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Plants are so unlike people that it’s very difficult
for us to appreciate fully their complexity and sophistication .

Michael Pollan, The Botany of Desire





Preface

When starting to rearrange my lecture notes I had a ‘short introduction to
multivariate vegetation analysis’ in mind. It ended up as a ‘not so short
introduction’. The book now summarizes some of the well-known methods
used in vegetation ecology. The matter presented is but a small selection
of what is available to date. By focusing on methodological issues I try
to explain what plant ecologists do, and why they measure and analyse
data. Rather than just generating numbers and pretty graphs, the models and
methods I discuss are a contribution to the understanding of the state and
functioning of the ecosystems analysed. But because researchers are usually
driven by their curiosity about the functioning of the systems I successively
began to integrate examples encountered in my work. These now occupy
a considerable portion of this book. I am convinced that the fascination of
research lies in the perception of the real world and its amalgamation in
the form of high-quality data with hidden content processed by a variety
of methods reflecting our model view of the world. Neither my results nor
my conclusions are final. Hoping that the reader will like some of my ideas
and perspectives, I encourage them to use and to improve on them. There
remains considerable scope for innovation.

The examples presented in this book all come from Central Europe. While
this was not intended originally, I became convinced the topics they cover
are of general relevance, as similar investigations exist almost everywhere
in the world. An example is the pollen data set: pollen profiles offer the
unique chance to study vegetation change over millennia. This is the time
scale of processes such as climate change and the expansion of the human
population. Another, much shorter time series than that of pollen data is
found in permanent plot data originating from the Swiss National Park that
I had the opportunity to look at. The unique feature of this is that it dates
back to the year 1917, when Josias Braun-Banquet personally installed the
first wooden poles, which are still in place. Records of the full set of species
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have been collected ever since in five-year steps. A totally different data
set comes from the Swiss Forest Inventory, presented in the last chapter of
this book. Whereas many vegetation surveys are merely preferential collec-
tions of plot data, this data set is an example of systematic sampling on a
grid encompassing huge environmental gradients. It helps to assess which
patterns really exist, and whether some of those described in papers or text-
books are real or merely reflect the imagination or preference of researchers
scanning the landscape for nice locations. In this case the data set available
for answering the question is still moderate in size, but handling of large
data sets will eventually be needed in similar contexts. I used the Swiss
wetland data set as an example for handling data of much larger size, in
this case with n = 17608 relevés. Although this is outnumbered by others,
it resides on a statistical sampling design.

Some basic knowledge of vegetation ecology might be needed to under-
stand the examples presented in this book. Readers wishing to acquire this
are advised to refer, for example, to the comprehensive volumes Vegetation
Ecology by Eddy van der Maarel (2005) and Aims and Methods of Vegeta-
tion Ecology by Mueller-Dombois and Ellenberg (1974), presently available
as a reprint. The structure of my book is influenced by Orlócis (1978) Mul-
tivariate Analysis in Vegetation Research , which I explored the first time
when proofreading it in 1977. Various applications are found in the books
of Gauch (1982), Pielou (1984) and Digby and Kempton (1987) and many
multivariate methods used in vegetation ecology are introduced in Jong-
man et al. (1995). To study statistical methods used in this book in more
detail, I strongly recommend the second edition of Numerical Ecology by
Legendre and Legendre, probably the most comprehensive textbook existing
today. Several books provide an introduction to the use of statistical pack-
ages, which are referred to in the appendix. For many reasons I decided to
omit the software issue in the main text; upon the request of several review-
ers I added a section to the appendix where I reveal how I calculated my
examples and mention programs, program packages and databases.

I would like to express my thanks to all individuals that have contributed
to the success of this book. First of all Rachel Wade from Wiley-Blackwell,
who strongly supported the efforts to print the manuscript in time and orga-
nized all the technical work. I thank Tim West for careful copy-editing,
and Robert Hambrook for managing the production process. My colleagues
Anita C. Risch and Martin Schütz revised the entire text, providing correc-
tions and suggestions. Meinrad Küchler helped in the computation of several
examples. André F. Lotter provided the pollen data set. I cannot remember
all the people who had an influence on the point of view presented here:
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many ideas came from László Orlóci through our long lasting collabora-
tion, others from Madhur Anand, Enrico Féoli, Valério de Patta Pillar, Janos
Podani and Helene Wagner. I particularly thank my family for encouraging
me to tackle this work and for their tolerance when I was working at night
and on weekends to get it completed.

Otto Wildi
Birmensdorf, 1 December 2009
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1
Introduction

This book is about understanding vegetation systems in a scientific context,
one topic of vegetation ecology. It is written for researchers motivated by
the curiosity and ambition to assess and understand vegetation dynamics.
Vegetation, according to van der Maarel (2005) ‘can be loosely defined as
a system of largely spontaneously growing plants.’ What humans grow in
gardens and fields is hence excluded. The fascination of investigating vege-
tation resides in the mystery of what plants ‘have in mind’ when populating
the world. The goal of all efforts in plant ecology, as in other fields of sci-
ence, is to learn more about the rules governing the world. These rules are
causing patterns, and the assessment of patterns is the recurrent theme of
this book.

Unfortunately, our access to the real world is rather restricted and – as
we know from experience – differs among individuals. To assure progress
in research an image of the real world is needed: the data world . In this we
get a description of the real world in the form of numbers. (An image can
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2 CH 1 INTRODUCTION

be a spreadsheet filled with numbers, a digital photograph or a digital terrain
model.) Upon analysis we then develop our model world , which represents
our understanding of the real world. Typical elements are orders, patterns
or processes governing systems. It is the aim of most analytical methods to
identify patterns as elements of our model view.

Finding models reflecting the real world is a difficult task due to the
complexity of systems. Complexity has its origin in a number of fairly well
known phenomena, one being the scale effect. Any regularity in ecosystems
will emerge at a specific spatial and temporal scale only: at short spacial dis-
tance competition and facilitation among plants can be detected (Connell &
Slatyer 1977); these would remain undetected over a range of kilometres.
In order to study the effect of global climate change (Orlóci 2001, Walther
et al. 2002) the scale revealed by satellite photographs is probably more
promising. Choosing the best scale for an investigation is a matter of deci-
sion, experience and often trial and error. For this a multi-step approach is
needed, in which intermediate results are used to evaluate the next decision
in the analysis. Poore (1955, 1962) called this successive approximation and
Wildi & Orlóci (1991) flexible analysis . Hence, the variety and flexibility
of methods is nothing but an answer to the complex nature of the systems.
Once the proper scale is found there is still a need to consider an ‘upper’
and a ‘lower’ level of scale, because these usually also play a role. Parker &
Pickett (1998) discuss this in the context of temporal scales and interpret the
interaction as follows: ‘The middle level represents the scale of investiga-
tion, and processes of slower rate act as the context and processes of faster
rates reflect the mechanisms, initial conditions or variance.’

A second source of complexity is uncertainty in data measured. Data are
restricted by trade-offs and practical limitations. A detailed vegetation sur-
vey is time-consuming, and while sampling, vegetation might already be
changing (Wildi et al. 2004). Such data will therefore exhibit an undesired
temporal trend. A specific bias causes variable selection. It is easier to mea-
sure components above ground than below ground (van der Maarel 2005,
p. 6), a distinction vital in vegetation ecology. Once the measurements are
complete they may reflect random fluctuation or chaotic behaviour (Kienast
et al. 2007) while failing to capture deterministic components. It is a main
objective in data analysis to distinguish random from deterministic compo-
nents. Even if randomness is controlled there is nonlinearity in ecological
relationships, a term used when linearity is no longer valid. This would not
be a problem if we knew the kind of relationship that was hidden in the data
(e.g. Gaussian, exponential, logarithmic, etc.), but finding a proper function
is usually a challenging task.
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Further, spatial and temporal interactions add to the complexity of vege-
tation systems. In space, the problem of order arises, as the order of objects
depends on the direction considered. In most ecosystems, the environmen-
tal conditions, for example elevation or humidity, change across the area.
Biological variables responding to this will also be altered and become
space-dependent (Legendre & Legendre 1998). If there is no general depen-
dency in space, a local phenomenon may exist: spatial autocorrelation. This
means that sampling units in close neighbourhood are more similar than one
could expect from ecological conditions. One cause for this comes from
biological population processes: the chance that an individual of a popula-
tion will occur in unfavourable conditions is increased if another member
of the same population resides nearby. It will be shown later in this book
how such a situation can be detected (Section 7.3.3). Similarly, correlation
over time also occurs. In analogy to space, there is temporal dependence
and temporal autocorrelation. This comes from the fact that many processes
are temporally continuous. The systems will usually only change gradually,
causing two subsequent states to be similar. Finally, time and space are not
independent, but linked. Spatial patterns tend to change continuously over
time. In terms of autocorrelation, spatial patterns observed within a short
time period are expected to be similar. Similarly, a time series observed at
one point in space will be similar to another series observed nearby.

In summary, all knowledge we generate by analysing the data world
contributes to our model world. However, this is aimed at serving society.
When translating this into practice we experience yet another world, the
man-made world of values . This is people’s perception and valuation of the
world, which we know from experience is continuously changing. The results
we derive in numerical analysis carry the potential to deliver input into value
systems, but we should keep in mind what Diamond (1999) mentioned when
talking about accepting innovations: ‘Society accepts the solution if it is
compatible with the society’s values and other technologies.’ Proving the
existence of global warming, as an example, can be a matter of modelling.
Convincing people of the practical relevance of the problem is a question of
evaluation and communication, for which different skills may be required.





2
Patterns in vegetation
ecology

2.1 Pattern recognition
Why search for patterns in vegetation ecology? Because the spatial and
temporal distribution of species is non-random. The species are governed by
rules causing detectable, regular patterns that can be described by mathemat-
ical functions, such as a straight line (e.g. a regression line), a hyperbola-
shaped point cloud, or, in the case of a temporal pattern, an oscillation. But
it might also be a complex shape that is familiar to us: Figure 2.1 shows
the portrait of former US President Abraham Lincoln. Although drastically
simplified, we immediately recognize his face. Typically, this picture con-
tains more information than just the face: there is also the regular grid, best
seen in the image on the right. This geometrically overlayed pattern tends
to dominate our perception. The entire central image including the grid is

Data Analysis in Vegetation Ecology Otto Wildi
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6 CH 2 PATTERNS IN VEGETATION ECOLOGY

Figure 2.1 Portrait of Abraham Lincoln. Pixel image (left), blurred (centre), with
superimposed raster (right).

Figure 2.2 Vegetation mapping as a method for establishing a pattern (bog
vegetation with a wetness gradient from the foreground to the background).

blurred, helping the human brain to recognize the face more easily. So pat-
terns are frequently overlayed, and this also happens in ecosystems, where it
is actually the rule. One of the aims of pattern recognition is in fact to sepa-
rate superimposed patterns by partitioning the data in an appropriate way. A
well-known application of pattern recognition is (vegetation) mapping. The
usually inhomogeneous and complex vegetation cover of an area is reduced
to a limited number of types. The picture in Figure 2.2 shows the centre of
a peat bog in the Bavarian Pre-Alps. Three vegetation types of decreasing
wetness are distinguished from the foreground to the background. Before
drawing such a map the types have to be defined, a difficult task discussed
in more detail in Chapter 6.

Patterns are often obscured not just by overlay, but by random variation
(sometimes referred to as statistical noise) hiding the regularities. Methods
are needed to divide the total variation into two components, one containing
the regularity and one representing randomness.
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One (statistical) property of any series of measurements is variance (s2):

s2 =
n∑

i=1

(x − x)2

This is the sum of the squared deviation of all elements from the mean
of vector �x. The mean can be interpreted as the deterministic component
and the deviations as the random component of a measurement. Even in the
simplest natural system the existence of a deterministic pattern and a random
component can be expected. A typical example in vegetation ecology is
the representation of a vegetation gradient as an ordination. A continuous
change in underlying conditions, time or environmental factors leads to a
nonlinear change in vegetation composition. When a vegetation gradient of
this type is analysed, it will not manifest as a straight line but as a curve
instead, also known as a horseshoe (see Section 5.5). What deviates from
this can be considered statistical noise, but it can also come from yet another
pattern. The issue is sketched in Figure 2.3 with data from a gradient in the
Swiss National Park depicting the change from nutrient-rich pasture towards
reforestation by Pinus montana. In this ordination the main pattern is the

Figure 2.3 Ordination of a typical horseshoe-shaped vegetation gradient in the
Swiss National Park. Relevés on the left-hand side are taken from the forest edge,
those at the right-hand side from the centre of a pasture. If the arrow is assumed
to represent the true trend then the distance of any one point from the arrow is
caused by noise.
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curved line and the random component comes from the deviations of the
data points from this line. Alternatively, one may detect another pattern in
the point cloud. As will be shown in Chapter 6, applying cluster analysis
will result in determination of groups. This might be the preferred pattern
for some practical applications like vegetation mapping.

I have shown so far that patterns refer to different kinds of regularities,
some in space, some in time, others related to the similarity of objects,
one-dimensional or multidimensional, deterministic or random. This book
presents a strategy towards recognition of patterns. In Section 2.3 I refer
to the sampling problem, a big issue as sampling yields the data and only
these are subjected to analysis. Mathematical analysis starts with Chapter 3
on transformation, a step in any analysis that allows adjustment of the data
to the objective of the investigation, while also partly overcoming restric-
tions imposed by the measurements. First, transformations address individual
measurements (scalars), such as species cover, abundance or biomass, for
which I frequently use the neutral term species performance. Second, vectors
are subjected to transformation. A relevé vector includes all measurements
belonging to this, including species performance scores and site factors. A
species vector considers performance scores in all relevés where it occurs.
In a synoptic table (Section 6.6) a relevé vector is a column and a species
vector a row.

In Chapter 4 multivariate comparison is presented. Comparing two
relevés, one has to include all species and all site factors. This can be done
in many different ways. The same applies to the species vectors, depicting
their occurrence across all the relevés, and the site vectors, doing the same.
The resemblance pattern is then defined by comparing all pairs of species
and relevé vectors. If the number of vectors involved is equal to n then
the dimension of resemblance matrix including all pairwise similarities is
m = (n ∗ (n − 1)/2). Because of the tremendous size of this matrix, further
analysis is required.

Many of the subsequent analyses directly access similarity matrices, such
as ordination (Chapter 5), showing similarity in reduced dimensional space,
classification (Chapter 6), showing groups instead of single relevés, and
ranking (e.g. Section 5.6), erasing relevés or species considered unimportant
in the given context. These three approaches unveil patterns. Chapter 7
is devoted to the comparison of patterns, being biological, environmental,
spatial or temporal. The analysis of temporal patterns is shown in Chapter 9
and is related to static (Chapter 8) and dynamic (Chapter 10) modelling,
of which the very basic elements as well as examples are shown. Finally,
two applications illustrate practical issues through specific data sets: the
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analysis of wetland vegetation in Switzerland in Chapter 11, as an example
of handling large data sets, and the analysis of forest vegetation data in
Chapter 12, focusing on the interpretation of ecological patterns.

2.2 Interpretation of patterns
Distinguishing pattern, process and mechanism (Anand 1997) is one way
of proceeding towards interpretation of results. After identifying a pattern,
one seeks a process that might have generated it. Identifying this process
can be an easy task, as shown in Figure 2.4 (left). The opening in the forest
was created on 26 December 1999, when the storm Lothar hit the Swiss
Plateau. Figure 2.4 (right) depicts a different process: human impact, in this
case hay production, prevents forest regrowth below the timber line. How-
ever, the case of the vegetation gradient in the Swiss National Park shown
in Figure 2.3 is more complicated. At first glance one would expect a strong
nutrient gradient to which vegetation has responded. But long-term investi-
gations have shown that it is actually the outcome of species movements in
the direction from the forest edge towards the centre of an ancient pasture
(Wildi & Schütz 2000) (see Section 9.4.2 for further explanations). This
illustrates why it is sometimes difficult to distinguish between spatial and
temporal processes.

Behind processes there are often mechanisms – that is, natural
laws – acting as drivers. One such law is gravity, which lets an apple fall
from a tree. Dynamic wind forces have caused the trees to break in the

Figure 2.4 Left: a natural event – forest gap caused by storm Lothar, 26 Dec.
1999. Right: man-made – a meadow just below the timber line.
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opening shown in Figure 2.4 (left). Why did the trees break, instead of
being uprooted as usual? Why has the area of damage an almost circular
shape, while the neighbouring trees were not damaged? A nonlinear
physical process – the turbulent flow of air – seems to be the force that
caused the pattern. This illustrates that sometimes a physical process must
be understood in order to interpret the outcome. A mechanism can also be
biological: in the case of the pastures of the Swiss National Park, one cause
is probably the browsing behaviour of animals. Before 1914 the pasture
was grazed by cattle, which preferred the centre of the forest clearing. After
1940 red deer were invading the park and we know form investigations
that they browse the pasture more evenly. In this case the behaviour of the
animals is a mechanism governing the process of vegetation change.

Space and time almost always interact, resulting in space–time patterns.
The roles space and time play can differ considerably, as shown in the two
examples below. The first is presented in Figure 2.5, where net primary
production was measured at three different time intervals in 2001 by the
US MODIS sensor. The pictures illustrate the seasonal changes leading to
complex and fast shifting spatial patterns of primary production all across
Europe. Shifting spatial patterns occur everywhere and are not only caused
by seasonality, but by weather fluctuations in general.

In the second example a persisting spatial pattern reveals a process dating
far back. In the year 2001, Mátyás and Sperisen published a map of Switzer-
land showing the distribution of oak trees. Based on chloroplast DNA they
distinguished seven haplotypes, among which two dominated: no. 1 (light)
and no. 7 (dark) in Figure 2.6. Historic studies suggested that this was not

Figure 2.5 Primary production of the vegetation of Europe measured by the MODIS
sensor at three time intervals in 2001. Light areas have high weekly primary
production. http://modis.gsfc.nasa.gov/
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CH148

CH147

CH145

CH146

Figure 2.6 Distribution pattern of oak haplotypes in Switzerland according to
Mátyás & Sperisen (2001). This reveals the post-glacial invasion route.

the result of forest management, but the effect of re-colonization of Central
Europe by oak (Quercus sp.) some 8000 years ago. The known retreat areas
for oak during glaciation were Spain, southern Italy, the Balkan peninsula
and probably Greece. Surprisingly, the genetic pattern found concerns three
species simultaneously: Quercus robur, Q. petraea and Q. pubescens . In
other words, all retreats hosted more than one of today’s oak species.

Haplotype no. 7 (dark circles) arrived from the Balkan peninsula, invad-
ing southern Switzerland first, then crossing the western Alps and further
progressing north towards France and Germany. The remaining haplotypes
(white circles) originate from southern France (left-hand side in Figure 2.6).
Genetic patterns of this kind recently helped reveal the spread of many
species, including the modern Homo sapiens sapiens .

2.3 Sampling for pattern recognition
2.3.1 Getting a sample

The aim of data sampling is to generate a numerical description of the real
system we wish to analyse. That is what a ‘good’ sampling design does. A
‘bad’ design includes the risk of generating a pattern which is absent in the
real world. Generating a sampling design means that the sampling elements
have to be chosen, which is explained below. In this section, sampling is
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not presented in detail. The elements are introduced because these determine
the organization of the data sets. It must be noted that the selection and
definition of these elements is a central issue in any investigation as it
will determine the contents and relevance of the results. There exist few
guidelines to help find a good sampling design and much is left to the
intuition of the researcher.

The terminology used throughout this text is shown in Table 2.1 and
applied to an object in Figure 2.7. Many of the terms are prone to confusion,

Table 2.1 Terms used in sampling design (International Statistical Institute 2009)
English, French, German, Spanish.

E / F / G / S Meaning Example

Population (universe) All measurable items All plants in an
Population (population) investigation area
Population (Grundgesamtheit)
Población (universo)

Sample All measurements A vegetation table
Échantillon taken within the
Stichprobe investigation area
Muestra

Sampling unit One element of A relevé
Unité d’échantillon a sample
Stichprobeneinheit
Unidad de muestra

Attribute Descriptors of the Plant species, site
Attribut sampling units factors
Merkmal, Attribut
Atributo

Sampling plan Location of units, Sampling grid
Plan d’échantillonage size and shape
Stichprobenplan
Planeo de la muestra

Stratum Subset of the sample Relevés between 600 m
Strate, couche and 800 m a.s.l.
Schicht, Stratum
Estrato
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Figure 2.7 The elements of sampling design. In this example, a systematic sam-
pling design is used to assess the state of a peat bog.

for example a sample in some textbooks is the same as a sampling unit in
others. The translations given in Table 2.1 intend to foster communication
in some languages (International Statistical Institute 2009). The first step
in sampling is the delineation of the population, which is the object to
be investigated; that is, the full investigation area (not to be confounded
with the population in the biological sense). The results will be valid for
this population in terms of time, space and content. In theory, all items
belonging to the population could be measured, such as the diameter and
height of all trees in a forest, for example. In practice, however, the costs of
such a strategy (termed full enumeration) would be excessive and much of
the energy and money would be wasted. Instead, a subset of all measurable
items is taken: the sample. In the terminology used here, the sample is the
full set of measurements taken from the population. It provides an estimate of
real values of parameters of interest. The sample consists of sampling units .
In vegetation science, a sampling unit is often a plot of pre-defined size
and shape (Kent & Coker 1992), as indicated in Figure 2.7. Each sampling
unit is characterized by attributes , such as percentage vegetation cover. One
can measure just one attribute per sampling unit. In practice, the number of
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attributes is often rather high. This is the case when relevés are taken where
all the species occurring in the plot are recorded.

There are many more decisions needed to accomplish a full sampling
design, one of them being the sampling plan. Plots can be arranged system-
atically, as seen in Figure 2.7; for other applications, a random arrangement is
the best option; while in more complex situations, a stratification of the entire
surface is suggested. When stratifying its surface, the investigation area is
divided into subspaces, the strata , which are formed based on available
information on the investigation area, such as thematic maps. To increase
the efficiency of sampling, different sampling plans can be applied to the
individual strata. If small strata are more densely sampled than large strata,
the sampling intensity eventually becomes equal for all strata. Not mentioned
in Table 2.1 are plot size, plot shape and the time of sampling.

2.3.2 Organizing the data

At first glance, organizing the data appears to be a technical matter only: the
sample is usually presented in a rectangular matrix, where the columns are
reserved for the sampling units and the rows are the attributes (or vice versa).
However, in natural space–time systems, the variables can be grouped by
type. For this, the concept of space is used. A data table of the kind presented
here forms the data space. As will be shown later (Chapter 4), there are
other, even more abstract spaces such as the resemblance space.

At this point, some subtypes of data space are considered:

The biological space. This consists of the attribute vectors describing the
biotic part of the system, such as plant species, plant cover, animal
species, population sizes, life forms, etc. In many models of data analysis
these function as dependent variables.

The environmental space. The attributes involved measure the environmental
conditions, such as climate, nutrients, the substrate or disturbances such
as fire or land-use. They are often considered explanatory or independent
variables.

The physical space in two or three dimensions. In the sample space, each
sampling unit is described by its x-, y- and z-coordinate. By assigning
this, the sampling plan also becomes part of the sample. Specific methods
exist for the analysis of spatial effects.
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Figure 2.8 Organization scheme of sample data. The environmental data include
spatial and temporal attributes as well.

Time space. This has just one dimension, the time axis. As in physical space,
there are special methods to analyse time series data.

In traditional phytosociology (Braun-Blanquet 1964, Dengler et al. 2008)
there is a convention to put ecological, spatial and temporal attributes on
top of data tables. The biological ones are then added in the form of species
lists. An example is shown in Figure 2.8. For improved presentation and
interpretation of results, the sampling units and all the attributes are num-
bered and, if available, identified by names. This organization allows easy
access to the data by most software packages.





3
Transformation

3.1 Data types
As mentioned in Chapter 1, the aim of measurement is to generate a numer-
ical description of the real world. This sounds like a merely technical issue;
on closer inspection, however, data often mirror the tool that has been used
for the measurement. We measure what we can measure and we omit what
we cannot. Sometimes we also have a choice in the method we use to
obtain some particular information, as for example in measuring the colour
of light. We can either use a scale with discrete states (red, blue, yellow,
etc.) or measure the wavelength of electromagnetic radiation. In the first
case the measurement addresses a type of colour, in the second we get a
number, representing a totally different data type. We need to distinguish
different data types as their numerical analyses require different treatments.
In some cases the transformation of one type into another may be necessary

Data Analysis in Vegetation Ecology Otto Wildi
 2010 John Wiley & Sons, Ltd
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Figure 3.1 An example of three data types. Left: nominal data (leaves of (a) Quercus
petraea, (b) Q. pubescens, (c) Q. robur and (d) Q. cerris, photograph WSL, Genetic
ecology). Centre: rank data (flowering order of three plant species). Right: metric
data (height and stem diameter of a tree).

(e.g. in Table 3.3). Some textbooks distinguish between quite a few; however,
a very simple classification would be the one in Figure 3.1:

Nominal data are recorded according to a list of possible states. Four leaf
types are distinguished in Figure 3.1 and labelled by letters. These are
(a) Quercus petraea , (b) Q. pubescens , (c) Q. robur and (d) Q. cerris .
Data of this type are restricted in the application of mathematical opera-
tions. Leaf types are either the same or different, thus the operations to
be applied are = and �=.

Ordinal data are measurements on a rank scale. The three plant species
noted in the centre of Figure 3.1 flower at different times of the year.
In a warm winter, flowering of Corylus avellana may start in December
of the preceding year. However, if cold weather conditions prevail the
first flowers may show in late February. Yet the order remains always
the same: Corylus will flower before Tussilago and Prunus will be the
latest. Hence, there is a natural order irrespective of weather conditions.
The operations applicable to nominal data also apply for ordinal data. In
addition, calculating a difference in ranks makes sense. A large difference
in ranks usually means lower similarity of the two elements.
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Metric data are measurements of distance, volume, weight, force and so
on. The example in Figure 3.1 shows the height and diameter of a tree.
In metric data all arithmetic operations make sense, including the ones
allowed for the previously mentioned types. For example, the height and
stem diameter of a tree allows calculation of the approximate volume of
the trunk.

One simple rule for the transformation of data types concerns the direc-
tion in which this is done. It is easy to transform from metric to ordinal
and further to nominal (with loss of information, however), but the opposite
direction requires additional assumptions about the meaning of the measure-
ments. This is a common practice when analysing plant cover-abundance
data, as will be shown in Section 3.4. The transformations presented in the
following two sections apply to ordinal and metric data only. In classical
statistics (Sampford 1962) there are formal rules that have to be applied
when using transformation, such as correcting for non-normal distributions
of the data. In fact, transformation generally is used to adapt data to sta-
tistical models. Yet I present a slightly different view here: attributes are
measured at a specific scale (given by the measuring device used). This
scale does not necessarily serve the objective of the investigation. Often, the
perspective has to be adjusted: one metre when seen from two metres away
may appear large, but when seen from one kilometre’s distance will hardly
be visible. Hence, when talking about transformation, we will have to keep
the purpose of our measurement in mind.

3.2 Scalar transformation and the species enigma
When transformations are applied to individual measurements, I call them
scalar transformations. Scalar transformation means that the scale used for
measuring is adjusted according to our intention. Such transformations are
widespread in environmental science. Often a relationship between two vari-
ables only emerges after proper transformation. Figure 3.2 illustrates this
in a biological example. It is generally assumed that the survival of plant
and animal populations depends on appropriate environmental conditions.
When the conditions are favourable, populations may grow. Under less
favourable conditions, they are likely to remain small. A small population
may, for example, consist of five individuals. But ‘large’ is not, say, 20, but
100 or even more. When correlating population size with an environmental



20 CH 3 TRANSFORMATION

Figure 3.2 Scalar transformation of population size to optimize for correlation
with environmental factors.

variable, for example temperature, a transformed number of individuals may
be a better measure of population size. When taking n′ = n0.25 for example,
we adopt a more qualitative view of the size: 5 will become 1.49 (small),
20 will be 2.23 (average) and 100 is 3.16 (large). Correlating these values
with temperature could easily yield a good linear relationship.

Another way of reasoning is that scalar transformation changes the per-
spective of objects: in many ways they appear smaller when seen from a
distance, as illustrated in Figure 3.3: the trees are just a series of points
in two-dimensional space, connected by a line. On the left, the coordinates
are untransformed and all trees have the same height. In the middle and on
the right the coordinates have been transformed and this obviously affects
the perspective by reducing the importance of high values compared to low
values.

Transformation may sometimes contribute to the solution of problems
inherent in ecosystems, such as poor correlation of species occurrence under
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Figure 3.3 Scalar transformation of the coordinates of a graph. These transforma-
tions affect the perspective adopted during the course of the analysis.



3.3 VECTOR TRANSFORMATION 21

12

10

8

6

4

2

0
1 6 11 16 21 26 31 36 1 6 11 16 21 26 31 36

0

2

4

Species no. 1 Species no. 2

N
o.

 o
f i

nd
iv

id
ua

ls

Location along a hypothetical gradient

Figure 3.4 Overlap of two species with Gaussian response along a hypothetical
gradient. Left graph: species scores on a 0−10 performance scale. Right graph: the
same scores, but square-root transformed.

similar site conditions (Chapter 1). Despite the hope of many practitioners
that species will form groups, thereby enabling the identification of vege-
tation types, reality differs. When inspecting synoptic tables (Section 6.6)
many species overlap nicely, but they hardly ever cover the same niche. Even
worse, apparently species tend to avoid common distribution (Clarke 1993).
As claimed by Gleason (1926, 1939) in his ‘individualistic concept of the
plant association’, species behave like loners. And in fact if the formation of
an ecological niche is the result of Darwinian struggle for life then species
are prone to ecological differentiation. I attempted to sketch a typical case of
two overlapping species in Figure 3.4. The response of both species to the
hypothetical gradient is Gaussian (Section 8.2.2). Despite the shifted optima
there is a small area of overlap. On the right, the same situation is shown,
but this time with performance scores square-root transformed to let the high
scores shrink. Transformation in this case affects the relative overlap as this
is now larger than in the left graph. In practice this may be most welcome
as co-occurrence measures of species are often unpleasantly low. As will be
shown later (Section 7.2.3), transformations towards presence-absence are
frequently a good choice when revealing ecological patterns.

3.3 Vector transformation
As shown in Section 2.3.2 data are traditionally organized in two-
dimensional data matrices. The column vectors are the sampling units
and the row vectors are the attributes. Transformation of vectors therefore
concerns rows, columns or both simultaneously. The aim in either case
resides in obtaining similar properties of vectors. When sampling unit
transformation, it is frequently the intention to achieve equal weight of all
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Table 3.1 Effects of different vector transformations on the properties of data.

Term Formula Explanation

Centring x′
i = xi − x Adjusts mean to zero

Normalizing x ′
i = xi√∑

x2
Adjusts vector length to 1.0

Standardizing x′
i = xi−x√

1
n

∑
(xi−x)2

Adjusts mean to zero and
variance to 1.0

Range adjustment x′
i = xi−xmin

xmax−xmin
This is a fuzzy transformation

(range 0.0−1.0)

Table 3.2 Numerical example of vector transformation (two vectors).

x1 x2 x3 x4 x5
∑

x
∑

x2

√∑
x2 Sx

Raw 2.00 0.00 5.00 4.00 6.00 17.00 3.40 81.00 9.00 2.15

0.00 0.00 1.00 2.00 2.00 5.00 1.00 9.00 3.00 0.89

Centred −1.40 −3.40 1.60 0.60 2.60 0.00 0.00 23.20 4.82 2.15

−1.00 −1.00 0.00 1.00 1.00 0.00 0.00 4.00 2.00 0.89

Normalized 0.22 0.00 0.56 0.44 0.67 1.89 0.38 1.00 1.00 0.24

0.00 0.00 0.33 0.67 0.67 1.67 0.33 1.00 1.00 0.30

Standardized −0.65 −1.58 0.74 0.28 1.21 0.00 0.00 5.00 2.24 1.00

−1.12 −1.12 0.00 1.12 1.12 0.00 0.00 5.00 2.24 1.00

Fuzzyfied 0.33 0.00 0.83 0.67 1.00 2.83 0.57 2.25 1.50 0.36

0.00 0.00 0.50 1.00 1.00 2.50 0.50 2.25 1.50 0.45

samples. Attribute transformation results in obtaining the same potential
weight in describing the sampling units. Some of the most frequently
applied vector transformations are shown in Table 3.1, with a numerical
example given in Table 3.2.

A first step, rarely used alone, is centring . The mean of the vector is
deduced from each element. As a result, the new mean and the new sum
both become zero. The sum of squares also changes, without becoming zero.
The variance, however, remains unchanged.
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Normalizing is a different method of transformation. Each element of the
vector is divided by its (Euclidean) length. The vector sum, the vector mean
change and the vector length are now 1.0. As shown in Table 3.2, the vectors
become more similar in many ways while the variances still differ.

A most rigorous transformation is standardizing . This is a combination
of centring and normalizing. As a result, the vector mean is zero and the
standard deviation (and the variance) becomes 1.0. The length of the vector
is equal to the square root of the number of elements. Standardization is
used to compare different scaled measurements, such as temperature and the
height of trees, for example. However, standardization has a downside: if
the information is hidden in the variance then it will be lost.

Fuzzyfying is a simple transformation (Boyce & Ellison 2001). The ele-
ments are adjusted to range from zero (lowest score) to 1.0 (highest score).
It should be used only if you intend to adopt this view of the data. Aberrant
values can set the boundaries in an undesirable way, deteriorating the obser-
vations completely. Fuzzy transformation is not an alternative to normalizing
or standardizing, but rather is applied in combination with these.

3.4 Example: Transformation of plant cover data
In phytosociology, Braun-Blanquet (1932) established a scale for measuring
the quantity of plant species – that is, species performance – in vegetation
relevés. He released his first comprehensive book on that topic in 1928
(English version in 1932). From the point of view of modern data analysis
this scale (the so-called cover-abundance scale) is a mixture of form and
content. At lower species densities, it expresses the abundance of individuals.
At high densities, it directly translates to plant cover percentage. As shown
in Table 3.3, it starts with a nominal notation in the form of the symbol
‘empty’ (in Table 3.3 a minus sign), followed by ‘+’. Then it continues with
a rank scale from 1 to 5. In the past hundred years, huge data sets have been
collected all over the globe using this scale (Dengler et al. 2008). Handling
such data is therefore an issue in data analysis. Table 3.3 demonstrates how
it could be done based on an idea published by Maarel (1979).

In the first step the code is transformed into a proper rank scale with a
range from 0 to 6 (column three in Table 3.3). The ranks are then treated
as if they were metric. The justification for this is shown in the right-hand
columns, where the rank scale is further transformed according to:

x′ = xy (3.1)
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Table 3.3 Transformation of cover-abundance values in phytosociology.

Code Cover % x1.0 (rank) x0.1 x0.25 x2.5 (cover)

− 0 0 0 0 0

+ <1 1 1 1 1

1 5 2 1.07 1.19 5.65

2 17.5 3 1.12 1.31 15.58

3 37.5 4 1.15 1.41 32.00

4 62.5 5 1.17 1.50 55.90

5 87.5 6 1.19 1.57 88.18

where x′ is the transformed score. When y < 1 the data approach a binary
state {0, 1}. Near y = 2.5 it can be seen that this approximates the initial
cover percentages. By choosing the appropriate value for y the scope of
the analysis can hence be altered to emphasize either the qualitative or the
quantitative aspect. For many applications, choosing y = 0.25 turns out to be
a good compromise as this expresses the qualitative view while considering
the quantitative sufficiently as well (see Section 7.2.3).



4
Multivariate comparison

4.1 Resemblance in multivariate space
When talking about resemblance we address two types of measurement:
similarity , where high values signify a high proportion of common features,
and distance, where high values signify dissimilarity. As long as sampling
units are described by one species or one site factor only, comparison is
straightforward and the operational rules discussed in Section 3.1 on data
types are valid. When more attributes exist, the technique is no longer trivial
and several questions need to be answered in advance of data analysis:

• Are the attributes of the same type or is treatment necessary?

• Do the attributes have the same weight or is transformation necessary?

Data Analysis in Vegetation Ecology Otto Wildi
 2010 John Wiley & Sons, Ltd
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• Are the attributes measured on the same scale or have the scales to be
adjusted by transformation?

• Are some of the attributes correlated and therefore partly carrying the
same information?

Due to the multivariate nature of data, several attributes or sampling units
have to be taken into account simultaneously. A first and really illustrative
approach to resemblance is the geometric, where attributes function as axes
in a scatter diagram. Attribute scores are therefore the coordinates of the
sampling units, which are points located in space (Figure 4.1).

A second way of measuring resemblance is a statistical one, specifically
suited for species lists where presence and absence are major issues. The
joint occurrences can be counted and statistical measures will help to decide
whether the frequency assessed is higher or lower than expected compared
to a random situation.

Probably the most common technique is the use of product moments,
among which the better known are correlation and covariance. If much of
the variance of two sampling units is shared then covariance is high and
they are considered similar.

Of course, there are more approaches to the comparison of sampling
units or species, such as measures relying on information theory (Rényi
1961, Orlóci 1978). I will not discuss these in the following sections.

(a)

(b)
(c)

Figure 4.1 Presentation of data in the Euclidean space. The data are shown in (a).
In (b), the biological attributes are used to represent the relevés in two-dimensional
(biological) space. (c) shows the one-dimensional environmental space.
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4.2 Geometric approach
Multivariate similarity can easily be related to geometry, because geom-
etry considers dimensionality. Geometrical space may be one-dimensional
(a straight line), two-dimensional (a surface) or three-dimensional (a vol-
ume). The dimensions can also be extended to any number, say four or a
hundred.

In practice, there are at least two constraints. First, it is assumed that the
dimensions (i.e. the axes) are based on the same scale. Second, the weight of
the axes is the same. The latter is only the case if the attributes (and hence
the axes) are uncorrelated. If the attributes are perfectly correlated then they
carry identical information. The use of the multivariate Euclidean space is
only justified if the attributes are equally scaled, as is the case when using
the Braun-Blanquet code, for example Table 3.3. The principle is shown
in Figure 4.1, where the data are given in (a). It is assumed that the pH
values are part of the environmental space, whereas the species scores form
the biological space. In (b) the two-dimensional biological space is shown,
where the relevés are points in the scatter diagram. Whenever comprehensive
species lists are used, the biological space is extremely high-dimensional,
with each species forming its own dimension. In (c), however, it can be seen
that a space may also be one-dimensional only. The relevés are still points,
but on a one-dimensional vector, in this case pH.

Resemblance of any two sampling units in Euclidean space is most eas-
ily measured as a distance. If the distance is short then any two relevés are
similar. If the distance is long, the relevés involved diverge in many possi-
ble ways. There are different methods of calculating distance, as shown in
Figure 4.2. A straightforward measure is Euclidean distance. The Euclidean
distance between relevé 1 and relevé 2 is calculated by:

De1,2 =
√√√√ p∑

j=1

(x1j − x2j )2 (4.1)

In the left-hand side of Figure 4.2, this is the direct distance between the
corresponding data points. Equation (4.1) is written for p species and is
therefore valid for any number of dimensions. The lower bound of De1,2 is
zero for identical relevés; the upper bound has no limit. When the number
of dimensions (species) increases, the Euclidean distance tends to become
larger.
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Figure 4.2 Three ways of measuring distance. Left: Euclidean distance. Centre:
Manhattan distance. Right: Chord distance.

A second possible measure is Manhattan distance, which is the sum of
the differences of the scores calculated on all axes, that is:

Dm1,2 =
p∑

j=1

|x1j − x2j | (4.2)

The Manhattan distance (Equation 4.2) has similar properties to the
Euclidean. As shown in Figure 4.2, centre, the Manhattan distance is
generally somewhat longer than the Euclidean distance.

In some cases, methods differ by the intrinsic transformation applied.
Chord distance is an example. It is identical to the Euclidean distance, but
after normalizing the vectors. Combining these two operations yields the
corresponding formula:

Dc1,2 =
√√√√√2

(
1 −

∑p

j=1 x1j x2j√∑p

j=1 x12
j

∑p

j=1 x22
j

)
(4.3)

Chord distance has a lower bound of zero (for identical relevés or
species vectors). Unlike the previous measures, there is now a maximum
value of square root of two; that is, 1.414213. This is the case when
relevés have no species in common. It is difficult to decide whether the
normalizing involved is ideal for applications: when transformation is
really needed, many researchers prefer standardization (adjusting vector
length and variance) to normalization (adjusting vector length only). This
idea will be discussed in the context of the product moment measures
(Section 4.4).
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4.3 Contingency testing
Contingency testing is a statistical approach, focusing on the joint occurrence
of objects. In the case of relevés, these are common species. If there are
many, one assumes that the relevés are similar. From a statistical point of
view the question arises whether the number of common species is above,
equal to or below expectation. Hence, we will have to deal with the meaning
of ‘expectation’.

The standard setup for this type of measurement is the contingency table,
as shown in Table 4.1. This explains how relevés are compared. For each
species, common occurrence is counted in cell a. When a species occurs in
one relevé only, it is counted in either cell b or cell c. If a species occurs
in neither relevé 1 nor 2, it contributes to cell d.

The row and column sums yield useful numbers as well. The sum in row
a + b is the total number of species found in relevé 2; the sum in column
a + c for relevé 1. The sum in row c + d is the number of species that do
not occur in relevé 1 and the sum of column b + d the number that do not
occur in relevé 2. The grand total � is the total number of species considered
for calculations, including those occurring in neither relevé 1 nor 2.

Using such counts from contingency tables, an almost unlimited number
of coefficients can be calculated. Many of these are listed in Legendre &
Legendre (1998), pp. 275−276. They differ in their properties and some are
related to other types of resemblance measure. Four of them are shown in
Table 4.2.

The Jaccard coefficient SJ is the oldest, published in 1901. It counts the
number of common species and the total number of species present in either
of the two relevés. The range is from zero (no species in common) to one
(all species in common). When 50% of the species are common, SJ = 0.50.

Table 4.1 Notations in contingency tables. a, b, c
and d are frequency counts.

relevé 1

relevé 2 + −
+ a b a + b

− c d c + d

a + c b + d �
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Table 4.2 Resemblance measures using the notations in Table 4.1.

Name Formula Distance measure property

Jaccard SJ = a
a+b+c

DJ = 1 − SJ metric

Soerensen SS = 2a
2a+b+c

DS = 1 − SS semimetric

Simple maching SSM = a+d
a+b+c+d

DSM = 1 − SSM metric

Chi squared χ2 =
(

ad−bc√
(a+b)(c+d)(a+c)(b+d)

)2
Dχ2 = 1 − χ2 metric

The second is the Soerensen coefficient SS . This differs from the Jaccard
coefficient in that common species have double weight. The range is also
zero to one, but when 50% of the species are in common, SS = 0.667. The
derived distance measure (the complement) is called semimetric, because it
may happen that the distance configuration of three or more relevés cannot
be presented in Euclidean space (i.e. the triangular unequality is violated),
limiting its application in some methods.

In the Simple maching coefficient SSM , frequency d is used as well.
When analysing a sample, such as a synoptic table (Section 6.6), the total
number of species considered remains the same for all pairs of relevés. How-
ever, when using different lists of species, SSM differs for the same pair of
relevés.

The fourth coefficient is the Chi squared (χ2), as known from statistics.
This is the sum of squared differences from the expected frequencies when
independence is assumed. The probability distribution of the χ2 can be
found in most statistical textbooks. This allows it to be used for significance
tests – as long as data are based on statistical sampling. When analysing
vegetation data the χ2 is rarely used in the statistical sense, but rather as yet
another similarity measure with a lower bound of zero and no finite upper
bound.

4.4 Product moments
Product moments are a flexible group of measures. They express the degree
to which vectors point in the same direction. This conforms with the basic
concept of variance (the variance within one vector) and covariance (the
variance shared by two vectors). Four related measures that differ in their
implicit transformation only are listed in Table 4.3.
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Table 4.3 Product moments. Types differ in the mode of implicit data
transformation.

Name Formula Transformation

Scalar product Sjk = ∑p

h=1 AhjAhk Ahj = Xhj

Centred scalar product Sjk = ∑p

h=1 AhjAhk Ahj = Xhj − Xh

Covariance Sjk = ∑p

h=1 AhjAhk Ahj = (Xhj − Xh)/
√

n − 1

Correlation Sjk = ∑p

h=1 AhjAhk Ahj = (Xhj −Xh)(∑n
e=1 Xhe−Xh

)1/2

The scalar product is the vector product with no further transformation
involved. If all scores are positive it ranges from zero to infinity. The more
attributes involved, the larger the scalar product.

The centred scalar product involves centring of the observational vectors;
thus the mean of any vector will be zero. On average, half of the coefficients
will be negative with no upper and lower bound.

Covariance does the same thing as the centred scalar product, but in
addition it offers a correction for the number of elements, n. It is used in
analysis of variance. Note that n − 1 corrects for the underestimation of
variance in small samples n.

The product moment correlation coefficient (termed correlation in
Table 4.3) standardizes the observational vectors implicitly. Their mean
is zero and the standard deviation is equal to one. This has the practical
advantage that there are fixed upper and lower bounds: −1 ≤ r ≤ +1. This
is shown in Figure 4.3 in the form of a geometrical interpretation. When
two vectors show the same trend but in the opposite direction, correlation
approaches cosα ≈ −1. When they are independent, it is around zero.
When they point in the same direction it approaches cosα ≈ +1.

Many standard statistical packages use the correlation coefficient as a
default measure for the majority of methods. Thus, measurements taken at
different scales become comparable, and the variance is adjusted. If this
is not desirable because one expects important information from variance
differences then another option should be considered. An example where
this frequently is suggested is the comparison of species-rich relevés versus
species-poor relevés.
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Figure 4.3 The correlation of vector j with vector k. The correlation coefficient is
the cosine of the angle α between any two observational vectors j and k.

4.5 The resemblance matrix
Whereas pairwise comparison of observational vectors like relevés or species
is useful for many purposes, assessing the pattern of an entire sample
involves the computation of a resemblance matrix. This is done by com-
paring all possible pairs of sampling units, resulting in an n ∗ n matrix of
resemblance coefficients. Such a matrix (Figure 4.4) is generally symmetric
and only the lower-left triangle (or the upper-right) has to be considered.
Depending on the resemblance measure used, the diagonal elements, the
self-similarity of the sampling units, may be of interest or not. When using
Euclidean distance, for example, they are all zero; when using the correla-
tion coefficient they all equal 1.0. When using covariance, however, they
carry the variances of the sampling units and these usually vary.

Figure 4.4 The average distance of a distance matrix is a perfect measure for
homogeneity of a sample. Left: high homogeneity. Right: low homogeneity.
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Resemblance matrices may become very large. When computing the
triangular matrix only, without the diagonals, the number of elements is
(n ∗ (n − 1))/2. This is far too great for immediate interpretation. The matrix
therefore has to be processed further with the aim of pattern recognition,
by component analysis (Chapter 5), cluster analysis (Chapter 6) or ranking
(Section 5.6), for example.

A simple and yet most useful application is shown in Figure 4.4, lower
part. The aim is to determine the homogeneity of a sample. From the data
matrices in the upper row, the distance matrices are calculated and the mean
Euclidean distance is computed. This is as a measure of distance or dis-
similarity of the total set of relevés. Table 1, with a relatively low average
distance, is hence more homogeneous than Table 2.

4.6 Assessing the quality of classifications
Under specific circumstances a resemblance matrix can be used to evaluate
group patterns, as shown in Figure 4.5. This is a graphical representation of
the similarities within and between 71 forest vegetation types in Switzerland,
distinguished by Ellenberg & Klötzli (1972). The underlying data have been
reconstructed from the original notes of the authors and the relevés found
in the literature (Keller et al. 1998). From these 2533 relevés we know the
corresponding classification used for definition of the forest types. The coef-
ficients in Figure 4.5 are not just pairwise similarities, but average similarities
between all relevés of the 71 groups involved. The diagonal elements are the
average similarities within the groups and thus a measure of homogeneity,
as explained in Figure 4.4.

Let us first look at some findings concerning the diagonal elements.
There are examples of vegetation types exhibiting high internal homogene-
ity: the average similarity of relevés is high and therefore the symbol is large.
Typical examples are forest types 49 (Equiseto-Abietetum), 56 (Sphagno-
Piceetum typicum) and 70 (Rhododendro ferruginei-Pinetum montanae). The
opposite is true for forest types 11 (Aro-Fagetum), 44 (Carici elongatae-
Alnetum Glutinosae) and 64 (Cytiso-Pinetum silvestris). When inspecting
all diagonal elements it becomes clear that the internal homogeneity of the
different vegetation types varies amazingly: large symbols, indicating homo-
geneous groups, alternate with small symbols, indicating heterogeneity. In
practice this means that there are types that are easy to recognize in the field
(homogeneous ones) and others that are difficult to recognize (heterogeneous
ones).
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Figure 4.5 Similarities within and between the forest types of Switzerland accord-
ing to Ellenberg & Klötzli (1972) based on the revision of Keller et al. (1998).

The off-diagonal elements show which of the vegetation types are difficult
to distinguish from others (large symbols) and which are easily differenti-
ated (small symbols). Forest types 1−21 form a block with large off-diagonal
symbols. These are beech (Fagus sylvatica) forests. Differences in species
composition between these types are minor and careful inspection of the
species lists is required for proper identification. A similar example is seen
in spruce and fir forests (Picea abies and Abies alba), forest types 45−60.
Interestingly, there are also certain forest types which bridge the two blocks
when taking species composition into account (types 19 and 49). As can be
seen from this example, a similarity matrix presented graphically is an excel-
lent tool for predicting problems in practical applications of classifications
such as vegetation mapping. A real-world example is shown in Section 11.5,
where the quality of a phytosociological classification system is evaluated.



5
Ordination

5.1 Why ordination?
Ordination is a graphical representation of the similarity of sampling units
and/or attributes in resemblance space. An example of an ordination in two-
dimensional space has been shown in Figure 4.1 (b), where the axes represent
two plant species and the data points relevés. This graph displays the simi-
larity of the two relevés involved, a rather trivial case as it presents the full
configuration given in the raw numbers without improving insight into the
system. Hence, ordination is a tool for analysing and visualizing complex
data sets including a high number of sampling units with many attributes
involved.

Recognizing patterns in large multivariate data sets inevitably means
operating in a resemblance space of high dimension. When considering four
species, for example, the configuration of resemblance is three-dimensional.

Data Analysis in Vegetation Ecology Otto Wildi
 2010 John Wiley & Sons, Ltd
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Figure 5.1 Three-dimensional representation of similarity relationships (Mueller-
Dombois & Ellenberg 1974).

While four dimensions are already difficult to display graphically, in vege-
tation ecology large data sets often include hundreds of species, requiring
hundreds of dimensions to be analysed. The aim of ordination is to reduce
this number, to derive a graph that can be plotted or inspected dynamically
as a three- or four-dimensional rotating point cloud. This is why ordination
has always played a key role in vegetation ecology, and Figure 5.1
is a historical example of this effort, taken from Mueller-Dombois &
Ellenberg (1974), illustrating the effort to reveal all the important relation-
ships found in a multi-dimensional configuration. Although the methods
have since evolved, the mode of interpretation has remained unchanged.

Most methods for gaining the desired insight into the similarity patterns
of multivariate data sets roughly proceed through the steps illustrated in
Figure 5.2:

• Centre the attributes in a data matrix to shift the origin of the new coor-
dinate system into the centre of the point cloud.
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Figure 5.2 Main functions of PCA. (a) The data table (artificial data) with original
scores (species 1 and 2, white background), centred species vectors (species 1 and
2, light grey background) and centred as well as rotated scores (axes 1 and 2, dark
grey). (b) Representation of the point configuration in x- and y-space. (c) Species
scores as a function of relevé order (response functions).

• Rotate the point cloud such that the maximum possible variance is found
along the first axis.

• Continue rotating the point cloud, while keeping the first axis fixed, and
maximize the remaining variance on the second axis.

• Continue this process until all the axes are processed.

• Represent the result graphically by omitting higher dimensions.

In this procedure, conforming to principal component analysis (PCA), the
point pattern hidden in raw data is maintained. As will be shown later,
there are methods that are changing the pattern. Hence, choosing the proper
method and understanding what it does to data is crucial, and offers flexibility
in defining the goal of the analysis.

5.2 Principal component analysis (PCA)
Principal component analysis is a basic procedure that operates as described
in Section 5.1. First of all, it strictly relies on linear correlation of attributes.
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Figure 5.3 Projecting data into ordination space in PCA. The scalar product of the
species by relevé matrix X ′ and the species by axes matrix α (the Eigenvectors)
yields the axes by relevé matrix Y ′ (the ordination scores).

It operates in the orthogonal Euclidean space and searches for useful pro-
jections of point clouds. Because it is based on the concept of variance
partitioning and the variance is maximized along the axes, the result it finds
is reproducible – even when using different computers and computer pro-
grams (e.g. independent of any initial order of data). Orthogonality (i.e.
absence of correlation) also means that the variance carried by the axes is
additive. Whatever projection of a point is chosen, the variance explained
by the graph is equal to the sum of the explanatory power of the axes
involved.

Whereas centring the data is a trivial task, finding the best method of
rotation is more demanding. As seen in Figure 4.1, metric data can be used
directly as coordinates, where data points are sampling units and species are
axes. In mathematical terms, generating a new projection is just a transfor-
mation of a coordinate system and is achieved by multiplying two matrices.
In the case of PCA, this is shown in Figure 5.3, where matrix X contains the
original data and X′ the centred. This is multiplied by a new square matrix
α, according to:

X′n∗pαp∗p = Y ′n∗p (5.1)

Matrix α holds the Eigenvectors. It is a squared matrix with the number of
species by the number of axes as dimensions. X′ and α have one dimension
in common, the species. The new matrix Y ′ still has the relevés as rows,
but the attributes are now the new axes. The matrix of Eigenvectors α is
obtained from the original data by Eigenanalysis (Batschelet 1975), yield-
ing the desired properties of the final result – orthogonality of axes – and
maximizing variance on first axes. Eigenanalysis is performed on the vari-
ance or correlation matrix of the species, and as a result there are as many
Eigenvalues as there are species (although some may be zero).
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Figure 5.4 Numerical example of PCA. The centred data matrix (left) is multiplied
by the matrix of Eigenvectors (centre) to yield the ordination coordinates (right).
The variances of the ordination axes are the corresponding Eigenvalues.

The numerical example illustrated in Figure 5.4 is carried over from
Figure 5.2. The elements of the Eigenvector matrix are correlation coeffi-
cients (by definition) between the original attributes (the species) and the
new ordination axes. Element 0.35 signifies that the first species has a pos-
itive correlation of r = 0.35 with the first ordination axis. The correlation
with the second axis is r = −0.937. The second species correlates with the
first axis by r = 0.937 and with the second axis by r = 0.35. Hence, the
Eigenvectors are a useful tool for interpreting the final ordination.

In Figure 5.4 the variances of the attributes are also shown. In the orig-
inal data, species 2 has the highest variance with 10.8. According to the
definitions in PCA, the highest variance in the ordination is attributed to
the first axis. This is 11.95 and is the first Eigenvalue in the Eigenanalysis.
Because variance on any axis is a linear combination of the variance of
many species, it generally exceeds the variance of any individual species.
However, the total variance remains unchanged as the point pattern as a
whole is not affected by PCA, and only its projection is adjusted.

The result of PCA deserves careful interpretation, as illustrated in
Figure 5.5, a data set consisting of 63 sampling units (relevés) and 119
attributes (species) (‘Schlaenggli’, see Appendix B). The environmental
factors are not analysed in this example (but will be in later sections). The
absolute magnitudes of the Eigenvalues depend on the size of the sample
and are therefore not useful in the interpretation. The relative proportions
are most crucial, as they inform us about the explanatory power of axes.
Here, the x-axis explains 20.6% of the variance and the y-axis 8.0%. The
ordination shown in Figure 5.5 uses the scores of the first two axes of
PCA as coordinates, hence explaining 28.6% of the total variance, as the
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1–3:

Figure 5.5 Main results of a PCA using real data. The Eigenvectors are used to help
in the interpretation of the ordination by pointing in the direction of the centres of
species occurrences.

variances are strictly additive. A three-dimensional plot would explain
another 6% – a total of 34.6%.

Is 28.6% explained variance good or poor for a two-dimensional ordina-
tion? Peres-Neto et al. (2005) have written a review on papers discussing
the issue of ‘nontrivial axes’. The authors suggest a randomization test to
identify the number of relevant axes. It may be safe, however, to screen for
patterns beyond this number. The proportion of explained variance depends
on the type of data analysed and of course on the number of axes consid-
ered for viewing. The total dimensionality of the data set is 63 (although
there are 119 species involved, 63 data points can be presented in a max-
imum of 63 dimension without loss of information. A detailed inspection
of the Eigenvalues would show that all beyond 63 are zero!). For this size
of sample, experience suggests that 28.6% usually reveals the dominating
pattern, which in this case is a classical horseshoe, indicating that a (nonlin-
ear) gradient exists. However, it is good practice to inspect the third and the
fourth dimension as well. From many more examples it can be infered that
data sets of several hundreds of relevés usually result in a first Eigenvalue
explaining around 10% of the total variance or even less (see Chapter 11 for
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examples). As a rule the explanatory power of the first axis will decrease as
the sample size is increasing.

The interpretation of the point cloud is simple as it displays the similarity
space, with the only complication arising from the high dimensionality. If
any two data points are in close neighbourhood then they are similar. How-
ever, they may still be distant in the third dimension, which is not visible.
Even in simple cases it is suggested that a computer program which dis-
plays three-dimensional point clouds be used, either as a stereogram or as a
spinning graph.

For proper interpretation of PCA results the Eigenvectors (also known
as component coefficients) have to be considered as well (Figure 5.5). As
explained above, they are the correlations of the species with the ordination
axes. Due to the very high dimensionality of the resemblance space, most
correlations are rather low, with none even reaching r = 0.2. Geometrically,
correlation coefficients are cosines of vectors (see Figure 4.3). Therefore,
they can be used for drawing species vectors (Figure 5.5, lower-right graph).
Their scaling differs entirely from the ordination diagram, but the graph of
vectors can be enlarged or reduced to fit into ordination by superimposing the
origins of the two diagrams (lower-left graph). The species arrows now point
in the directions of their centres of occurrence. As done here, selecting just a
few species for display will avoid a proliferation of information in the graph.

The detailed interpretation of Figure 5.5 proceeds as follows: the relevés
(i.e data points) in the lower-right quadrant of the ordination are charac-
terized by high values of Oxycoccus quadripetalus . In the relevés in the
lower-left quadrant Stachys officinalis and Galium uliginosum occur fre-
quently. The horseshoe-shaped point cloud reveals a gradient from the lower
left (with high soil pH values, not shown here) towards the lower right (with
low pH values). Assessing the relationship to pH, however, requires other
methods such as constrained ordination (Section 7.5).

5.3 Principal coordinates analysis (PCOA)
This method is similar to PCA, but since it accepts almost any kind of
similarity or distance measure, it is of broad practical use. The method, first
published by Gower (1966), is not only known as principal coordinates anal-
ysis but also as principal axis analysis and metric multidimensional scaling .
In PCOA, when the relevés are ordinated, the Eigenvalues and Eigenvectors
are derived from the similarity matrix of the relevés. This differs from PCA,
where the species-similarity matrix is used to derive the coordinates of the
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relevés. As a minor disadvantage, there are no Eigenvectors available to help
in the interpretation of the ordination.

The position of the data points is initially defined by a distance or similar-
ity matrix, which may be either metric or nonmetric. If distances are given
then the elements dij are transformed according to:

sij = −1

2
d2

ij (5.2)

The elements of S are interpreted as direction cosine and have to be adjusted
for range. The new matrix A has the elements:

aij = sij − si − sj + s (5.3)

where si and sj are the row and column means of S and s is the same
of the grand total. Then the Eigenvalues, λ1, . . . , λn, and the corresponding
Eigenvectors, β1, . . . , βn, of A are found. The Eigenvectors are adjusted to
the Eigenvalues to satisfy the condition:

β2
1i + . . . + β2

pi = λ2
i (5.4)

These are now the ordination coordinates. The question arises whether and
how they deviate from PCA coordinates of the same data set. This is shown
in an example using the data set previously presented in Figure 5.5. The
cover-abundance scores are first changed into a rank scale and then scalar is
transformed according to x′ = x0.5. For PCA, the correlation matrix of the
species is computed; for PCOA it is the matrix of the relevés. The resulting
Eigenvalues are as follows:

PCA % PCOA % PCA, variance PCOA, variance

λ1 20.62 27.96 24.5 12.2
λ2 8.07 9.43 9.61 4.11
λ3 6.07 5.99 7.23 2.61

Clearly, the Eigenvalues differ in size and proportion. The resulting ordina-
tions are shown in Figure 5.6. The two point clouds are superimposed after
(heuristic) linear adjustment of the scale (scores of PCOA are multiplied by
a factor of 5.57). It can be seen that the overall shape of the point cloud, a
horseshoe, really is the same. The individual points, however, are slightly
displaced. Since PCA reproduces the geometrical configuration of points,
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Figure 5.6 Comparison of PCA and PCOA using the ‘Schlaenggli’ data set of 63
relevés. Data points from PCA (crosses) and from PCOA (triangles) superimposed
after adjustment of scale.

there has to be a minor (but for ecological interpretations, unimportant)
distortion in the ordination of PCOA.

Why this distortion? Depending on the initial resemblance measure used,
matrix A (Formula (5.3)) is usually not strictly metric. PCOA will then
extract the metric portion from A and the corresponding positive Eigenvalues
express the explanatory power of the axes. The remaining nonmetric part
appears in the form of negative Eigenvalues. This cannot be displayed in an
ordination diagram.

5.4 Correspondence analysis (CA)
Correspondence analysis is distinct from PCA and PCOA due to the intrinsic
assumptions and the corresponding transformations applied. In CA the data
table is assumed to be a contingency table; that is, a table containing counts.
Some of the very many alternative names for CA reflect this fact:

• Contingency table analysis (Fisher 1940)

• Analyse factorielle des correpondances (Benzécri 1969)
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• Reciprocal averaging (Hill 1973)

• Reciprocal ordering (Orlóci 1978)

• Dual scaling (Nishisato 1980)

The elements of the initial data table, fhj , are frequency counts, which are
then relativized by the row and column sums, and from this deviations from
expectations, uhj , are derived according to:

uhj = fhj√
fh.f.j

−
√

fh.f.j

f..

(5.5)

The notation used is shown in Table 5.1 (a). Examples (b) and (c) illustrate
the typical effects of this transformation. (b) points to the fact that the scores
analysed are deviations from expectation and not the raw information. The
first element, f11 = 3, turns out to be a relatively low score and the final
u11 = −0.05 is negative as it is below expectation. It is an element of a
row with a fairly high marginal total (f1. = 4) and also of a column of high
marginal total (f.1 = 4). The elements f12 = 1 and f21 = 1, in contrast, are
above expectation. It is important to note that CA will use these derived
values and not the original scores!

A typical effect of the adjustment by rows and columns is demonstrated
in Table 5.1 (c). What matters is the proportions of the elements of the data
vectors. CA causes species 1 and species 2 to reflect the same pattern since
the proportion of the scores are the same. Similarly, relevés 1 and 2 are rated
identical. In terms of CA, the two relevés and the two species are identical
and no usable information can be analysed.

Like in some variants of PCA, the calculations are now based on a matrix
of product moments, S = UU ′, computed for p attributes with a character-
istic element:

shi =
s∑

j=1

uhjuij (5.6)

From this similarity matrix the non-zero Eigenvalues, λ1, . . . , λt , and the
associated Eigenvectors, α1, . . . , αt , are extracted. The Eigenvalues have
the form of correlation coefficients: the mth Eigenvalue is the square of the
mth canonical correlation. The Eigenvector matrix A, after the adjustment
shown below, gives ordination scores for the attributes.
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Table 5.1 (a) Notation used in correspondence analysis. (b) An illustrative numer-
ical example. (c) An example with no information content in terms of CA. Frequency
tables are in the left row, deviations from expectation in the right row.

A rel1 rel2 rel1 rel2

sp1 f 11 f 12 f 1. sp1 u11 u12 u1.

sp2 f 21 f 22 f 2. sp2 u21 u22 u2.

f .1 f .2 f .. u .1 u .2 u ..

B rel1 rel2 rel1 rel2

sp1 3 1 4 sp1 −0.05 0.10 0.05

sp2 1 0 1 sp2 0.10 −0.20 −0.10

4 1 5 0.05 −0.10 −0.05

C rel1 rel2 rel1 rel2

sp1 3 6 9 sp1 0.00 0.00 0.00

sp2 1 2 3 sp2 0.00 0.00 0.00

4 8 12 0.00 0.00 0.00

As explained in Legendre & Legendre (1998, p. 456), there are different
ways to scale the scores. For ecological applications it is most appropriate to
choose an adjustment that allows the joint plot of row (relevé) and column
(species) scores. From the Eigenvectors, the species scores X are derived
directly by weighting with the square root of the inverse of the marginal
totals:

xhm = (αhm − αm)[∑p

h=1 (αhm − αm)2

]1/2

√
f..

fh.

. (5.7)

This formula also involves standardization of the Eigenvectors to fulfil the
following conditions:

p∑
h=1

α2
hm = 1 and

p∑
h=1

√
fh.αhm = 0. (5.8)
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To compute the relevé matrix Y , one could transpose the data matrix F

and repeat all the computations. If so, one would observe that the resulting
Eigenvalues were exactly the same. There is a direct way to derive the relevé
scores from the species scores:

yjm =
p∑

h=1

fhj xhm

f.jRm

(5.9)

where Rm is the mth canonical correlation. If all the calculations are done on
the transposed data matrix then the results will be entirely identical. When
analysing large data sets, carrying out the analysis on the smaller similarity
matrix will save computation time.

The difference between PCA (or PCOA) and CA is considerable in terms
of the content and shape of the point cloud. Using the same data set, a CA and
a PCA ordination are computed and displayed in Figure 5.7 for comparison.
Superimposed is the same classification of relevés. As in many other cases,
it can be observed that the gradient displayed in CA is v-shaped, whereas
the gradient in PCA is u-shaped. Also, the two-dimensional resolution of the
classification (the distinction of groups) is usually somewhat better in PCA
than in CA. The order of the relevés along the main gradient is roughly the
same and I therefore conclude that both of the methods reveal the underlying
pattern.

CA has some unpleasant properties to be kept in mind when using it.
First, it is more sensitive to outliers (see Section 11.3) than other ordination

Figure 5.7 Comparison of CA and PCA. Data points are identically classified.
‘Schlaenggli’ data set used (Appendix B).
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methods. Unlike in PCA and PCOA, the range of the coordinates increases
with higher dimension (and lower Eigenvalue). It is good practice to restrict
adjustment of scales of the ordination axes to the ones used for plotting.

5.5 The horseshoe or arch effect
5.5.1 Origin and remedies

The fact that relevés originating from an environmental gradient are curve-
shaped (e.g. Figure 2.3) led to much confusion in the past. In many papers
and textbooks it was rated a deficiency of the ordination method used, and
much emphasis was put on researching ‘better’ methods. However, the origin
of the problem can easily be found when inspecting the original data. When
biological parameters are used as axes, such as species performance, these
parameters usually correlate nonlinearly. A plot of performance against an
environmental variable typically results in a bell-shaped (Gaussian) curve.
Using two such variables as axes in a two-dimensional graph yields the arch
or horseshoe (Figure 5.8). As a result, the extreme points of a gradient are
located in close neighbourhood. This is because at the extremes of the gra-
dient both variables react negatively to site conditions. Introducing a third
variable may correct this, but still not in the desired manner: the configura-
tions then usually look like spirals in three dimensions. In fact, there is no
remedy to this!

Not all methods deliver the same shape for a gradient when generating
a point cloud. There are two reasons for this. First, the data may intrinsi-
cally be transformed, which alters the similarity space. An example of this
is correspondence analysis . Other methods directly alter the geometry of the
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Figure 5.8 Performance of two species along a hypothetical environmental gradi-
ent (left). A species-by-species plot delivers an arch-shaped figure (right).
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Figure 5.9 The principle of detrending by segments (left, according to Legendre &
Legendre 1998, p. 460) and flexible shortest-path adjustment FSPA (Wildi & Orlóci
1996).

ordination. The best known example is detrended correspondence analysis
(DCA), first described by Hill (1979a). The principle of detrending by seg-
ments is shown in Figure 5.9, left-hand side, a simplified version of the the
sketch in Legendre & Legendre (1998, p. 460). The original figure is a tri-
angle (dark line). This is divided into three segments (vertical dashed lines).
The segments are then shifted by centring the y-coordinates. The example
in Figure 5.9 illustrates how this may lead to serious local distortions. The
application is best justified in the presence of a classical horseshoe and in
the absence of too much statistical noise. Detrending by polynomials is a
smooth version of this. But it also carries the risk of uncontrolled alteration
of the similarity pattern.

An alternative to detrending is flexible shortest-path adjustment, FSPA
(Wildi & Orlóci 1996), in which the large distances in the point cloud are
erased and recalculated via intermediate data points. The resulting distance
space is nonmetric. To generate an ordination, principal coordinates analysis
is used (Section 5.3), retrieving metric ordination axes. At first glance this
looks like the ideal solution. However, the effect is difficult to control if
there is some noise in the data and it should be used with great care.

FSPA is a nice example of the hidden origin of many methods in data
analysis. It was used in a paper in Ecology by Bradfield & Kenkel (1987)
citing Floyd (1962), but like many other straightforward ideas, it has since
been reinvented for different applications. This can be seen in two papers
appearing in Science (Tenenbaum et al. 2000, Roweis & Saul 2000), where
more nice examples illustrate the idea.

The two methods shown so far both operate on an already existing ordina-
tion and attempt to improve it. Nonmetric multidimensional scaling (NMDS)
is an ordination method by itself, but also alters an already existing ordi-
nation by improving it through iteration (Legendre & Legendre 1998). The
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new configuration of data points is optimized for a limited number of dimen-
sions, perhaps two or three. Not all computer programs do this the same way
and the results may be difficult to reproduce. Apparently the method was
invented around 1960 (Shepard 1962) and became popular through a paper
by Clarke (1993). The recent availability of tremendous computing power
has also added to its popularity (see for example Belden & Pallardy 2009,
Rogers et al. 2009, Stromberg et al. 2009).

5.5.2 Comparing DCA, FSPA and NMDS

Comparisons presented in this chapter concern ‘adaptive’ methods aimed
at improving on already existing ordinations, mainly correcting the horse-
shoe. This imposes at least two restrictions on comparison. First, resulting
ordinations have to be opposed to the initial configurations: for example,
detrended correspondence analysis (DCA) versus ordinary correspondence
analysis (CA), nonmetric multidimensional scaling (NMDS) versus princi-
pal components analysis (PCA) and flexible shortest-path adjustment (FSPA)
versus its underlying principal coordinates analysis (PCOA) ordination. Sec-
ond, the three methods are flexible by nature, offering options for conducting
the process by various means. I am presenting just one among an almost infi-
nite number of solutions, and readers should be aware that running computer
programs differently may alter the results.

Another issue is measuring quality; that is, performance of ordinations.
Generally performance of an ordination is high when the proportion of vari-
ance explained by environmental factors is high. That is what constrained
ordination really measures (Section 7.5), but the results primarily express a
property of data used; therefore the comparison eventually becomes an eval-
uation of data rather than of method. Ordinations can always be compared by
stress functions, as shown in Section 7.3.1. However, these consider regular
patterns and statistical noise simultaneously, whereas in practice priority is
usually given to revealing striking patterns. That is what I do below, taking a
small data set (‘Schlaenggli’) exhibiting an obvious pattern (a gradient) and
revealing another – a group pattern – with the aim of displaying both for
visual inspection. Using minimum-variance clustering analysis the number
of relevé groups is set to three to facilitate distinction of symbols.

The first example compares CA and DCA (Figure 5.10). In DCA 26
segments are used and 4 iteration cycles applied. Only relevé data points
are displayed. Both ordinations nicely resolve the group pattern and DCA
succeeds in stretching the horseshoe. Hence, while maintaining the order
along the x-axis, the y-axis is compressed by DCA.
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Figure 5.10 Comparison of CA (left) and DCA (right). Data point groups are from
minimum-variance cluster analysis.
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Figure 5.11 Comparison of PCA (left) and NMDS (right). Data point groups are
from minimum-variance cluster analysis.

The second example is about NMDS, with the initial configuration being
PCA derived from a correlation matrix. The NMDS ordination is optimized
for two dimensions (Figure 5.11). The strong horseshoe from PCA ordina-
tion is still visible, as is the group structure. While NMDS does not alter the
ordination too much, it must be noted that replacing the correlation coef-
ficient by the frequently used Bray–Curtis index (see for example Gauch
1982) would change the result considerably.
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Figure 5.12 Comparison of PCOA (left) and flexible shortest-path adjustment
(right). Data point groups are from minimum-variance cluster analysis.

The third example compares PCOA ordination with its analogue pro-
cessed by FSPA. Resemblance is the correlation coefficient (Section 4.4), of
which FSPA takes the one-complement, a distance measure. I choose 47.8%
of the total of 1953 distances to be recalculated in order to change the pattern
remarkably. As can be seen in Figure 5.12, FSPA stretches the horseshoe
while retaining the group structure. Because this predominantly affects the
first axis, the first Eigenvalue accounts for an astonishing λ1 = 53.14% of
total variance, and the two dimensions for 62.17%.

It does not come as a surprise that all methods produce usable results. A
main issue in all examples is the flexibility with which initial configurations,
alternative pathways and the number of iterations can be chosen. This adds
uncertainty to the methods not existent in PCA, PCOA and CA. While the
need for stretching of a horseshoe is debatable, it becomes clear that the
quality of the data used is far more important than the selection of the best
ordination method.

5.6 Ranking by orthogonal components
5.6.1 Method

The term ‘ranking’ generally implies an evaluation of either sampling units
or attributes. A rank order is established based on some measurable criteria.
This serves the data reduction in an efficient way.
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The ranking procedure proposed here is based on independent compo-
nents of the sum of squares (Orlóci 1973, 1978) and is therefore closely
related to PCA. The variables chosen should explain as much of the total
variance as possible and should be independent (not correlated). The main
difference compared to PCA is that the variables are chosen from among
the original attributes (or sampling units) and not generated by linear com-
bination. This makes ranking somewhat less efficient than in PCA, but also
easier to interpret. The algorithm presented below is for ranking attributes
(Wildi & Orlóci 1996):

1 The data, X, is centred within the attributes in order to obtain a new
matrix, A, with elements:

Ahj = Xhj − Xh

Qh

(5.10)

where Xh and Qh are the mean and a factor of adjustment, respectively,
in attribute h. Xhj is the value of attribute h in relevé j . For Qh I refer
to Table 3.1, where it can be seen that this choice affects the type of the
similarity coefficient, S.

2 Cross-products, S = AA′, are computed. A characteristic element is
given by:

Shi =
n∑

j=1

AhjAij (5.11)

where n indicates the number of relevés.

3 Dispersions and highest values are calculated:

SS = max
( p∑

h=1

S2
hi

Shh

)
h = 1, . . . , p (5.12)

where p is the number of attributes. The quantity, SS, is a measure of
redundancy in the sample of p attributes with respect to attribute m. Rank
1 is declared for attribute m associated with SS.
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4 Residuals are computed:

Shi := Shi − YhmYim for any h, i = 1, . . . , p (5.13)

in which:

Yhm = Shm√
Smm

and Yim = Sim√
Smm

(5.14)

5 Computation of a new value for SS from the elements of the residual, S,
and declaration of rank 2 for the corresponding attributes. Then repeat
steps 3 and 4 as many times as necessary until all attributes are ranked.

An interactive version of this has been proposed by Wildi (1984), concerning
step 3. Instead of selecting the variable with the highest value for SS, the
choice is left to the user. This reduces the efficiency of the procedure but
allows it to omit attributes that do not seem feasible for the application in
mind, such as species that are difficult to identify.

The RANK algorithm is most efficient when applied to data sets with a
very high number of attributes. This can be seen from the following example,
which demonstrates the method of function and the interpretation.

5.6.2 A numerical example

This example shall demonstrate the high efficiency of the RANK method. It
is shown in Table 5.2, where the results are also summarized. The procedure
starts by calculating the resemblance matrix of species, R. This implies

Table 5.2 Data set for illustrating the RANK algorithm.

relevé 1 2 3 4 rank no. expl. variance, %

species 1 2 2 1 4. 0.0

species 2 2 1 1 2. 17.0

species 3 1 1 1. 78.5

species 4 2 1 3. 4.5
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standardization of the vectors (Formula 5.10) and the computation of the
cross product (Formula 5.11). We get:

R =




1.0 0.85 −0.91 −0.64

0.85 1.0 −0.71 −0.34

−0.91 −0.71 1.0 0.91

−0.64 −0.43 0.91 1.0




As can be expected from the data, species 1 and 2 as well as 3 and 4 are
highly correlated (r = 0.85 and 0.91 respectively). The dispersions (vari-
ances) explained by the individual attributes are found in the respective
rows or columns of the correlation matrix R (see Formula 5.12). The corre-
lation coefficient simplifies matters as Shh, the diagonal values, are always
equal to 1. The variances the attributes account for are:

SS1 = 1

1

[
(1.0)2 + (0.85)2 + (−0.91)2 + (−0.64)2] = 2.95

SS2 = 1

1

[
(0.85)2 + (1.0)2 + (−0.71)2 + (−0.43)2] = 2.41

SS3 = 1

1

[
(−0.91)2 + (−0.71)2 + (1.0)2 + (0.91)2] = 3.14

SS4 = 1

1

[
(−0.64)2 + (−0.43)2 + (0.91)2 + (1.0)2] = 2.41

Species number 3 has the highest explanatory power and will get rank no. 1.
It is important to note that the other species achieve high values as well.
Taking species number 1 instead of number 3, for example, would reduce
the efficiency only moderately. This situation is typical for high-dimensional
vegetation data.

The correlation matrix is now reduced by the fraction of variance
explained by species 3 according to Formula 5.12:

r ′
11 = 1.0 − (−0.91 ∗ −0.91) = 0.17

r ′
12 = 0.85 − (−0.71 ∗ −0.91) = 0.20

r ′
13 = −0.91 − (1.0 ∗ −0.91) = 0.0

r ′
14 = −0.64 − (−0.91 ∗ 0.91) = 0.19
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In the new, reduced matrix R′ the rows and columns related to species 3 are
now all zero:

R′ =




0.17 0.20 0.0 0.19
0.20 0.50 0.0 0.21
0.0 0.0 0.0 0.0
0.19 0.21 0.0 0.17




The procedure according to Formula 5.12 is now applied to matrix R′. As can
be seen in Table 5.2 the variance explained decreases rapidly, confirming
the efficiency of the method. It even turns out that species number 1 no
longer contributes to the total variance, indicating that the dimension of the
total resemblance matrix is equal to 3 only.

5.6.3 A sampling design based on RANK (example)

The method proved to be extremely useful in selecting typical plots for
permanent observation. As these plots account for maximum covariation in
the data, they are considered ‘typical’. In order to design an efficient plan for
permanent plot research in an area (Wildi 1990) the following steps are taken:

1 Complete an initial investigation of the area. The sampling intensity
should be sufficiently high to give an accurate account of types and
gradients.

2 Select a low number of representative plots using RANK. Survey and
analyse these periodically.

3 As soon as a marked trend occurs in the selected plots, re-survey the
entire sample.

This example aims to demonstrate the efficiency of the method. The
criterion for efficiency is the proportion of variance explained by the plots
chosen for permanent survey. This depends on the correlations occurring
in any one data set. The ‘Schlaenggli’ data set is a typical example of a
moderate-sized sample.

The result of the analysis is shown in Table 5.3. It is based on the cor-
relation of 119 plant species occurring within 63 sampling units. There are
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Table 5.3 Ranking relevés of the ‘Schlaenggli’ data set.

Rank no. Plot no. Explained Cumulative pH peat
variance (%) variance (%)

1 520 26.23 26.23 4.6

2 560 10.61 36.84 6.2

3 527 5.55 42.39 4.6

4 546 4.10 46.49 5.5

5 553 4.05 50.54 6.2

. . . . . . . . . . . . . . .

10 557 1.84 62.61 6.3

. . . . . . . . . . . . . . .

24 511 0.95 80.08 4.9

just 5 out of the 63 sampling units needed to account for 50% of the total
variation. As the method intends to maximize co-variation, the subsample
of 5 is considered a typical representation of the entire sample.

Increasing the subsample to 10, as shown in Table 5.3, increases the
explained variance to 62%. Obviously, the contribution of any further plot
does not add much to the efficiency of the survey. 24 plots are needed for
80% of the variance explained and all 63 for 100%.

As the plots are as independent as possible, RANK takes these from
contrasting locations within the investigation area. In Figure 5.13 the five
plots listed in Table 5.3 are shown within the sampling plan. The fact that
they represent contrasting plots directly translates to their spatial location:
They are dispersed all over the sampling area. Due to spatial autocorrelation
(Section 7.3.3) it is rather unlikely that neighbouring (and hence similar)
plots occur in the first few ranks. The independence of the sampling units
can also be observed in the pH values. The orthogonality of ranks is reflected
in large pH steps, from 4.6 up to 6.2 and down again to 4.6 (but probably
with other factors causing a difference to rank 1!). I emphasize that the
analysis is totally based on species composition, and pH just shows the
effect in terms of measured site conditions.

The algorithm can also be used to select a powerful set of indicator
species. In general, species linear correlations are lower than relevé corre-
lations (Section 3.2). As in the ‘Schlaenggli’ data set, it frequently happens
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Figure 5.13 Relevés chosen by RANK for permanent investigation. Left: pH mea-
sured in peat. Right: plot numbers and first five ranks of plots.

Table 5.4 Ranking species of the ‘Schlaenggli’ data set.

Rank no. Species Explained Cumulative
variance (%) variance (%)

1 45 Carex pulicaris 15.43 15.43

2 4 Oxycoccus quadripetalus 5.08 20.51

3 25 Drosera rotundifolia 4.98 25.48

4 90 Bellidiastrum michelii 4.25 29.73

5 139 Orchis latifolia 2.80 32.53

6 96 Rhytidiadelphus squarrosus 2.76 35.29

7 112 Cirsium oleraceum 2.64 37.93

8 119 Rhinanthus minor 2.56 40.48

9 152 Ctenidum molluscum 2.49 42.97

10 95 Hylocomium splendens 2.24 47.52

. . . . . . . . . . . .

20 57 Sphagnum subsecundum 1.58 64.65

. . . . . . . . . . . .

42 145 Acer pseudoplatanus 0.78 90.30
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that the number of species exceeds the number of relevés. The species ranked
first will therefore account for less variance than the relevé ranked first. The
result of this analysis is listed in Table 5.4. The 10 first ranks account for
almost 50% of total variance; 42 out of 119 are needed for 90%; 100% is
reached with 63 species. This is the dimensionality of the similarity space
as given by the number of relevés.



6
Classification

6.1 Group structures
‘The aim of classification is to obtain groups of objects (samples, species)
that are internally homogeneous and distinct from other groups’ (Lepš &
Šmilauer 2003). Working with a small number of groups rather than a large
number of relevés and species is the main practical advantage of classifica-
tion, and because species combinations tend to re-occur at different locations,
classification is justified from the theoretical point of view as well. But a
group structure is also a type of pattern and therefore classification can be
considered a tool for pattern recognition. As shown in Figure 6.1, however,
this is not always the case. The example on the right illustrates a case where
two groups are formed within a perfectly continuous point cloud. Additional
investigation is needed to distinguish this from the case in the left graph
where groups confirm an obvious pattern and therefore are considered natu-
ral , in contrast to the artificial shown on the right. It can be seen from the

Data Analysis in Vegetation Ecology Otto Wildi
 2010 John Wiley & Sons, Ltd
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Figure 6.1 Two-dimensional group structures. Left: natural groups (within circles)
and intermediate points. Right: continuous structure with artificial division into two
groups.

intermediate data points in the left graph that this distinction is not trivial.
Just a few data points may connect two natural groups, which then become
artificial.

Classification also reduces the dimensionality of data, just as ordination
does (Chapter 5). The maximum number of dimensions of an ordination, m,
is the smaller of either the number of relevés n or the number of species p;
that is, m = min(n, p). When ordinating relevé groups and species groups,
the number of dimensions will not exceed the smaller number of either the
relevé groups or the species groups. Depending on data, it may be even
smaller as in Figure 6.1, where the entire point cloud is presented in two
dimensions only. Forming groups when only one or two dimensions exist
is a simple task to be carried out visually. Mathematical methods forming
groups are needed when the number of dimensions is high, a property typical
with vegetation data.

When a species or a relevé is assigned to one group only, then the pattern
is discrete. However, classification also involves a continuous concept known
as fuzzy classification (Roberts 1986). In fuzzy classification all relevés and
species have a degree of belonging to all groups, measured on a continuous
scale from 0 to 1, in analogue to ordination where correlations with the axes
are distinguished. It happens that classification and ordination converge.

The issue of finding the best – or even just a good – group structure is
by no means trivial. First, one has to find an appropriate number of groups,
m, in the range:

1 ≤ m ≤ n
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under the assumption that a group consists of at least one data point (i.e.
sampling unit) and n is the sample size. Second, a clustering technique has
to be chosen from among the many available software packages to group
the sample accordingly.

Why are there so many different methods for clustering and not just
one? The reason is that no single method works perfectly, even though the
ultimate solution exists: it is the enumeration of all possible assignments
of sampling units to groups followed by the selection of the ‘best’ one. As
noted by Anderberg (1973), the number of combinations S(m)

n is:

S(m)
n = 1

m!

∑
k = 0m(−1)m−k

(
m

k

)
kn (6.1)

Even for the very moderate task of assigning 25 sampling units to 5 groups
this yields:

S(m)
n = 2 436 684 974 110 751

combinations. This number is so high that the procedure is out of reach
of today’s computers. The many classification methods invented simplify
the task of forming groups; nevertheless they are all restricted by specific
strategies imposing internal assumptions. A possible distinction of major
strategies is this:

Heuristic vs. Formal
Agglomerative vs. Divisive
Hierarchical vs. Nonhierarchical
Deterministical vs. Stochastical

A heuristic algorithm implies two elements. First, assumptions are made
concerning the initial group structure. Second, an initial configuration is
improved through a formal and iterative reallocation procedure. Anderberg
(1973) discusses these methods in the context of nonhierarchical clustering:
‘Such algorithms begin with an initial point and then generate a sequence
of moves from one point to another, each giving an improved value of the
objective function, until a local optimum is found’ (p. 156). It is worthwhile
to note that the optima found depend on the initial assumptions and even on
the order in which the data are processed. For very large data sets, processing
the sampling units sequentially may be the only feasible method, consider-
ing the constraints of computing power (Chapter 11). However, heuristic
(and probably all divisive) methods should be avoided in favour of formal
agglomerative (and among these, hierarchical) methods.
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Figure 6.2 A dendrogram as output from an agglomerative hierarchical clustering
method. All branches may be in spin and therefore vicinity doesn’t signify similarity.

For ecological applications it is often sufficient to distinguish groups
without considering hierarchy. However, hierarchy has the advantage that
it defines similarity relationships between the groups, which allows us to
change the number of resulting groups by altering the hierarchical level.
Hierarchy is of course needed when an analysis is based on hierarchy theory
(Allen & Starr 1982).

This chapter focuses on agglomerative clustering, with some comments
on other approaches. Agglomerative clustering generates a hierarchy, which
is usually displayed in the form of dendrograms; that is, resemblance trees
depicting the similarity of individuals and groups, as shown in Figure 6.2.
On the horizontal axis, sampling units 1 through 7 are lined up, connected by
arches. The height of any arch measures the dissimilarity (distance) between
the corresponding sampling units – or group of sampling units. However,
the order of the sampling units and hence the arches is not given by the
algorithms. The configuration is allowed to spin around all vertical axes
(Figure 6.2). Thus, the vicinity of data points along the x-axis has no specific
meaning and cannot be used for interpretation.

6.2 Linkage clustering
The process of agglomerative hierarchic clustering is demonstrated for three
methods: single-, complete- and average-linkage clustering. Whereas single-
and complete-linkage clustering are unambiguous terms, average-linkage
clustering is used for different methods. The one presented below is also
called centroid clustering, while others are listed in Section 6.4.

All three methods use the same definition for the comparison of any two
sampling units. The resemblances (distance or similarity) are always taken
from the resemblance matrix of the sample, but methods differ in the way
they consider larger groups (Figure 6.3, left side). Single-linkage always
uses the distance (or similarity) of the closest members of any two groups.
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Figure 6.3 Comparing single- (SL), average- (AL) and complete-linkage (CL) clus-
tering. Left: group definitions applied in a one-dimensional example. Right: results
displayed as dendrograms.

Complete-linkage refers to the two most distant members of any two groups,
thus distance between groups is much larger. Average-linkage measures
the similarity between the centroids of the groups; in the one-dimensional
example of Figure 6.3 this is the centre of two (or more) sampling units
involved. The definition implies that the similarity between groups is gener-
ally greater in complete-linkage than in single-linkage, and intermediate in
average-linkage.

The example in Figure 6.3 is one-dimensional. The dissimilarity of any
two points is therefore just their distance on a straight line. When arranging
the sampling units from left to right, the distance matrix is:

D =
0
2 0
5 3 0
9 7 4 0

(6.2)

In the first step (numbered arrows in Figure 6.3) all methods do the same.
They find the first two points to be the most similar, separated by two units.
This yields a first arch in the dendrogram, which is two units in height.
In the second step the next closest neighbours are searched for. In single-
linkage this is the third point with a distance of three units from the group
formed before. For complete-linkage the third point is five units apart from
the new group. The next fusion is therefore formed by points three and
four being only four units apart. The corresponding arch has height four.
The same holds for average-linkage. However, there are two solutions as
the distance between the first two points and the third point is also four
units. In the third and final step, single-linkage adds the fourth point to the
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previous cluster. This is done at height four of the arch, according to the
distance of the third and the fourth points. In complete-linkage, the two
two-member groups are fused at arch level nine, the distance between the
most distant points. The same is done in average-linkage, but the height of
the arch reflects the distance between the centres of the involved groups.

Although this is a tiny example, the shape of the resulting dendrograms is
typical. In single-linkage, the chaining effect can be seen. The dendrogram
formed by complete-linkage is more balanced and typically much higher.
The average-linkage dendrogram has intermediate shape.

6.3 Minimum-variance clustering
Single- and complete-linkage clustering consider single data points in their
definition of group similarity. Minimum-variance clustering (Ward 1963),
also called sum-of-squares clustering (see Orlóci (1967)), is based on the
relationship of all members of a group (Legendre & Legendre 1998). The
objective of minimum-variance clustering is to unify groups such that the
increase within group variance is minimized. Since Euclidean space is used,
variance can be illustrated, as shown in Figure 6.4. The variance within any
group g can be derived from the full data set as follows:

Qg =
p∑

i=1

ng∑
j=1

(xij − xi)
2 (6.3)

Figure 6.4 Variance within and between groups in minimum-variance clustering.
The variance is the sum of the squared distances (arrows). c(j) is the centroid of
group j, rel(j, i) relevé score i in group j.
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where xij is the score of species i in relevé j , ng is the size of group
g and p is the number of species. In Orlóci (1978), p. 205, we find that
this calculation can be simplified if there is a matrix of squared Euclidean
distances, D2, available:

Qg = 1

ng

∑
i<j

d2
ij (6.4)

To explain the principle I use the example from Figure 6.3. The distance
matrix is displayed in Formula 6.2. When taking the squared distances the
matrix becomes:

D2 =
0
4 0

25 9 0
81 49 16 0

(6.5)

It is important to note that the levels at which fusions take place in the
dendrogram are the increases in group variance, and not the total group
variance. When two groups a and b join, the new variance, Q(a, b), is equal
to the total variance of the group minus the variance of the contributors, Q(a)

and Q(b):

Q(a, b) = Q(a + b) − Q(a) − Q(b) (6.6)

In the present example, the first group is built by data points 1 and 2. The
variance explained is:

Q(1, 2) = 1

2
4 = 2 (6.7)

and for the next fusion it is:

Q(3, 4) = 1

2
16 = 8 (6.8)

These two internal variances have to be deducted from the total variance in
the final step:

Q(5, 6) = 1

2 + 2
(4 + 25 + 9 + 81 + 49 + 16) − 2 − 8 = 36 (6.9)
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Clearly, a dendrogram with fusion levels {2; 8; 36} looks different from those
seen in Figure 6.3. The differences in appearance get even more pronounced
in data sets of larger size.

Minimum-variance clustering is capable of distinguishing groups of dif-
ferent extent and density; that is, groups with high internal variance versus
groups with low variance. This is a situation often encountered in vegetation
data. As pointed out by Legendre & Legendre (1998), it is often also consid-
ered one of many variants of centroid clustering and yet another intermediate
solution between the extremes represented by single- and complete-linkage
clustering.

6.4 Average-linkage clustering: UPGMA, WPGMA,
UPGMC and WPGMC

In many fields of science an intermediate solution to clustering is preferred
as standard. The term ‘average-linkage clustering’ has been used for many
different methods (e.g. by Sneath & Sokal 1973), such as the abbreviations
given in the title of this section. They have in common that the definition
of group similarity is based on all members of a group and not just one as
in single- and complete-linkage clustering. It is in this regard that they are
related to minimum-variance clustering (Section 6.3).

The four methods are discussed in some detail in Legendre & Legen-
dre (1998), where a small numerical example is given for illustration and
comparison. I will continue using the abbreviations and refer to Table 6.1
for the full names. The methods are distinguished by two alternative crite-
ria (Table 6.1). UPGMA and WPGMA use the average resemblance of all
group members as a criterion for between-group resemblance. In UPGMC
and WPGMC, a group centroid is established: in geometrical terms this is
the centre of gravity of any one group. Between-group resemblance is thus
the distance or similarity of any two centroids. As with many groups of
methods, the results depend on the data analysed and the method used, and
they may be identical or differ considerably.

The second criterion of distinction concerns weighting. ‘U’ (UPGMA,
UPGMC) signifies ‘unweighted’, which, however, may be somewhat mis-
leading. When computing average resemblance as well as centroids, group
sizes are taken into account. ‘Unweighted’ means that the weight of the
original set of resemblances is retained. ‘W’ (WPGMA, WPGMC) signifies
‘weighted’. This means that groups of different size get the same weight
when fused. In this case, the weight is the inverse of group size.
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Table 6.1 Properties of four popular clustering methods (adapted from Legendre &
Legendre (1998)).

Properties Consider the average
similarities or distances
of all members of a
cluster as candidates for
further fusions

Consider the centroid
of all members of
a cluster as
candidates for
further fusions

Give equal weight to the
original resemblances
(weight of groups
proportional to group
size)

UPGMA (unweighted
arithmetic average
clustering)

UPGMC
(unweighted
centroid
clustering)

Give equal weight to
any two branches of
the dendrogram
(weight of groups
identical irrespective
of size)

WPGMA (weighted
arithmetic average
clustering)

WPGMC (weighted
centroid
clustering)

The relationship between the four methods is shown in Table 6.1, an
extension of Table 8.2 in Legendre & Legendre (1998). Even though these
methods seem to be popular (partly due to the appealing abbreviations), it
must be noted that they all represent special cases rather than a justified
standard. Furthermore, especially when using centroid clustering, reversals
may occur in the dendrograms: subsequent fusions may take place at lower
levels than the previous. Dendrograms of this kind are both difficult to draw
and difficult to interpret.

6.5 Forming groups
A dendrogram offers unique flexibility in reducing the number of mem-
bers considered to constitute a population. When cutting horizontally, it will
divide the sample into groups. The dissimilarity of the resulting groups will
be as large as the level at which cutting takes place, as is schematically
shown in Figure 6.5. Cutting the dendrogram just below the uppermost arc
will divide the sample into two groups. When moving down to the next
arc, one new group is formed (unless two or more arcs are found to be at
exactly the same level). The procedure ends when all groups consist of one
sampling unit only.
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Figure 6.5 Cutting dendrograms at different levels of dissimilarity.

But how many groups should be formed, and how large and how homoge-
neous should they be? Considering the huge number of potential solutions to
this problem (Formula 6.1), I suggest that in most cases the decision has to be
based on the purpose of the classification. This means that a criterion has to
be defined which is independent of the data yielding the classification. As an
example, a site factor can be used for testing the explanatory power of clas-
sified vegetation samples. Only in rare cases will the structure found in clus-
tering yield a straightforward solution, as illustrated in Figure 6.1, left side.

When group number and size are chosen there is frequently an opportunity
to test these for significance. In Section 7.2 the use of analysis of variance
for measuring the predictive power of a classification will be raised. The
test criterion, the F -value, helps us to find guidelines for group number and
size. It is defined as:

F = V arbetween−groups

V arwithin−groups

(6.10)

The significance of any one F-value can be checked in the F-table of a
statistical textbook. The F-value has two degrees of freedom, df1 and df2,
where:

df 1 = m − 1 and
df 2 = n − m (6.11)

in which m is the number of groups and n is the sample size. Upon inspection
of F-tables it becomes clear that n must be sufficiently large: much larger
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than m, the number of groups. However, if the number of groups is too low,
the predicting power of the classification is also poor. Two groups (df1 = 1)
are unfavourable in almost all cases, a number around five (df1 = 4) promises
better results. Furthermore, from the point of view of the analysis of vari-
ance, the number of sampling units per group should also not drop below
around five.

6.6 Structured synoptic tables
6.6.1 The aim of ordering tables

In early times of plant ecology the predominant method of data analysis
consisted of the rearrangement of synoptic tables: rows and columns were
shifted to achieve an order for relevés and species reflecting the similarity
pattern of the sample. An early description of the method was published by
Ellenberg (1956) (see also Mueller-Dombois & Ellenberg 1974). It basically
implemented some rules for simultaneous ordering of rows and columns.
When multivariate clustering became operational for large data sets, several
approaches were developed for substituting the manual process. Examples
are the computer programs TABORD (Maarel et al. 1978) and TWINSPAN
(Hill 1979b). While TABORD is heuristic and finds a solution through iter-
ation, TWINSPAN includes in its first steps divisive clustering applied to
the result of correspondence analysis. Legendre & Legendre (1998) mention
that this regularly leads to misclassifications as the similarity space is not
considered in all dimensions simultaneously.

A second series of approaches appeared some 10 years later. They include
the method described below (Wildi 1989), a strategy by Podani & Feoli
(1991), the program ESPRESSO by Bruelheide & Flintrop (1994) and prob-
ably others. The method shown below is entirely based on multivariate
analysis. Podani & Feoli (1991) extend this by implementing additional
tests of success and reallocations. ESPRESSO, on the other hand, is again
an entirely heuristic, iterative procedure.

As will be shown, ordered vegetation tables are more than just clustered
two-dimensional arrangements. They usually exhibit a main gradient found
in the sample, representing a large-scale pattern, and groups (or subgroups) at
smaller scale. High presence scores form the diagonal of the table, so that for
each relevé group the characteristic species occurrence can immediately be
found. And finally, species with lower predictive power are moved down to
the bottom part of the list. This explains why more than one method is needed
to achieve such a result. The method I describe also serves as an example
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Table 6.2 Steps involved in sorting synoptic tables by multivariate methods
according to Wildi (1989).

Step Transformation Method Effect

1 Clustering
relevés

x′ = x0.2 Sum-of-squares
clustering

Forming relevé groups

2 Ordinating
relevés and
species

x′ = x0.2 Correspondence
analysis

Determining major trend
for order within
groups

3 Clustering
species

x′ = x0.1 Complete
linkage based
on Euclidean
distance

Forming species groups

4 Analysis of
concentration

presence–
absence

Analysis of
concentration

Determining major trend
among relevé/species
groups

5 Species
ranking

x′ = x0.1 Analysis of
variance
(F-values)

Separating species with
high vs. low resolving
power

6 Printing none Apply ordering
criteria from
steps 1−5

Sorting, as suggested by
Ellenberg (1956)

of the application of different multivariate methods in combination, rather
than just representing the best solution for generating ‘nice’ tables. Ordering
tables is not the ultimate tool for analysing and interpreting environmental
data and some more limitations are discussed in Section 11.5.

6.6.2 Steps involved

The steps described below follow the suggestions published in Wildi (1989),
with some minor changes. They are summarized in Table 6.2.

Step 1. The procedure starts with clustering of relevés. If the data are per-
centages, like the data set of Ellenberg (1956) shown below, then
the scores should be transformed to closer reflect presence–absence.
I suggest the use of x′ = x0.2 or so. The relevé vectors are then nor-
malized to compensate for differences in species richness. Using
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minimum-variance clustering (based on the centred scalar product)
allows for groups greatly differing in size.

Step 2. Before proceeding to the analysis of species, the relevés are sub-
jected to ordination to find the dominating gradient in the sample.
This will be used later to rearrange relevés and species within the
groups. While the scalar transformation remains the same, corre-
spondence analysis is often a good choice for identifying the dom-
inating trend of relevés. Simultaneously, it yields the same for the
species.

Step 3. For clustering species, the methods used differ (see Figure 3.4), due
to the fact that correlation of species is generally rather low and
nonlinear. To enhance joint occurrence, the scores are transformed
close to presence–absence, using x′ = x0.1. I suggest normalizing
(but not standardizing!) the species vectors. Since groups consist-
ing of frequent but also rare species are generally not welcome, a
resemblance measure has to be used that does not centre the vectors.
In Table 6.2 Euclidean distance is proposed. With complete-linkage
clustering, more evenly sized groups can be expected.

Step 4. Because the relevé and species groups are generated form dendro-
grams, their order is arbitrary (see Figure 6.2). Blocks of high-
score density will be dispersed all over the table. This is shown in
Figure 6.6 (a). Analysis of concentration (Section 7.4) now counts
the frequency of non-zero scores in each block, thereby forming
a contingency table. This table, after adjustments, is analysed as
in correspondence analysis. According to the first ordination axis,
the procedure yields a gradiental order for both relevé groups and
species groups.

Step 5. The species are ranked by Jancey’s ranking (Jancey 1979). For for-
mal reasons transformation should be the same as in the clustering
of species. The species with the highest F-values are then taken for
the upper, discriminating part of the table. It is a matter of taste
how many are taken. Significance levels are not valid in the statisti-
cal sense. In any case, species with low F-values (approaching 1.0)
should of course be suppressed and moved to the bottom part of the
table.
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Step 6. When all the row and column vectors are arranged as seen in the
previous steps, the table can be printed. Since the sign of ordination
axes is arbitrary, it can happen that the diagonal of high scores
points from the upper right to the lower left. This can be changed
by reversing the order of the relevés.

6.6.3 Example: Ordering Ellenberg’s data

For the purpose of illustration the data set of Ellenberg (1956) (also published
in Mueller-Dombois & Ellenberg 1974) is used in Figure 6.6 to demonstrate
the effect of different methods. The number of relevé groups chosen is three,
the same as chosen by Ellenberg. In many cases, taking the square root
of the number of relevés turned out to yield pleasing results (i.e. about
15 for a table of size 200, 30 for a table of size 1000, etc.). The number
of species groups in this example is eight. Because the correlation among
species is generally low, the groups should be small in size (i.e. three to
six species). Under many circumstances, dividing the number of species by
about four may be a good choice for the number of species groups. The
number of species displayed is 30 out of 94.

In Figure 6.6 (a) the result of clustering is shown. As can be expected,
the blocks of high-frequency non-zero scores are dispersed. Figure 6.6

Figure 6.6 Structuring the meadow data set of Ellenberg (Mueller-Dombois & Ellen-
berg 1974). (a) Ordering based on cluster analysis only. (b) Blocks rearranged by
analysis of concentration. (c) Within-group order changed according to correspon-
dence analysis (complete ordering). (d) Ordering with four instead of three relevés
groups.



6.6 STRUCTURED SYNOPTIC TABLES 73

(b) exhibits the same classification, but the blocks are rearranged by
analysis of concentration. In (c), within-group order is changed according
to correspondence analysis. In some cases, small within-group gradients
can be identified. This slightly improves the appearance of the diagonal
structure of the table, but does not improve on the result of classification.
In (d), the number of relevé groups is increased to four. This example
demonstrates that the relevé groups determine the list of differentiating
species. The selection of differentiating species has changed completely.
The last group consists of one relevé only, and species occurring only
there achieve high F-values. It has to be noted that such a solution with a
single relevé in a group is not practical as the variance within the group is
not defined. Clearly, relevé number 19 is an outlier (see Section 11.3) and
should be removed from the set prior to analysis (Wildi 1989).





7
Joining ecological patterns

7.1 Pattern and ecological response
The identification of patterns is a first step in finding rules governing
systems. Patterns can be found in biotic space, but also in environmental,
spatial and temporal (Section 2.3.2). As a next step in the investigation
of ecosystems, spaces are compared in search of common patterns. Clarke
(1993), introducing this strategy to analysis of benthic communities, puts it
as follows: ‘Having allowed the community data to “tell its own story”, its
relationship to matching environmental data is examined by superimposing
the values of each abiotic variable separately onto the biotic ordination.’
Hence, when talking of ‘joining’ in this chapter I address various methods
of comparison, such as superimposing, correlating, variance partitioning
and so on. The simplest case of comparison is the univariate, where a vector
expressing performance of a species is correlated with an environmental

Data Analysis in Vegetation Ecology Otto Wildi
 2010 John Wiley & Sons, Ltd
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factor such as precipitation. However, even if a strong correlation is found,
this will not allow straightforward conclusions, because plant species
interact and the change in performance may not be directly related to an
environmental factor, but caused by competition or facilitation from another
species. The same holds among environmental factors: water uptake of
plants, for example, depends on temperature, and an ecologically sound
interpretation requires a simultaneous view of these two factors. Hence,
rather than just pairwise correlating variables, the focus of this chapter
is on the analysis of relationships between spaces – the biological, the
ecological, the physical and the temporal (according to Section 2.3.2).
There are methods relating single variables of one space to another space,
and others correlating two or more entire spaces. An example for the
comparison of two multivariate spaces is the analysis of contingency, where
data from different spaces are classified and the resulting frequencies are
compared in contingency tables. These are further analysed, agreement
measured, tested and interpreted. And then there is constrained ordination,
where variance is partitioned and that shared by two spaces is used
for joint ordination, of vegetation and environmental data, for example.
The spaces are usually vegetation and site data. Examples are shown in
Section 7.5.

What does it mean if one finds common properties in patterns? It is
a good reason to hypothesize that there exists a response in either direc-
tion; that is, an interaction. Typically, vegetation responds to environmental
conditions, which play the role of independent – and vegetation the depen-
dent – variables. In the ecological reality, the opposite can happen too. In
a ruderal environment species composition can be a result of the seed bank
and not so much of present site conditions. As time progresses, it is expected
that a correlation between species composition and site factors will start to
emerge, not only developing dependence, but also generating a temporal
pattern. Although time processes are treated separately in Chapter 9, much
of what is presented here applies to these as well.

Often occurring in spatio-temporal systems is autocorrelation. This is
the phenomenon that any two observational vectors are more similar than
expected if they occur in close neighbourhood, be it spatial or temporal.
Thus, autocorrelation is the phenomenon of dependence across small dis-
tances. In vegetation data spatial autocorrelation is often a result of plant
dispersal and for this reason it is of great ecological significance. As will be
seen in the sequel, there are methods to identify true autocorrelation, whilst
most other methods of correlation are hampered by this.
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7.2 Analysis of variance
In this section I present the basic idea of analysis of variance as a tool for
measuring the strength of group pattern. In the statistical context, this is
hypothesis testing (by statistical inference). Alternatively, it can serve as a
purely descriptive tool for quantitatively measuring distinctness of patterns.
In this case, the result cannot be considered for statistical testing, because
it is derived from the same body of data used for forming groups. But
it is a means of ordering variables according to predictive power: a kind
of ranking which in turn serves dimensionality reduction when omitting
unimportant variables.

7.2.1 Variance testing

Forming groups in classification is not trivial (Section 6.5). In order to test
a classification some external, independent criteria are needed. Since we are
interested in the interactions between vegetation and site, we will first seek
a group structure in vegetation and ask if this also exists in one or several
site factors.

Analysis of variance is used to test this structure for significance. The
underlying idea in this is in partitioning total variance:

VT = VW + VB (7.1)

The principle of total (VT ), between-groups (VB) and within-groups (VW )
deviation from means is illustrated in Figure 7.1. This one-dimensional case
illustrates that the proportion of the variance (the squared distances) between
the groups and the same within the groups measures the crispness of the
classification. This is what the F-value measures (see Section 6.5):

F = VB

VW

(7.2)

Provided the classification is given, this can directly be calculated from the
raw data, X. The following notation is used in the equations below:

n sample size, total
m no. of groups
p no. of variables
i current sampling unit i = 1, . . . , n
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j current variable j = 1, . . . , p

k current group k = 1, . . . , s

l current sampling unit in group k

s current group size of group k

The application shown serves the comparison of the p variables for their

resolving power in explaining vegetation groups. The total variance of cur-

rent variable j is obtained by:

VT,j =
n∑

i=1

(xij − xj )
2 (7.3)

Variance within groups does literally the same, but it refers to the group

means (the centroids) instead of the total. For current sampling unit l in

group k this is:

VW,j =
m∑

k=1

s∑
l=1

(xlj − xkj )
2 (7.4)

For variance between groups, only the group means are compared to the

total:

VB,j =
m∑

k=1

sk(xkj − xj )
2 (7.5)

Figure 7.1 Distinctness of group structure. Symbols are sampling units belonging
to three groups. (a) Total deviation from sample mean (n = 9). (b) Total deviation
of group means from sample mean (m = 3). (c) Within-group deviations from group
mean. (d) Sample mean. (e) Group means.
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In order to consider all sampling units, the deviations of group means from
the total mean have to be multiplied by group size, sk . For the purpose
of testing, the degrees of freedom have to be determined. As shown in
Section 6.5, these are:

df 1 = m − 1 and df 2 = n − m (7.6)

To demonstrate the application of this test, an example is shown in Table 7.1.
These are the ‘nzzm5’ data, an artificial data set of 11 relevés, 21 species

and 3 site factors (pH, slope, altitude) describing forest stands on the Swiss
Plateau (Appendix B). The data table is classified using the method explained
in Section 6.6. The number of relevé groups chosen is three; the number of
species groups (not relevant in this application) is four. For the three site
factors we obtain:

pH F= 23.6980 **
Slope F= 3.7161 *
Altitude (m) F= 0.2234

Using Formula 7.6 we get Df 1 = 2 and Df 2 = 8. Inspecting the F-
distribution table in any standard statistical textbook yields the significance
levels above. The pH value qualifies as the best predictor for species
composition as it reflects the group structure with a probability error of
p = 0.01. For slope, significance is given only at p = 0.05, while altitude
does not mirror this pattern.

7.2.2 Variance ranking

The idea of ranking species based on a variance criterion has been proposed
by Jancey (1979). Technically it is identical to the F-testing shown in the
previous section. The variables tested, the species, are the same as used for
the classification of the relevés. Therefore, the F-value cannot serve as a test
criterion: it merely represents a measure for the relative resolving power
of the species in distinguishing the relevé groups. Jancey (1979) suggests
sorting the species list according to the F-values in decreasing order. Such
a list is presented in Table 7.2. Species with sufficiently high F-values can
be used to build keys for vegetation mapping in the field.

Jancey (1979) also mentions that F-values can be computed for a restricted
set of groups. In this case, the analysis yields the resolving power of species
based on the selected relevé groups only. In fact, any new classification of
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Table 7.1 The structured data set ‘nzzm5’. Based on this classification, pH,
slope and altitude are being subjected to analysis of variance (see main text).

RELEVE NO. 49 25 2 6 39 18 50 9 4 10 27

GROUP NO. 1 1 1 1 3 3 3 3 2 2 2

1 pH 4.8 5.0 4.4 4.8 5.2 6.0 5.8 5.6 6.2 6.5 6.0

2 Altitude 550 480 450 420 500 400 520 580 500 560 450

3 Slope, deg. 15.0 18.0 10.0 4.5 12.5 2.5 3.0 6.0 0.5 4.0 2.5

8 Vaccinium myrtillus 3 + 2 1

6 Sambucus racemosa 3 + 2 1

21 Polytrichum formosum 3 3 + + 1

13 Veronica officinalis 3 + + 1 1

12 Luzula nemorosa 3 2 1 2 +
2 Quercus petraea 4 4 3 1 2 + + 1 +
5 Lonicera xylosteum 4 + + + 1 + 1

3 Acer pseudoplatanus 1 + + 1 1 1 2 4

4 Fraxinus excelsior 1 + 1 + 3 3 2

7 Sambucus nigra 2 + + 2 1

18 Arum maculatum 2 1 +
19 Ranunculus ficaria 2 1 2 4

16 Primula elatior 2 + 2 2

17 Allium ursinum 2 4 2 +
1 Fagus silvatica 999 2 4 3 4 5 5 + 4 + 2 1

14 Galium odoratum 999 + + + + 2 1 + + 1

9 Carex silvatica 999 + + 1 + 2 + + 2

10 Oxalis acetosella 999 + + + 3 1 1 1 2

11 Viola silvestris 999 + + + + + 1 + +
20 Eurhynchium striatum 999 + + 1 + + 1 + +
15 Lamium galeobdolon 999 + + + + 2 1 2

relevés will alter the F-values and accordingly the ranked list. An application
of this is demonstrated below.

7.2.3 How to weight cover abundance (example)

Statistical tests can serve as a means of assessing uncertainty in results.
Choosing the ‘best’ methods and options for clustering is an example of
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Table 7.2 Variance ranking of species based on the
classification of relevés shown in Table 7.1.

Rank no. Species F-value

1 13 Veronica officinalis 2120.9

2 19 Ranunculus ficaria 2060.1

3 12 Luzula nemorosa 1307.8

4 16 Primula elatior 1127.0

5 3 Acer pseudoplatanus 1122.5

6 21 Polytrichum formosum 750.16

7 17 Allium ursinum 664.65

8 4 Fraxinus excelsior 12.243

9 7 Sambucus nigra 10.798

10 8 Vaccinium myrtillus 7.5749

11 6 Sambucus racemosa 7.5749

12 18 Arum maculatum 5.7973

13 2 Quercus petraea 2.9624

14 5 Lonicera xylosteum 2.5385

15 1 Fagus silvatica 1.7683

16 15 Lamium galeobdolon 1.5769

17 14 Galium odoratum 0.3515

18 20 Eurhynchium striatum 0.0398

19 11 Viola silvestris 0.0348

20 10 Oxalis acetosella 0.0290

21 9 Carex silvatica 0.0175

this as the performance of classifications can only be measured a posteriori
based on independent environmental factors. In this example, seven alter-
native classifications are evaluated by analysis of variance computed for
eight different environmental factors. To generate the seven classifications I
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Table 7.3 Transformations used in the variance-testing example, Figure 7.2.

Transformation Scores Property

none (code) {0,r,+,1,2,3,4,5} nonimal type

ranked {0,1,2,3,4,5,6,7} rank scale

x′ = x0.0625 {0,1,1.04,1.07,1.09,1.11,1.12,1.13} ≈1/0

x′ = x0.125 {0,1,1.09,1.15,1.19,1.22,1.25,1.28} close to 1/0

x′ = x0.25 {0,1,1.19,1.32,1.41,1.50,1.57,1.63} very low weight to cover

x′ = x0.5 {0,1,1.41,1.73,2.00,2.24,2.45,2.65} low weight to cover

x′ = x1 {0,1,2.00,3.00,4.00,5.00,6.00,7.00} rank scale

x′ = x2 {0,1,4,9,16,25,36,49} close to cover %

x′ = x4 {0,1,16,81,256,625,1296,2401} low scores suppressed

used the same clustering method and even derived the same number of
groups, resulting in an identical number of degrees of freedom. I only
altered transformation of cover-abundance data prior to clustering, as previ-
ously shown in Table 3.3. In this way the exercise becomes an evaluation
of seven different data transformations fitting eight environmental factors
via classifications.

In summary, the following standards are imposed on the clustering of the
test data set ‘Schlaenggli’ (Appendix B):

1 Cover-abundance data are transformed according to x′ = xy (see
Equation 3.1) in seven steps ranging from y = 0.0625 to y = 4.

2 The resemblance measure used to compare relevés is the correlation coef-
ficient.

3 Minimum-variance clustering is used and there are always six groups
formed.

From the 6 groups and 63 relevés involved we get df 1 = 5 and df 2 = 57
degrees of freedom for any of the classifications obtained (see Equation 7.6).
The transformation applies to the ranks of the cover-abundance code used,
which translates the code {0,r,+,1,2,3,4,5} to the raw scores {0,1,2,3,4,5,6,7}.
The transformations and resulting scores are listed in Table 7.3.

A selected subset of the results is shown in Figure 7.2, depicting the
change of the F-values as transformation of species scores prior to clustering
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Figure 7.2 F-values of selected site factors. The x-axis values are exponents used
for transformations leading to seven different classifications. The y-axis contains
the F-values.

occurs from almost qualitative (small exponents used) towards an extremely
quantitative view (large exponents used). In any table of F-values we find
the following significance thresholds for df 1 = 5 and df 2 = 60 degrees
of freedom:

p = 0.001 F = 4.71
p = 0.01 F = 3.43
p = 0.05 F = 2.37

Almost all of the values in Figure 7.2 are highly significant, a result of
the strong gradient pattern inherent in the system. The best coincidence
between vegetation and site factors is often achieved when species scores are
close to presence–absence (1/0); that is, when y is small. This emphasizes
species occurrence – the qualitative view – whereas the quantitative view
dominates when y is high; that is, when y = 2 or y = 4 is chosen. There,
small scores remain uninfluential and only dominating species are taken
into account. As can be seen in Figure 7.2, this generally leads to low
F-values.

The result is somewhat surprising. There is not a ‘best’ solution to
classification (and, hence, to transformation) as the environmental variables
behave differently. Whereas Ca concentration in peat is best characterized
when using the untransformed rank scale (y = 1.0), pH in peat reaches
maximum when the ranks are square-root transformed (y = 0.5), while
conductivity (log Ohm/cm water) relates best to presence–absence.
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A generally ‘good’ similarity space in terms of the environmental fac-
tors is obtained around y ≈ 0.5 (low weight of cover). A rather unsuitable
transformation for this purpose is around y ≈ 2.0, which should probably
be avoided.

7.3 Correlating resemblance matrices
7.3.1 The Mantel test

We have seen so far how vectors are related to multivariate patterns. While
this is often helpful, the more general problem is to compare two (or
more) multivariate patterns. One solution to this is canonical correlation, a
method that relates n variables of one data set to m variables of another. I
abstain from this, because in ecology one usually runs into the problem of
excessive degrees of freedom: altogether, there are often too many variables
involved compared to the number of sampling units: the system becomes
over-determined. To compare the patterns of two spaces, a most elegant
solution is the correlation of resemblance matrices. In this, all pairwise
comparisons of sampling units are evaluated simultaneously. These may
concern the biological data space versus the environmental, but also the
spatial (i.e. the arrangement of plots in space) and the temporal (i.e. the
states in time). This approach has the additional advantage that it is only
moderately affected by nonlinearity.

The example presented here may appear too simple because one of the
spaces is represented by one vector only (the environmental). But a one-
dimensional vector is sufficient to calculate a full resemblance matrix. Let
us consider the following situation:

Relevé 1 2 3 4
pH 4.5 4.1 4.2 3.8
Species 1 0 1 1 2
Species 2 3 2 2 1

The pH vector represents the environmental space. The pattern of this is
given by the distance matrix, De. Since this is one-dimensional, the distance
between any two relevés is the difference of the respective pH values:

De =
0

0.4 0
0.3 0.1 0
0.7 0.4 0.3 0
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The two species vectors represent the floristic space. This pattern is defined
by the distance matrix Df . Using equation 4.1 (Euclidean distance) we get:

Df =
0

1.41 0
1.41 0 0
2.5 1.41 1.41 0

For the purpose of comparison, the elements of the triangular matrices are
now arranged as vectors:

De; Df =

0.4 1.41
0.3 1.41
0.1 0
0.7 2.5
0.4 1.41
0.3 1.41

The two vectors differ in scale, and for comparison they have to be
adjusted. Mantel (1967) suggested using the correlation coefficient to
measure the fit (see also Legendre & Fortin 1989). As shown in Table 4.3,
the product-moment correlation coefficient involves standardization. In the
example above we get:

r(De;Df ) = 0.965
p = 0.015 (7.7)

Where does the error probability, p, come from? In statistical textbooks
tables of significance levels for correlation coefficients can be found. In
this situation, however, they are not valid. The values in the two vectors
are not normally distributed; nor do they represent a random sample. As in
many other instances in ecology a randomization test is more appropriate.
This measures the probability that this result could be obtained by chance.
The elements of one vector are rearranged randomly and the calculation of
the correlation coefficient is repeated. The result, p = 0.015, means that in
15 out of 1000 cases the random order yields an r ≥ 0.965, sufficient for
assuming significance. In the present case there are limitations to this test as
the number of elements, six, is rather low. More reliable results are obtained
when n ≥ 10, where the number of off-diagonal elements in the resemblance
matrix is n ≥ 45. Clearly, the Mantel test is a practical means of quickly
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evaluating a set of site factors for their potential in predicting the similarity
pattern based on species composition.

7.3.2 Correlograms: Moran’s I

Correlograms are mostly used for spatial and temporal analysis. They help
identify specific relationships, such as autocorrelation, periodicity and non-
linearity. Basically, they can be applied to any type of ordinal or metric
data. Below, I use spatial coordinates as an example. In this (i.e. the phys-
ical space) there are different phenomena to be distinguished (Legendre &
Legendre 1998):

Spatial dependence. This occurs when there is a gradient present in the
investigation area. Along a gradient, plots in close neighbourhood are
more similar than distant plots. The site conditions – and most likely
also the vegetation – change from one end to the other. Because of the
lack of spatial equilibrium such systems are called nonstationary.

Anisotropy. The above-mentioned case of spatial dependence usually differs
by direction. Along the main gradient, dependence is strong. Perpendic-
ularly, it is weak or even lacking. If the same dependence exists in all
directions, the system is isotropic. Anisotropy is the rule in ecological
systems.

Spatial autocorrelation. Even if the system is stationary (i.e. free of an
overall gradient), correlation can be observed at small distances. When
analysing a system with inherent autocorrelation, the species composi-
tion in neighbouring plots is more similar than could be expected from
the measured site conditions. Often, it is assumed that this is caused by
species propagation: whatever the environmental factors are, it is easier
for a species to reach a close plot than to a distant plot.

The principle of measuring autocorrelation at different step lengths is illus-
trated in Table 7.4. Along a hypothetical gradient, 10 by equal step length,
�s, spaced measurements xi are taken. This is equivalent to comparing
a vector to itself, but with its elements shifted by a distance of �s = 1.
Consequently, the first and the last element of each vector cannot be used
anymore and n reduces to 9, starting with paired values {4.5;4.7} and end-
ing with {4.8,5}. Correlation is r = 0.74, indicating that at this distance the
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Table 7.4 Autocorrelation in a one-dimensional gradient (Figure 7.3, left). Mea-
surements taken at equal step lengths, �s, are correlated with neighbours 1−6
steps apart.

�s 0 1 2 3 4 5 6
vector x y(�s = 1) y(�s = 2) y(�s = 3) y(�s = 4) y(�s = 5) y(�s = 6)
n= 9 8 7 6 5 4
r= 0.74 0.33 −0.07 −0.70 −0.90 −0.42

x(1) 4.7

x(2) 4.5 4.7

x(3) 4.4 4.5 4.7

x(4) 4.6 4.4 4.5 4.7

x(5) 4.9 4.6 4.4 4.5 4.7

x(6) 5.1 4.9 4.6 4.4 4.5 4.7

x(7) 5.1 5.1 4.9 4.6 4.4 4.5 4.7

x(8) 5.3 5.1 5.1 4.9 4.6 4.4 4.5

x(9) 5 5.3 5.1 5.1 4.9 4.6 4.4

x(10) 4.8 5 5.3 5.1 5.1 4.9 4.6

4.8 5 5.3 5.1 5.1 4.9

4.8 5 5.3 5.1 5.1

4.8 5 5.3 5.1

4.8 5 5.3

4.8 5

4.8

neighbours are correlated. When �s is increased to two steps, n reduces to
8, with the first pair being {4.4;4.7} and the last {4.8;5.3}. Correlation now
also decreases to r = 0.33 (a value that, in statistical terms, is no longer
significant). The example in Table 7.4 is a typical case in which correlation
decreases with increasing step length and eventually even becomes (signifi-
cantly) negative: whenever one observation in a pairwise comparison is high,
its distant counterpart will be low. In Figure 7.3, left side, it can be seen
why this happens: here, the vector pH is plotted against an arrangement of
plots in space. It turns out that it has a periodic spatial pattern!
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Table 7.5 Computed correlogram of the data shown in Table 7.4.
Graphical representation shown in Figure 7.3, right.

Dist. Class from to n Moran’s I

1 0.5 1.5 9 0.38

2 1.5 2.5 8 0.11

3 2.5 3.5 7 −0.01

4 3.5 4.5 6 −0.15

5 4.5 5.5 5 −0.21

6 5.5 6.5 4 −0.22

7 6.5 7.5 3 −0.18

8 7.5 8.5 2 –

9 8.5 9.5 1 –

1
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Figure 7.3 Left: spatial arrangement of measurements (pH) according to Table 7.4.
Right: corresponding correlogram (data in Table 7.5).

A correlogram is a plot of correlation as a function of step length. Instead
of the product-moment correlation coefficient, Moran’s I is usually used:

I (d) =
1
W

∑n
h=1

∑n
i=1 whi(yh − y)(yi − y)

1
n

∑n
i=1 (yi − y)2

f or h �= i (7.8)

where W is a transformed distance matrix: it considers classes of distance,
such as short , medium , long . When an element whi falls into the class to
be analysed, it takes the value of one; otherwise it is zero. In our very small
example in Table 7.4, there are possible step lengths between 1 and 9. These
are taken as distance classes to compute the correlogram shown in Table 7.5
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and graphically in Figure 7.3, right. There are nine distances of length 1 in
this data set and the corresponding Moran’s I is 0.38 (a significant value
according to a permutation test). Step length 2 occurs eight times only, step
length 3 yields seven pairs and so on. If distance class is plotted against
Moran’s I , the correlogram shown in Figure 7.3, right, results. Here, a clear
trend of decreasing dependence is found up to step length 6, indicating the
presence of spatial dependence. Due to the low number of elements, it cannot
be decided if dependence vanishes at long distance. At this point, the Mantel
test is more helpful (Section 7.3.1). We get r = 0.3107 and p = 0.1000:
there seems to be a faint trend, but again the data set is too small for a
clear answer.

7.3.3 Spatial dependence: Schlaenggli data revisited

This is an example of real-world data illustrating the application of the Man-
tel test, its directed version and also Moran’s I . The investigation area (see
for example Figure 8.5 and Appendix B) has the interesting property that it is
almost quadratic in shape and trends can therefore be evaluated in different
spatial directions. Furthermore, there are many site factors available; some
of these correlate with vegetation while others do not (see Section 7.2.3).

From Figure 8.3, upper-left graph, it can be seen that there is a strong
floristic gradient in the vertical direction (α = 90 ◦). This suggests that the
species pattern is likely to be space-dependent. Using the correlation matrix
of the relevés and the matrix of Euclidean distances computed from the x-
and y-axes in space, the Mantel test yields r = −0.5204 and p = 0.0000.
Hence, spatial dependence is highly significant.

Since this dependence has its origin in a gradient, direction is a major
issue. To evaluate different directions, the spatial distances have to be pro-
jected on one line. This yields new distances from which Mantel’s r or
Moran’s I is computed. The way distances are projected at an angle of
α = 45 ◦ is shown in Figure 7.4. In this direction, the Mantel test yields
r = −0.4980 and p = 0.000, a highly significant trend. At an angle of
α = 0 ◦, where the vertical component of the space is suppressed and only
the horizontal expansion is considered, the test yields r = −0.0884 and
p = 0.014. This means that there is still a trend, but much weaker than that
in the vertical direction (α = 90 ◦).

A full evaluation of all directions in the range of 0 ◦ ≤ α ≤ 180 ◦ allows
identification of the direction in which the gradient is strongest. This is
shown in Figure 7.5. The maximum is achieved at α ≈ 75 ◦, indicating that
the main gradient points from the upper-left to the lower-right corner; that
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Figure 7.4 Projecting distances in one direction. Without considering direction,
the neighbouring data points located on the same arrow are separated by 1.414 grid
units. When projected at an angle of 45 ◦, they are at the same location.

Figure 7.5 Evaluating the direction of the floristic gradient. The gradient is
strongest at α ≈ 75 ◦.

is, in an almost vertical direction. Perpendicular to this, at α ≈ 165 ◦, the
floristic gradient vanishes (r = −0.0072).

It can be seen in Figure 7.4 that the sample space, when projected, is one-
dimensional only. This is also the case when taking one single site factor
instead of spatial axes. In Section 7.2.3 all site factors have been evaluated
based on their potential in predicting a specific classification of the relevés. In
the present context, this potential is measured independent of classification,
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based on the full similarity matrices of the relevés. In Table 7.6 the same site
factors used in Figure 7.2 are subjected to the Mantel test. For the purpose
of comparison, the F-values from Section 7.2.3 are also shown (from the
classification based on the transformation x′ = x0.25). Mantel’s r is always
negative because the site factors are compared by distance, whereas for the
relevés the correlation coefficient (a similarity measure) is used. The results
are significant in all cases except the last, where a random variable is used
instead of a site measurement.

Moran’s I can be computed as well and it will yield a correlogram instead.
In the example shown in Figure 7.6 the distance (dissimilarity) matrices are
classified. The classes are formed by dividing the longest distance encoun-
tered into 10 segments, from which Moran’s I is calculated. Figure 7.6
shows correlograms of four different site factors in one graph. Although
this helps in the comparison of the curves, interpretation has to be carried
out with care: the distance matrices differ among site factors and Moran’s
I values are based on a slightly different number of data pairs. Generally,
the results at distance classes 9 and 10 become unreliable due to insufficient
sample size.

The strongest dependence occurs with pH. From distance classes 2−6 the
change of Moran’s I is almost linear. Only then does the trend level off,
indicating nonlinearity occurs at larger differences in pH. The water level
yields a similar overall shape of the correlogram, but much less pronounced.
Random fluctuation plays a more visible role than in pH. At distance class

Table 7.6 Mantel test of the site factors analysed in Section 7.2.3. F-values are
added for comparison.

No. Site factor F-value Mantel’s r Permutation p

1 pH peat 33.87 −0.649 0.000

3 Ca (mg/100g peat) 19.09 −0.634 0.000

9 Base saturation (%) 40.63 −0.737 0.000

12 Waterlevel, av. (cm) 9.58 −0.346 0.000

14 Peat depth (log(cm)) 9.27 −0.400 0.000

15 Slope (log(deg.)) 4.15 −0.132 0.029

17 Conductivity (log(Ohm/cm)) 24.38 −0.597 0.000

18 Ca in water (log(0.1ppm)) 55.80 −0.755 0.000

21 random variable 0.57 0.050 0.228
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Figure 7.6 Correlograms of site factors. The random variable is an example illus-
trating the shape when there is no relationship.

1, where small differences are taken into account, Moran’s I is still rather
reliable. Slope, on the other hand, is an example for weak dependence. The
correlogram ends at distance class 8 because n is too small to calculate I at
distance classes 9 and 10. The deviations from the zero line hardly exceed
what can be expected from a random number, which is also included to
illustrate the lack of relationship.

7.4 Contingency tables
All methods of classification and ordination are aimed at analysing data
matrices from full samples. However, the basic idea presented in this section
is to analyse data in summarized form; that is, after classification of relevés
and species. This should reveal interactions between relevé groups and
species groups. A contingency table contains counts of occurrence of one or
several species within a relevé group, resulting in a comparison of two alter-
native classifications of the same body of data. During the course of this book
we have encountered contingency tables twice, but in different contexts: in
Section 4.3 the occurrence of the same species in two different relevés was
counted to derive measures of resemblance for relevés; in Section 5.4 cor-
respondence analysis (CA) was introduced as a method of ordination. In
CA, the species scores are assumed to be frequencies and the entire vegeta-
tion table is considered a contingency table – despite the fact that scores are
usually not frequencies, but cover percentage, abundance classes, biomass
and so on. In the applications shown below presence–absence scores are
counted. The counts are the elements of the contingency table F and the
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notation used for all elements of the table accords to:

F =

f11 . . . f1j . . . f1n f1.

. . . . . . . . . . . . . . . . . .

fi1 . . . fij . . . fin fi.

. . . . . . . . . . . . . . . . . .

fp1 . . . fpj . . . fpn fp.

f.1 . . . f.j . . . f.n f..

(7.9)

where fi. is the sum of the n elements in row i, f.j is the sum of column j

with p elements and f.. is the grand total. There are n columns and p rows
in this matrix.

The method shown below was first proposed by Feoli & Orlóci (1979)
under the name ‘analysis of concentration’ (AOC). ‘Concentration’ refers to
the allocation of non-zero scores within the blocks of relevés and species
groups. Concentration is high when the counts are highly concentrated in
a few blocks while other blocks are empty. It is low when the scores are
dispersed all over the contingency table. The aim of the method is to measure
concentration and reveal interactions among and between the classifications
of relevés and species.

The method is illustrated using the classified data set shown in Table 7.7.
It is the same as that in Table 7.1, but with all species included in the
classification. Counting the species scores yields the following contingency
table:

F =

18 0 0 18
27 25 21 73
0 7 6 13
0 1 14 15

45 33 41 119

(7.10)

Typically, the sizes of the 12 blocks differ in Table 7.7, while in the final
analysis each group is intended to have the same weight. Therefore, an
appropriate adjustment is needed. In the first step, the number of relevés
and species per group are counted to yield block size, Z:

Z =

20 20 15 55
36 36 27 99
8 8 6 22

20 20 15 55
84 84 63 231

(7.11)
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Table 7.7 The structured data set ‘nzzm5’ (Appendix B). The method used
for ordering is the same as in Table 7.1, but without removing species with
low F-values.

RELEVE NO. 49 25 2 6 39 18 50 9 4 10 27

GROUP NO. 1 1 1 1 3 3 3 3 2 2 2

1 pH 4.8 5 4.4 4.8 5.2 6 5.8 5.6 6.2 6.5 6

2 Altitude 550 480 450 420 500 400 520 580 500 560 450

3 Slope, deg. 15 18 10 4.5 12.5 2.5 3 6 0.5 4 2.5

8 Vaccinium myrtillus 3 + 2 1

6 Sambucus racemosa 3 + 2 1

21 Polytrichum formosum 3 3 + + 1

13 Veronica officinalis 3 + + 1 1

12 Luzula nemorosa 3 2 1 2 +
2 Quercus petraea 4 4 3 1 2 + + 1 +
9 Carex silvatica 4 + + 1 + 2 + + 2

20 Eurhynchium striatum 4 + + 1 + + 1 + +
11 Viola silvestris 4 + + + + + 1 + +
1 Fagus silvatica 4 2 4 3 4 5 5 + 4 + 2 1

10 Oxalis acetosella 4 + + + 3 1 1 1 2

14 Galium odoratum 4 + + + + 2 1 + + 1

15 Lamium galeobdolon 4 + + + + 2 1 2

5 Lonicera xylosteum 4 + + + 1 + 1

3 Acer pseudoplatanus 1 + + 1 1 1 2 4

4 Fraxinus excelsior 1 + 1 + 3 3 2

7 Sambucus nigra 2 + + 2 1

18 Arum maculatum 2 1 +
19 Ranunculus ficaria 2 1 2 4

16 Primula elatior 2 + 2 2

17 Allium ursinum 2 4 2 +

Block sizes range from 6 to 36. In the original publication, all frequencies
were adjusted to the minimum block size. Orloći & Kenkel (1985) later
proposed a method in which the grand total is retained. This is the case when:
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aij =
f..fij

nij∑p

g=1

∑q

h=1
fgh

ngh

(7.12)

In the denominator of this equation, the sum of all frequencies weighted by
the inverse of block size is used. In the above example, this value is 5.980.
The adjustment of the first element thus yields:

a11 =
119∗18

20

5.980
= 17.908

The matrix of the adjusted frequencies is:

A =

17.908 0.0 0.0 17.908
14.923 13.818 15.476 44.217

0.0 17.411 19.898 37.309
0.0 0.955 18.571 19.526

32.831 32.184 53.945 119.0

(7.13)

It can be seen that this transformation changes the elements considerably
in the case of both small (e.g. row 3) and large (e.g. row 2) groups. These
adjusted frequencies are now further analysed by correspondence analy-
sis (CA), as shown in Section 5.4. This yields ordination coordinates for
relevé and species groups. In the example above, there are two non-zero
Eigenvalues (according to the dimension of the data matrix minus 1):

λ1 = 0.58834 λ2 = 0.1221

The squared canonical correlations are the square roots of these:

R1 = 0.76703 R2 = 0.34947

CA is based on deviations from expectation 5.4. ‘Expectation’ is the assump-
tion that all frequencies are evenly dispersed across all blocks, which is the
case when there is no structure in the table. The χ2 by definition sums the
squared deviations from expectation and is therefore a measure of concen-
tration. It is obtained from the squared canonical correlations, multiplied by
the grand total of F (or A, which is the same):

χ2 = χ2
1 + . . . + χ2

q = R2
1f.. + . . . + R2

qf.. (7.14)



96 CH 7 JOINING ECOLOGICAL PATTERNS

This shows that the χ2 is in fact the sum of q orthogonal components. In
the example we get:

Component i Ri χ2
i λi% df

1 0.76703 70.01 82.8 4
2 0.34947 14.53 17.2 2
Total 84.54 100 6

The degrees of freedom are calculated according to:

df = (p − 1) + (q − 1) − (2i − 1) (7.15)

(from Orloći & Kenkel 1985).
In statistical textbooks we find that the significance threshold for df = 6

and p = 0.01 is χ2 = 16.812. Hence, the value of χ2 = 84.54 is highly
significant. For comparison of classifications it is quite practical to consider
the mean square contingency coefficient, C:

C = χ2

A..(m − 1)
(7.16)

where m is equal to the smaller of the values n and p. C lies between 0 and
1; in the example above C = 0.355.

Just like correspondence analysis, this method yields coordinates.
However, the data points now refer to the groups rather than to the indi-
vidual relevés and species. This simplifies the interpretation considerably
(Figure 7.7). In the present example, the ordination confirms what is
obvious from the ordered vegetation table: that there is a correspondence
between relevé group 1 and species group 3, between relevé group 3 and
species group 1, and also between the respective groups number 2. Species
group 4 is intermediate and not indicative for any other, being located close
to the origin of the coordinate system.

7.5 Constrained ordination
In this category of methods two data matrices are analysed in common;
hence the umbrella term canonical analysis for all related methods (Leg-
endre & Legendre 1998). Typical results are ordinations with three types
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Figure 7.7 Ordination of group structure in the test data set ‘nzzm5’ as derived
from the data in Table 7.7.

of data points: one for sites, a second for environmental variables and a
third for species. What distinguishes constrained ordinations from ordinary
is the involvement of regression. Regression is partitioning dependent vec-
tors, such as the species scores, into two components: the expected and the
deviation from this. In linear regression the expected values are the pro-
jections of the scores on the straight regression line. These are the scores
used for constrained ordination, highlighting two main issues of constrained
ordination:

• The multiple regressions involved divide the total variance into an
explained partition (the expected) and an unexplained partition (the
residuals). The quotient of explained by total expresses how much
variance is common to both data matrices, for example.

• The explanatory variables, such as the environmental vectors, can be sub-
jected to permutation tests. When the elements of the vectors are randomly
exchanged, correlation is expected to vanish. Hence, the significance of
the environmental factors in contributing to the canonical ordination can
be tested.
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Randomization tests have to be used with care, as explained by Lepš &
Šmilauer (2003) in the context of using the program package CANOCO. All
major ordination methods can potentially be extended to a constrained form:

• Redundancy analysis (related to principal component analysis) was first
proposed by Rao (1964).

• Canonical correspondence analysis (related to correspondence analysis)
was invented by ter Braak (1986).

• Constrained principal coordinates analysis was proposed by Legendre &
Anderson (1999) (although they called it ‘distance-based redundancy anal-
ysis’).

• Wagner (2004) devised a spatially constrained correspondence analysis,
revealing the effects of spatial dependence and spatial autocorrelation.

In all methods the coordinates generated by programs can be transformed
differently and many programs offer options for this. Comparison with the
output of different software is further complicated when randomization tests
are involved, because random numbers differ between computer programs
and sometimes even within the same program run.

The first method shown below is redundancy analysis (RDA), the con-
strained version of principal component analysis (PCA). It differs from the
latter in that expected species scores are used instead of the originals. Expec-
tation ŷj is derived through multiple regression, according to:

ŷj = aj + bj,1xj,1 + bj,2xj,2 + . . . + bj,kxj,k (7.17)

The xj,k values are the k environmental factors in each relevé j . The bj,k

values are the regression coefficients and aj is the intercept. Usually the data
matrices are centred by relevés such that the intercept vanishes. Denoting the
species by relevé matrix Y , a new matrix of expected values, Ŷ , is obtained,
where:

Y = Ŷ + Yres (7.18)

This relationship is of practical relevance as it expresses the fraction of
explained (canonical) variance, Ŷ , compared to the total, Y . Operations
explained in Section 5.2 are performed on Ŷ and permutation tests are
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applied on request, as explained above. Hence, RDA is, like PCA, a lin-
ear method.

The second method shown below is canonical correspondence analysis
(CCA), the constrained version of correspondence analysis (CA). It differs
from RDA in that the transformation used in CA (Equation 5.5) is applied
prior to multiple regression. As in the unconstrained versions, CCA is con-
sidered appropriate when species response is unimodal.

To demonstrate the use and interpretation of constrained ordination I com-
pare redundancy analysis and canonical correspondence analysis using data
set ‘Schlaenggli’ (see Appendix B). From the 20 environmental factors I use
5 for the purpose of illustration:

• pH of peat

• Acidity (mval/100g peat)

• Cation-exchange capacity, CEC (mval/100g peat)

• Phosphorous (mg/100g peat)

• Water level (average), cm below surface.

The results are shown in Figure 7.8. Overall performance of the ordinations
is as follows:

Method Constrained Unconstrained Total Percentage
variance variance constrained

RDA 7.689 14.446 22.135 34.7%
CCA 0.6302 1.5708 2.1911 28.3%

Performance of both ordinations is rather high, with RDA being slightly
better (34.7% explained variance) than CCA (28.3%). In other words, the
linear model succeeds in revealing correlation between vegetation and envi-
ronmental factors despite the strong horseshoe pattern (Section 5.5). Two
almost independent factors dominate the system: pH in peat and the depth
of the average water table. CEC and acidity are highly correlated, while
phosphorous has its maximum in peat bog vegetation on the left, a fact
already recognized in the original investigation (Wildi 1977). The overall
pattern of RDA is rather similar to the unconstrained version of PCA, as
can be seen in comparison with Figure 5.11, whereas CCA is similar to CA
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Figure 7.8 Comparison of RDA and CCA, data set ‘Schlaenggli’ (Appendix B). In
both graphs the environmental factor vectors are multiplied by factor two for better
resolution.

(Figure 5.10). In conclusion, both methods perform very well and choosing
one is probably just a question of taste.



8
Static explanatory modelling

8.1 Predictive or explanatory?
The term ‘modelling’ is used in a wide context and it deserves closer
specification. Loehle (1983) suggested a classification of models, finding
them to be either logical , theoretical or predictive. Logical and theoreti-
cal models have their strength in the universality of validity: the systems
described are assumed to be governed by generally valid rules and laws,
although the parameters may still come from measurements. The models
shown in this chapter operate in the realm of probability and Loehle (1983)
would classify these as ‘predictive’. Correlative relationships are being used
as tools for ‘forecasting’. Really predicting the future is of course out of
their scope: the models merely assess a most probable state – based on past
experience. As they are data-driven they also reflect uncertainty: that found
in the underlying investigations. In linear regression, uncertainty is the vari-
ance not explained by the straight regression line. As for ecology, a more
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Figure 8.1 Occurrence probability of three hypothetical vegetation types at a
given environmental state (pH). Response type is Gaussian.

typical function than the linear is shown in Figure 8.1. When counting the
frequency of pH values in different vegetation classes, a frequency distri-
bution results. This can be interpreted as an approximation to a probability
function. Whenever a pH value is measured in the real system, the model
provides occurrence probabilities for all vegetation types, without referring
to specific mechanisms or theories. But as depicted in Figure 8.1, probability
functions are often of the Gaussian type, an experience corroborated by a
huge body of investigations (Austin 2005). Thus, in Loehle’s terms, all these
models also involve a logical component. Taking into account all the assump-
tions and data used, they are explanatory , evidence-based and to some extent
logical . Prediction only comes along in the course of interpretation.

This chapter presents models assuming only Gaussian response of species
to environmental factors. An alternative class of approach is regression-
based, both linear and nonlinear. For an in-depth review of these I refer
the reader to the paper of Guisan & Zimmermann (2000), in which general
linear models (GLM) and others (e.g. general additive models, GAM) are
presented and compared. Comparison of model performance is a big issue
and Elith et al. (2006) give an impressive example.

8.2 The Bayes probability model
The occurrence of a species population, a community, a vegetation type or a
life form can be described by probability functions. A theoretical framework
for handling multiple probabilities is given by the Bayesian type of analysis
(Fischer 1990), based on a posteriori probabilities. An example of a Bayesian
model is given by Brzezecki et al. (1993): a simulation of the potential forest
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Figure 8.2 Schematic illustration of the construction of a Bayes probability model,
used for the simulation of the potential vegetation of Switzerland (Brzezecki et al.
1993).

vegetation of Switzerland. The scheme in Figure 8.2 illustrates the steps
involved in this kind of modelling; that is, the process of model construction,
as described in more detail below. On the right side, upper part, the derivation
of this model is sketched. The outset is a sample of the vegetation relevés
of Switzerland. These are classified into types. In addition to this, spatial
information on site factors is needed, as shown on the left. For each site
factor the frequency distribution within each vegetation type is derived. This
serves as an approximation to a probability function for the occurrence of
any one vegetation type. Processing the joint probabilities will then yield
a spatial map of the probability of occurrence of all vegetation types in
Switzerland. From this, a crisp map showing the vegetation types with the
highest probability within each pixel can be drawn. There are different ways
to derive probabilities, depending on whether a continuous or a discrete
approach is preferred. The choice depends on the type of data available and
also on the characteristics of the probability distribution, as shown below.

In the following sections the Bayes model is explained in detail. In
Section 8.3 a small application to wetland vegetation is shown; in Chapter 12
the same is done for forest data.
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8.2.1 The discrete model

The advantage of a discrete model lies in the fact that no assumption about
the functional relationship between a vegetation type and a site factor is
required. The model will properly reflect the real situation, even if the vari-
able involved has an asymetric or bimodal distribution. The site factors are
all assumed to be discrete states and their frequency of occurrence is counted.
Continuous variables, like elevation, are classified into states, in this case
as altitudinal classes. However, the estimation of probabilities requires sam-
ples of really large size since all classes have to be of sufficient size. In this
regard the continuous model is less demanding. Whenever the discrete model
is used, the database for the construction of the model is set up as a con-
tingency table (Section 7.4), where the site-factor classes are the columns
and the vegetation types are the rows. In all subsequent explanations the
notation shown in Table 8.1 is used.

In reality, vegetation types vary in abundance. The Bayes model considers
this through a priori probabilities, weighting the chances the different types
have of occurring. An estimate for the occurrence probability of type (V i)
is its relative frequency taken from the survey:

p(V i) = fi.

f..

(8.1)

where fi. is the frequency of locations at which type (V i) is found and
f.. are all the locations studied. Sometimes one intends to apply the model
to a different investigation area, which implies that it should be ‘neutral’,

Table 8.1 Notation used in Bayes modelling.

F contingency table

fij an element of F

i index of the ith vegetation type (i = 1, . . . ,m)

j index of the j th category of the site variable (j = 1, . . . , n)

fi. sum of row i

f.j sum of column j

f.. sum of all elements in F (grand total)

xu uth site factor (u = 1, . . . , φ)
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giving each type the same chance of occurring. In this case, the a priori
probabilities are set to the same (arbitrary) value.

The univariate conditional probability of occurrence of any site class, xuj ,
at a given vegetation type, V i, is then:

p(xuj |V i) = fij

fi.

(8.2)

In most cases, however, there are several site factors used and the multi-
variate conditional probability of occurrence of a site vector (a combina-
tion of a number of site-factor classes) at a given vegetation type, V i, is
required:

p(x|V i) =
π∏

u=1

p(xu|V i), for all site factors xu, u = 1, . . . , φ (8.3)

Using the Bayes formula, the probability of vegetation types, V i, being
identified when the site vector, x, is observed is:

p(V i|x) = p(x|V i)p(V i)∑n
j=1 p(x|Vj)p(Vj)

(8.4)

For any site vector, xu, the method in fact yields a vector of probabilities of
occurrence for all vegetation types, V . The term p(V i) denotes the a priori
probabilities. It can easily be seen that they remain uninfluential if they
are alike.

8.2.2 The continuous model

In the continuous case, the frequency distribution is replaced by a continuous
function such as the Gaussian, an assumption inherent in the model. Here
two parameters, µ and σ , have to be estimated. The univariate conditional
probability of occurrence of any site condition under a given vegetation type,
V i, is given by:

p(xu|V i) = 1√
2π

e−(x′
u)2/2. (8.5)

where x′
u is a standardized vector according to:

x′
u = (xu − µui)σui (8.6)
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where µui is the mean and σui is the standard deviation of the uth site factor
within vegetation type V i. The computation of p(V i|x) is the same as in
the discrete case.

A Bayes probability model is not restricted to the prediction of vegetation
types; occurrence probabilities for all species can be computed as well.
In a synoptic vegetation table (see Section 6.6), the relative frequency of
occurrence, sk,V i , of species k within a vegetation type, V i, is an estimate of
probability. This species probability has to be multiplied by the probability of
occurrence of the vegetation type in which it is present at a given location:

qk,V i = p(V i|x) ∗ sk,V i (8.7)

It expresses how likely species k is to occur in V i, given site vector x.
As the calculations refer to a site vector, several vegetation types can be
involved: the probability of occurrence of a species taking into consideration
all vegetation types is:

qk =
m∑

i=1

p(V i|x) ∗ sk,V i (8.8)

In order to derive the likely state of the vegetation under the given site
conditions, this computation is repeated for all species.

There are various restrictions on the use of Bayes modelling, as discussed
by Brzeziecki et al. (1993) for example. Among the most obvious is the
local relevance of the results. The probabilities only hold within the range
of the site factors really measured. Another is the assumption of a Gaussian
distribution, when in fact species responses to site factors are monotone
within a limited range (Orlóci 1993). Furthermore, it is assumed that the
site factors used are independent (which in reality is certainly not true).
Many applications, such as those of Brzeziecki et al. (1993) prove that lack
of independence of site factors hardly ever hampers the results.

8.3 Predicting wetland vegetation (example)
Real-world examples allow testing of methodological and practical ques-
tions, two of which I will address in this section:

1 Which proportion of wetland vegetation pattern can be explained by
measured site factors (in terms of similarity between real and simulated
vegetation)? What is the variation in model performance?
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2 Is there a spatial pattern in model performance, for example an edge
effect towards the borders of the investigation area, or a spatial
gradient?

These questions shall be tested using the ‘Schlaenggli’ data set (Appendix B).
The steps involved are:

1 Classify the 63 relevés (scalar transformation x′ = x0.2, minimum-
variance clustering based on correlation coefficient, five groups formed).
Plot types according to their location in space (x,y).

2 Build a Bayes probability model using the site factors pH and aver-
age water level (a priori probabilities adjusted to 0.2 to compensate for
variable group size).

3 Calculate probabilities for all five vegetation types. Plot probabilities
according to location in the field (x,y).

4 For all plots, calculate all species probabilities and compare the resulting
simulated relevés with the originals.

The two site factors taken (for simplicity) are continuous. For each group,
their mean and standard deviation is computed (Table 8.2). For the calcu-
lation of the probabilities of the occurrence of groups a Gaussian response
function is generated using these parameters.

The result is presented in Figure 8.3. From this, the probability of species
occurrence is derived according to Formula 8.8; three examples of this are
shown in Figure 8.4. The probabilities express the suitability of the site
for the occurrence of the respective species. As would be expected, there

Table 8.2 Mean and standard deviation within groups of pH and water level in the
Bayes model of the ‘Schlaenggli’ data set.

Parameter Group 1 2 3 4 5

pH mean 6.01 6.14 4.40 5.40 5.00

stdv. 0.348 0.350 0.426 0.370 0.542

Water level, cm mean 20.4 12.7 12.8 8.57 12.4

stdv. 2.13 4.61 3.80 2.64 1.82
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Figure 8.3 Site suitability computed with the Bayes model. The ‘Schlaenggli’ data
set (Appendix B) is used. Upper left: classification of the relevés. Other graphs:
probability of occurrence of all five types based on site conditions (pH and average
water level). Circle diameter is proportional to probability.

are more plots with suitable site conditions than plots where the species
is really observed. In this small meadow, 100 × 100 m, the most important
reason for this may be the low population density of many species. Plot size
(1m square) may often have been too small to capture an individual from a
population that would otherwise be present.

A real model test would require independent data, which are not available
in our case. What can be measured is the performance of the model to predict
species composition from the measured site factors. This is needed as we
would like to know if there is a systematic trend in the variation across the
investigation area. For this, the original vegetation data have to be compared
to the simulated. There are many different ways to do this, but since the
objective is to identify trends (spatial patterns of performance), the method
chosen is not too important. Only the relative magnitude of the similarity
measures matters.
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Figure 8.4 Occurrence probability of three selected species (upper graphs) and
their occurrence in the relevé data (lower graphs).
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Figure 8.5 Similarity of field relevés and simulated data. The Soerensen coefficient
is used. Axes are spatial coordinates x and y.
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In a first step the data set with the probabilities is transformed into
abundance scores. A presence–absence matrix is derived by setting a thresh-
old; that is, by suppressing low probabilities and setting those remaining to
1.0. In the original data set about 30% of all elements consists of non-zero
scores. When cutting the species list at a threshold of p ≤ 0.4, the simulated
data set contains 34% non-zero elements. Hence, whenever the probability
for a species to occur in any one plot is p ≤ 0.4 it is assumed to be absent.
Comparison between real and simulated relevés is done with the Soerensen
coefficient (Table 4.2), based on presence–absence. The average similar-
ity achieved is 0.611, a fairly high value (cutting the species probability at
p ≤ 0.2 results in 48% non-zero elements and an average similarity of 0.57).
A spatial representation of the fit of the model is shown in Figure 8.5. The
concern about spatial trends in the simulation is not corroborated, as there
are plots with better and others with poorer fit all over the investigation area.



9
Assessing vegetation change
in time

9.1 Coping with time
Assessing change of vegetation as a multistate system is a central issue
in vegetation ecology (Wildi & Orlóci 2007). One could of course argue
that time is but another attribute in a sample, as explained in Section 2.3.2,
such that no specific treatment would be indicated. However, time has some
unique properties. For one thing it is one-dimensional, unlike space where
direction is an issue and a decision may be needed when assessing order.
Time always proceeds in the same direction, and even more importantly,
it is transient. Once an event has taken place, there is no backtracking as
can be done in space. This has consequences for investigating change in
environmental systems, as discussed in detail by Green (1979). His hierar-
chical scheme of impact studies is reproduced in Figure 9.1. The most urgent
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Figure 9.1 Type of environmental study needed to assess change. Adapted from
Green (1979).

question in the investigation of an impact is whether reference plots exist.
Undoubtedly, striving for a reference is worthwhile, because once the impact
has taken place there is no way to reverse the process. One may succeed
in protecting plots from an impact, but plots cannot be sheltered from time
passing by. Some more philosophical implications of time dependence are
discussed in Legendre & Legendre (1998).

In the first part of this chapter I postpone the question of reference, con-
centrating on the temporal change of sampling units only. This is classical
time-series analysis and in the literature of vegetation ecology it is usually
found under the buzzword ‘succession’ (e.g. Maarel 2005). The ideas pre-
sented below focus on the specific problem of change in multivariate data
space of high dimension, as is the case in relevé data.

9.2 Rate of change and trend
When sampling is repeated within a plot each new state will differ from
the previous as a consequence of limited precision in measuring or change
taking place in the system. If change occurs, it can be blurred by noise and a
trend may only emerge when sufficiently strong. Consequently, distinguish-
ing randomness from trend is a mandatory prerequisite for any further step
when looking at time series, and a method has to be found to investigate
the nature and possible causes of change.

In the simplest case a time series consists of subsequent states sepa-
rated by even time steps (Figure 9.2, left side). The five states documented
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Figure 9.2 Measuring rate of change in time series of multistate systems. The
matrix depicts distance (dissimilarity).

by five relevés are then compared by calculating similarities or distances
(see Section 4.2), which yields a 5 by 5 distance matrix (Figure 9.2). In the
diagonal the self-comparisons are found; these are all zero (identity). All
comparisons of states separated by one time step can be found in the first
off-diagonal vector. I call these rate of change of order 1 . The number of
comparisons, c, is:

c(o) = n − o

where n is sample size and o is the order of change. For order 1 there are
four possible comparisons, for order 2 only three and so on. The distance
matrix can now be interpreted. Simple reasoning leads to the following
considerations:

1 A change of any order does not ultimately allow identification of the
existence of a trend, as it can arise from any type of error.

2 Small increases in distance from short to long time steps may have been
caused by an increase of measurement error. Errors of this kind can
usually be avoided by quality control.

3 If distances continuously increase with the number of time steps, the rate
of change is likely to be constant in time. A trend emerges.

In most systems, whether disturbed or undisturbed, the rate of change will
vary. In succession one can expect phases in which change is fast and
others in which it is slow. The same holds for short-time fluctuation as well.
Probably the best way to recognize multivariate trends is to display the states
in phase space; that is, to ordinate the relevés. If the data originate from one
plot only, trends manifest in a single sequence of points in which the order of
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points accords with time. If this forms a smooth line then there is temporal
dependence occurring, since each state evolves from the previous, causing
minor changes to be likely to happen. To decide whether this is a local
phenomenon or a spatially relevant, a spatial sample is needed, as shown
in Figure 9.3. This is a subset of the data used by Wildi & Schütz (2000)
in which relevés document succession in 8 (out of 59) plots located in the
Swiss National Park. The time steps are all adjusted to five-year interval and
the investigation period ranges from 1917 until about 1996. The individual
series are overlapping, forming a long, horseshoe-shaped temporal gradient.
From the symbols one can even see that the whole successional gradient
has a range of a great many time steps (approximately 80), corresponding
to about 400 years. Different types of succession can be distinguished. Plot
Tr6 shows a perfect trend in one main direction: the rate of change is almost
constant. Plot Tr5 also fits into the series, but only after the first four time
steps; before that there is a different process underway. Pin4, finally, fits
perfectly into the temporal gradient but almost no change can be found.

Once we know that plots exhibit a common trend, we can inspect the
distance matrices, as explained in Figure 9.2. Taking plot Tr6, there are
16 states available from 1921 until 1994. The resulting distance matrix is
shown in Figure 9.4, left side. The distances increase monotonely as the
order of rate of change increases – when moving away from the diagonal.

Figure 9.3 Ordination of data from eight plots in the Swiss National Park
(Wildi & Schütz 2000). Succession proceeds from right to left.
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Figure 9.4 Rate of change in plots Tr6 (left, 16 time steps) and Pin4 (right,
12 time steps) in the Swiss National Park (see Figure 9.3). Explanations are given in
Figure 9.2.

The pattern confirms that the trend occurs at all temporal scales, at short and
also at long time intervals. The right-hand side shows the distance matrix of
the plot named Pin4. The series consists of 12 time steps starting in 1940
and ending in 1996. The distance matrix suggests that there is a faint trend
in the first nine time steps, but then the average distances start shrinking
again. When inspecting the respective plot in Figure 9.3 it can be seen that
the trend still perfectly fits the overall successional sequence, but it does not
evolve any further and may have reached some equilibrium stage.

9.3 Markov models
In this section a model process capable of reproducing simple cases of mul-
tivariate patterns of change is presented. Very much like linear regression,
it is elementary by nature in frequently fitting observed patterns locally. It
abstracts from noise, complexity and nonlinearity and therefore fails to fit
patterns when the rules in systems change, such as the competitional hierar-
chy of species. However, the process remains fundamental as its application
may frequently be the first step in the evaluation of temporal patterns. The
functioning and use of Markov models for vegetation surveys is explained
below (see also Wildi 2001).

Changes in permanent plots can be interpreted as replacement processes.
Several plant populations occupy the same resource. In the context of vegeta-
tion ecology, the primary resource is frequently the physical space. Because
space can be defined as a fundamental resource occupied by plants, cover
percentage is a logical (even though it is two-dimensional only) surrogate
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for measuring resource consumption. If gains and losses in space are in
balance, so that any state of the system can be derived from the previous
one, then screening for a Markov process is worthwhile (Usher 1981).

Win and loss of every species is defined in a transition matrix P . This
allows derivation of the state of the relevés x at time t from the preceding
step:

xt+1 = xtP (9.1)

In an ordinary permanent plot survey the observation vectors x are vegetation
relevés. Unfortunately, this observation does not allow measurement of the
elements of the transition matrix: the wins and losses of the species (and
this is the main reason why Markov models are not used routinely): if
a species wins space then we do not know which other species has lost
it, and if a species loses ground, we do not know which one will profit
from it. A Markov process, if present, remains undetected. Two plausible
assumptions may help to overcome this situation in a method devised by
Orlóci et al. (1993):

1 If a species loses part of the main resource then any other dominating
species will most likely profit (i.e. profit is proportional to the species
cover).

2 If a species increases its partition of the resource then the remaining
dominant species will lose in proportion to its cover.

Both of these assumptions can be questioned. In succession, a change in
abundance of a species may be caused by colonization of space by a new
species, but a Markov model in its basic form does not foresee invasion.
Similarly, a colonizing species may expand its cover at the expense of rare
species. This is one indication why Markov chains cannot be applied in
isolation when invasion occurs.

The resource space is not always entirely occupied by the vegetation. For
this reason it may be important to add one more variable to the species list:
quantifying the open soil (see Figure 9.5 for an example). Formally, this
functions like any ordinary species. It is important that the sum of all cover
values, including open space, exactly amounts to 100%. This is achieved by
the appropriate transformation of the initial state:

x′
i,t =

( xi,t∑n
i=1 xi,t

)
∗ 100 (9.2)
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Figure 9.5 A Markov model of the Lippe et al. (1985) data set. Upper graph: field
data. Lower graph: simulated data.

In this equation, vector x contains the cover values of species i, t is the
present time and n is the number of species. In the artificial example used
for further explanations (Table 9.1), the sum of cover values is already
100%.

First the transition matrix for time step 1 to time step 2 is calculated
(Orlóci et al. 1993). For each species i a difference results, expressing change
in time:

Diff (i) = xi,2 − xi,1 (9.3)

Positive values of Diff (i) signify a gain, negative ones a loss. The transition
matrix contains all the losses of species i in row i, and the gains of the same
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Table 9.1 Numerical example for demonstrating
a Markov process (raw data).

xt=1 xt=2 xt=3

Species 1 60 40 10

Species 2 25 35 55

Species 3 15 25 35∑
100 100 100

in column i:

P =




p11 . . . ↓ . . .

. . . . . . ↓ . . .

→ → pii →
. . . . . . ↓ . . .


 (9.4)

where ↓ is gain and → is loss of species i. The diagonal elements contain
the proportions each species covers at the end of the time step: xi,t+1. The
gains of species i at the expense of species h, as well as the losses of species
i from species h, are given by the equation:

Dev(h, i) = |Diff (i)| xh,t+1∑
i xi,t+1

(9.5)

This means that gains and losses occur in proportion to the resource (i.e.
the space) each species occupies at the end of the actual time step. When
processing the first species in our example, it can be seen that it loses 20% of
the total ground from t = 1 to t = 2 (Diff (1) = −20). The new diagonal
element is 40. The loss of the second element, a portion of 20% of the 35%
cover, is 7%. The third element is 20% of the 25% cover −5% – completing
the first row:

P(t1; t2; spec.1) =
[

40 7 5
0 0 0
0 0 0

]

Species 2 exhibits a win of 10% (a factor of 0.1) to be added in column 2.
This is again proportional to the covers of the species at time t + 1:

P(t1; t2; spec.1 + 2) =
[

40 7 + 4 5
0 35 0
0 2.5 0

]
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The procedure is completed by applying it to species 3:

P(t1; t2) =

 40 7 + 4 5 + 4

0 35 3.5
0 2.5 25




After normalizing the rows (the sum adjusted to 1) the transition matrix is:

P′(t1; t2) =

 0.667 0.183 0.150

0 0.909 0.091
0 0.091 0.909




For each following time step the procedure is resumed to yield one more
transition matrix, as for time steps t = 2 to t = 3, where it is:

P(t2; t3) =

 10 10.5 11.5

0 55 5.5
0 7.0 35




For all time steps, all transition matrices, P , are averaged. The new transition
matrix, P , is assumed to hold for the entire time series. This also means that
it is kept constant over time and it will therefore outbalance fluctuations. In
our example, after normalizing by rows, we get:

P =

 0.500 0.2950 0.2050

0 0.9091 0.0909
0 0.1367 0.8633




Through simple matrix multiplication according to Formula 9.1 the simulated
relevés are derived (Table 9.2).

Here the first relevé is identical to the field data (Table 9.1). It represents
the initial state of the dynamic system; all subsequent states are merely

Table 9.2 Numerical example demonstrating a
Markov process (simulated data).

xt=1 xt=2 xt=3

Species 1 60 30 15

Species 2 25 42.5 51.23

Species 3 15 27.52 33.77



120 CH 9 ASSESSING VEGETATION CHANGE IN TIME

approximations. This becomes obvious from the examples below. Orlóci
et al. (1993) published a time series documenting recovery of a heath-
land after fire, using data from an investigation by Lippe et al. (1985).
The example is presented here as a case where a linear Markov process
successfully reproduces the temporal pattern found.

The raw and the simulated data (‘Lipperaw’ and ‘Lippesim’ in
Appendix B) are shown in Figure 9.5. From the upper graph it can be seen
that in the first few years there is a directed change. After about eight years
(≈ 1970), an equilibrium state is reached in which merely random oscillation
occurs. One objective of the analysis is to determine the equilibrium state
for which the Markov model is derived. The transition matrix is calculated
as shown above; that is, from the 19 states of the system. It is the mean
of 18 matrices calculated for each time step. Then, beginning with the first
field observation, 18 Markov relevés are derived. They are shown in the
lower graph in Figure 9.5. After 19 years, the model has almost reached an
equilibrium state. In the present example, the model fits the field data almost
perfectly. However, only the deterministic part of the variation is reflected by
the simulated time series; the temporal fluctuation is completely suppressed.

The Markov model perfectly explains multispecies change as long as this
change is linear. But why is it called linear? The response curves are not
linear, but curved and monotone. However, the similarity pattern is linear
and when the data is ordinated it can be seen that the time trajectory is
an almost straight line (Figure 9.6, upper graph) and the Markov model

Figure 9.6 PCOA ordination of the Lippe succession data. Upper graph: field data
used. Lower graph: Markov data used. Arrow pointing in direction of time.
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generates a perfectly linear pattern (Figure 9.6, lower graph). This illustrates
that a linear process yields a linear pattern, even if the underlying species
response curves are bent!

But when does the linear Markov model fail to reproduce succession? This
is simply the case if the ‘rules of the game’ change with time. In terms of the
vegetation process, it takes place when the relative competitional power of
species changes. Ordinations will reveal such situations in presenting time
series as horseshoe-shaped trajectories (see Figure 9.16 for an example).
While the data in Figure 9.5 shows a successful application, I also add one
demonstrating a failure in Figure 9.7. This is the successional series from
the Swiss National Park, presented in more detail in Figure 9.13. There is a
fairly good match during the first few of the 81 time steps but the shape of

Figure 9.7 A Markov model (lower graph) of the time series of the Swiss National
Park (upper graph), taken from Figure 9.13. y-axis shows relative cover.
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the real and simulated curves start deviating fundamentally as soon as new
species invade and the equilibrium state in Figure 9.7 is far from reality.

A Markov chain of the type shown above simulates a classical succession
towards a monoclimax: the vegetation reaches an equilibrium state inherent
in the model, from which it does not escape. In systems theory, the final
state is called a point attractor. In other systems, however, it can happen that
a cycle is reached, as proposed by Watt (1947) (meaning that the system has
a cyclic attractor), or there can be apparent random fluctuations like in the
data of Lippe et al. (1985).

9.4 Space-for-time substitution
9.4.1 Principle and method

In long-term investigations species eventually exhibit a characteristic pattern
of change: constancy, increase, decrease, random fluctuation, periodicity and
so on (Huismann et al. 1993). If the observation time is sufficiently long,
many of these patterns turn out to be fragments of a bell-shaped response
curve. In space-for-time substitution, one assumes that several different frag-
ments of the same response curve can be found, but occurring in different
plots. If these fragments overlap, the entire response curve can be restored.
This principle is sketched schematically in Figure 9.8. The heavy lines show
hypothetical response curves of the same species over eight time steps. At
first glance they seem to be different in nature – sometimes with a tendency

Figure 9.8 The principle of space-for-time substitution in the univariate case
(Ghosh & Wildi 2007).
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to increase and sometimes decreasing – however, when the curves of plots
2 and 3 are properly shifted (light lines), a single response evolves covering
14 time steps. This is of course just an interpretation, because such curves
never fit perfectly. It is therefore essential that they overlap sufficiently, as
is the case in Figure 9.8. In real situations, there are many species involved,
and an overlap should yield a meaningful result for all of them.

The fact that a successional trend ends within a plot but continues in
another plot has been known for long time. It has added much to the mon-
oclimax theory strongly debated in the first half of the twentieth century
(Clements 1916, see also Maarel 2005). Although there has never been a
doubt that such phenomena exist, the handling and interpretation has led to
controversy. Much of this can be read in the review by Pickett (1989): he
warns against the uncritical use of such data. Although I give an example of
a really successful application below, some of the most frequently mentioned
shortcomings and pitfalls are listed first:

• Superimposing time series data is always hampered by statistical noise
and disturbance. The resulting synthetic series therefore suffers from some
uncertainty.

• Vegetation change within two different plots will never be identical as
the plots will most likely differ in site condition as well as in the species
pool.

• Succession may not proceed at the same speed in different plots, prohibit-
ing a perfect fit of series.

• The overlay of series mimics monoclimax. Alternative paths as in poly-
climax can hardly be identified by this approach alone.

There are so far no experiments known to me that would test the potentials
and failures of space-for-time substitution, simply because these would last
too long. All applications known are from surveys. Often, it is not even
envisaged that long-term temporal patterns will be sought, just the data
suggested in the course of the analysis. This was the case in the succession
data from the Swiss National Park shown below. The method has been
developed specifically to screen the more than a hundred time series available
for a general temporal trend (Wildi & Schütz 2000). The aim of the method is
to find an unequivocal solution to the superposition of several (i.e. more than
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two!) multivariate time series rather than having to search for an iterative
result by trial and error.

The problem with finding the best solution when many time series are
available is in identifying the most suitable pairs of response curves for
fusion. The best candidates are those where the overlapping observations
are the most similar compared to all other time series. In the following
the similarity of time series is defined as the similarity of the two most
similar observations in any two time series. This is shown in Figure 9.9,
an example from two plots in the Swiss National Park. The species set
is reduced to three for simplicity. The ‘real’ plots, AC1 and AC9, were
surveyed in ‘real’ years: AC1 from 1930 until 1994 and AC9 from 1917 until
1982. When comparing the species composition (using Euclidean distance)
the most similar observations are those from 1990 in AC1 and those from
1959 in AC9. The series are now shifted until these two observations are
located in the same column. The new series AC1/9 covers 80 years: now
just in the sense of age and without any specific dates. It can also be seen
that the method requires time steps of the same length. In the present case
minor deviations from identical time steps were corrected by interpolations.
The steps leading to an unequivocal solution when fusing three or more time
series are the following:

• Compute a resemblance matrix of time series. Resemblance (distance) is
defined as shown in Figure 9.9.

• Derive the minimum spanning tree of time series (Gower & Ross 1969).
This is a graph showing the nearest neighbours of all time series in the
form of a tree.

Figure 9.9 The similarity of time series. Plots AC1 and AC9 are located in the
Swiss National Park.



9.4 SPACE-FOR-TIME SUBSTITUTION 125

• Position the observations by overlapping the time series according to the
order given in the minimum spanning tree (Figure 9.11). This yields the
relative age of each series (Figure 9.12).

• Compute the average composition of the new synthetic time series by
averaging all scores pertaining to the same time step.

The minimum spanning tree yields a unique solution to the problem. This
is not necessarily the ‘true’ one, but it is the one delivering the shortest
possible series based on the data used.

9.4.2 The Swiss National Park succession (example)

The results shown below are from Wildi & Schütz (2000). The original time
series are of unusual length and the first observations date back to the year
1917, when J. Braun-Blanquet established the first permanent plots in the
Park with the aim of documenting reforestation of pastures (Figure 9.10).

It took as much as 80 years to detect that the data could be interpreted
according to the idea of space-for-time substitution. The plots do not consti-
tute a statistical sampling design but they are dispersed all over the previous
pastures in the park. The data set used below includes 59 of them, con-
sisting of 751 relevés (data set ‘Snpser59’, Appendix B). The species are
summarized into six groups, carrying the names of ‘dominats’.

Figure 9.10 Pinus mugo on a former pasture in the Swiss National Park, just
escaping the reach of browsing red deer.
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Figure 9.11 Minimum spanning tree of 59 time series from the Swiss National
Park.

Figure 9.12 Ordering of 59 time series from the Swiss National Park.
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Figure 9.13 Succession in abandoned pastures of the Swiss National Park, derived
by space-for-time substitution. Every fourth time step is shown.

Data handling is explained in more detail in Wildi & Schütz (2000). The
steps involved in the analysis are the same as those shown in Section 9.4.1.
In Figure 9.11 the minimum spanning tree for the 59 time series is shown.
This is not just a single line as an ordering principle but a more complex
tree. Processing this by fusing time series pairwise yields the arrangement in
Figure 9.12. The resulting synthetic time steps (81) have to be multiplied by
step length of 5 years, yielding a model time span of 405 years (Figure 9.13).

The overall trend can be interpreted as follows: an initial Aconitum
phase, resulting from livestock grazing and fertilization, dominates for
about 50 years after the cessation of grazing by livestock. A Deschampsia
phase then emerges and is dominant for about 15 years. A later transition
to a grassland dominated by Festuca rubra is most likely caused by
grazing activity by red deer (Achermann et al. 2000). This is followed by a
Carex sempervirens phase that may last 150 years. Finally, Pinus montana
seedlings begin to establish, initiating the reforestation phase.

The pattern revealed in this example must be strongly nonlinear, as it has
been shown in Section 9.3 that a linear Markov model fails to explain it.
It has been shown by Wildi & Schütz (2007) that computed process length,
a result of analysis, varies to some extent depending on the transformation
chosen for the species scores. Unlike in Section 7.2.3 no reference measure-
ment exists to tell us which of the estimations is best, leaving us with some
uncertainty about succession velocity.

9.5 Dynamics in pollen diagrams (example)
Vegetation series encompassing time spans of thousands of years can only
be found in fossil records, for example in pollen diagrams (Lischke 2005).
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Figure 9.14 Tree species in the pollen diagram from Soppensee (Lotter 1999).

Here extreme nonlinearity can be expected because very long time spans
increase the chance that changes in the functional role of species within the
vegetation cover will occur, caused mainly by invasions and extinctions.
I demonstrate typical patterns using pollen of tree species of the Soppensee
profile from Lotter (1999) (see also Lischke et al. 2002), documenting the
change in tree species on the Swiss Plateau from about 13000 BP until
5700 BP (Figure 9.14, without considering the changes in the technology of
14C dating that have taken place in the meantime).

First we look at the velocity of process, defined as the rate of change in
total species composition per time unit:

V = d

δt
(9.6)

where d is the Euclidean distance (a measure of dissimilarity) between any
two consecutive states in the pollen diagram. This type of calculation allows
the derivation of a velocity profile of the change processes over the period of
measurement (Figure 9.15). There are different time steps used for this, the
shortest of 50 years being given by the temporal resolution of data, whereas
a step of 800 years shows the long-term trends. The 50-year time step is
also used to interpret the ordination in Figure 9.16. The states in time are
the circles and their diameter is proportional to velocity. There are linear
phases where velocity is high and others where it is low. Velocity seems to
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Figure 9.15 Velocity profile of the Soppensee pollen diagram. The time-step length
in the data is 50 years.

Figure 9.16 Time trajectory of the Soppensee pollen diagram. The diameter of the
circles is proportional to the velocity of change.
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fluctuate considerably during periods of nonlinearity, when large and small
circles alternate.

It is also worth distinguishing the qualitative and the quantitative com-
ponents in the data. In the analyses shown so far the quantitative view is
adopted; that is, the species scores are percentages of total pollen abundance.
In these analyses the most abundant types of pollen dominate the result. Rare
species, including the invaders in their first years of arrival, do not contribute
much to the rate of change. However, species scores can be transformed to
presence–absence (or any intermediate scale, see Section 7.2.3) so that the
velocity expresses change in species presence. This is shown in Figure 9.17,
where the lower lines express change in the quantity of pollen composition
while the upper lines are change in quality; that is, the emergence or disap-
pearance of pollen of a specific species. Obviously, these two types of change
happen at different points in time. There are phases in which several species
emerge (upper lines) but no considerable change in quantity can be observed
(lower lines) and vice versa. Numbers 1 through 6 indicate discrete events:

1 Invasion of Alnus , followed by two invasions of Quercus .

2 Invasion of Acer , Fraxinus , Tilia and Ulmus .

3 Fraxinus disappearing.

4 Fraxinus returning.

5 Abies invading.

6 Fagus and Picea arriving.

Figure 9.17 Velocity profiles from quantitative (bottom line) towards qualitative
(top line). The peaks in the upper lines stem from species invasions.
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Numbers 7 and 8 indicate increased velocities in mass changes:

7 Mass expansion of Pinus .

8 Mass retreat of Pinus .

Even when inspecting the velocity profiles in detail, no evidence is found
for velocity being related to nonlinearity, such as that around 12 600 and
10 500 BP. But there is yet another interesting way of looking at similarity,
when taking its second derivative, acceleration in the change process, A:

A = Vt+δt − Vt

δt
(9.7)

When A is positive, the velocity increases; when it is negative, the velocity
decreases. In Figure 9.18 acceleration is used to interpret the same time tra-
jectory as in Figure 9.16: circles are proportional to acceleration. The result
is striking: linear phases, whether fast or slow, show very low acceleration.
Nonlinear, on the other hand, are characterized by huge positive as well
as negative accelerations. Hence, strong fluctuations in the dynamics of the
systems distinguish nonlinear from smooth, predictable linear phases.

Figure 9.18 Time trajectory of the Soppensee pollen diagram. The diameter of
the circles is proportional to the acceleration of change. Grey are positive, black
negative values.
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Is this finding a generally valid rule? No, it is not. First of all, the
observation is restricted to one profile only and in this there are just two
phases of strong nonlinearity. Second, fluctuation manifesting in speed and
acceleration can be caused by disturbance of the profile. Sedimentation is
dependent on many factors and cannot be expected constant over thousands
of years. Hence, investigation of many more profiles would be needed to
find evidence for validity of the rule.



10
Dynamic modelling

It may come as a surprise to see dynamic modelling in a book on vegetation
ecology. Probably the first dynamic models of the type used here served the
investigation of systems other than ecological, mainly economic and indus-
trial. Forrester (1968), in his pioneering book Principles of Systems , gives
a very simple definition of the subject: ‘As used here, a “system” means a
grouping of parts that operate together for a common purpose.’ In models of
such systems, ‘parts’ are described by state variables such as weight of plant
biomass, percentage cover of vegetation, plant nutrients per cubic decimetre
of soil, population size of a species in a plot and so on. Hence, dynamic mod-
els perfectly serve the analysis of natural systems. But what is the meaning
of the buzzword ‘model’? Again, Forrester (1968) gives a simple explana-
tion: ‘A model is a substitute for an object or a system.’ When modelling we
are working with this substitute, being a system by itself, just like the real
system it describes. When modelling we investigate the substitute by, for

Data Analysis in Vegetation Ecology Otto Wildi
 2010 John Wiley & Sons, Ltd



134 CH 10 DYNAMIC MODELLING

konz
i − 1

kuk
i

rkuk

aii

wz

gz

dzm

an
ab

i

ksh
gh

hmi

dm
i

i + 1

tc

ddh

ddm

anver
to
i + 1

oneg
i

toi

over

kkap

see
i

si

nein = 1

ja = 0

ovepc

oe
va

p
i

clip i
<0

ab
ba

u i

zmi

ksz
rplri

wh

rwh i
rwz

i

drzm i

drzm
i

ai i

pl i

bass
i

konz
i

i − 1
kore

rpiri − 1 regr

ofac

oneg
i − 1

reg

wstdi

drwi

oabfi

reg

difa
vapc

abf i − 1

abf i

dx

hi − 1

hi − 1

hi

to
i − 1

i − 1

oabf i − 1

i + 1 i + 1

i − 1

see
i − 1

neg
i − 1

neg
i

ev
op

i
Figure 10.1 Attempt to get a dynamic model under control (Wildi 1976).

example, performing test runs and studying how it succeeds or fails without
doing harm to the real system – not even damaging the computer we use.
In the early days of electronic computing everyone was fascinated by the
apparently unlimited possibilities of simulation, culminating in the world
model of Dennis L. Meadows, by which he justified his Limits to Growth
(Meadows et al. 1972). Limits to modelling were experienced later because
the computer models proved difficult to handle when complexity increased,
as illustrated in an early attempt shown in Figure 10.1. Even simple models
may be difficult to handle and to understand; small is often beautiful.

Dynamic modelling became popular because it is easy to understand and
easy to do – even for the mathematically less well trained. The rules by
which state variables change are described by one or several differential
equations. Based on initial conditions given by the modeller the resulting
change of the entire system in time is derived through numerical integra-
tion, all carried out by the computer. When introducing the method I start
with the simplest temporal systems, comprising one state variable only, and
subsequently add interacting variables, then finally extend the principle to
spatial systems.
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10.1 Simulating time processes
Time has only one dimension and the simplest type of model does not
consider space. The temporal change of a system is described in the form
of differential equations. Numerical integration of these equations yields a
state vector describing the state of the system at any one point in time. An
example is the exponential growth equation:

δX

δt
= rX (10.1)

where X (the state variable) is, for example, the number of individuals at
time t , and r the is rate of population increase (Maynard Smith 1974). This
equation has the well-known deterministic solution:

X = X0e
at (10.2)

This assumes that within a short time span, δt , each individual will give rise
to a fraction, rδt , of new individuals. It is of course more adequate to reason
in stochastic terms and so rδt is the probability of an individual having an
offspring within δt , or no offspring with the probability of 1 − rδt . As shown
by Maynard Smith (1974), the formula for the average population size is:

X̂ = X0e
at (10.3)

and the variance of X is:

var(X) = X0e
2at (1 − e−at ) (10.4)

Integrating more complex differential equations is difficult, and frequently
impossible. This is where numerical integration comes into play: the prin-
ciple shown in Figure 10.2. In numerical integration, one specific outcome
is calculated based on one assumed initial state of the system. The example
starts with a population size of Xt=0 = 10. The growth rate is r = 0.1,
meaning that any given individual has a probability of having an offspring
within a single time step �t of 0.1. For each time step, the new state of the
population size is determined based on the previous state:

Xt=1 = Xt=0 + �X

�t
(10.5)
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Figure 10.2 Numerical integration of the exponential growth equation (Formula
10.1) using Euler’s rule.

Table 10.1 Approximating integration (column 1) by
numerical integration (columns 2 and 3).

Time �t → 0. �t = 0.5 �t = 1.0

Xt=1 11.0517 11.025 11.000

Xt=2 12.214 12.155 12.100

Xt=3 13.498 13.401 13.310

Xt=4 14.918 14.774 14.641

Xt=5 16.487 16.289 16.105

This kind of calculation is also known as Euler’s rule. After one time step,
X = 11.0, and after two steps we get X = 12.1. In numerical integration the
symbol � is used instead of δ because the time step has a finite length, chosen
by the user. This is of course just an approximation to the real process,
which is continuous and not discrete. An ideal population of large size will
grow from the very beginning of the process, leading to a somewhat faster
growth than in a discrete case. In numerical simulation the approximation is
improved when recalculating X in smaller time steps. The effect is shown
in Table 10.1. Obviously, precision increases with reduced time-step length
for the calculation. Setting the time step too short, however, may lead to
computational errors due to the limited precision current computers provide.

In the simulation of ecological systems there are usually several state
variables involved. To illustrate this I develop a simple artificial model
describing, for example, the overgrowth of an open water pond by two
competing, floating plant species, X1 and X2. Hence, X1 and X2 are the
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state variables. All parameters composing the system are:

X1 size of population X1
X2 size of population X2
r1 growth rate of X1
r2 growth rate of X2
C carrying capacity of the system

Because the pond has limited surface I also introduce C, the carrying
capacity. This is the total number of individuals of any kind the open water
surface can hold. The carrying capacity acts as a limiting factor in the
logistic growth equation shown below:

δX1

δt
= rX1

C − X1

C
. (10.6)

As the state variable X1 approaches the carrying capacity, C, the growth
becomes zero and the population stops growing. In the following example, I
extend this model to two equations, describing the growth of two interacting
populations, X1 and X2. Both follow the rules of the logistic growth, but
they rely on the same carrying capacity, C:

δX1

δt
= rX1

C − X1 − X2

C
(10.7)

δX2

δt
= rX2

C − X1 − X2

C
(10.8)

The two populations shall differ in size and growth rate. For a simulation,
the following initial conditions are assumed:

X1t=0 = 10

X2t=0 = 50

C = 200

r1 = 0.25

r2 = 0.30

Using Euler’s rule, the result of a simulation run over 50 years is shown
in Figure 10.3 (model 1). The two populations co-exist and reach an
equilibrium when the carrying capacity is exhausted. This takes about



138 CH 10 DYNAMIC MODELLING

−

Figure 10.3 Logistic growth of two populations; model 1.

20 time steps. The final population size for X1 is 28.25 and for X2 is
171.74. The sum, X1 +X2, reaches the carrying capacity as stated in the
model – within minor rounding errors.

So far, no serious complications have been observed in this model. To
demonstrate critical issues I now change the model slightly. In model 2 the
populations grow differently. X1 now is no longer affected by X2, and it
will therefore outcompete the latter. X2, on the other hand, is still limited
by itself and X1. Hence, we get:

δX1

δt
= rX1

C − X1

C
(10.9)

δX2

δt
= rX2

C − X1 − X2

C
(10.10)

The result shown in Figure 10.4 (model 2) reveals that the very simple model
defined by the equations 10.9 has unexpected properties. The assumption that
X1 is not limited by X2 results in the carrying capacity being exceeded in
an early stage of development. The model slowly corrects for this and for
some period of time growth of X2 becomes negative. Finally, the model
approaches an equilibrium where X2 becomes extinct and X1 uses the full
capacity, C, of the system. The carrying capacity is unlikely to be exceeded
in the real system, leading to the conclusion that the assumptions are not
realistic. This demonstrates how easy it is to implement assumptions into
a model, while carefully evaluating the results alone may prevent logical
errors.



10.1 SIMULATING TIME PROCESSES 139

−

Figure 10.4 Logistic growth of two populations; model 2.

The result of model 2 gives rise to the discussion of three common pitfalls
in numeric simulation:

Is the balance of matter, energy and information correct? Unlike natural
systems, models can easily violate any law of physics or other laws. In
a numerical model, matter leaving a source pool need not necessarily
reach the target pool; it may simply disappear due to wrong assumptions.
Model 2 is not critical in this regard as it omits for example consideration
of the nutrients needed for the growth of the plants. If these were part
of the model – say state variable X3 – growth would require a flow of
matter from X3 to X1 and X2. It is good practice to check whether the
total is the same at the beginning and the end of a simulation.

Are the numerical calculations correct? Often, the number of steps used
in modelling is very large. Even minor rounding errors may accumulate
due to the limited precision of today’s computers. Very small rates of
change may corroborate the calculations completely. Very large rates of
change, on the other hand, may lead to numerical instability, a property
the numerical model may not share with the real system. In model 3 I
attempted to reproduce results of model 2 using five times as many time
steps (�t = 0.2). The differences models 2 and 3 generate are given in
Table 10.2 for a few states in time. The shape of the curves are pretty much
the same and overcrowding of the carrying capacity persists. Comparing
models 2 and 3 suggests that the response pattern observed really reflects
the property of the equations and not, as must always be suspected, the
limited precision in computation.
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Table 10.2 Comparison of model 2, �t = 1, and model 3, �t = 0.2.

Model 2 Model 3

t x y x + y x y x + y

1 15.3 72.0 87.3 13.2 63.3 76.5

2 18.8 84.2 107.2 16.5 75.2 91.8

5 34.2 118.4 152.6 31.7 109.8 141.5

10 80.5 136.0 216.5 78.6 130.7 209.3

20 180.5 71.6 252.2 177.9 72.7 250.6

Are the intrinsic assumptions of the model realistic? Again, a reference to
model 2 illustrates the point. Is it possible that overcrowding can occur?
Is the assumption made in this model that population X1 is not affected
by X2 possible at all? In any case, the model will exhibit the outcome of
these assumptions and will eventually no longer show the properties of
the real system.

Sometimes the real system differs considerably from what we think would
be logical, such as when societal systems frequently exhibit slow feedback
mechanisms. It is easy to implement this into logistic growth models: taking
Equation 10.7, I implemented a delay function. Using X1t−5 instead of X1
and replacing X2 by X2t−5 in limiting growth causes a backlash in the
memory of the system, as it now considers the state of the system five time
steps back rather than in the present. What happens is shown in Figure 10.5,

−

Figure 10.5 Logistic growth of two populations; model 4. Model 4 is initially
identical to model 1, but a delay of five time steps is built in, causing oscillations.
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where poor control causes the system to oscillate, just as the economy does
when people continue spending money while forgetting about the desperate
condition of their bank account.

10.2 Including space processes
In space–time models, space is assumed to be discrete, just like time in
numerical integration (Section 10.1). For simplicity, two-dimensional spatial
systems are frequently designed as rectangular, systematic grids. Spacing
grid cells regularly and assuming finite extension facilitates computations.
The state variables, which in time models imply no spatial extent, account
for the content of these cells. Spatial interactions proceed through exchange
between cells; this may involve matter, energy or information. Exchange is
of course also a function of time and the model has to express how much
is moved from one cell to the next per time unit. This transport is either
directed or undirected (diffuse).

In ecosystems a diffuse process will hardly happen in isolation. Simul-
taneously, a temporal process is taking place inside all grid cells and these
therefore contain their own temporal models. The entire model claims to
describe a space–time process.

Assumptions have to be made about the exchange process between cells.
In Figure 10.6, left-hand side, exchange takes place in the horizontal and
vertical direction. An alternative would be to also allow fluxes in the direc-
tion of the diagonals. In Figure 10.6 two time steps are needed to reach the
next diagonal cell.

Figure 10.6 The mechanism of spatial exchange. Left: a model design in which
exchange proceeds horizontally and vertically only. Right: partial exchange of total
content of neighbouring cells to simulate diffusion.



142 CH 10 DYNAMIC MODELLING

When designing the exchange process, the balance of matter, energy and
information has to be maintained. What leaves one cell has to arrive either
in the next or in a controlled sink. An example in a directed process is
water flow induced by gravity, for which orientation of the slope determines
direction.

A different process is diffusion, where no specific direction is defined. An
assumption of this kind is used in the succession model of the Swiss National
Park (Wildi 2002, see Section 9.4.2), where diffusion applies to plant species
and these potentially spread in any direction (Figure 10.6, right). I assume
that a small fraction of the content of any two cells is exchanged at each time
step. Some of the species newly arrived in a cell will successfully establish
and spread, while others will disappear; this depends on the local conditions,
set by the temporal model within each cell.

10.3 Processes in the Swiss National Park (SNP)
This is an example of the application of modelling techniques presented in
the previous sections. The aim of model building was to reproduce the tem-
poral pattern of succession revealed by space-for-time substitution, explained
in Section 9.4.2. The description of the model follows Wildi (2002).

10.3.1 The temporal model

To keep complexity under control, species are grouped into six guilds
(assemblages of species) (Wildi & Schütz 2000): these are the state variables.
The basic process considered is thus colonization of plots and subsequent
species interactions. The plots (the cells in the model) accord to the research
grid established in the SNP for the purpose of investigation. Plot size is
20 m by 20 m and the number of plots within the unforested investigation
area, Alp Stabelchod, is 286 (Achermann et al. 2000, see Figure 10.8). For
simplicity, it is assumed that the total surface the species guilds occupy
never exceeds 100% of the plot. The model plot is eventually overgrown
by one or several species guilds, so that in the end no open soil is left.

Next, the objective is to quantify overgrowth and also replacement. In
the original time series from the permanent plots it can be observed that
overgrowth always starts slowly (Wildi & Schütz 2000). With increased
cover of the guilds, spread accelerates. When approaching 100%, overgrowth



10.3 PROCESSES IN THE SWISS NATIONAL PARK (SNP) 143

Figure 10.7 Overgrowth of a plot by a new guild. The white squares indicate
patches inappropriate for growth, causing it to slow towards the end of the invasion
process.

slows down. This finding is illustrated graphically in Figure 10.7. A function
that mimics this behaviour is the logistic growth equation; in case of only
one guild, it has the general form:

dX

dt
= Xr

100% − X

K
(10.11)

(Wissel 1989, see also Equation 10.6). Here, r is the growth rate of guild X

and K is the carrying capacity; that is, 100% of the plot surface. As X is also
measured in terms of percentage, the space not yet occupied is 100% − X.
Colonization stops when X reaches 100%. The growth is regulated by X

itself, as a result of intra-specific competition. It must be noted that logistic
growth requires all guilds Xi to be present in a minimum quantity at the
beginning of any simulation run.

Competition comes into play because of two assumptions. First, the gain
in cover of guild Xi is at the expense of any other guild’s lower competition
power (or open ground). In order to keep the cover percentages balanced, the
growth equation will have two components: a gain by population growth and
a loss to better competing species. Second, 100%−Xi is the available space
only for the best competing guild, i. If there is another, more successfully
competing guild, Xj , then the space reduces to 100% − Xi − Xj . As will be
seen in the description of the model, the mechanism has to make provision
for many more competing guilds; six in the present case. Based on previous
findings (Wildi & Schütz 2000) the following order of competition power
was assessed:

P inus(1) → Carex(2) → Festuca(3) → T risetum(4) →
Deschampsia(5) → Aconitum(6)
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The logistic growth equation for Carex(X2), which is out-competed by
P inus(X1), is given by:

dX2

dt
= X2r2

100% − X1 − X2

K
(10.12)

−
(

dX1

dt

)
X2∑6
i=2 Xi

Carex is growing according to the logistic growth equation. But in addition
a portion of the surface that Pinus (X1) is winning is subtracted. For Festuca
(X3) there is additional proportional loss to Pinus and Carex :

dX3

dt
= X3r3

100% − X1 − X2 − X3

K
(10.13)

−
(

dX1

dt
+ dX2

dt

)
X3∑6
i=3 Xi

The growth equations for all subsequent guilds are built accordingly.
The third important factor in this pasture is recurrent disturbance; that is,

trampling by grazing deer (Krüsi et al. 1998). I assume that it affects all the
plants within a plot similarly. The intensity will of course vary depending
on animal density. Trampling is a very fast process, instantly generating
open space. This causes a loss ti for guild i, which is simply proportional
to its state, Xi . Re-colonization ci is also fairly fast. I assume that it hap-
pens instantly; that is, within the relative short time span of one year, the
standard time-step length of the model. It is proportional to the exponential
growth of each guild. Direct competition, as happens in species replace-
ment, is not assumed. Trampling and re-colonization are balanced within
the year:

6∑
i=1

ti =
6∑

i=1

ci (10.14)

This assumes that growth is sufficiently fast to colonize any gap that has
occurred within one year. Furthermore, trampling leads to a yearly shift
of the guilds, favouring the fast growing, provided the growth rates ri

differ.
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10.3.2 The spatial model

The following notation is used:

�xi,x,y,t |i = 1, . . . , 6; x = 1, . . . , 25; y = 1, . . . , 30; t = 1, . . . , 400|
(10.15)

where i stands for guild, x and y are the spatial coordinates and t is time,
in years. The model space is a grid of 25 by 30 plots (Figure 10.8). Not
only the pasture but also the adjacent forest stands fit into this rectangle.
The spread of any one guild happens by spatial exchange. A portion of the
content of any plot is transferred yearly to the neighbouring plots, as shown
in Figure 10.6. The gains, g, and losses, l, are balanced:

�xi,x,y,t+1 = �xi,x,y,t + �gi,x,y,t − �li,x,y,t (10.16)

�gi,x,y,t = d(�xi,x−1,y,t + �xi,x+1,y,t + �xi,x,y−1,t + �xi,x,y+1,t ) (10.17)

�li,x,y,t = 4d(�li,x,y,t ) (10.18)

From Equation 10.17 we see that the gain always comes from all four direc-
tions. The losses in all four directions (Equation 10.18) are the same as
they are proportional to the composition of the central plot. The velocity of
exchange is given by factor d. This is assumed constant, even though spatial

1 Aconitum type
2 Trisetum type
3 Deschampsia type
4 Festuca type
5 Carex type
6 Pinus type

Figure 10.8 Spatial design of the SNP model and the initial state (see Table 10.4
for contents of the cells).
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processes may be faster where more animals prevail. Having no measure-
ments of exchange at hand, I keep it at the very low level of d = 0.001.

Along the edges of the system, outside the meadow, the exchange is
mirrored. All these plots are covered by Pinus mugo forest, the final state
of succession considered in the model.

10.3.3 Simulation results

A comparison of the different graphs in Figure 10.9 shows that, with a suit-
able choice of parameter values, the temporal model can reproduce the basic
pattern of the time series. In the model output (graphs on the right-hand side)
fluctuations are absent. The results for the 415-year and the 585-year sim-
ulations were obtained only after carefully adjusting the initial conditions
(the state variables) and approximating the growth rates of the guilds by trial
and error. Initial conditions for both model runs are shown in Table 10.3.
The initial states of the model are within the range of the values observed
in the field (Wildi & Schütz 2000). It must be noted that the observed initial
cover values are themselves affected by random fluctuation, whereas in the
deterministic model a fixed value is needed. Simulation runs show that the
time of emergence of late successional guilds depends on the initial states.

Figure 10.9 Original (left) and simulated (right) temporal succession. Upper row:
415-year version. Lower row: 585-year version.
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Table 10.3 Initial values in the times-series data and initial state variables
(percentage cover of six guilds) and growth rates used in the models.

series 415 year 585 year

variable state, % state, % growth rate state, % state, % growth rate
field data model model field data model model

Aconitum 41.1 53.0 0.050 73.1 86.0 0.018

Trisetum 33.0 27.0 0.045 11.4 8.4 0.022

Deschampsia 10.3 10.0 0.045 11.3 4.0 0.022

Festuca 12.1 7.0 0.045 3.0 1.6 0.020

Carex 3.1 2.8 0.035 0.6 0.03 0.026

Pinus 0.3 0.2 0.030 0.6 0.01 0.022

In other words, the initial state of the guilds determines the speed of suc-
cession. This is not a realistic feature as it does not consider invasion. Even
worse, in order to allow growth to occur in a solely temporal model, all
species guilds have to be present in the model (i.e. within all 268 plots
considered) from the very beginning of the simulation.

The approximated growth rates yielding a realistic model behaviour do
not differ much between guilds. That is, growth rates do not much affect
the temporal pattern the model generates (Table 10.3). However, the two
time series differ in their growth rates: in the 415-year model, growth has to
proceed twice as fast as in the 585-year model. If all rates are set to 0.045
(not shown here), succession will last about 400 years; when taking 0.022
this will be close to 600 years.

Including spatial extent in the model creates problems with the initial
condition of the meadow; that is, the state of all 268 plots in the year 1917
(outset of succession), which is not known to us explicitly. From the present
state of the meadow and the direction and rate of change observed in many
similar plots we are able to suggest a simplified state using the same com-
position for all cells belonging to the same type as initial conditions in the
year 1917 (Table 10.4, Figure 10.8). Hence, at the beginning of simulation
all plots of the same succession stage have identical species scores and the
system consists of a limited number of discrete states, whereas in reality
the vegetation forms a continuum. As soon as simulation begins, diffusion
causes differentiation of cells and all maps become continuous.
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Table 10.4 Six discrete vegetation states used as initial conditions of the six state
variables (guilds) in spatial modelling, cover percentage. Maps in the first column
(t = 0) in Figure 10.10 are composed of these states.

Guild no. state 1 state 2 state 3 state 4 state 5 state 6
∑

Aconitum 1 50.00 17.50 17.50 10.00 5.00 0.00 100.00

Trisetum 2 10.00 35.00 35.00 15.00 5.00 0.00 100.00

Deschampsia 3 7.00 15.00 35.00 35.00 6.00 2.00 100.00

Festuca 4 2.00 3.00 30.00 42.00 20.00 3.00 100.00

Carex 5 1.00 1.00 10.00 15.00 65.00 8.00 100.00

Pinus 6 0.00 0.00 1.00 1.00 8.00 90.00 100.00

Figure 10.10 Results of the spatial simulation of succession, Alp Stabelchod. First
row: temporal model only. Second row: spatial diffusion only. Third row: spatial and
temporal processes combined. The sequence of white towards dark grey accords with
succession states: Aconitum (white pixels) – Trisetum – Deschampsia – Festuca –
Carex – Pinus (dark grey shading).
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The persistence of the meadow through subsequent successional guilds
and finally Pinus forests lasts about 500 years in simulations using the
temporal model. Because of the lack of spatial interactions, vegetation
boundaries do not move and only vegetation composition changes. As a
result, the pattern formed by the edges remains unchanged over the entire
simulation time. This can be seen in all states of the simulation run shown
in the first row of Figure 10.10. Vegetation boundaries finally only vanish
because all plots reach the final state of succession.

The effect of spatial exchange among pixels can be simulated in isolation.
Assuming an extremely low rate of exchange of d = 0.001, the state of the
system after 320 years is shown in the middle row in Figure 10.10. Overall
composition is almost the same as at the beginning, but the compositional
pattern of the maps has become more homogeneous compared to the ini-
tial state. Along the forest edges, Pinus mugo has invaded the first row of
cells. Other types have spread as well. The Aconitum stage (white cells) has
increased in surface. The spatial process changes the state of the meadow
very slowly and does not explain the results from the permanent plot survey.

Finally, the spatial and temporal processes are run simultaneously. This
accelerates the simulation of succession considerably and the meadow is
almost covered by Pinus mugo after 320 years (Figure 10.10, bottom series).
It can now be seen that vegetation boundaries have moved and differ from
their initial state. The diffusion process causes Pinus to invade the meadow
from the edges towards the centre.

The lesson to be learned from this simulation exercise is that neither
the temporal model alone nor the spatial is suited to explain succession.
In order to understand the major processes invasion has to be allowed,
suggesting a spatial component be added to the temporal model. While
simple models may be easy to handle and understand, extra complexity is
often indispensable.





11
Large data sets: Wetland
patterns

11.1 Large data sets differ
As collaboration among vegetation scientists evolves and large spatial and
temporal scales are analysed in order to explore global change effects
(Kienast et al. 2007) the data sets available for access are growing. While
at first glance the problems in the analysis of large data sets appear to be
the same as for those of normal size, in practice they differ in many ways.
I consider two extreme data types:

• Type A. The survey data encompass a relatively small number of vegeta-
tion types. Consequently, any vegetation type will be represented through
a large number of relevés. In such data sets redundancy tends to be high,
the similarity pattern is frequently blurred by much random noise, but

Data Analysis in Vegetation Ecology Otto Wildi
 2010 John Wiley & Sons, Ltd
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correlations among sampling units are almost linear (because the relevés
tend to be rather similar). This promises classifications (and hence syn-
optic tables) and ordinations will be efficient in displaying the underlying
patterns.

• Type B. The survey data encompass a wide range of vegetation types in
which, when comparing the extremes, few or even no common species
exist. In this case nonlinearity is expected to be strong and the similarity
pattern very high in dimension. Even measuring resemblance becomes
unreliable. Hence, linear methods will suffer from low efficiency and the
emerging similarity patterns will be difficult to present graphically.

In addition, some statistical and technical hurdles occur in both cases:

• Multipurpose software used for data organization may no longer be suit-
able: many spreadsheets even nowadays limit the number of columns to
255; these columns may need to hold the relevés. Using databases such
as JUICE (Tichý 2002), TURBOVEG (Hennekens & Schaminée 2001) or
VEGEDAZ (Küchler 2009) becomes a must.

• When large research teams are involved in the survey process taxonomical
problems arise. The software mentioned above supports unifying different
taxonomies.

• Not all large surveys rely on statistical sampling. Preferential sampling,
as often encountered in databases, may come in line with over- and
under-representation of vegetation types compared to the real situation.
Ordination and classification will further accentuate this pattern. The result
fails to yield an unbiased picture of reality.

• The chance of including aberrant observations – that is outliers – is
increasing. Whether reflecting the real situation or just resulting from
measurement errors or mistakes in data input, outliers are hampering
most multivariate analyses.

• Graphical presentation may also become ineffective. Synoptic tables of
just hundreds of relevés are difficult to print and even more so to inspect;
in ordinations with thousands of data points groups and gradients van-
ish. When printing dendrograms of even a few hundred sampling units
overview is lost.
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In the sections below I concentrate on the analytical issue. Most approaches
attempt to reduce the data in the hope that patterns will emerge despite
the large samples and the high number of attributes. In most examples dis-
cussed below the sample size is drastically reduced, either by sampling units
(reducing the number of relevés) or by the attributes (e.g. by eliminating
redundancy in species lists or substituting species with different variables).
This may appear to be an unjustified manipulation of reality, but the reduc-
tion holds only temporarily in order to detect a pattern; then a step back is
taken and the full information is reconsidered.

The data used in this chapter are taken from the first survey of the Swiss
mire-monitoring project (Grünig et al. 2005), referred to as ‘Swiss wetland
vegetation data’ below. This data set captures a very wide ecological gradient
of wetlands, ranging from ombrotrophic peat bogs through fens to open-
water reed vegetation at altitudes from about 300 m a.s.l. to about 2400 m
a.s.l. The full sample consists of 17608 relevés. Depending on the method
used, subsets of this sample belong to either data type A or B as described
above.

11.2 Phytosociology revisited
Whenever a data set encompasses a large range of vegetation types the
description of content becomes cumbersome. Allocating such sets to estab-
lished classification systems is one way of achieving a quick overview. The
result of allocation will of course reflect the properties of the classification
used. In the following example I focus on phytosociological classification,
as introduced by Braun-Blanquet (1932). It is generally assumed that this
system – at least for Europe – is comprehensive, robust, inert against spatial
and temporal variability and so on (Dengler et al. 2008). In recent years
a project surveying North America (Jennings et al. 2003) has promised
increased reliability due to revised standards. I abstain from discussing
the strengths and weaknesses of phytosociology here. In the example
below I concentrate on the technique of allocation and the presentation and
interpretation of the results. Flaws in the classification system will inevitably
emerge if they exist. The example is taken from Graf et al. (2010). The
starting point is the phytosociological system (or any other established
system), offering one unique classification. Despite prescribing some rules
for classification (Mueller-Dombois and Ellenberg 1974) the outcome in
phytosociology always represents the opinion of individual experts (Ewald
2003); nonetheless I intend to suggest a mathematical solution for the
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allocation of relevés to this system, one that can be reproduced anytime
and anywhere. As far as possible this should do what experts would do.

Using a variety of data transformations and resemblance measures we
compared several published data sets classified by experts to the phytoso-
ciological database of Switzerland released by Pantke (2003). Pantke gives
a list of all associations published to date (about 650). The names given to
the associations and all higher hierarchical levels (alliances, orders, classes)
conform to the standards used in phytosociology (Mucina 1997). The def-
initions of the units consist of species lists. These lists are incomplete as
they include so-called character species, differential species and others that
occur with high frequency only. This prevents us from using recently pro-
posed methods such as Bruelheide’s (1995, 1997) ‘cocktail classification’,
which requires a complete and classified database of relevés (see also Kǒci
et al. 2003). While the incomplete set of species will not deter us from
using resemblance measures to compare relevés, it adds some uncertainty
to the results. For our assignments of the ‘Swiss wetland vegetation data’
we applied the combination of transformations and resemblance functions
where we found the consensus between the experts and the mathematical
solution reached a maximum. For the transformation of the ranks of the
Braun-Blanquet scale, this was x′ = log(x + 10)2.5 (see Table 3.3), a solu-
tion close to presence–absence. The product moment correlation coefficient
(Table 4.3) performed slightly better than Ochiai’s coefficient and Maarel’s
similarity ratio (definitions in Wildi & Orlóci 1996). It can easily be imagined
that many correlations between the Swiss wetland relevés and the lists of
Pantke (2003) are rather poor; to avoid misclassifications we set a threshold
for assignment of r ≥ 0.2 and also excluded ambiguous cases (i.e. relevés
between two associations). Of the 17608 relevés only 2265 were assigned to
any of the associations and remained in the data set; the associations were
then assigned to the alliances simply by applying Pantke’s hierarchy. This
rigorous selection was then compared to the situation in the full data set:
a random subsample of n = 2265 relevés was drawn from the full ‘Swiss
wetland vegetation data’. All relevés were also assigned to the associations
and alliance of Pantke, but of course without using any threshold.

For ordinations, both data sets were subjected to principal coordinates
analysis; in Figure 11.1 the random selection is shown. The proportion
of total variance the first two Eigenvalues account for is λ1 = 7.7% and
λ2 = 5.1%. Highlighted distributions of the six most frequent alliances help
in the interpretation of the point cloud. Obviously, the wetland data repre-
sent a gradient system forming a roundish triangle. The corners are formed
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Figure 11.1 Six alliances represented in a random sample (n = 2265) of the Swiss
wetland vegetation data (Graf et al. 2010).

by the alliances Sphagnion medii , Phragmition australis and Caricion
davallianae.

In Figure 11.2 the same is done for the relevés best fitting the phytoso-
ciological system. The alliances are the same as in Figure 11.1. These ordi-
nations clearly differ from the previous ones; this can be seen for example
in the Eigenvalues accounting for λ1 = 10.4% and λ2 = 7.7% of total vari-
ation, and the triangular shape of these ordinations is far more pronounced
than the same in Figure 11.1. What are the lessons to learn from this?
First of all, phytosociologists managed to capture the extreme types of the
wetland gradient, but they failed in documenting much of the variation in
between. In many of the alliances discrete groups emerge: in the Caricion
davallianae, the Magnocaricion and the Phragmition australis (Figure 11.2)
for example. These subgroups are associations. The phytosociological clas-
sification on the level of alliances is hence inconsistent and may deserve
revision. On the other hand, the pattern emerging in Figure 11.2 is really
striking. In this regard phytosociology has considerable potential as a tool for
visualizing pattern. Clearly, however, the Swiss database desperately needs
to be supplemented by the full set of published species and its inherent
classification deserves revision.
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Figure 11.2 Six alliances represented in a relevé sample (n = 2265) best fitting
the phytosociological classification of the Swiss wetland vegetation data (Graf et al.
2010).

11.3 Suppressing outliers
From a practical point of view an outlier relevé is a single representative
of a ‘vegetation type’ different from all others present in a sample. How
different it really is can be measured: it is the similarity (or distance) to the
most similar relevé in the sample. This most similar relevé is the ‘nearest
neighbour’. The nearest neighbour of each relevé can easily be found in the
similarity matrix by searching for the highest similarity value in the row or
column pertaining to this relevé (except the diagonal element). To identify
and erase an outlier a threshold is needed. This can be chosen preferentially:
one can decide that any neighbour correlation of, say, r ≤ 0.5 is deemed an
outlier situation. However, before doing so it is good practice to find out
what a ‘normal’ nearest-neighbour situation is in any one data set. Looking
at the distribution function of nearest-neighbour resemblances does this.

An example is the bar chart in Figure 11.3. The data used is the ran-
dom sample of 2265 relevés from the ‘Swiss wetland vegetation data’, with
n = 17608 relevés, or 12.86% of the total. While this much smaller data set
allows faster and more flexible processing it must be noted that taking a ran-
dom subsample changes some of the data’s properties considerably: as there
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Figure 11.3 Frequency distribution of nearest-neighbour pairs of relevés in a
random sample (n = 2265) of the Swiss wetland vegetation data. Product moment
correlation coefficient r used.

are now much fewer sampling units involved, the mean nearest-neighbour
distance will increase (but probably not the shape of the distribution func-
tion). Taking a random subsample will reduce the mean correlation among
sampling units and therefore further accentuate the nonlinearity.

In Figure 11.3 the nearest-neighbour correlation coefficients in the data
set are almost normally distributed. A real outlier would have to be far
below these values. Clearly, no real outlier in the statistical sense exists
in this data set. Despite this I’m now removing some of the most isolated
relevés. This may be seen as a filtering process. In the present case I decided
to remove all relevés having a nearest-neighbour similarity of r < 0.6. This
reduces the sample from n = 2265 to n = 1440, or by about one third. The
eliminated ‘set of outliers’ has size n = 825. The effect of filtering is shown
in Figure 11.4: ordinations using principal coordinates analysis.

To help the interpretation, specific symbols highlight data points rep-
resenting three extreme vegetation types. On the left-hand side the entire
sample is included and the outliers are marked by dark symbols. The point
cloud they form is the same as in Figure 11.1. On the right-hand side the
ordination is shown using the remaining 1440 data points only. The group
and gradient pattern is now much more striking: it confirms the triangular
shape and the gradient pattern extending between the corners. One has to
keep in mind, however, that the true pattern remains the same as that on
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Figure 11.4 Ordination of a random sample of the Swiss mire vegetation data (left).
Black data points are 825 ‘outliers’. The remaining 1440 relevés are ordinated on the
right-hand side with the result that the triangular pattern appears pronounced.

the left-hand side, whereas the ordination on the right-hand side exagger-
ates it. It is easy to find the reason for this: the outliers are most frequent
in low-density areas of the ordination. The high-density areas will there-
fore constitute the group pattern of the reduced sample. This is a welcome
property which helps in the interpretation in many cases.

Should outliers be eliminated in order to successfully order synoptic
tables as well? The answer is yes. Unfortunately, doing this with the present
example would lead to disappointing results. I summarize my experiences
and some rules of thumb when using synoptic tables for large data sets in
Section 11.5.

11.4 Replacing species with new attributes
Analysis and interpretation is tremendously simplified when the number of
attributes (e.g. the species lists) can be reduced. Because the number of
species is usually very large the original relevés are over-determined: the
number of attributes exceeds the number of sampling units. The goal of
species reduction is therefore to erase redundancy; that is, where information
is carried by two or more species simultaneously. This is most efficiently
done by the RANK algorithm (Orlóci 1978, see Section 5.6). As explained
there, the reduced list of species usually accounts for a surprisingly large
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amount of explained variance, but it still operates in the same similarity
space (the species space), although reduced. Alternatively, we may project
our data into a different resemblance space. Several of these spaces are well
established in vegetation science:

• The species indicator values, as proposed by Ellenberg (1974), or those
of Landolt (1977).

• Growth forms of dominating species, as introduced by Raunkiaer (1937).

• Plant functional types (Box 1996), in which the functioning of the species
in its environment is considered.

• Character set types (Orlóci & Orlóci 1985, Orlóci 1991), where anatom-
ical and physiological features of the individual plants represent the new
attributes.

• In recent years the term ‘trait’ (i.e. species described by traits) has increas-
ingly been used (Pillar et al. 2009) to investigate trait patterns of vegeta-
tion types.

The formal process projecting relevés via species lists into a new variable
space is the same as that used in principal component analysis (Section 5.2).
It is achieved through matrix multiplication and the new variables are linear
combinations of the original; this is shown schematically in Figure 11.5,

Figure 11.5 Projecting a given sample into a new resemblance space. Top: the
example of PCA, where species are substituted by axes. Bottom: the species list is
replaced by a list of indicator values. See also Pillar et al. (2009).
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where the new attributes replacing the species are indicator values (see
e.g. Pillar et al. 2009 for a similar illustration). What is needed in addi-
tion to the survey data is a matrix of species by indicator values. Here I use
the list published by Landolt (1977) calibrated for wetlands, as explained by
Feldmeyer-Christe et al. (2007). In the example below the 2265 randomly
selected relevés from the Swiss wetland data are processed accordingly. In
this way the 1413 species are replaced by as few as 8 indicator values. To
reveal the new similarity pattern of the relevés and its relation to the indicator
values I choose correspondence analysis (Section 5.4); the result is shown in
Figure 11.6. The resulting point cloud once again has a triangular shape. As
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Figure 11.6 Ordination of the wetland sample in the indicator space using
correspondence analysis. The location of three vegetation types is shown. The
usually superimposed plot of indicator values is shown separately in the lower-right
ordination.
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in Figure 11.1, two of the corners represent the alliances Phragmition aus-
tralis and Sphagion medii , but this time the alliance Calthion palustris forms
the centre of the ordination. The explanation resides in the characteristics of
the method: this alliance is very well represented in the sample (398 relevés).
Because correspondence analysis operates with deviations from the overall
expected state of the sample, frequent types are considered ‘normal’ and
therefore projected close to the centre of the ordination.

The space of indicator values separates the established vegetation types
just as well as the species space does. In Figure 11.6 the ordination of the
indicator values (lower-right graph) is not superimposed on the ordination of
relevés, as is commonly practised in correspondance analysis, but is printed
separately. The direction of the data points as seen from the centre accords
with locations of high values. The length of that same vector expresses the
explanatory power of the respective indicator value.

The species space and the indicator space can also be superimposed,
as shown in Figure 11.7. The ordination coordinates are the same as in
Figure 11.1. The diameter of the bubbles representing the relevés is propor-
tional to one indicator value at a time. One could therefore generate eight
plots of the kind: one for each indicator value. Figure 11.7 yields an eco-
logical interpretation of the ordination. The corner on the left-hand side, for
example, representing the Sphagnion medii , carries high humus values (the
peat) and low nutrient values, as is found in peat bogs.

−0.7

−0.5 −0.5

−0.7

Figure 11.7 Indicator values superimposed on ordinary ordination. The diameter
of the bubbles representing the relevés is proportional to one indicator value at a
time.
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11.5 Large synoptic tables?
Synoptic tables visualize vegetation patterns by using the field data directly.
Some limitations have been mentioned in the introduction to this chapter,
such as the excessive size and the difficulties in printing and inspecting.
When analysing large data sets of thousands of relevés, printing the full
sample is out of the question and a selection is needed. The data sets gen-
erated in Section 11.2 are an example of this, where two samples of similar
content promise to have different properties despite belonging to type B
(addressed in Section 11.1), the more critical case. It can be expected that
the alliances to which the relevés were assigned exhibit low internal varia-
tion (i.e. high similarity) in the case of the selective sample but high internal
variation in the case of the random sample. This results in two questions:
(i) Does rigorous selection yield well-defined alliances? (ii) Does rigor-
ous selection generate well-separated alliances? These questions shall be
answered by inspecting a variety of parameters yielded by the analyses. In
order to be able to produce printable tables in an ordinary book like this an
additional reduction of the sample size was indicated, from 2265 relevés to
about 100 or so. As for the species, probably no more than 80 would fit a
double page.

Determining the within-alliances variation is only meaningful if a suffi-
cient number of relevés per alliance are involved. The first step in both data
sets therefore was to eliminate all relevés except those belonging to the 10
most frequent alliances. Just by chance these are the same in both cases. In
most other aspects the data sets differ:

• In the random sample 70 alliances were found, most represented by just a
few relevés. After reducing these to 10 alliances, 1548 relevés remained
out of 2265, with 1185 species involved. For final ordering I took a
systematic sample of every 16th, resulting in 97 relevés and 612 species.

• In the selective sample only 50 alliances were found. After reducing these
to 10 alliances 1937 relevés remained out of 2265, with 1125 species
involved. For final ordering I took a systematic sample of every 20th,
resulting in 97 relevés and 500 species.

Before selecting the 10 alliances there was clearly more variability in the
random sample. Even afterwards the still higher number of species shows
higher dimensionality compared to the selective sample. For a comprehen-
sive presentation of within- and between- variation, similarity matrices are
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Figure 11.8 Similarity matrices of 10 alliances from the Swiss wetland vegetation
data. Left: random sample. Right: selective sample.

derived, as introduced in Section 4.6. The result from the random sample is
shown on the left side of Figure 11.8; that from the selective sample is on the
right. The two subsamples show totaly different dispersion patterns. Assign-
ing all relevés to the alliances found in Pantke’s (2003) database results in
a poor group structure (left graph in Figure 11.8); for example, alliances
4, 5 and 6 have almost the same composition, the within-group similarity
being the same as the between-group similarity. Off-diagonal elements (the
between-group similarity) are generally large, suggesting a more continu-
ous pattern is to be found than in the selective sample to the right. There,
the groups are more distinct. Within-group similarity, on the other hand, is
hardly higher than in the random case and heterogeneity within the alliances
has not really been reduced by the selective procedure.

Both data sets are then analysed to form a structured synoptic table,
as explained in Section 6.6. The number of relevé groups chosen is 10
(assuming that the underlying alliances were governing the pattern), the
number of species groups 100, with 80 species involved in printing. While
visual inspection of Tables 11.1 and 11.2 reveals obvious differences,
analysis of concentration (Section 7.4) involved in the ordering process
offers measurements:

• The random sample achieved a fairly high mean square contingency coef-
ficient of C = 0.279 (Formula 7.16). The first three Eigenvalues accounted
for the following explanatory power: λ1 = 22.48%, λ2 = 19.57% and
λ3 = 13.38%.
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• The selective sample allowed for a mean square contingency coefficient
of C = 0.406, indicating very high concentration of species scores. The
first three Eigenvalues accounted for the following explanatory power:
λ1 = 19.15%, λ2 = 15.03% and λ3 = 13.47%.

The resemblance pattern of the random subsample is closer to linearity, as
can be seen in the Eigenvalues. As a result of this, more non-zero scores are
involved in the structured part of Table 11.1 than in Table 11.2. In the latter
a source of nonlinearity is the distinct group pattern, as seen in Figure 11.8.
However, neither table is really convincing in documenting the vegetation
pattern. Clearly, there are not enough species involved to display the very
high-dimensional similarity space. For example, in Table 11.2 there is only
one species (Pragmites australis) identified as typical for the last group
(with label no. 1). As a straightforward conclusion it can be suggested that
synoptic tables might be most useful for displaying consistent parts of large
data sets rather than providing an overview when the range of the vegetation
gradient is large and dimensionality of the similarity pattern is high.



12
Swiss forests: A case study

12.1 Aim of the study
This case study illustrates some applications of the methods explained in
the preceding chapters. It is a ‘real world’ example assessing ecological
and also methodological questions. The vegetation data originate from a
survey across Switzerland (Wohlgemuth et al. 2008) which aimed to reveal
relationships between vegetation composition and the growth rate of tree
species. Just as in an experimental approach, questions were posed prior to
the investigation and a sampling design is developed below to obtain the
answers. But as is often the case in large surveys the order of steps is partly
reversed, as in some examples the data appear at the outset of the exercise
and the questions that they could potentially answer are identified later. This
imposes restrictions on the analytical methods, but it also allows exploration
of the variable set far beyond its primary scope.

Data Analysis in Vegetation Ecology Otto Wildi
 2010 John Wiley & Sons, Ltd
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The analyses shown below concentrate on species composition and
species spatial distribution. An alternative would be to focus on species
richness, as done by Wohlgemuth et al. (2008), who found that there is a
high correlation between diversity (the number of species per plot) and the
canopy cover of trees (a surrogate for light availability inside the forest
stands). However, they also detected that the spatial resolution of the survey
is probably not the best considering biodiversity, as correlations become
higher after clumping the sampling units into landscape patches of about
100 km2 in size.

Hence, the scale as well as the variables chosen in sampling design deter-
mine the potentials and restrictions of application. As will be shown below
the sampling area is the territory of Switzerland (∼41000 km2), restricted
to its forested area (∼30% of the surface). The strong elevation gradient
is the main cause of spatial variation in climate, and climatic relationships
are therefore an issue. Concentrating the study on forests means that human
influence is weak and controlled, a consequence of the strong regulations
imposed on forest management by public law. The question of the strength
of human disturbance will be raised below. Due to the extent of the study
area, traces of the post-glacial history of the vegetation can be expected, as
well as patterns related to the diversity in geology; that is, the parent mate-
rial for soil formation. There is no explicit temporal information included in
this data set. Yet, the fact that young trees (seedlings and shrubs) are distin-
guished from grown-up trees opens a window on change in time. Variables
describing the soil conditions and the geological pattern are as yet scarce.
The statistical analysis should reveal whether these are needed to reveal the
relationship between vegetation and site factors.

12.2 Structure of the data set
The vegetation data are organized in the tradition of forest ecology: each
tree species is recorded three times (in the herb, the shrub and the tree layer).
Shrubs are recorded twice (herb and shrub layer) and herbs and mosses just
once. Furthermore, all locations are sampled three times within concentric
circlic plots of 30 m2, 200 m2 and 500 m2 respectively. Most of the examples
shown below use the 200 m2 data set.

In the environmental data sets described below three categories of vari-
ables are to be found. First, variables recorded or verified in the field:
elevation, slope and pH of the upper soil layer. Second, climate data interpo-
lated from meteorological stations, as described by Zimmermann & Kienast
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(1999). Third, ‘azonal variables’ taken from the Swiss Soil Quality Map,
interpolating properties of soil types to yield a rank scale with range 1–6.
Quality is limited due to the low resolution of the original map (Scale
1:200000) and the arbitrarily selected soil types. These variables are labeled
with ‘soil map’. Environmental factors included in this data set are the fol-
lowing (order according to field records, climatic data and data from soil
map):

Sampling plan (x-, y-coordinates). The sample is a subset of the grid used
in the Swiss National Forest Inventory (NFI, Brassel & Brändli 1999).
Sampling units are located at each intersecting point of the 4 km × 4 km
coordinate grid of Switzerland. Only forest stands are taken (definition of
NFI). The resulting sample size is n = 726 and it represents an unbiased
state of the Swiss forests. True locations of plots deviate by 5–30 m from
the grid: the precision of the navigation tools used at the time was rather
limited.

Elevation (m a.s.l.). Two variables are given for technical considerations.
One stems from the field survey, the other is derived from a digital terrain
model (DTM). The range of the elevation scores does not reflect the Swiss
topography as plots above the timber line are not part of the sample.

Slope (degrees). This is derived from the digital terrain model and therefore
it is affected by errors inherent in this.

pH upper soil layer. Samples of the upper soil layer were taken in the first
survey of the Swiss National Forest Inventory (Brassel & Brändli 1999).
I replaced 43 missing values with the mean of the sample (pH 5.1095).

Degree days ( ◦
C) x days. Daily temperature is interpolated from a set of

climatic stations (Zimmermann & Kienast 1999). Degree days are the
integral of the daily mean temperature curve above the zero line.

Yearly precipitation (mm). Precipitation exhibits higher yearly spatial varia-
tion than, for example, temperature. Accordingly, interpolated variables
are also less reliable.

Frost days during growing season. On frost days the night temperature drops
below the freezing point. The growing season lasts from March until the
end of September.
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Coldest mean monthly temperature ( ◦
C). This is a proxy for the risk of frost

drought. Trees are exposed to this, whereas plants below the snow cover
are protected. Coldest month usually is January.

Mean yearly global radiation. This is the sum of direct and diffuse radiation
over the entire year.

Yearly water balance (mm x yr−1). The monthly water balance – water gain
by precipitation minus water loss by evapotranspiration – is integrated
over the whole year.

Moisture index, i.e. water balance in July (mm x yr−1). This is the water
balance as explained above, but for July only. July is the warmest month
in Switzerland.

Soil depth (soil map). This is estimated on a 1–6 scale addressing suitability
for agriculture.

Nutrients (soil map). A 1–6 scale expresses availability of main plant
nutrients.

Water capacity (soil map). This is the maximum possible water holding
capacity estimated on a 1–6 scale.

Water permeability (soil map). Permeability estimated on a 1–6 scale.

Soil wetness (soil map). Excess average water content to limit agricultural
use, estimated on a 1–6 scale.

12.3 Methods
All calculations are based on the same data transformation: Braun-Blanquet
code transformed to a rank scale and further according to x′ = x0.25 (see
Table 3.3). This is the basis for ordinations and classifications. The standard
ordination method is principal coordinates analysis (PCOA, Section 5.3)
and for classification minimum-variance clustering is used (Section 6.3).
The number of groups (vegetation types) chosen to illustrate the examples
is eight, a low number considering the sample size of n = 726. This, how-
ever, simplifies presentation of results in tables (Table 12.1), ordinations
(Figure 12.1) and maps (Figure 12.2). VEGEDAZ (Küchler 2009) was used
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Table 12.1 Composition of eight vegetation types in terms of tree layer and some
site factors. Rows and columns are rearranged according to the first axis of a
correspondence analysis.

Group no. 1 3 7 8 6 2 5 4

Group size 135 119 45 83 46 38 171 89

Elevation, mean 1690 1260 1380 1100 674 690 729 649

stdv. 263 368 114 187 209 242 230 162

Degree days, mean 1660 2180 1910 2320 2910 3450 2810 2920

stdv. 377 527 137 300 298 477 363 250

Precipitation, mean 1420 1320 1690 1610 1260 1730 1320 1230

stdv. 331 357 261 241 238 216 253 212

pH, mean 4.23 5.61 5.42 5.00 3.68 4.35 5.70 5.65

stdv. 1.15 1.20 1.13 1.25 0.64 0.89 1.27 1.20

738 Pinus cembra 17 1

732 Pinus mugo ssp. arborea 3 3

735 Pinus mugo ssp. prostrata 1

210 Sorbus aucuparia 7 11 12 9 5 2

75 Alnus incana 2 4 18 3 6 5

32 Picea abies 72 75 78 76 87 58 53

216 Sorbus aria 1 12 3 2 19 5 20

69 Betula pendula 3 9 8 3 14 3

51 Salix caprea 3 6 3 3 2 2

280 Acer pseudoplatanus 3 11 29 25 9 6 44 34

29 Abies alba 2 21 20 52 61 3 41 31

35 Larix decidua 52 20 3 9 3 7 3

84 Fagus sylvatica 3 16 9 75 70 35 74 95

371 Fraxinus excelsior 1 8 3 14 7 45 46 38

1043 Quercus pubescens 2 3

(continued overleaf)
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Table 12.1 (continued)

38 Pinus sylvestris 6 21 9 9 22

93 Ulmus glabra 1 4 9 7

755 Castanea sativa 1 3 74 1 2

303 Tilia cordata 1 3 14 2

72 Alnus glutinosa 8 1

87 Quercus petraea 2 5 22 4 8

232 Prunus avium 3 5 16 9 12

43 Taxus baccata 2 2

274 Acer platanoides 4 11

300 Tilia platyphyllos 9 8

78 Carpinus betulus 3 3 7 11

90 Quercus robur 11 6 9 18

Figure 12.1 Principal coordinates analysis (left) and correspondence analysis
(right) with eight vegetation types of the Swiss forest data set overlayed.
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Figure 12.2 Vegetation map (eight groups from cluster analysis).

to update species lists as well as to merge data sets. Separate data sets were
derived for plot sizes of 30 m2, 200 m2 and 500 m2 (n = 726) and for a
merged one with n = 2178. A data set with reduced attribute list of 29 tree
species is the source for Table 12.1, derived from the 200 m2 plot-size data
set, omitting tree species which are very rare or have been introduced from
gardens and parks.

12.4 Selected questions
12.4.1 Is the similarity pattern discrete or continuous?

The worst case scenario in terms of pattern recognition is patterns caused
by the sampling plan itself, as may happen in preferential sampling. This,
however, is unlikely to occur in the systematic sampling plan used here. One
could of course argue that discrete patterns are unlikely to occur because
the territory of Switzerland encompasses a huge altitudinal gradient, which
is continuous by nature. But there are other factors with the potential to
generate discontinuity, such as bedrock type and forest management. In
order to explore the resemblance pattern I use classification and ordination
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applied to the entire data set, as searching for local patterns would probably
require the analysis of subsets.

In Figure 12.1 classification (eight types) is superimposed on ordina-
tions by PCOA (left) and CA (right), both confirming continuity of pattern.
Unlike in the application to small data sets (Figures 5.6 and 5.7), differences
between the two methods here are striking. In PCOA strong nonlinearity is
responsible for a round point cloud, whereas CA generates a horseshoe (left
to right) with outliers towards the bottom of the graph. In conclusion, strong
resemblance gradients prevail but even faint traces of discontinuities are
lacking.

12.4.2 Is there a scale effect from plot size?

All locations have been surveyed threefold using concentric plots of size
30 m2, 200 m2 and 500 m2 respectively. When plot size is increased, gener-
ally the number of species increases. Do additional species found in large
plots add to the distinction of relevé groups (vegetation types)? Could dif-
ferent plot sizes yield an alternative classification of forest types? A joint
analysis of plots of different size is needed to explore these questions, for
which data sets have to be merged. To reveal patterns caused by difference in
species richness, adjustments of relevé vectors have to be avoided, by using
Euclidean distance as a resemblance measure and PCOA for ordination for
example, as shown in the upper row of Figure 12.3. Clearly, plots of size
30 m2 generate the smallest point cloud, those of 500 m2 the largest. When
using correlation instead of Euclidean distance, the effect of plot size van-
ishes doe to the intrinsic standardization of the relevé vectors (Figure 12.3,
middle row). Because intrinsic transformation in correspondence analysis
is distinct from these two examples, I also provide CA ordinations of the
combined data (Figure 12.3, bottom row). Careful inspection of the three
ordinations reveals a shift along the first axis, with plots from larger size
being located further to the right. In summary, differences in plot size emerge
when using Euclidean distance for comparison and disappear when using
correlation. Interpretation of CA ordination remains difficult because the
solution neither suppresses the effect completely nor reveals it to its full
extent.

Ordinations shown in Figure 12.3 also illustrate differences in methods
when applied to large data sets. This concerns not only the shape of ordina-
tions but also the performance of axes in accounting for variance. For the
upper row (PCOA applied to resemblance matrix of Euclidean distance),
explained variance is λ1 = 7.2% and λ2 = 5.4%. When using correlation
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Figure 12.3 The effect of different plot sizes on similarity pattern. Upper row:
Euclidean distance used in PCOA. Middle row: correlation coefficient used in PCOA.
Bottom row: CA used.

instead of Euclidean distance we get λ1 = 6.3% and λ2 = 5.4%, whereas
for CA it is an astonishingly low λ1 = 2.2% and λ2 = 1.5%.

12.4.3 Does the vegetation pattern reflect
the environmental conditions?

This conforms with the main question asked in Chapter 7. Because the
present survey concerns a large, well-known area, an effort to interpret an
ordinary vegetation map like the one in Figure 12.2 seems promising. Even
though the map considers discrete types only, some of the symbols accord
with altitudinal zones: along the upper-left part in Figure 12.2 the Jura
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mountains, ranging from south-west to north-east, can easily be identified.
Dominating groups are numbers 8, 3 and 4. Parallel to this follows the
Plateau (Mittelland), where types 5 and 6 prevail. In the Pre-Alps groups
7 and 8 are most common, while the high alpine zone is mainly above
the timber line. Embedded in the Alps are Central alpine valleys, the driest
locations in the investigation area with the highest abundance of group 1.
The sequence ends in the south where relevé group 2 corresponds with the
Insubrian climate.

Maps revealing far more details are continuous, although they require
separate layers for every vegetation type or species considered. I choose a
Bayes probability model deriving probability maps of vegetation types (see
Section 8.2 for details). This is not used as a simulation tool but as a method
to spatially display part of the joint variance of vegetation and environmental
factors. For simplicity – and to keep the number of degrees of freedom as
low as possible – I used four of these factors (see Table 12.2 for the full
list): (1) elevation taken from DTM, (2) degree days, (3) yearly precipitation
and (4) pH of the soil. As a measure of performance of the model I counted
the number of plots where the model predicts the same vegetation type as
the field survey. This is 381 of the total of 726, or 52.4%. I found this
a surprisingly high match considering human impact on forest stands and
the simplicity of the model (see also Brzeziecki et al. 1993). The resulting
maps are shown in Figure 12.4, where circle diameter is proportional to
the probability of occurrence. Symbols occur on forested plots only; that
is, about 30% of the area of the country. In general the spatial distribution
pattern accords with the oreographic pattern dominated by the altitudinal
gradients. Patterns related to geology are rare and their recognition would
require more detailed analysis.

Whether there is a significant relationship between site factors and vegeta-
tion groups can be tested using the available data. The eight groups used for
mapping form the basis for variance testing of the site factors as explained
in Section 7.2. The results are shown in Table 12.2. Obviously, the forest
types greatly reflect the abiotic environmental conditions; that is, forest man-
agement seems to be less important – or foresters have planted tree species
within their ecological range.

12.4.4 Is tree species distribution man-made?

This question is related to the well-known ‘Potential Natural Vegetation’
(PNV) issue introduced in a systematic manner by Tüxen (1956). His fairly
complicated definition is further extended in Lindacher (1996). Lindacher



12.4 SELECTED QUESTIONS 179

Figure 12.4 Vegetation probability map (eight groups from cluster analysis distin-
guished).

also mentions extensions of the concept to adapt for effects like climate
change and environmental pollution, addressed in the definitions of Kowarik
(1987) for example. In many forests human influence dominates a given site
and the vegetation may be anthropogenic rather than natural (Küchler 1988).
One may want to reconstruct the vegetation as it would be without Homo
sapiens living on earth, as Neuhäusl (1984) explained.
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Table 12.2 F-values of site factors based on eight forest
vegetation types. Df1 = 7, df2 = 721. All F-values are
significant at the 1% error probability level.

Variable F-value

Elevation, DTM 253.51

Elevation, field 246.60

Degree days 207.87

Lowest monthly temperature 182.18

y-coordinate (N–S gradient) 78.660

Soil depth (soil map) 69.464

Nutrients (soil map) 66.942

Water capacity (soil map) 60.254

Soil skeleton (soil map) 45.251

Moisture index July 43.839

Slope, deg. 39.100

pH (upper soil layer) 35.563

Yearly precipitation 30.341

Water permeability (soil map) 30.774

Frost days in growing season 27.338

Yearly water balance 19.300

x-coordinate (E–W gradient) 13.796

Yearly radiation 13.307

Soil wetness (soil map) 8.653

In all references given above there is a general agreement that PNV could
only be derived from a land-use history of the past few thousand years. As
this is not known, all findings will finally remain hypotheses. Furthermore,
tree species planted within their natural range do not in principle change the
entire vegetation composition. Hence, I restrict the evaluation to the discus-
sion of four selected tree species: Fagus sylvatica , Fraxinus excelsior , Larix
decidua and Castanea sativa. If the occurrence of any of these is man-made,
this should become evident in either the geographical , the compositional or
the ecological distribution pattern.
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Figure 12.5 Distribution of four selected tree species occurring in the tree layer.

Can tree plantations be seen in the geographical distribution pattern? It
is known that some tree species have been planted outside their ecological
range. Can this be observed in the present data set? Yes, it can. In Figure 12.5
Larix decidua is such a species. Under natural conditions it mainly grows
in the central alpine belt from the west to the east of the country. Iso-
lated, scattered plots north of this belt mark the locations where plantations
may have been made in the past. However, this is an interpretation, not a
proof.

Even more striking is the pattern of Castanea sativa. This is restricted to
southern Switzerland, but a few clumped plantations in the western part of
Switzerland emerge in the survey grid. Are there cases where this method
fails? No, not really. Fraxinus excelsior also grows in Quercus forests, which
are too dry for Fagus , for example. However, (like Fagus) it does not grow
at higher altitudes, which are outside its physiological range (Figure 12.5).
It cannot be planted there, so no wonder that plantations are not found.

Can tree plantations be inferred from the compositional pattern? Under
natural conditions it is rather unlikely that any plant species would exhibit
a disjunct compositional distribution pattern. Where such a phenomenon
occurs it is likely that plantations have taken place. In Figure 12.6 the
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Figure 12.6 Ordination of forest stands. Four selected tree species marked.

occurrence of the same species within an ordination is shown. In Larix
decidua and Castanea sativa a compositional centre of occurrence exists,
again with some scattered remote points: in these the two trees grow in
common with a totally different set of plant species, supporting the evi-
dence derived from the geographical pattern that plantations exist. Unlike in
the geographical map, for Fraxinus excelsior a centre of occurrence is now
visible. It is the lower-left quadrant of the ordination. In all remaining sites
of the ordination it is absent. This supports the hypothesis that Fraxinus
excelsior stands are either natural or are planted where they would occur
under natural conditions. The same interpretation applies to Fagus sylvatica .

Can tree plantations be inferred from the ecological pattern? Ecograms
offer a similar kind of interpretation to maps and compositional ordinations,
as shown in Figure 12.7. These point patterns show the climatic conditions
below the timber line. There is a striking main gradient from the lower-right
corner (warm, dry) towards the upper-left (cold, wet). Along this gradient,
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Figure 12.7 Ecograms of forest stands. Four selected tree species marked.

warmth and water supply are strongly correlated. But there are two areas
following a different pattern. The first is the left-hand lower edge of the
ecogram. These are the central alpine regions, with low temperature and dry
conditions. The second is the upper-right corner, where the opposite holds
and it is warm and wet. This is the climate of southern Switzerland, the
Insubric area.

Looking at the same tree species as before, Fagus sylvatica spreads over
the main gradient and also in the direction of the Insubrian conditions,
avoiding the central alpine growth conditions. That is where Larix decidua
has its centre of distribution. If the previously stated hypothesis is correct
then the few locations along the main altitudinal gradient are plantations
(including one isolated stand in the Insubrian climate). Even more striking is
the pattern of Castanea sativa, with its centre of distribution in the Insubrian
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part of the ecogram. Five stands in the main altitudinal gradient are really
disjunct and definitely artificial from the ecological point of view.

12.4.5 Is the tree species pattern expected to change?

This question is based on the idea that the next generation of tree species
is already present in the form of seedlings and saplings. As can be seen in
Table 12.3 the tree species behave totally differently in this regard. Some
species with large seeds, such as Abies alba , Pinus cembra and Fagus
sylvatica, show almost the same frequency for the tree and the herb lay-
ers. But most interesting are the species with a much higher frequency in
the herb layer: these have the potential to extend their area in the face
of changing climate much faster than species which must expand through
propagation of seeds. Typical cases are Abies alba , Quercus robur , Acer
pseudoplatanus , Fraxinus excelsior and Sorbus aucuparia .

In Figure 12.8 three species are compared in this regard. Fraxinus excel-
sior , with close to twice as many plots with seedlings than plots with trees,
has almost identical distribution patterns for both. The seeds of this species
are very mobile and are wind-dispersed, though the seedlings have not so
far established in areas of different ecological conditions. Mobility of seeds,
however, suggests that extension of area may still be rapid in the case of
climate change. Larix decidua is the opposite case: rejuvenation is almost
exclusively restricted to sites where it occurs naturally; where it is planted,
for example along the main altitudinal gradient, seedlings and saplings are
very rare. Finally, Sorbus aucuparia is rather abundant in the herb and
shrub layers. The range of the seedlings exceeds that of the trees consid-
erably. Under changed conditions Sorbus aucuparia could rapidly grow up
to the tree layer, thereby expanding its present area. Along the main altitu-
dinal gradient the species is mainly lacking in the tree layer, probably due
to competition of taller growing trees. For it to expand successfully, other
species would have to reduce vitality.

12.5 Conclusions
This chapter demonstrates the use of different methods in the context of a
fairly large real-world data set resulting from a standard vegetation survey.
Method and plot size conform to established standards; even the Braun-
Blanquet cover-abundance scale is used. Less common, however, is the
sampling plan, which consists of a regular net of 4 km grid width. Hence, the
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Table 12.3 Number of plots where selected tree species occur in the tree, shrub
and herb layers.

Species Tree layer Shrub layer Herb layer

Abies alba 205 183 305

Acer platanoides 15 3 51

Acer pseudoplatanus 161 183 397

Alnus glutinosa 4 8 3

Alnus incana 26 30 35

Betula pendula 55 30 33

Carpinus betulus 22 25 35

Castanea sativa 32 18 35

Fagus sylvatica 345 293 348

Fraxinus excelsior 153 142 335

Larix decidua 113 52 52

Picea abies 471 362 409

Pinus cembra 23 24 26

Pinus mugo arborea 7 6 5

Pinus mugo prostrata 1 4 3

Pinus sylvestris 69 14 15

Populus nigra 1 2 3

Prunus avium 35 41 116

Quercus petraea 25 9 40

Quercus pubescens 3 4 5

Quercus robur 38 18 80

Salix caprea 16 57 75

Salix eleagnos 1 2 2

Sorbus aria 49 101 141

Sorbus aucuparia 43 127 320

Taxus baccata 4 10 8

Tilia cordata 8 7 15

Tilia platyphyllos 22 22 32

Ulmus glabra 24 47 58
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Figure 12.8 Distribution of three species in ecological space. Left: tree layer.
Right: herb layer.
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location of plots is given by the sampling plan and homogeneity – a standard
requirement in classical phytosociology – is not an issue. But systematics is
vital, in that many of the explorations rely on this sampling design. Geo-
graphical patterns could not be interpreted if preferential sampling had been
used and the same is true for patterns in ecological and resemblance space.
Patterns revealed are not ‘representative’ for the population just because of
the sampling plan, but also due to the sample size. Given the topographical
variability of the sampling area, n = 726 is probably still small. To reveal
patterns of the kind shown in this chapter definitively requires large sam-
ples. Hence, the most striking conclusion does not concern methods but the
quality of data sets required to allow pattern recognition and interpretation,
which is out of the question when using preferentially sampled data only.
There are no methods to correct for biased data sets.

Ordinations are much easier to interpret when classification is superim-
posed, even if this is not the scope of analysis. Although not shown here (but
explained in Section 7.4), the opposite holds too: that is, the interpretation of
classifications by ordinations, in which the data points are group centroids
of relevés, revealing continuity among groups. Just like the axes in ordina-
tions, groups may become reference points in a continuous system, shown
here in the form of a continuous vegetation map expressing probability of
occurrence of all types in all plots. Continuous maps can also be derived
where only vegetation data are available, applying fuzzy classification, an
as yet underexploited approach.

But which ordination and classification method should be used? Even
though I prefer some (where I know exactly what the method does to my
data) and try to avoid others (e.g. where iterations alter the results in order
to eventually find a ‘stable’ solution), all those previously and recently used
work very well in general, as long as they are handled with care. Accidents
may happen if data transformation gets out of control: analysis of the effect
of plot size is one example, where one resemblance measure reveals the
difference, which is hidden by a different one. Hence, the selection of the
ordination is not the crucial point, but rather the selection of the proper
options. Computer programs always use default parameters, which by chance
may be the ones needed – or may be the wrong choice. Escaping this pitfall
is easy, through careful study of the options the software provides, getting
familiar with the method in gathering experience and eventually doing the
same with other software, if available.





Appendix A
On using software

In Section 3.1 I pointed out that we tend to measure depending on what mea-
surement tools we have at our disposal, causing some bias in our sampling
design. The same happens when choosing methods for data analysis, which
are often dictated by the options the software packages offer. Clearly, single
all-purpose programs for data input, testing for input errors, data manipu-
lation, data analysis and graphical presentation are most practical, a nice
example being CANOCO, as explained in Lepš & Šmilauer (2003). While
this is the user-friendly method, my book cuts its own way by emphasizing
specific issues (e.g. data transformation, measuring resemblance) and appli-
cations beyond standard methods (e.g. space-for-time substitution in Section
9.4.1, measuring rate of change of different orders in Figure 9.2, evaluating
the second derivative of change in Figure 9.18, etc.). Multiple methods can-
not be found in a single software package, such as programs for dynamic
modelling (Chapter 10) and the use of Markov models (Section 9.3). Rather
than giving specific suggestions, I disclose my path through the examples in
this book, accepting the downside that this partly represents a historic travel
through software development in recent times.

A.1 Spreadsheets
Almost all small data sets used to illustrate the functioning of methods
eventually passed though Excel, for either data input, simple analyses or
data presentation. In spreadsheets, data are usually organized as shown in
Figure 2.8; that is, in a single data matrix with relevés organized in columns
and species and environmental variables in rows. For import and export into
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other programs I used commas, semicolons or tabulators separating data
fields, which are accepted by almost all databases and statistical packages.
The tasks I have conducted using spreadsheets are:

• Plotting scatter diagrams (ordinations). Excel offers sufficient formatting
options for graphs and all are set automatically. Subsequent manual for-
matting is needed as ordination axes x and y must be identically scaled
and this is achieved only when manually setting the range of the axes and
the width and height of the graphs.

• Plotting bubble graphs to display within- and between-group similarities
(Figures 4.5 and 11.8), illustrating change of similarity in time
series (Figures 9.2) and ordinations of time series exhibiting velocity
(Figures 9.16) or acceleration (Figures 9.18). Three vectors are needed
for input: x-axis, y-axis and the diameter of the bubbles.

• Numerically integrating differential equations for dynamic modelling. All
models presented in Section 10.1 are implemented in Excel. A column is
chosen for each state variable; that is, X1, X2, as well as its derivative
δX1/δt , δX2/δt . For time step t = 0 the initial values are written in a
row; in the following row the formula for deriving the state at t = 1 is
entered. Dragging these cells down by, for example, 100 rows reveals the
state of the system at t = 100. Increasing complexity of dynamic models,
however, limits the application of spreadsheets.

A.2 Databases
Databases are becoming indispensable when data sets of increasing size are
analysed. JUICE (Tichý 2002) and TURBOVEG (Hennekens & Schaminée
2001) are probably the best known. I used VEGEDAZ (Küchler 2009),
a program with features typical for the purpose. The functions mentioned
below refer to this, but all databases designed for handling vegetation data
do so similarly:

• There are functions to test input data, such as format of date, double
entries in relevé and species labels, range of variables, double entries of
entire relevés and species vectors, identification of outliers (Section 11.3)
and so on.
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• There are tools for data exploration, mainly options for display of scatter
plots and frequency diagrams.

• Further, one of the functions concerns the data selection used for example
when double entries have to be erased. Subsets may be generated based on
stratification criteria (Section 2.3.2). Reduced samples are derived using
systematic or random subsamples, as shown in Section 11.2.

• The program also supports handling of taxonomic problems existing in
all fields of organismic biology (plants, animals, fungi, algae, bacteria,
etc.). For all species names, alternative names are displayed for selection;
names form different taxonomies – outdated as well as valid ones. This
function is essential for combining data sets, as in Chapter 12.

• Further support is given by providing auxiliary variables, mainly valid for
the geographical area considered, such as political borders, rivers, digital
terrain models and, in the present case, indicator values of Central Europe
(Landolt 1977), as used in Section 11.4.

• The program package is also an analytical tool. Many basic functions used
throughout this book are implemented in the program menu. Furthermore,
there is an interface to the R statistical package, where, for example, all
functions of the VEGAN package (Dixon 2003) and others are available.
Output of R programs, like ordination coordinates and classifications, can
be embedded into the data set being analysed.

A.3 Software for multivariate analysis
There are several specialized program packages available for multivari-
ate analyses, of which I mention PC-Ord, CANOCO and SYN-TAX2000
(Gilliam & Saunders 2003). I consider my own program package MULVA-5
(Wildi & Orlóci 1996) partly outdated as many of the ordination and clas-
sification methods used these days are missing. However, I implemented
operations presented in this book into MULVA using FORTRAN code:

• Computing within- and between- similarity of relevé groups in Section 4.6.

• Ordering synoptic tables (Section 6.6).
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• Computing directed spatial dependence (Section 7.3.3).

• Implementing a simple Bayes probability model (Section 8.2).

• A means to extract rate of change of different order (Figure 9.2).

• Smoothing Markov series (Section 9.3).

• Deriving synthetic time series via space-for-time substitution (Section
9.4.1).

The space–time model of succession in the Swiss National Park (Section
10.3) is a standalone FORTRAN program as complexity exceeds flexibility
of multipurpose programs. Packages for dynamic modelling exist, such as
STELLA and SIMILÉ, generating flow charts as shown in Figure 10.1 upon
input of differential equations and providing a flexible graphical output.

In many computer programs the default options used are hidden in pro-
gram descriptions or parameter lists; this is one of the flaws of R procedures.
It is good practice to compare output from different programs to avoid mis-
understanding; I did so when preparing examples, using PC-Ord in parallel
with other programs.

The number of methods available in the R computing environment is
growing quickly and the VEGAN package (Dixon 2003) offers many meth-
ods previously available only in specialized program packages. I used R
procedures for constrained ordination in Section 7.5 and also to check other
ordinations processed in MULVA. In view of the rapidly growing specific
functions the computing environment R offers, this may soon become the
dominating platform for data analysis in vegetation ecology. Rumours con-
firm detailed instructions to be underway.



Appendix B
Data sets used

Most of the data sets used in this book are available on the Internet
(http://www.wsl.ch). All are text files with UNIX line endings. These may
have to be adjusted depending on the operating system and software used.
The data sets are provided in two different formats:

• Extension .txt refers to the matrix arrangement as shown in Figure 2.8

• Extension .m5 indicates MULVA-5 organization (Wildi & Orlóci 1996).
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relevé groups. Journal of Vegetation Science 5: 311–316.

Brzeziecki, B., Kienast, F. and Wildi, O. 1993. A simulated map of the potential natural
forest vegetation of Switzerland. Journal of Vegetation Science 4: 499–508.

Clarke, K.R. 1993. Non-parametric multivariate analyses of changes in community struc-
ture. Australian Journal of Ecology 18: 117–143.

Clements, F.E. 1916. Plant succession. An analysis of the development of vegetation.
Carnegie Institute, Washington, Publication 242, Washington, DC.

Connell, H.J. and Slatyer, R.O. 1977. Mechanisms of succession in natural communities
and their role in community stability and organisation. American Naturalist 111:
1119–1144.
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Feldmeyer-Christe, E., Ecker, K., Küchler, M., Graf, U. and Waser, L. 2007. Improv-
ing predictive mapping in Swiss mire ecosystems through re-calibration of indicator
values. Applied Vegetation Science 10: 183–192.
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Mátyás, G. and Sperisen, C. 2001. Chloroplast DNA polymorphisms provide evidence
for postglacial re-colonisation of oaks (Quercus ssp.) across the Swiss Alps. Theor.
Appl. Genet. 102: 12–20.

Maynard Smith, J. 1974. Models in Ecology. Cambridge University Press, London, New
York, Melburne.

Meadows, D.H., Meadows, D.L. and Randers, J. 1972. The Limits to Growth. Universe
Books.

Mucina, L. 1997. Classification of vegetation: past, present and future. J. Veg. Sci. 8:
751–760.

Mueller-Dombois, D. and Ellenberg, H. 1974. Aims and Methods of Vegetation Ecology.
John Wiley & Sons, New York, Chichester, Brisbane, Toronto.
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