the transistor is switched on when the inductor current reaches zero, and
is switched off after a fixed interval of length ton. The resulting inductor current waveform will
have a peak value that depends directly on the applied input voltage, and whose average value
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Fig. 21.23 Input current waveforms of two boost converters with hysteretic control: (a) ±10% regulation
band, (b) critical conduction mode operation (±100% regulation band)

is one-half of its peak. With either control approach, the converter naturally exhibits loss-free-
resistor or ideal rectifier behavior. The emulated resistance is

Re =
2L
ton

(21.65)

This scheme has the advantage of small inductor size and low-cost control ICs. Disadvantages
are increased peak currents, variable switching frequency, and the need for additional input EMI
filtering.

A typical critical conduction mode controller is illustrated in Fig. 21.24. A zero-current
detector senses when ig(t) (the inductor current) is zero; this is typically accomplished by mon-
itoring the voltage across the inductor. The zero-current detector sets a latch, turning on the
transistor and initiating the switching period. The transistor current is also monitored, and is
compared to a sinusoidal reference vr(t) that is proportional to the applied input voltage vg(t).
When the sensed current is equal to the reference, the latch is reset and the transistor is turned
off.

Since the switching frequency can vary, possibly over a wide range, it is important to care-
fully design the converter power stage. For a given power P, the required transistor on-time ton

can be found by combining Eqs. (21.17) and (21.65), and solving for ton:

ton =
4LP

V2
M

(21.66)
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Application of the principle of volt-second balance to inductor L of Fig. 21.24 leads to the
following equation:

vgton + (vg − V)toff = 0 (21.67)

Hence, the transistor off-time is given by

toff = ton
vg

(V − vg)
(21.68)

The switching period Ts is equal to
Ts = toff + ton (21.69)

Substitution of Eqs. (21.66) and (21.68) into Eq. (21.69) yields

Ts =
4LP

V2
M

1(
1 −

vg(t)

V

) (21.70)

The following expression for switching frequency is found by substitution of Eq. (21.11) into
Eq. (21.70):

fs =
1
Ts
=

V2
M

4LP

(
1 − VM

V
|sin(ωt)|

)
(21.71)

The maximum switching frequency occurs when sin(ωt) equals zero:

max fs =
V2

M

4LP
(21.72)

The minimum switching frequency occurs at the peak of the sine wave:

min fs =
V2

M

4LP

(
1 − VM

V

)
(21.73)
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Equations (21.72) and (21.73) can be used to select the value of the inductance L and the output
voltage V , so that the switching frequency varies over an acceptable range.

21.3.4 Nonlinear Carrier Control

The nonlinear carrier controller (NLC) is capable of attaining input resistor emulation in boost
and other converters that operate in the continuous conduction mode. Implementation of the
controller is quite simple, with no need for sensing of the input voltage or input current. There
is also no need for a current loop error amplifier. The boost nonlinear-carrier charge controller
is inherently stable and is free from the stability problems that require addition of an artificial
ramp in current-programmed controllers.

A CCM boost rectifier system with nonlinear-carrier charge control is illustrated in
Fig. 21.25, and waveforms are given in Fig. 21.26. The reasoning behind this approach is as
follows. It is desirable to control the transistor switch current is(t). This pulsating current is
much easier to sense than the continuous converter input current–a simple current transformer
can be used, as in Fig. 21.25. Further, it is desirable to control the integral of this current, or the
charge, for two reasons: (1) integration of the waveform leads to improved noise immunity and
(2) the integral of the waveform is directly related to its average value,

〈is(t)〉Ts =
1
Ts

∫ t+TS

t
is(τ)dτ (21.74)
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Fig. 21.25 Nonlinear carrier charge control of a boost converter
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Fig. 21.26 Transistor current is(t), parabolic car-
rier voltage vc(t), and integrator voltage vi(t) wave-
forms for the NLC-controller boost rectifier of
Fig. 21.25

TsdTs0

is(t)

vc(t)

vi (t)

In a fixed-frequency system, Ts is constant, and the integral over one switching period is
proportional to the average value. Hence the average switch current can be controlled to be
proportional to a reference signal by simply switching the transistor off when the integral of the
switch current is equal to the reference. In the controller of Fig. 21.25, the switch current is(t) is
scaled by the transformer turns ratio n, and then integrated by capacitor Ci, such that

vi(t) =
1
Ci

∫ dT s

0

is(τ)
n

dτ for 0 < t < dT s (21.75)

The integrator voltage vi(t) is reset to zero at the end of each switching period, and the integra-
tion process begins anew at the beginning of the next switching period. So at the instant that the
transistor is switched off, the voltage vi(dT s) is proportional to the average switch current:

vi(dT s) =
〈is〉Ts

nCi fs
for interval 0 < t < Ts (21.76)

How should the average switch current be controlled? To obtain input resistor emulation, it is
desired that

〈ig(t)〉Ts =
〈vg(t)〉Ts

Re(vcontrol)
(21.77)

It is further desired to avoid sensing either ig(t) or vg(t). As with other schemes, we will sense
the dc output voltage 〈v(t)〉TS to construct a low-bandwidth feedback loop that balances the
average input and output powers. So let us determine the relationship between 〈is(t)〉Ts and
〈v(t)〉Ts implied by Eq. (21.77). If we assume that the boost converter operates in the continuous
conduction mode, then we can write

〈is(t)〉Ts = d(t)〈ig(t)〉Ts (21.78)

and
〈vg(t)〉Ts = d′(t)〈v(t)〉Ts (21.79)
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Substitution of Eqs. (21.78) and (21.79) into Eq. (21.77) leads to

〈is(t)〉Ts = d(t) (1 − d(t))
〈v(t)〉Ts

Re(vcontrol)
(21.80)

The controller of Fig. 21.25 implements this equation.
The nonlinear carrier generator of Fig. 21.25 produces the parabolic waveform vc(t), given

by

vc(t) = vcontrol

(
t

Ts

) (
1 − t

Ts

)
for 0 ≤ t ≤ Ts (21.81)

vc(t + Ts) = vc(t)

This waveform is illustrated in Fig. 21.26. Note that Eq. (21.81) resembles Eq. (21.80), with d(t)
replaced by (t/Ts). The controller switches the transistor off at time t = dT s when the integrator
voltage v j(t) is equal to the carrier waveform vc(t). Hence, it is true that

vi(dT s) = vc(dT s) = vcontrol(t)d(t) (1 − d(t)) (21.82)

Substitution of Eq. (21.76) yields

〈is(t)〉Ts

nCi fs
= vcontrol(t)d(t) (1 − d(t)) (21.83)

This is of the same form as Eq. (21.80). Comparison of Eqs. (21.80) and (21.83) reveals that the
emulated resistance Re is given by

Re(vcontrol) = d(t)(1 − d(t))
〈v(t)〉Ts

〈is(t)〉Ts

=
〈v(t)〉Ts

nCi fsvcontrol(t)
(21.84)

If the dc output voltage and the control voltage have negligible ac variation, then Re is essen-
tially constant, and the ac line current will exhibit low harmonic distortion. So neither the input
voltage nor the input current need to be sensed, and input resistor emulation can be obtained in
CCM boost converters by sensing only the switch current.

A simple way to generate the parabolic carrier waveform uses two integrators, as illustrated
in Fig. 21.27. The slowly varying control voltage vcontrol(t) is integrated, to obtain a ramp wave-
form vr(t) whose peak amplitude is proportional to vcontrol(t). The dc component of this wave-
form is removed, and then integrated again. The output of the second integrator is the parabolic
carrier vc(t), illustrated in Fig. 21.26 and given by Eq. (21.81). Both integrators are reset to zero
before the end of each switching period by the clock generator. The amplitude of the parabolic
carrier, and hence also the emulated resistance, can be controlled by variation of vcontrol(t).

Equations (21.78) and (21.79) are valid only when the converter operates in the contin-
uous conduction mode. In consequence, the ac line current waveform is distorted when the
converter operates in DCM. Since this occurs near the zero crossings of the ac line voltage,
crossover distortion is generated. Nonetheless, the harmonic distortion is less severe than in
current-programmed schemes, and it is feasible to construct universal-input rectifiers that em-
ploy the NLC control approach. Total harmonic distortion is analyzed and plotted in [267].

Nonlinear carrier control can be applied to current-programmed boost rectifiers, as well as
to other rectifiers based on the buck–boost, SEPIC, Ćuk, or other topologies, with either integral
charge control or peak-current-programmed control [267, 268]. In these cases, a different carrier
waveform must be employed. A nonlinear carrier controller in which the ac input voltage vg(t)
is sensed, rather than the switch current is(t), is described in [269].
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Fig. 21.27 Generation of parabolic carrier waveform by double integration

21.4 Single-Phase Converter Systems Incorporating Ideal Rectifiers

An additional issue that arises in PWM rectifier systems is the control of power drawn from
the ac line, the power delivered to the dc load, and the energy stored in a bulk energy storage
capacitor.

21.4.1 Energy Storage

It is usually desired that the dc output voltage of a converter system can be regulated with high
accuracy. In practice, this is easily accomplished using a high-gain wide-bandwidth feedback
loop. A well-regulated dc output voltage v(t) = V is then obtained, which has negligible ac
variations. For a given constant load characteristic, the load current I and the instantaneous load
power pload(t) = Pload are also constant:

pload(t) = v(t)i(t) = VI (21.85)

However, the instantaneous input power pac(t) of a single-phase ideal rectifier is not constant:

pac(t) = vg(t)ig(t) (21.86)

If vg(t) is given by Eq. (21.11), and if ig(t) follows Eq. (21.1), then the instantaneous input power
becomes

pac(t) =
V2

M

Re
sin2(ωt) =

V2
M

2Re
(1 − cos(2ωt)) (21.87)

which varies with time. The instantaneous input power is zero at the zero crossings of the ac
input voltage. Equations (21.85) and (21.87) are illustrated in Fig. 21.28a. Note that the desired
instantaneous load power pload(t) is not equal to the desired instantaneous rectifier input power
pac(t). Some element within the rectifier system must supply or consume the difference between
these two instantaneous powers.
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Fig. 21.28 Waveforms of a single-phase ideal rectifier system: (a) pulsating ac input power pin(t), and
constant dc load power Pload; (b) energy storage capacitor voltage vC(t)

Since the ideal rectifier does not consume or generate power, nor does it contain significant
internal energy storage, it is necessary to add to the system a low-frequency energy storage
element such as an electrolytic capacitor. The difference between the instantaneous input and
load powers flows through this capacitor.

The waveforms of rectifier systems containing reactive elements can be determined by so-
lution of the rectifier energy equation [275, 276]. If the energy storage capacitor C is the only
system element capable of significant low-frequency energy storage, then the power pC(t) flow-
ing into the capacitor is equal to the difference between the instantaneous input and output
powers:

pC(t) =
dEC(t)

dt
=

d
(

1
2Cv2

C(t)
)

dt
= pac(t) − pload(t) (21.88)

where C is the capacitance, vC(t) is the capacitor voltage, and EC(t) is the energy stored in the
capacitor. Hence as illustrated in Fig. 21.28b, when pac(t) > pload(t) then energy flows into the
capacitor, and vC(t) increases. Likewise, vC(t) decreases when pac(t) < pload(t). So the capacitor
voltage vC(t) must be allowed to increase and decrease as necessary to store and release the
required energy. In steady state, the average values of pac(t) and pload(t) must be equal, so that
over one ac line cycle there is no net change in capacitor stored energy.

Where can the energy storage capacitor be placed? It is necessary to separate the energy
storage capacitor from the regulated dc output, so that the capacitor voltage is allowed to in-
dependently vary as illustrated in Fig. 21.28b. A conventional means of accomplishing this is
illustrated in Fig. 21.29. A second dc–dc converter is inserted, between the energy storage ca-
pacitor and the regulated dc load. A wide-bandwidth feedback loop controls this converter, to
attain a well-regulated dc load voltage. The capacitor voltage vC(t) is allowed to vary. Thus, this
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Fig. 21.29 Elements of a single-phase-ac to dc power supply, in which the ac line current and dc load
voltage are independently regulated with high bandwidth. An internal independent energy storage capaci-
tor is required

system configuration is capable of (1) wide-bandwidth control of the ac line current waveform,
to attain unity power factor, (2) internal low-frequency energy storage, and (3) wide-bandwidth
regulation of the dc output voltage. It is also possible to integrate these functions into a sin-
gle converter, provided that the required low-frequency independence of the input, output, and
capacitor voltages is maintained [277].

The energy storage capacitor also allows the system to function in other situations in which
the instantaneous input and output powers differ. For example, it is commonly required that
the output voltage remains regulated during ac line voltage failures of short duration. The hold-
up time is the duration that the output voltage v(t) remains regulated after vac(t) has become
zero. A typical requirement is that the system continues to supply power to the load during one
complete missing ac line cycle, that is, for 20 msec in a 50 Hz system. During the hold-up time,
the load power is supplied entirely by the energy storage capacitor. The value of capacitance
should be chosen such that at the end of the hold-up time, the capacitor voltage vC(t) exceeds
the minimum value that the dc–dc converter requires to produce the desired load voltage.

The energy storage function could be performed by an element other than a capacitor, such
as an inductor. However, use of an inductor is a poor choice, because of its high weight and cost.
For example, a 100 μF 100 V electrolytic capacitor and a 100 μH 100 A inductor can each store
1 Joule of energy. But the capacitor is considerably smaller, lighter, and less expensive.

A problem introduced by the energy storage capacitor is the large inrush current observed
during the system turn-on transient. The capacitor voltage vC(t) is initially zero; substantial
amounts of charge and energy are required to raise this voltage to its equilibrium value. The
boost converter is not capable of limiting the magnitude of the resulting inrush current: even
when d(t) = 0, a large current flows through the boost converter diode to the capacitor, as
long as the converter output voltage is less than the input voltage. Some additional circuitry is
required to limit the inrush current of the boost converter. Converters having a buck–boost type
conversion ratio are inherently capable of controlling the inrush current. This advantage comes
at the cost of additional switch stress.

It is also possible to design the ideal rectifier to operate correctly when connected to utility
power systems anywhere in the world. Universal input rectifiers can operate with nominal ac
rms voltage magnitudes as low as the 100 V encountered in a portion of Japan, or as high
as the 260 V found in western Australia, with ac line frequencies of either 50 Hz or 60 Hz.
Regardless of the ac input voltage, the universal-input rectifier produces a constant nominal dc
output voltage VC .
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Fig. 21.30 Low-frequency equivalent circuit of the system of Fig. 21.29

Let us now consider in more detail the low-frequency energy storage process of the system
of Fig. 21.29. Let us assume that the dc–dc converter contains a controller having bandwidth
much greater than the ac line frequency, such that the load voltage contains negligible low-
frequency variations. A low-frequency model of the dc–dc converter is then as illustrated in
Fig. 21.30. The dc–dc converter produces constant voltage v(t) = V modeled by a voltage source
as shown. This causes the load to draw constant current i(t) = I, leading to load power pload(t) =
Pload. To the extent that converter losses can be neglected, the dc–dc converter input port draws
power Pload, regardless of the value of vC(t). So the dc–dc converter input port can be modeled
as a constant power sink, of value Pload.

The model of Fig. 21.30 implies that the difference between the rectifier power pac(t) and
the load power Pload flows into the capacitor, as given by Eq. (21.88). The capacitor voltage
increases when pac(t) exceeds Pload, and decreases when pac(t) is less than Pload. In steady
state, the average values of pac(t) and Pload must be equal. But note that pac(t) is determined
by the magnitudes of vac(t) and Re, and not by the load. The system of Fig. 21.30 contains no
mechanism to cause the average rectifier power and load power to be equal. In consequence,
it is necessary to add an additional control system that adjusts Re as necessary, to cause the
average rectifier output power and dc–dc converter input power to balance. The conventional
way to accomplish this is simply to regulate the dc component of vC(t).

A complete system containing ideal rectification, energy storage, and wide-bandwidth out-
put voltage regulation is illustrated in Fig. 21.31. This system incorporates the boost converter
and controller of Fig. 21.5, as well as a generic dc–dc converter with output voltage feedback. In
addition, the system contains a low-bandwidth feedback loop, which regulates the dc component
of the energy storage capacitor voltage to be equal to a reference voltage vref 2. This is accom-
plished by slow variations of vcontrol(t) and Re. This controller should have sufficiently small
loop gain at the even harmonics of the ac line frequency, so that variations in Re are much
slower than the ac line frequency.

Increasing the bandwidth of the energy storage capacitor voltage controller can lead to sig-
nificant ac line current harmonics. When this controller has wide bandwidth and high gain, then
it varies Re(t) quickly, distorting the ac line current waveform. In the extreme limit of perfect
regulation of the energy storage capacitor voltage vC(t) = VC , then the capacitor stored energy
is constant, and the instantaneous input ac line power pac(t) and load power pload(t) are equal.
The controller prevents the energy storage capacitor from performing its low-frequency energy
storage function. The ac line current then becomes

iac(t) =
pac(t)
vac(t)

=
pload(t)
vac(t)

=
Pload

VM sin(ωt)
(21.89)
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Boost converter

Wide-bandwidth input current controller

vac(t)

iac(t) +

vg(t)

ig(t)

ig(t)vg(t)

+

vC(t)

i2(t)

Q1

L

C

D1

vcontrol(t)

Multiplier X

+vref1(t)
= kxvg(t)vcontrol(t)

Rs
va(t)

Gc(s)

PWM

Compensator

verr(t)

Converter Load

+

v(t)

i(t)

d(t)

+Compensator
and modulator

vref3

Wide-bandwidth output voltage controller

+Compensator
vref2

Low-bandwidth energy-storage capacitor voltage controller

vC(t)

v(t)

Fig. 21.31 A complete dc power supply system incorporating a near-ideal single-phase boost rectifier
system, energy storage capacitor, and dc–dc converter. Wide-bandwidth feedback loops regulate the ac
line current waveform and the dc load voltage, and a slow feedback loop regulates the energy storage
capacitor voltage

Fig. 21.32 Ac line current
waveform of the single-phase
ideal rectifier with output volt-
age feedback, in the hypotheti-
cal case where constant instan-
taneous power is supplied to a
dc load. The THD tends to infin-
ity, and the power factor tends
to zero

vac(t)

iac(t)

t

This waveform is sketched in Fig. 21.32. In this idealized limiting case, the ac line current tends
to infinity at the zero crossings of the ac line voltage waveform, such that the instantaneous
input power is constant. It can be shown that the THD of this current waveform is infinite, and
its distortion factor and power factor are zero. So the bandwidth of this controller should be
limited.

The energy storage capacitor voltage ripple can be found by integration of Eq. (21.88). Un-
der steady-state conditions, where the average value of pac(t) = Pload, integration of Eq. (21.88)
yields

EC(t) =
1
2

Cv2
C(t) = EC(0) +

∫ t

0
(−Pload cos(2ωt)) dt (21.90)

where ω is the ac line frequency. Evaluation of the integral leads to

EC(t) = EC(0) − Pload sin(2ωt)
2ω

(21.91)
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Therefore, the capacitor voltage waveform is

vC(t) =

√
2EC(t)

C
=

√
v2

C(0) − Pload

ωC
sin(2ωt) (21.92)

It can be verified that the rms value of this waveform is VC,rms = vC(0). Hence, Eq. (21.92) can
be written

vC(t) = VC,rms

√
1 − Pload

ωCV2
C,rms

sin(2ωt) (21.93)

This waveform is sketched in Fig. 21.28b. The minimum and maximum values of the capacitor
voltage occur when sin (2ωt) is equal to 1 and -l, respectively. Therefore, the peak-to-peak
capacitor voltage ripple is

2ΔvC = VC,rms

⎡⎢⎢⎢⎢⎢⎢⎣
√

1 +
Pload

ωCV2
C,rms

−
√

1 − Pload

ωCV2
C,rms

⎤⎥⎥⎥⎥⎥⎥⎦ ≈ Pload

ωCVC,rms
(21.94)

The approximation is valid for Pload/(ωCV2
C,rms) sufficiently less than one, a condition that is

satisfied whenever the ac voltage ripple is sufficiently less than VC,rms.

21.4.2 Modeling the Outer Low-Bandwidth Control System

As discussed above, the outer low-bandwidth controller, which varies the emulated resistance
as necessary to balance the average ac input and dc load powers, is common to all near-ideal
rectifier systems. For design of this controller, the rectifier can be modeled using the loss-free
resistor (LFR) model. Perturbation and linearization of the LFR lead to a small-signal equivalent
circuit that predicts the relevant small-signal transfer functions. Such a model is derived in this
section [245, 276, 278].

It is desirable to stabilize the rectifier output voltage against variations in load power, ac
line voltage, and component characteristics. Hence, a voltage feedback loop is necessary. As
discussed in Sect. 21.4.1, this loop cannot attempt to remove the capacitor voltage ripple that
occurs at the second harmonic of the ac line frequency, 2ω, since doing so would require that
Re(t) change significantly at the second harmonic frequency. This would introduce significant
distortion, phase shift, and power factor degradation into the ac line current waveform. In con-
sequence this loop must have sufficiently small gain at frequency 2ω, and hence its bandwidth
must be low. Therefore, for the purposes of designing the low-bandwidth outer control loop,
it is unnecessary to model the system high-frequency behavior. It can be assumed that any in-
ner wide-bandwidth controller operates ideally at low frequencies, such that the ideal rectifier
model of Fig. 21.33a adequately represents the low-frequency system behavior.

A small-signal model is derived here that correctly predicts the control-to-output transfer
function and output impedance of any rectifier system that can be modeled as a loss-free resistor.
The model neglects the complicating effects of high-frequency switching ripple, and is valid for
control variations at frequencies sufficiently less than the ac line frequency. Both resistive and
dc–dc converter/regulator loads are treated.

The steps in the derivation of the small-signal ac model are summarized in Fig. 21.33. Fig-
ure 21.33a is the basic ideal rectifier model, in which the converter high-frequency switching
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+
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+
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+
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+
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2
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Rectifier output port
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C

Rectifier output port

r2g2vg,rms j2vcontrol R

i2

+
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Fig. 21.33 Steps in the derivation of the low-frequency small-signal rectifier model: (a) large-signal LFR
model, averaged over one switching period Ts; (b) separation of power source into its constant and time-
varying components; (c) removal of second harmonic components by averaging over one-half of the ac
line period T2L; (d) small-signal model obtained by perturbation and linearization of (c)
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ripple is removed via averaging over the switching period Ts, but waveform frequency com-
ponents slower than the switching frequency are correctly modeled, including the 2ω second-
harmonic and dc components of output voltage. It is difficult to use this model in design of the
feedback loop because it is highly nonlinear and time-varying.

If the ac input voltage vg(t) is

vg(t) =
√

2vg,rms |sin(ωt)| (21.95)

then the model of Fig. 21.33a predicts that the instantaneous output power 〈p(t)〉Ts is

〈p(t)〉Ts =
〈vg(t)〉2Ts

Re(vcontrol(t))
=

v2
g,rms

Re(vcontrol(t))
(1 − cos(2ωt)) (21.96)

The output power is comprised of a constant term v2
g,rms/Re, and a term that varies at the sec-

ond harmonic of the ac line frequency. These two terms are explicitly identified in Fig. 21.33b.
The second-harmonic variation in 〈p(t)〉TS leads to time-varying system equations, and slow

variations in vcontrol(t) lead to an output voltage spectrum containing components not only at the
frequencies present in vcontrol(t), but also at the even harmonics of the ac line frequency and their
sidebands, as well as at the switching frequency and its harmonics and sidebands. It is desired
to model only the low-frequency components excited by slow variations in vcontrol(t), the load,
and the ac line voltage amplitude vg,rms. The even harmonics of the ac line frequency can be
removed by averaging over one-half of the ac line period

T2L =
1
2

2π
ω
=
π

ω
(21.97)

Hence, we average over the switching period Ts to remove the switching harmonics, and then
average again over one-half of the ac line period T2L to remove the even harmonics of the
ac line frequency. The resulting model is valid for frequencies sufficiently less than the ac line
frequency ω. Averaging of the rectifier output voltage is illustrated in Fig. 21.34: averaging over
T2L removes the ac line frequency harmonics, leaving the underlying low-frequency variations.
By averaging the model of Fig. 21.33b over T2L, we obtain the model of Fig. 21.33c. This step
removes the second-harmonic variation in the power source.

The equivalent circuit of Fig. 21.33c is time-invariant, but nonlinear. We can now perturb
and linearize as usual, to construct a small-signal ac model that describes how slow variations

t

v(t)

v(t) T2L

v(t) Ts

Fig. 21.34 Removal of components of v(t) at the harmonics of the ac line frequency, by averaging over
one-half of the ac line period T2L
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in vcontrol(t), vg,rms, and the load, affect the rectifier output waveforms. Let us assume that the
averaged output voltage 〈v(t)〉T2L , rectifier averaged output current 〈i2(t)〉T2L , rms line voltage
amplitude vg,rms, and control voltage vcontrol(t) can be represented as quiescent values plus small
slow variations:

〈v(t)〉T2L = V + v̂(t)

〈i2(t)〉T2L = I2 + î2(t) (21.98)

vg,rms = Vg,rms + v̂g,rms(t)

vcontrol(t) = Vcontrol + v̂control(t)

with

V 
 |v̂(t)|
I2 
 |î2(t)| (21.99)

Vg,rms 
 |v̂g,rms(t)|
Vcontrol 
 |v̂control(t)|

In the averaged model of Fig. 21.33c, 〈i2(t)〉T2L is given by

〈i2(t)〉T2L =
〈p(t)〉T2L

〈v(t)〉T2L

=
v2

g,rms(t)

Re(vcontrol(t))〈v(t)〉T2L

(21.100)

= f
(
vg,rms(t), 〈v(t)〉T2L , vcontrol(t)

)

This equation resembles DCM buck–boost Eq. (15.50), and linearization proceeds in a similar
manner. Expansion of Eq. (21.100) in a three-dimensional Taylor series about the quiescent
operating point, and elimination of higher-order nonlinear terms, leads to

î2(t) = g2v̂g,rms(t) + j2v̂control(t) −
v̂(t)
r2

(21.101)

where

g2 =
df
(
vg,rms,V,Vcontrol

)
dvg,rms

∣∣∣∣∣∣∣∣
vg,rms=Vg,rms

=
2

Re(Vcontrol)

Vg,rms

V
(21.102)

(
− 1

r2

)
=

df
(
Vg,rms, 〈v〉T2L ,Vcontrol

)
d〈v〉T2L

∣∣∣∣∣∣∣∣〈v〉T2L=V

= − I2

V
(21.103)

j2 =
df
(
Vg,rms,V, vcontrol

)
dvcontrol

∣∣∣∣∣∣∣∣
vcontrol=Vcontrol

= −
V2

g,rms

VR2
e(Vcontrol)

dRe(vcontrol)
dvcontrol

∣∣∣∣∣
vcontrol=Vcontrol

(21.104)

A small-signal equivalent circuit based on Eq. (21.101) is given in Fig. 21.33d. Expressions for
the parameters g2, j2, and r2 for several controllers are listed in Table 21.1. This model is valid
for the conditions of Eq. (21.99), with the additional assumption that the output voltage ripple is
sufficiently small. Figure 21.33d is useful only for determining the various ac transfer functions;
no information regarding dc conditions can be inferred. The ac resistance r2 is derived from the
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Table 21.1 Small-signal model parameters for several types of rectifier control schemes

Controller type g2 j2 r2

Average current control with feedforward, Fig. 21.18 0
Pav

VVcontrol

V2

Pav

Current-programmed control, Fig. 21.20
2Pav

VVg,rms

Pav

VVcontrol

V2

Pav

Nonlinear-carrier charge control of boost rectifier, Fig. 21.25
2Pav

VVg,rms

Pav

VVcontrol

V2

2Pav

Boost with critical conduction mode control, Fig. 21.24
2Pav

VVg,rms

Pav

VVcontrol

V2

Pav

DCM buck–boost, flyback, SEPIC, or Ćuk converters
2Pav

VVg,rms

2Pav

VD
V2

Pav

slope of the average value of the power source output characteristic, evaluated at the quiescent
operating point. The other coefficients, j2 and g2, are also derived from the slopes of the same
characteristic, taken with respect to vcontrol(t) and vg,rms and evaluated at the quiescent operating
point. The resistance R is the incremental resistance of the load, evaluated at the quiescent
operating point. In the boost converter with hysteretic control, the transistor on-time ton replaces
vcontrol as the control input; likewise, the transistor duty cycle d is taken as the control input to the
DCM buck–boost, flyback, SEPIC, and Ćuk converters. Harmonics are ignored for the current-
programmed and NLC controllers; the expressions given in Table 21.1 assume that the converter
operates in CCM with negligible harmonics.

The control-to-output transfer function is

v̂(s)
v̂control(s)

= j2R‖r2
1

1 + sC R‖r2
(21.105)

The line-to-output transfer function is

v̂(s)
v̂g,rms(s)

= g2R‖r2
1

1 + sCR‖r2
(21.106)

Thus, the small-signal transfer functions of the high-quality rectifier contain a single pole, ascrib-
able to the output filter capacitor operating in conjunction with the incremental load resistance
R and r2, the effective output resistance of the power source. Although this model is based on
the ideal rectifier, its form is similar to that of the dc–dc DCM buck–boost converter ac model
of Chap. 15. This is natural, because the DCM buck–boost converter is itself a natural loss-free
resistor. The major difference is that the rms value of the ac input voltage must be used, and that
the second harmonic components of r2, j2, and g2 must additionally be removed via averaging.
Nonetheless, the equivalent circuit and ac transfer functions are of similar form.

When the rectifier drives a regulated dc–dc converter as in Fig. 21.29, then the dc–dc con-
verter presents a constant power load to the rectifier, as illustrated in Fig. 21.30. In equilibrium,
the rectifier and dc–dc converter operate with the same average power Pav and the same dc
voltage V . The incremental resistance R of the constant power load is negative, and is given by

R = − V2

Pav
(21.107)
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which is equal in magnitude but opposite in polarity to the rectifier incremental output resistance
r2, for all controllers except the NLC controller. The parallel combination r2‖R then tends to an
open circuit, and the control-to-output and line-to-output transfer functions become

v̂(s)
v̂control(s)

=
j2

sC
(21.108)

and
v̂(s)

v̂g,rms(s)
=

g2

sC
(21.109)

In the case of the NLC controller, the parallel combination r2‖R becomes equal to r2/2, and Eqs.
(21.105) and (21.106) continue to apply.

21.5 RMS Values of Rectifier Waveforms

To correctly specify the power stage elements of a near-ideal rectifier, it is necessary to compute
the root-mean-square values of their currents. A typical waveform such as the transistor current
of the boost converter, Fig. 21.35, is pulse-width modulated, with both the duty cycle and the
peak amplitude varying with the ac input voltage. When the switching frequency is much larger
than the ac line frequency, then the rms value can be well-approximated as a double integral.
The square of the current is integrated first to find its average over a switching period, and the
result is then integrated to find the average over the ac line period.

t

iQ(t)

Fig. 21.35 Modulated transistor current waveform, boost rectifier

Computation of the rms and average values of the waveforms of a PWM rectifier can be
quite tedious, and this can impede the effective design of the power stage components. In this
section, several approximations are developed, which allow relatively simple analytical expres-
sions to be written for the rms and average values of the power stage currents, and which allow
comparison of converter approaches [255, 279]. The rms transistor current in the boost rectifier
is found to be quite low.

The rms value of the transistor current is defined as

IQrms =

√
1

Tac

∫ Tac

0
i2Q(t)dt (21.110)

where Tac is the period of the ac line waveform. The integral can be expressed as a sum of
integrals over all of the switching periods contained in one ac line period:
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IQms =

√√√
1

Tac
Ts

Tac/Ts∑
n=1

(
1
Ts

∫ nT s

(n−1)Ts

i2Q(t)dt

)
(21.111)

where Ts is the switching period. The quantity inside the parentheses is the value of i2Q averaged
over the nth switching period. The summation can be approximated by a Riemann integral in
the case when Ts is much less than Tac. This approximation corresponds to taking the limit as
Ts tends to zero, as follows:

IQrm ≈

√√√
1

Tac
lim

Ts→0

⎡⎢⎢⎢⎢⎢⎢⎣Ts

Tac/Ts∑
n=1

(
1
Ts

∫ nT s

(n−1)Ts

i2Q(τ)dτ

)⎤⎥⎥⎥⎥⎥⎥⎦

=

√
1

Tac

∫ Tac

0

1
Ts

∫ t+Ts

t
i2Q(τ)dτdt (21.112)

=

√
〈〈i2Q(t)〉TS 〉Tac

So i2Q(t) is first averaged over one switching period. The result is then averaged over the ac line
period, and the square root is taken of the result.

21.5.1 Boost Rectifier Example

For the boost rectifier, the transistor current iQ(t) is equal to the input current when the tran-
sistor conducts, and is zero when the transistor is off. Therefore, the average of i2Q(t) over one
switching period is

〈i2Q〉TS =
1
Ts

∫ t+Ts

t
i2Q(t)dt (21.113)

= d(t)i2ac(t)

If the input voltage is given by
vac(t) = VM | sinωt| (21.114)

then the input current will be

iac(t) =
VM

Re
| sinωt| (21.115)

where Re is the emulated resistance. With a constant output voltage V , the transistor duty cycle
must obey the relationship

V
vac(t)

=
1

1 − d(t)
(21.116)

This assumes that the converter dynamics are fast compared to the ac line frequency. Substitu-
tion of Eq. (21.114) into (21.116) and solution for d(t) yields

d(t) = 1 − VM

V
| sinωt| (21.117)

Substitution of Eqs. (21.115) and (21.117) into Eq. (21.113) yields the following expression
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〈i2Q〉TS =
V2

M

R2
e

(
1 − VM

V
| sinωt|

)
sin2(ωt) (21.118)

One can now plug this expression into Eq. (21.112):

IQrms =

√
1

Tac

∫ Tac

0
〈i2Q〉Ts dt

=

√
1

Tac

∫ Tac

0

V2
M

R2
e

(
1 − VM

V
| sinωt|

)
sin2(ωt)dt (21.119)

which can be further simplified to

IQrms =

√
2

Tac

V2
M

R2
e

∫ Tac/2

0

(
sin2(ωt) − VM

V
sin3(ωt)

)
dt (21.120)

This involves integration of powers of sin(ωt) over a complete half-cycle. The integral can
be evaluated with the help of the following formula:

1
π

∫ π

0
sinn(θ)dθ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2
π

2 · 4 · 6 · · · (n − 1)
1 · 3 · 5 · · · n if n is odd

1 · 3 · 5 · · · (n − 1)
2 · 4 · 6 · · · n if n is even

(21.121)

This type of integral commonly arises in rms calculations involving PWM rectifiers. The values
of the integral for several choices of n are listed in Table 21.2. Evaluation of the integral in
Eq. (21.120) using Eq. (21.121) leads to the following result:

IQrms =
VM√
2Re

√
1 − 8

3π
VM

V
= Iac rms

√
1 − 8

3π
VM

V
(21.122)

Table 21.2 Solution of the integral of Eq. (21.121), for several values of n

n
1
π

∫ π

0
sinn(θ)dθ

1
2
π

2
1
2

3
4

3π

4
3
8

5
16

15π

6
15
48
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It can be seen that the rms transistor current is minimized by choosing the output voltage V to
be as small as possible. The best that can be done is to choose V = VM , which leads to

IQrms = 0.39Iac rms (21.123)

Larger values of V lead to a larger rms transistor current.
A similar analysis for the rms diode current leads to the following expression

IDrms = Iac rms

√
8

3π
VM

V
(21.124)

The choice V = VM maximizes the rms diode current, with the result

IDrms = 0.92Iac rms (21.125)

Larger values of V lead to smaller rms diode current.
Average currents can be computed in a similar way. The results are

IQav = Iac rms
2
√

2
π

(
1 − π

8
VM

V

)
(21.126)

IDav = Iac rms
VM

2
√

2V

Expressions for rms, average, and peak currents of the power stage components of the con-
tinuous conduction mode boost converter are summarized in Table 21.3. Expressions are also
tabulated for flyback and SEPIC topologies, operating in the continuous conduction mode. In
the case of the flyback converter, an L1 −C1 input filter is also included. In all cases, the effects
of switching ripple are neglected.

21.5.2 Comparison of Single-Phase Rectifier Topologies

When isolation is not a rectifier requirement, and when it is acceptable that the dc output voltage
be marginally larger than the peak ac input voltage, then the boost converter is a very effective
approach. For example, consider the design of a 1 kW rectifier operating from the 240 Vrms
input line voltage. If the converter efficiency and power factor are both approximately unity,
then the rms input current is Irms = (1000W)/(240V) = 4.2 A. The dc output voltage is chosen
to be 380 V, or slightly larger than the peak ac input voltage. By use of Eq. (21.122), the rms
transistor current is found to be 2 A. This is quite a low value–less than half of the rms input
current, which demonstrates how effectively the converter utilizes the power switch. The rms
diode current is 3.6 A, and the transistor and diode blocking voltages are 380 V. With a 120 A
ac input voltage, the transistor and diode rms currents increase to 6.6 A and 5.1 A, respectively.

The only real drawback of the boost converter is its inability to limit inrush currents. When
the dc output voltage is less than the instantaneous input voltage, the control circuit of the boost
rectifier loses control of the inductor current waveform. A very large inrush current occurs when
the dc output capacitor is initially charged. Additional circuitry must be employed to limit the
magnitude of this current.

Buck–boost, SEPIC, and Ćuk topologies can be used to solve the inrush current problem.
Since these converters have a d/(1 − d) conversion ratio, their waveforms can be controlled
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Table 21.3 Summary of PWM rectifier current stresses for several converter topologies

rms Average Peak

CCM boost

Transistor Iac rms

√
1 − 8

3π
VM

V
Iac rms

2
√

2
π

(
1 − π

8
VM

V

)
Iac rms

√
2

Diode Idc

√
16
3π

V
VM

Idc 2Idc
V

VM

Inductor Iac rms Iac rms
2
√

2
π

Iac rms

√
2

CCM flyback, with n : 1 isolation transformer and input filter

Transistor, xfmr primary Iac rms

√
1 +

8
3π

VM

nV
Iac rms

2
√

2
π

Iac rms

√
2
(
1 +

VM

nV

)

L1 Iac rms Iac rms
2
√

2
π

Iac rms

√
2

C1 Iac rms

√
8

3π
VM

nV
0 Iac rms

√
2 max

(
1,

VM

nV

)

Diode, xfmr secondary Idc

√
3
2
+

16
3π

nV
VM

Idc 2Idc

(
1 +

nV
VM

)

CCM SEPIC, nonisolated

Transistor Iac rms

√
1 +

8
3π

VM

V
Iac rms

2
√

2
π

Iac rms

√
2
(
1 +

VM

V

)

L1 Iac rms Iac rms
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√
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√
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√
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+
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√
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√

2
π

Iac rms

√
2
(
1 +

VM

nV

)

L1 Iac rms Iac rms
2
√
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√
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√
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√
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√
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+
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with, in all cases,
Iac rms

Idc
=
√

2
V

VM
, ac input voltage = VM sin(ωt), dc output voltage = V .
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when the output voltage is any positive value, but the price paid for this capability is increased
component stresses. For the same 1 kW rectifier with 240 Vrms ac input and 380 V output, the
transistor rms current and peak voltage of the nonisolated SEPIC are 5.5 A and 719 V. The rms
diode current is 4.85 A. The semiconductor voltage stresses can be reduced by reducing the
output voltage, at the expense of increased rms currents. With a 120 V ac input voltage, the
transistor and diode rms currents increase to 9.8 A and 6.1 A, respectively.

Isolation can also be obtained in the SEPIC and other topologies, as discussed in Chap. 6.
The turns ratio of the isolation transformer can also be used to reduce the primary-side currents
when the dc output voltage is low. But the transformer winding rms currents are higher than
those of a dc–dc converter, because of the pulsating (twice-line frequency) power flow. For
the 1 kW, 240 V ac input SEPIC example, with a 42 V 23.8 A dc load, and a 4:1 transformer
turns ratio, the rms transformer currents are 5.5 A (primary) and 36.4 A (secondary). The rms
transistor current is 6.9 A. At 120 V ac input voltage, these currents increase to 7.7 A, 42.5 A,
and 11.4 A, respectively.

21.6 Modeling Losses and Efficiency in CCM High-Quality Rectifiers

As in the case of dc–dc converters, we would like to model the converter loss elements so that we
can correctly specify the power stage components. The equivalent circuit approach used in the
dc–dc case can be generalized to include ac-dc low-harmonic rectifiers, although the resulting
equations are more complicated because of the low-frequency ac modulation of the waveforms.

A dc–dc boost converter and its steady-state equivalent circuit are illustrated in Fig. 21.36.
When the converter operates in equilibrium, the model of Fig. 21.36b can be solved to determine

(a)

+ Q1

L

C R

+

v(t)

D1

vg(t)

ig(t) RL i(t)

(b)

+ R

+

v(t)vg(t)

ig(t)
RL i(t)

DRon

+

D : 1
VF

Fig. 21.36 Dc–dc boost converter (a) and a steady-state equivalent circuit (b), which models the inductor
resistance RL, MOSFET on-resistance Ron, and diode forward voltage drop VF
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(a)

Rvac(t)

iac(t) +

vg(t)

ig(t)
+

v(t)

id (t)

Q1

L

C

D1

Controller

i(t)

RL

(b)

+ R

+

v(t) = Vvg(t)

ig(t)
RL i(t) = I

d(t)Ron

+

d (t) : 1
VF id (t)

C
(Large)

Fig. 21.37 Ac–dc boost rectifier (a) and a low-frequency equivalent circuit (b), that models converter
losses and efficiency

the converter losses and efficiency. In the ac-dc case, the input voltage vg(t) is a rectified sinusoid,
and the controller varies the duty cycle d(t) to cause ig(t) to follow vg(t) according to

ig(t) =
vg(t)

Re
(21.127)

The emulated resistance Re is chosen by the controller such that the desired dc output voltage
is obtained. Ac variations in d(t), vg(t), and several other system waveforms are not small, and
hence the small-signal approximation employed in Chaps. 7 to 18 is not justified. We can con-
tinue to model the low-frequency components of the converter via averaging, but the resulting
equivalent circuits are, in general, time-varying and nonlinear.

For the purposes of determining the rectifier efficiency, it is assumed that (1) the inductor is
sufficiently small, such that it has negligible influence on the ac-line frequency components of
the system waveforms and (2) the capacitor is large, so that the output voltage v(t) is essentially
equal to its equilibrium dc value, with negligible low- or high-frequency ac variations. So in the
ac-dc case, the model becomes as shown in Fig. 21.37. Low-frequency components (	 fs) of
the controller waveforms are sketched in Fig. 21.38.

To find the rectifier waveforms, losses, and efficiency, we must solve the circuit of Fig. 21.37b,
under the conditions that the controller varies the duty cycle d(t) such that Eq. (21.127) is sat-
isfied. This leads to time-varying circuit elements d(t)Ron and the d′(t) : 1 transformer. The
solution that follows involves the following steps: (1) solve for the d(t) waveform; (2) average
id(t) to find its dc component, equal to the load current I; and (3) find other quantities of interest
such as the rectifier efficiency.
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Fig. 21.38 Typical low-frequency components of the boost rectifier waveforms

The simplified boost converter circuit model of Fig. 21.39, in which only the MOSFET
conduction loss is accounted for, is solved here. However, the results can be generalized directly
to the circuit of Fig. 21.37b; doing so is left as a homework problem. A similar procedure can
also be followed to derive expressions for the losses and efficiencies of other rectifier topologies.



21.6 Modeling Losses and Efficiency in CCM High-Quality Rectifiers 913

21.6.1 Expression for Controller Duty Cycle d(t)

The controller varies the duty cycle d(t) such that Eq. (21.127) is satisfied. By solving the input-
side loop of Fig. 21.39, we obtain

ig(t)d(t)Ron = vg(t) − d′(t)v (21.128)

Substitute Eq. (21.127) into (21.128) to eliminate ig(t):

vg(t)

Re
d(t)Ron = vg(t) − d′(t)v (21.129)

with vg(t) = VM | sinωt| (21.130)

We can now solve for the duty cycle d(t). The result is

d(t) =
v − vg(t)

v − vg(t)
Ron

Re

(21.131)

This expression neglects the converter dynamics, an assumption that is justified when these
dynamics are sufficiently faster than the ac line voltage variation. The expression also neglects
operation in the discontinuous conduction mode near the zero crossing of the ac line voltage
waveform. This is justified when the rectifier operates in the continuous conduction mode for
most of the ac line cycle, because the power loss near the zero crossing is negligible.

21.6.2 Expression for the DC Load Current

By charge balance on output capacitor C, the dc load current I is equal to the dc component of
the diode current id:

I = 〈id〉Tac (21.132)

Solution of Fig. 21.39 for id(t) yields

id(t) = d′(t)ig(t) = d′(t)
vg(t)

Re
(21.133)

From Eq. (21.131), d′(t) = 1 − d(t) is given by

+ R

+

v(t) = Vvg(t)

ig(t) i(t) = I

d(t)Ron

d (t) : 1
id (t)

C
(Large)

Fig. 21.39 Simplified boost power stage low-frequency equivalent circuit, in which only the MOSFET
on-resistance is modeled
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d′(t) =

vg(t)

(
1 − Ron

Re

)

v − vg(t)
Ron

Re

(21.134)

so

id(t) =
v2

g(t)

Re

(
1 − Ron

Re

)

v − vg(t)
Ron

Re

(21.135)

Now substitute vg(t) = VM sinωt, and integrate to find 〈id(t)〉Tac :

I = 〈id〉Tac =
2

Tac

∫ Tac/2

0

⎛⎜⎜⎜⎜⎝V2
M

Re

⎞⎟⎟⎟⎟⎠

(
1 − Ron

Re

)
sin2(ωt)

(
v − VMRon

Re
sin(ωt)

)dt (21.136)

Again, Tac = 2π/ω is the ac line period. Equation (21.136) can be rewritten as

I =
2

Tac

V2
M

VRe

(
1 − Ron

Re

) ∫ Tac/2

0

sin2(ωt)
1 − a sin(ωt)

dt (21.137)

where a =
(VM

V

) (Ron

Re

)
(21.138)

By waveform symmetry, we need only integrate from 0 to Tac/4. Also, make the substitution
θ = ωt:

I =
V2

M

VRe

(
1 − Ron

Re

)
2
π

∫ π/2

0

sin2(θ)
1 − a sin(θ)

dθ (21.139)

Evaluation of this integral is tedious. It arises in not only the boost rectifier, but in a number
of other high-quality rectifier topologies as well. The derivation is not given here, but involves
the substitution z = tan(θ/2), performing a partial fraction expansion of the resulting rational
function of z, and integration of the results. The solution is

4
π

∫ π/2

0

sin2(θ)
1 − a sin(θ)

dθ = F(a) =
2

a2π

(
−2a − π + 4 sin−1(a) + 2 cos−1(a)

√
1 − a2

)
(21.140)

This equation is somewhat complicated, but it is in closed form, and can easily be evaluated by
computer spreadsheet. The quantity a, which is a measure of the loss resistance Ron relative to
the emulated resistance Re, is typically much smaller than 1. F(a) is plotted in Fig. 21.40. The
function F(a) can be well-approximated as follows:

F(a) ≈ 1 + 0.862a + 0.78a2 (21.141)

For |a| ≤ 0.15, the F(a) predicted by this approximate expression is within 0.1% of the exact
value. If the a2 term is omitted, then the accuracy drops to ± 2% over the same range of a.
The rectifier efficiency η calculated in the next section depends directly on F(a), and hence the
accuracy of F(a) coincides with the accuracy of η.
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Fig. 21.40 Plot of the integral F(a) vs. a

21.6.3 Solution for Converter Efficiency η

Now that we have found the dc load current, we can calculate the converter efficiency η. The
average input power is

Pin = 〈pin(t)〉Tac =
V2

M

2Re
(21.142)

The average load power is

pout = VI = (V)

⎛⎜⎜⎜⎜⎝ V2
M

VRe

(
1 − Ron

Re

)
F(a)

2

⎞⎟⎟⎟⎟⎠ (21.143)

where a =
(VM

V

) (Ron

Re

)
(21.144)

Here, we have substituted Eq. (21.139) for I. The efficiency is therefore

η =
Pout

Pin
=

(
1 − Ron

Re

)
F(a) (21.145)

by substitution of Eqs. (21.142) and (21.143). If desired, the parabolic approximation for F(a),
Eq. (21.141), can be employed. This leads to

η ≈
(
1 − Ron

Re

) ⎛⎜⎜⎜⎜⎜⎝1 + 0.862
VM

V
Ron

Re
+ 0.78

(
VM

V
Ron

Re

)2⎞⎟⎟⎟⎟⎟⎠ (21.146)

Equations (21.145) and (21.146) show how the efficiency varies with MOSFET on-resistance
Ron and with ac peak voltage VM . Equation (21.145) is plotted in Fig. 21.41. It can be seen that
high efficiency is obtained when the peak ac line voltage VM is close to the dc output voltage V .
Efficiencies in the range 90% to 95% can then be obtained, even with MOSFET on-resistances
as high as 0.2Re. Of course, Fig. 21.41 is optimistic because it neglects sources of loss other
than the MOSFET conduction loss.
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Fig. 21.41 Boost rectifier efficiency, Eq. (21.145), accounting for MOSFET on-resistance

21.6.4 Design Example

Let us utilize Fig. 21.41 to design for a given efficiency. Consider the following specifications:

Output voltage 390 V
Output power 500 W
rms input voltage 120 V
Efficiency 95%

Assume that losses other than the MOSFET conduction loss are negligible. The average input
power is

Pin =
Pout

η
=

500W
0.95

= 526 W (21.147)

The emulated resistance is therefore

Re =
V2

g,rms

Pin
=

(120V)2

526W
= 27.4Ω (21.148)

Also,
VM

V
=

120
√

2V
390V

= 0.435 (21.149)

From Fig. 21.41, or by evaluation of the exact equation (21.145), 95% efficiency with VM/V =
0.435 occurs with Ron/Re ≈ 0.077. So we require a MOSFET having an on-resistance of

Ron ≤ (0.077)Re = (0.077)(27.4Ω) = 2.11Ω (21.150)

Of course, other converter losses have not been accounted for, which will reduce the efficiency.
It is instructive to compare this result with that obtained using the expressions for rms cur-

rent from Sect. 21.5. The rms transistor current of the ideal CCM boost converter is given by
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Eq. (21.122). The rms input current will be equal to Pin/Vg,rms = (526W)/(120V) = 4.38 A.
Hence, Eq. (21.122) predicts an rms transistor current of

IQrms = Iac rms

√
1 − 8

3π
VM

V

= (4.38 A)

√
1 − 8

3π
(120 V)

√
2

(390 V)
(21.151)

= 3.48 A

Hence, the MOSFET on-resistance should be chosen according to

Ron ≤
Pin − Pout

I2
Qrms

=
(526 W) − (500 W)

(4.38 A)2
= 2.17Ω (21.152)

This calculation is approximate because Eq. (21.122) was derived using the waveforms of the
ideal (lossless) converter. Nonetheless, it gives an answer that is very close to the more exact
result of Eq. (21.150). We would expect this approximate approach to exhibit good accuracy in
this example, because of the high 95% efficiency.

21.7 Ideal Three-Phase Rectifiers

The single-phase ideal rectifier concepts of the previous sections can be generalized to cover
ideal three-phase rectifiers. Figure 21.42a illustrates the properties of an ideal three-phase rec-
tifier, which presents a balanced resistive load to the utility system. A three-phase converter
system is controlled such that resistor emulation is obtained in each input phase. The rectifier
three-phase input port can then be modeled by per-phase effective resistances Re, as illustrated in
Fig. 21.42a. The instantaneous powers apparently consumed by these resistors are transferred
to the rectifier dc output port. The rectifier output port can therefore be modeled by power
sources equal to the instantaneous powers flowing into the effective resistances Re. It is irrele-
vant whether the three power sources are connected in series or in parallel; in either event, they
can be combined into a single source equal to the total three-phase instantaneous input power
as illustrated in Fig. 21.42b.

If the three-phase ac input voltages are

van(t) = VM sin(ωt)

vbn(t) = VM sin(ωt − 120◦) (21.153)

vcn(t) = VM sin(ωt − 240◦)

then the instantaneous powers flowing into the phase a, b, and c effective resistances Re are

pa(t) =
v2

an(t)
Re
=

V2
M

2Re
(1 − cos(2ωt))

pb(t) =
v2

bn(t)

Re
=

V2
M

2Re
(1 − cos(2ωt − 240◦)) (21.154)

pc(t) =
v2

cn(t)
Re
=

V2
M

2Re
(1 − cos (2ωt − 120◦))
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Fig. 21.42 Development of the ideal three-phase rectifier model: (a) three ideal single-phase rectifiers,
(b) combination of the three power sources into an equivalent single power source

Each instantaneous phase power contains a dc term V2
M/(2Re), and a second-harmonic term.

The total instantaneous three-phase power is

ptot(t) = pa(t) + pb(t) + pc(t) =
3
2

V2
M

Re
(21.155)

This is the instantaneous power which flows out of the rectifier dc output port. Note that the
second harmonic terms add to zero, such that the rectifier instantaneous output power is constant.
This is a consequence of the fact that the instantaneous power flow in any balanced three-phase
ac system is constant. So, unlike the single-phase case, the ideal three-phase rectifier can supply
constant instantaneous power to a dc load, without the need for internal low-frequency energy
storage.

A variety of 3øac-dc PWM rectifiers are known; a few of the many references on this sub-
ject are listed in the references [8, 22, 280–294]. The most well-known topology is the three-
phase ac-dc boost rectifier, illustrated in Fig. 21.43. This converter requires six SPST current-
bidirectional two-quadrant switches. The inductors and capacitor filter the high-frequency
switching harmonics, and have little influence on the low-frequency ac components of the wave-
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forms. The switches of each phase are controlled to obtain input resistor emulation, either with
a multiplying controller scheme similar to Fig. 21.5, or with some other approach. To obtain
undistorted line current waveforms, the dc output voltage V must be greater than or equal to
the peak line-to-line ac input voltage VL,pk. In a typical realization, V is somewhat greater than
VL,pk. This converter resembles the voltage-source inverter, discussed briefly in Chap. 4, except
that the converter is operated as a rectifier, and the converter input currents are controlled via
high-frequency pulse-width modulation.

The three-phase boost rectifier of Fig. 21.43 has several attributes that make it the leading
candidate for most 3øac-dc rectifier applications. The ac input currents are nonpulsating, and
hence very little additional input EMI filtering is required. As in the case of the single-phase
boost rectifier, the rms transistor currents and also the conduction losses of the three-phase boost
rectifier are low relative to other 3øac-dc topologies such as the current source inverter. The
converter is capable of bidirectional power flow. A disadvantage is the requirement for six active
devices: when compared with a dc–dc converter of similar ratings, the active semiconductor
utilization (discussed in Chap. 6) is low. Also, since the rectifier has a boost characteristic, it
is not suitable for direct replacement of traditional buck-type phase-controlled rectifiers. The
circuit of Fig. 21.43 coincides with the voltage-source inverter of Fig. 4.14; indeed, the current-
bidirectional switches allow bidirectional current flow and also power flow in either direction.

The literature contains a wide variety of schemes for controlling the switches of a six-switch
three-phase bridge network, which are applicable for control of the switches of Fig. 21.43. The
basic operation of the converter can be most easily understood by assuming that the switches are
controlled via simple sinusoidal pulse-width modulation. Transistor Q1 is driven with duty cycle
d1(t), while transistor Q4 is driven by the complement of d1(t), or d′1(t) = 1 − d1(t). Transistors
Q2 and Q5 are driven with duty cycles d2(t) and d′2(t), respectively, and transistors Q3 and Q6 are
driven with duty cycles d3(t) and d′3(t), respectively. The switch voltage waveforms of Fig. 21.44
are obtained. The average switch voltages are

〈v10(t)〉Ts = d1(t)〈v(t)〉Ts

〈v20(t)〉Ts = d2(t)〈v(t)〉Ts (21.156)

〈v30(t)〉Ts = d3(t)〈v(t)〉Ts
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Fig. 21.43 Boost-type three-phase ac–dc PWM rectifier
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Fig. 21.44 Switch waveforms, 3ϕac–dc boost rectifier

The averaged line-to-line switch voltages are therefore

〈v12(t)〉Ts = 〈v10(t)〉Ts − 〈v20(t)〉TS = (d1(t) − d2(t))〈v(t)〉Ts

〈v23(t)〉Ts = 〈v20(t)〉TS − 〈v30(t)〉Ts = (d2(t) − d3(t))〈v(t)〉Ts (21.157)

〈v31(t)〉Ts = 〈v30(t)〉Ts − 〈v10(t)〉Ts = (d3(t) − d1(t))〈v(t)〉Ts

In a similar manner, the average switch currents can be shown to be

〈i1(t)〉TS = d1(t)〈ia(t)〉Ts

〈i2(t)〉TS = d2(t)〈ib(t)〉Ts (21.158)

〈i3(t)〉Ts = d3(t)〈ic(t)〉Ts

Equations (21.157) and (21.158) lead to the circuit-averaged model of Fig. 21.45.
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With sinusoidal PWM, the duty cycles are varied sinusoidally in synchronism with the ac
line, as follows:

d1(t) = D0 +
1
2 Dm sin(ωt −ϕ)

d2(t) = D0 +
1
2 Dm sin(ωt −ϕ − 120◦) (21.159)

d3(t) = D0 +
1
2 Dm sin(ωt −ϕ − 240◦)

where ω is the ac line frequency. Since each instantaneous duty cycle must lie in the interval
[0,1], the dc bias D0 is required. The factor Dm is called the modulation index; for D0 = 0.5, Dm

must be less than or equal to one. Other choices of D0 further restrict Dm. In general, the
modulation index can be defined as equal to the peak-to-peak amplitude of the fundamental
component of the duty cycle variation.

If the switching frequency is sufficiently large, then filter inductors L can be small in value,
such that they have negligible effect on the low-frequency ac waveforms. The averaged switch
voltage 〈v12(t)〉Ts then becomes approximately equal to the ac line-line voltage vab(t):

〈v12(t)〉Ts = (d1(t) − d2(t))〈v(t)〉TS ≈ vab(t) (21.160)

Substitution of Eqs. (21.153) and (21.159) leads to

1
2 Dm

[
sin(ωt −ϕ) − sin(ωt −ϕ − 120◦)

] 〈v(t)〉Ts = VM
[
sin(ωt) − sin(ωt − 120◦)

]
(21.161)

For small L, the angle ϕ must tend to zero, and hence the sinusoidal terms in Eq. (21.161) cancel
out. In steady state, the dc output voltage is 〈v(t)〉TS = V Eq. (21.161) then becomes

1
2 DmV = VM (21.162)

Solution for the dc output voltage V leads to

V =
2VM

Dm
(21.163)

Equation (21.163) can be written in terms of the peak line-to-line voltage VL,pk, as

V =
2
√

3

VL,pk

Dm
= 1.15

VL,pk

Dm
(21.164)

With Dm ≤ 1, the dc output voltage V must be greater than or equal to 1.15 times the peak
line-to-line ac input voltage. Thus, the rectifier has a boost characteristic.
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Fig. 21.45 Averaged model of the open-loop 3ϕac–dc boost rectifier
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Fig. 21.46 A modulation strategy that leads to a dc output voltage equal to the peak input line-line
voltage

The sinusoidal PWM approach of Eq. (21.159) is not the only way to vary the duty cycles
to obtain sinusoidal ac voltages and currents. For example, triplen harmonics can be added to
the duty-cycle expressions of Eq. (21.159). These triplen harmonics cancel out in Eq. (21.157),
such that the average inverter input voltages 〈v12(t)〉Ts , 〈v23(t)〉Ts , and 〈v31(t)〉Ts contain only
fundamental. Figure 21.46 illustrates duty cycle variations that lead to a dc output voltage V
equal to VL,pk. The effective modulation index in this case is 1.15. The ac-side voltages and
currents are again undistorted. Further increases in the modulation index can be attained only
by introduction of distortion in the ac-side voltages and currents. Of course, in practice the duty-
cycle modulations are usually generated by the feedback loops that control the input current
waveforms to attain resistor emulation.

Three-phase ac-to-dc rectifiers having buck, buck–boost, or other characteristics are possi-
ble, but find much less use than the boost topology. A 3øac-dc rectifier system can also be con-
structed simply using three separate single-phase rectifiers [273]; however, each single-phase
rectifier must then contain transformer isolation, leading to substantially increased switch stress
and loss. Other unconventional approaches to three-phase low-harmonic rectification have also
been recently explored, such as the Vienna rectifier [292, 294], single-switch approaches [285–
291], and other circuits [281–284, 293].

Yet another approach to solving the problem of three-phase rectifier harmonics is the har-
monic correction scheme illustrated in Fig. 21.47. An active six-switch three-phase bridge re-
moves the harmonics generated by a nonlinear three-phase load such as an uncontrolled rectifier.
The harmonic corrector is controlled such that its ac line currents contain harmonics that are
equal in magnitude but opposite in phase to the harmonics generated by the nonlinear load. No
average power flows into the harmonic corrector. The total kVA rating of the harmonic corrector
semiconductor devices depends on the magnitudes of the harmonics produced by the nonlinear
load. If the THD generated by the load is not too large, then the harmonic corrector scheme
requires less total active silicon than the CCM boost-type rectifier of Fig. 21.43. But if the un-
controlled rectifier contains small ac line inductances, such that it operates in the discontinuous
conduction mode with large THD, then it is probably better to simply replace the uncontrolled
rectifier with the CCM boost-type rectifier of Fig. 21.43.
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Fig. 21.47 A harmonic corrector, based on the 3ϕac–dc boost converter of Fig. 21.43

21.8 Summary of Key Points

1. The ideal rectifier presents an effective resistive load, the emulated resistance Re, to the ac
power system. The power apparently “consumed” by Re is transferred to the dc output port.
In a three-phase ideal rectifier, input resistor emulation is obtained in each phase. In both the
single-phase and three-phase cases, the output port follows a power source characteristic,
dependent on the instantaneous ac input power. Ideal rectifiers can perform the function of
low-harmonic rectification, without need for low-frequency reactive elements.

2. The dc–dc boost converter, as well as other converters capable of increasing the voltage
according to Eq. (21.12), can be adapted to the ideal rectifier application. A control system
causes the input current to be proportional to the input voltage. The converter may operate
in CCM, DCM, or in both modes. The mode boundary can be expressed as a function of
Re, 2L/Ts, and the instantaneous voltage ratio vg(t)/V . A well-designed average current con-
troller leads to resistor emulation regardless of the operating mode; however, other schemes
may lead to distorted current waveforms when the mode boundary is crossed.

3. In a single-phase system, the instantaneous ac input power is pulsating, while the dc load
power is constant. Whenever the instantaneous input and output powers are not equal, the
ideal rectifier system must contain energy storage. A large capacitor is commonly em-
ployed; the voltage of this capacitor must be allowed to vary independently, as necessary to
store and release energy. A slow feedback loop regulates the dc component of the capacitor
voltage, to ensure that the average ac input power and dc load power are balanced.
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4. RMS values of rectifiers waveforms can be computed by double integration. In the case of
the boost converter, the rms transistor current can be as low as 39% of the rms ac input
current, when the dc output voltage V is close in value to the peak ac input voltage VM .
Other converter topologies such as the buck–boost, SEPIC, and Ćuk converters exhibit
significantly higher rms transistor currents but are capable of limiting the converter inrush
current.

5. In the three-phase case, a boost-type rectifier based on the PWM voltage-source inverter
also exhibits low rms transistor currents. This approach requires six active switching ele-
ments, and its dc output voltage must be greater than the peak input line-to-line voltage.
Average current control can be used to obtain input resistor emulation. An equivalent cir-
cuit can be derived by averaging the switch waveforms. The converter operation can be
understood by assuming that the switch duty cycles vary sinusoidally; expressions for the
average converter waveforms can then be derived.

6. Converter losses and efficiency can be modeled using the steady-state equivalent circuit
models of Chap. 3, with a time-varying duty cycle. The output current is averaged over
one ac line period, to determine its dc component. The converter losses and efficiency can
then be computed. This approach is approximate, in that (i) it assumes that the converter
dynamics are much faster than the ac line frequency and (ii) it neglects operation in the
discontinuous conduction mode.

7. Average current control involves direct regulation of the low-frequency components of the
rectifier input current to follow the input voltage. Feedforward can also be added, to cancel
the influence of ac line voltage variations on the dc output voltage.

8. Current-programmed control can also be adapted to attain input resistor emulation in rec-
tifiers. The programmed current reference signal ic(t) is made proportional to the ac input
voltage. The difference between ic(t) and the average inductor current leads to distortion,
owing to the inductor current ripple and the need for a stabilizing artificial ramp. Several
approaches are known for reducing the resulting harmonic distortion of the line current
waveform.

9. Hysteretic control, particularly with 100% current ripple, has a simple controller implemen-
tation. The disadvantages are variable switching frequency, and increased peak currents.

10. Nonlinear carrier control also leads to a simple controller implementation, and has the ad-
vantage of CCM operation with small peak transistor current.

11. The outer low-bandwidth control system, which regulates the dc output voltage to balance
the rectifier and load powers, can be modeled by averaging the rectifier waveforms over
one-half of the ac line period T2L. This causes the dc-side system equations to become
time-invariant. A small-signal model is then obtained by perturbation and linearization.

12. The inner high-bandwidth control system, which regulates the ac input current waveform
to attain resistor emulation, is in general highly nonlinear. However, in the case of the boost
rectifier, a valid small-signal model can be derived. This approach is unsuccessful in the
case of other converters; one must then resort to other approaches such as the quasi-static
approximation or simulation.
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Problems

21.1 The boost converter of Fig. 21.5 is replaced by a buck–boost converter. Inductor energy
storage has negligible influence on the low-frequency components of the converter wave-
forms. The average load power is Pload. The dc output voltage is V and the sinusoidal ac
input voltage has peak amplitude VM .

(a) Determine expressions for the duty cycle variations d(t) and the inductor current vari-
ation i(t), assuming that the converter operates in the continuous conduction mode.

(b) Derive the conditions for operation in the continuous conduction mode. Manipu-
late your result to show that the converter operates in CCM when Re is less than
Re,crit(L, Ts, vg(t), V), and determine Re,crit.

(c) For what values of Re does the converter always operate in CCM? in DCM?
(d) The ac input voltage has rms amplitude in the range 108 V to 132 V. The maximum

load power is 100 W, and the minimum load power is 10 W. The dc output voltage
is 120 V. The switching frequency is 75 kHz. What value of L guarantees that the
converter always operates in CCM? in DCM?

21.2 Derive expressions for the input characteristics of the buck–boost converter, similar to
Eqs. (21.25) to (21.33). Sketch the converter input characteristics, and label the CCM-
DCM boundary.

21.3 Derive expressions for the rms transistor and diode currents of rectifiers based on the
single-phase CCM Ćuk topology. Express your results in forms similar to those of Ta-
ble 21.3.

21.4 To obtain an isolated dc output, the boost converter in Fig. 21.5 is replaced by the full-
bridge transformer-isolated CCM boost converter of Fig. 6.36. Derive an expression for
the rms transistor current. Express your result as a function of Iac rms, n, V , and VM .

21.5 Comparison of CCM boost and isolated SEPIC topologies as universal-input single-
phase rectifiers. You are given that the dc output voltage is V = 400 V, the load power is
P = 500 W, and the rms input voltage varies between 90 and 270 V, such that the peak
ac input voltage VM varies between VM min = 127V and VM max = 382V. Define the tran-
sistor stress S as the product of the worst-case peak transistor voltage and the worst-case
rms transistor current. It is desired to minimize S .

(a) Determine S for the boost converter in this application.
(b) Briefly discuss your result of part (a): if universal input operation was not required,

and hence VM = 382 V always, what S would result?
In the isolated SEPIC, the transformer turns ratio n : 1 can be chosen to optimize the
design.

(c) Express S for the SEPIC as a function of n, V, P, VM min, and VM max.
(d) Choose n for the SEPIC such that S is minimized in this application. Compare with

the results of parts (a) and (b).

21.6 In the boost-type dc-3øac rectifier of Fig. 21.43, the ac-side inductances L are not small:
they exhibit line frequency impedances that should not be ignored. The three-phase ac
voltages are given by Eq. (21.153), and the duty cycles are modulated as in Eq. (21.159).
The converter operates in the continuous conduction mode.

(a) Determine the magnitudes and phases of the line-to-neutral average voltages at the
ac inputs to the switch network. Express your result in terms of Dm, V , and ϕ.
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(b) Determine the real power P and reactive power Q drawn from the 3øac source. Ex-
press your results as functions of VM , V,Dm, ϕ, and ωL.

(c) How must ϕ be chosen to obtain unity power factor?
21.7 In the boost-type dc-3øac rectifier of Fig. 21.43, the switch duty ratios are modulated

as illustrated in Fig. 21.46. When the inductances L are sufficiently small, a dc output
voltage V equal to the peak line-to-line ac input voltage can be obtained, with undistorted
ac line currents. As illustrated in Fig. 21.46, d1(t) is equal to 1 for 0◦ ≤ ωt ≤ 60◦, where
ωt = 0◦ when 〈v12(t)〉Ts = V .
(a) Derive expressions for d2(t) and d3(t), over the interval 0◦ ≤ ωt ≤ 60◦.
(b) State how d1(t), d2(t), and d3(t) should vary over each 60◦ interval.

21.8 The buck-type 3øac-dc rectifier of Fig. 21.48 operates in the continuous conduction mode.
Transistors Q1 to Q6 operate with duty cycles d1(t) to d6(t), respectively.

L

C

+

v(t)

dc output

ia(t)

ib(t)

ic(t)

Q1

Q4

Q2 Q3

Q6

D1
D3D2

D4 D5 D6

a

b

c

3
input

Q5

Input filter

iL(t)

Load

Fig. 21.48 Buck-type 3ϕac–dc rectifier, Problem 21.8

(a) Determine the constraints on switch operation. Which transistors must not conduct
simultaneously? Which duty cycles must total unity?

(b) Average the 3ø bridge switch network, to determine expressions for the average ac-
side switch currents 〈ia(t)〉TS , 〈ib(t)〉TS , and 〈ic(t)〉TS .

(c) Show that the average dc-side switch voltage can be expressed as

〈vd(t)〉Ts = (d1(t) − d4(t))〈van(t)〉Ts + (d2(t) − d5(t))〈vbn(t)〉TS + (d3(t) − d6(t))〈vcn(t)〉Ts

(d) The duty cycles are varied as follows:

d1(t) = 1
3 +

1
2 Dm sin(ωt −ϕ)

d2(t) = 1
3 +

1
2 Dm sin(ωt −ϕ − 120◦)

d3(t) = 1
3 +

1
2 Dm sin(ωt −ϕ − 240◦)

d4(t) = 1
3 −

1
2 Dm sin(ωt −ϕ)

d5(t) = 1
3 −

1
2 Dm sin(ωt −ϕ − 120◦)

d6(t) = 1
3 −

1
2 Dm sin(ωt −ϕ − 240◦)
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with the ac input voltages given by Eq. (21.153). The input filter has negligible effect
of the low-frequency components of the converter waveforms. Determine the steady-
state dc output voltage V , as a function of VM , Dm, and ϕ.

(e) Determine the power factor. You may assume that the input filter completely removes
the switching harmonics from the currents ia(t), ib(t), and ic(t). However, the input
filter elements consume or supply negligible line frequency reactive power.

21.9 In the three-phase DCM flyback rectifier of Fig. 21.49, the input filter has negligible ef-
fect on the low-frequency components of the input ac waveforms. The transistor operates
with switching frequency fs and duty cycle d. Flyback transformers T1, T2, and T3 each
have magnetizing inductance L referred to the primary, turns ratio n : 1, and have negli-
gible leakage inductances.

C

+

v(t)

dc output

ia(t)

ib(t)

ic(t)

Q1

D1 D3D2

D4 D5 D6

T1

T2

T3

a

b

c

3
input

Input filter

D7 D9D8

D10 D11 D12

T1

T2

T3

Fig. 21.49 Isolated 3ϕac–dc rectifier based on the flyback converter operating in discontinuous conduc-
tion mode, Problem 21.9

(a) Determine expressions for the low-frequency components of the ac input and dc
output currents.

(b) Derive an averaged equivalent circuit model for the converter, and give expressions
for the element values.

(c) Derive the conditions for operation in the discontinuous conduction mode.

21.10 Power stage design of a universal-input boost rectifier. The objective of this problem is to
work out the power stage design of a low-harmonic rectifier based on the boost converter.
This converter is to be designed to operate anywhere in the world, and hence the input
voltage may vary over the range 90 to 270 Vrms, 50 to 60 Hz. The converter produces a
regulated 385 V dc output, at 1000 W. The switching frequency fs is 100 kHz. You may
assume that the controller operates perfectly, to produce an undistorted ac line current
waveform and a well-regulated dc output voltage.

(a) Derive an expression for how the duty cycle d(t) will vary over the ac line cycle.
You may neglect converter dynamics and losses. Sketch d(t) under conditions of
maximum and minimum ac line voltage.

(b) Specify the inductor:
(i) Specify the value of L such that, at the peak of the sinusoidal input voltage,

and under worst-case conditions, the inductor current ripple Δig is 20% of the
instantaneous low-frequency current ig(t).
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(ii) Specify the worst-case values of the peak and rms inductor current, assuming
100% efficiency.

(c) Determine the worst-case rms currents of the MOSFET and diode, assuming 100%
efficiency.

(d) Specify the value of C that leads to a worst-case low-frequency (	 fs) output voltage
peak-peak ripple of 5 V.

(e) Given the following loss elements
Inductor winding resistance 0.1Ω
MOSFET on-resistance 0.4Ω
Diode forward voltage drop 1.5 V
Switching loss: model as i2g(t)(0.25Ω)

For a constant 1000 W load, and assuming that the controller operates perfectly as
described above, find the rectifier efficiency
(i) at an ac input voltage of 90 V rms

(ii) at an ac input voltage of 270 V rms

21.11 The flyback converter shown in Fig. 21.50 operates in the continuous conduction mode.
The MOSFET has on-resistance Ron, and diode D1 has a constant forward voltage drop
VD. All other loss elements can be neglected. The turns ratio of the flyback transformer
is 1:1. The controller varies the duty cycle such that 〈ig(t)〉TS is equal to vg(t)/Re, where
Re is the emulated resistance. The input voltage is vin(t) = VM sin(ωt). The input filter
removes the switching harmonics from the input current ig(t), but has negligible effect on
the low-frequency components of the converter waveforms.

R

vin(t)

iin(t) +

vg(t)

ig(t)
+

v(t)

id (t)

Q1

L
C

D1

Controller

i(t)
Input filter

Fig. 21.50 Low-harmonic rectifier system based on the CCM flyback converter, Problem 21.11

(a) Derive an expression for the rectifier efficiency, in terms of VM , V, VD, Ron, and Re.
(b) Given the following values, find the value of MOSFET on-resistance which leads to

an efficiency of 96%.
rms input voltage 120 V
Dc output voltage 120 V
Diode D1 forward voltage drop 1.5 V
Load power 200 W
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21.12 Derive an expression for the emulated resistance Re(Vg,rms, Rs, kv, vcontrol) of the average-
current-controlled boost rectifier with ac line voltage feedforward, Fig. 21.18.

21.13 Derive the CPM boost rectifier static input characteristics, Eq. (21.60).
21.14 The boost rectifier system of Fig. 21.51 employs average current control with ac line

voltage feedforward.

+

+

v(t)vg(t)

ig(t)

Gate
driver

Pulse width
modulator

CompensatorGc(s)
+

+
vref1(t)

x

y

Multiplier

vcontrol (t) Gcv(s)
+

k v
xy
z2zPeak

detector VM

vref2(s)

va(s)

L

C

1
100

1
100

Ti (s)

Tv(s)

Pload

500 W

Fig. 21.51 Average current controlled boost rectifier with input voltage feedforward, Problem 21.14

The ac line frequency is 50 Hz. The rectifier drives a constant power load of 500 W. The
pulse-width modulator contains a ramp having a peak-to-peak amplitude of 3 V. There is
no compensator in the inner wide-bandwidth average current control feedback loop. The
average current sensing circuit has gain

va(s)
ig(s)

=
Rs(

1 +
s
ω0

)

Other converter parameter values are

fs = 100kHz L = 2.5mH

f0 =
ω0

2π
= 10kHz Rs = 1Ω

V = 385V Vg,rms = 230V

(a) Construct the magnitude and phase Bode diagrams of the loop gain Ti(s) of the
average-current-control loop. Label important features.
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(b) Determine numerical values of the crossover frequency and phase margin of Ti(s).
The outer low-bandwidth feedback loop has loop gain Tv(s). The compensator of
this loop has constant gain Gcv(s) = 330. The multiplier gain is kv = 2. The capacitor
value is C = 680μF. The reference voltage vref 2(t) is 3.85 V.

(c) Determine the peak magnitude of the output 100 Hz voltage ripple.
(d) Determine the quiescent control voltage Vcontrol.
(e) Construct the magnitude and phase Bode diagrams of the loop gain Tv(s) of the outer

feedback loop. Label important features.
(d) Determine numerical values of the crossover frequency and phase margin of Tv(s).

21.15 A critical conduction mode controller causes a boost rectifier to exhibit an ac input cur-
rent waveform similar to Fig. 21.23b. The ac input voltage is 120 Vrms at 60 Hz. The
rectifier supplies 225 Vdc to a 120 W load. The boost converter inductance is L = 600μH.
(a) Determine the emulated resistance Re.
(b) Write the numerical expression for the converter switching frequency fs, as a func-

tion of ton and the applied terminal voltages. Sketch fs vs. time.
(c) What is the maximum switching frequency? What is the minimum switching fre-

quency?
(d) Derive an analytical expression for the rms transistor current for this control method,

as a function of the magnitude of the sinusoidal line current. Compare the rms tran-
sistor current of this approach with a CCM boost rectifier having negligible current
switching ripple.

21.16 To obtain an isolated dc output, the boost converter in Fig. 21.5 is replaced by the full-
bridge transformer-isolated CCM boost converter of Fig. 6.36. The transformer has neg-
ligible magnetizing current. The inductor current and capacitor voltage ripples are small,
the output capacitance is very large, and the converter is loaded with resistor R.

(a) Derive an expression for the RMS transistor current.
(b) Derive an expression for the RMS output capacitor current.
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Resonant Converters
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Resonant Conversion

Part VI of this text deals with a class of converters whose operation differs significantly from
the PWM converters covered in Parts I to V. Resonant power converters [272, 295–329] contain
resonant L–C networks whose voltage and current waveforms vary sinusoidally during one or
more subintervals of each switching period. These sinusoidal variations are large in magnitude,
and hence the small-ripple approximation introduced in Chap. 2 does not apply.

Dc-to-high-frequency-ac inverters are required in a variety of applications, including wire-
less power transfer, electronic ballasts for gas-discharge lamps [296, 297], induction heating
and cooking, electrosurgical generators, and applications employing piezoelectric transformers
or actuators. These applications typically require generation of a sinusoid of tens or hundreds
of kHz, having moderate or low total harmonic distortion. A simple resonant inverter system is
illustrated in Fig. 22.1a. A switch network produces a square wave voltage vs(t). As illustrated
in Fig. 22.2, the spectrum of vs(t) contains fundamental plus odd harmonics. This voltage is
applied to the input terminals of a resonant tank network. The tank network resonant frequency
f0 is tuned to the fundamental component of vs(t), that is, to the switching frequency fs, and the
tank exhibits negligible response at the harmonics of fs. In consequence, the tank current is(t),
as well as the load voltage v(t) and load current i(t), have essentially sinusoidal waveforms of
frequency fs, with negligible harmonics. By changing the switching frequency fs (closer to or
further from the resonant frequency f0), the magnitudes of is(t), v(t), and i(t) can be controlled.
Other schemes for control of the output voltage, such as phase-shift control of the bridge switch
network, are also possible. A variety of resonant tank networks can be employed; Fig. 22.1b–e
illustrate the well-known series, parallel, LCC, and LLC tank networks. Inverters employing
the series resonant tank network are known as the series resonant, or series loaded, inverter. In
the parallel resonant or parallel loaded inverter, the load voltage is equal to the resonant tank
capacitor voltage. The LCC inverter employs tank capacitors both in series and in parallel with
the load, while the LLC inverter employs both series and shunt tank inductors.

Figure 22.3 illustrates a high-frequency inverter of an electronic ballast for a gas-discharge
lamp. A half-bridge configuration of the LCC inverter drives the lamp with an approximately
sinusoidal high-frequency ac waveform. The converter is controlled to provide a relatively high
voltage to start the lamp, and a lower voltage thereafter. When the ballast is powered by the ac
utility, a low-harmonic rectifier typically provides the input dc voltage for the inverter.
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Fig. 22.1 A basic class of resonant inverters that consist of (a) a switch network NS that drives a resonant
tank network NT near resonance. Several common tank networks: (b) series, (c) parallel, (d) LCC, (e) LLC

A resonant dc–dc converter can be constructed by rectifying and filtering the ac output
of a resonant inverter. Figure 22.4 illustrates a series resonant dc–dc converter, in which the
approximately sinusoidal resonant tank output current iR(t) is rectified by a diode bridge rectifier,
and filtered by a large capacitor to supply a dc load having current I and voltage V . Again, by
variation of the switching frequency fs (closer to or further from the resonant frequency f0),
the magnitude of the tank current iR(t), and hence also the dc load current I, can be controlled.
Resonant dc–dc converters based on series, parallel, LCC, and other resonant tank networks
are well understood. These converters are employed when specialized application requirements
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Fig. 22.2 The tank network responds
primarily to the fundamental component
of the applied waveforms
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Fig. 22.3 Half-bridge LLC inverter circuit, as an electronic ballast for a gas-discharge lamp

justify their use. For example, they are commonly employed in high-voltage dc power supplies
[298, 299], because the substantial leakage inductance and winding capacitance of high-voltage
transformers leads unavoidably to a resonant tank network. The same principle can be employed
to construct resonant link inverters or resonant link cycloconverters [300–302]; controllable
switch networks are then employed on both sides of the resonant tank network.

Figure 22.5 illustrates another approach to resonant power conversion, in which resonant
elements are inserted into the switch network of an otherwise-PWM converter. A resonant
switch network, or quasi-resonant converter, is then obtained. For example, in Fig. 22.5b, res-
onant elements Lr and Cr are combined with the switch network transistor and diode. The
resonant frequency of these elements is somewhat higher than the switching frequency. This
causes the switch network waveforms i1(t) and v2(t) to become quasi-sinusoidal pulses. The res-
onant switch network of Fig. 22.5b can replace the PWM switch network of Fig. 22.5a in nearly
any PWM converter. For example, insertion of the resonant switch network of Fig. 22.5b into
the converter circuit of Fig. 22.5c leads to a quasi-resonant buck converter. Numerous resonant
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Fig. 22.4 Derivation of a resonant dc–dc converter, by rectification and filtering of the output of a reso-
nant inverter

switch networks are known, which lead to a large number of resonant switch versions of buck,
boost, buck–boost, and other converters. Quasi-resonant converters are described in Chap. 23.

The chief advantage of resonant converters is their reduced switching loss, via mechanisms
known as zero-current switching (ZCS), and zero-voltage switching (ZVS). The turn-on and/or
turn-off transitions of the various converter semiconductor elements can occur at zero crossings
of the resonant converter quasi-sinusoidal waveforms. This eliminates some of the switching
loss mechanisms described in Chap. 4. Hence, switching loss is reduced, and resonant converters
can operate at switching frequencies that are higher than in comparable PWM converters. Zero-
voltage switching can also eliminate some of the sources of converter-generated electromagnetic
interference.

Resonant converters exhibit several disadvantages. Although the resonant element values
can be chosen such that good performance with high efficiency is obtained at a single operating
point, typically it is difficult to optimize the resonant elements such that good performance
is obtained over a wide range of load currents and input voltages. Significant currents may
circulate through the tank elements, even when the load is removed, leading to poor efficiency
at light load. Also, the quasi-sinusoidal waveforms of resonant converters exhibit greater peak
values than those exhibited by the rectangular waveforms of PWM converters, provided that
the PWM current spikes due to diode stored charge are ignored. For these reasons, resonant
converters exhibit increased conduction losses and tank inductor losses, which can offset their
reduced switching losses.

In this chapter, the properties of the series, parallel, and other resonant inverters and dc–
dc converters are investigated using the sinusoidal approximation [296, 303–305]. Harmonics
of the switching frequency are neglected, and the tank waveforms are assumed to be purely
sinusoidal. This allows simple equivalent circuits to be derived for the bridge inverter, tank,
rectifier, and output filter portions of the converter, whose operation can be understood and
solved using standard linear ac analysis. This intuitive approach is quite accurate for operation
in the continuous conduction mode with a high-Q response, but becomes less accurate when the
tank is operated with a low Q-factor or for operation of dc–dc resonant converters in or near the
discontinuous conduction mode.
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Fig. 22.5 Derivation of a quasi-resonant converter: (a) conventional PWM switch network, (b) a ZCS
quasi-resonant switch network, (c) a quasi-resonant buck converter is obtained by employing a quasi-
resonant switch network such as (b) in a buck converter

For dc–dc resonant converters, the important result of this approach is that the dc voltage
conversion ratio of a continuous conduction mode resonant converter is given approximately
by the ac transfer function of the tank circuit, evaluated at the switching frequency. The tank
is loaded by an effective output resistance, having a value nearly equal to the output voltage
divided by the output current. It is thus quite easy to determine how the tank components and
circuit connections affect the converter behavior. The influence of tank component losses, trans-
former nonidealities, etc., on the output voltage and converter efficiency can also be found. Sev-
eral resonant network theorems are presented, which allow the load dependence of conduction
loss and of the zero-voltage-or zero-current-switching properties to be explained in a simple
and intuitive manner.

It is found that the series resonant converter operates with a step-down voltage conversion
ratio. With a 1:1 transformer turns ratio, the dc output voltage is ideally equal to the dc input volt-
age when the transistor switching frequency is equal to the tank resonant frequency. The output
voltage is reduced as the switching frequency is increased or decreased away from resonance.
On the other hand, the parallel resonant converter is capable of both step-up and step-down of
voltage levels, depending on the switching frequency and the effective tank Q-factor. The exact
steady-state solutions of the ideal series and parallel resonant dc–dc converters are stated in
Sect. 22.5.

Zero-voltage switching and zero-current switching mechanisms of the series resonant con-
verter are described in Sect. 22.3. In Sect. 22.4, the dependence of resonant inverter properties
on load is examined. A simple frequency-domain approach explains why some resonant con-
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verters, over certain ranges of operating points, exhibit large circulating tank currents and low
efficiency. The boundaries of zero-voltage switching and zero-current switching are also deter-
mined.

It is also possible to modify the PWM converters of the previous chapters, so that zero-
current or zero-voltage switching is obtained. A number of diverse approaches are known that
lead to soft switching in buck, boost, forward, flyback, bridge, and other topologies. Chapter 23
summarizes some of the well-known schemes, including resonant switches, quasi-square wave
switches, the full-bridge zero-voltage transition converter, and zero-voltage switching in for-
ward and flyback converters containing active-clamp snubbers. A detailed description of soft-
switching mechanisms of diodes, MOSFETs, and IGBTs is also given.

22.1 Sinusoidal Analysis of Resonant Converters

Consider the class of resonant converters that contain a controlled switch network Ns that drives
a linear resonant tank network NT . In a resonant inverter, the tank network drives a resistive
load as in Fig. 22.1. The reactive component of the load impedance, if any, can be effectively
incorporated into the tank network. In the case of a resonant dc–dc converter, the resonant tank
network is connected to an uncontrolled rectifier network NR, filter network NF and load R, as
illustrated in Fig. 22.4. Many well-known converters can be represented in this form, including
the series, parallel, LCC, and LLC topologies.

In the most common modes of operation, the controlled switch network produces a square
wave voltage output vs(t) whose frequency fs is close to the tank network resonant frequency
f0. In response, the tank network rings with approximately sinusoidal waveforms of frequency
fs. In the case where the resonant tank responds primarily to the fundamental component fs of
the switch waveform vs(t), and has negligible response at the harmonic frequencies n fs, n = 3,
5, 7,. . ., then the tank waveforms are well approximated by their fundamental components. As
shown in Fig. 22.2, this is indeed the case when the tank network contains a high-Q resonance
at or near the switching frequency, and a low-pass characteristic at higher frequencies. Hence,
let us neglect harmonics, and compute the relationships between the fundamental components
of the tank terminal waveforms vs(t), is(t), iR(t), and vR(t).

22.1.1 Controlled Switch Network Model

is(t)

+vg vs(t)

+

Switch network

NS

1

2

1

2

Fig. 22.6 An ideal switch network

If the switch network of Fig. 22.6 is controlled to produce a
square wave of frequency fs = ωs/2π as in Fig. 22.7, then
its output voltage waveform vs(t) can be expressed in the
Fourier series

vs(t) =
4Vg

π

∑
n=1,3,5,...

1
n

sin(nωst) (22.1)

The fundamental component is

vs1(t) =
4Vg

π
sin(ωst) = Vs1 sin(ωst) (22.2)
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Fig. 22.7 Switch network voltage vs(t)
and its fundamental component vs1(t) t

vs(t)

Fundamental component
Vg

g

4 Vg

vs1(t)
π

Fig. 22.8 Switch network waveforms
is(t) and ig(t)

st
is(t)

ig(t)

s

Is1

which has a peak amplitude of (4/π) times the dc input voltage Vg, and is in phase with the
original square wave vs(t). Hence, the switch network output terminal is modeled as a sinusoidal
voltage generator, vs1(t).

It is also of interest to model the converter dc input port. This requires computation of the
dc component Ig of the switch input current ig(t). The switch input current ig(t) is equal to the
output current is(t) when the switches are in position 1, and its inverse −is(t) when the switches
are in position 2. Under the conditions described above, the tank rings sinusoidally and is(t) is
well approximated by a sinusoid of some peak amplitude Is1 and phase ϕs:

is(t) ≈ Is1 sin(ωst − ϕs) (22.3)

The input current waveform is shown in Fig. 22.8.
The dc component, or average value, of the input current can be found by averaging ig(t)

over one half-switching period:

〈ig(t)〉Ts =
2
Ts

∫ Ts/2

0
ig(τ)dτ

≈ 2
Ts

∫ Ts/2

0
Is1 sin(ωsτ − ϕs)dτ

=
2
π

Is1 cos(ϕs) (22.4)

Thus, the dc component of the converter input current depends directly on the peak amplitude
of the tank input current Is1 and on the cosine of its phase shift ϕs.
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+

+

vg

vs1(t) =
4Vg sin ( st)

2Is1 cos ( s)

is1(t) =
Is1 sin ( s s)

Fig. 22.9 An equivalent circuit for the switch network, which models the fundamental component of the
output voltage waveform and the dc component of the input current waveform

An equivalent circuit for the switch is given in Fig. 22.9. This circuit models the basic energy
conversion properties of the switch: the dc power supplied by the voltage source Vg is converted
into ac power at the switch output. Note that the dc power at the source is the product of Vg and
the dc component of ig(t), and the ac power at the switch is the average of vs(t)is(t). Furthermore,
if the harmonics of vs(t) are negligible, then the switch output voltage can be represented by its
fundamental component, a sinusoid vs1(t) of peak amplitude 4Vg/π. It can be verified that the
switch network dc input power and fundamental average output power, predicted by Fig. 22.9,
are equal.

22.1.2 Modeling the Rectifier and Capacitive Filter Networks

In the series resonant dc–dc converter, the output rectifier is driven by the nearly sinusoidal tank
output current iR(t). A large capacitor CF is placed at the dc output, so that the output voltage
v(t) contains negligible harmonics of the switching frequency fs, as shown in Fig. 22.10. Hence,
we can make the small-ripple approximation as usual: v(t) ≈ V, i(t) ≈ I. The diode rectifiers
switch when iR(t) passes through zero, as shown in Fig. 22.11. The rectifier input voltage vR(t) is
essentially a square wave, equal to +v(t) when iR(t) is positive and −v(t) when iR(t) is negative.
Note that vR(t) is in phase with iR(t).

If the tank output current iR(t) is a sinusoid with peak amplitude IR1 and phase shift ϕR:

iR(t) = IR1 sin(ωst − ϕR) (22.5)

Fig. 22.10 Uncontrolled rectifier with ca-
pacitive filter network, as in the series res-
onant converter

iR(t)

R

+

v(t)

i(t)

Rectifier network
NR NF

Low-pass
filter

network

dc
load

+

vR(t)

| iR(t) |
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(a) vR(t)V

iR(t)
st

R

(b)

iR1(t)

vR1(t)
fundamental

4 V

iR1(t) = vR1(t)
Re

Re = 8
2 R

st

R

Fig. 22.11 Rectifier network input terminal waveforms: (a) actual waveforms vR(t) and iR(t), (b) funda-
mental components vR1(t) and iR1(t)

then the rectifier input voltage may be expressed in the Fourier series

vR(t) =
4V
π

∞∑
n=1,3,5,···

1
n

sin(nωst − ϕR) (22.6)

where ϕR is the phase shift of iR(t), with respect to vs(t). This voltage waveform is impressed on
the output port of the resonant tank network. Again, if the tank network responds primarily to the
fundamental component ( fs) of vR(t), and has negligible response at the harmonic frequencies
n fs, n = 3, 5, 7 . . ., then the harmonics of vR(t) can be ignored. The voltage waveform vR(t) is
then well approximated by its fundamental component vR1(t):

vR1(t) =
4V
π

sin(ωst − ϕR) = VR1 sin(ωst − ϕR) (22.7)

The fundamental voltage component vR1(t) has a peak value of (4/π) times the dc output voltage
V , and is in phase with the current iR(t).

Re =
8
π2

R

The rectified tank output current, |iR(t)|, is filtered by capacitor CF . Since no dc current can pass
through CF , the dc component of |iR(t)| must be equal to the steady-state load current I. By
equating dc components we obtain

I =
2
Ts

∫ Ts/2

0
IR1| sin(ωst − ϕR)|dt

=
2
π

IR1 (22.8)

Therefore, the load current and the tank output current amplitudes are directly related in steady
state.

Since vR1(t), the fundamental component of vR(t) is in phase with iR(t), the rectifier presents
an effective resistive load Re to the tank circuit. The value of Re is equal to the ratio of vR1(t) to
iR(t). Division of Eq. (22.7) by Eq. (22.5), and elimination of IR1 using Eq. (22.8) yields
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Fig. 22.12 An equivalent circuit for the rectifier
and filter network, which models the fundamental
components of the rectifier ac input waveforms and
the dc components of the load waveforms. The rec-
tifier presents an effective resistive load Re to the
tank network

iR1(t)

RRe
2 IR1

Re = 8
2 R

+

vR1(t)

+

V

I

Re =
vR1(t)
iR(t)

=
8
π2

V
I

(22.9)

With a resistive load R equal to V/I, this equation reduces to

Re =
8
π2

R = 0.8106R (22.10)

Thus, the tank network is damped by an effective load resistance Re equal to 81% of the actual
load resistance R. An equivalent circuit that models the rectifier network input port fundamental
components and output port dc components is given in Fig. 22.12.

22.1.3 Resonant Tank Network

We have postulated that the effects of harmonics can be neglected, and we have consequently
shown that the bridge can be modeled as a fundamental voltage source vs1(t). In the case of a
dc–dc converter, the rectifier can be modeled using an effective resistor of value Re. We can now
solve the resonant tank network by standard linear analysis.

As shown in Fig. 22.13, the tank circuit is a linear network with the following voltage trans-
fer function:

vR1(s)
vs1(s)

= H(s) (22.11)

Hence, the ratio VR1/Vs1 of the peak magnitudes of vR1(t) and vs1(t) is given by

VR1

Vs1
= ‖H(s)‖s= jωs (22.12)

Fig. 22.13 The linear tank network, ex-
cited by an effective sinusoidal input
source and driving an effective resistive
load Resonant

network

is1(t) iR1(t)

Transfer function
H(s)

+ Re
Zi

+

vR1(t)vs1(t)
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In addition, iR(s) is given by

iR(s) =
vR1(s)

Re
=

H(s)
Re

vs1(s) (22.13)

So the peak magnitude of iR(t) is

IR1 =
‖H(s)||s= jωS

Re
Vs1 (22.14)

Thus, the magnitude of the tank transfer function is found, with an effective resistive load.

22.1.4 Solution of Converter Voltage Conversion Ratio M = V/Vg

An equivalent circuit of a complete dc–dc resonant converter is depicted in Fig. 22.14. The
voltage conversion ratio of the resonant converter can now be found:

M =
V
Vg
= (R)︸︷︷︸

(
2
π

)
︸︷︷︸

(
1
Re

)
︸︷︷︸

(
‖H(s)‖s= jωs

)
︸����������︷︷����������︸

(
4
π

)
︸︷︷︸(V

I

) ( I
IR1

) (
IR1

VR1

) (
VR1

Vs1

) (
Vs1

Vg

)
(22.15)

Simplification by use of Eq. (22.10) yields

V
Vg
= ‖H(s)‖s= jωs (22.16)

Equation (22.16) is the desired result. It states that the dc conversion ratio of the resonant con-
verter is approximately the same as the ac transfer function of the resonant tank circuit, evalu-
ated at the switching frequency fs. This intuitive result can be applied to converters with many
different types of tank circuits. However, it should be reemphasized that Eq. (22.16) is valid
only if the response of the tank circuit to the harmonics of vs(t) is negligible compared to the

vs1(t) =
4Vg sin ( st)

Resonant
network

Transfer function
H(s)

+ RRe
+ Zi

is1(t) iR1(t)
+

vR1(t) 2 IR1

Re = 8
2 R

+

V

I

Vg

2Is1 cos ( s)

Fig. 22.14 Steady-state equivalent circuit that models the dc and fundamental components of resonant
converter waveforms
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Series tank network

L C

vs1(t) =
4Vg sin ( st)

Transfer function H(s)

+ Re
Zi

is1(t) iR1(t)
+

vR1(t)

Re = 8
2 R

+Vg

2Is1 cos ( s)

R2 IR1

+

V

I

Fig. 22.15 Steady-state equivalent circuit of the series resonant converter

fundamental response, an assumption that is not always justified. In addition, we have assumed
that the switch network is controlled to produce a square wave and that the rectifier network
drives a capacitive-type filter network. Finally, the transfer function H(s) is evaluated using the
effective load resistance Re given by Eq. (22.9).

22.2 Examples

22.2.1 Series Resonant DC–DC Converter Example

The series resonant converter with switching-frequency control is shown in Fig. 22.4. Current-
bidirectional two-quadrant switches are necessary. For this circuit, the tank network consists of
a series L–C circuit, and Fig. 22.14 can be redrawn as in Fig. 22.15. The transfer function H(s)
is therefore:

H(s) =
Re

Zi(s)
=

Re

Re + sL +
1

sC

=

(
s

Qeω0

)

1 +

(
s

Qeω0

)
+

(
s
ω0

)2
(22.17)

where

ω0 =
1
√

LC
= 2π f0

R0 =

√
L
C

Qe =
R0

Re
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The magnitude of H( jωs), which coincides with the converter dc conversion ratio M = V/Vg, is

M = ‖H( jωs)‖ =
1√

1 + Q2
e

(
1
F
− F

)2
(22.18)

where
F = fs/ f0 (22.19)

The Bode diagrams of Zi(s) and H(s) are constructed in Fig. 22.16, using the graphical con-
struction method of Chap. 8. The series resonant impedance Zi(s) is dominated by the capacitor
C at low frequency, and by the inductor L at high frequency. At the resonant frequency f0, the
impedances of the inductor and capacitor are equal in magnitude and opposite in phase; hence,
they cancel. The series resonant impedance Zi(s) is equal to Re at f = f0.

1
C

Re

|| Zi ||

f0

L

R0
Qe = R0 /Re

1
|| H ||

f0

Qe = R0 /Re
Re /R0

R eC
R

e  / L

Fig. 22.16 Construction of the Bode diagrams of Zi(s) and H(s) for the series resonant converter

The transfer function ‖H( jω)‖ is constructed graphically, by division of Re by the ‖Zi‖
asymptotes of Fig. 22.16. At resonance, one obtains ‖H‖ = Re/Re = 1. At frequencies above or
below the resonant frequency, ‖Zi‖ > Re and hence ‖H‖ < 1. So the conversion ratio M is less
than or equal to 1. It can also be seen that a decrease in the load resistance R, which increases the
effective quality factor Qe, causes a more peaked response in the vicinity of resonance. Exact
characteristics of the series resonant converter are plotted in Fig. 22.49.



946 22 Resonant Conversion

Over what range of switching frequencies is Eq. (22.18) accurate? The response of the tank
to the fundamental component of vs(t) must be sufficiently greater than the response to the
harmonics of vs(t). This is certainly turn for operation above resonance because H(s) contains a
bandpass characteristic that decreases with a single-pole slope for fs > f0. For the same reason,
Eq. (22.18) is valid when the switching frequency is below but near resonance.

However, for switching frequencies fs much less than the resonant frequency f0, the sinu-
soidal approximation breaks down completely because the tank responds more strongly to the
harmonics of vs(t) than to its fundamental. For example, at fs = f0/3, the third harmonic of
vs(t) is equal to f0 and directly excites the tank resonance. Some other type of analysis must be
used to understand what happens at these lower frequencies. Also, in the low-Q case, the ap-
proximation is less accurate because the filter response is less peaked, and hence does not favor
the fundamental component as strongly. As shown in a later section, discontinuous conduction
modes may then occur whose waveforms are highly nonsinusoidal.

Fig. 22.17 Excitation of the tank
network by the third harmonic of the
switching frequency

Switch
output

voltage
spectrum

ffs 3fs 5fs

f

Resonant
tank

response

fs 3fs 5fs
Tank

current
spectrum

ffs 3fs 5fs

22.2.2 Subharmonic Modes of the Series Resonant Converter

If the nth harmonic of the switch output waveform vs(t) is close to the resonant tank frequency,
n fs ∼ f0, and if the tank effective quality factor Qe is sufficiently large, then as illustrated
in Fig. 22.17, the tank responds primarily to harmonic n. All other components of the tank
waveforms can then be neglected, and it is a good approximation to replace vs(t) with its nth

harmonic component:

vs(t) ≈ vsn(t) =
4Vg

nπ
sin(nωst) (22.20)

This expression differs from Eq. (22.2) because the amplitude is reduced by a factor of 1/n, and
the frequency is n fs rather than fs.
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Fig. 22.18 The subharmonic modes of
the series resonant converter. These modes
occur when the harmonics of the switching
frequency excite the tank resonance

fsf0
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1
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The arguments used to model the tank and rectifier/filter networks are unchanged from
Sect. 22.1. The rectifier presents an effective resistive load to the tank, of value Re = 8R/π2.
In consequence, the converter dc conversion ratio is given by

M =
V
Vg
=
‖H( jnωs)‖

n
(22.21)

This is a good approximation provided that n fs is close to f0, and that Qe is sufficiently large.
Typical characteristics are sketched in Fig. 22.18.

The series resonant converter is not generally designed to operate in a subharmonic mode,
since the fundamental modes yield greater output voltage and power, and hence higher effi-
ciency. Nonetheless, the system designer should be aware of their existence, because inadvertent
operation in these modes can lead to large signal instabilities.

22.2.3 Parallel Resonant DC–DC Converter Example

The parallel resonant dc–dc converter is diagrammed in Fig. 22.19. It differs from the series
resonant converter in two ways. First, the tank capacitor appears in parallel with the rectifier
network rather than in series: this causes the tank transfer function H(s) to have a different
form. Second, the rectifier drives an inductive-input low-pass filter. In consequence, the value
of the effective resistance Re differs from that of the rectifier with a capacitive filter. Nonethe-
less, sinusoidal approximations can be used to understand the operation of the parallel resonant
converter.

As in the series resonant converter, the switch network is controlled to produce a square
wave vs(t). If the tank network responds primarily to the fundamental component of vs(t), then
arguments identical to those of Sect. 22.1 can be used to model the output fundamental com-
ponents and input dc components of the switch waveforms. The resulting equivalent circuit is
identical to Fig. 22.9.

The uncontrolled rectifier with inductive filter network can be described using the dual of
the arguments of Sect. 22.1.2. In the parallel resonant converter, the output rectifiers are driven
by the nearly sinusoidal tank capacitor voltage vR(t), and the diode rectifiers switch when vR(t)
passes through zero as in Fig. 22.20. If the filter inductor current ripple is small, then in steady
state the filter inductor current is essentially equal to the dc load current I. The rectifier input
current iR(t) is therefore a square wave of amplitude I, and is in phase with the tank capacitor
voltage vR(t):
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iR(t) =
4I
π

∞∑
n=1,3,5,...

1
n

sin(nωst − ϕR) (22.22)

where ϕR is the phase shift of vR(t).

iR(t)

vR(t)

+
+ R

+
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Resonant tank network
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dc
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vg(t)
vs(t)

+

Switch network

L
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NS NT

i(t)

Rectifier network
NR NF

Low-pass filter
network

dc
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Fig. 22.19 Block diagram of the parallel resonant converter
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2
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st

R

Fig. 22.20 Rectifier network input terminal waveforms, for the parallel resonant converter: (a) actual
waveforms vR(t) and iR(t), (b) fundamental components vR1(t) and iR1(t)

The fundamental component of iR(t) is

iR1(t) =
4I
π

sin(ωst − ϕR) (22.23)

Hence, the rectifier again presents an effective resistive load to the tank circuit, equal to

Re =
vR1(t)
iR1(t)

=
πVR1

4I
(22.24)

The ac components of the rectified tank capacitor voltage |vR(t)| are removed by the output low-
pass filter. In steady state, the output voltage V is equal to and inductive filter network of the
parallel resonant the dc component of |vR(t)|:

V =
2
Ts

∫ Ts/2

0
VR1| sin(ωst − ϕR)|dt =

2
π

VR1 (22.25)
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So the load voltage V and the tank capacitor voltage amplitude are directly related in steady state.
Substitution of Eq. (22.25) and resistive load characteristics V = IR into Eq. (22.24) yields

Re =
π2

8
R = 1.2337R (22.26)

iR1(t)

RRe

Re =
2

8 R

+

vR1(t)

+

V

I

+2 VR1

Fig. 22.21 An equivalent circuit for the rectifier and
inductive filter network of the parallel resonant con-
verter, which models the fundamental components of
the rectifier ac input waveforms and the dc compo-
nents of the load waveforms

An equivalent circuit for the uncontrolled
rectifier with inductive filter network is given
in Fig. 22.21. This model is similar to the
one used for the series resonant converter,
Fig. 22.12, except that the roles of the recti-
fier input voltage vR(t) and current iR(t) are
interchanged, and the effective resistance Re

has a different value. The model for the com-
plete converter is given in Fig. 22.22.

Solution of Fig. 22.22 yields the con-
verter dc conversion ratio:

M =
V
Vg
=

8
π2
‖H(s)‖s= jωs (22.27)

where H(s) is the tank transfer function

H(s) =
Zo(s)

sL
(22.28)

and

Zo(s) = sL‖ 1
sC
‖Re (22.29)

Parallel tank network

L

C

vs1(t) =
4Vg sin ( st)

Transfer function H(s)

+ Re
Zi

is1(t) iR1(t)
+

vR1(t)+Vg

2Is1 cos ( s)
Re =

2

8 R

R

+

V

I

+2 VR1

Fig. 22.22 Equivalent circuit for the parallel resonant converter, which models the fundamental compo-
nents of the tank waveforms and the dc components of the converter input current and output voltage
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The Bode magnitude diagrams of H(s) and Zo(s) are constructed in Fig. 22.23, using the
graphical construction method of Chap. 8. The impedance Zo(s) is the parallel combination
of the impedances of the tank inductor L, capacitor C, and effective load Re. The magnitude
asymptote of the parallel combination of these components, at a given frequency, is equal to the
smallest of the individual asymptotes ωL, 1/ωC, and Re. Hence, at low frequency where the
inductor impedance dominates the parallel combination, ||Zo(s)|| � ωL, while at high frequency
the capacitor dominates and ||Zo(s)|| � 1/ωC. At resonance, the impedances of the inductor
and capacitor are equal in magnitude but opposite in phase, so that their effects cancel. The
impedance ||Zo(s)‖ is then equal to Re:

‖Zo(s) ‖s= jωs =
1

1
jω0L

+ jω0C +
1
Re

= Re (22.30)

with

ω0L =
1
ω0C

= R0

The dc conversion ratio is therefore

M =
8
π2

∥∥∥∥∥Zo(s)
sL

∥∥∥∥∥
s= jωs

=
8
π2

∥∥∥∥∥∥∥∥∥∥∥∥∥
1

1 +
s

Qeω0
+

(
s
ω0

)2

∥∥∥∥∥∥∥∥∥∥∥∥∥
s= jωs

(22.31)

=
8
π2

1√
(
1 − F2

)2
+

(
F
Qe

)2

where F = fs/ f0.
At resonance, the conversion ratio is

M =
8
π2

Re

R0
=

R
R0

(22.32)

The actual peak value of M occurs at a switching frequency slightly below the resonant fre-
quency, with peak M slightly greater than Eq. (22.32). Provided that the load resistance R is
greater than the tank characteristic impedance Re, the parallel resonant converter can produce
conversion ratios both greater than and less than one. In fact, the ideal parallel resonant con-
verter can produce conversion ratios approaching infinity, provided that the output current is
limited to values less than Vg/R0. Of course, losses limit the maximum output voltage that can
be produced by practical converters.



22.3 Soft Switching 951

(a)

1
C

Re

|| Zo ||

f0

L

R0

Qe = Re /R0

(b)

1
2LC

1

|| H ||

f0

Qe = Re /R0

Re /R0

Fig. 22.23 Construction of Bode diagrams of Zi(s) and H(s) for the parallel resonant converter

22.3 Soft Switching

As mentioned previously, the soft-switching phenomena known as zero-current switching (ZCS)
and zero-voltage switching (ZVS) can lead to reduced switching loss. When the turn-on and/or
turn-off transitions of a semiconductor switching device coincide with the zero crossings of
the applied waveforms, some of the switching loss mechanisms discussed in Sect. 4.6 are elim-
inated. In converters containing MOSFETs and diodes, zero-voltage switching mitigates the
switching loss otherwise caused by diode recovered charge and semiconductor output capaci-
tance.

Zero-current switching can mitigate the switching loss caused by current tailing in IGBTs
and by stray inductances. Zero-current switching can also be used for commutation of SCRs.
In the majority of applications, where diode recovered charge and semiconductor output capac-
itances are the dominant sources of PWM switching loss, zero-voltage switching is preferred.

22.3.1 Operation of the Full Bridge Below Resonance: Zero-Current Switching

When the series and parallel resonant inverters and dc–dc converters are operated below reso-
nance, the zero-current switching phenomenon can occur, in which the circuit causes the tran-
sistor current to go to zero before the transistor is turned off. Let us consider the operation of
the full-bridge switch network of the series resonant converter in detail.
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Fig. 22.24 A series resonant converter incorporating a full-bridge switch network
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Fig. 22.25 Switch network output waveforms for the series resonant converter, operated below resonance
in the k = 1 CCM. Zero-current switching aids the transistor turn-off process

A full-bridge circuit, realized using power MOSFETs and antiparallel diodes, is shown in
Fig. 22.24. The switch output voltage vs(t), and its fundamental component vs1(t), as well as
the approximately sinusoidal tank current waveform is(t), are illustrated in Fig. 22.25. At fre-
quencies less than the tank resonant frequency, the input impedance of the series resonant tank
network Zi(s) is dominated by the tank capacitor impedance (see Fig. 22.16a). Hence, the tank
presents an effective capacitive load to the bridge, and switch current is(t) leads the switch volt-
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Fig. 22.26 Transistor Q1 voltage and current waveforms, for operation of the series resonant converter
below resonance in the k = 1 CCM

age fundamental component vs1(t), as shown in Fig. 22.25. In consequence, the zero crossing of
the current waveform is(t) occurs before the zero crossing of the voltage vs(t).

For the half-cycle 0 < t < Ts/2, the switch voltage vs is equal to +Vg. For 0 < t < tβ, the
current is(t) is positive and transistors Q1 and Q4 conduct. Diodes D1 and D4 conduct when is(t)
is negative, over the interval tβ < t < Ts/2. The situation during Ts/2 < t < Ts is symmetrical.
Since is1(t) leads vs1(t), the transistors conduct before their respective antiparallel diodes. Note
that, at any given time during the D1 conduction interval tβ < t < Ts/2, transistor Q1 can be
turned off without incurring switching loss. The circuit naturally causes the transistor turn-off
transition to be lossless, and long turn-off switching times can be tolerated.

In general, zero-current switching can occur when the resonant tank presents an effective
capacitive load to the switches, so that the switch current zero crossings occur before the switch
voltage zero crossings. In the bridge configuration, zero-current switching is characterized by
the half-bridge conduction sequence Q1–D1–Q2–D2, such that the transistors are turned off
while their respective antiparallel diodes conduct. It is possible, if desired, to replace the transis-
tors with naturally commutated thyristors whenever the zero-current-switching property occurs
at the turn-off transition.

The transistor turn-on transition in Fig. 22.26 is similar to that of a PWM switch: it is hard-
switched and is not lossless. During the turn-on transition of Q1, diode D2 must turn off. Neither
the transistor current nor the transistor voltage is zero, Q1 passes through a period of high
instantaneous power dissipation, and switching loss occurs. As in the PWM case, the reverse
recovery current of diode D2 flows through Q1. This current spike can be the largest component
of switching loss. In addition, the energy stored in the drain-to-source capacitances of Q1 and Q2

and in the depletion layer capacitance of D1 is lost when Q1 turns on. These turn-on transition
switching loss mechanisms can be a major disadvantage of zero-current-switching schemes.
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Fig. 22.27 Switch network output waveforms for the series resonant converter, operated above resonance
in the continuous conduction mode. Zero-voltage switching aids the transistor turn-on process

Since zero-current switching does not address the switching loss mechanisms that dominate in
MOSFET converters, improvements in efficiency typically are not observed.

22.3.2 Operation of the Full-Bridge Above Resonance: Zero-Voltage Switching

When the series resonant converter is operated above resonance, the zero-voltage switching
phenomenon can occur, in which the circuit causes the transistor voltage to become zero before
the controller turns the transistor on. With a minor circuit modification, the transistor turn-off
transitions can also be caused to occur at zero voltage. This process can lead to significant
reductions in the switching losses of converters based on MOSFETs and diodes.

For the full-bridge circuit of Fig. 22.24, the switch output voltage vs(t), and its fundamental
component vs1(t), as well as the approximately sinusoidal tank current waveform is(t), are plot-
ted in Fig. 22.27. At frequencies greater than the tank resonant frequency, the input impedance
of the tank network Zi(s) is dominated by the tank inductor impedance. Hence, the tank presents
an effective inductive load to the bridge, and the switch current is(t) lags the switch voltage fun-
damental component vs1(t), as shown in Fig. 22.27. In consequence, the zero crossing of the
voltage waveform vs(t) occurs before the current waveform is(t).

For the half-cycle 0 < t < Ts/2, the switch voltage vs(t) is equal to +Vg. For 0 < t < tα, the
current is(t) is negative and diodes D1 and D4 conduct. Transistors Q1 and Q4 conduct when
is(t) is positive, over the interval tα < t < Ts/2. The waveforms during Ts/2 < t < Ts are
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symmetrical. Since the zero crossing of vs(t) leads the zero crossing of is(t), the transistors
conduct after their respective antiparallel diodes. Note that, at any given time during the D1

conduction interval 0 < t < tα, transistor Q1 can be turned on without incurring switching
loss. The circuit naturally causes the transistor turn-on transition to be lossless, and long turn-
on switching times can be tolerated. A particularly significant implication of this is that the
switching loss associated with reverse recovery of the antiparallel diodes is avoided. Relatively
slow diodes, such as the MOSFET body diodes, can be employed for realization of diodes D1

to D4. In addition, the output capacitances of transistors Q1 to Q4 and diodes D1 to D4 do not
lead to switching loss.

In general, zero-voltage switching can occur when the resonant tank presents an effective
inductive load to the switches, and hence the switch voltage zero crossings occur before the
switch current zero crossings. In the bridge configuration, zero-voltage switching is character-
ized by the half-bridge conduction sequence D1–Q1–D2–Q2, such that the transistors are turned
on while their respective antiparallel diodes conduct. Since the transistor voltage is zero during
the entire turn-on transition, switching loss due to slow turn-on times or due to energy storage
in any of the device capacitances does not occur at turn-on.

The transistor turn-off transition in Fig. 22.28 is similar to that of a PWM switch. In convert-
ers that employ IGBTs or other minority-carrier devices, significant switching loss may occur
at the turn-off transitions. The current tailing phenomenon causes Q1 to pass through a period
of high instantaneous power dissipation, and switching loss occurs.

To assist the transistor turn-off process, small capacitors Cleg may be introduced into the legs
of the bridge, as demonstrated in Fig. 22.29. In a converter employing MOSFETs, the device
output capacitances are sufficient for this purpose, with no need for external discrete capacitors.
A delay is also introduced into the gate drive signals, so that there is a short commutation inter-
val when all four transistors are off. During the normal Q1, D1, Q2, and D2 conduction intervals,
the leg capacitors appear in parallel with the semiconductor switches, and have no effect on the
converter operation. However, these capacitors introduce commutation intervals at transistor
turn-off. When Q1 is turned off, the tank current is(Ts/2) flows through the switch capacitances
Cleg instead of Q1, and the voltage across Q1 and Cleg increases. Eventually, the voltage across
Q1 reaches Vg; diode D2 then becomes forward-biased. If the MOSFET turn-off time is suffi-
ciently fast, then the MOSFET is switched fully off before the drain voltage rises significantly
above zero, and negligible turn-off switching loss is incurred. The energy stored in the device
capacitances, that is, in Cleg, is transferred to the tank inductor. The fact that none of the semi-
conductor device capacitances or stored charges lead to switching loss is the major advantage
of zero-voltage switching, and is the most common motivation for its use. MOSFET converters
can typically be operated in this manner, using only the internal drain-to-source capacitances.
However, other devices such as IGBTs typically require substantial external capacitances to
reduce the losses incurred during the IGBT turn-off transitions.

An additional advantage of zero-voltage switching is the reduction of EMI associated with
device capacitances. In conventional PWM converters and also, to some extent, in zero-current
switching converters, significant high-frequency ringing and current spikes are generated by the
rapid charging and discharging of the semiconductor device capacitances during the turn-on
and/or turn-off transitions.

Ringing is conspicuously absent from the waveforms of converters in which all semiconduc-
tor devices switch at zero voltage; these converters inherently do not generate this type of EMI.
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22.4 Load-Dependent Properties of Resonant Converters

The properties of the CCM PWM converters studied in previous chapters are largely unaffected
by the load current. In consequence, these converters exhibit several desirable properties that
are often taken for granted. The transistor current is proportional to the load current; hence con-
duction losses become small at light load, leading to good light-load efficiency. Also, the output
impedance is low, and hence the dc output voltage does not significantly depend on the load
i − v characteristic (at least, in CCM). Unfortunately, these good properties are not necessarily
shared by resonant converters. Of central importance in design of a resonant converter is the
selection of the resonant tank topology and element values, so that the transistor conduction
losses at light load are minimized, so that zero-voltage switching is obtained over a wide range
of load currents (preferably, for all anticipated loads, but at least at full and intermediate load
powers), and so that the converter dynamic range is compatible with the load i− v characteristic.
These design issues are addressed in this section.

The conduction loss caused by circulating tank currents is well-recognized as a problem in
resonant converter design. These currents are independent of, or only weakly dependent on, the
load current, and lead to poor efficiency at light load. In Fig. 22.30, the switch current is(s) is
equal to vs(s)/Zi(s). If we want the switch current to track the load current, then at the switching
frequency ||Zi|| should be dominated by, or at least strongly influenced by, the load resistance R.
Unfortunately, this is often not consistent with the requirement for zero-voltage switching, in
which Zi is dominated by a tank inductor.

vs1(t)

Effective
resistive
load
R

is(t) i(t)

v(t)

+
Zi Zo

Transfer function
H(s)

+

Effective
sinusoidal

source Resonant
network

Purely reactive

Fig. 22.30 Resonant inverter model

To design a resonant converter that exhibits good properties, the engineer must develop
physical insight into how the load resistance R affects the tank input impedance and output
voltage.

In this section, the inverter output characteristics, zero-voltage switching boundary, and the
dependence of transistor current on load resistance, are related to the properties of the tank net-
work under the extreme conditions of an open-circuited or short-circuited load. The undamped
tank network responses are easily plotted, and the insight needed to optimize the tank network
design can be gained quickly.
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22.4.1 Inverter Output Characteristics

Let us first investigate how the magnitude of the inverter output voltage ||v|| depends on the load
current magnitude ||i||. Consider the resonant inverter system of Fig. 22.30. Let H∞(s) be the
open-circuit (R→ ∞) transfer function of the tank network:

H∞(s) =
v(s)

vs1(s)

∣∣∣∣∣
R→∞

(22.33)

and let Zo0(s) be the output impedance, determined when the source vs1(s) is short-circuited.
Then we can model the output port of the tank network using the Thevenin-equivalent circuit of
Fig. 22.31. Solution of this circuit using the voltage divider formula leads to

v(s) = H∞(s)vs1(s)
R

R + Zo0(s)
(22.34)

At a given angular switching frequency ωs = 2π fs, the phasor representing the magnitude and
phase of the ac output voltage is found by letting s = jωs:

v( jωs) = H∞( jωs)vs1( jωs)
R

R + Zo0( jωs)
(22.35)

The magnitude can be found by noting that

‖v( jωs)‖2 = v( jωs)v
∗( jωs) (22.36)

where v∗( jωs) is the complex conjugate of v( jωs). Substitution of Eq. (22.35) into Eq. (22.36)
leads to

+

Zo0

H vs1

Tank network

+

v R

i

Fig. 22.31 Thevenin-equivalent circuit that models the output port of the tank network

‖v( jωs)‖2 =
(
H∞( jωs)vs1( jωs)

R
R + Zo0( jωs)

) (
H∞( jωs)vs1( jωs)

R
R + Zo0( jωs)

)∗

= H∞( jωs)H
∗
∞( jωs)vs1( jωs)v

∗
s1( jωs)

R2

(R + Zo0( jωs)) (R + Zo0( jωs))
∗

= ‖H∞( jωs)‖2‖vs1( jωs)‖2
R2

(R + Zo0( jωs)) (R + Zo0( jωs))
∗ (22.37)
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This result can be further simplified with the assumption that the tank network contains only
purely reactive elements, i.e., that any losses or other resistive elements within the tank network
have negligible effect. Then the output impedance Zo0( jωs), as well as all other driving-point
impedances of the tank network, are purely imaginary quantities. This implies that the complex
conjugate Z∗o0( jωs) is given by

Z∗o0( jωs) = −Zo0( jωs) (22.38)

Substitution of Eq. (22.38) into Eq. (22.37) and simplification leads to

‖v( jωs)‖2 =
‖H∞( jωs)‖2‖vs( jωs)‖2(

1 + ‖Zo0( jωs)‖2
R2

) (22.39)

with

R =
||v( jωs)||
||i( jωs)||

(22.40)

Substitution of Eq. (22.40) into Eq. (22.39) and rearrangement of terms yields

‖v( jωs)‖2 + ‖i( jωs)‖2‖Zo0( jωs)‖2 = ‖H∞( jωs)‖2‖vs( jωs)‖2 (22.41)

Hence, at a given frequency, the inverter output characteristic, that is, the relationship between
||v( jωs)|| and ||i( jωs)|| is elliptical. Equation (22.41) can be further rearranged, into the form

‖v( jωs)‖2

V2
oc

+
‖i( jωs)‖2

I2
sc

= 1 (22.42)

where the open-circuit voltage Voc and short-circuit current Isc are given by

Voc = ‖H∞( jωs)‖‖vs( jωs)‖

Isc =
‖H∞( jωs)||‖vs( jωs)‖
||Zo0( jωs)‖

=
Voc

‖Zo0( jωs)‖
(22.43)
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Fig. 22.32 Elliptical output characteristics of resonant inverters. A resistive matched load is also illus-
trated
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These inverter output characteristics are constructed in Fig. 22.32. This characteristic describes
how, at a given switching frequency, the ac output voltage magnitude varies as the circuit is
loaded. The equilibrium output voltage is given by the intersection of this elliptical character-
istic with the load i − v characteristic. For example, Fig. 22.32 also illustrates a superimposed
resistive load line having slope 1/R, in the special case where R = ||Zo0( jωs)||. This value of R
corresponds to matched-load operation, in which the converter output power is maximized. It
can be shown that the operating point is then given by

‖v( jωs)‖2 =
Voc√

2

‖i( jωs)‖2 =
Isc√

2
(22.44)

Note that Fig. 22.32 can also be applied to the output i − v characteristics of resonant dc–dc
converters, since the output rectifier then loads the tank with an effective resistive load Re.

22.4.2 Dependence of Transistor Current on Load

The transistors must conduct the current appearing at the input port of the tank network, is(t).
This current is determined by the tank network input impedance Zi( jωs):

is1( jωs) =
vs1( jωs)
Zi( jωs)

(22.45)
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Fig. 22.33 Tank network, parallel resonant converter example: (a) tank circuit, (b) bode plot of input
impedance magnitude ‖Zi‖ for the limiting cases R→ 0 and R→ ∞
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As described previously, obtaining good light-load efficiency requires that ||Zi( jωs)|| increase
as the load resistance R increases. To understand how ||Zi( jωs)|| depends on R, let us sketch
||Zi( jωs)|| in the extreme cases of an open-circuited (R→ ∞) and short-circuited (R→ 0) load:

Zi0( jωs) = Zi( jωs)|R→0

Zi∞( jωs) = Zi( jωs)|R→∞ (22.46)

For example, consider the parallel resonant converter of Figs. 22.19, 22.20, 22.21, 22.22,
22.23. The Bode diagrams of the impedances ||Zi0( jωs)|| and ‖Zi∞( jωs)|| are constructed in
Fig. 22.33. Zi0(s) is found with the load R shorted, and is equal to the inductor impedance
sL. Zi∞(s), found with the load R open-circuited, is given by the series combination (sL+1/sC).
It can be seen in Fig. 22.33 that the impedance magnitudes ||Zi0( jωs)|| and ||Zi∞( jωs)|| intersect
at frequency fm. If the switching frequency is chosen such that fs < fm, then ‖Zi∞( jωs)|| >
‖Zi0( jωs)‖. The converter then exhibits the desirable characteristic that the no-load switch cur-
rent magnitude ‖vs( jωs)‖/||Zi∞( jωs)|| is smaller than the switch current under short-circuit
conditions, ||vs( jωs)‖/‖Zi0( jωs)‖. In fact, the short-circuit switch current is limited by the
impedance of the tank inductor, while the open-circuit switch current is determined primarily
by the impedance of the tank capacitor.

If the switching frequency is chosen such that fs > fm, then ||Zi∞( jωs)|| < ||Zi0( jωs)‖. The
no-load switch current is then greater in magnitude than the switch current when the load is
short-circuited! When the load current is reduced or removed, the transistors will continue to
conduct large currents and generate high conduction losses. This causes the efficiency at light
load to be poor. It can be concluded that, to obtain good light-load efficiency in the parallel
resonant converter, one should choose fs sufficiently less than fm. Unfortunately, this requires
operation below resonance, leading to reduced output voltage dynamic range and a tendency to
lose the zero-voltage switching property. Input impedances of the series, parallel, and LCC tank
circuits are sketched in Fig. 22.34.

A remaining question is how ||Zi( jωs)|| behaves for intermediate values of load between the
open-circuit and short-circuit conditions. The answer is given by Theorem 22.1 below: ||Zi( jωs)||
varies monotonically with R, and therefore is bounded by ‖Zi0( jωs)‖ and ||Zi∞( jωs)‖. Hence,
the Bode plots of the limiting cases ||Zi0(iωs)‖ and ‖Zi∞( jωs)‖ provide a correct qualitative
understanding of the behavior of ||Zi|| for all R. The theorem is valid for lossless tank networks.

Theorem 22.1. If the tank network is purely reactive, then its input impedance ||Zi‖ is a mono-
tonic function of the load resistance R.

This theorem is proven by use of Middlebrook’s Extra Element Theorem (see Chap. 16).
The tank network input impedance Zi(s) can be expressed as a function of the load resistance R
and the tank network driving-point impedances, as follows:

Zi(s) = Zi0(s)

(
1 +

R
Zo0(s)

)

(
1 +

R
Zo∞(s)

) = Zi∞(s)

(
1 +

Zo0(s)
R

)

(
1 +

Zo∞(s)
R

) (22.47)

where Zi0 and Zi∞ are the resonant network input impedances, with the load short-circuited or
open-circuited, respectively, and Zo0 and Zo∞ are the resonant network output impedances, with
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Fig. 22.34 Series, parallel, and LCC resonant tank networks, and their input impedances Zi0 and Zi∞

the source input short-circuited or open-circuited, respectively. These terminal impedances are
simple functions of the tank elements, and their Bode diagrams are easily constructed. The input
impedances of the series resonant, parallel resonant, and LCC inverters are listed in Fig. 22.34.
Since these impedances do not depend on the load, they are purely reactive, ideally have zero
real parts [330], and their complex conjugates are given by Z∗o0 = −Zo0, Z∗o∞ = −Zo∞, etc. Again,
recall that the magnitude of a complex impedance Z( jω) can be expressed as the square root of
Z( jω)Z∗( jω). Hence, the magnitude of Zi(s) is given by
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‖Zi‖2 = ZiZ
∗
i = Zi0(s)Z∗i0(s)

(
1 +

R
Zo0(s)

) (
1 +

R
Z∗o0(s)

)

(
1 +

R
Zo∞(s)

) (
1 +

R
Z∗o∞(s)

)

= ‖Zi0‖2

(
1 +

R2

||Zo0||2

)

(
1 +

R2

||Zo∞||2

) (22.48)

where Z∗i is the complex conjugate of Zi.
Next, let us differentiate Eq. (22.48) with respect to R:

d‖Zi‖2
dR

= 2R‖Zi0‖2

(
1

‖Zo0‖2
− 1
||Zo∞‖2

)

(
1 +

R2

‖Zo∞‖2

)2
(22.49)

The derivative has roots at (i) R = 0, (ii) R = ∞, and in the special case (iii) where ||Zi0‖ =
||Zi∞||. Since the derivative is otherwise nonzero, the resonant network input impedance ‖Zi‖ is
a monotonic function of R, over the range 0 < R < ∞. In special case (iii), ||Zi|| is independent
of R. Therefore, Theorem 22.1 is proved.

An example is given in Figs. 22.36 and 22.35, for the LCC inverter. Figure 22.35 illustrates
the impedance asymptotes of the limiting cases ||Zi0|| and ||Zi∞||. Variation of ||Zi|| between these
limits, for finite nonzero R, is illustrated in Fig. 22.36. The open-circuit resonant frequency f∞
and the short-circuit resonant frequency f0 are given by

f0 =
1

2π
√

LCs

f∞ =
1

2π
√

LCs‖Cp

(22.50)

where Cs||Cp denotes inverse addition of Cs and Cp:

Cs‖Cp =
1

1
Cs
+

1
Cp

(22.51)

For the LCC inverter, the impedance magnitudes ||Zi0|| and ‖Zi∞‖ are equal at frequency fm,
given by

fm =
1

2π
√

LCs‖2Cp

(22.52)

If the switching frequency is chosen to be greater than fm, then ||Zi∞|| is less than ‖Zi0||. This
implies that, as the load current is decreased, the transistor current will increase. Such a con-
verter will have poor efficiency at light load, and will exhibit significant circulating currents. If
the switching frequency is chosen to be less than fm, then the transistor current will increase
with decrease with decreasing load current. The short-circuit current is limited by ||Zi0‖, while
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Fig. 22.35 Construction of the quantities ‖Zi0‖ and ‖Zi∞‖, for the LCC inverter

the circulating currents under open-circuit conditions are determined by ||Zi∞||. In general, if
f > fm, then the transistor current is greater than or equal to the short-circuit current for all R.
The inequality is reversed when f < fm.

The impedance magnitudes ||Zi0‖ and ||Zi∞|| are illustrated in Fig. 22.34 for the series, paral-
lel, and LCC tank networks. In the case of the series tank network, ‖Zi∞|| = ∞. In consequence,
the no-load transistor current is zero, both above resonance and below resonance. Hence, the
series resonant inverter exhibits the desirable property that the transistor current is proportional
to the load current. In addition, when the load is short-circuited, the current magnitude is limited
by the impedance of the series resonant tank. For the parallel and LCC inverters, it is desirable
to operate below the frequency fm.

f

|| Zi || ff∀

in
cr

ea
sin

g 
R L

fm

1
C

s
+ 1

C
p

1
C

s

increasing R

Fig. 22.36 Variation of tank network input impedance ‖Zi‖ with load resistance R, LCC inverter. As the
load resistance is increased, ‖Zi‖ changes monotonically from ‖Zi0‖ to ‖Zi∞‖
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Thus, the dependence of the transistor current on load can be easily determined, using an
intuitive frequency-domain approach.

22.4.3 Dependence of the ZVS/ZCS Boundary on Load Resistance

It is also necessary to determine the critical load resistance R = Rcrit at the boundary between
ZVS and ZCS. This boundary can also be expressed as a function of the impedances Zi0 and Zi∞.

As discussed in Sect. 22.3, zero-voltage switching occurs when the switch current is(t) lags
the switch voltage vs(t). Zero-voltage switching occurs when is(t) leads vs(t). This definition
ignores the effects of semiconductor output capacitances, and hence gives an approximate
ZVS/ZCS boundary. The phase between the switch current and switch voltage is again deter-
mined by the input impedance of the tank network:

is1( jωs) =
vs1( jωs)
Zi( jωs)

(22.53)

Hence, zero-voltage switching occurs when Zi( jωs) is inductive in nature, zero-current switch-
ing occurs when Zi( jωs) is capacitive in nature, and the ZVS/ZCS boundary occurs where
Zi( jωs) has zero phase.

It is instructive to again consider the limiting cases of a short-circuited and open-circuited
load. The Bode plots of Zi0( jωs) and Zi∞( jωs) for an LCC inverter example are sketched in
Fig. 22.37. Since, in these limiting cases, the input impedance Zi is composed only of the reac-
tive tank elements, Zi0( jωs) and Zi∞( jωs) are purely imaginary quantities having phase of either
−90◦ or +90◦. For fs < f0, both Zi0( jωs) and Zi∞( jωs) are dominated by the tank capacitor
orcapacitors; the phase of Zi( jωs) is therefore −90◦. Hence, zero-current switching is obtained
under both short-circuit and open-circuit conditions. For fs > f∞, both Zi0( jωs) and Zi∞( jωs)
are dominated by the tank inductor; hence the phase of Zi( jωs) is +90◦. Zero-voltage switching

f

|| Zi ||

L

f1

1
C

s
+ 1

C
p

1
C

s
|| Zi0 ||

|| Zi ||

f0 f

ZVS
for all R

ZCS
for all R

ZCS: R > Rcrit
ZVS: R < Rcrit

{Zi

Zi0

fm

Fig. 22.37 Use of the input impedance quantities Zi0 and Zi∞ to determine the ZCS/ZVS boundaries,
LCC example
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is obtained for both a short-circuited and an open-circuited load. For f0 < fs < f∞, Zi0( jωs)
is dominated by the tank inductor while Zi∞( jωs) is dominated by the tank capacitors. This
implies that zero-voltage switching is obtained under short-circuit conditions, and zero-voltage
switching is obtained under open-circuit conditions. For this case, there must be some critical
value of load resistance R = Rcrit that represents the boundary between ZVS and ZCS, and that
causes the phase of Zi( jωs) to be equal to 0◦.

The behavior of Zi( jωs) for nonzero finite R is easily extrapolated from the limiting cases
discussed above. Theorem 22.2 below shows that:

1. If zero-current switching occurs for both an open-circuited load and a short-circuited load
[i.e., Zi0( jωs) and Zi∞( jωs) both have phase +90◦], then zero-current switching occurs for
all loads.

2. If zero-voltage switching occurs for both an open-circuited load and a short-circuited load
[i.e., Zi0( jωs) and Zi∞( jωs) both have phase −90◦], then zero-voltage switching occurs for
all loads.

3. If zero-voltage switching occurs for an open-circuited load and zero-current switching oc-
curs for a short-circuited load [i.e., Zi0( jωs) has phase −90◦ and Zi∞( jωs) has phase +90◦],
then zero-voltage switching occurs for R > Rcrit, and zero-current switching occurs for
R < Rcrit, with Rcrit given by Eq. (22.54) below.

4. If zero-current switching occurs for an open-circuited load and zero-voltage switching oc-
curs for a short-circuited load [i.e., Zi0( jωs) has phase +90◦ and Zi∞( jωs) has phase −90◦],
then zero-current switching occurs for R > Rcrit, and zero-voltage switching occurs for
R < Rcrit, with Rcrit given by Eq. (22.54) below.

For the LCC example, we can therefore conclude that, for fs < f0, zero-current switching
occurs for all values of R. For fs > f∞, zero-voltage switching occurs for all values of R. For
f0 < fs < f∞, the boundary between ZVS and ZCS is given by Eq. (22.54).

Theorem 22.2. If the tank network is purely reactive, then the boundary between zero-current
switching and zero-voltage switching occurs when the load resistance R is equal to the critical
value Rcrit, given by

Rcrit = ‖Zo0‖
√
−Zi∞

Zi0
(22.54)

This theorem relies on the assumption that zero-current switching occurs when the tank in-
put impedance is capacitive in nature, while zero-voltage switching occurs for inductive-input
impedances. The boundary therefore occurs where the phase of Zi( jω) is zero. This definition
gives a necessary but not sufficient condition for zero-voltage switching when significant semi-
conductor output capacitance is present.

The result is derived by finding the value of R which causes the imaginary part of Zi( jω) in
Eq. (22.47) to be zero. Since the tank network is assumed to ideal and lossless, the impedances
Zo∞, Zo0, and Zi∞ must have zero real parts. Hence,

Im(Zi(Rcrit)) = Im(Zi∞)Re

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

Zo0

Rcrit

1 +
Zo∞

Rcrit

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = Im(Zi∞)

⎛⎜⎜⎜⎜⎝1 − Zo0Zo∞

R2
crit

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝1 + ‖Zo∞‖2

R2
crit

⎞⎟⎟⎟⎟⎠
= 0 (22.55)
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where Im(Z) and Re(Z) denote the imaginary and real parts of the complex quantity Z. The
nontrivial solution to Eq. (22.55) is given by

1 =
Zo0Zo∞

R2
crit

(22.56)

hence,
Rcrit =

√
Zo0Zo∞ (22.57)

A useful equivalent form makes use of the reciprocity identities

Zo0

Zo∞
=

Zi0

Zi∞
(22.58)

Use of Eq. (22.58) to eliminate Zo∞ from Eq. (22.57) leads to

Rcrit = ‖Zo0‖
√
−Zi∞

Zi0
(22.59)

This is the desired result. The quantity Zo0 is the inverter output impedance, and R = ||Zo0||
corresponds to operation at matched load with maximum output power. The impedances Zi∞
and Zi0 are purely imaginary, and hence Eq. (22.59) has no real solution unless Zi∞ and Zi0

are of opposite phase. As illustrated in Fig. 22.37, if at a given frequency Zi∞ and Zi0 are both
inductive, then zero-voltage switching occurs for all loads. Zero-current switching occurs for
all loads when Zi∞ and Zi0 are both capacitive. Therefore, Theorem 22.2 is proved.

Figure 22.38a illustrates the phase response of Zi( jω) as R varies from 0 to ∞, for the LCC
inverter. A typical dependence of Rcrit and the matched-load impedance ‖Zo0|| on frequency
is illustrated in Fig. 22.38b. Zero-voltage switching occurs for all loads when f > f∞, and
zero-current switching occurs for all loads when f < f0. Over the range f0 < f < f∞, Zi0 is
inductive while Zi∞ is capacitive; hence, zero-voltage switching occurs for R < Rcrit while zero-
current switching occurs for R > Rcrit. At frequency fm, Rcrit = ‖Zo0||, and hence the ZVS/ZCS
boundary is encountered exactly at matched load. It is commonly desired to obtain zero-voltage
switching at matched load, with low circulating currents and good efficiency at light load. It is
apparent that this requires operation in the range f0 < f < fm. Zero-voltage switching will then
be obtained under matched-load and short-circuit conditions, but will be lost at light load. The
choice of element values such that ||Zi0‖ 	 ||Zi∞|| is advantageous in that the range of loads
leading to zero-voltage switching is maximized.

22.4.4 Another Example

As another example, let us consider selection of the resonant tank elements to obtain a given
output characteristic at a certain switching frequency, and let us evaluate the effect of this choice
on Rcrit. It is desired to operate a resonant inverter at switching frequency fs = 100 kHz, with an
input voltage of Vg = 160 V. The converter should be capable of producing an open-circuit peak
output voltage Voc = 400 V, and should also produce a nominal output of 150 Vrms at 25 W. It
is desired to select resonant tank elements that accomplish this.
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Fig. 22.38 ZCS/ZVS boundary, LCC inverter example: (a) variation of tank network input impedance
phase shift with load resistance, (b) comparison of Rcrit with matched-load impedance ‖Zo0‖
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The specifications imply that the converter should exhibit an open-circuit transfer function
of

‖H∞( jωs)‖ =
Voc

Vs1
=

(400 V)(
4
π

160 V

) = 1.96 (22.60)

The required short-circuit current is found by solving Eq. (22.42) for Isc:

Isc =
I√

1 −
(

V
Voc

)2
(22.61)

The specifications also imply that the peak voltage and current at the nominal operating point
are

V = 150
√

2 = 212V

I =
P

Vrms

√
2 =

25W
150V

√
2 = 0.236A (22.62)

Rnom =
V
I
= 900Ω

Substitution of Eq. (22.62) into Eq. (22.61) yields

Isc =
(0.236A)√

1 −
(

212V
400V

)2
= 0.278A (22.63)

Matched load therefore occurs at the operating point

Vmat =
Voc√

2
= 283V

Imat =
Isc√

2
= 0.196A (22.64)

‖Zo0( jωs)‖ =
Voc

Isc
= 1439Ω

Let us select the values of the tank elements in the LCC tank network illustrated in
Fig. 22.39a. The impedances of the series and parallel branches can be represented using the
reactances Xs and Xp illustrated in Fig. 22.39b, with

jXs = jωsL +
1

jωsCs
= j

(
ωsL −

1
ωsCs

)

jXp =
1

jωsCp
= j

(
− 1
ωsCp

)
(22.65)
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(a) L Cs

Cp

(b) jXs

jXp

Fig. 22.39 Tank network of the LCC inverter example: (a) schematic, (b) representation of series and
parallel branches by reactances Xs and Xp

The transfer function H∞( jωs) is given by the voltage divider formula

H∞( jωs) =
jXp

jXs + jXp
(22.66)

The output impedance Zo0( jωs) is given by the parallel combination

Zo0( jωs) = jXs‖ jXp =
−XsXp

j(Xs + Xp)
(22.67)

Solution of Eqs. (22.66) and (22.67) for Xp and Xs leads to

jXp =
Zo0( jωs)

1 − H∞( jωs)
(22.68)

Xs = Xp
1 − H∞( jωs)

H∞( jωs)

Hence, the capacitance Cp should be chosen equal to

Xp = −1499Ω

Cp = −
1
ωsXp

=
H∞( jωs) − 1
ωs||Zo0( jωs)‖

=
(1.96) − 1

(2π100kHz) (1439Ω)
� 1nF (22.69)

and the reactance of the series branch should be chosen according to

Xs = Xp
1 − H∞( jωs)

H∞( jωs)
= (−1493Ω)

1 − (1.96)
(1.96)

= 733Ω (22.70)
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Since Xs is comprised of the series combination of the inductor L and capacitor Cs, there is a
degree of freedom in choosing the values of L and capacitor Cs to realize Xs. For example, we
could choose Cs very large (tending to a short circuit); this effectively would result in a parallel
resonant converter with L = Xs/ωs = 1.17mH. For nonzero Cs, L must be chosen according to

L =
1
ωs

(
Xs +

1
ωsCs

)
(22.71)

For example, the choice Cs = Cp = 1.06 nF leads to L = 3.5 mH. Designs using different Cs

will exhibit exactly the same characteristics at the design frequency; however, the behavior at
other switching frequencies will differ.

For the tank network illustrated in Fig. 22.39, the value of Rcrit is completely determined by
the parameters of the output characteristic ellipse; i.e., by the specification of Vg, Voc, and Isc.
Note that Zo∞, the tank output impedance with the tank input port open-circuited, is equal to jXp.
Substitution of expressions for Zo∞ and Zo0 into Eq. (22.57) leads to the following expression
for Rcrit:

Rcrit =

√
Z2

o0( jωs)

1 − H∞( jωs)
(22.72)

Since Zo0 and H∞ are determined by the operating point specifications, then Rcrit is also. Eval-
uation of Eq. (22.72) for this example leads to Rcrit = 1466 Ω. Therefore, the inverter will
operate with zero-voltage switching for R < 1466 Ω, including at the nominal operating point
R = 900 Ω. Other topologies of tank network, more complex than the circuit illustrated in
Fig. 22.39b, may have additional degrees of freedom that allow Rcrit to be independently cho-
sen.

The choice Cs = 3Cp = 3.2 nF leads to L = 1.96 μH. The following frequencies are
obtained:

f∞ = 127kHz

fm = 100.6kHz

fs = 100.0kHz

f0 = 64kHz (22.73)

Regardless of how Cs is chosen, the open-circuit tank input impedance is

Zi∞ = j
(
Xs + Xp

)
= j (733Ω + (−1493Ω)) = − j760Ω (22.74)

Therefore, when the load is open-circuited, the transistor peak current has magnitude

Is1 =
Vs1

‖Zi∞‖
=

4
π

(160V)

760Ω
= 0.268A (22.75)

When the load is short-circuited, the transistor peak current has magnitude

Is1 =
Vs1

‖Zi0‖
=

Vs1

|Xs|
=

4
π

(160V)

(733Ω)
= 0.278A (22.76)

which is nearly the same as the result in Eq. (22.75). The somewhat large open-circuit switch
current occurs because of the relatively high specified open-circuit output voltage; lower values
of Voc would reduce the result in Eq. (22.75).
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22.4.5 LLC Example

A transformer-isolated dc–dc converter based on the LLC tank network is illustrated in Fig. 22.40.
This converter finds application in off-line dc power supplies, including charger adapters for
laptop computers. Tank capacitor C also functions as a dc blocking capacitor that ensures trans-
former volt-second balance. Tank inductors Ls and Lp can partly or wholly be implemented
using the transformer leakage and magnetizing inductances. When the converter is properly
designed, the transistors can operate with zero-voltage switching.

Fig. 22.40 A transformer-isolated dc–dc converter based on the LLC resonant tank circuit

The tank input impedances Zi0 (with load shorted) and Zi∞ (with load open-circuited) are
illustrated in Fig. 22.41. Under short-circuit conditions, the tank resonant frequency is

f0 =
1

2π
√

LsC
(22.77)

Under open-circuit conditions, the tank resonant frequency is

f∞ =
1

2π
√

(Ls + Lp)C
(22.78)

In each case, the tank input impedance Zi is a series resonant circuit, with the short-circuit reso-
nant frequency being higher than the open-circuit resonant frequency. The tank input impedance
‖Zi ‖ is constructed in Fig. 22.42.

At low switching frequency fs < f∞, the transistors operate with zero-current switching
for all loads. At high switching frequency fs > f0, the transistors operate with zero-voltage
switching for all loads. Over the intermediate frequency range f∞ < fs < f0, the transistors
operate with zero-voltage switching at light load R > Rcrit, and with zero-current switching at
heavy load R < Rcrit. The critical resistance Rcrit can be shown to be

Rcrit = Ro0
nF
√

1 + n

√√√√
1 − F2

1 + n
F2 − 1

(22.79)
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(a) (b)

Fig. 22.41 Tank network of the LLC inverter example: (a) with load shorted, (b) with load open-circuited

with

Ro0 =

√
Ls

C

n =
Lp

Ls

F =
fs

f∞

(22.80)

For switching frequencies fs > fm, the tank circuit exhibits the desirable property that the
tank input current decreases as the load current decreases. Operation of this converter at high
frequency fs > f0 combines the desirable properties of zero-voltage switching at all loads and
of tank input current that scales monotonically with load current. Over this range of frequencies,
the LLC exhibits a conversion ratio less than unity, similar to the series resonant circuit. In the
vicinity of f∞, the LLC is capable of boost-type conversion ratios that can become large at light
load.

Figure 22.43 illustrates the output characteristic of the LLC, for the example fm < fs < f0. It
can be observed that, for this example, Rcrit < Ro0; therefore, the converter exhibits the desirable
property that the zero-voltage switching region includes the matched-load conditions as well as
open-circuit conditions.

Figure 22.44 illustrates typical control plane M vs. F characteristics of the LLC converter,
as predicted by the CCM sinusoidal approximation result of Eq. (22.85). Contours for various
values of load resistance are shown, with the specific choice Lp = 5Ls. For low Q (large load
resistance), the characteristics exhibit a resonance near f∞ with parallel resonant (boost) charac-
teristics. For large Q (low load resistance), the characteristics exhibit a resonance near f0 with
series resonant (buck) characteristics.

22.4.6 Results for Basic Tank Networks

The tank networks of Fig. 22.1 can be written in the form shown in Fig. 22.39b. The series and
shunt branch reactances are listed in Table 22.1. In this section, the resonant converter general
solution and key equations are listed, as functions of the branch reactances Xs and Xp.

The tank network input impedance is Zi0 = jXsfor Re = 0, and is Zi∞ = j(Xs + Xp) for
Re = ∞. The unloaded tank transfer function is

H∞(ω) =
Xp

Xp + Xs
(22.81)
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The matched-load impedance (tank output impedance when the input is shorted) is

Zo0(ω) =
jXsXp

Xs + Xp
= jXsH∞(ω) (22.82)

Matched-load resistance occurs at Re = Ro0, where Ro0 = ‖Zo0 ‖.

Fig. 22.42 Tank input impedance ‖Zi ‖ for the LLC tank circuit

Fig. 22.43 Output plane characteristic of the LLC inverter
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The critical load resistance at the boundary betweem ZVS and ZCS is

Rcrit = ‖Zo0 ‖
√
−Zi∞

Zi0
= | Xp |

√
− Xs

Xs + Xp
(22.83)

The frequency f = fm, where ‖Zi∞ ‖ = ‖Zi0 ‖, can be shown to occur at the frequency where
Xs = −Xp/2.

If we define the conversion ratio M = Vout/Vin, the normalized load current J = IoutR0/Vin,
and the effective quality factor as Qe = R0/Re, then the elliptical output characteristic can be
written (M

a

)2
+

( J
b

)2
= 1 (22.84)

and the control characteristic can be written
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Fig. 22.44 Typical control plane characteristic of the LLC inverter, as predicted by the CCM sinusoidal
approximation

Table 22.1 Branch reactances of basic tank networks

Tank Series branch reactance Xs Shunt branch reactance Xp

Series ωL − 1
ωC

∞

Parallel ωL − 1
ωC

LCC ωL − 1
ωCs

− 1
ωCp

LLC ωLs −
1
ωC

ωLp
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M =
1√

1
a2
+

(Qe

b

)2 (22.85)

where the parameters a and b are given by

a =‖H∞(ω) ‖ =
| Xp |

| Xp + Xs |

b =
‖H∞(ω) ‖R0

‖Zo0(ω) ‖ =
R0

| Xs |

(22.86)

The above equations describe the solutions of all of the inverters of Fig. 22.1, based on the
sinusoidal approximation. For the series tank, a = 1.

22.5 Exact Characteristics of the Series and Parallel Resonant Converters

The exact steady-state behavior of resonant converters can be determined via methods such as
state plane analysis. A detailed analysis of resonant dc–dc converters is beyond the scope of
this book. However, the exact steady-state characteristics of ideal series [272, 306–313] and
parallel [299, 315–318] resonant dc–dc converters (Fig. 22.45) are summarized in this section.
Small-signal ac modeling has also been described in the literature; several relevant papers are
[320–323].
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Fig. 22.45 Transformer-isolated resonant dc–dc converters: (a) series resonant converter, (b) parallel
resonant converter
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22.5.1 Series Resonant Converter

At a given switching frequency, the series resonant dc–dc converter can operate in one continu-
ous conduction mode, and possibly in several discontinuous conduction modes. The mode index
k is defined as the integer that satisfies

f0
k + 1

< fs <
f0
k

or
1

k + 1
< F <

1
k

(22.87)

where F = fs/ f0 is the normalized switching frequency. The subharmonic number ξ is defined
as

ξ = k +
1 + (−1)k

2
(22.88)

Values of k and ξ as functions of fs are summarized in Fig. 22.46a. The subharmonic number ξ
denotes the dominant harmonic that excites the tank resonance. When the converter is heavily
loaded, it operates in type k continuous conduction mode. As the load is reduced (i.e., as the
load resistance R is increased), the converter enters the type k discontinuous conduction mode.
Further reducing the load causes the converter to enter the type (k − 1) DCM, type (k − 2)
DCM,. . ., type 1 DCM. There is no type 0 DCM, and hence when the converter operates above
resonance, only the type 0 continuous conduction mode is possible.

In the type k continuous conduction mode, the series resonant converter exhibits elliptical
output characteristics, given by

M2ξ2 sin2
(
γ

2

)
+

1
ξ2

( Jγ
2
+ (−1)k

)2
cos2

(
γ

2

)
= 1 (22.89)

For the transformer-isolated converters of Fig. 22.45, M and J are related to the load voltage V
and load current I according to

M =
V

nVg
J =

InR0

Vg
(22.90)

Again, R0 is the tank characteristic impedance, referred to the transformer primary side. The
quantity γ is the angular length of one-half of the switching period:

γ =
ω0Ts

2
=
π

F
(22.91)

Equation (22.89) is valid only for k satisfying Eq. (22.87). It predicts that the voltage conversion
ratio M is restricted to the range

0 ≤ M ≤ 1
ξ

(22.92)

This is consistent with Eq. (22.21).
Typical CCM tank current waveforms are illustrated in Fig. 22.46. When k is even, the tank

inductor current is initially negative. In consequence, the switch network antiparallel diodes
conduct first, for a fraction of a half resonant cycle. If k is odd, then each half-switching period
is initiated by conduction of the switch network transistors. In either case, this is followed by
(ξ − 1) complete tank half-cycles of ringing. The half-switching period is then concluded by
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Fig. 22.46 Continuous conduction modes of the series resonant converter: (a) switching frequency
ranges over which various mode indices k and subharmonic numbers ξ occur; (b) tank inductor current
waveform, type k CCM, for odd k; (c) tank inductor current waveform, type k CCM, for even k
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a subinterval shorter than one complete resonant half-cycle, in which the device that did not
initially conduct is on. The next half- switching period then begins, and is symmetrical.

The steady-state control plane characteristic can be found for a resistive load R obeying
V = IR, by substitution of the normalized relation J = MQ into Eq. (22.89), where Q = n2R0/R.
Use of the quadratic formula and some algebraic manipulations allows solution for M, as a
function of load (via Q) and switching frequency (via γ):

M =

(Qγ
2

)

ξ4 tan2
(
γ

2

)
+

(Qγ
2

)2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(−1)k+1 +

√√√√√√√√√√√√
1 +

[
ξ2 − cos2

(
γ

2

)] [
ξ4 tan2

(
γ

2

)
+

(Qγ
2

)2]

(Qγ
2

)2
cos2

(
γ

2

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22.93)

This is the closed-form relationship between the conversion ratio M and the switching frequency,
for a resistive load. It is valid for any continuous conduction mode k.

The type k discontinuous conduction modes, for k odd, occur over the frequency range

fs <
f0
k

(22.94)

In these modes, the output voltage is independent of both load current and switching frequency,
and is described by

M =
1
k

(22.95)

The type k discontinuous conduction mode, for odd k, occurs over the range of load currents
given by

2(k + 1)
γ

> J >
2(k − 1)
γ

(22.96)

In the odd discontinuous conduction modes, the tank current rings for k complete resonant
half-cycles. All four output bridge rectifier diodes then become reverse-biased, and the tank
current remains at zero until the next switching half-period begins, as illustrated in Fig. 22.51.
Series resonant converters are not normally purposely designed to operate in odd discontinuous
conduction modes, because the output voltage is not controllable. Nonetheless, when the load
is removed with fs < f0, the series resonant converter operates in k = 1 DCM with M = 1.

The type k discontinuous conduction mode, for k even, also occurs over the frequency range

fs <
f0
k

(22.97)

Even discontinuous conduction modes exhibit current source characteristics, in which the load
current is a function of switching frequency and input voltage, but not of the load voltage. The
output relationship is

J =
2k
γ

(22.98)

Operation in this mode occurs for

1
k − 1

> M >
1

k + 1
(22.99)
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iL(t)

st
Q1

D1
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Fig. 22.47 Tank inductor current waveform, type k DCM, for even k

g+

Vg

+

V

Ig = gV Ig = gVg

g = 2k
R0

Fig. 22.48 Steady-state equivalent circuit model for an even discontinuous conduction mode: an effective
gyrator. The converter exhibits current source characteristics

In the even discontinuous conduction modes, the tank current rings for k complete resonant half-
cycles during each switching half-period. All four output bridge then become reverse-biased,
and the tank current remains at zero until the next switching half-period is initiated. Tank current
waveforms are illustrated in Fig. 22.47 for even DCM.

The series resonant converter possesses some unusual properties when operated in an even
discontinuous conduction mode. A dc equivalent circuit is given in Fig. 22.48, consisting of a
gyrator with gyration conductance g = 2k/gn2R0. The gyrator has the property of transforming
circuits into their dual networks; in the typical dc–dc converter application, the input voltage
source Vg is effectively transformed into its dual, an output current source of value gVg. Series
resonant converters have been purposely designed to operate in the k = 2 DCM, at power levels
of several tens of kW.

The complete control plane characteristics can now be plotted using Eqs. (22.87)–(22.99).
The result is shown in Fig. 22.49, and the mode boundaries are explicitly diagrammed in
Fig. 22.50. It can be seen that, for operation above resonance, the only possible operating mode
is the k = 0 CCM, and that the output voltage decreases monotonically with increasing switch-
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Fig. 22.49 Complete control plane characteristics of the series resonant converter, for 0.2 ≤ F ≤ 2
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Fig. 22.51 Tank inductor current waveform, type k DCM, for odd k

ing frequency. Reduction in load current (or increase in load resistance, which decreases Q)
causes the output voltage to increase. A number of successful designs that operate above reso-
nance and utilize zero-voltage switching have been documented in the literature [300, 314].

Operation below resonance is complicated by the presence of subharmonic and discontinu-
ous conduction modes. The k = 1 CCM and k = 2 DCM are well behaved, in that the output
voltage increases monotonically with increasing switching frequency. Increase of the load cur-
rent again causes the output voltage to decrease. Successful designs that operate in these modes
and employ zero-current switching are numerous. However, operation in the higher-order modes
(k = 2 CCM, k = 4 DCM, etc.) is normally avoided.

Given F and Q, the operating mode can be evaluated directly, using the following algorithm.
First, the continuous conduction mode k corresponding to operation at frequency F with heavy
loading is found:

k = INT

(
1
F

)
(22.100)

where INT (x) denotes the integer part of x. Next, the quantity k1 is determined:

k1 = INT

⎛⎜⎜⎜⎜⎜⎝1
2
+

√
1
4
+

Qπ
2F

⎞⎟⎟⎟⎟⎟⎠ (22.101)

The converter operates in type k CCM provided that:

k1 > k (22.102)

Otherwise, the converter operates in type k1 DCM. A simple algorithm can therefore be defined,
in which the conversion ratio M is computed for a given F and Q. First, Eqs. (22.100) to (22.102)
are evaluated, to determine the operating mode. Then, the appropriate equation (22.93), (22.95),
or (22.98) is evaluated to find M.
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Fig. 22.52 Output characteristics, k = 0 CCM (above resonance)

Output I − V plane characteristics for the k = 0 CCM, plotted using Eq. (22.89), are shown
in Fig. 22.52. The constant-frequency curves are elliptical, and all pass through the point M =
1, J = 0. For a given switching frequency, the operating point is given by the intersection of the
elliptical converter output characteristic with the load I − V characteristic.

Output plane characteristics that combine the k = 1 CCM, k = 1 DCM, and k = 2 DCM
are shown in Fig. 22.53. These were plotted using Eqs. (22.89), (22.95), and (22.98). These
curves were plotted with the assumption that the transistors are allowed to conduct no longer
than one tank half-cycle during each switching half-period; this eliminates subharmonic modes
and causes the converter to operate in k = 2 or k = 1 DCM whenever fs < 0.5 f0. It can be seen
that the constant-frequency curves are elliptical in the continuous conduction mode, vertical
(voltage source characteristic) in the k = 1 DCM, and horizontal (current source characteristic)
in the k = 2 DCM.

22.5.2 Parallel Resonant Converter

For operation in the frequency range 0.5 f0 < fs < ∞, the parallel resonant dc–dc converter ex-
hibits one continuous conduction mode and one discontinuous conduction mode. Typical CCM
switch voltage vs(t), tank inductor current iL(t), and tank capacitor voltage vC(t) waveforms are
illustrated in Fig. 22.54. The CCM converter output characteristics are given by
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M =

(
2
γ

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ϕ −
sin(ϕ)

cos
(
γ

2

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (22.103)

ϕ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− cos−1

(
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(
γ

2

)
+ J sin

(
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for 0 < γ < π (above resonance)

+ cos−1
(
cos

(
γ

2

)
+ J sin

(
γ

2

))
for π < γ < 2π (below resonance)

(22.104)

and where M, J, and γ are again defined as in Eqs. (22.90) and (22.91). Given the normalized
load current J and the half-switching-period-angle γ, one can evaluate Eq. (22.104) to find ϕ,
and then evaluate Eq. (22.103) to find the converter voltage conversion ratio M. In other words,
the output voltage can be found for a given load current and switching frequency, without need
for computer iteration.

A discontinuous conduction mode mechanism occurs in the parallel resonant converter
which is the dual of the discontinuous conduction mode mechanism of the series resonant con-
verter. In this mode, a discontinuous subinterval occurs in which all four output bridge rectifier
diodes are forward-biased, and the tank capacitor voltage remains at zero. This mode occurs
both above and below resonance when the converter is heavily loaded. Typical DCM tank ca-
pacitor voltage and inductor current waveforms are illustrated in Fig. 22.55. The condition for
operation in the discontinuous conduction mode is

J > Jcrit(γ) for DCM (22.105)

J < Jcrit(γ) for CCM
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Fig. 22.54 Typical waveforms of the parallel resonant converter, operating in the continuous conduction
mode

where

Jcrit(γ) = −
1
2

sin(γ) +

√
sin2

(
γ

2

)
+

1
4

sin2 (γ) (22.106)

The discontinuous conduction mode is described by the following set of equations:

MC0 = 1 − cos(β)

JL0 = J + sin(β)

cos(α + β) − 2 cos(α) = −1

− sin(α + β) + 2 sin(α) + (δ − α) = 2J (22.107)

β + δ = γ

M = 1 +

(
2
γ

)
(J − δ)

Unfortunately, the solution to this set of equations is not known in closed form, because of
the mixture of linear and trigonometric terms. In consequence, the equations must be solved
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Fig. 22.55 Typical waveforms of the parallel resonant converter, operating in the discontinuous conduc-
tion mode

iteratively. For a given γ and J, a computer is used to iteratively find the angles α, β, and δ.
M is then evaluated, and the output plane characteristics can be plotted. The result is given in
Fig. 22.56. The dashed lines are the DCM solutions, and the solid lines are the valid CCM so-
lutions. Figure 22.56 describes the complete dc behavior of the ideal parallel resonant converter
for all switching frequencies above 0.5 f0. For given values of normalized switching frequency
F = fs/ f0 = π/γ, the relationship between the normalized output current J and the normalized
output voltage M is approximately elliptical. At resonance (F = 1), the CCM ellipse degen-
erates to the horizontal line J = 1, and the converter exhibits current source characteristics.
Above resonance, the converter can both step-up the voltage (M > 1) and step-down the voltage
(M < 1). The normalized load current is then restricted to J < 1, corresponding to I < Vg/nR0.
For a given switching frequency greater than the resonant frequency, the actual limit on maxi-
mum load current is even more restrictive than this limit. Below resonance, the converter can
also step-up and step-down the voltage. Normalized load currents J greater than one are also ob-
tainable, depending on M and F. However, no solutions occur when M and J are simultaneously
large.
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Fig. 22.57 Exact control characteristics of the parallel resonant converter, with a resistive load. Both
CCM and DCM operation is included, for 0.5 ≤ F ≤ 3
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In Fig. 22.57, the control plane characteristics are plotted for a resistive load. The parameter
Q is defined for the parallel resonant converter as Q = R/n2R0. The normalized load current is
then given by J = M/Q.

22.6 Summary of Key Points

1. The sinusoidal approximation allows a great deal of insight to be gained into the operation
of resonant inverters and dc–dc converters. The voltage conversion ratio of dc–dc resonant
converters can be directly related to the tank network transfer function. Other important
converter properties, such as the output characteristics, dependence (or lack thereof) of
transistor current on load current, and zero-voltage- and zero-current-switching transitions,
can also be understood using this approximation. The approximation is accurate provided
that the effective Q-factor is sufficiently large, and provided that the switching frequency is
sufficiently close to resonance.

2. Simple equivalent circuits are derived, which represent the fundamental components of the
tank network waveforms, and the dc components of the dc terminal waveforms.

3. Exact solutions of the ideal dc–dc series and parallel resonant converters are listed here as
well. These solutions correctly predict the conversion ratios, for operation not only in the
fundamental continuous conduction mode, but in discontinuous and subharmonic modes as
well.

4. Zero-voltage switching mitigates the switching loss caused by diode recovered charge and
semiconductor device output capacitances. When the objective is to minimize switching
loss and EMI, it is preferable to operate each MOSFET and diode with zero-voltage switch-
ing.

5. Zero-current switching leads to natural commutation of SCRs, and can also mitigate the
switching loss due to current tailing in IGBTs.

6. The input impedance magnitude ||Zi||, and hence also the transistor current magnitude, are
monotonic functions of the load resistance R. The dependence of the transistor conduction
loss on the load current can be easily understood by simply plotting ‖Zi|| in the limiting
cases as R→ ∞ and as R→ 0, or ||Zi∞‖ and ||Zi0‖.

7. The ZVS/ZCS boundary is also a simple function of Zi∞ and Zi0. If ZVS occurs at open-
circuit and at short-circuit, then ZVS occurs for all loads. If ZVS occurs at short-circuit, and
ZCS occurs at open-circuit, then ZVS is obtained at matched load provided that ||Zi∞|| >
||Zi0‖.

8. The output characteristics of all resonant inverters considered here are elliptical, and are
described completely by the open-circuit transfer function magnitude ‖H∞‖, and the output
impedance ‖Zo0‖. These quantities can be chosen to match the output characteristics to the
application requirements.

Problems

22.1 Analysis of a half-bridge dc–dc parallel resonant converter, operated above resonance.
In Fig. 22.58, the elements Cb, LF , and CF are large in value, and have negligible switch-
ing ripple. You may assume that all elements are ideal. You may use the sinusoidal ap-
proximation as appropriate.
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Fig. 22.58 Half-bridge parallel resonant converter of Problem 22.1: (a) schematic, (b) switch voltage
waveform

(a) Sketch the waveform of the current ig(t).
(b) Construct an equivalent circuit for this converter, similar to Fig. 22.22, which mod-

els the fundamental components of the tank waveforms and the dc components of
the converter input current and output voltage. Clearly label the values and/or give
expressions for all elements in your model, as appropriate.

(c) Solve your model to derive an expression for the conversion ratio V/Vg = M(F,Qe, n).
At rated (maximum) load, this converter produces I = 20 A at V = 3.3 V.

(d) What is the converter switching frequency fs at rated load?
(e) What is the magnitude of the peak transistor current at rated load?

At minimum load, the converter produces I = 2 A at V = 3.3 V.
(f) What is the converter switching frequency fs at minimum load?
(g) What is the magnitude of the peak transistor current at minimum load? Compare

with your answer from part (e)—what happens to the conduction loss and efficiency
at minimum load?

22.2 A dc–dc resonant converter contains an LCC tank network (Fig. 22.1d), with an output
filter containing a filter inductor as in the parallel resonant dc–dc converter.

(a) Sketch an equivalent circuit model for this converter, based on the approximate si-
nusoidal analysis method of Sect. 22.1. Give expressions for all elements in your
model.

(b) Solve your model, to derive an expression for the conversion ratio M = V/Vg. Ex-
press M as a function of F = fs/ f∞, Qe = Re/R0, and n = Cs/Cp, where f∞ is
defined as in Eq. (22.50) and R0 is
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R0 =

√
L(Cs +Cp)

CsCp

(c) Plot M vs. F, for n = 1 and Qe = 1, 2, and 5.
(d) Plot M vs. F, for n = 0.25 and Qe = 1, 2, and 5.

22.3 Dual of the series resonant converter. In the converter illustrated in Fig. 22.59, LF1, LF2,
and CF are large filter elements, whose switching ripples are small. L and C are tank
elements, whose waveforms iL(t) and vC(t) are nearly sinusoidal.

+Vg

LF1

LF2

CF

C

LiL(t)

vC(t)
Q1

Q2

D1

D2

D3

D4

Q3

Q4

Fig. 22.59 Dual of the series resonant converter, Problem 22.3

(a) Using the sinusoidal approximation method, develop equivalent circuit models for
the switch network, tank network, and rectifier network.

(b) Sketch a Bode diagram of the parallel LC parallel tank impedance.
(c) Solve your model. Find an analytical solution for the converter voltage conversion

ratio M = V/Vg, as a function of the effective Qe and the normalized switching
frequency F = fs/ f0. Sketch M vs. F.

(d) What can you say about the validity of the sinusoidal approximation for this con-
verter? Which parts of your M vs. F plot of part (c) are valid and accurate?

22.4 The converter of Problem 22.3 operates below resonance.

(a) Sketch the waveform vC(t). For each subinterval, label: (i) which of the diodes D1 to
D4 and transistors Q1 to Q4 conduct current, and (ii) which devices block voltage.

(b) Does the reverse recovery process of diodes D1 to D4 lead to switching loss? Do the
output capacitances of transistors Q1 to Q4 lead to switching loss?
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(c) Repeat parts (a) and (b) for operation above resonance.

22.5 A parallel resonant converter operates with a dc input voltage of Vg = 270 V. The con-
verter supplies 5 V to a dc load. The dc load power varies over the range 20 W–200 W. It
is desired to operate the power transistors with zero-voltage switching. The tank element
values are L = 57 μH, Cp = 0.9 nF, referred to the transformer primary. The parallel
resonant tank network contains an isolation transformer having a turns ratio of 52:1.

(a) Define F as in Eq. (22.19). Derive an expression for F, as a function of M and Qe.
(b) Determine the switching frequency, peak transistor current, and peak tank capacitor

voltage at the maximum load power operating point.
(c) Determine the switching frequency, peak transistor current, and peak tank capacitor

voltage at the minimum load power operating point.

22.6 In a certain resonant inverter application, the dc input voltage is Vg = 320 V. The inverter
must produce an approximately sinusoidal output voltage having a frequency of 200
kHz. Under no load (output opencircuit) conditions, the inverter should produce a peak-
to-peak output voltage of 1500 V. The nominal resistive operating point is 200 Vrms
applied to 100 Ω. A nonisolated LCC inverter is employed. It is desired that the inverter
operate with zero-voltage switching, at least for load resistances less than 200 Ω.

(a) Derive expressions for the output open-circuit voltage Voc and short-circuit current
Isc of the LCC inverter. Express your results as functions of F = fs/ f∞, Vg, R∞ =
L/Cs||Cp and n = Cs/Cp. The open-circuit resonant frequency f∞ is defined in
Eq. (22.50).

(b) To meet the given specifications, how should the short-circuit current Isc be chosen?
(c) Specify tank element values that meet the specifications.
(d) Under what conditions does your design operate with zero-voltage switching?
(e) Compute the peak transistor current under no-load and short-circuit conditions.

22.7 A series resonant dc–dc converter operates with a dc input voltage of Vg = 550 V. The
converter supplies 30 kV to a load. The dc load power varies over the range 5 kW–25 kW.
It is desired to operate the power transistors with zero-voltage switching. The maximum
feasible switching frequency is 50 kHz. An isolation transformer having a 1: n turns ratio
is connected in series with the tank network. The peak tank capacitor voltage should be
no greater than 2000 V, referred to the primary.

(a) Derive expressions for the peak tank capacitor voltage and peak tank inductor cur-
rent.

(b) Select values for the tank inductance, tank capacitance, and turns ratio, such that the
given specifications are met. Attempt to minimize the peak tank inductor current,
while maximizing the worst-case minimum switching frequency.

22.8 Figure 22.60 illustrates a full-bridge resonant inverter containing an LLC tank network.

(a) Sketch the Bode diagrams of the input impedance under short-circuit and open-
circuit conditions: ||Zi0( jω)|| and ‖Zi∞( jω)||. Give analytical expressions for the reso-
nant frequencies and asymptotes.

(b) Describe the conditions on switching frequency and load resistance that lead to zero-
voltage switching.

(c) Derive an expression for the frequency fm, where ‖Zi0|| = ‖Zi∞||.
(d) Sketch the Bode plot of ‖H∞( jω)||. Label the resonant frequency, and give analytical

expressions for the asymptotes.
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Fig. 22.60 LLC inverter of Problem 22.8
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Fig. 22.61 Transformer-isolated LLC inverter, Problem 22.9

22.9 You are given the LLC inverter circuit of Fig. 22.61. Under nominal conditions, this
converter operates at switching frequency fs = 100 kHz. All elements are ideal.

(a) Determine the numerical values of the open-circuit peak output voltage Voc and the
short-circuit peak output current Isc.

(b) Sketch the elliptical output characteristic. Over what portion of this ellipse does the
converter operate with zero-voltage switching? Does it operate with zero-voltage
switching at matched load?

(c) Sketch the Bode plots of ‖Zi∞‖ and ‖Zi0‖, and label the numerical values of f0, f∞, fm,
and fs.

(d) What is the numerical value of the peak transistor current when R = 0? When R →
∞?

(e) The inverter operates with load resistances that can vary between 500 Ω and an
open-circuit. What is the resulting range of output voltage? Does the inverter always
operate with zero-voltage switching?

22.10 It is desired to obtain a converter with current source characteristics. Hence, a series
resonant converter is designed for operation in the k = 2 discontinuous conduction mode.
The switching frequency is chosen to be fs = 0.225 f0, where f0 is the tank resonant
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frequency (consider only open-loop operation). The load R is a linear resistance which
can assume any positive value: 0 ≤ R < ∞.

(a) Plot the output characteristics (M vs. J), for all values of R in the range 0 ≤ R <
∞. Label mode boundaries, evaluate the short-circuit current, and give analytical
expressions for the output characteristics.

(b) Over what range of R (referred to the tank characteristic impedance R0) does the
converter operate as intended, in the k = 2 discontinuous conduction mode?

22.11 The parallel resonant converter as a single-phase high-quality rectifier. It is desired to
utilize a transformer-isolated parallel resonant dc–dc converter in a single-phase low-
harmonic rectifier system. By properly varying the converter switching frequency, a near-
ideal rectifier system that can be modeled as in Fig. 21.16 is obtained. You may utilize
the results of Sect. 22.5.2 to answer this problem. The parallel resonant tank network con-
tains an isolation transformer having a 1: n turns ratio. You may use either approximate
graphical analysis or computer iteration to answer parts (b) and (c).

(a) Plot the normalized input characteristics (normalized input voltage mg = nvg/v vs.
normalized input current jg = ignR0/v) of the parallel resonant converter, operated
in the continuous conduction mode above resonance. Plot curves for F = fs/ f0 =
1.0, 1.1, 1.2, 1.3, 1.5, and 2.0. Compare these characteristics with the desired linear
resistive input characteristic vg/ig = Remulated.

(b) The converter is operated open-loop, with F = 1.1. The applied normalized input
voltage is a rectified sinusoid of unity magnitude: mg(t) = | sin(ωt)|. Sketch the re-
sulting normalized input current waveform jg(t). Approximately how large is the
peak current? The crossover dead time?

(c) A feedback loop is now added, which regulates the input current to follow the input
voltage such that ig(t) = vg(t)/Remulated. You may assume that the feedback loop oper-
ates perfectly. For the case Remulated = R0, and with the same applied mg(t) waveform
as in part (b), sketch the switching-frequency waveform for one ac line period [i.e.,
show how the controller must vary F to regulate ig(t)]. What is the maximum value
of F? Note: In practice, the converter would be designed to operate with a smaller
peak value of jg, so that the switching-frequency variations would be better behaved.

(d) Choose element values (tank inductance, tank capacitance, and transformer turns
ratio) such that the converter of part (c) meets the following specifications:

Ac input voltage 120 Vrms, 60 Hz
Dc output voltage 42 V
Average power 800 W
Maximum switching frequency 200 kHz

Refer the element values to the primary side of the transformer.
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Soft Switching

In addition to the resonant circuits introduced in Chap. 22, there has been much interest in
reducing the switching loss of the PWM converters of the previous chapters. Several of the
more popular approaches to obtaining soft switching in buck, boost, and other converters are
discussed in this chapter.

Mechanisms that cause switching loss are discussed in Chap. 4, including diode reverse re-
covery, semiconductor output capacitances, and IGBT current tailing. Soft switching involves
mitigation of one or more of these switching loss mechanisms in a PWM converter. The energy
that would otherwise be lost is recovered, and is transferred to the converter source or load. The
operation of a semiconductor device, during a given turn-on or turn-off switching transition,
can be classified as hard-switched, zero-current switched, or zero-voltage switched. Operation
of diodes and transistors with soft switching is examined in Sect. 23.1. In particular, it is prefer-
able to operate diodes with zero-voltage switching at their turn-off transitions, and to operate
MOSFETs with zero-voltage switching during their turn-on transitions. However, zero-voltage
switching comes at the expense of increased conduction loss, and so the engineer must consider
the effect of soft switching on the overall converter efficiency.

Resonant switch converters are a broad class of converters in which the PWM switch net-
work of a conventional buck, boost, or other converter is replaced with a switch cell containing
resonant elements. These resonant elements are positioned such that the semiconductor devices
operate with zero-current or zero-voltage switching, and such that one or more of the switching
loss mechanisms is reduced or eliminated. Other soft-switching approaches may employ reso-
nant switching transitions, but otherwise exhibit the approximately rectangular waveforms of
hard-switched converters. In any case, the resulting hybrid converter combines the properties of
the resonant switching network and the parent hard-switched PWM converter.

Soft-switching converters can exhibit reduced switching loss, at the expense of increased
conduction loss. Obtaining zero-voltage or zero-current switching requires that the resonant
elements have large ripple; often, these elements are operated in a manner similar to the dis-
continuous conduction modes of the series or parallel resonant converters. As in other resonant
schemes, the objectives of designing such a converter are: (1) to obtain smaller transformer and
low-pass filter elements via increase of the switching frequency and/or (2) to reduce the switch-
ing loss induced by component nonidealities such as diode stored charge, semiconductor device
capacitances, and transformer leakage inductance and winding capacitance.

© Springer Nature Switzerland AG 2020
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The resonant switch and soft-switching ideas are quite general, and can be applied to a
variety of topologies and applications. A large number of resonant switch networks have been
documented in the literature; a few basic approaches are listed here [70, 72, 73, 251, 328, 331–
349]. The basic zero-current-switching quasi-resonant switch network is analyzed in detail in
Sect. 23.2. Expressions for the average components of the switch network terminal waveforms
are found, leading to determination of the switch conversion ratio μ. The switch conversion
ratio μ performs the role of the duty cycle d of CCM PWM switch networks. For example, the
buck converter exhibits conversion ratio M equal to μ. Both half-wave and full-wave ringing of
the tank network are considered; these lead to different switch conversion ratio functions μ. In
general, given a PWM CCM converter having conversion ratio M(d), we can replace the PWM
switch network with a resonant switch network having switch conversion ratio μ. The resulting
quasi-resonant converter will then have conversion ratio M(μ). So we can obtain soft-switching
versions of all of the basic converters (buck, boost, buck–boost, forward, flyback, etc.) that
exhibit zero-voltage or zero-current switching and other desirable properties.

In Sect. 23.3, the characteristics of several other resonant switch networks are listed: the
zero-voltage-switching quasi-resonant switch network, the zero-current-switching and zero-
voltage-switching quasi-square-wave networks, and the multiresonant switch network. One can
obtain zero-voltage switching in all transistors and diodes using these networks.

Several related soft-switching approaches are now popular, which attain zero-voltage switch-
ing of the transistor or transistors in commonly used converters. The zero-voltage transition
approach finds application in full-bridge buck-derived converters. Active-clamp snubbers are
often added to forward and flyback converters, to attain zero-voltage switching and to reset
the transformer. These circuits lead to zero-voltage switching of the transistors, but (less-than-
optimal) zero-current switching of the secondary-side diodes. Nonetheless, high efficiency can
be achieved. An auxiliary resonant commutated pole can achieve zero-voltage switching in
voltage-source inverters. These converters are briefly discussed in Sect. 23.4.

23.1 Soft-Switching Mechanisms of Semiconductor Devices

When loosely used, the terms “zero-current switching” and “zero-voltage switching” normally
refer to one or more switching transitions of the transistor in a converter. However, to fully
understand how a converter generates switching loss, one must closely examine the switching
transitions of every semiconductor device. As described in Sect. 4.6, there are typically several
mechanisms that are sources of significant switching loss. At the turn-off transition of a diode,
its reverse-recovery process can induce loss in the transistor or other elements of the converter.
The energy stored in the output capacitance of a MOSFET can be lost when the MOSFET turns
on. IGBTs can lose significant energy during their turnoff transition, owing to the current tailing
phenomenon. The effects of zero-current switching and zero-voltage switching on each of these
devices are discussed in detail below.

23.1.1 Diode Switching

As discussed in Chap. 4, the reverse-recovery process usually leads to significant switching
loss associated with the turn-off transition of diodes. This is often the largest single source
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Fig. 23.1 Hard switching at the turn-off transition of a diode, conventional buck converter example: (a)
schematic, (b) diode voltage and current waveforms

of loss in a hard-switched converter. Normally, negligible loss is associated with the turn-on
transition of power diodes. Three types of diode turn-off transition waveforms are commonly
encountered in modern switching converters: hard switching, zero-current switching, and zero-
voltage switching.

Figure 23.1 illustrates a conventional hard-switched PWM buck converter. The diode volt-
age and current waveforms v(t) and i(t) are also illustrated, with an exaggerated reverse recov-
ery time. The output inductor current ripple is small. The diode turns off when the transistor is
turned on; the reverse recovery process leads to a negative peak current of large amplitude. The
diode must immediately support the full reverse voltage Vg, and hence both v(t) and i(t) must
change with large slopes during reverse recovery. As described in Sect. 4.3.3, hard switching of
the diode induces energy loss WD in the transistor, given approximately by

WD = VgQr + trVgI (23.1)

where Qr is the diode recovered charge and tr is the reverse recovery time, both taken to be
positive quantities. The recovered charge is relatively large because the slope di/dt is large
during the turn-off transition. The resonant circuit formed by the diode output capacitance C j

and the diode package and other wiring inductances leads to ringing at the end of the reverse
recovery time.
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Fig. 23.2 Zero-current switching at the turn-off transition of a diode, ZCS quasi-resonant buck converter
example: (a) converter schematic, (b) diode voltage and current waveforms

Figure 23.2 illustrates zero-current switching at the turn-off transition of a diode. The con-
verter example is a quasi-resonant zero-voltage switching buck converter (see Sect. 23.3.1). The
output inductor current ripple is again small. However, tank inductor Lr is now connected in
series with the diode. The resulting diode current waveform i(t) changes with a limited slope
as shown. The diode reverse-recovery process commences when i(t) passes through zero and
becomes negative. The negative i(t) actively removes stored charge from the diode; during this
reverse recovery time, the diode remains forward-biased. When the stored charge is removed,
then the diode voltage must rapidly change to −Vg. As described in Sect. 4.6.1, energy WD is
stored in inductor Lr at the end of the reverse recovery time, given by

WD = VgQr (23.2)

The resonant circuit formed by Lr and the diode output capacitance C j then cause this energy
to be circulated between Lr and C j. This energy is eventually dissipated by parasitic resistive
elements in the circuit, and hence is lost. Since Eqs. (23.1) and (23.2) are similar in form,
the switching losses induced by the reverse-recovery processes of diodes operating with hard
switching and with zero-current switching are similar in magnitude. Zero-current switching
may lead to somewhat lower loss because the reduced di/dt leads to less recovered charge Qr.
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Fig. 23.3 A dissipative snubber circuit,
for protection of a diode from excessive
voltage caused by ringing
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Zero-current switching of diodes also typically leads to increased peak inverse diode voltage
during the ringing of Lr and C j, because of the relatively large value of Lr.

When a diode operates with hard switching or zero-current switching, and when substantial
inductance is present in series with the diode, then significant ringing is observed in the diode
voltage waveform. A resonant circuit, comprised of the series inductance and the diode output
capacitance, is excited by the diode reverse recovery process, and the resulting ringing voltage
can be of large enough magnitude to lead to breakdown and failure of the diode. A common
example is the diodes on the secondary side of a hard-switched transformer-isolated converter;
the resonant circuit is then formed by the transformer leakage inductance and the diode out-
put capacitance. Other examples are the circuits of Figs. 23.2 and 23.36, in which the series
inductance is a discrete tank inductor.

A simple snubber circuit that is often used to protect the diode from excessive reverse volt-
age is illustrated in Fig. 23.3. Resistor R damps the ringing of the resonant circuit. Capacitor C
prevents the off-state voltage of the diode from causing excessive power loss in R. Nonetheless,
the energy consumed by R per switching period is typically greater than Eqs. (23.1) or (23.2).

Figure 23.4 illustrates zero-voltage switching at the turn-off transition of a diode. The figure
illustrates the example of a zero-voltage switching quasi-square wave buck converter, discussed
in Sect. 23.3.3. The output inductor Lr of this converter assumes the role of the tank inductor,
and exhibits large current ripple that causes the current ir(t) to reverse polarity. While the diode
conducts, its current i(t) is equal to ir(t). When ir(t) becomes negative, the diode continues to
conduct until its stored charge Qr has been removed. The diode then becomes reverse-biased,
and ir(t) flows through capacitor Cr and the diode output capacitance C j. The diode voltage
and current both change with limited slope in this type of switching, and the loss induced by
the diode reverse-recovery process is negligible because the waveforms are not significantly
damped by parasitic resistances in the circuit, and because the peak currents during reverse
recovery are relatively low. The diode stored charge and diode output capacitance both behave
as an effective nonlinear capacitor that can be combined with (or replace) tank capacitor Cr.
Snubber circuits such as Fig. 23.3 are not necessary when the diode operates with zero-voltage
switching.

Thus, zero-voltage switching at the turn-off transition of a diode is the preferred approach
that leads to minimum switching loss. Zero-current switching at the turn-off transition can be
problematic, because of the high peak inverse voltage induced across the diode by ringing.
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23.1.2 MOSFET Switching

The switching loss mechanisms typically encountered by a MOSFET in a hard-switched con-
verter are discussed in Chap. 4, and typical MOSFET voltage and current waveforms are illus-
trated in Fig. 23.5. The most significant components of switching loss in the MOSFET of this
circuit are: (1) the loss induced by the diode reverse recovery process and (2) the loss of the
energy stored in the MOSFET output capacitance Cds. Both loss mechanisms occur during the
MOSFET turn-on process.
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+
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Lri(t)

(b) i(t)

v(t)

Vg

0

Vg

0
Area
Qr

Fig. 23.4 Zero-voltage switching at the turn-off transition of a diode, ZVS quasi-square wave buck con-
verter example: (a) converter schematic, (b) diode current and voltage waveforms

In the hard-switched circuit of Fig. 23.5, with a fast gate driver there is essentially no switch-
ing loss incurred during the MOSFET turn-off transition. This occurs because of the substantial
output capacitance Cds of the MOSFET. This capacitance holds the voltage v(t) close to zero
while the MOSFET turns off, so that the turn-off switching loss is very small. After the MOSFET
has turned off, the output inductor current I flows through Cds. The voltage v(t) then increases
until v = Vg and the diode becomes forward-biased.

However, when the MOSFET turns on, a high peak current flows through the MOSFET
channel, induced by the diode reverse recovery and by the output capacitances of the MOSFET
and diode. This leads to substantial energy loss during the hard-switched turn-on transition of
the MOSFET.

When a MOSFET (or other transistor) operates with hard switching, and when substantial
inductance is present in series with the MOSFET, then significant ringing is observed in the
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Fig. 23.5 Hard switching of a MOSFET in a conventional buck converter: (a) schematic, (b) MOSFET
voltage and current waveforms

MOSFET voltage waveform. A resonant circuit, composed of the MOSFET output capacitance
and the series inductance, is excited when the MOSFET turns off, and the resulting ringing
voltage can be of large enough magnitude to lead to breakdown and failure of the MOSFET.
A common example is the MOSFET of the flyback converter, in which series inductance is
introduced by the transformer leakage inductance. An R-C snubber circuit, similar to that used
for the diode in Fig. 23.3, can be used to protect the MOSFET from damage caused by excessive
applied voltage. Another common snubber circuit is illustrated in Fig. 23.6. When the MOSFET
turns off, the current flowing in the transformer leakage inductance L� begins to flow into the
MOSFET capacitance Cds. These parasitic elements then ring, and the peak transistor voltage
can significantly exceed the ideal value of (D/D′)Vg.

One simple way to design the snubber circuit of Fig. 23.6 is to choose the capacitance Cs

to be large, so that vs(t) ≈ Vs contains negligible switching ripple. The resistance Rs is then
chosen so that the power consumption of Rs at the desired voltage Vs is equal to the switching
loss caused by L�:

V2
s

Rs
≈ 1

2
Li2 fs (23.3)
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Fig. 23.6 Insertion of a dis-
sipative voltage-clamped snub-
ber circuit into a flyback con-
verter. The MOSFET voltage is
clamped to a peak value of (Vg+
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The current i is equal to the current flowing in the transformer primary just before the MOSFET
is turned off. This approximate expression is useful for obtaining a first estimate of how to
choose Rs to obtain a given desired Vs.

Zero-current switching does not affect the switching loss that arises from the MOSFET
output capacitance, and it may or may not influence the loss induced by diode reverse recovery.
In consequence, zero-current switching is of little or no help in improving the efficiency of
converters that employ MOSFETs.

Fig. 23.7 Zero-voltage switching
of a MOSFET, ZVS quasi-square
wave buck converter example. The
MOSFET, its body diode, and its out-
put capacitance Cds are illustrated.
(a) Schematic, (b) MOSFET voltage
and current waveforms
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Zero-voltage switching can prevent both diode reverse recovery and semiconductor out-
put capacitances from inducing switching loss in MOSFETs. An example is illustrated in
Fig. 23.7. This circuit is again a zero-voltage switching quasi-square wave example, discussed
in Sect. 23.3.3. The converter circuit naturally discharges the energy stored in Cds, before the
MOSFET is switched on. When the drain-to-source voltage v(t) passes through zero, the MOS-
FET body diode becomes forward-biased. The MOSFET can then be turned on at zero voltage,
without incurring turn-on switching loss. The MOSFET turn-on transition must be completed
before the tank inductor current ir(t) becomes positive. The MOSFET turn-off transition is also
lossless, and is similar to the hard-switched case discussed above.

Zero-voltage switching of a MOSFET also causes its body diode to operate with zero-
voltage switching. This can eliminate the switching loss associated with reverse recovery of
the slow body diode, and improve the reliability of circuits that forward-bias this diode.

Zero-voltage switching can also eliminate the overvoltage problems associated with trans-
former leakage inductances, removing the need for voltage-clamped snubber circuits such as in
Fig. 23.6. An example is discussed in Sect. 23.4.2.

23.1.3 IGBT Switching

Like the MOSFET, the IGBT typically encounters substantial switching loss during its turn-on
transition, induced by the reverse-recovery process of diodes within the converter. In addition,
the IGBT exhibits significant switching loss during its turn-off transition, caused by the current
tailing phenomenon (see Chap. 4).

Zero-voltage switching has been successfully applied to IGBT circuits—an example is the
auxiliary resonant commutation circuit discussed in Sect. 23.4.3. This has the principal advan-
tage of eliminating the switching loss caused by diode reverse recovery. Although zero-voltage
switching can reduce the loss incurred during the turn-off transition, it is difficult to eliminate
the substantial loss caused by current tailing.

23.2 The Zero-Current Switching Quasi-Resonant Switch Cell

Figure 23.8a illustrates a generic buck converter, consisting of a switch cell cascaded by an L–C
low-pass filter. When the switch cell is realized as in Fig. 23.8b, then a conventional PWM buck
converter is obtained. Figures 23.8b,c illustrate two other possible realizations of the switch cell:
the half-wave and full-wave zero-current-switching quasi-resonant switches [331, 332]. In these
switch cells, a resonant tank capacitor Cr is placed in parallel with diode D2, while resonant tank
capacitor Lr is placed in series with the active transistor element.

Both resonant switch cells require a two-quadrant SPST switch. In the half-wave switch cell
of Fig. 23.8c, diode D1 is added in series with transistor Q1. This causes the Q1–D1 SPST switch
to turn off at the first zero crossing of the tank inductor current i1(t). In the full-wave switch cell
of Fig. 23.8d, antiparallel diode D1 allows bidirectional flow of the tank inductor current i1(t).
With this switch network, the Q1–D1 SPST switch is normally turned off at the second zero
crossing of the i1(t) waveform. In either switch cell, the Lr and Cr elements are relatively small
in value, such that their resonant frequency f0 is greater than the switching frequency fs, where

f0 =
1

2π
√

LrCr
=
ω0

2π
(23.4)
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Fig. 23.8 Implementation of the switch cell in a buck converter: (a) buck converter, with arbitrary switch
cell; (b) PWM switch cell; (c) half-wave ZCS quasi-resonant switch cell; (d) full-wave ZCS quasi-resonant
switch cell
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In the analysis which follows, it is assumed that the converter filter element values L and C
have negligible switching ripple. Hence, the switch cell terminal waveforms v1(t) and i2(t) are
well-approximated by their average values:

i2(t) ≈ 〈i2(t)〉Ts

v1(t) ≈ 〈v1(t)〉Ts

(23.5)

with the average defined as in Eq. (7.3). In steady-state, we can further approximate v1(t) and
i2(t) by their dc components V1 and I2:

i2(t) ≈ I2

v1(t) ≈ V1
(23.6)

Thus, the small-ripple approximation is employed for the converter filter elements, as usual.
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Fig. 23.9 The half-wave ZCS quasi-resonant switch cell, driven by the terminal quantities 〈v1(t)〉Ts and
〈i2(t)〉Ts

To understand the operation of the half-wave ZCS quasi-resonant switch cell, we can solve
the simplified circuit illustrated in Fig. 23.9. In accordance with the averaged switch modeling
approach of Sects. 14.1 and 15.2, it is desired to determine the average terminal waveforms
〈v2(t)〉TS and 〈i1(t)〉Ts , as functions of the applied quantities 〈v1(t)〉TS and 〈i2(t)〉TS . The switch
conversion ratio μ is then given by

μ =
〈v2(t)〉Ts

〈v1r(t)〉Ts

=
〈i1(t)〉Ts

〈i2r(t)〉Ts

(23.7)

In steady state, we can write

μ =
V2

V1
=

I1

I2
(23.8)

The steady-state analysis of this section employs Eq. (23.8) to determine μ.

23.2.1 Waveforms of the Half-Wave ZCS Quasi-Resonant Switch Cell

Typical waveforms of the half-wave cell of Fig. 23.9 are illustrated in Fig. 23.10. Each switch-
ing period consists of four subintervals as shown, having angular lengths α, β, δ, and ξ. The
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Fig. 23.10 Tank inductor current and
capacitor voltage waveforms, for the
half-wave ZCS quasi-resonant switch of
Fig. 23.9
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switching period begins when the controller turns on transistor Q1. The initial values of the
tank inductor current i1(t) and tank capacitor voltage v2(t) are zero. During subinterval 1, all
three semiconductor devices conduct. Diode D2 is forward-biased because i1(t) is less than I2.
In consequence, during subinterval 1 the switch cell reduces to the circuit of Fig. 23.11.

The slope of the inductor current is given by

di1(t)
dt
=

V1

Lr
(23.9)

with the initial condition i1(0) = 0. The solution is

i1(t) =
V1

Lr
t = ω0t

V1

R0
(23.10)

where the tank characteristic impedance R0 is defined as

R0 =

√
Lr

Cr
(23.11)

It is convenient to express the waveforms in terms of the angle θ = ω0t, instead of time t. At
the end of subinterval 1, ω0t = α. The subinterval ends when diode D2 becomes reverse-biased.
Since the diode D2 current is equal to I2− i1(t), this occurs when i1(t) = I2. Hence, we can write

Fig. 23.11 Circuit of the switch network
during subinterval 1

+

+
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Fig. 23.12 Circuit of the switch network
during subinterval 2
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Solution for α yields

α =
I2R0

V1
(23.13)

During subinterval 2, transistor Q1 and diode D1 conduct, while diode D2 is reverse-biased.
The switch network then becomes the circuit illustrated in Fig. 23.12. The resonant Lr–Cr tank
network is excited by the constant sources V1 and I2. The network equations are

Lr
di1(ω0t)

dt
= V1 − v2(ω0t)

Cr
dv2(ω0t)

dt
= i1(ω0t) − I2 (23.14)

with the initial conditions

v2(α) = 0 (23.15)

i1(α) = I2

The solution is

i1(ω0t) = I2 +
V1

R0
sin(ω0t − α) (23.16)

v2(ω0t) = V1(1 − cos(ω0t − α))

The tank inductor current rises to a peak value given by

I1 pk = I2 +
V1

R0
(23.17)

The subinterval ends at the first zero crossing of i1(t). If we denote the angular length of the
subinterval as β, then we can write

i1(α + β) = I2 +
V1

R0
sin(β) = 0 (23.18)

Solution for sin(β) yields

sin(β) = − I2R0

V1
(23.19)

Care must be employed when solving Eq. (23.19) for the angle β. It can be observed from
Fig. 23.10 that the angle β is greater than π. The correct branch of the arcsine function must be
selected, as follows:
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β = π + sin−1

(
I2R0

V1

)
(23.20)

where
−π

2
< sin−1(x) ≤ π

2
Note that the inequality

I2 <
V1

R0
(23.21)

must be satisfied; otherwise, there is no solution to Eq. (23.19). At excessive load currents,
where Eq. (23.21) is not satisfied, the tank inductor current never reaches zero, and the transistor
does not switch off at zero current.

The tank capacitor voltage at the end of subinterval 2 is found by evaluation of Eq. (23.16)
at ω0t = (α + β). The cos(β) term can be expressed as

cos(β) = −
√

1 − sin2(β) = −

√
1 −

(
I2R0

V1

)2

(23.22)

Substitution of Eq. (23.22) into Eq. (23.16) leads to

v2(α + β) = Vc1 = V1

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 +
√

1 −
(

I2R0

V1

)2
⎞⎟⎟⎟⎟⎟⎟⎟⎠ (23.23)

At the end of subinterval 2, diode D1 becomes reverse-biased. Transistor Q1 can then be
switched off at zero current.

During subinterval 3, all semiconductor devices are off, and the switch cell reduces to the
circuit of Fig. 23.13. The tank capacitor Cr is discharged by the filter inductor current I2. Hence,
the tank capacitor voltage v2 decreases linearly to zero. The circuit equations are

Cr
dv2(ω0t)

dt
= −I2 (23.24)

v2(α + β) = Vc1

The solution is
v2(ω0t) = Vc1 − I2R0(ω0t − α − β) (23.25)

Subinterval 3 ends when the tank capacitor voltage reaches zero. Diode D2 then becomes
forward-biased. Hence, we can write

v2(α + β + δ) = Vc1 − I2R0δ = 0 (23.26)

where δ is the angular length of subinterval 3. Solution for δ yields

Fig. 23.13 Circuit of the switch network
during subinterval 3

+

v2(t) I2Cr



23.2 The Zero-Current-Switching Quasi-Resonant Switch Cell 1009

δ =
Vc1

I2R0
=

V1

I2R0

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 −
√

1 −
(

I2R0

V1

)2
⎞⎟⎟⎟⎟⎟⎟⎟⎠ (23.27)

Subinterval 4, of angular length ξ, is identical to the diode conduction subinterval of the
conventional PWM switch network. Diode D2 conducts the filter inductor current I2, and the
tank capacitor voltage v2 is equal to zero. Transistor Q1 is off, and the input current i1 is equal
to zero.

The angular length of the switching period is

ω0Ts = α + β + δ + ξ =
2π f0

fs
=

2π
F

(23.28)

where

F =
fs

f0
(23.29)

Quasi-resonant switch networks are usually controlled by variation of the switching frequency
fs or, in normalized terms, by variation of F. Note that the interval lengths α, β, and δ are
determined by the response of the tank network. Hence, control of the switching frequency is
equivalent to control of the fourth subinterval length ξ. The subinterval length ξmust be positive,
and hence, the minimum switching period is limited as follows:

ω0Ts ≥ α + β + δ (23.30)

Substitution of Eqs. (23.13), (23.20), and (23.27) into Eq. (23.30) yields

2π
F
≥ I2R0

V1
+ π + sin−1

(
I2R0

V1

)
+

V1

I2R0

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 −
√

1 −
(

I2R0

V1

)2
⎞⎟⎟⎟⎟⎟⎟⎟⎠ (23.31)

This expression limits the maximum switching frequency, or maximum F, of the half-wave ZCS
quasi-resonant switch cell.

23.2.2 The Average Terminal Waveforms

It is now desired to solve for the power processing function performed by the switch network.
The switch conversion ratio μ is a generalization of the duty cycle d. It expresses how a resonant
switch network controls the average voltages and currents of a converter. In our buck converter
example, we can define μ as the ratio of 〈v2(t)〉TS to 〈v1(t)〉TS , or equivalently, the ratio of 〈i1(t)〉TS

to 〈i2(t)〉TS . In a hard-switched PWM network, this ratio is equal to the duty cycle d. Hence,
analytical results derived for hard-switched PWM converters can be adapted to quasi-resonant
converters, simply by replacing d with μ. In this section, we derive an expression for μ, by
averaging the terminal waveforms of the switch network.

The switch input current waveform i1(t) of Fig. 23.10 is reproduced in Fig. 23.14. The aver-
age switch input current is given by

〈i1(t)〉Ts =
1
Ts

∫ t+Ts

t
i1(t)dt =

q1 + q2

Ts
(23.32)
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Fig. 23.14 Input current waveform i1(t),
and the areas q1 and q2 during subintervals
1 and 2, respectively

+
00

i1(t)

I2 i1(t) Ts

t

q2
q1

The charge quantities q1 and q2 are the areas under the i1(t) waveform during the first and second
subintervals, respectively. The charge q1 is given by the triangle area formula

q1 =

∫ α
ω0

0
i1(t)dt =

1
2

(
α

ω0

)
(I2) (23.33)

The time α/ω0 is the length of subinterval 1. The charge q2 is

q2 =

∫ α+β
ω0

α
ω0

i1(t)dt (23.34)

According to Fig. 23.12, during subinterval 2 the current i1(t) can be related to the tank capacitor
current iC(t) and the switch output current I2 by the node equation

i1(t) = iC(t) + I2 (23.35)

Substitution of Eq. (23.35) into Eq. (23.34) leads to

q2 =

∫ α+β
ω0

α
ω0

iC(t)dt +
∫ α+β

ω0

α
ω0

I2dt (23.36)

Both integrals in Eq. (23.36) can easily be evaluated, as follows. Since the second term involves
the integral of the constant current I2, this term is

∫ α+β
ω0

α
ω0

I2dt = I2
β

ω0
(23.37)

The first term in Eq. (23.36) involves the integral of the capacitor current over subinterval 2.
Hence, this term is equal to the change in capacitor charge over the second subinterval:

∫ α+β
ω0

α
ω0

iC(t)dt = C

(
v2

(
α + β

ω0

)
− v2

(
α

ω0

))
(23.38)

(recall that Δq = CΔv in a capacitor). During the second subinterval, the tank capacitor voltage
is initially zero, and has a final value of Vc1. Hence, Eq. (23.38) reduces to

∫ α+β
ω0

α
ω0

iC(t)dt = C (Vc1 − 0) = CVc1 (23.39)
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Substitution of Eqs. (23.37) and (23.39) into Eq. (23.36) leads to the following expression for
q2:

q2 = CVc1 + I2
β

ω0
(23.40)

Equations (23.33) and (23.40) can now be inserted into Eq. (23.32), to obtain the following
expression for the switch input current:

〈i1(t)〉Ts =
αI2

2ω0Ts
+

CVc1

Ts
+
βI2

ω0Ts
(23.41)

Substitution of Eq. (23.41) into (23.8) leads to the following expression for the switch con-
version ratio:

μ =
〈i1(t)〉Ts

I2
=

α

2ω0Ts
+

CVc1

I2Ts
+
β

ω0Ts
(23.42)

Finally, the quantities α, β, and Vc1 can be eliminated, using Eqs. (23.13), (23.20), (23.23). The
result is

μ = F
1

2π

[
1
2

Js + π + sin−1(Js) +
1
Js

(
1 +

√
1 − J2

s

)]
(23.43)

where

Js =
I2R0

V1
(23.44)

Equation (23.43) is of the form
μ = FP 1

2
(Js) (23.45)

where

P 1
2
(Js) =

1
2π

[
1
2

Js + π + sin−1(Js) +
1
Js

(
1 +

√
1 − J2

s

)]
(23.46)

Thus, the switch conversion ratio μ is directly controllable by variation of the switching fre-
quency, through F. The switch conversion ratio is also a function of the applied terminal voltage
V1 and current I2, via Js. The function P 1

2
(Js) is sketched in Fig. 23.15. The switch conversion

ratio μ is sketched in Fig. 23.16, for various values of F and Js. These characteristics are sim-
ilar in shape to the function P(Js), and are simply scaled by the factor F. It can be seen that
the conversion ratio μ is a strong function of the current I2, via Js. The characteristics end at
Js = 1; according to Eq. (23.31), the zero-current switching property is lost when Js > 1. The
characteristics also end at the maximum switching-frequency limit given by Eq. (23.31). This
expression can be simplified by use of Eq. (23.43), to express the limit in terms of μ as follows:

μ ≤ 1 − JsF
4π

(23.47)

The switch conversion ratio μ is thus limited to a value slightly less than 1.
The averaged waveforms of converters containing half-wave ZCS quasi-resonant switches

can now be determined. The results of the analysis of PWM converters operating in the continu-
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Fig. 23.15 The function P 1
2
(Js)

ous conduction mode can be directly adapted to the related quasi-resonant converters, simply by
replacing the duty cycle d with the switch conversion ratio μ. For the buck converter example,
the conversion ratio is

M =
V
Vg
= μ (23.48)

This result could also be derived by use of the principle of inductor volt-second balance. The
average voltage across the filter inductor is (μVg − V). Upon equating this voltage to zero, we
obtain Eq. (23.48).

In the buck converter, I2 is equal to the load current I, while V1 is equal to the converter
input voltage Vg. Hence, the quantity Js is

Js =
IR0

Vg
(23.49)

Zero-current switching occurs for

I ≤
Vg

R0
(23.50)

The output voltage can vary over the range

0 ≤ V ≤ Vg −
FIR0

4π
(23.51)

which nearly coincides with the PWM output voltage range 0 ≤ V ≤ Vg.
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Fig. 23.16 Characteristics of the half-
wave ZCS quasi-resonant switch
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Fig. 23.17 Boost converter containing a half-wave ZCS quasi-resonant switch

A boost converter employing a half-wave ZCS quasi-resonant switch is illustrated in
Fig. 23.17. The conversion ratio of the boost converter is given by

M =
V
Vg
=

1
1 − μ (23.52)

The half-wave switch conversion ratio μ is again given by Eqs. (23.44) to (23.46). For the boost
converter, the applied switch voltage V1 is equal to the output voltage V , while the applied
switch current I2 is equal to the filter inductor current, or Ig. Hence, the quantity Js is

Js =
I2R0

V1
=

IgR0

V
(23.53)
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Fig. 23.18 Tank inductor current and ca-
pacitor voltage waveforms, for the full-
wave ZCS quasi-resonant switch cell of
Fig. 23.8d
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Also, the input current Ig of the boost converter is related to the load current I according to

Ig =
I

1 − μ (23.54)

Equations (23.52) to (23.54), in conjunction with Eqs. (23.44) to (23.46), describe the averaged
waveforms of the half-wave quasi-resonant ZCS boost converter.

23.2.3 The Full-Wave ZCS Quasi-Resonant Switch Cell

The full-wave ZCS quasi-resonant switch cell is illustrated in Fig. 23.8d. It differs from the
half-wave cell in that elements D1 and Q1 are connected in antiparallel, to form a current-
bidirectional two-quadrant switch. Typical tank inductor current and tank capacitor voltage
waveforms are illustrated in Fig. 23.18. These waveforms are similar to those of the half-wave
case, except that the Q1/D1 switch interrupts the tank inductor current i1(t) at its second zero
crossing. While i1(t) is negative, diode D1 conducts, and transistor Q1 can be turned off at zero
current.

The analysis is nearly the same as for the half-wave case, with the exception of subinterval
2. The subinterval 2 angular length β and final voltage Vc1 can be shown to be

β =

{
π + sin−1(Js) (half wave)
2π − sin−1(Js) (full wave)

(23.55)

Vc1 =

⎧⎪⎪⎨⎪⎪⎩
V1

(
1 +

√
1 − J2

s

)
(half wave)

V1

(
1 −

√
1 − J2

s

)
(full wave)

(23.56)

In either case, the switch conversion ratio μ is given by Eq. (23.42). For the full-wave switch,
one obtains
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μ = FP1(Js) (23.57)

where P1(Js) is given by

P1(Js) =
1

2π

[
1
2

Js + 2π − sin−1(Js) +
1
Js

(
1 −

√
1 − J2

s

)]
(23.58)

In the full-wave case, P1(Js) is essentially independent of Js:

P1(Js) ≈ 1 (23.59)

The worst-case deviation of P1(Js) from 1 occurs as Js tends to 1, where P1(Js) tends to 0.96.
So P1(Js) lies within 4% of unity for 0 < Js < 1. Hence, for the full-wave case, it is a good
approximation to express the switch conversion ratio as

μ ≈ F =
fs

f0
(23.60)

The full-wave quasi-resonant switch therefore exhibits voltage-source output characteristics,
controllable by F. Equations describing the average waveforms of CCM PWM converters can
be adapted to apply to full-wave ZCS quasi-resonant converters, simply by replacing the duty
cycle d with the normalized switching frequency F. The conversion ratios of full-wave quasi-
resonant converters exhibit negligible dependence on the load current.

The variation of the switch conversion ratio μ with F and Js is plotted in Fig. 23.19. For
a typical voltage regulator application, the range of switching-frequency variations is much
smaller in the full wave mode than in the half-wave mode, because μ does not depend on the
load current. Variations in the load current do not induce the controller to significantly change
the switching frequency.

Fig. 23.19 Characteristics of the
full-wave ZCS quasi-resonant switch
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23.3 Resonant Switch Topologies

So far, we have considered the zero-current-switching quasi-resonant switch cell, illustrated
in Fig. 23.20. The ideal SPST switch is realized using a voltage-bidirectional or current-
bidirectional two-quadrant switch, to obtain half-wave or full-wave ZCS quasi-resonant switch
networks, respectively.

Fig. 23.20 Basic ZCS quasi-
resonant switch cell

+

v2(t)

i1(t) i2(t)
+

v1(t)

Lr

Cr

ZCS quasi-resonant switch cell

Switch network

+

v1r(t)

i2r(t)

D2

SW

The resonant elements Lr and Cr can be moved to several different positions in the converter,
without altering the basic switch properties. For example, Fig. 23.21 illustrates connection of the
resonant tank capacitor Cr between the cathode of diode D2, and the converter output or input
terminals. Although this may change the dc component of the tank capacitor voltage, the ac
components of the tank capacitor voltage waveform are unchanged. Also, the terminal voltage
waveform v2(t) is unchanged. The voltages vg(t) and v(t) contain negligible high-frequency ac
components, and hence the converter input and output terminal potentials can be considered to
be at high-frequency ac ground.

A test to determine the topology of a resonant switch network is to replace all low-frequency
filter inductors with open circuits, and to replace all dc sources and low-frequency filter capac-
itors with short circuits [343]. The elements of the resonant switch cell remain. In the case of
the zero-current-switching quasi-resonant switch, the network of Fig. 23.22 is always obtained.

It can be seen from Fig. 23.22 that diode D2 switches on and off at the zero crossings of the
tank capacitor voltage v2(t), while the switch elements Q1 and D1 switch at the zero crossings
of the tank inductor current i1(t). Zero-voltage switching of diode D2 is highly advantageous,
because it essentially eliminates the switching loss caused by the recovered charge and output
capacitance of diode D2. Zero-current switching of Q1 and D1 can be used to advantage when Q1

is realized by an SCR or IGBT. However, in high-frequency converters employing MOSFETs,
zero-current switching of Q1 and D1 is generally a poor choice. Significant switching loss due
to the output capacitances of Q1 and D1 may be observed. In addition, in the full-wave case,
the recovered charge of diode D1 leads to significant ringing and switching loss at the end of
subinterval 2 [333].

The ZCS quasi-resonant switch exhibits increased conduction loss, relative to an equivalent
PWM switch, because the peak transistor current is increased. The peak transistor current is
given by Eq. (23.17); since Js ≤ 1, the peak current is I1pk ≥ 2I2. In addition, the full-wave ZCS
switch exhibits poor efficiency at light load, owing to the conduction loss caused by circulating
tank currents. The half-wave ZCS switch exhibits additional conduction loss due to the added
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Fig. 23.21 Connection of the tank capacitor of the ZCS quasi-resonant cell to other points at ac ground:
(a) connection to the dc output, (b) connection to the dc input. In each case, the ac components of the
waveforms are unchanged

Fig. 23.22 Elimination of converter
low-frequency elements causes the
ZCS quasi-resonant switch cell to re-
duce to this network

+

v2(t)
i1(t)

Lr

CrD2

SW

forward voltage drop of diode D1. The peak transistor voltage is V1, which is identical to the
PWM case.

23.3.1 The Zero-Voltage-Switching Quasi-Resonant Switch

The resonant switch network illustrated in Fig. 23.23 is the dual of the network of Fig. 23.22.
This network is known as the zero-voltage-switching quasi-resonant switch [334]. Since the
tank capacitor Cr appears in parallel with the SPST switch, the elements Q1 and D1 used to
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realize the SPST switch turn on and off at zero voltage. The tank inductor Lr is effectively in
series with diode D2, and hence diode D2 switches at zero current. Converters containing ZVS
quasi-resonant switches can be realized in a number of ways. The only requirement is that,
when the low-frequency filter inductors, filter capacitors, and sources are replaced by open-or
short circuits as described above, then the high-frequency switch network of Fig. 23.23 should
remain.

For example, a zero-voltage-switching quasi-resonant buck converter is illustrated in
Fig. 23.24a. Typical tank capacitor voltage and tank inductor current waveforms are given in
Fig. 23.24b. A current-bidirectional realization of the two-quadrant SPST switch is shown; this
causes the ZVS quasi-resonant switch to operate in the half-wave mode. Use of a voltage-
bidirectional two-quadrant SPST switch allows full-wave operation.

By analysis similar to that of Sect. 23.2, it can be shown that the switch conversion ratio μ
of the half-wave ZVS quasi-resonant switch is

μ = 1 − FP 1
2

(
1
Js

)
(23.61)

The function P 1
2
(Js) is again given by Eq. (23.46), and the quantity Js is defined in Eq. (23.44).

For the full-wave ZVS quasi-resonant switch, one obtains

μ = 1 − FP1

(
1
Js

)
(23.62)

where P1(Js) is given by Eq. (23.58). The condition for zero-voltage switching is

Js ≥ 1 (23.63)

Thus, the zero-voltage switching property is lost at light load. The peak transistor voltage is
given by

peak transistor voltage Vcr,pk = (1 + Js)V1 (23.64)

This equation predicts that load current variations can lead to large voltage stress on transistor
Q1. For example, if it is desired to obtain zero-voltage switching over a 5:1 range of load current
variations, then Js should vary between 1 and 5. According to Eq. (23.64), the peak transistor
voltage then varies between two times and six times the applied voltage V1. The maximum
transistor current is equal to the applied current I2. Although the maximum transistor current
in the ZVS quasi-resonant switch is identical to that of the PWM switch, the peak transistor
blocking voltage is substantially increased. This leads to increased conduction loss, because
transistor on-resistance increases rapidly with rated blocking voltage.

Fig. 23.23 Elimination of converter low-frequency
elements reduces the ZVS quasi-resonant switch cell
to this network Lr

Cr

D2

SW
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Fig. 23.24 A ZVS quasi-resonant buck converter: (a) circuit, (b) tank waveforms

23.3.2 The Zero-Voltage-Switching Multiresonant Switch

The resonant switch network of Fig. 23.25 contains tank capacitor Cd in parallel with diode D2,
as in the ZCS switch network of Fig. 23.22. In addition, it contains tank capacitor Cs in parallel
with the SPST switch, as in the ZVS switch network of Fig. 23.23. In consequence, all semicon-
ductor elements switch at zero voltage. This three-element resonant switch network is known as
the zero-voltage-switching multiresonant switch (ZVS MRS). Since no semiconductor output
capacitances or diode recovered charges lead to ringing or switching loss, the ZVS MRS ex-
hibits very low switching loss. For the same reason, generation of electromagnetic interference
is reduced.

A half-wave ZVS MRS realization of the buck converter is illustrated in Fig. 23.26. In a
typical design that must operate over a 5:1 load range and with 0.4 ≤ μ ≤ 0.6, the designer
might choose a maximum F of 1.0, a maximum J of 1.4, and Cd/Cs = 3, where these quantities
are defined as follows:
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Fig. 23.25 Elimination of converter low-frequency
elements reduces the ZVS multiresonant switch cell
to this network Lr
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Fig. 23.26 Half-wave ZVS multiresonant buck converter

f0 =
1

2π
√

LCt

R0 =

√
L
Ct

F =
fs

f0
J =

I2R0

V1
(23.65)

As usual, the conversion ratio is defined as μ = V2/V1. The resulting peak transistor voltage
for this typical design is approximately 2.8 V1, while the peak transistor current is 2I2. Hence,
conduction losses are higher than in an equivalent PWM switch. The range of switch conversion
ratios μ is a function of the capacitor ratio Cd/Cs; in a good design, values of μ ranging from
nearly one to nearly zero can be obtained, with a wide range of dc load currents and while
maintaining zero-voltage switching.

Analysis and design charts for the ZVS MRS are given in [335–338]. Results for the typical
choice Cd = 3Cs are plotted in Fig. 23.27. These plots illustrate how the switch conversion ratio
μ varies as a function of load current and switching frequency. Figure 23.27a also illustrates
the boundary of zero-voltage switching: ZVS is lost for operation outside the dashed lines.
Decreasing the ratio of Cd to Cs reduces the area of the ZVS region.

Other resonant converters in which all semiconductor devices operate with zero-voltage
switching are known. Examples include some operating modes of the parallel and LCC resonant
converters described in Chap. 22, as well as the class-E converters described in [340–342].

23.3.3 Quasi-Square-Wave Resonant Switches

Another basic class of resonant switch networks is the quasi-square wave converters. Both zero-
voltage switching and zero-current switching versions are known; the resonant tank networks
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Fig. 23.27 Conversion ratio μ for the multiresonant switch with Cd = 3Cs: (a) conversion ratio μ vs.
normalized current J (solid lines: conversion ratio; dashed lines: boundaries of zero-voltage switching),
(b) conversion ratio μ vs. normalized switching frequency F
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Fig. 23.28 Elimination of converter low-frequency elements reduces the quasi-resonant switch cells to
these networks: (a) ZCS quasi-square-wave network, (b) ZVS quasi-square-wave network

+
Lr

Cr

Vg

Cf

Lf D1

D2

Q1 L

C R

+

V

I

Fig. 23.29 Incorporation of a ZCS quasi-square-wave resonant switch into a buck converter containing
an L–C input filter

are illustrated in Fig. 23.28. In the network of Fig. 23.28a, all semiconductor devices are ef-
fectively in series with the tank inductor, and hence operate with zero-current switching. In
the network of Fig. 23.28b, all semiconductor devices are effectively in parallel with the tank
capacitor, and hence operate with zero-voltage switching.

Figure 23.29 illustrates implementation of a zero current switching quasi-square wave res-
onant switch, in a buck converter with input filter. Elements Lf and C f are large in value, and
constitute a single-section L–C input filter. Elements Lr and Cr form the series resonant tank;
these elements are placed in series with input filter capacitor C f . Since Cr and C f are connected
in series, they can be combined into a single small-value capacitor. In this zero-current switching
converter, the peak transistor current is identical to the peak transistor current of an equivalent
PWM converter. However, the peak transistor blocking voltage is increased. The ZCS QSW
resonant switch exhibits a switch conversion ratio μ that is restricted to the range 0 ≤ μ ≤ 0.5.
Analysis of this resonant switch is given in [343, 344].

A buck converter, containing a zero-voltage-switching quasi-square wave (ZVS QSW) res-
onant switch, is illustrated in Fig. 23.30. Typical waveforms are given in Fig. 23.31. Since the
tank inductor Lr and the output filter inductor L are connected in parallel, these two elements
can be combined into a single inductor having a small value nearly equal to Lr. Analyses of
the ZVS QSW resonant switch are given in [70, 344, 345]. A related full-bridge converter is
described in [328]. The ZVS QSW resonant switch is notable because zero-voltage switching
is obtained in all semiconductor devices, yet the peak transistor voltage is identical to that of an
equivalent PWM switch [343]. However, the peak transistor currents are increased.

Characteristics of the zero-voltage-switching quasi-square wave resonant switch are plotted
in Fig. 23.32. The switch conversion ratio μ = V2/V1 is plotted as a function of normalized
switching frequency F and normalized output current J, where these quantities are defined as
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Fig. 23.30 Incorporation of a ZVS quasi-square-wave resonant switch into a buck converter

Fig. 23.31 Waveforms of the ZVS quasi-
square-wave resonant switch converter of
Fig. 23.30
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In addition, the zero-voltage-switching boundary is plotted. It can be seen that the requirement
for zero-voltage switching limits the switch conversion ratio μ to the range 0.5 ≤ μ ≤ 1. In
consequence, the buck converter of Fig. 23.30 cannot produce output voltages less than 0.5Vg

without losing the ZVS property. A version which attains 0 ≤ μ ≤ 1, at the expense of increased
transistor voltage stress, is described in [346]. In addition, the two-switch version of the ZVS
QSW switch can operate with ZVS for μ < 0.5.

A useful variant of the converter of Fig. 23.30 involves replacement of the diode with a
synchronous rectifier, as illustrated in Fig. 23.33 [338, 339]. The second transistor introduces an
additional degree of freedom in control of the converter, because this transistor can be allowed
to conduct longer than the diode would otherwise conduct. This fact can be used to extend the
region of zero-voltage switching to conversion ratios approaching zero, and also to operate the
converter with constant switching frequency.



1024 23 Soft Switching

J = 00.5135

μ

F

1.0

0.5

0.5 1.0

Fig. 23.32 Characteristics of the ZVS quasi-square-wave resonant switch network: switch conversion
ratio μ, as a function of F and J. Dashed line: ZVS boundary
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Fig. 23.33 Quasi-square-wave ZVS buck converter containing a synchronous rectifier

Typical tank element waveforms for the circuit of Fig. 23.33 are illustrated in Fig. 23.34.
These waveforms resemble those of the single switch case, Fig. 23.31, except that the tank
current is negative while transistor Q2 conducts. The duty cycle D is defined with respect to the
turn-off transitions of transistors Q1 and Q2, as illustrated.

Characteristics of the two-switch QSW-ZVS switch network are plotted in Fig. 23.35, for
the case of constant switching frequency at F = 0.5. The boundary of zero-voltage switching
is also illustrated. Operation at a lower value of F causes the ZVS boundary to be extended to
larger values of J, and to values of μ that more closely approach the extreme values μ = 0 and
μ = 1.

To the extent that the commutation intervals can be neglected, one would expect that the
switch conversion ratio μ is simply equal to the duty cycle D. It can be seen from Fig. 23.35 that
this is indeed the case. The characteristics are approximately horizontal lines, nearly indepen-
dent of load current J.
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Fig. 23.34 Waveforms for the two-
switch QSW-ZVS converter of Fig. 23.33
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Zero-voltage switching quasi-square wave converters exhibit very low switching loss, be-
cause all semiconductor elements operate with zero-voltage switching. In the constant-frequency
case containing a synchronous rectifier, the converter behavior is nearly the same as for the
hard-switched PWM case, since μ ≈ D. The major disadvantage is the increased conduction
loss, caused by the reversal of the inductor current.

23.4 Soft Switching in PWM Converters

The quasi-square wave approach of the previous section is notable because it attains zero-
voltage switching without increasing the peak voltage applied to the transistor. Several related
soft-switching approaches have now become popular, which also attain zero-voltage switching
without increasing the transistor peak voltage stress. In this section, popular zero-voltage switch-
ing versions of the full bridge, forward, and flyback converters, as well as the voltage-source
inverter, are briefly discussed.

23.4.1 The Zero-Voltage Transition Full-Bridge Converter

It is possible to obtain soft switching in other types of converters as well. An example is the zero-
voltage transition (ZVT) converter based on the full-bridge transformer-isolated buck converter,
illustrated in Fig. 23.36 [324–327]. The transistor and diode output capacitances are represented
in the figure by capacitances Cleg. Commutating inductor Lc is placed in series with the trans-
former; the net inductance Lc includes both transformer leakage inductance and the inductance
of an additional discrete element. This inductor causes the full-bridge switch network to drive
an effective inductive load, and results in zero-voltage switching of the primary-side semicon-
ductor devices. Although the waveforms are not sinusoidal, it can nonetheless be said that the
switch network output current ic(t) lags the voltage vs(t), because the zero crossings of ic(t)
occur after the ZVS switching transitions are completed.

The output voltage is controlled via phase control. As illustrated in Fig. 23.37, both halves
of the bridge switch network operate with a 50% duty cycle, and the phase difference between
the half-bridge switch networks is controlled. The idealized waveforms of Fig. 23.37 neglect
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Fig. 23.35 Conversion ratio μ, as a function of duty cycle D and normalized load current J, for the two-
switch QSW-ZVS converter illustrated in Fig. 23.33. Curves are plotted for constant-frequency control
with F = 0.5. The dashed line is the zero-voltage switching boundary

the switching transitions, and the subinterval numbers correspond to those of the more detailed
Fig. 23.38. The phase-shift variable φ lies in the range 0 ≤ φ ≤ 1, and assumes the role of the
duty cycle d in this converter. The quantity φ is defined as

φ =
(t1 − t0)(

Ts

2

) (23.67)

By volt-second balance on the secondary-side filter inductor, the conversion ratio M(φ) is ex-
pressed as

M(φ) =
V
Vg
= nφ (23.68)

This expression neglects the lengths of the switching transitions.
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Fig. 23.36 Zero-voltage transition converter, based on the full-bridge isolated buck converter
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Fig. 23.37 Phase-shift control of the ZVT full-bridge converter. Switching transitions are neglected in
this figure, and subinterval numbering follows Fig. 23.38

Although the circuit appears symmetrical, the phase-shift control scheme introduces an
asymmetry that causes the two half-bridge switch networks to behave quite differently dur-
ing the switching transitions. During subintervals 4 and 10, energy is actively transmitted from
the source Vg through the switches and transformer. These subintervals are initiated by the
switching of the half-bridge network composed of the elements Q1, D1, Q2, and D2, called the
“passive-to-active” (P-A) transition [326]. Subintervals 4 and 10 are terminated by the switching
of the half-bridge network comprised by the elements Q3, D3, Q4, and D4, called the “active-
to-passive” (A–P) transition.

The turn-on and turn-off switching processes of this converter are similar to the zero-voltage-
switching turn-off process described in the previous section. Detailed primary-side waveforms
are illustrated in Fig. 23.38. During subinterval 0, Q2 and D4 conduct. If the transformer mag-
netizing current iM is negligible, then the commutating inductor current is given by ic(t0) = −nI,
where I is the load current. The passive-to-active transition is initiated when transistor Q2 is
turned off. The negative ic then causes capacitors Cleg1 and Cleg2 to charge, increasing v2(t). Dur-
ing subinterval 1, Lc, Cleg1, and Cleg2 form a resonant network that rings with approximately
sinusoidal waveforms. If sufficient energy was initially stored in Lc, then v2(t) eventually reaches
Vg, terminating subinterval 1. Diode D1 then clamps v2(t) to Vg during subinterval 2. Transistor
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Q1 is turned on at zero voltage during subinterval 2; in practice, this is implemented by insertion
of a small delay between the switching transitions of transistors Q2 and Q1.

If Lc does not initially store sufficient energy to charge the total capacitance (Cleg1 + Cleg2)
from v2 = 0 to v2 = Vg during subinterval 1, then v2(t) will never reach Vg. Switching loss will
then occur when transistor Q1 is turned on. This situation typically occurs at light load, where
I is small. Sometimes, the design engineer may choose to simply accept this power loss; after
all, other losses such as conduction loss are small at light load. An alternative is to modify the
circuit to increase the energy stored in Lc at t = t0 under light load conditions. One way to
accomplish this is to increase the transformer magnetizing current iM(t0) to a significant level;
at the beginning of subinterval 1, ic is then equal to ic(t0) = −nI + iM(t0) with iM(t0) < 0. At
light load where I is small, the magnetizing current maintains the required level of ic.

During subintervals 0, 1, 2, and 3, secondary-side diodes D5 and D6 both conduct; hence,
zero voltage appears across all transformer windings. In consequence, voltage Vg is applied to
commutating inductor Lc during subintervals 2 and 3, causing ic(t) to increase with slope Vg/Lc.
Current ic(t) reaches zero at the end of subinterval 2, and increases to the positive value +nI at
the end of subinterval 3. The reversal of polarity of ic(t) enables zero-voltage switching during
the next switching transitions, subinterval 5 and subintervals 7–9.

At the end of subinterval 3, the current in diode D6 has decreased to zero. D6 then becomes
reverse-biased, with zero-current switching. At this instant, diode D6 must begin to block volt-
age 2nVg. The output capacitance of D6 prevents the voltage from changing immediately to
2nVg; instead, the resonant circuit formed by Lc and the D6 output capacitance begins to ring
in a manner similar to Fig. 4.76. Peak D6 voltages are typically observed that are consider-
ably in excess of 2nVg, and it is usually necessary to add voltage-clamp snubbers that prevent
the secondary-side diode voltages from exceeding a safe value. Several dissipative and non-
dissipative approaches are discussed in [325–327].

The active-to-passive switching transition occurs during subinterval 5. This subinterval is
initiated when transistor Q4 is turned off. The positive current ic(t1) is equal to the reflected load
current nI, and charges capacitors Cleg3 and Cleg4 from v4 = 0 to v4 = Vg. Subinterval 5 ends
when v4 reaches Vg; Diode D3 then becomes forward-biased. Transistor Q3 is then turned on
during subinterval 6, with zero-voltage switching. This is typically implemented by insertion of
a small delay between the switching of transistors Q4 and Q3. Because ic is constant and equal
to nI during subinterval 5, the active-to-passive transition maintains zero-voltage switching at
all load currents.

Circuit behavior during the next half switching period, comprising subintervals 6 to 11,
is symmetrical and therefore similar to the behavior observed during subintervals 0 to 5. The
switching transitions of transistors Q1 and Q2 are passive-to-active transitions, and occur with
zero-voltage switching provided that sufficient energy is stored in Lc as described above. The
switching transitions of Q3 and Q4 are active-to-passive, and occur with zero-voltage switching
at all loads.

The zero-voltage transition converter exhibits low primary-side switching loss and gener-
ated EMI. Conduction loss is increased with respect to an ideal PWM full-bridge topology,
because of the current ic that circulates through the primary-side semiconductors during subin-
tervals 0 and 6. However, this increase in conduction loss can be small if the range of input
voltage variations is narrow. This soft-switching approach has now found commercial success.



23.4 Soft Switching in PWM Converters 1029

g/Lc

v2(t)

v4(t)

vs(t)

ic(t)

Vg

Vg

Vg

g

nI

Vg/Lc

00

00

00 0

nI

/2Cleg

nI/2Cleg

Conducting
devices:

D4 D4 D4 Q4 X D3 D3 D3 Q3 X D4

Q2 D1X Q1 Q1 Q1 X D2 Q2 Q2 Q2

D5
D6

D5 D5
D6 D6 D6

D5 D5 D5
D6 D6 D6

D5 D5 D5
D6 D6

D5
D6

D5
D6X X

X X

Subinterval: 0 1 2 3 4 5 6 7 8 9 10 11 0

t

} Active
} Passive

} Secondary
diodes

Fig. 23.38 Detailed diagram of primary-side waveforms of the ZVT full-bridge converter, illustrating
the zero-voltage switching mechanisms. An ideal transformer is assumed

23.4.2 The Auxiliary Switch Approach

A similar approach can be used in forward, flyback, and other transformer-isolated converters.
As illustrated in Fig. 23.39, an “active-clamp snubber” network consisting of a capacitor and
auxiliary MOSFET Q2 is added, that is effectively in parallel with the original power transistor
Q1 [350]. The MOSFET body diodes and output drain-to-source capacitances, as well as the
transformer leakage inductance L�, participate in the circuit operation. These elements lead to
zero-voltage switching, with waveforms similar to those of the ZVT full-bridge converter of
Sect. 23.4.1 or the two-transistor QSW-ZVS switch of Sect. 23.3.3. The transistors are driven
by complementary signals; for example, after turning off Q1, the controller waits for a short
delay time and then turns on Q2.

The active-clamp snubber can be viewed as a voltage-clamp snubber, similar to the dissipa-
tive snubber illustrated in Fig. 23.6. However, the snubber contains no resistor; instead, MOS-
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Fig. 23.39 Active-clamp snubber circuits: (a) forward converter, (b) flyback converter

FET Q2 allows bidirectional power flow, so that the energy stored in capacitor Cs can flow back
into the converter.

The voltage vs can be found by volt-second inductance on the transformer magnetizing
inductance. If the lengths of the commutation intervals are neglected, and if the voltage ripple
in vs(t) can be neglected, then one finds that

Vs =
D
D′

Vg (23.69)

The voltage vs is effectively an unloaded output of the converter. With the two-quadrant switch
provided by Q2, this output operates in continuous conduction mode with no load, and hence
the peak voltage of Q1 is clamped to the minimum level necessary to balance the volt-seconds
applied to the transformer magnetizing inductance.

Typical waveforms for a forward converter incorporating an active-clamp snubber are il-
lustrated in Fig. 23.40. The current i�(t) reverses direction while Q2 conducts. When Q2 turns
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off, capacitor Cds begins to discharge. When vds reaches zero, the body diode of Q1 becomes
forward-biased. Q1 can then be turned on at zero voltage.

An added benefit of the active-clamp snubber, when used in a forward converter, is that it
resets the transformer. Consequently, the converter can operate at any duty cycle, including duty
cycles greater than 50%. When the converter must operate with a wide range of input voltages,
this can allow substantial improvements in transistor stresses and efficiency. The MOSFETs in
Fig. 23.39 operate with zero-voltage switching, while the secondary-side diodes operate with
zero-current switching.

This approach is quite versatile, and similar auxiliary circuits can be added to other converter
circuits to obtain zero-voltage switching [351–353].

23.4.3 Auxiliary Resonant Commutated Pole

The auxiliary resonant commutated pole (ARCP) is a related circuit that uses an auxiliary four-
quadrant switch (or two equivalent two-quadrant switches) to obtain soft switching in the tran-
sistors of a bridge inverter circuit [354–356]. This approach finds application in dc–ac inverter
circuits. Figure 23.41 illustrates a half-bridge circuit, or one phase of a three-phase voltage-
source inverter, driving an ac load. This circuit can lead to zero-voltage switching that mitigates
the switching loss induced by the reverse recovery of diodes D1 and D2. Filter inductor Lf is
relatively large, so that the output current ia(t) is essentially constant during the resonant com-

Fig. 23.40 Waveforms of the active-
clamp snubber circuit of Fig. 23.39a
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Fig. 23.41 Half-bridge circuit driving an ac load, with ARCP zero-voltage switching
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Fig. 23.42 Waveforms of the ARCP circuit of Fig. 23.41: (a) basic waveforms, (b) with current boost

mutation interval. Capacitors Cds are relatively small, and model the output capacitances of the
semiconductor devices. Inductor Lr is also relatively small, and elements Lr and Cds form a
resonant circuit that rings during part of the commutation process. Semiconductor switching
devices Q3,Q4,D3, and D4 form an auxiliary four-quadrant switch that turns on to initiate the
resonant commutation process.

Typical commutation waveforms are illustrated in Fig. 23.42a, for the case in which the ac
load current ia is positive. Diode D2 is initially conducting the output current ia. It is desired to
turn off D2 and turn on Q1, with zero-voltage switching. This is accomplished with the following
sequence:
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Interval 1. Turn on transistor Q3. Devices D2,Q3, and D4 conduct.
Interval 2. When the current in D2 reaches zero, D2 turns off. A resonant ring-

ing interval occurs.
Interval 3. When the voltage van reaches Vg/2, diode D1 begins to become

forward-biased. Transistor Q1 is then immediately turned on at
zero voltage.

At the conclusion of interval 3, ir(t) reaches zero and diode D3 turns off. For negative current,
the process for commutation of diode D1 is similar, except that transistor Q4 and diode D3

conduct the resonant current ir(t).
One issue related to the waveforms of Fig. 23.42a is that the circuit always operates at the

boundary of zero-voltage switching. At the end of interval 2, diode D1 is not actually forward-
biased, because its current never actually becomes positive. Instead, transistor Q1 should be
turned on at the beginning of interval 3. If transistor Q1 is gated on late, then the continued
ringing will cause voltage van(t) to decrease, and zero-voltage switching will be lost.

To further assist in the zero-voltage switching commutation process, transistor Q2 can be
turned on while D2 conducts, as illustrated in Fig. 23.42b. Transistor Q2 is used to lengthen the
duration of interval 1: now, when the current ir(t) exceeds current ia by an amount iboost, then
the controller turns off Q2 to end interval 1. This causes diode D1 to become forward-biased
during the beginning of interval 3. Transistor Q1 is then turned on with zero-voltage switching,
while D1 is conducting.

Regardless of whether the circuit operates with the waveforms of Fig. 23.42a or b, the ARCP
approach eliminates the switching loss caused by the reverse recovery of diodes D1 and D2. Un-
like the previous circuits of this chapter, the ARCP has no circulating currents that cause con-
duction loss, because the tank inductor current ir(t) is nonzero only in the vicinity of the com-
mutation interval. The approach of Fig. 23.42a does not completely eliminate the loss caused
by the device output capacitances. This loss is eliminated using the current boost of Fig. 23.42b,
but additional conduction loss is incurred because of the increased peak ir(t). The waveforms of
Fig. 23.42b may, in fact, lead to reduced efficiency relative to Fig. 23.42a!

23.5 Summary of Key Points

1. In a resonant switch converter, the switch network of a PWM converter is replaced by a
switch network containing resonant elements. The resulting hybrid converter combines the
properties of the resonant switch network and the parent PWM converter.

2. Analysis of a resonant or soft-switching switch cell involves determination of the switch
conversion ratio μ. The resonant switch waveforms are determined, and are then averaged.
The switch conversion ratio μ is a generalization of the PWM CCM duty cycle d. The results
of the averaged analysis of PWM converters operating in CCM can be directly adapted to
the related resonant switch converter, simply by replacing d with μ.

3. In the zero-current-switching quasi-resonant switch, diode D2 operates with zero-voltage
switching, while transistor Q1 and diode D1 operate with zero-current switching. In the
zero-voltage-switching quasi-resonant switch, the transistor Q1 and diode D1 operate with
zero-voltage switching, while diode D2 operates with zero-current switching.

4. In the zero-voltage-switching multiresonant switch, all semiconductor devices operate with
zero-voltage switching. In consequence, very low switching loss is observed.
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5. In the quasi-square-wave zero-voltage-switching resonant switches, all semiconductor de-
vices operate with zero-voltage switching, and with peak voltages equal to those of the
parent PWM converter. The switch conversion ratio is restricted to the range 0.5 ≤ μ ≤ 1.
Versions containing synchronous rectifiers can operate with values of μ approaching zero.

6. The zero-voltage transition approach, as well as the active-clamp snubber approach, lead
to zero-voltage switching of the transistors and zero-current switching of the diodes. These
approaches have been successful in substantially improving the efficiencies of transformer-
isolated converters. The auxiliary resonant commutated pole induces zero-voltage switch-
ing in bridge circuits such as the voltage-source inverter.

Problems

23.1 In the forward converter of Fig. 23.43, L and C are large filter elements while Lp, Ls, and
Cr have relatively small values. The transformer reset mechanism is not shown; for this
problem, you may assume that the transformer is ideal.

(a) Classify the resonant switch.
(b) Which semiconductor devices operate with zero-voltage switching? With zero-current

switching?
(c) What is the resonant frequency?

23.2 In the high-voltage converter of Fig. 23.44, capacitor C is relatively large in value. The
transformer model includes an ideal 1:n transformer, in conjunction with magnetizing
inductance Lmp (referred to the primary side) and winding capacitance Cws (referred to
the secondary side). Transistor Q and diode Dp exhibit total output capacitance Cp, while
the output capacitance of diode Ds is Cs. Other nonidealities, such as transformer leakage
inductance, can be ignored. The resonant switch is well-designed, such that all elements
listed above contribute to ideal operation of the converter and resonant switch.

(a) What type of resonant switch is employed? What is the parent PWM converter?
(b) Which semiconductor devices operate with zero-voltage switching? With zero-current

switching?
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Fig. 23.43 Forward converter with resonant switch, Problem 23.1
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Fig. 23.44 High-voltage dc–dc converter containing a resonant switch network, Problem 23.2

(c) What is the tank resonant frequency?
(d) Sketch the waveforms of the transistor drain-to-source voltage and transformer mag-

netizing current.

23.3 In the transformer-isolated dc–dc converter of Fig. 23.45, capacitors C1 and C2 and induc-
tors L1 and LM are relatively large in value, so that they have small switching ripples. The
transformer model includes an ideal 1:n transformer, in conjunction with magnetizing in-
ductance LM (referred to the primary side) and leakage inductances L�1 and L�2 as shown.
Transistor Q1 exhibits output capacitances Cds, while the output capacitance of diode D1

is Cd. MOSFET Q1 contains a body diode (not explicitly shown). Other nonidealities can
be ignored. The resonant switch is well-designed, such that all elements listed above con-
tribute to ideal operation of the converter and resonant switch.

+

D1

L1

C2

+

v
Q1

C1

RVg

1 : n
i1

Ideal
Transformer

model

LM

L 1 L 2

Cds

Cd

Fig. 23.45 Transformer-isolated dc–dc converter containing a resonant switch network, Problem 23.3
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(a) What type of resonant switch is employed? What is the parent PWM converter?
(b) Which semiconductor devices operate with zero-voltage switching? With zero-current

switching?

23.4 A buck–boost converter is realized using a half-wave ZCS quasi-resonant switch. The
load resistance has value R, the input voltage has value Vg, and the converter switching
frequency is fs.

(a) Sketch the circuit schematic.
(b) Write the complete system of equations that can be solved to determine the output

voltage V , in terms of the quantities listed above and the component values. It is not
necessary to actually solve your equations. You may also quote results listed in this
textbook.

23.5 It is desired to design a half-wave zero-current-switching quasi-resonant forward converter
to operate with the following specifications: Vg = 320 V,V = 42 V, 5 W ≤ P ≤ 100 W.
Design the converter to operate with a maximum switching frequency of 1 MHz and a
switch conversion ratio of μ = 0.45. Attempt to minimize the peak transistor current,
while maintaining zero-current switching at all operating points. You may neglect the
transformer magnetizing current, and ignore the transformer reset scheme.

(a) Specify your choices for the turns ratio n, and the tank elements Lr and Cr, referred
to the transformer secondary side.

(b) For your design of part (a), what is the minimum switching frequency?
(c) What is the worst-case peak transistor current?

23.6 Analysis of the ZVS quasi-resonant switch of Fig. 23.24.

(a) For each subinterval, sketch the resonant switch cell circuit, and derive expressions
for the tank inductor current and capacitor voltage waveforms.

(b) For subinterval 2, in which Q1/D1 are off and D2 conducts, write the loop equation
which relates the tank capacitor voltage, tank inductor voltage, and any other net-
work voltages as appropriate. Hence, for subinterval 2 relate the integral of the tank
capacitor voltage to the change in tank inductor current.

(c) Determine the switch network terminal-waveform average values, and hence derive
an expression for the switch conversion ratio μ. Verify that your result coincides with
Eq. (23.61).

23.7 Analysis of the full-bridge zero-voltage transition converter of Sect. 23.4.1. The con-
verter of Fig. 23.36 operates with the waveforms illustrated in Fig. 23.38. According to
Eq. (23.68), the conversion ratio of this converter is given approximately by M(φ) = nφ.
Derive an exact expression for M, based on the waveforms given in Fig. 23.38. Your re-
sult should be a function of the length of subinterval 4, the load current, the switching
frequency, and the values of the inductance and capacitances. Note: there is a reasonably
simple answer to this question.



A

RMS Values of Commonly Observed Converter
Waveforms

The waveforms encountered in power electronics converters can be quite complex, containing
modulation at the switching frequency and often also at the ac line frequency. During converter
design, it is often necessary to compute the rms values of such waveforms. In this appendix,
several useful formulas and tables are developed which allow these rms values to be quickly
determined.

RMS values of the doubly modulated waveforms encountered in PWM rectifier circuits are
discussed in Sect. 21.5.

A.1 Some Common Waveforms

DC:
rms = I (A.1)

i(t)

t

I

DC plus linear ripple:

rms = I

√
1 +

1
3

(
Δi
I

)2

(A.2)

i(t)

t

I

Ts
0

i
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Square wave:
rms = Ipk (A.3)

i(t)

t

Ipk

pk

Sine wave:

rms =
Ipk√

2
(A.4)

i(t)

t
0

Ipk

Pulsating waveform:
rms = Ipk

√
D (A.5)

i(t)

t

Ipk

TsDTs0
0

Pulsating waveform with linear ripple:

rms = I
√

D

√
1 +

1
3

(
Δi
I

)2

(A.6)
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TsDTs0
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Triangular waveform:

rms = Ipk

√
D1 + D2

3
(A.7)

i(t)

t

Ipk

TsD1Ts0
0

D2Ts

Triangular waveform:

rms = Ipk

√
D1

3
(A.8)

i(t)

t

Ipk

TsD1Ts0
0

Triangular waveform, no dc component:

rms =
Δi
√

3
(A.9)
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Center-tapped bridge winding waveform:
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Ipk
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1 + D (A.10)
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General stepped waveform:

rms =
√

D1I2
1 + D2I2

2 + · · · (A.11)
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A.2 General Piecewise Waveform
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For a periodic waveform composed of n piecewise segments as shown above, the rms value is

rms =

√√
n∑

k=1

Dkuk (A.12)

where Dk is the duty cycle of segment k, and uk is the contribution of segment k. The uk s depend
on the shape of the segments—several common segment shapes are listed below.

Constant segment:
uk = I2

1 (A.13)

i(t)

t

I1



A.2 General Piecewise Waveform 1041

Triangular segment:

uk =
1
3

I2
1 (A.14)

i(t)

t

I1

0

Trapezoidal segment:

uk =
1
3

(
I2
1 + I1I2 + I2

2

)
(A.15)

i(t)

t

I1 I2

Sinusoidal segment, half or full period:

uk =
1
2

I2
pk (A.16)

i(t)

t

Ipk

Sinusoidal segment, partial period: a sinusoidal segment of less than one half-period, which
begins at angle θ1 and ends at angle θ2. The angles θ1 and θ2 are expressed in radians:

uk =
1
2

I2
pk

(
1 − sin(θ2 − θ1) cos(θ2 + θ1)

(θ2 − θ1)

)
(A.17)
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Example

i(t)

tTs0.2 μs

I1 = 20 A

0.2 μs

I2 = 2 A

0.1 μs
10 μs

0.2 μs5 μs

0 A

1 2 3 4 5 6

A transistor current waveform contains a current spike due to the stored charge of a free-
wheeling diode. The observed waveform can be approximated as shown above. Estimate the
rms current.

The waveform can be divided into six approximately linear segments, as shown. The Dk and
uk for each segment are

1. Triangular segment:

D1 = (0.2μs)/(10μs) = 0.02

u1 = I2
1/3 = (20A)2/3 = 133A2

2. Constant segment:

D2 = (0.2μs)/(10μs) = 0.02

u2 = I2
1 = (20A)2 = 400A2

3. Trapezoidal segment:

D3 = (0.1μs)/(10μs) = 0.01

u3 = (I2
1 + I2

2 + I2
3)/3 = 148A2

4. Constant segment:

D4 = (5μs)/(10μs) = 0.5

u4 = I2
2 = (2A)2 = 4A2

5. Triangular segment:

D5 = (0.2μs)/(10μs) = 0.02

u5 = I2
2/3 = (2A)2/3 = 1.3A2

6. Zero segment:

u6 = 0

The rms value is

rms =

√√√ 6∑
k=1

Dkuk = 3.76A (A.18)

Even though its duration is very short, the current spike has a significant impact on the rms
value of the current—without the current spike, the rms current is approximately 2.0 A.



B

Magnetics Design Tables

Geometrical data for several standard ferrite core shapes are listed here. The geometrical con-
stant Kg is a measure of core size, useful for designing inductors and transformers that attain
a given copper loss [99]. The Kg method for inductor design is described in Chap. 11. Kg is
defined as

Kg =
A2

cWA

MLT
(B.1)

where Ac is the core cross-sectional area, WA is the window area, and MLT is the winding mean-
length-per-turn. The geometrical constant Kg f e is a similar measure of core size, which is useful
for designing ac inductors and transformers when the total copper plus core loss is constrained.
The Kg f e method for magnetics design is described in Chap. 12. Kg f e is defined as

Kg f e =
WAA2(1−1/β)

c

MLT �2/βm

u(β) (B.2)

where �m is the core mean magnetic path length, and β is the core loss exponent:

Pf e = Kf eBβ
max (B.3)

For modern ferrite materials, β typically lies in the range 2.6 to 2.8. The quantity u(β) is defined
as

u(β) =

⎡⎢⎢⎢⎢⎢⎢⎣
(

β
2

)−( β
β+2

)
+

(
β
2

)( 2
β+2

)⎤⎥⎥⎥⎥⎥⎥⎦
−
( β+2

β

)

(B.4)

u(β) is equal to 0.305 for β = 2.7. This quantity varies by roughly 5% over the range 2.6 ≤ β ≤
2.8. Values of Kg f e are tabulated for β = 2.7; variation of Kg f e over the range 2.6 ≤ β ≤ 2.8 is
typically quite small.

Thermal resistances are listed in those cases where published manufacturer’s data are avail-
able. The thermal resistances listed are the approximate temperature rise from the center leg of
the core to ambient, per watt of total power loss. Different temperature rises may be observed
under conditions of forced air cooling, unusual power loss distributions, etc. Listed window
areas are the winding areas for conventional single-section bobbins.
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An American Wire Gauge table is included at the end of this appendix.

B.1 Pot Core Data

A H

Fig. B.1 Pot core

Core Geometrical Geometrical Cross- Bobbin Mean Magnetic Thermal Core
type constant constant sectional winding length path resistance weight

area area per turn length
(AH) Kg Kg f e Ac WA MLT �m Rth

(mm) cm5 cmx (cm2) (cm2) (cm) (cm) (◦C/W) (g)

704 0.738 · 10−6 1.61 · 10−6 0.070 0.22 · 10−3 1.46 1.0 0.5
905 0.183 · 10−3 256 · 10−6 0.101 0.034 1.90 1.26 1.0
1107 0.667 · 10−3 554 · 10−6 0.167 0.055 2.30 1.55 1.8
1408 2.107 · 10−3 1.1 · 10−3 0.251 0.097 2.90 2.00 100 3.2
1811 9.45 · 10−3 2.6 · 10−3 0.433 0.187 3.71 2.60 60 7.3

2213 27.1 · 10−3 4.9 · 10−3 0.635 0.297 4.42 3.15 38 13
2616 69.1 · 10−3 8.2 · 10−3 0.948 0.406 5.28 3.75 30 20
3019 0.180 14.2 · 10−3 1.38 0.587 6.20 4.50 23 34
3622 0.411 21.7 · 10−3 2.02 0.748 7.42 5.30 19 57
4229 1.15 41.1 · 10−3 2.66 1.40 8.60 6.81 13.5 104



B.2 EE Core Data 1045

B.2 EE Core Data

A

Fig. B.2 EE core

Core Geometrical Geometrical Cross- Bobbin Mean Magnetic Core
type constant constant sectional winding length path weight

area area per turn length
(A) Kg Kg f e Ac WA MLT �m

(mm) (cm5) (cmx) (cm2) (cm2) (cm) (cm) (g)

EE12 0.731 · 10−3 0.458 · 10−3 0.14 0.085 2.28 2.7 2.34
EE16 2.02 · 10−3 0.842 · 10−3 0.19 0.190 3.40 3.45 3.29
EE19 4.07 · 10−3 1.3 · 10−3 0.23 0.284 3.69 3.94 4.83
EE22 8.26 · 10−3 1.8 · 10−3 0.41 0.196 3.99 3.96 8.81
EE30 85.7 · 10−3 6.7 · 10−3 1.09 0.476 6.60 5.77 32.4

EE40 0.209 11.8 · 10−3 1.27 1.10 8.50 7.70 50.3
EE50 0.909 28.4 · 10−3 2.26 1.78 10.0 9.58 116
EE60 1.38 36.4 · 10−3 2.47 2.89 12.8 11.0 135

EE70/68/19 5.06 75.9 · 10−3 3.24 6.75 14.0 18.0 280
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B.3 EC Core Data

A

Fig. B.3 EC core

Core Geometrical Geometrical Cross- Bobbin Mean Magnetic Thermal Core
type constant constant sectional winding length path resistance weight

area area per turn length
(A) Kg Kg f e Ac WA MLT �m Rth

(mm) (cm5) (cmx) (cm2) (cm2) (cm) (cm) (◦C/W) (g)

EC35 0.131 9.9 · 10−3 0.843 0.975 5.30 7.74 18.5 35.5
EC41 0.374 19.5 · 10−3 1.21 1.35 5.30 8.93 16.5 57.0
EC52 0.914 31.7 · 10−3 1.80 2.12 7.50 10.5 11.0 111
EC70 2.84 56.2 · 10−3 2.79 4.71 12.9 14.4 7.5 256
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B.4 ETD Core Data

A

Fig. B.4 ETD core

Core Geometrical Geometrical Cross- Bobbin Mean Magnetic Thermal Core
type constant constant sectional winding length path resistance weight

area area per turn length
(A) Kg Kg f e Ac WA MLT �m Rth

(mm) (cm5) (cmx) (cm2) (cm2) (cm) (cm) (◦C/W) (g)

ETD29 0.0978 8.5 · 10−3 0.76 0.903 5.33 7.20 30
ETD34 0.193 13.1 · 10−3 0.97 1.23 6.00 7.86 19 40
ETD39 0.397 19.8 · 10−3 1.25 1.74 6.86 9.21 15 60
ETD44 0.846 30.4 · 10−3 1.74 2.13 7.62 10.3 12 94
ETD49 1.42 41.0 · 10−3 2.11 2.71 8.51 11.4 11 124
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B.5 PQ Core Data

A1

2D

Fig. B.5 PQ core

Core Geometrical Geometrical Cross- Bobbin Mean Magnetic Core
type constant constant sectional winding length path weight

area area per turn length
(A1/2D) Kg Kg f e Ac WA MLT �m

(mm) (cm5) (cmx) (cm2) (cm2) (cm) (cm) (g)

PQ20/16 22.4 · 10−3 3.7 · 10−3 0.62 0.256 4.4 3.74 13
PQ20/20 33.6 · 10−3 4.8 · 10−3 0.62 0.384 4.4 4.54 15
PQ26/20 83.9 · 10−3 7.2 · 10−3 1.19 0.333 5.62 4.63 31
PQ26/25 0.125 9.4 · 10−3 1.18 0.503 5.62 5.55 36

PQ32/20 0.203 11.7 · 10−3 1.70 0.471 6.71 5.55 42
PQ32/30 0.384 18.6 · 10−3 1.61 0.995 6.71 7.46 55
PQ35/35 0.820 30.4 · 10−3 1.96 1.61 7.52 8.79 73
PQ40/40 1.20 39.1 · 10−3 2.01 2.50 8.39 10.2 95
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B.6 American Wire Gauge Data

AWG # Bare area, Resistance, Diameter,
10−3 cm2 10−6Ω/cm cm

0000 1072.3 1.608 1.168
000 850.3 2.027 1.040
00 674.2 2.557 0.927

0 534.8 3.224 0.825
1 424.1 4.065 0.735
2 336.3 5.128 0.654
3 266.7 6.463 0.583
4 211.5 8.153 0.519

5 167.7 10.28 0.462
6 133.0 13.0 0.411
7 105.5 16.3 0.366
8 83.67 20.6 0.326
9 66.32 26.0 0.291

10 52.41 32.9 0.267
11 41.60 41.37 0.238
12 33.08 52.09 0.213
13 26.26 69.64 0.190
14 20.02 82.80 0.171

15 16.51 104.3 0.153
16 13.07 131.8 0.137
17 10.39 165.8 0.122
18 8.228 209.5 0.109
19 6.531 263.9 0.0948

20 5.188 332.3 0.0874
21 4.116 418.9 0.0785
22 3.243 531.4 0.0701
23 2.508 666.0 0.0632
24 2.047 842.1 0.0566

25 1.623 1062.0 0.0505
26 1.280 1345.0 0.0452
27 1.021 1687.6 0.0409
28 0.8046 2142.7 0.0366
29 0.6470 2664.3 0.0330

(continued)
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AWG # Bare area, Resistance, Diameter,
10−3 cm2 10−6Ω/cm cm

30 0.5067 3402.2 0.0294
31 0.4013 4294.6 0.0267
32 0.3242 5314.9 0.0241
33 0.2554 6748.6 0.0236
34 0.2011 8572.8 0.0191

35 0.1589 10849 0.0170
36 0.1266 13608 0.0152
37 0.1026 16801 0.0140
38 0.08107 21266 0.0124
39 0.06207 27775 0.0109

40 0.04869 35400 0.0096
41 0.03972 43405 0.00863
42 0.03166 54429 0.00762
43 0.02452 70308 0.00685
44 0.0202 85072 0.00635
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4. S. Ćuk, Basics of switched-mode power conversion: Topologies, magnetics, and control,
in Advances in Switched-Mode Power Conversion, vol. 2, pp. 279–310, 1981

5. N. Mohan, Power electronics circuits: An overview, in IEEE Industrial Electronics Con-
ference (IECON), pp. 522–527, 1988

6. B. Bose, Power electronics–a technology review. Proc. IEEE 80, 1303–1334 (1992)
7. M. Nishihara, Power electronics diversity, in International Power Electronics Conference,

pp. 21–28, 1990
8. N. Mohan, T. Undeland, W. Robbins, Power Electronics: Converters, Applications, and

Design, 3rd edn. (Wiley, New York, 2002)
9. J. Kassakian, M. Schlecht, G. Vergese, Principles of Power Electronics (Addison-Wesley,

Reading, MA, 1991)
10. D. Hart, Introduction to Power Electronics (Prentice Hall, New York, 1997)
11. M. Rashid, Power Electronics: Circuits, Devices, and Applications, 2nd edn. (Prentice

Hall, Englewood, NJ, 1993)
12. P. Krein, Elements of Power Electronics, 2nd edn. (Oxford University Press, New York,

2014)
13. K.K. Sum, Switch Mode Power Conversion—Basic Theory and Design (Marcel Dekker,

New York, 1984)
14. R.D. Middlebrook, A continuous model for the tapped-inductor boost converter, in IEEE

Power Electronics Specialists Conference, pp. 63–79, June 1975
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62. Q. Chen, F.C. Lee, M.M. Jovanović, Dc analysis and design of multiple-output forward
converters with weighted voltage-mode control, in IEEE Applied Power Electronics Con-
ference (APEC), pp. 449–455, March 1993

63. S.R. Sanders, G.C. Vergese, Synthesis of averaged circuit models for switched power
converters. IEEE Trans. Circuits Syst. 38, 905–915 (1991)

64. P.T. Krein, J. Bentsman, R.M. Bass, B.C. Lesieutre, On the use of averaging for the anal-
ysis of power electronic systems. IEEE Trans. Power Electron. 5, 182–190 (1990)

65. B. Lehman, R.M. Bass, Switching frequency dependent averaged models for PWM dc-dc
converters. IEEE Trans. Power Electron. 11, 89–98 (1996)

66. R.M. Bass, J. Sun, Averaging under large-ripple conditions, in IEEE Power Electronics
Specialists Conference (PESC 1998), pp. 630–632, May 1998

67. A.R. Brown, R.D. Middlebrook, Sampled-data modeling of switching regulators, in IEEE
Power Electronics Specialists Conference (PESC 1981), pp. 349–369, June 1981

68. R.D. Middlebrook, Predicting modulator phase lag in PWM converter feedback loops, in
Eighth National Solid-State Power Conversion Conference (Powercon 8), April 1981

69. A. Kislovski, R. Redl, N. Sokal, Dynamic Analysis of Switching-Mode DC/DC Converters
(Van Nostrand Reinhold, New York, 1994)

70. V. Vorperian, R. Tymerski, F.C. Lee, Equivalent circuit models for resonant and PWM
switches. IEEE Trans. Power Electron. 4, 205–214 (1989)

71. V. Vorperian, Simplified analysis of PWM converters using the model of the PWM switch:
Parts I and II. IEEE Trans. Aerosp. Electron. Syst. AES-26, 490–505 (1990)

72. S. Freeland, R.D. Middlebrook, A unified analysis of converters with resonant switches,
in IEEE Power Electronics Specialists Conference (PESC 1987), pp. 20–30, 1987

73. A. Witulski, R. Erickson, Extension of state-space averaging to resonant switches—and
beyond. IEEE Trans. Power Electron. 5, 98–109 (1990)
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ers with current programmed control, in IEEE Workshop on Power Electronics Education,
pp. 98–104, June 2005

176. G.F. Franklin, M.L. Workman, D. Powell, Digital Control of Dynamic Systems, 3rd edn.
(Addison-Wesley Longman Publishing Co., Boston, 1997)

177. R. Mammano, R. Neidorff, Improving input power factor—a new active controller simpli-
fies the task, in Power Conversion, pp. 100–109, October 1989

178. J. Bazimet, J. O’Connor, Analysis and design of a zero voltage transition power factor
correction circuit, in IEEE Applied Power Electronics Conference (APEC 1994), pp. 591–
597, 1994

179. W. Tang, F.C. Lee, R.B. Ridley, I. Cohen, Charge control: modeling, analysis and design,
in IEEE Power Electronics Specialists Conference (PESC 1992), pp. 503–511, 1992
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189. A. Parayandeh, A. Prodić, Programmable analog-to-digital converter for low-power dc-dc
smps. IEEE Trans. Power Electron. 23, 500–505 (2008)

190. A. Soto, P. Alou, J.A. Cobos, Nonlinear digital control breaks bandwidth limitations, in
Proc. 21st IEEE Applied Power Electronics Conf. and Exposition (APEC), pp. 724–730,
Mar. 2006

191. G. Feng, E. Meyer, Y.F. Liu, A new digital control algorithm to achieve optimal dy-
namic performance in dc-to-dc converters. IEEE Trans. Power Electron. 22(4), 1489–1498
(2007)
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293. S. Gatarić, D. Boroyevich, F.C. Lee, Soft-switched single-switch three-phase rectifier with
power factor correction, in IEEE Applied Power Electronics Conference (APEC 1994),
pp. 738–744, 1994

294. J. Kolar, U. Drofenik, F. Zach, Vienna Rectifier II—a novel single-stage high-frequency
isolated three-phase PWM rectifier system, in IEEE Applied Power Electronics Confer-
ence (APEC 1998), pp. 23–33, 1998

295. R.L. Steigerwald, High frequency resonant transistor dc-dc converters. IEEE Trans. Ind.
Electron. 31, 181–191 (1984)

296. M. Cosby, R. Nelms, Designing a parallel-loaded resonant inverter for an electronic ballast
using the fundamental approximation, in IEEE Applied Power Electronics Conference
(APEC 1993), pp. 413–423, 1993

297. M. Gulko, S. Ben-Yaakov, Current-sourcing push-pull parallel-resonance inverter (CS-
PPRI): Theory and application as a fluorescent lamp driver, in IEEE Applied Power Elec-
tronics Conference (APEC 1993), pp. 411–417, 1993

298. Y. Cheron, H. Foch, J. Salesses, Study of a resonant converter using power transistors
in a 25 kW X-ray tube power supply, in IEEE Power Electronics Specialists Conference
(PESC 1985), pp. 295–306, June 1985

299. S.D. Johnson, A.F. Witulski, R.W. Erickson, A comparison of resonant topologies in high
voltage applications. IEEE Trans. Aerosp. Electron. Syst. 24, 263–274 (1988)

300. Y. Murai, T.A. Lipo, High frequency series resonant dc link power conversion, in IEEE
Industry Applications Society Annual Meeting, pp. 648–656, 1988

301. F.C. Schwarz, A doublesided cyclo-converter, in IEEE Power Electronics Specialists Con-
ference (PESC 1979), pp. 437–447, 1979

302. D. Divan, The resonant dc link converter: A new concept in static power conversion, in
IEEE Industry Applications Society Annual Meeting, pp. 648–656, 1986

303. R.L. Steigerwald, A comparison of half-bridge resonant converter topologies, in IEEE
Applied Power Electronics Conference (APEC 1987), pp. 135–144, 1987



1068 References

304. R. Severns, Topologies for three element resonant converters, in IEEE Applied Power
Electronics Conference (APEC 1990), pp. 712–722, 1990

305. M. Kazimierczuk, W. Szaraniec, S. Wang, Analysis and design of parallel resonant con-
verter at high QL. IEEE Trans. Aerosp. Electron. Syst. 28, 35–50 (1992)

306. R. King, T. Stuart, A normalized model for the half bridge series resonant converter. IEEE
Trans. Aerosp. Electron. Syst. 17, 190–198 (1981)
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337. R. Farrington, M. Jovanović, F.C. Lee, Constant-frequency zero-voltage-switched multi-
resonant converters: Analysis, design, and experimental results, in IEEE Power Electron-
ics Specialists Conference (PESC 1990), pp. 197–205, 1990
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Index

A
Air gap

in ac inductor, 501
in coupled inductor, 448, 471, 473
in flyback transformer, 449, 478
in inductor, 416–418, 445, 459–462, 462, 464
in transformer, 421

AL (mH/1000 turns), 465
American wire gauge (AWG)

choice of, 465, 473, 491, 502
data, 1049–1050
design examples, 476, 479, 495, 499
vs. skin depth, 428

Amorphous alloys, 425
Amp-second balance, see capacitor charge balance
Ampere’s law, 411, 414, 416, 431
Analog-to-digital (A/D) conversion, 805, 807

quantization effects, 830–838
realization of, 837
sampling, 810

Apparent power, 858
Artificial ramp

circuit, 741, 741–743
effect on CCM transfer functions, 754–755
effect on CPM boost low-harmonic rectifier,

886–889
effect on line-to-output transfer function of

CCM buck, 758
effect on noise immunity of CPM controller

circuits, 745
effect on small-signal CCM models, 746, 749
effect on small-signal DCM models, 780–786
effect on stability of CPM controllers, 742–745
in simulation model, 764

introduction into CPM controllers, 738–746
Asymptotes, see Bode plots
Audiosusceptibility Gvg(s), see Line-to-output

transfer function
Average current control

boost design example, 791–797
feedforward, 883–885
in low-harmonic rectifier systems, 881–886
modeling of, 786–797
transfer functions, 788–791

Average power
and Fourier series, 850–853
in nonsinusoidal systems, 850–857
modeled by power source element, 593–598,

608–609
power factor, 854–857
predicted by averaged models, 59
sinusoidal phasor diagram, 858–859

Averaged switch modeling, 547–578
buck, boost, and buck-boost forms, 558–565
combined CCM/DCM simulation model,

608–621
derivation by circuit averaging, 548–558
examples

buck-boost transient simulation, 575–578
CCM SEPIC, 549–558
nonideal SEPIC, 572–574
SEPIC with conduction loss, 569–571

in discontinuous conduction mode,
589–598

of current-programmed CCM converters,
733–738

of ideal DCM switch networks, 595
prediction of indirect power, 555–558

© Springer Nature Switzerland AG 2020
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Averaged switch modeling (cont.)
simulation of CCM, 568
simulation with conduction loss, 571–572

Averaging
ac models of buck, boost, and buck–boost

converters, 233
ac models of buck, boost, and buck-boost

converters, 234
accuracy in prediction of conduction losses,

60
approximation, discussion of, 222–225
approximation, discussion of , 218
basic approach , 220–242
capacitor charge balance, 24
diode-induced switching loss in boost converter,

94–98
diode-induced switching loss in buck converter,

90–93
flyback ac model, 234–242
inductor volt-second balance, 23
introduction to , 215–220
modeling 3φ converters, 919–921
modeling rectifier output, 900–905
of inductor current in CPM, 747
of quasi-resonant converters, 1003–1025
state-space, 251–271
to find dc component, 6, 16

B
Ballast, electronic, 933–934

resonant inverter design, 957–973
Battery charger, 8, 74
B–H loop

core loss, 423–424
in a conventional transformer, 180, 447
in a coupled inductor, 448
in a filter inductor, 445
in a flyback transformer, 449, 479
in an ac inductor, 446
modeling of, 412–413

Bidirectional dc–dc converters, 74
Bipolar junction transistor (BJT)

breakdown mechanisms in, 114–115
construction and operation of, 111–115
current focusing, 114
idealized switch characteristics, 69–71
on resistance, 56, 111–113
quasi-saturation, 115
storage time, 113
stored minority charge in, 111–114
switching waveforms, 112–115

Bode plots
asymptote analytical expressions, 293
CCM buck-boost example, 309–314
combinations, 290–293
complex poles, 294–297
definitions, 279–281
frequency inversion, 289–290
graphical construction of, 317–331

addition of asymptotes, 318–322
closed-loop transfer functions, 353
division, 325–331
parallel combination, 322–324
parallel resonance, 323–324
parallel resonant converter, 950
reactance graph paper, 324
series resonance, 320–322
series resonant converter, 945

real pole, 281–285
real zero, 287
right half-plane (RHP) zero, 288, 315, 317
transfer functions of buck, boost, buck-boost

converters, 315
Body diode, see MOSFET
Boost converter

as inverted buck converter, 164–165
as low-harmonic rectifier, 872–875
averaged switch model, DCM, 598
current-programmed

small-signal ac model, CCM, 731
DCM characteristics, 152
equivalent circuit modeling of

steady state, CCM, 49–54
modeling switching loss in, 94–98
nonideal analysis of, 46–49
quasi-resonant zero-current switching, 1013
semiconductor conduction losses in, 56–60
small-signal ac model

CCM, 233, 251
DCM, 598–608

steady-state analysis of
CCM, 24–29
DCM, 145–152

transfer functions, CCM, 315
with capacitor ESR, 264–271

Bootstrap power supply, 107
Bridge configuration (dc–dc converters)

boost-derived full bridge, 198–201
buck-derived full bridge, 181–185
buck-derived half bridge, 185–186
full bridge transformer design example,

496–499
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minimization of transformer copper loss in,
468–470

Bridge configuration (inverters)
single phase, 7, 170–173
three phase, 74, 174, 174

Buck 3φ inverter, see Voltage source inverter
Buck converter, 15

analysis of closed-loop regulator via feedback
theorem, 528–540

as a high power factor rectifier, 875
current-programmed

averaged switch model, CCM, 733–738
DCM characteristics, 152
employing synchronous rectifier, 78–79
equivalent circuit modeling of

steady-state, CCM, 54–56
multi-resonant realization, 1019–1020
quasi-resonant realizations

zero-current switching, 1003–1015
zero-voltage switching, 1018

quasi-square wave realization, 1020–1025
small-signal ac model

DCM, 604–605
small-signal ac model, CCM, 251
steady-state analysis of

CCM, 15–24
DCM, 140–145, 598

switching loss in, 80–82, 90–93
transfer functions, CCM, 315
transfer functions, DCM, 605–606

Buck-boost converter, see also Flyback converter
as low-harmonic rectifier, 878–880
averaged switch model, DCM, 589–606
current-programmed

ac simple model, CCM, 729–733
dc–3φac inverter, 76
DCM characteristics, 152, 595–598
ideal circuit and conversion ratio, 17
simulation of, 575–578
small-signal ac model, CCM, 251
small-signal ac model, DCM, 604–605
state-space averaging of, 259–264
transfer functions, CCM, 315
transfer functions, DCM, 606
transformer isolation in, 194–198

C
Canonical circuit model, 245–251

development of, 245–247
manipulation into canonical form, 248–250
results for basic converters, 250–251

Capacitor charge balance
boost converter example, 27
Ćuk converter example, 32
definition, 24
in discontinuous conduction mode, 140, 143
nonideal boost converter examples, 48, 58

Capacitor equivalent series resistance (ESR), 264,
862

Capacitor voltage ripple
boost converter example, 29
buck converter example, 35–37
Ćuk converter example, 35
in converters containing two-pole filters, 35–37

Charge balance, see Capacitor charge balance
Circuit averaging, 548–554
Compensators, see also Control system design

design example, 383–392
discrete-time, 812, 822–830
introduction, 347
lag, 380–382
lead, 377–379
lead-lag, 382–383
PD, 377–379
PI, 380–382
PID, 382–383

Complex power, 858
Computer power supply, 8
Conduction loss, see Copper loss, Semiconductor

conduction loss
Conductivity modulation, 79–80, 88, 101,

111–113, 115
Continuous time to discrete time mapping,

817–821
backward Euler approximation, 814
bilinear (Tustin), 817
forward Euler approximation, 814
trapezoidal approximation, 813
with prewarping, 819

Control system design, see also Compensators,
Negative feedback, 347–407

closed-loop transfer functions, 350–358
compensation, 376–392
design example, 383–392
digital control loop, 806–812, 822–827
for low-harmonic rectifiers

approaches, 880–894
control of dc output, 895–905
modeling average current control, 786–797

phase margin
Nyquist stability criterion, 364–369
test, 359
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Control system design (cont.)
vs. closed-loop peaking, 370–373
vs. closed-loop transient response, 373–376

stability, 358–375
voltage regulator

block diagram, 347–349
design specifications, 376–377

Control-to-output transfer function
of current programmed converters, 736–737,

752–760
of DCM converters, 604–606, 621
simulation of, 611–618

Control-to-output transfer function Gvd(s)
by graphical construction, 330
input filter, effect of, 677–685
of CCM buck, boost, and buck-boost converters,

315
predicted by canonical model, 247

Conversion ratio M, see also Switch conversion
ratio μ

by sinusoidal approximation, 938–944
in low-harmonic rectifiers, 870–872
modeling of, 44
of Ćuk converter, 33, 598
of boost, 17, 151, 598
of buck, 17, 145, 598
of buck–boost, 17, 152
of buck-boost, 598
of loss-free resistor networks, 597
of parallel resonant converter, 947–950,

983–988
of resonant switch converters, 1012
of SEPIC, 598
of series resonant converter, 944–947, 977–983

Cooling system
size vs. Q, 2

Copper loss
allocation of window area to minimize, 465–470,

487–488
high frequency effects

proximity effect, 442
skin effect, 426

inductor design to meet specified, 459–465
low frequency, 426
modeling in converters, 46–54
multiple winding design to meet specified,

470–473
Core loss, 423–425, 479–481
Correction factor, see Extra element theorem
Coupled inductors, 448

design, 470–473

in Ćuk and SEPIC converters, 453–454
in flyback converter, 476–481
in multiple-output buck-derived converters, 448,

474–476
Crossover frequency, 354, 355, 359, 364, 365, 372,

377
Ćuk converter

as low-harmonic rectifier, 875, 908
conversion ratio M(D), 33, 598
DCM averaged switch model of, 598
derivation by cascade connection, 168
derivation by rotation of three-terminal cell, 170
steady-state analysis of, 30–35
transformer design example, 492–496

Current injection, 396–397
Current mode, see Current programmed control
Current programmed control, 725–799

ac modeling of
CCM more accurate model, 746–760
CCM simple approximation, 728–738
via averaged switch modeling, CCM, 733–738
via averaged switch modeling, DCM, 779–786

addition of input filter to, 760–763
artificial ramp, 741–746
average current control, 786–797
controller circuit, 725
controller small-signal block diagram, 746–752
high-frequency dynamics, 772–779
in full-bridge buck converters, 184, 726
in half-bridge buck converters, 186, 727
in low-harmonic rectifiers, 886–889
in push-pull buck converters, 193
oscillation for D > 0.5, 738–746
simulation of, 763–769
susceptibility to noise, 727
with voltage feedback, 769–772

Current ripple, see Inductor current ripple
Current source inverter, 174
Current-fed bridge, 176
Current-programmed control

controller circuit, 725
Cycloconverter, 1, 76

D
Damping, see also Q factor, Input filters

by two resistive elements, high-Q approxima-
tion, 301–304

of input filters, 678, 691–704
Q factor, 295
vs. load step response, 375–376
vs. overshoot, 373–375
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vs. phase margin, 370–373
DC conversion ratio, see Conversion ratio M
DC transformer model

derivation of, 43–46
in a nonideal boost converter, 51
in a nonideal buck converter, 55
in canonical model, 245
in small-signal ac model of boost with capacitor

ESR, 271
in small-signal ac models, 231, 233
manipulation of circuits containing, 45

Deadtime, 109
Decibel (dB), 280
Design-oriented analysis, techniques of

analytical expressions for asymptotes, 279, 293
analytical expressions for salient features, 310,

315
approximate factorization, 304–308
closed-loop peaking vs. phase margin, 370–373
damping the internal resonances of the SEPIC,

644–648
extra element theorem, 625–648
feedback theorem, 510–540
frequency inversion, 289–290, 293
graphical construction

of Bode plots, 317–331
of closed-loop transfer functions, 353–358

high-Q approximation, 301–304
input filter design inequalities, 684–685, 689,

692, 706
introduction to, 277–279
introduction to null double injection, 509–510
low-Q approximation, 298–301
n-extra element theorem, 648–668
philosophy of, 277

Digital control, 805
compensator design, 822–827
control loop, 806–812
delay in the control loop, 811
design example, 824–827
design procedure, 823
discrete-time systems, 812–821
implementation, 827–838
quantization effects, 830–836

Digital pulse-width modulation (DPWM), 805,
807–812

quantization effects, 830–838
realization of, 836–837
sampling, 810

Diode
antiparallel, 72–73

characteristics of, 89
fast recovery, 88
forward voltage drop, see also Semiconductor

conduction losses, 56, 87–89
freewheeling, 71
parallel operation of, 89
recovered charge Qr, 87, 92, 997, 998
recovery mechanisms, 85–87
Schottky, 88
SiC, 89, 105
snubbing of, 999
soft recovery, 87
switching loss, 90–98, 997, 998, 1000
switching waveforms, 86, 90
wide bandgap, 89
zero-current switching of, 953
zero-voltage switching of, 955

Direct forward transmission through feedback path
G0, 512

Discontinuous conduction mode (DCM), 135–154,
585–624

boost converter analysis, 145, 152
buck converter analysis, 140, 145
current programmed control, 779–786
equivalent circuit modeling of, 585–622
high-frequency dynamics in, 618–621
in low-harmonic rectifiers

boost rectifier, 873–875
flyback rectifier, 878–880

in parallel resonant converter, 984–988
in series resonant converter, 979–983
mode boundary

in boost rectifier, 875
vs. load current and Re, 598
vs. K, 135–140

origin of, 135–140
results for basic converters, 152
simulation of, 608–618
small-signal ac modeling of, 600–606
to reset forward transformer, 190

Displacement factor, 855, 858
Distortion factor, 855–856, see also Total harmonic

distortion
of single phase rectifier, 856–857

Distributed power system, 8
Duty ratio D

complement of, 16
definition of, 16
effect of switching times on, 90, 94
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E
Eddy currents

in magnetic cores, 424–425
in winding conductors, 426–430

Effective resistance Re

in DCM averaged switch model, 592–598
in loss-free resistor model, 592–598
in resonant converter models

with capacitive filter network, 942
with inductive filter network, 949

Efficiency, 1
calculation via averaged model, 52, 59
converter Q, 2
of boost converter

low-harmonic rectifier, 910–917
nonideal dc-dc, 52

vs. switching frequency, 126
Electric vehicle powertrain, 9
Emulated resistance Re, 868
Equilibrium, see Steady state
Equivalent circuit modeling

of CCM converters operating in steady state,
43–61

of converters having pulsating input currents,
54–56

of diode-induced switching loss, 90–98
of flyback converter, CCM, 197
of ideal rectifiers, 868–870, 885, 896–900
of switch networks

DCM, 589–598
small-signal ac models

canonical, 250–251
CCM, 230–234
DCM, 600–606

Equivalent series resistance (esr) of capacitor, see
Capacitor equivalent series resistance (ESR)

Experimental techniques
measurement of impedances, 333–336

grounding problems, 334
measurement of loop gains

by current injection, 396–397
by voltage injection, 394–395
of an unstable system, 397–398

measurement of small-signal transfer functions,
332–333

Extra element theorem, 625–673
applications of

damping a two-section input filter, 700–704
damping the internal resonances of the SEPIC,

644–648
input filter design, 679–691

resonant inverter, load dependence of,
961–965

derivation of, 628–631
impedance inequalities, 631–632
reciprocity relationship, 967
summary of, 626–627

F
Factorization, approximate

approximate roots of arbitrary degree
polynomial, 304–308

graphical construction of Bode diagrams,
317–331

high Q approximation, 301–304
low Q approximation, 298–301

Faraday’s law, 410–411
Feedback theorem, 510–540

buck regulator example , 528–540
derivation of , 513–518
gain G0, 512
ideal forward gain G∞, 512
loop gain T , 511
null loop gain Tn, 512
op amp PD compensator example , 519–528
reciprocity relationship, 518
summary of , 510–513

Ferrite
applications of, 446, 447, 474–481, 494–497
core loss, 424, 425
core tables, 1044–1048
saturation flux density, 413

Fill factor, see Ku

Filter inductor
B–H loop of, 444
design of

derivation of procedure, 459–464
Kg design procedure, 464–465

Flux Φ, 410, 413, 415–417, 461
Flux density B

definition, 410
saturation, 412–413, 415

Flux-linkage balance, see Inductor volt-second
balance

Flyback converter, see also Buck-boost converter
ac model of, 234–242
derivation of, 194–195
modeling losses in, 210
multiple outputs, 198, 211
steady-state analysis of, 195–197
two transistor version, 205

Flyback transformer, 195, 449
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Forward converter, see also Buck converter,
187–192

steady-state analysis of, 187–191
transformer reset mechanisms, 187–191
transformer utilization in, 192
two-transistor version, 191

Four-quadrant switch, see Switch
Freewheeling diode, 71

G
G∞ (ideal closed-loop forward gain), 512
G0 (open-loop disturbance transfer function, or

direct forward transmission), 512
GaN

2D electron gas, 106
FET, 105
reverse conduction, 106

Gate driver, 107–111
bootstrap power supply, 107
deadtimes, 108
undervoltage lockout (UVLO), 108

Gate turn-off thyristor (GTO), 121
Graphical construction of Bode plots, see Bode

plots
Gyrator characteristic of SRC, 980

H
H-bridge, 7, 181–185
Half bridge

gate drive considerations, 107–111
transformer-isolated buck-derived, 185

Harmonic correction, 922
Harmonic loss factor FH , 442
Harmonics in power systems

average power vs. Fourier series, 850–853
distortion factor, 855
in three-phase systems, 859–861
neutral currents, 859–861
power factor, 854–857
rectifier harmonics, 856–857
root-mean-square value of waveform, 853
total harmonic distortion, 856

HEMT, 106
Hot spot formation, 89, 115, 121
Hysteretic control, 889

I
Ideal rectifier, see also Low harmonic rectifiers

in converter systems, 895–905
properties of, 868–870
realization of, 870–880

three-phase, 917
Indirect power, 555–558
Inductor copper loss, see Copper loss
Inductor current ripple

boost example, 29
buck example, 20–22
calculation of, 21
Ćuk converter example, 35
in a filter inductor, 444
in an ac inductor, 446
in converters containing two-pole filters, 37
magnitude vs. DCM, 139

Inductor design
ac inductor design

derivation, 500–501
procedure, 501–502

filter inductor design
derivation, 459–464
Kg design procedure, 464–465

Inductor volt-second balance
boost converter example, 27
buck converter example, 24
Ćuk converter example, 32
definition, 23
in discontinuous conduciton mode, 140

Input filters, 675–723
cascaded filter sections, 700–704
conducted EMI, attenuation of, 675–676
conducted susceptibility, 676
damping of

objectives, 689–692
Rf −Cb parallel damping, 694–696
Rf − Lb parallel damping, 696–698
Rf − Lb series damping, 698

effect on control-to-output transfer function
buck example, 676–679
general result, 679–682, 684–685
introduction of RHP zeroes, 690
with current mode control, 760–763

effect on output impedance, 682
impedance inequalities for design, 684–685,

762–763
negative incremental input resistance, 682–684
stability criteria, 704–720

Input port, converter
ac equivalent circuit model, 231
ac modeling of, 226–227
boost static characteristics, 872–875, 887–888
modeling via state-space averaging, 260
steady-state modeling of, 54–56

Inrush current, 897
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Insulated-gate bipolar transistor (IGBT)
construction of, 115–119
current tailing in, 116, 122
equivalent circuit, 116
forward voltage drop, modeling of, 119
idealized switch characteristics, 70
parallel operation of, 119
switching loss in, 118

Inverters, 1
high frequency, 933–934, 958–973
single phase, 7, 73, 170–173
three phase, 74, 76, 174, 174

Iron laminations, 413, 424

K
K, dimensionless parameter

critical value Kcrit(D), 138–140, 144–147,
151–152

DCM boundary, 139–140, 146–147, 152
steady-state DCM analysis, 144–145, 151–153,

597
Kg, core geometrical constant

definition of, 463–464, 1043
ferrite core tables of, 1044–1048
filter inductor design using, 464–465
multiple winding magnetics design using,

470–473
Kg f e, ac core geometrical constant

ac inductor design using, 499–502
definition of, 489, 1043
ferrite core tables of, 1044–1048
transformer design using

derivation, 486–490
examples, 492–499
first-pass procedure, 490–492

Ku, window utilization factor, 462

L
LCC resonant converter, 933, 961, 964–967, 969
Lenz’s law, 411, 424, 426, 428
Line-to-output transfer function Gvg(s)

by graphical construction, 331
closed-loop, 351, 355
control system design of, 376, 389, 390
in closed-loop block diagram, 386
of CCM buck, boost, and buck-boost converters,

315
of DCM converters, 605
predicted by canonical model, 247

Linear ripple approximation, see Small ripple
approximation

Litz wire, 440
LLC resonant converter, 933, 972–973
Loop gain, see also Control system design,

Negative feedback, Feedback theorem
buck regulator example, 537
compensator design, 376–392
crossover frequency, 354
definition based on block diagram, 351
definition based on null double injection, 511
effect on closed-loop disturbance transfer

functions, 351
effect on closed-loop reference-to-output

transfer function, 353
measurement of , 392–398
null loop gain, 512
op amp example, 522
phase margin test, 359

Loss-free resistor model
averaged switch model of DCM, 592–598
ideal rectifier model

single phase, 868–870
three phase, 917

Low harmonic rectifiers, see also Ideal rectifiers,
see also Ideal rectifiers

controller schemes
average current control, 881–886
critical conduction mode, 889–892
current programmed control, 886–889
hysteretic control, 889
nonlinear carrier control, 892–894

modeling of
efficiency and losses, 910–917
low-bandwidth control loop, 900–905

rms calculations in, 905–910

M
Magnetic circuits, 415–418
Magnetic field H, 409, 412–413
Magnetics, 409–451

ac inductor design, 499–502
basic relationships, 409–415
copper loss, 426, 463, 487–488
core loss, 423–425, 486–487
coupled inductor design, 465–476
flyback transformer design, 476–481
inductor design, 459–465
magnetic circuits, 415–418
magnetic devices, types of, 444–449
optimizing ΔB to minimize total loss, 485,

488–490
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optimizing window allocation to minimize
copper loss, 465–470

proximity effect, 426–442
transformer basics, 178–181, 418–423
transformer design, 485–499

Magnetizing current, 180, 420
Magnetomotive force (MMF)

definition, 409
effect of interleaving on, 438–440
in magnetic circuits, 415–417
MMF diagrams, 431–432, 434

Majority carrier devices, see also MOSFET,
Schottky diode, 79

Matrix converter, 76
Mean length per turn (MLT )

definition, 463
ferrite core tables, 1044–1048

Measurement of transfer functions and loop gains,
see Experimental techniques

Minority carrier devices, see also Bipolar Junction
Transistor, Diode, Insulated Gate Bipolar
Transistor, 79

Modulation index, 921
MOSFET

as a current-bidirectional switch, 72
as a synchronous rectifier, 78
body diode, 72, 101
capacitances, 101
characteristics, 101
conduction loss, modeling of, 56–60
construction, 99
deadtime, 109
gate drivers, 107–111
idealized switch characteristics, 70
parasitic BJT, 101
SiC, 103–105
snubber, 1001
superjunction, 103
switching loss induced by Cds, 123, 1000
switching loss with clamped inductive load, 80
zero-voltage and zero-current switching of,

1002–1003
Motor drive, 9
Multiplying controller, see also Average current

control, current programmed control,
884–886

Multiresonant switch, 1019–1020

N
n-extra element theorem, 648–668

bridge-T filter example, 658–661

damped input filter example, 662–668
frequency inversion, 661–668
introduction, 649–653
procedure, 653–654
two-section LC filter example, 654–658

Negative feedback, see also Control system design
effect on bandwidth, 355
effects of, on network transfer functions,

350–353
objectives of, 215, 347–351
reduction of disturbances by, 355–358
reduction of sensitivity to variations in forward

gain, 353
Nonlinear carrier control, 892–894
Nonminimum phase zero, see Right half-plane

zero
Null loop gain Tn, 512
Nyquist stability criterion, 360–369

encirclements of −1 point, 363
input filter stability analysis, 718–720
modification of Nyquist contour for special

cases, 367–369
Nyquist contour, 362–363
phase margin, 364
principle of the argument, 360–362
stability test, 363–364
three crossover frequencies, 365–367

O
Op amp compensator circuit

analysis via feedback theorem, 519–528
Output characteristics

of LLC, 973
of parallel resonant converter, 986
of resonant inverters, 958–960, 975
of series resonant converter, 982–983

Output impedance Zout(s)
predicted by canonical model, 247

Overshoot, 373–375

P
Parallel resonant converter

analysis via sinusoidal approximation, 947–950
dependence of transistor current on load, 961
exact analysis, 983–988
introduction to, 933

Passthrough mode, 98
Permeability

definition, 412–413
of free space μ0, 412
relative μr, 412
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Phase asymptotes
complex poles, 296–297
inverted forms, 289
real pole, 284–285
real zero, 287
RHP zero, 288

Phase margin, 359, 366, 369, 373
in Nyquist stability criterion, 364–367
input filter, undamped, effect on, 691
modification of by input filter, 678, 706–710
stability test, 359
vs. closed-loop damping factor, 370–373

Powdered iron, 413, 425
Power factor, see also Total harmonic distortion,

Displacement factor, Distortion factor
definition of, 854
single-phase rectifier, 856–857
with sinusoidal voltage, 855–857

Power sink element
definition of, 594
input port characteristic of ideal switching

regulator, 682
Power source element

definition of, 593–598
in ac-to-dc power supply system, 897–898
in averaged switch models

current programmed mode, CCM, 734–735
in DCM switch networks, 594
in ideal rectifier model, 869, 918
in switched-mode regulators, 682–684
linearization of, 603–604
properties of, 596–598

Proximity effect, 426–442
interleaving, effect on, 438–440
layer copper loss, 434–435
Litz wire, effect of, 440
MMF diagrams, 436–440
PWM waveform harmonics, 441–442
simple explanation, 428–430
transformer design procedure, accounting for,

488
winding loss, total, 436–438
winding porosity η, 433

Pulse-width modulation (PWM), 4–6
digital, 805, 807–812, 836–837
modeling of pulse-width modulator, 242–245
operation of pulse-width modulator, 242–243
spectrum of PWM waveform, 216

Push-pull isolated converters
based on boost converter, 201
based on buck converter, 192–193
based on Watkins-Johnson converter, 201

Q
Q factor

closed-loop vs. phase margin, 370–373
converter quality factor, 2
finding analytical expression for, 311
graphical determination of, 321–324
high Q approximation, 301–304
load step response vs., 375–376
low Q approximation, 298–301
of complex poles, 295
overshoot vs., 373–375
predicted by canonical model, 315

Quasi-resonant converters, see also Multiresonant
converters, Quasi-square wave converters

zero-current switching, 1003–1015
full wave, 1014–1015
half wave, 1005–1014

zero-voltage switching, 1017–1018
Quasi-square wave converters, 1020–1025
Quasi-static approximation, 886
Quiescent operating point, 218, 227, 233,

244

R
Reactive power

definition, 858
Rectifiers, 1

energy storage in single phase, 895–900
high quality, 849
ideal, 868–870
ideal three phase, 917–922
in resonant dc–dc converter, 934, 940
in resonant dc-dc converter, 942,

947–949
line-commutated

single-phase, 856–857
Reluctance R, 416
Resonance

Bode plot of complex poles, 294–297
damping of, 691–698
graphical construction examples, 321–324
parallel resonant circuit, 322–324
series resonant circuit, 320–322
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Resonant converters, see also Quasi-resonant
converters, Multi-resonant converters,
Quasi-square wave converters, Zero-voltage
transition converters, 933–988

analysis by sinusoidal approximation, 938–944
LCC, 960–971
LLC, 972–973
parallel resonant converter, 947–950, 983–988
properties of, 957–973
series resonant converter, 944–947, 977–983
soft switching in, 951–955

Resonant inverters, design of, 957–976
dependence of transistor current on load,

960–965
LCC example, 967–971
LLC example, 972–973
output characteristic, 958–960
results for basic tank networks, 973–976
ZCS/ZVS boundary, 965–967

Resonant link converters, 935
Right half-plane zero

Bode plot, 288
caused by input filter, 690
origins of, 316–317

Ripple, switching, 18–22, 35–37, 135–139, 216,
224

Root mean square value
comparison of ideal rectifier topologies,

908–910
of commonly-observed converter waveforms,

1037–1042
of rectifier waveforms, 905–910
vs. Fourier series, 853

S
Sampling

and delays in digital control loop, 810–812
of A/D converter, 806
of current-programmed controller, 773–779
of pulse-width modulator, 244–245, 811

Saturation
of inductors, 415, 418
of magnetic materials, 412–413
of transformers, 180, 421

Schottky diode, 88
Semiconductor conduction loss

boost converter example, 56–60
inclusion in ac model, 234, 259
with synchronous rectifier, 79

Semiconductor power devices, see also Bipolar
junction transistor, Diode, Gate turn-off

thyristor, Insulated gate bipolar transistor,
Schottky diode, Silicon controlled rectifier,
67–128

charge control of, 79, 85–87, 112–115
conductivity modulation, 79, 112
majority vs. minority carriers, 79
realization of switches using, 67–79

SEPIC, see Single-ended primary inductance
converter

Series pass regulator, 4
Series resonant converter

analysis via sinusoidal approximation, 938–947
dependence of transistor current on load, 964
exact characteristics

continuous conduction mode, 977–979
control plane characteristic, 980–982
discontinuous conduction mode, 979–980
output characteristic, 982–983

introduction to, 933, 934
subharmonic modes in, 946–947
zero-current switching in, 951–954
zero-voltage switching in, 954–955

SiC MOSFET, 104
Silicon controlled rectifier (SCR), 119–122

equivalent circuit, 120
gate turn-off thyristor, 121
inverter grade, 121

Simulation, 566–578, 608–618
CCM model including conduction losses,

571–572
combined CCM-DCM switch model, 608–614
combined CCM/DCM averaged switch

simulation model, 608–621
current programmed mode control model,

763–764
CCM model, 764–765
combined CCM-DCM model, 765–766

examples
buck voltage regulator, 614–618
buck with current programmed control,

766–769
SEPIC frequency response, 611–614

objectives, 566–568
of loop gain and closed-loop responses, 614–618

Single quadrant switch, 69–72
definitions, 69
origins of DCM, 135–140
realization of, 69–72

Single-ended primary inductance converter
(SEPIC), 177

analysis via extra element theorem, 640–644



1082 Index

Single-ended primary inductance converter
(SEPIC) (cont.)

as a low-harmonic rectifier, 875, 878, 908
average switch model of

CCM derivation, 548–554
combined CCM-DCM model, 611–614
discontinuous conduction mode, 598
losses and efficiency, 572–574

conversion ratio M(D), 177
damping the internal resonance, 644–648
Gvd as effective buck-boost plus glitch, 641
indirect power in, 555–558
inverse of, 177, 201
transformer isolation in, 201

Skin effect, see also Proximity effect, 426–428
Small ripple approximation, see also Averaging

and average power loss, prediction of, 59–60
boost example, 26
buck example, 19–20
Ćuk example, 30–32
definition, 19
failure of in two-pole filters, 35
in discontinuous conduction mode, 140–141

Small-signal ac modeling, 218–220
canonical model, 245–251
equivalent circuit model, 230–234
of low harmonic rectifiers, 902–905
perturbation and linearization, 227–229,

232–233
via averaged switch modeling, 552–554,

563–565
Snubber networks, 115, 119, 999, 1001
Soft switching, see also Zero-current switch-

ing, Zero-voltage switching, see also
Zero-current switching, Zero-voltage
switching

Spacecraft power system, 9
SPICE, see Simulation
State-space averaging, 251–271

basic result, 255–259
boost example with capacitor ESR, 264–271
buck-boost example, 259–264
writing the state equations of a network,

252–254
Steady state

equilibrium point via state-space averaging, 255
inductor current waveform, 22–23
quiescent operating point, 218, 227

Subharmonic
modes of series resonant converter, 946–947,

982

number ξ, 977
Switch, see also Averaged switch modeling

averaged modeling of, 547–578
current-bidirectional two-quadrant, 72–75
four-quadrant, 76
ideal SPDT in converters, 4, 67
ideal SPST, 67
passive vs. active, 69–70
power dissipated by ideal, 6
quasi-resonant, 1003–1025
realization of, using semiconductor devices,

67–79
single-quadrant, 69–72
synchronous rectifier, 78–79
synchronous switches, operation of, 107–111
voltage-bidirectional two-quadrant, 75–76

Switch conversion ratio
boost converter example, 1013–1014
combined CCM-DCM model, 610
definition, 608–610, 1005, 1012
of multiresonant switch, 1020
of quasi-resonant switches

full-wave ZCS, 1014
full-wave ZVS, 1018
half-wave ZCS, 1011
half-wave ZVS, 1018

of quasi-square wave switches, 1023
Switched mode, 4–6
Switching frequency

converter efficiency vs., 93, 126
definition of, 15
transformer size vs., 495–496

Switching harmonics, see also Ripple, switching, 6
removal of via averaging, 216–218, 224–225

Switching loss, see also Soft switching, Zero-
current switching, Zero-voltage switching,
122–126

boost converter model, 94–98
buck converter model, 90–93
current tailing in IGBTs, 117–119, 1003
device capacitances, 122–124, 1000
diode-induced, 90–98, 124–126, 997
effect on converter efficiency, 126
equivalent circuit modeling of, 90–98
induced by diode reverse recovery, 92
leakage inductance, 124–126, 999
ringing waveforms, 124, 998
with clamped inductive load, 80–82

Synchronous rectifiers, 78–79
Synchronous switches, 78–79, 107–111
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T
Temperature rise

in a converter, 2
in magnetics, 1043

Thyristor, 119–122
Tn (null loop gain), 512
Topologies of converters, see also Boost, Bridge

configuration, Buck, Buck-boost, etc.
cascade connections, 166–169
converter synthesis, 174–177
differential connection of load, 170–174
inversion of source and load, 164–165
low-harmonic rectifiers, 908–912
resonant converters, 933–937
resonant switch converters, 1016–1025
rotation of three-terminal cell, 169–170
transformer isolation, 178–202

Total harmonic distortion
definition, 856
of current-programmed rectifiers, 888
of peak detection rectifier, 856
vs. distortion factor, 856

Transfer functions, see also Bode plots
graphical construction of, 325–331
input filter, effect on, 679–691
measurement of, 332–333
of DCM converters, 600–608
of low-harmonic rectifiers, 900–905
of the buck, boost, and buck-boost converters,

315
predicted by canonical model, 245–247, 315
simulation of, 608–618

Transformer-isolated converters, 178–202
boost-derived, 198–201
Ćuk, 201–202
flyback, 194–198
forward, 187–192
full-bridge buck-derived, 181–185
half-bridge buck-derived, 185–186
multiple outputs and cross-regulation, 179
push-pull buck-derived, 192–193
SEPIC, 201
transformer model, 179–181
use of volt-second balance in, 181

Transformers
B–H loop in, 180, 421
design of

derivation, 486–490
first-pass procedure, 490–492
flyback transformer, 476–481
winding area optimization, 465–470

flyback transformer, 195, 449
in isolated converters, 178–202
leakage inductance, 181, 421–423
magnetizing inductance, 187, 420–421
modeling of, 178–181, 418–423
push-pull boost, 201
SEPIC transformer, 201
volt-second balance in, 179–181

Triplen harmonics
in three-phase four-wire networks, 860–861
in three-phase inverter/rectifier modulation

schemes, 922
in three-phase three-wire networks, 861

Two-quadrant switch, see Switch

U
Undervoltage lockout (UVLO), 108
Universal input rectifiers, 897

V
Volt-second balance, see Inductor volt-second

balance
Voltage conversion ratio, see Conversion ratio M
Voltage injection, 394–395
Voltage-source inverter, 74, 919

W
Watkins-Johnson converter, 174

inverse of, 176
isolated push-pull, 201

Wide bandgap devices, 80, 103–105
GaN FETs, 103–106
High electron mobility transistor (HEMT), 106
SiC MOSFETs, 103–105
SiC Schottky diode, 89

Window area WA

allocation of, to minimize total copper loss,
465–470

definition, 462
ferrite core tables, 1044–1048

Window utilization factor Ku, 462
Wire area AW

American wire gauge (AWG) table, 1049–1050
inductor design, 462, 465

Z
Zero-current switching, 936

effect on diode-induced switching loss, 999
in quasi-resonant converters, 997–999, 999
in resonant converters, 951–954
ZCS-ZVS mode boundary, 965, 967
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Zero-voltage switching, 936
in active-clamp snubber, 1029
in auxiliary resonant commutated pole, 1033
in multiresonant switch, 1019
in quasi-resonant converters, 999
in quasi-square wave converters, 1025

in resonant converters, 954–955
in zero-voltage transition converter, 1028
of MOSFETs, 1003
ZCS-ZVS mode boundary, 965–967

Zero-voltage transition buck-derived converter,
1025–1028
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