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1. Introduction

WHY A BOOK ON KNOWLEDGE DIFFUSION 
AND INNOVATION?

Economists, scientists, policy- makers and, more and more often, 
common people refer to modern economies as knowledge- based 
because of the growing relevance knowledge is acquiring in everyday 
life. Indeed, institutions, fi rms and individuals progressively rely on 
knowledge as a key component for individual and collective growth. 
This calls for a clear understanding of knowledge and its sharing 
patterns.

While attempting to defi ne knowledge and investigating the 
complex process which determines its sharing patterns, we agree 
with Grant’s (1996) concern that these are long- standing questions 
which have intrigued some of the world’s greatest thinkers from 
Plato to Popper without the emergence of a clear consensus. Hence, 
in this book the focus of the investigation is restricted to the type 
of knowledge used by fi rms in the production process and, more 
 importantly, in innovative activities.

A fi rm’s ability to innovate depends largely upon its ability to 
capture and nurture human intellectual capital eff ectively. One 
important part of this process is research and development (R&D), 
which represents a fundamental activity for creating new knowledge 
for production and innovation. However, the simultaneous ongoing 
processes of knowledge deepening and knowledge widening – which 
leads to a general expansion of the range of available technologies, 
as well as to a growing specialization of competencies – calls for new, 
interactive patterns of learning.

Individual learning activities – as they are conceived in an R&D 
laboratory – are no longer suffi  cient to put together all the required 
knowledge it takes to be competitive. Innovative fi rms need spe-
cialized knowledge, as well as more types of knowledge, which 
increasingly lie outside the fi rm itself. However, because of its tacit 
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component,1 knowledge, and especially new knowledge, can be 
 diffi  cult to acquire in the market, so fi rms seek some form of collabo-
ration with other fi rms and/or institutions that possess the required 
knowledge and, on a reciprocal basis, are keen on sharing it. Hence, 
fi rms act to create links through which to access disparate and spe-
cialized resources of knowledge needed to innovate. The emerging 
confi guration and reconfi guration of social networks of all types 
should then refl ect the shifting demand of the knowledge economy.

This ongoing process makes it increasingly relevant to investigate 
the dynamics through which fi rms share knowledge, and calls for 
a thorough understanding of knowledge diff usion patterns. This 
entails understanding the processes through which external- to- the-
 fi rm knowledge is acquired and integrated with internal knowledge, 
a process which might turn out to be complex and hard to manage.

WHY THIS BOOK ON KNOWLEDGE DIFFUSION 
AND INNOVATION?

Now that we have explained the need for a book on knowledge 
diff usion and innovation, we should clarify how this book should 
serve the purpose of bridging the gaps in the existing understanding 
of knowledge diff usion and innovation. In the fi eld of knowledge-
 related studies complexity arises at several levels. First, knowledge 
should be understood as a complex system which goes well beyond 
the dichotomous nature of information. Acquiring knowledge, 
from whatever sources, entails cognition and complex integration 
processes: as pointed out by Ancori et al. (2000), the economics of 
knowledge diff ers from the economics of information in the sense 
that knowledge is no longer assimilated to the accumulation of infor-
mation in a stockpile. The distinction between these two concepts 
has been repeatedly ignored by a certain branch of the economic 
literature (economics of information), which does not consider the 
cognitive structure that agents use to elaborate knowledge.

Following this distinction, Ancori et al. developed a theory in 
which knowledge is acquired ‘by a backward process through which 
the new knowledge is confronted and articulated with previous expe-
rience . . . The appropriation of crude knowledge – i.e. its integration 
in one’s cognitive context – is not the result of a transmission, but 
rather the result of a re- engineering process’ (2000, p. 267). Hence 
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knowledge is a complex phenomenon which requires a complex and 
costly cognitive process in order to be acquired. However, knowl-
edge diff usion is not the only possible way of sharing competences. 
For instance fi rms can pool together their specialized knowledge on 
specifi c projects. Such a knowledge integration mechanism does not 
entail knowledge transfer.

This being said, the main elements of novelty of this study rest 
precisely on the complex approach undertaken to study the phe-
nomenon under investigation. In this book we provide a defi nition of 
knowledge which is grounded in recent studies on complexity theory 
and, subsequently, use an agent- based social simulation methodol-
ogy to address the issue of innovation – as we believe that there 
is great potential in addressing studies on complex social systems 
employing agent- based simulation models. In areas dominated by 
complex phenomena (such as modelling social systems) agent- based 
models represent, in the authors’ view, a new and promising tool for 
scientifi c computational studies.

THE BOOK STRUCTURE

The book is structured in two parts. In the fi rst part the existing lit-
erature on knowledge economics is reviewed and the issues of knowl-
edge complexity, and knowledge and innovation, are introduced. 
Specifi cally, we fi rst review the main literature on the knowledge-
 based economy, focusing on the important link between knowledge 
and innovation. We focus our attention on various defi nitions of 
knowledge (distinguishing between knowledge and information, 
as well as between tacit and codifi ed knowledge), on the relevance 
of the geographical dimension for knowledge diff usion, and fi nally 
on various patterns of diff usion associated with knowledge fl ows 
(distinguishing among various forms of voluntary and involuntary-
 based knowledge- sharing patterns) (Chapter 2).

Subsequently, we introduce the issue of modelling knowledge and 
its sharing patterns. We depart from classical studies on social learn-
ing, where the patterns of information and knowledge diff usion are 
explored with respect to innovation adoption dynamics, and proceed 
to review more recent models where knowledge is considered and 
modelled as a complex concept (Chapter 3).

This literature review leads us to the core idea of the book, that 
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knowledge, and the learning processes associated with it, needs to 
be modelled using complex representations and appropriate tools. 
Critical factors in formal modelling concern the representation of 
knowledge (for example whether as a scalar or as a vector), the 
characteristics of the network structure upon which knowledge 
interactions (and innovation) take place, and also the temporal 
aspects of knowledge diff usion – simulations being sensitive to initial 
 conditions and to the application of specifi c updating mechanisms.

All these factors are explored in Chapter 4 of the book, where 
we present an original agent- based model of knowledge diff usion, 
grounded in complex defi nitions of knowledge and network rela-
tions. In addition, the diff usion model is related to innovation proc-
esses where innovation stems from the recombination or integration 
of knowledge by means of a cognitive process which could be 
 conducted either individually or collectively.

The second part of the book is dedicated to applications and 
empirical studies. This part opens with a chapter (Chapter 5) in 
which several empirical studies on the measurement of knowledge 
fl ows are reviewed. Subsequently, Chapter 6 presents a methodo-
logical investigation which fi rst examines two alternative ways of 
doing research with agent- based modelling. These are theoretical 
and applied studies, incorporating agent- based models as a means of 
investigation through simulation. This is followed by a closely related 
discussion of validation of agent- based models. Here, validation is 
considered quite broadly, encompassing both inputs and outputs to 
the  modelling as well as all stages of the model building and analysis.

In Chapter 7 an applied version of the knowledge diff usion model 
developed in Chapter 4 is presented. This is a calibrated model which 
makes use of data collected from fi eld work conducted in Italy. The 
aim of this chapter is to test the validity of the model against a real-
 world case study, providing at the same time an exemplifi cation of 
how validation of an applied model can be conducted. Chapter 8 
concludes the book and presents several ideas for future research.

NOTE

1. Tacit knowledge is a type of knowledge that cannot be codifi ed and, therefore, 
requires direct experience and personal interactions in order to be communicated. 
We will return to this concept in Chapter 2.
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2.  Knowledge economy: old and 
new issues

Due to the growing competitive pressure coming from emerging 
economies, modern manufacturing industries in developed countries 
have progressively shifted their focus from the physical processes of 
production to the design and marketing phases and, more relevantly, 
to the innovation of new products and production processes. In fact, 
in a globalized and competitive environment, the only viable way 
for fi rms operating in rich countries to enhance competitiveness is 
constantly to empower their innovative capabilities.

Innovation, defi ned as the process by which fi rms master and 
put into practice new product designs and manufacturing processes 
(Nelson and Rosenberg 1993), has to be understood as a process 
in which ‘new knowledge or new combinations of old knowledge 
are embodied in products and production processes and possibly 
introduced into the economy’ (Oerlemans et al. 1998, p. 4). Hence, 
innovation crucially involves the use of existing knowledge, as well 
as the ability to generate and acquire new knowledge (Howells 
2002, p. 872). This view, shared by many scholars, supports the 
idea that fi rms progressively rely on knowledge as a key input of 
successful and long- lasting innovating activities (Pinch et al. 2003; 
Forsman and Solitander 2003). In other words, fi rms’ long- term 
competitiveness is highly dependent on their ability to innovate 
and, therefore, on their ability to enhance their knowledge base 
(Florida 1995; Cooke 2001; Malmberg and Maskell 2002).1 The 
knowledge base of a fi rm could be defi ned as the collective char-
acter of the knowledge which depends both on individual human 
resources and on the mechanisms of interaction within the organi-
zation (Saviotti 1999).

The existing literature has identifi ed at least two broad ways in 
which fi rms can enrich their knowledge base: through the use of the 
internal resources of the fi rm as well as through the use of resources 
located externally to the fi rm. On the one hand, ‘[l]earning to use 
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internal resources can be accomplished in several diff erent ways, 
for example through R&D activities or learning by using or doing’ 
(Oerlemans et al. 1998, pp. 3–4). On the other hand, the external 
mobilization of resources, which has been labelled ‘learning by inter-
acting’ (Lundvall 1988, p. 362), involves the use of knowledge and 
experience of other economic actors (Oerlemans et al. 1998, pp. 3–4). 
Along these lines, David and Foray (2002) suggest that the ‘gear 
change’ in the growing speed and intensity of innovation observed 
over the recent decades comes about through the intensifi cation of 
formal R&D activities, that is, working ‘offl  ine’, isolated and ‘shel-
tered’ from the regular production of goods and services, but also, 
and perhaps more importantly, by learning ‘online’ where individu-
als can assess the acquired knowledge and hone their practices for 
future activities. Thus, understanding the sources of innovation and 
competitiveness in modern economies calls for a clear understand-
ing of knowledge creation and its sharing patterns (that is, learning 
activities latu sensu).

In this chapter we will try to summarize some of the issues related 
to the knowledge economy. Specifi cally, we will focus our attention 
on various defi nitions of knowledge (distinguishing between knowl-
edge and information, as well as between tacit and codifi ed knowl-
edge); on the relevance of the geographical dimension for knowledge 
diff usion (distinguishing between physical and relational proximity); 
and fi nally, on various patterns of diff usion associated to knowl-
edge fl ows (distinguishing among various forms of voluntary-  and 
involuntary- based knowledge- sharing patterns). Finally, we will 
introduce the issue of modelling knowledge and its sharing pat-
terns. This will serve as an introduction to the analysis developed in 
Chapter 3.

DEFINING KNOWLEDGE

The growing knowledge fl ow which characterizes the so- called 
‘knowledge society’ has made organizations increasingly concerned 
with the problem of selecting and organizing knowledge in a cost-
 effi  cient manner. As put by Johnson and Lundvall (1994), fi rms 
are becoming ‘learning organizations’ which defi ne their internal 
organizational models in order to enhance their learning capabilities. 
The authors distinguish between diff erent kinds of knowledge which 
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can be summarized as follows: (1) ‘know what’; (2) ‘know why’; (3) 
‘know how’; and (4) ‘know who’.

The fi rst type of knowledge refers to knowledge about ‘facts’ (for 
example how much does a fi rm invest in physical capital? how many 
bones compose the human skeleton? what codebook contains a spe-
cifi c law? and so on); it relates directly to the concept of information. 
As observed by Lundvall and Foray: ‘there are complex areas where 
experts must hold a great deal of this kind of knowledge in order to 
fulfi l their jobs – practitioners of law and medicine belong to this 
category’ (Lundvall and Foray 1998, p. 116).

The second kind of knowledge refers to ‘the scientifi c knowledge 
of principles and laws of motion in nature, in the human mind, and 
in society’ (Lundvall and Foray 1998, p. 116). It is extremely relevant 
to speed up the advances in technology and to reduce frequency of 
errors in trial- and- error development processes. It serves as a key 
input for technological progress, and it is typically embedded in a 
skilled labour force.

The third kind of knowledge refers directly to personal skills and 
should be explicitly interpreted as the capability of being able to do 
something. Know- how has been typically associated with the kind 
of knowledge developed and kept within the fi rm. However, ‘as 
the complexity of the knowledge base increases, a mix of division 
of labour and co- operation is also tending to develop in this fi eld’ 
(Lundvall and Foray 1998, p. 116).

The fourth kind of knowledge (know who) is similarly becoming 
increasingly relevant for fi rms nowadays. Know who refers directly 
to the kind of information ‘about who knows what and who knows 
how to do what’ (Lundvall and Foray 1998, p. 116). Because special-
ized knowledge and skills are essential elements for innovation and 
‘are widely dispersed due to the highly developed division of labour 
among organizations and experts’ (Lundvall and Foray 1998, p. 
116) knowledge of whom to contact is particularly valuable in this 
context.

Behind this classifi cation of various kinds of knowledge there is 
a general distinction between knowledge and information which 
it is worth thinking upon. As it clearly emerges, knowledge and 
information are interlinked concepts; however it would be incor-
rect to refer to the learning activity (independently of the kind 
of knowledge we are referring to) simply as the accumulation of 
information.
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Knowledge and Information

As recognized by many scholars, knowledge diff ers substan-
tially from information (see, among many others, Foray 2004; 
Steinmueller 2002). However, Ancori et al. observed how the neo-
classical approach of economics adopts a vision that ‘allows the 
reduction of knowledge to information, or more precisely allows 
knowledge to be considered a stock accumulated from interaction 
with an information fl ux’ (Ancori et al. 2000, p. 259). In a typical 
neoclassical fashion the universe can be described by a fi nite set of 
states to which probabilities can be assigned (Laff ont 1989). In this 
view: ‘[k]nowledge improves when the probability of a particular 
state is estimated more accurately’ (Foray 2004, p. 4). Hence, knowl-
edge is assimilated to information upon a vector of probability 
related to a predetermined set of states.

This view has recently come under criticism as it does not allow 
such important concepts as learning and cognition (Foray 2004). As 
maintained by several scholars, knowledge and information should 
be considered as two distinct concepts: the latter taking the form 
of structured data which can be easily transferred through physi-
cal supports, and the former involving cognition (see, for instance, 
Steinmueller 2002; Forero- Pineda and Salazar 2002; David and 
Foray 2002).

In Howells’s view:

knowledge can be defi ned as a dynamic framework or structure from 
which information can be sorted, processed and understood . . . 
Knowledge is therefore associated with a process that involves cogni-
tive structures which can assimilate information and put it into a wired 
context, allowing actions to be undertaken from it. (Howells 2002, p. 
872)

Hence, knowledge is generated through a cognitive process within 
which information is articulated with other information. This 
process, which we can label ‘learning’, allows actors to undertake 
actions which require the use of the acquired knowledge.

The full meaning of this distinction becomes clearer – maintains 
Foray – when one looks at the diff erences between the reproduction 
processes of knowledge and information: while the cost of repro-
ducing information amounts solely to the physical cost of making 
a copy (for example the cost of a photocopy, the cost of duplicating 



 Knowledge economy: old and new issues 11

an electronic fi le, and so on), the cost of reproducing knowledge is 
much higher as it involves a cognitive process in order to disarticu-
late knowledge, transfer it to someone else, and rearticulate it for 
further use (Foray 2004). ‘Knowledge reproduction has therefore 
long hinged on the “master–apprentice” system (where a young 
person’s capacity is moulded by watching, listening, and imitating) 
or on interpersonal transactions among members of the same pro-
fession or community of practice’ (Foray 2004, p. 4). Hence, repro-
ducing knowledge involves an intellectual activity (based upon the 
direct interaction between the senders and the recipients), whereas 
 reproducing information simply involves duplication.

Saviotti (1998, 1999) takes a similar stand when he says that 
information is of a factual nature, whereas knowledge establishes 
generalizations and correlations between variables. Factual infor-
mation, maintains Saviotti, has nothing to do with meaning: in a 
fi rm, for instance, ‘economically relevant types of information will 
be those required to describe the organisation itself, that is the types 
of human resources, capital equipment, etc., used (internal infor-
mation), or those required to describe the external environment 
of the fi rm (external information)’ (Saviotti, 1999, p. 126). On the 
contrary, in Saviotti’s view, knowledge should be seen as a corre-
lational structure: each piece of knowledge establishes correlations 
over some variables and over particular ranges of their values. This 
implies that knowledge has a local character, the degree of which 
can be measured by the number of variables involved and by the 
degree of correlation linking these variables. Given the local nature 
of knowledge, this implies that some information can be understood 
only in the context of a given type of knowledge: ‘For example, the 
condition to be used and the sequence of operations to be followed 
in order to prepare a particular composite material can only be 
understood by someone who knows some macromolecular chemis-
try and physics.’ (Saviotti 1999, p. 126). Hence, knowledge plays a 
crucial role in understanding and using information, which without 
suffi  cient prior knowledge, remains useless or inadequate for any 
economic application.2

Tacit and Codifi ed Knowledge

After having assessed the existence of a clear distinction between infor-
mation and knowledge, we can further elaborate on the  defi nition of 



12 Knowledge diff usion and innovation

knowledge itself. As mentioned above, knowledge has to be articu-
lated in order to be transferred. This is because knowledge is, in its 
original form, completely embedded in the mind of the person who 
fi rst developed it. In other words, we could say that knowledge is 
originally created as tacit: ‘[t]ypically, a piece of knowledge initially 
appears as purely tacit – a person has an idea’ (Cowan and Foray, 
1997, p. 595); subsequently this tacit knowledge can be codifi ed by 
means of a cognitive process which involves its articulation.

Before reasoning on the codifi cation process, we need to clarify 
better what tacit knowledge is. Rosenberg defi nes tacit knowledge 
as: ‘the knowledge of techniques, methods and designs that work in 
certain ways and with certain consequences, even when one cannot 
explain exactly why’ (Rosenberg 1982, p. 142). A similar defi nition 
is provided, in the same year, by Nelson and Winter in their seminal 
work on organizational routines and technological change. According 
to the authors: ‘[t]he knowledge that underlines skilful performance 
is in large measure tacit knowledge, in the sense that the performer is 
not fully aware of the details of the performance and fi nds it diffi  cult 
or impossible to articulate a full account of those details’ (Nelson and 
Winter, 1982, p. 73). This does not imply, for some authors, that tacit 
knowledge and skills are the same. As observed by Senker: ‘[s]kill 
implies knowing how to make something happen; it involves cogni-
tion but also other aspects such as manual dexterity or sensory ability’ 
(Senker 1993, pp. 209–10). Whereas the acquisition of tacit knowledge 
is exclusively a perceptual, cognitive process.

Note that these defi nitions do not diff er from the original idea of 
tacit knowledge introduced by Polanyi (1967). The tacit dimension 
of knowledge corresponds, in the view of the Hungarian polymath, 
to the form or component of human knowledge distinct from, but 
complementary to, the knowledge explicit in conscious cognitive 
processes. In Polanyi’s view, we know more than we can tell, where 
the portion of knowledge possessed and not communicable is the 
essence of tacitness.3

However, in diff erent moments in time and across diff erent indi-
viduals, a diff erent proportion of knowledge will be tacit and a dif-
ferent proportion will be codifi ed. Hence, tacitness is a contextual 
rather than an absolute situation, this depending explicitly on the 
process of codifi cation to which we shall now refer. Saviotti observes 
that: ‘codifi cation amounts to the gradual convergence of the sci-
entifi c community and of other users on common concepts and 
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defi nitions (standardization) and on common contents and theories 
(selection)’ (Saviotti 1998, p. 848). Similarly, Cowan and Foray 
noted how ‘as the new knowledge ages, it goes through a process 
whereby it becomes more codifi ed. As it is explored, used and better 
understood . . . more of it is transformed into some systematic form 
that can be communicated at low cost’ (Cowan and Foray 1997, 
p. 595). The relevance of codifi cation for economic purposes has 
been widely debated. The core argument put forward is that codi-
fi ed knowledge, when compared to tacit, can be transferred more 
easily, more quickly and at lower costs. Cowan et al. (2000) argued 
in favour of codifi cation stating that uncodifi able (unarticulable) 
knowledge is not very interesting for social science. This stance is 
criticized by Johnson et al. (2002) who contest the view that codifi -
cation always represents progress. According to these authors, tacit 
knowledge is a relevant component in human training, including the 
kind of training provided in institutions such as schools, universities 
and research institutes: ‘[I]f all important knowledge was in a codi-
fi ed form, training arguably could rely on abstract modelling, and 
the direct face- to- face interaction could be substituted by e- learning 
and electronic networks connected to external users of knowledge’ 
(Johnson et al. 2002, p. 249).

This statement of Johnson et al. introduces a key point for us in 
the debate: tacit and codifi ed knowledge fl ow in very diff erent ways. 
Specifi cally, once codifi ed, knowledge can be stored in a mechanical 
or technological way, as in manuals, textbooks or digital supports; 
it can be transferred from one person to another relatively easily, 
incurring the eff ort of getting access to the source of codifi ed knowl-
edge and decoding it for further use. In this respect, as observed by 
Steinmueller (2000), the context and intended recipient of the decod-
ifi ed knowledge makes a great deal of diff erence to the costs and 
feasibility of the initial codifi cation.4 However, if appropriately codi-
fi ed (that is, codifi ed keeping in mind the intended recipient), knowl-
edge can be easily transferred, also taking considerable advantage 
of modern information and communication technologies. On the 
contrary, ‘[d]iff erent methods like apprenticeship, direct interaction, 
networking and action learning that include face- to- face social inter-
action and practical experiences are more suitable for  supporting the 
sharing of tacit knowledge’ (Haldin- Herrgard 2000).

Haldin- Herrgard identifi es fi ve main diffi  culties associated with 
tacit knowledge fl ows, related to perception, time, value, language 
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and distance. Perception refers to the characteristic of unconscious-
ness which entails a problem of people not being aware of the full 
range of their knowledge (Polanyi 1958). The time issue refers to the 
fact that the internalization of tacit knowledge takes a long time as it 
involves direct experience and refl ection on these experiences. Value 
is contentious as many forms of tacit knowledge, such as intuition 
and rule of thumb, have not been considered valuable, lacking the 
status of ‘indisputable methods’. Diffi  culties with language lie in 
the fact that tacit knowledge is held in a non- verbal form and hence 
involves extra eff ort to be shared; moreover, it has been observed 
that its context- specifi c nature makes it spatially sticky, since two 
parties can only exchange such knowledge eff ectively if they share a 
common social context, and thus important elements of this social 
context are defi ned locally (Gertler, 2003, p. 79). Finally, the issue of 
distance relates to the need for face- to- face interaction for the diff u-
sion of tacit knowledge: since tacit knowledge is best acquired expe-
rientially it is with diffi  culty exchanged over long distances (Gertler 
2003, p. 79). These diffi  culties pave the way to what could be labelled 
the ‘geography of knowledge’ debate which will be addressed in the 
next section.

KNOWLEDGE AND GEOGRAPHY

As already mentioned, modern economies must cope with a growing 
globalization process which changes the competitive environment 
substantially, requiring fi rms to redesign their competitive advan-
tage and reposition themselves in globalized markets. In light of 
these changes some researchers have argued that globalization 
renders the signifi cance of location for economic activity increas-
ingly irrelevant (O’Brien 1992; Cairncross 1997). However, this 
opinion is not shared by many scholars who, from diff erent points of 
view, argue that globalization actually increases rather than reduces 
the importance of location, that it endorses economic uniqueness, 
and that local clusters become increasingly relevant in the promotion 
and diff usion of innovations (Krugman 1996; Porter 1998; Fujita et 
al. 1999). In the words of Porter (1998, p. 90):

in a global economy – which boasts rapid transportation, high speed 
communications and accessible markets – one would expect location 
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to diminish in importance. But the opposite is true. The enduring com-
petitive advantages in a global economy are often heavily localized, 
arising from concentrations of highly specialized skills and knowledge, 
 institutions, rivalry, related businesses, and sophisticated customers.

Following this line of reasoning we shall argue, along with many 
scholars, that tacit knowledge is a key determinant of the geographi-
cal concentration of innovative activity, since its prominent role in 
the process of learning by interacting tends to reinforce interpersonal 
and localized relations. At the same time innovation is increasingly 
based on the interactions and knowledge fl ows between economic 
entities such as fi rms (customers, suppliers, competitors), research 
organizations (universities, other public and private research insti-
tutions), and public agencies (technology transfer centres, develop-
ment agencies), which occur mainly locally (Gertler 2003, p. 79). For 
a growing number of scholars, this explains both the perpetuation 
and deepening of geographical concentration in a world of expand-
ing markets (Gertler 2003, p. 76), as well as the spatial concentra-
tion of research and development activities in the home base of the 
innovating fi rms – defi ned as an important case of non- globalization 
(Pavit and Patel 1991).

The question at stake is why tacit knowledge remains spatially 
sticky in a globalized world characterized by increasingly cheaper 
and pervasive diff usion of communication technologies. A fi rst 
answer relates to the very nature of tacit knowledge. As discussed 
above, several authors maintain that knowledge in its tacit form 
can be eff ectively exchanged only by means of direct face- to-
 face encounters. In a nutshell, tacit knowledge could be defi ned as 
‘person- embodied, context- dependent, spatially sticky and socially 
accessible only through direct physical interactions’ (Morgan 2004, 
p. 12). Some scholars maintain that these features of tacit knowl-
edge help to explain the apparent paradox of phenomena such as 
the ‘economically successful industrial clusters in an age in which 
new telecommunication systems facilitate the transfer of ever more 
complex sets of knowledge at an ever- increasing rate’ (Pinch et al. 
2003, p. 375).

Nonetheless, the debate over present and future trends is still 
open. As observed by Haldin- Herrgard (2000), high technology 
facilitates tacit knowledge diff usion in artifi cial face- to- face inter-
action, through diff erent forms of meetings in real time, using, for 
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instance, audio and video conferences. This perspective is shared 
by other scholars; in a recent paper Brökel and Binder stated, for 
instance, that: ‘[n]ew information technologies, for example, video 
conferences, cast doubt on the advantages of face- to- face contacts’ 
(Brökel and Binder 2007, p. 154).

A second, and perhaps stronger, answer relates to the importance 
of trust among subjects exchanging knowledge if genuine learning 
is to occur (Collins 2001; Nonaka and Takeuchi 1995). Scholars 
emphasize that in interactions amongst fi rms, trust has a two- way 
nature that can be considered a relational asset. It is more likely 
to develop where the participants are engaged in several encoun-
ters, meaning that ‘the shadow of the future’ looms larger over the 
present (Axelrod 1984; Morgan 2004). ‘This provides a context for 
reciprocity: a good deal for informal know- how trading takes place, 
even among rival fi rms, precisely because of the expectation of the 
information which A provides B today will be reciprocated in kind 
tomorrow’ (Morgan 2004, p. 8). This idea, fi rst introduced by von 
Hippel (1987), leads to the conclusion that mutual trust and reci-
procity are easier to sustain in the context of geographical proximity 
(Malmberg 1997).

From this perspective, tacit knowledge is considered to be context-
 dependent: ‘being facilitated by a common language, cultural and 
value system. Codifi able knowledge, by contrast, can be expressed in 
various forms, and rapidly disseminated through various geographi-
cally dispersed user communities’ (Pinch et al. 2003, p. 375). Along 
this line of reasoning, Maskel and Malmberg (1999) coin the concept 
of ‘ubiquitifi cation’ of knowledge. By means of codifi cation, ‘many 
previously localized capabilities and production factors become 
ubiquities. What is not ubiquifi ed, however, is the non- tradable/ 
non- codifi ed result of knowledge creation – the embedded tacit 
knowledge that at a given time can only be produced in practice’ 
(Maskell and Malmberg 1999, p. 172).

This recontextualization of tacit knowledge opens up to a new 
specifi cation of proximity. If the diff usion of tacit knowledge is facil-
itated by a ‘shared language’ (Burns and Stalker 1961) or, as put by 
Dosi and Marengo (1994), by a ‘shared cognitive framework’, then 
there is room to believe that tacit knowledge dissemination is subject 
to organizational or relational proximity more than to physical or 
geographical proximity. In a similar fashion Breschi and Lissoni 
(2003) refer to this kind of proximity as ‘social distance’: a tight 
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social connection facilitates learning among subjects. Hence, knowl-
edge diff usion is not only a geographically spatial phenomenon, it is 
also a socially spatial phenomenon. So space matters for knowledge 
diff usion, and social space may matter as much as or more than 
 geographic space (Cowan 2004, p. 3).

However, the view which juxtaposes relational proximity on the 
one hand with geographical proximity on the other has come under 
criticism of being:

a form of spatial fetishism which . . . lies in the assumption that there is 
something called geographical proximity which does not involve rela-
tional proximity, implying that the social interactions which constitute 
local actions are somehow natural, primordial or automatic, when in 
fact they have to be actively constructed like any other relational asset, 
whatever the spatial scale. (Morgan 2004, p. 11)

In other words, relational proximity, far from being a substitute for 
geographical proximity, should be considered as a complementary 
and reinforcing element of it.

This idea lies at the heart of the learning region approach. 
According to the regional economic geography, planning and inno-
vation systems literature (see Florida 1995; Asheim 1996; Morgan 
1997; Cooke and Morgan 2000; Maskell and Malmberg 1999; 
Lundvall and Maskell 2000), tacit knowledge is not well suited to 
fl ow between distant spatial locations. It is argued that face- to- face, 
local interaction remains important for establishing trust between 
partners, enabling mutual understanding, and more eff ectively 
 facilitates fl ows of tacit knowledge.

KNOWLEDGE FLOW PATTERNS

As it emerges from the discussion conducted so far, the distinction 
between tacit and codifi ed knowledge lies at the very heart of the 
problem of understanding knowledge fl ow and innovation patterns. 
However, in our view, the existing literature has neglected to clas-
sify the diff erent ways in which knowledge can fl ow between agents. 
This has created some confusion and has generated a misuse of spe-
cifi c concepts. To help clarify the material reviewed in this section, 
following Morone and Taylor (2008), we present a taxonomy of 
 knowledge fl ows classifying the diff erent forms of sharing patterns.
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Knowledge Gain vs Knowledge Diff usion

We start our analysis by distinguishing between the two broad con-
cepts of knowledge gain and knowledge diff usion. The fi rst relates, 
in our view, solely to those processes of knowledge fl ows which 
deliberately involve a barter among subjects: a portion of subject 
A’s knowledge fl ows to subject B, who pays her back either with a 
portion of her knowledge or in a diff erent way.

We shall refer to the fi rst of these two options (that is, knowledge 
is paid back with other knowledge) as knowledge exchange, and 
to the second option (that is, knowledge is paid back with a diff er-
ent coin) as knowledge trade. An example of knowledge exchange 
has been used by Cowan and Jonard who defi ne a model in which 
knowledge fl ows ‘through barter exchange among pairs of agents’ 
(Cowan and Jonard 2004, p. 1558).5 Patterns of knowledge trade, on 
the other hand, relate for instance to those cases where disembodied 
knowledge fl ows through technology and patent trades (Arora et al. 
2002).

Note that knowledge gain relates to both tacit and codifi ed knowl-
edge. Codifi ed knowledge can fl ow among distant agents, whereas 
tacit knowledge gains require always a direct interaction (that is, 
face- to- face) between agents.

Substantially diff erent is the concept of knowledge diff usion. Here 
knowledge is no longer traded on a voluntary basis (quid pro quo), 
but freely fl ows while agents interact. Several scholars have referred 
to this process as knowledge spillover (Jaff e 1986), or knowledge 
percolation (Antonelli 1996). The common idea behind these defi -
nitions is that knowledge fl ows freely, within a specifi c space, and 
can be economically exploited by the recipient agent. The kind of 
knowledge being spilled over is tacit in nature, and requires some 
‘absorptive capacity’ to be eff ectively recombined in the cognitive 
framework of the recipient agent.6

This defi nition, however, is still vague as it does not really describe 
how knowledge actually fl ows across agents, nor how it is recom-
bined with the existing knowledge of the recipient. We shall suggest 
a decomposition of the knowledge diff usion concept into three sub-
categories: knowledge spillover, knowledge transfer and knowledge 
integration.
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Decomposing Knowledge Diff usion

Knowledge integration refers to a process which combines dispersed 
bits of knowledge held by individuals to be applied in a coordinated 
way, and only on a temporary basis. On the contrary, knowledge 
spillover and knowledge transfer denote two similar processes in 
which bits of knowledge conveyed from one agent to another are 
such that the recipient can absorb them into her/his already existing 
personal knowledge (that is, there is learning, hence some previously 
acquired related knowledge is required); the only diff erence between 
these two processes being that spillovers are unintended processes 
of knowledge diff usion (for example while chatting with colleagues) 
whereas knowledge transfer requires a defi ned will (for example 
while jointly working on a project).7

Knowledge transfers and knowledge spillovers are the most cited 
typologies of knowledge diff usion patterns (see, for instance, Morone 
and Taylor 2004a; van der Bij et al. 2003; Cabrera and Cabrera 2002; 
Hansen 1999; Szulanski 1996). However, these mechanisms present 
some disadvantages: they are expensive and often time- consuming 
and they off set the specialization of employees needed for innova-
tion as they both assume that individuals absorb diverse specialized 
knowledge by means of face- to- face encounters (Demsetz 1991). In 
fact, here we are posing a question of depth of knowledge versus 
breadth of knowledge; as suggested by Grant: ‘[d]ue to cognitive 
limits of the human brain, knowledge is acquired in a highly special-
ized form . . . However, production – the creation of value through 
transforming input into output – requires a wide array of knowledge, 
usually through combining the specialized knowledge of a number 
of individuals’ (Grant 1996, p. 377). The possibility to integrate 
knowledge without having to acquire it might provide a solution 
to these drawbacks. In light of these arguments, Grant asserts that 
integration of specialized knowledge is at the heart of production in 
a knowledge- based society.

But how does integration occur? In a recent paper Berends et al. 
(2006) examined knowledge integration in industrial context and 
elaborated the concept of ‘thinking along’, that is, a mechanism 
that allows for knowledge integration without the need for trans-
fer. More precisely, thinking along is the process whereby an agent 
applies knowledge temporarily to a problem of somebody else and 
communicates the generated ideas to that other person. Hence, it 
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involves a temporary cognitive work with regard to a problem of 
someone else.

Interestingly, the concept of knowledge integration does not 
involve any permanent fl ow of knowledge from subject A to subject 
B in the conventional sense. We consider it an ‘atypical’ form 
of knowledge diff usion. Knowledge integration is an important 
catalyst for knowledge fl ow – though unpredictable – generating 
insights and unsticking the workfl ow. Moreover it is itself a form of 
 meta- knowledge (that is, knowledge about knowledge) fl ow.

Now, recombining the analysis developed in this section, we shall 
propose a taxonomy of knowledge fl ow processes. Figure 2.1 shows 
a taxonomy of concepts emerging from an analysis of the knowledge 
fl ows literature. At the top level in the hierarchy are knowledge gain 
and knowledge diff usion which we classify as distinct phenomena of 
fl ows. Knowledge exchange and trade are subclasses of knowledge 
gain, whereas knowledge spillover, transfer and integration are 
derived from a decomposition of knowledge diff usion.

Not only does this analysis provide a background for comparing 
studies of knowledge fl ows, but in doing so it highlights diff erent 
assumptions about governance and control of knowledge. In the 
case of knowledge gain one assumes the functionality, as well as the 
ability, of locking fl ows in a rigidly controlled domain of knowledge. 
The strategy is to maximize the pay- off  of current knowledge assets 

(b1) Knowledge spillover

(b2) Knowledge transfer

(b3) Knowledge integration

(a) Knowledge gain

(a1) Knowledge exchange

(a2) Knowledge trade

(b) Knowledge diffusion

Figure 2.1 A proposed taxonomy of knowledge fl ows
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and obtain a fair value in exchange. The drawback of this approach 
is that over the long term it tends to stifl e creativity and dimin-
ish diversity in production of new knowledge and recombination 
of existing knowledge. The opposite strategy is the promotion of 
largely uncontrolled diff usion, where value is often derived from the 
outcomes on a larger scale: the generation and exploitation of whole 
new economic areas, and the impact this has on the opportunities 
and constraints for the organization.

Indeed, in discussing the fl ows between individual units of the 
knowledge economy it is important not to forget macroeconomic 
features arising from the specifi c structures. Knowledge dynam-
ics can be conceived of as systemic outcomes and patterns based 
on the interplay and aggregation of fl ows, and therefore involving 
scaling up towards large systems of interacting agents and across 
longer temporal frames. Specifi c fl ows can be used in explaining 
the performance of the knowledge economy, its distributional out-
comes (for example equality), innovation and adoption patterns (of 
 codifi cation supports for example).

CONCLUSIONS AND NEW CHALLENGES FOR 
RESEARCHERS

The main objective of this chapter has been to introduce the reader 
to several issues related to knowledge economy. We have done so 
by presenting a review of recent studies on knowledge, arriving at 
some defi nitions of terms in the knowledge economy fi eld. As it has 
emerged, knowledge is indeed a key input for innovation; however, 
from a theoretical point of view, much eff ort is needed to capture its 
role in innovating activities due to the complex nature of learning 
processes.

In the area of knowledge fl ows several diff erent types of modelling 
have been used. Conceptual modelling ranging from organizational 
models (often used to focus on company activities) to taxonomic 
models (such as the one presented above) are found. Mathematical 
modelling can be used to determine solution states and optimization 
behaviours. On the other hand, simulations are promising tools with 
which to investigate knowledge fl ows because they can express the 
dynamics in a model. There is no standardized way of modelling, 
despite the nowadays widespread use of computers and simulation. 
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Computational approaches can be quite complicated, involving 
many model components and parameters that need to be calibrated. 
Various aids – mathematical notation, set theory, logical forms, fl ow 
diagrams, decision trees – are often used to stage between a verbal 
description of modelling concepts and the computer code of the 
implementation.

In the next chapter we will present a survey on models of knowl-
edge fl ows, departing from earlier works on new technology adop-
tion (the so- called epidemic models), reaching later studies which 
make use of game- theoretical tools, and concluding by reviewing 
 increasingly complex simulation models.

The role of formal modelling and simulation is to allow explora-
tion of the hypotheses embodied in the program over a range of dif-
ferent conditions. As we will discuss in the second part of this book, 
models can be, to a greater or lesser degree, based on empirical data 
on knowledge fl ows. Although measurement is often problematic 
(we will discuss the measurement issue in Chapter 5), eff orts to 
improve the empirical basis of modelling are key to the increasing 
sophistication of recent knowledge diff usion models. When this 
improvement or ‘model validation’ step is done as part of itera-
tion with model design and simulation experiment, it can open the 
opportunity for dialogue between modeller and empirical analyst 
or expert. This leads to describe a second – and equally important – 
role of modelling: to improve the clarity of conceptual models and 
help the modeller to arrive at a more rigorous conceptualization. 
We shall address the issue of model validation in Chapter 6, where 
a methodological discussion on applied and theoretical modelling is 
presented. Finally, in Chapter 7 we will present a model validation 
exercise.

NOTES

1. We will get back to the link between knowledge and innovation in Chapter 3 and 
Chapter 4 where we will fi rst present a survey on the existing literature, and sub-
sequently an agent- based simulation model.

2. We revisit the distinction between knowledge and information in the next chapter, 
where we will address the issue of knowledge as a complex phenomenon.

3. It should be mentioned that knowledge is rarely completely tacit or completely 
codifi ed. In most cases, a piece of knowledge can be placed somewhere in a range 
that stretches from the completely tacit to the completely codifi ed.

4. To grasp this concept, one may think of the diff erence in codifying economic 
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notions for undergraduate and postgraduate students. Indeed, given the diff erent 
intended recipients, the same notions will be codifi ed in rather diff erent ways, 
entailing diff erent kinds of eff ort.

5. We will come back to Cowan and Jonard’s (2004) model of knowledge exchange 
in Chapter 3.

6. Note that the diff usion process here defi ned means that knowledge is a non- rival 
and relational asset (that is, an asset the use of which by one agent does not 
prevent a simultaneous use by other agents and the diff usion of which is based on 
reiterated personal interactions). These characteristics have been widely discussed 
in the literature (see, among many others, Nelson 1959; Arrow 1962; Axelrod 
1984; von Hippel 1987). Some authors have referred to this as knowledge being a 
club good (see, for instance, Breschi and Lissoni 2001).

7. On this issue see Brökel and Binder (2007). According to the authors: ‘Intended 
knowledge transfers are when actors actively seek knowledge (‘search’). 
Unintended knowledge transfers might be considered as an individual “stum-
bling upon” knowledge, for example, while visiting a trade fair or listening to a 
 presentation’ (2007, p. 155).
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3.  Modelling knowledge and its 
diff usion patterns: a pathway 
towards complexity

The basic assumptions of most neoclassical economic models are 
perfect information and homogeneous technology. These imply 
that all economic agents (for example producers) possess at any 
moment in time the same identical information upon available tech-
nologies and produce with the same production function.1 From 
these hypotheses it follows that information, which in this context 
encompasses knowledge, is a public good (that is, non- rival and non-
 excludable) freely available to all in the economy. However, these 
assumptions have failed empirical tests. Jaff e et al. (1993) showed 
quite clearly that knowledge spillovers (measured by patents cita-
tions) are geographically localized and that geographic localization 
fades over time very slowly. This implies that the diff usion process 
of knowledge follows specifi c patterns and is not at all an automatic 
and instantaneous process.2

In this chapter several knowledge diff usion models are presented, 
commencing with models in which the diff used knowledge is equated 
with information about new technology (that is, innovation), and 
proceeding to review more recent models where knowledge is 
 considered and modelled as a complex concept.

REVIEWING INNOVATION DIFFUSION 
MODELS

As discussed in Chapter 2, most of the learning processes occur among 
neighbouring agents, given that knowledge is, at least to some extent, 
persistently and inherently local in nature. Pioneering studies on 
diff usion investigated the patterns through which new technologies 
are adopted and spread in social systems (see, for instance, Rogers 
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2003 [1962]; Hägerstrand 1967; Casetti and Semple 1969; Bernhardt 
and MacKenzie 1972; Sahal 1981). Such investigations could be 
considered the fi rst studies on knowledge diff usion, considering the 
underlying hypothesis that a new technology diff uses when suffi  cient 
information on the characteristics of the new technology spreads 
from earlier adopters to later adopters. Hence, the technology diff u-
sion process resembles the underlying knowledge/information diff u-
sion dynamic. Reversing the argument, since new technologies can 
be adopted when suffi  cient information is available: ‘one is likely to 
learn a lot about the time path of technology diff usion by studying 
the spread of information about it’ (Geroski 2000, p. 604).

However, some empirical studies found a lag of several years 
between the date when farmers learned of the existence of new tech-
nologies and the date when they adopted it. Slicher van Bath (1963, 
p. 243) observed that: ‘land tilled in very ancient ways lay next to 
fi elds in which crop rotations were followed’. In other words, as put 
by Geroski: ‘[s]ometimes it seems to take an amazingly long period 
of time for new technologies to be adopted by those who seem most 
likely to benefi t from their use’ (Geroski 2000, p. 604). These fi ndings 
suggest that technology diff usion is not just a process of spreading 
news, but rather it involves persuasion.3

Rogers, in his seminal study on diff usion of innovations, proposed 
an interpretative model of innovation diff usion articulated into fi ve 
stages: knowledge, persuasion, decision, implementation and confi r-
mation. Consequently, innovators follow a specifi c pathway towards 
adoption: (1) a preliminary need for acquisition of adequate knowl-
edge of an innovation; (2) which will help them in forming an attitude 
toward the innovation; and (3) decide whether to adopt or reject 
it. Hence, adopters will (4) put the new idea into use; and (5) seek 
reinforcement of the innovation decision already made; however, in 
this last phase adopters may reverse this previous decision if exposed 
to confl icting messages about the innovation (Rogers 2003 [1962], 
p. 169). Therefore, knowledge spread is a necessary condition in 
Rogers’s view; yet it is not suffi  cient to determine the diff usion of an 
innovation.

Epidemic Models

A class of technology diff usion models are the ‘epidemic models’.4 
We shall distinguish between broadcasting and word- of- mouth 
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 epidemic models. The fi rst subclass refers to a model where the 
source of knowledge upon the existence and/or characteristics of 
the new technology is external and reaches all possible adopters 
the same way (broadcasting or external- infl uence diff usion model); 
whereas the second subclass refers to a model in which knowledge 
is diff used by means of personal interactions (word- of- mouth or 
internal- infl uence diff usion model).5

Let us defi ne a population of N potential adopters of the new tech-
nology. Each potential adopter will switch to the new technology as 
soon as he/she hears about its existence (hence, technology diff usion 
overlaps completely with information diff usion). We shall defi ne g(t)  
as the coeffi  cient of diff usion (that is, the probability that at time t 
a new subject will adopt the new technology), which might or might 
not be a function of the number of previous adopters.

In the broadcasting model g(t)  is set equal to a constant param-
eter: g(t) 5 a with (0 , a , 1), which can be considered the strength 
of the broadcasting signal or, alternatively, the infection probability. 
Let us defi ne N (t)  as the cumulative number of adopters at time t. 
The increase in adopters for each period will be equal to the prob-
ability of being infected multiplied by the current population of 
non- users (that is, the number of agents who are still not using the 
new technology). Formally we can write the rate of diff usion at time 
t as:

 
dN(t)

dt
5 a [N 2 N(t) ] (3.1)

which, integrated, gives the cumulative adopter distribution:

 N(t) 5 N [1 2 e2at ] (3.2)

Equation (3.2) is a modifi ed exponential function (with negative 
exponent) of the type described in Figure 3.1;6 the smaller the value 
of a the slower the diff usion process will be and the smaller will be 
the number of users at any time. Note that this particular informa-
tion diff usion process is based on the assumption that: ‘the rate of 
diff usion at time t is dependent only on the potential number of 
adopters present in the social system at time t. In other words, the 
model does not attribute any diff usion to interaction between prior 
adopters and potential adopters’ (Mahajan and Peterson 1985, pp. 
16–17). As observed by Geroski: ‘[t]his kind of model of information 
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diff usion is not an implausible story of how people become aware 
of a new yoghurt product or news about the fall of the Berlin Wall. 
However, technology adoption often takes an order of magnitude 
longer than it takes for information to spread’ (Geroski 2000, p. 
605). At the heart of the problem is the distinction discussed in 
Chapter 2 between knowledge and information. Although informa-
tion can be transmitted impersonally through a users’ manual, much 
of the knowledge required to use any specifi c technology profi ciently 
is built up from the experience of using it, and at least some of that 
valuable knowledge will be tacit. As a consequence, it must be trans-
mitted from person to person, and cannot be eff ectively broadcast 
from a common source (Geroski 2000, p. 605). Figure 3.1 illustrates 
a broadcasting model diff usion curve.

This distinction leads to the development of a new model which falls 
into the second subclass of epidemic models – that is, those based on 
word- of- mouth diff usion – and which represents a fi rst step towards a 
more accurate defi nition of knowledge.7 As observed above, the basic 
assumption of this model is that knowledge diff uses among agents by 
means of face- to- face interactions. It follows that the probability of 
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receiving the relevant knowledge needed to adopt the new technology 
is a positive function of current users N(t) . Let us defi ne the coef-
fi cient of diff usion g(t)  as bN(t)  with b . 0. Hence, the fundamental 
equation of the rate of diff usion at time t can now be defi ned as:

 
dN(t)

dt
5 bN(t) [N 2 N(t) ] (3.3)

This function can be integrated in order to obtain the cumulative 
adopter distribution function:

 N(t) 5
N

1 1 aN 2 N0

N0
b2bN(t2t0)

 (3.4)

where N(t 5 t0) 5 N0.
The logistic function reported in equation (3.4) traces an S- shaped 

curve (see Figure 3.2) which is consistent with the dominant styl-
ized facts. It captures the diff erent speeds of the diff usion process: 
‘diff usion rates fi rst rise and then fall over time, leading to a period 
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Figure 3.2 Word- of- mouth model diff usion curve
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of relatively rapid adoption sandwiched between an early period 
of slow take up and a late period of slow approach to satiation’ 
(Geroski 2000, p. 604). This means that while usage increases year 
by year over time, it does so more rapidly in the early years after the 
introduction of a new technology than it does after the technology 
has become fairly well established (Geroski 2000, p. 606).

A limitation of this second subclass of models is that it cannot 
explain the diff usion of an innovation from the date it is invented, but 
only from the date when some number, N(t) . 0, of early users have 
begun using it. In fact, as observed by Geroski: ‘word of mouth diff u-
sion processes can only begin to happen after an initial base of users 
has been built up, and, needless to say, the larger is this initial base of 
users, the faster is diff usion’ (Geroski 2000, p. 606). A possible way to 
overcome this problem would be to integrate equations (3.1) and (3.3), 
obtaining a mixed information source model. In such model existing 
non users are subject to two sources of information, and the probability 
of being informed (that is, the coeffi  cient of diff usion) is [a 1 bN(t) ]; 
the resulting equation of the rate of diff usion at time t will be:

 
dN (t)

dt
5 (a 1 bN(t)) [N 2 N(t) ] (3.5)

The cumulative adoption distribution results in a generalized logistic 
curve whose shape is determined by both a and b. This version of the 
epidemic model is indeed the most general and the most widely used 
as it can accommodate the assumption underlying the two models 
just discussed above (Mahajan and Peterson 1985).

Further complications of this model include the defi nition of two 
populations (hence, introducing a degree of heterogeneity among 
agents) which might diff er for their ability to understand the new 
technology. Such complication can be used to mimic a process in 
which b declines over time or a situation in which the total pool 
of potential users, N, is not fi xed but increases over time (Geroski 
2000, pp. 608–9). This helps to overcome a limitation of most epi-
demic models: namely that the infection probability depends upon 
 exogenously determined parameters.

Game- Theoretical Models

Recently, several scholars have developed new game- theoretical 
models which allow for more complicated logic than that behind the 
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basic epidemic model, introducing several sources of heterogeneity. 
Ellison and Fudenberg (1993) developed a model in which agents 
consider the experience of neighbours in deciding which of two tech-
nologies to use. Their work is structured around two simple models 
of the learning environment. First, they consider a homogeneous 
population which reacts identically to the two technologies, with one 
technology being superior to the other; subsequently they introduce 
heterogeneous agents which consider the two technologies in diff er-
ent ways. In the fi rst case the issue is whether the better technology 
will be adopted, while in the second case the question is whether the 
two technologies will be adopted by the appropriate players. In both 
environments agents use exogenously specifi ed ‘rules of thumb’ that 
ignore historical data but might incorporate a tendency to use the 
more popular technology. Under this condition, the outcome of their 
work suggests that ‘even very naïve learning rules can lead to quite 
effi  cient long- run social states’, but adjustment can be slow when a 
superior technology is fi rst introduced (Ellison and Fudenberg 1993, 
p. 637).

In a subsequent paper (Ellison and Fudenberg 1995), the authors 
focused their attention on the patterns of information exchange, 
studying the way in which word- of- mouth communication con-
tributes to the aggregation of individual agents’ information. They 
defi ned a non- strategic environment composed of homogeneous 
agents which face the decision of choosing one of two products. 
Their fi ndings show how: ‘despite the naïve play of individuals, this 
type of information fl ow may lead to effi  cient learning on the social 
level, and that social learning is often most effi  cient when communi-
cation between agents is fairly limited’ (Ellison and Fudenberg 1995, 
p. 120).

Bala and Goyal (1995) analysed social learning in an organiza-
tional environment in which agents have a time limited life experi-
ence and heterogeneous beliefs. Departing from the original work of 
Kiefer (1989), they consider the case of a monopolistic fi rm attempt-
ing to calculate its true demand curve. ‘The learning is then one 
in which the sequence of managers learn about the demand curve 
through their own actions as well as the experience of earlier manag-
ers’ (Bala and Goyal 1995, p. 303). In this case again, learning from 
others augments the probability of converging to the set of ex- post 
optimal actions.

Subsequently, Bala and Goyal (1998) investigated the relation 
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between the structure of social networks and learning processes in 
a world where agents learn from currently available social informa-
tion, as well as from past experiences (as opposed to the previous 
works of Ellison and Fudenberg). Their fi ndings show that the struc-
ture of the neighbourhood has important implications for the likeli-
hood of adopting new technologies, for the coexistence of diff erent 
practices, and for the temporal and spatial patterns of diff usion in a 
society. More precisely, they show how neighbourhood structures 
characterized by the presence of locally independent agents (that is, 
agents with non- overlapping neighbourhoods) generally facilitate 
social learning.

A common way of modelling the mechanisms of social learning 
and technology diff usion makes use of evolutionary game theory. 
Several authors examined local interaction games in which each 
person’s pay- off  depends on the actions of his/her neighbours. Most 
of these studies pointed out that local interaction might result in the 
diff usion of personal behaviours in certain dynamic systems. In a 
recent work, Morris (2000) extended this fi nding, linking the occur-
rence of social learning (which he calls contagion) to some qualita-
tive properties of the interaction system such as cohesion, neighbour 
growth, and uniformity. Chwe (2000) modelled social learning as 
dependent on both social structure and individual incentives. In this 
way he obtained a model that he called a ‘local information game’ as, 
he argued: ‘locality is represented by information and not necessarily 
by payoff s . . . Local interaction games make sense for local coor-
dination, such as keeping our street clean; for “big” coordinations 
such as political changes, informational locality is more appropriate’ 
(Chwe 2000, p. 11).

Although game theory allows knowledge diff usion models to over-
come most of the limitations of basic epidemic models (introducing, 
for instance, heterogeneous agents with heterogeneous beliefs; build-
ing social networks in order to avoid the simplifying hypothesis of 
complete mixing of social system members; allowing for diff erent 
innovations occurring at the same time; and so on),8 yet, none of 
these studies goes beyond a binary defi nition of learning. Given a 
new technology, agents can either learn of its existence, and have the 
possibility of adopting it, or stay in their initial state of ignorance 
and not adopt it. However, several classic studies (Arrow 1962; 
Nelson and Phelps 1966; Rosenberg 1982) showed how learning 
from peers can be a much more complicated process which evolves 
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by incremental improvements. In order to take onboard these con-
siderations, new methodologies need to be developed. Specifi cally, a 
higher degree of complexity needs to be incorporated into knowledge 
diff usion models if one wants to study the actual dynamics governing 
learning activities.

KNOWLEDGE FLOW MODELS

In- depth empirical studies have addressed the knowledge diff usion 
process revealing the whole complexity of knowledge- sharing pat-
terns associated with innovating activities. Allen (1983) observed 
that under the conditions prevailing in the nineteenth century techni-
cal knowledge was released relatively freely to actual and potential 
competitors, allowing for cumulative advance. This process, in 
turn, would lead to what he called ‘collective invention’, probably 
the most eff ective source of innovation at the time. Hence, fi rms 
share knowledge to innovate and not, as assumed in the above-
 reviewed literature, knowledge on innovation. This is a crucial 
distinction as it suggests that economists should look at knowledge 
as an input of innovation which can be acquired by direct interac-
tion among agents operating in social systems (even in competitive 
environments). Consequently, the focus of the analysis should shift 
from studying information diff usion patterns to the mechanisms 
 governing  knowledge sharing and its use for innovation purposes.

An important contribution in this direction is provided by the empir-
ical investigation of von Hippel (1988). The author observed know-
 how trading in a variety of industries; such trading activity between 
rivals is defi ned as a general and signifi cant mechanism that innovators 
can use to share (or avoid sharing) innovation- related costs and profi ts 
with rivals. It is essentially a pattern of informal cooperative research 
and development. The know- how notion used by von Hippel is rather 
similar to the notion of tacit knowledge discussed in Chapter 2. In the 
author’s words, know- how is: ‘held in the minds of a fi rm’s engineers 
who develop its products and develop and operate its processes’ (von 
Hippel 1988, p. 76). The way in which such informal trading occurred 
is well described by the author (von Hippel 1988, p. 77):9

[K]now- how trading behavior . . . can be characterized as an infor-
mal trading network that develops between engineers having common 
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 professional interests. In general such trading networks appear to be 
formed and refi ned as engineers get to know each other at professional 
conferences and elsewhere. In the course of such contacts, an engineer 
builds his personal informal list of possibly useful expert contacts by 
making private judgments as to the areas of expertise and abilities of 
those he meets. Later, when Engineer A encounters a diffi  cult product 
or process development problem, A activates his network by calling 
Engineer B – an appropriately knowledgeable contact who works at a 
competing (or non- competing) fi rm – for advice.
 Engineer B makes a judgment as to the competitive value of the infor-
mation A is requesting. If the information seems to him vital to his own 
fi rm’s competitive position, B will not provide it. However, if it seems 
useful but not crucial – and if A seems to be a potentially useful and 
appropriately knowledgeable expert who may be of future value to B – 
then B will answer the request as well as he can and/or refer A to other 
experts. B may go to considerable lengths to help A: for example, B may 
run a special simulation on his fi rm’s computer system for A. At the same 
time, A realizes that in asking for, and accepting, B’s help, he is incurring 
an obligation to provide similar help to B – or to another referred by B – 
at some future time. No explicit accounting of favors given and received 
is kept, I fi nd, but the obligation to return a favor seems strongly felt by 
recipients – ‘. . . a gift always looks for recompense’.

Based on this empirical evidence, scholars have recently attempted 
to develop a new class of theoretical models able to capture the 
underlying complexity of these knowledge transfer mechanisms 
using social networks tools to govern who interacts with whom. 
Such models fall in the class of agent- based simulation models and 
form a whole new way of looking at economic problems. As sug-
gested by Fagiolo et al., agent- based modellers: ‘reject the aprioristic 
commitment of new classical models to individual hyper- rationality, 
continuous equilibrium, and representative agents. Everything in 
the neoclassical world can, in principle, be known and understood’ 
(Fagiolo et al. 2007, p. 255). On the contrary, in agent- based models 
the set of objects in the world (for example techniques of production, 
or products) is unknown, and agents must engage in an open- ended 
search for new objects. This distinction leads to several other diff er-
ences with regards to the types of innovative learning and adaptation 
that are considered, ‘defi nitions of bounded rationality, the treat-
ment of heterogeneity amongst individual agents and the interac-
tion between these individuals, and whether the economic system 
is characterised as being in equilibrium or far- from- equilibrium’ 
(Fagiolo et al. 2007, pp. 255–6). In what follows we will review some 
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recent agent- based models which deal with the problem of knowl-
edge fl ows. Such models will be then classifi ed on the basis of the 
taxonomy developed in Chapter 2.

Modelling Knowledge Exchange through Bilateral Bartering

Cowan and Jonard (2004) develop a model in the framework of 
graph theory. Agents are arranged in one dimensional space, where 
each agent occupies one vertex and may interact with her/his k 
nearest neighbours on either side. Knowledge is of several types, so 
agents’ endowments are represented by a vector. A small number of 
agents are ‘expert’ and are endowed with a high level of knowledge 
in at least one value of the vector. When agents meet, they exchange 
knowledge in a barter arrangement, swapping knowledge of diff er-
ent types. Bartering can only take place if one individual has supe-
rior knowledge of one type and the other individual has superior 
knowledge of another type.10 Knowledge is a non- rival good and can 
be exchanged without decreasing the level of knowledge possessed 
by each trader. Moreover, knowledge transfer is not complete as 
agents possess limited absorptive capacity.11

The dynamics of the model are very simple: each period one agent 
is chosen randomly. At random he/she selects one of his/her direct 
connections, and with that agent makes all possible exchanges. Over 
time, agents’ knowledge endowments change as they interact. The 
main target of this model is to investigate how aggregate knowledge 
levels (measured as the mean knowledge level over all agents) grow 
in such a social system, and how aggregate growth is aff ected by 
network architecture.

To address these questions, the model is simulated using the 
Watts–Strogatz (1998) algorithm to create the networks over which 
knowledge exchange takes place. Initially agents are allocated over 
a regular graph. Subsequently the graph is exogenously modifi ed. 
With a certain (rewiring) probability p, any individual may break off  
the connection with the neighbour and reconnect to a vertex chosen 
uniformly at random over the entire lattice. With probability 12 p, 
this leaves the edge unchanged. Note that when the rewiring prob-
ability is set equal to one the resulting graph is a network with each 
agent being connected to, on average, n randomly chosen agents 
(that is, random network). As the value of p changes, the structure 
of the network changes. By choosing a fairly small value for p, the 
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lattice remains almost regular and highly clustered (that is, with a 
high degree of cliquishness). However, each long- range edge pro-
vides a short cut not only between the two vertices that this link 
connects, but also for their immediate neighbours, the neighbours of 
those neighbours, and so on. Hence, the graph has the low average 
path length of an almost- random graph (the concept of average path 
length introduced here is a measure of the effi  ciency of the model, 
giving the average number of steps required to connect each pair 
of vertices in the lattice). In Figure 3.3 the transition from a regular 
network to a random network is shown.

The simulation exercise developed by Cowan and Jonard on the 
basis of this model leads to some interesting results. Depending on 
the network structure, the model produces a spectrum of states of 
the world varying from a situation of high knowledge inequality and 
fast knowledge diff usion, to the opposed situation, more equal in 
terms of knowledge variance but less effi  cient in terms of knowledge 
diff usion. The small world region is one of high mean and variance. 
As suggested by the authors, this fi nding would suggest some policy 
tension if one considers the link between knowledge distribution and 
wealth distribution. However, the growing variance could be due to 
some scaling eff ect due to the overall increase in the mean knowledge 
level of the system. Cowan and Jonard controlled for this eff ect by 
calculating the relationship between network architecture and the 
equilibrium coeffi  cient of variation of knowledge levels:

This measure tells quite a diff erent story. Normalized dispersion of 
knowledge levels falls in the small world region, suggesting that what is 
lost in terms of increased heterogeneity as measured by the variance is 

Regular Small world Random

p = 0 p = 0.09 p = 1

Figure 3.3  Transition from a regular to a random network, 
dependent on the rewiring probability p
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more than made- up [sic] by an increase in overall knowledge levels. If 
this is an appropriate measure of dispersion, the policy tension between 
effi  ciency and equity dissolves – both are optimized with a small world 
network. (Cowan and Jonard 2004, p. 1565)

Investigating the transition towards the long- run equilibrium 
yields some interesting results. Random networks are character-
ized by small local structures, on the one hand, and short paths 
between agents, on the other hand. However, while diff usion is fast 
during early stages of the history, the process is exhausted at rela-
tively low levels of aggregate knowledge. Regular networks are also 
locally structured although path lengths between agents are long. 
Moreover, while diff usion during early stages is slower, the process 
itself is longer, and reaches a higher aggregate level of knowledge. 
Finally, small world networks enjoy the advantages of both: as 
they have relatively short path lengths, diff usion in early periods is 
relatively fast; moreover, since they are locally structured, exchange 
continues longer than in random worlds (Cowan 2004, p. 13).

A clear implication of the dominance of small world networks 
over random networks is that the average path length ‘is actually 
not an unequivocal measure of the performance of this structure. 
Diminishing the distance between members of an organization or 
economic system by reallocating links does not always improve 
performance: the architecture of links matters or, put another way, 
there is value to cliquishness’ (Cowan and Jonard 2004, p. 1564).

Some explanations of the dominance of small world networks 
may be found in the specifi c trading mechanism employed to 
exchange knowledge. Specifi cally, barter exchange requires always 
that potential traders satisfy a double coincidence of wants: ‘When 
this fails, potentially improving transfers do not take place. Cliquish 
network structures mitigate this problem, because within a clique 
there are typically several indirect but still short paths between any 
two agents’ (Cowan and Jonard 2004, pp. 12–13).

Moreover, when conducting sensitivity analysis of results to 
parameter specifi cation it emerges that the small world results are 
aff ected by absorptive capacity. Redoing the experiment with diff er-
ent values for absorptive capacity shows that the optimal network 
structure becomes more and more random, that is, the optimal 
value of p increases with absorptive capacity. This occurs because 
as absorptive capacity increases, the value of cliquishness falls, and 
thus the relative value of short paths increases.
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Although this study sets a new way of modelling knowledge 
fl ows, the following limitations can be highlighted. First, the knowl-
edge exchange mechanism developed by Cowan and Jonard (2004) 
ignores costs and benefi ts associated to bilateral bartering. Second, 
in the Cowan and Jonard (2004) model there is no attempt to con-
sider situations where the social network structure may change 
through agent behaviour and interaction – that is, a static network 
structure that governs social interactions is overimposed upon 
the system and is exogenously modifi ed. A third limitation is the 
assumption that agents interact on the basis of complete informa-
tion on the level of knowledge of their acquaintances. As a matter 
of fact, it is not in the spirit of the study of knowledge generation 
and diff usion to assume a priori what agents need to learn. In fact, 
as discussed above, knowledge generation and diff usion models are 
rooted in the Nelson and Winter evolutionary approach, which 
rejects the hyper- rationality approach where everything is known 
and clearly understood, building on the concept of bounded ration-
ality according to which agents must engage in open- ended learning 
processes in order to acquire new knowledge and information. A 
further limitation is the adoption of an oversimplifying notion of 
knowledge. Considering knowledge as a number (or as a vector 
of numbers) is indeed a convenient simplifi cation, but restricts our 
understanding of the complex structure of knowledge generation 
and diff usion.

A fi nal point, which however should not be seen as a limitation 
of the above- discussed model, refers to the fact that bilateral barter 
exchange is just one possible way of depicting knowledge fl ows; 
other options have been discussed in the literature (see Chapter 2) 
and are worth modelling. In what follows three further studies which 
attempt to address some of these issues are presented.

Modelling Knowledge Exchange as a Costs and Benefi ts Comparison

The model developed by Cassi and Zirulia (2008) attempts to 
address the fi rst of the fi ve limitations discussed above. Basically, the 
authors develop a model in the framework of the one proposed by 
Cowan and Jonard (2004), but explicitly consider costs and benefi ts 
associated to bilateral barter exchange. They assume that: ‘economic 
agents, while being embedded in social networks, interact with their 
social contacts only if it is convenient for them to do so. In other 
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words, the use of networks can be conceived as an economic choice 
based on cost–benefi t comparisons’ (Cassi and Zirulia 2008, p. 78).

Moving from this observation, the authors develop a model in 
which a population of N rational and self- interested agents, active 
in an exogenously given social structure, can choose between the 
following two learning options: individually, by improving their per-
sonal knowledge; or socially, by interacting and exchanging knowl-
edge with other individuals in their social neighbourhood. Note 
that within each learning episode, the two mechanisms are mutually 
exclusive; hence an economic choice emerges as individuals have a 
limited endowment of time and resources to allocate either to one or 
to the other learning mechanism.

Each of the N agents is located on a static and exogenously deter-
mined graph and is endowed with a vector of knowledge composed 
by K diff erent categories of knowledge. As in Cowan and Jonard 
(2004), agents aim at maximizing the average level of their knowl-
edge in diff erent categories. They do so by acquiring new knowledge 
either by means of face- to- face interaction or by means of individual 
learning: in each period one agent is chosen randomly, and at random 
he/she selects one of his/her neighbours. These two connected agents 
can choose to barter knowledge or engage in individual learning, and 
will always choose the most convenient option. The decision rule 
adopted by Cassi and Zirulia assumes that agents can learn in only 
one category during each period. Moreover, agents are rational but 
myopic, in that they maximize only current period pay- off s. When 
mutually benefi cial barter can occur, the Pareto superior outcome is 
selected (which holds for both the agents involved and the economy 
as whole), in which agents completely exhaust the knowledge trading 
opportunities.

The novelty of this approach rests in the assumption that agents 
operating in a social network balance costs and benefi ts associated 
with both knowledge exchange and individual learning, and make a 
choice between these two alternatives. Hence: ‘[t]he network consti-
tutes an opportunity because it enables an alternative way of learn-
ing to individual one; at the same time, it constitutes a constraint 
because it selects the subset of agents out of the entire population, 
with whom an individual can interact’ (Cassi and Zirulia 2008, p. 
81).12 The authors claim that this modelling approach provides a 
better representation of some stylized facts emerging from empiri-
cal studies on know how trading. Specifi cally, they maintain that 
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their model captures the following three recurrent specifi cities:
‘[f]irst, exchange of knowledge can occur as a barter; second, eff ec-
tive exchange depends on benefi t and cost comparison; third, knowl-
edge exchange occurs between socially connected individuals’ (Cassi 
and Zirulia 2008, p. 99).

Cassi and Zirulia allow for exogenously determined changes in 
the network structure tuning the rewiring probability p as described 
in Watts and Strogatz (1998) and implemented by Cowan and 
Jonard (2004). Hence, the authors confront a regular network with 
a small world network and a random network. Moreover, for each 
network architecture the authors consider diff erent situations associ-
ated to a diff erent opportunity cost of individual learning (they do 
so by varying a parameter associated to the easiness of individual 
learning).

The simulation experiment provides evidence partially contrasting 
with the results obtained by Cowan and Jonard (2004). The small 
world does not emerge as being unambiguously the most effi  cient 
network structure.13 In fact, Cassi and Zirulia observe that for a low 
level of opportunity cost, networks with the lowest average distance 
maximize effi  ciency of knowledge exchange; for an intermediate 
level of opportunity cost, networks with relatively low average dis-
tance and relatively high average cliquishness maximize effi  ciency of 
knowledge exchange; and for a high level of opportunity cost, net-
works with the highest average distance maximize effi  cient knowl-
edge exchange. However, the small world structure does appear 
to be the most equal in terms of knowledge distribution, since the 
knowledge accumulated locally is diff used relatively more quickly 
among the other agents. Therefore, a trade- off  emerges between effi  -
ciency and equity. From this fi nding it follows that the opportunity 
cost of using the network is a key variable determining its optimal 
structure in terms of aggregate performance (Cassi and Zirulia 2008, 
p. 99).

Modelling Knowledge Transfer as Localized Broadcasting

The two models just described saw knowledge fl ows occurring via 
a bilateral barter exchange. A distinct situation exists where agents 
engage in knowledge transfer which is not based on a quid pro quo 
scheme. In this case we refer to pure knowledge diff usion mecha-
nisms and, specifi cally, to knowledge transfer models (see Chapter 
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2). Cowan and Jonard (2003) proposed a model in which a popula-
tion of N agents innovates and accumulates knowledge. Innovation 
is exogenous and equally likely to be undertaken by any agent. 
Knowledge is defi ned as a scalar which evolves over time as the 
agent innovates and receives knowledge diff used by other agents. In 
fact, innovators diff use their knowledge (by means of broadcasting) 
to their neighbouring agents, who receive and (partially) absorb the 
transferred knowledge.14 The population of agents is heterogeneous 
in two respects: ability to innovate and ability to absorb.

As in the two models described above, agents are located on a 
graph which can take the form of a regular network, a random 
network or a small world network (in accordance to the value 
assigned to the Watts–Strogatz rewiring probability p). Moreover, 
along with these three fi xed networks (that is, agent interacts always 
with the same subset of n neighbours) the authors consider a random 
diff usion scheme where each agent broadcasts his/her knowledge 
to n agents chosen at random from the entire population. This 
modifi cation leads the authors to approximate an epidemic model 
of diff usion of the type described in the section above. As put by 
Cowan (2004), comparing this model with the fi xed architecture one 
provides an indication of the value of a fi xed network as a diff usion 
vehicle.

Analysis of the results revealed a key factor to be the magnitude 
of absorptive capacity. When absorptive capacity is low, small 
worlds dominate in terms of long- run knowledge levels. However, as 
absorptive capacity increases, the random world tends to dominate 
more and more strongly.

Absorptive capacity also aff ects the comparison between fi xed 
networks and random, epidemic diff usion. With low absorptive 
capacity, a fi xed network performs better than random diff usion, 
independently from the value of p. On the contrary, if agents’ 
absorptive capacity is high, a random diff usion pattern overper-
forms almost all fi xed networks. Hence, the value of a fi xed network 
comes from the repetition of interaction, which is most valuable 
when conveying knowledge eff ectively takes more than a single 
interaction (Cowan 2004). As put by the authors: ‘[t]he structure 
assists in overcoming the diffi  culties of absorption, and naturally, as 
those diffi  culties diminish [that is, as absorptive capacity increases], 
the value from the structure likewise diminishes’ (Cowan and Jonard 
2003, p. 529).
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Modelling Knowledge Transfer as Face- to- Face Diff usion

Morone and Taylor (2004a) developed a model of knowledge trans-
fer based on the assumption that agents meet in their social network 
and exchange knowledge by means of face- to- face informal interac-
tion. This model represents a further attempt to address some of the 
limitations associated with the Cowan and Jonard (2004) model of 
knowledge exchange discussed above. Namely, the authors tackle 
the static–dynamic network issue and the complete information 
issue, introducing a network structure which changes as a conse-
quence of interactions, based upon a more plausible mechanism for 
forming connections between distant agents, and in which individu-
als build internal models of the expected gain from interactions with 
their acquaintances.

A population of N agents is located on a grid of cells (modelled 
as a wrapped grid so that there are no edge eff ects). Each agent is 
initially assigned a random position in the grid, and interacts with 
her/his closest neighbours. Not all the cells of the grid are occupied 
by agents, and those occupied are occupied by only one agent. The 
initial social network is created by connecting an agent with all other 
agents located within her/his ‘neighbourhood’: the local environment 
is defi ned as the region on the grid that includes those cells adjacent 
in the four cardinal directions and within the agent’s visible range 
(that is, von Neumann neighbourhood structure, see Figure 3.4).

The network evolves as agents get to know about the existence of 
other agents from their neighbours. Information about the existence 
of other individuals is transmitted as follows: if the acquaintance 
selected for interaction is connected to other individuals of whom 
the agent is not aware, then a connection is made from the agent 
to the acquaintance of the acquaintance. If there is more than one 
acquaintance of the acquaintance, then just one of them is chosen 
at random. Thus, an agent’s acquaintances list grows slowly over 
time, introducing a dynamic element to the network topology. 
Each acquaintance has at the outset an associated strength (ranging 
between one and zero) which is a measure of the strength of the 
relationship from the agent to her/his acquaintance. Each time an 
interaction results in knowledge gain, the strength of the relationship 
is incremented.

Agents have preferences for interactions with those acquaintances 
with whom they have strong relations.15 It follows that the  selection 
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mechanism is not based on the assumption that agents have prior 
information about other agents’ knowledge levels, but rather on an 
internal model of preference represented by the strength of relation-
ships. The learning dynamic of the model is quite simple. For each 
period, each agent selects an acquaintance for interaction follow-
ing the criterion described above. Once the contact is activated the 
contacted agent freely passes on some of his/her knowledge to 
the contacting agent. The exact amount of knowledge fl owing from 
the sender to the recipient agent is calculated applying a ‘gain func-
tion’ which stems from a conjectural ‘knowledge diff usion rule’. 
Such a rule is based on the assumption that agents with similar levels 
of knowledge are more likely to have gain interactions than agents 
with dissimilar levels of knowledge and therefore will be more likely 
to interact. More precisely, the knowledge interaction rule allows 
three diff erent situations: (1) if the distance in knowledge between 
the two agents is very high there is low gain from interaction; (2) if 
the distance is intermediate, there is high gain from the interaction; 
(3) if the distance in knowledge is very low, there is again a low level 
of gain.

As argued by the authors, such a rule is theoretically supported 
by the concepts of ‘cognitive distance’ and ‘cognitive proximity’ 

A

Figure 3.4  Von Neumann neighbourhood with visible range equal to 3
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developed by Nooteboom (1999). Cognitive proximity is essential 
for understanding. However, ‘there must also be novelty, and hence 
suffi  cient cognitive distance, since otherwise the knowledge is redun-
dant: nothing new is learned. If we specify eff ectiveness of commu-
nication as the (mathematical) production of communicability and 
novelty, learning is most eff ective at a distance which is neither too 
large nor too small’ (Nooteboom 1999, p. 140).

The results of the model are divided into short- term dynamics 
and a long- term stationary state. Long- term convergence emerges 
as a necessary outcome of the model. Nonetheless, diff erent degrees 
of long- term convergences were generated by the occurrence or not 
of learning exclusion mechanisms. From a theoretical point of view 
such mechanisms can be triggered by the presence of a gain func-
tion with a very low absolute maximum which, in turn, generates an 
‘ignorance trap’ for those agents initially endowed with a very low 
level of knowledge. The authors observed that increasing the initial 
minimum knowledge endowment provided to less knowledgeable 
agents and leaving unchanged the maximum level of knowledge pos-
sessed by most knowledgeable agents (hence, reducing the knowl-
edge gap between agents) reduced the probability of agents falling 
into the ignorance trap.

Also, short- term dynamics showed diff erent behaviours depend-
ing on the initial knowledge gap. In the case in which the knowledge 
gap is relatively large, the population divides into three groups: a 
fi rst group of knowledgeable agents, a second group of catching-
 up agents, and a third group of marginalized agents. Compressing 
the initial knowledge gap the picture changes drastically: nearly all 
agents manage to catch up, reaching the highest possible level of 
knowledge in a relatively short time- frame.

As far as the network architecture was concerned, the authors 
always observed, over the short term, the emergence of small world 
properties. An important implication of these results is that small 
world networks can be associated with high variance in knowledge 
as well as low variance. The key variable to discriminate between 
convergence and divergence in knowledge diff usion is the initial level 
of knowledge variance: if initially agents are endowed with extremely 
diff erent levels of knowledge, even though they live in a small world, 
they are not able to converge towards the highest level of knowledge. 
Some agents quickly reach the highest level of knowledge while 
others (in general, those initially endowed with low knowledge) 
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stay ignorant. On the other hand, if the initial knowledge gap is 
reasonably small (that is, the group is reasonably homogeneous) the 
process of knowledge diff usion quickly converges to the highest pos-
sible level of knowledge. From this fi nding the authors conclude that 
small world architecture can facilitate the equal diff usion of knowl-
edge only if some barriers to communication are initially removed. If 
this is the case, the small world properties speed up the catching- up 
process; otherwise short- term divergence emerges.

The authors conclude that the main fi ndings of their model of 
knowledge transfer relate to the generation of ignorance trap mecha-
nisms which, in turn, produce a vicious circle for those people who 
are initially endowed with low levels of knowledge, and a virtuous 
circle for those endowed with high levels of education. Hence, they 
draw a relevant policy implication suggesting that giving access to 
a minimum level of knowledge to everybody will serve not just as a 
social stabilizer but also as a powerful tool to avoid the occurrence 
of undesired exclusion mechanisms.

SOME CONCLUDING REMARKS

In this chapter we presented a survey of knowledge diff usion studies 
identifying two basic classes of models. A fi rst class assimilates 
knowledge diff usion to innovation diff usion. This approach starts 
off  with pioneering studies on diff usion which investigated the pat-
terns through which a new technology is adopted by a population of 
homogeneous agents and evolved into more sophisticated diff usion 
models which, making use of game theory, accounted for heteroge-
neous agents with heterogeneous beliefs. Such later studies, although 
building on social networks in order to avoid the simplifying hypoth-
esis of complete mixing of social system members and allowing for 
diff erent innovations occurring at the same time, suff ered from a 
conceptual limitation which rests on the dichotomous defi nition of 
learning: agents can either learn of the existence of a new technology, 
and have the possibility of adopting it, or they can stay in their initial 
state of ignorance and not adopt it.

However, learning from peers involves more complex interactions 
and evolves by incremental improvements. In order to take on board 
these considerations a higher degree of complexity needs to be incor-
porated into knowledge diff usion models. This was achieved with a 
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new class of models which used mainly simulation techniques. The 
change of techniques has allowed the exploration of a wider range of 
phenomena through models that are more complex and at the same 
time remove formerly restrictive assumptions and design choices. 
Moving along the path set by this second class of models, in the next 
chapter we will present an agent- based simulation model which pro-
vides an original attempt to establish the complex relations linking 
knowledge sharing patterns, fi rms’ partnering and the innovative 
capability of fi rms.

NOTES

 1. From these assumptions it follows the representative agent hypothesis common 
to most Marshallian models.

 2. As discussed in Chapter 2, to the view of knowledge as a public good it has been 
opposed a view of knowledge as a club good, that is, non- rival and relational 
(the diff usion of which is based on reiterated personal interactions).

 3. This line of reasoning leads some scholars to focus on risk and uncertainty 
rather than on the process by which people become informed about something. 
However interesting, such models of technology diff usion will not be addressed 
in this book as they go beyond the scope of this study. We refer interested 
readers to Paul Geroski’s paper (2000).

 4. The label ‘epidemic models’ refers to the fact that such models were originally 
developed to study the transmission dynamics of communicable diseases.

 5. The following analysis is based on Mahajan and Peterson (1985).
 6. Note that if N(t0 5 0) 5 0, equation (3.2) can be rewritten as 

  ln £ 1

a1 2
N(t)

N
b § 5 at.

 7. These models depart from the seminal work of Zvi Griliches. The author’s PhD 
dissertation, ‘Hybrid corn: an exploration in the economics of technological 
change’ (also published, in a diff erent version, in Econometrica, 1957) is indeed 
the cornerstone of much of innovation diff usion literature.

 8. For a complete description of the main limitations of basic epidemic models see 
Mahajan and Peterson (1985).

 9. Note that this argumentation is tightly related to the discussion developed in 
Chapter 2 on the geographic dimension of knowledge fl ow patterns.

10. Note that this simplifying assumption requires a double coincidence of wants 
within the period, for knowledge exchange to occur. However, as discussed 
above and in Chapter 2, most empirical literature showed how exchange of 
knowledge does not occur simultaneously. Typically, agent I releases a piece of 
knowledge to agent J today because I expects to receive useful knowledge from J 
tomorrow (Cassi and Zirulia 2008, p. 88) or, as put by Morgan (2004), I expects 
to be reciprocated in kind tomorrow.
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11. As observed by Robin Cowan: ‘[a] corollary of this is that as knowledge travels 
along a multi- agent chain, from i to j to k and so on, the knowledge degrades. 
Thus transmitting knowledge over a long chains is costly not only in terms of 
time, it is costly in terms of the diminution of the quantity of knowledge’ (Cowan 
2004, p. 12).

12. Building on this theoretical assumption of the model, the authors claim that their 
model, with respect to the existing literature, locates at an intermediate position 
along the dimension of exogenous vs endogenous networks. As put by the 
authors: ‘[o]n the one hand, we assume the existence of a (social) network that is 
exogenous and time- invariant, and, consequently, independent of agents’ incen-
tives to barter knowledge . . . On the other hand, agents’ choices endogenously 
determine the actual network, which is given by the subset of links that are acti-
vated by agents. This actual network changes over time and clearly depends on 
agents’ incentives to barter knowledge’ (Cassi and Zirulia 2008, p. 81). However, 
we do not share this view as we believe that their network preserves all the 
characteristics of a static architecture since when agents choose an opportunity 
(whether to interact or not), it always refers to the same neighbours.

13. Note, however, that this fi nding was mitigated in Cowan and Jonard (2004) 
by the sensitivity analysis, which showed how the small world dominance over 
other network architectures was subject to the absorptive capacity parameter 
– that is, the optimal network structure becomes more and more random as 
absorptive capacity increases.

14. As in the previous models the eff ectiveness of knowledge fl ows depends upon 
the absorptive capacity parameter. However, in this context the parameter could 
be interpreted as an indicator of the relevance of tacit knowledge. As put by 
the authors: ‘failure to absorb all available knowledge arises because codifi ed, 
broadcast knowledge needs to be interpreted, and this interpretation intimately 
involves tacit knowledge that the receiving agent is unlikely to have completely’ 
(Cowan and Jonard 2003, pp. 517–18).

15. Note that this model is not constrained to have symmetry of relationships 
between agents. In fact, more prestigious agents (with higher levels of knowl-
edge) are the object of strong relationships with more peripheral agents (with 
lower levels of knowledge), which may be unreciprocated or reciprocated only 
weakly.
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4.  Knowledge diff usion and 
innovation: an agent- based 
approachAn agent-based approach

In the fi eld of evolutionary economics, agent- based modelling is 
now recognized as one of the most promising new tools of investi-
gation. As discussed in Chapter 3, an agent- based approach allows 
researchers to capture dynamics and complexity present in a model. 
This is exactly what is required for studying processes of innovation 
and knowledge sharing. The objective is to understand better the 
relations between micro- processes (the decisions and behaviours 
of economic actors) and the emergence of stylized facts common 
across much of industry (relating to innovation and informal rela-
tions among fi rms) in the model output. Recently, there has been 
a growing amount of research targeting this very area (for example 
Gilbert et al. 2001; Pajares et al. 2003) using agent- based method-
ologies. Gilbert et al. (2001) suggest that it has proved diffi  cult to 
analyse innovation dynamics with the traditional analytical tools 
and suggest, as an alternative, the need for ‘an abstract simula-
tion model that could constitute a dynamic theory of innovation 
 networks’ (Gilbert et al. 2001).

Following this line of reasoning, in this chapter we present an 
agent- based simulation model which provides an original attempt 
to establish the complex relation linking knowledge- sharing pat-
terns, fi rms’ partnering and the innovative capability of fi rms. 
However, before presenting the model we will briefl y review 
some of the recent literature on knowledge, innovation and fi rms’ 
partnerships.
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FIRMS’ INTERACTIONS, KNOWLEDGE AND 
INNOVATION

In order to start reasoning about the link between knowledge and 
innovation we should fi rst understand which kind of knowledge is 
needed to innovate, who possesses such knowledge and how it can 
be acquired by agents of innovation. The simultaneous ongoing 
processes of knowledge deepening and knowledge widening – which 
leads to a growing specialization of competences, as well as to a 
general expansion of the range of available technologies – calls for 
new learning eff orts from fi rms. Innovative fi rms need specialized 
knowledge, as well as more types of knowledge which increasingly 
lie outside the fi rm itself. However, because of its tacit component, 
knowledge, and especially new knowledge, can be diffi  cult to acquire 
in the market, so fi rms seek some form of collaboration with other 
fi rms and/or institutions that possess the required knowledge and, 
on a reciprocal basis, are keen on sharing it. This trend is refl ected in 
the growing number of strategic research and development alliances 
which, starting from the early 1980s, has been striking (Hagedoorn 
2002). Having a portfolio of alliances acts as insurance for a fi rm 
wishing not to be taken by surprise by new technology develop-
ments and increases the innovative capability of fi rms (Cowan 2004). 
Hence, fi rms act to create links through which to access disparate 
and specialized knowledge needed to innovate.

Such bilateral links, when considered all together, introduce the 
concept of relational networks. These are evolving networks which 
‘consist of relationships connecting actors . . . that are cooperating 
in order to acquire resources that they may not themselves possess’ 
(Forsman and Solitander 2003, p. 5). The acquired resources (that 
is, mainly tacit knowledge) are then used to innovate. Consequently, 
these kinds of relational networks can be characterized as innovation 
networks – that is, networks which promote and favour innova-
tive behaviours. Such networks of fi rms should be considered as a 
central locus for the creation of industrial novelty and consequently 
knowledge should not be considered as a freely available public good 
(as suggested by Arrow 1962), but referred to as a local (technology-
 specifi c), tacit (embodied in specifi c competencies of fi rms) and 
complex (based on a variety of scientifi c fi elds and technologies) 
asset (Pyka 2002). These characteristics of knowledge are, in a 
 nutshell, the driving forces for the creation of innovation networks.
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This approach brings us back to the ‘knowledge and geography’ 
debate discussed in Chapter 2. Classical studies by economists such 
as Alfred Marshall pointed out, nearly a century ago, the relevance 
of geographical proximity for general economic development and 
innovating activities. As Marshall (1920) observed, there may be 
geographical boundaries to knowledge fl ows. It is well established in 
the derivative fi elds of research that learning occurs more eff ectively 
when fi rms are located physically close to one another. Proximity is 
therefore related to learning- based comparative advantages which, 
in turn, result in a higher propensity to innovate. This idea gained 
momentum with the National System of Innovation (NSI) approach 
to economic development which contends that innovation predomi-
nantly involves collaboration and the exchange of tacit knowledge 
at the interfaces between organizations (FORFÁS 2004). National 
Systems of Innovations are seen as the joint outcome of three levels 
of analysis: (1) the fi rm level, in which companies are seen as reposi-
tories of knowledge embodied into their operational routines; (2) 
the meso- economic level of networks of linkages between private 
companies and other organizations, which enhance the fi rm’s oppor-
tunities of improving problem- solving capabilities; (3) the national 
level, composed by the set of rules, social relationships and political 
constraints into which microeconomic behaviours are embedded 
(Cimoli and Della Giusta 2000).

Hence, networks emerge, at the meso level, as a viable strategy to 
improve fi rms’ ability to innovate and handle increasingly complex 
problems. This is particularly relevant in regimes where technology 
is of major importance and the impossibility for a fi rm of mastering 
in- house the whole required knowledge can itself lead to the emer-
gence of large informal networks via self- organization (Pyka 1997).

In what follows we will present an original model of knowledge 
diff usion and innovation. The modelled processes of knowledge 
acquisition and integration, as necessitated for innovation, result in 
the formation of networks of fi rms that have successfully innovated 
together. A further point which is central to the model is the idea 
that knowledge is structured. This idea has been developed in previ-
ous work (see Morone and Taylor 2004b) and highlights the fact 
that knowledge requires knowledge to be assimilated (Ancori et al. 
2000). New knowledge can be acquired through interactive learning 
as fi rms partner to innovate. Conversely, we assume that the process 
of individual learning, such as that typifi ed by the work of internal 
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R&D laboratories, occurs only at the initialization time of the simu-
lation (this is a simplifying hypothesis which will allow us to concen-
trate only on the acquisition of additional knowledge provided by 
the external network).

A COMPLEX MODEL OF KNOWLEDGE 
DIFFUSION AND INNOVATION

Firms and their Social Network

The unit of analysis of this model is the fi rm. We assume a popula-
tion of N fi rms allocated over a social network which is situated upon 
a grid of cells. Each fi rm is initially assigned a random position in the 
grid, and interacts with its closest neighbours. Not all the cells of the 
grid are occupied by fi rms, and those occupied contain only one fi rm. 
Initially, the neighbourhood is defi ned as the region on the grid that 
includes all cells adjacent and within the fi rm’s visible range n. This 
arrangement is referred to as the Moore neighbourhood structure.

Figure 4.1 shows a Moore neighbourhood with n 5 3. That is, 
fi rm A (placed in the central cell) is a neighbour of fi rm B because it 
is within three cells adjacent distance from B, where cells are permit-
ted to be diagonally adjacent as well as horizontally and vertically 
adjacent.

The social network within which fi rms’ interaction takes place 
could be represented as a graph where vertices correspond to fi rms 
and edges are fi rms’ connections. Hence, we can write: G(I, G), where 
I 5 {1, . . ., N} is the set of fi rms, and G 5 {G(i), i [ I} gives the list 
of fi rms to which each fi rm is connected. This can also be written 
Gx 5 {y [ I \ {x} | d(x, y) ≤ n}, where d(x, y) is the distance from fi rm 
x to fi rm y, and n (visibility) is the number of cells in each direction 
which are considered to be within the fi rm’s spectrum. Intuitively, Gx 
defi nes the neighbourhood of the fi rm (vertex) x.

The unit of time we defi ne in our model is called the time step. In 
each time step, all fi rms are sorted into a random order, and then 
each is permitted to interact with neighbouring fi rms. However, 
this model introduces the possibility for each fi rm to acquire new 
neighbours (we will clarify the way in which this happens later in 
this chapter). This crucially implies that, as time passes, the social 
network evolves. Firms allocated in this social network aim at 
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 innovating. Innovation is defi ned as product innovation, that is, any 
time an innovation occurs a new product is supplied in the market. 
Innovation motivates fi rms to partner with other organizations 
(generating clusters of fi rms). In order to accomplish a new pro-
duction process, new knowledge is required. When two (or more) 
fi rms partner together, let us say fi rm A and fi rm B, they integrate 
their knowledge (that is, they temporarily combine their specialized 
knowledge). Also, as described later, some knowledge transfer (from 
fi rm A to fi rm B and vice versa) takes place through interactive 
learning.

Defi ning the Firms’ Skills Universe

The system is initially endowed with a Firms’ Skills Universe (FSU), 
which contains the whole knowledge of the system.1 In this model, 
the FSU is represented by a network of nodes and links: nodes in the 
FSU can be thought of as possible skills or technologies to be learnt 
by the fi rms, and links defi ne the requirements of each node. The 
FSU structure therefore defi nes the way in which subsequent skills 
depend upon the prior acquisition of other skills. Using a similar 

B

A

Figure 4.1 Moore neighbourhood with n 5 3
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graph notation to that used to describe the social network we can 
write: FSU (S, Y), where S 5 {N0, N1. . ., NMAX} is the set of skills, 
and Y 5 {Y(i), i [ S} gives the list of requirements to go from one 
node to another.

In Figure 4.2 we reproduce a representative graph of a Firms’ 
Skills Universe composed of 50 nodes (skills). This fi gure has been 
generated by employing a rather complex algorithm involving the 
defi nition of parent lists and child nodes. Through an iteration 
process, child nodes are subsequently added to parent lists that, 
with a certain probability, can split and therefore generate several 
independent areas of knowledge. We shall not describe the algorithm 
in detail here. It should be noted though, that since parent lists are 
allowed to split into independent parts, the resulting FSU will be 
composed of several branches which represent diff erent fi elds of 
expertise in which individual fi rms can specialize.

Radical Innovations vs Incremental Innovations

The system is also endowed with an ex ante determined Global 
Innovation List (GIL), which represents all the possible innova-
tions that can be achieved by fi rms. All of the potential innovations 
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are generated in the initialization phase of the simulation, at the 
same time as the FSU is created. At initialization, the number of 
innovations is specifi ed, and they are then generated in sequence. 
This introduces some path- dependency in the construction of the 
GIL.

In the model, innovations take the form of vectors of skills. 
Building on the Schumpeterian tradition, two types of innovations 
are defi ned: incremental innovations and radical innovations. The 
fi rst kind of innovation relates to the so- called ‘creative accumula-
tion’ and is always based upon an already existing innovation, and 
is created by replacing one existing skill with a child, or a child of a 
child, and so on (we should say, closest available descendent) of that 
same skill. On the contrary, radical innovations, which relate to the 
‘creative destruction’ process, are created by combining a whole new 
set of skills never used for previous innovations.

Defi nition of Firms’ SP

Each fi rm is initially assigned a Skill Profi le (SP) which consists of 
a knowledge endowment – a subset of the universe of possible skills 
(the FSU). First of all, the fi rm is assigned the root skill, which is 
placed in its SP. The agent generates a target list of ‘child’ nodes of 
those already in its SP which are systematically acquired or learned. 
Recall that child nodes can be acquired only if all of its parents 
have been mastered (knowledge demands knowledge in order to 
be acquired). If the target node cannot be immediately learnt, then 
the algorithm backs up one level and fi rst tries to acquire all of 
the parents of that node. Therefore, the assignment of fi rms’ SP 
takes place through a search process which goes from less to more 
 specialized skills (that is, it is a depth- fi rst search).

The new target nodes that are identifi ed during the search process 
are added to the target list in a random order. Therefore, other than 
the depth- fi rst assumption, there is no preference or goal for which 
nodes are acquired. As a result of the (non- goal- directed) search 
process that represents an initial learning or endowment phase, we 
generate a population of diff erentiated (that is, heterogeneous in 
terms of their SPs) as well as specialized (that is, they are eventu-
ally able to obtain some atoms of superior knowledge) fi rms. Note 
that this process takes place only at the initialization time of the 
simulation.
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Main Simulation Phase

Having created the GIL, FSU and fi rms’ SPs at initialization, the 
model is then ready to proceed to the main simulation phase where 
fi rms’ partnering and innovation take place. The single objective of 
fi rms is to obtain all of the necessary skills to fulfi l the requirements 
of an innovation. The fi rst fi rm (or group of fi rms) to attain a par-
ticular innovation will be recorded as the fi rst- mover (FM) innova-
tor of that product innovation. In other words, that fi rm (group) is 
recognized as the fi rst one to develop and market the product.

In this model, as we are only concerned with the innovation 
process, and not with the emergence of markets for those new prod-
ucts, when the simulation reaches the point where an innovation is 
accomplished and its FM identifi ed, that innovation will be ‘tagged’ 
by the innovator in the GIL. Hence, an innovation is credited to only 
those fi rms performing it fi rst.

Firms’ Innovations and Partnerships

As already mentioned, the goal of each fi rm is to innovate. At every 
time step, agents are sorted into a random order. In its turn, a fi rm 
will select one element – an unaccomplished innovation – from the 
GIL. The fi rm will try to perform an individual innovation, by com-
paring the individual fi rm’s SP (that is, the current possessed skills), 
with the selected vector. If successful, in other words if the fi rm 
 possesses all of the required skills, it becomes the FM.

However, if the fi rm is not able to innovate individually, it will try 
to partner with its acquaintances and jointly innovate. In selecting 
an innovation, all fi rms follow a strategy which is relatively intel-
ligent: the selection must be of one for which the fi rm possesses at 
least one skill; the selection is random, but with the chance of selec-
tion weighted according to the number of skills of that innovation 
already possessed. Partnering happens through direct interactions 
among neighbour fi rms. A partner is selected at random from within 
the neighbourhood of the fi rm. The fi rm and the partner now try to 
achieve the selected innovation by integrating their respective skills. 
If individually the partners each possess some of the required skills, 
but in partnership they do not possess all of them, then the search 
process will continue in the subsequent time step. In this sense, the 
strategy of selection is persistent: the fi rm initiating the partnership 
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will, in subsequent time steps, contact another of its neighbours, 
until either the partners can together perform the joint innovation, 
or there are no more neighbours to contact.2

Interactive Learning Process

In addition to the initial endowment of skills, that is, the creation of a 
fi rm’s SPs, there is an interactive learning process whereby fi rms can 
obtain further skills as a product of their successful partnering for joint 
innovation. In this step, some skills are diff used from the innovator’s 
profi le to the partner fi rm’s profi le, and vice versa, thereby increasing 
the total level of knowledge of the system. This is repeated for each 
innovator–partner pair if there are more than two fi rms involved.

The potential number of skills diff used equals to the number of 
skills contributed to the innovation by the partner. For each fi rm 
in the innovator–partner pair, the skills to be acquired through 
interactive learning are based on the skills contributed by the other. 
These contributed skills are placed into a temporary target list, and 
acquired by the same procedure described above (using the depend-
ency rule). Note that it may be the case that no new skills are learnt 
by a fi rm during the interactive learning step.

Joint Innovation and Network Change

The network is gradually changed by the addition of new links 
between distant fi rms, in addition to the existing links between 
neighbouring fi rms. The number of links to be added is determined 
by multiplying the rewiring parameter p by the total number of 
links present in the system at the beginning of the simulation. The 
new links are added gradually, at the same pace as innovations 
are attained (that is, when 10 per cent of innovations have been 
attained, 10 per cent of links will have been added). This represents 
the assumption that as fi rms successfully innovate they become more 
widely connected and hence have more opportunities to partner.

Given the above model specifi cations, we aim at investigating 
the emergence of innovation networks. Under growing values of 
p, we hypothesize, innovation clusters will emerge and the industry 
will innovate at a faster pace. We shall test whether this could be a 
general result of our model or if other critical conditions need to be 
met for such an outcome.
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SIMULATION EXPERIMENT: EXPERIMENTAL 
SET- UP AND RESULTS

We used the JAVA platform with the RePast (Recursive Porus 
Agent Simulation Toolkit, North et al. 2006) libraries for imple-
menting the model and JUNG libraries (Java Universal Network/
Graph Framework 2007; O’Madadhain et al. 2005) for analysis of 
the networks’ data. We carried out repeated simulation experiments 
(batches), to identify diff erent trajectories of model behaviour. Over 
the batches we then took averages for all the relevant indices.

In this set of simulation experiments we used the following fi xed 
parameters: number of time steps 5 100, number of agents 5 40, 
grid size 5 20, number of radical innovations 5 60, number of 
incremental innovations 5 60, number of skills per innovation 5 
5, total number of skills 5 200. The number of skills possessed by 
each agent is drawn from a uniform distribution with μ 5 45 and 
s 5 10. The visibility parameter n was set equal to 2. Moreover, 
the rewiring parameter p was varied as values drawn from the set: 
{0.1, 0.3, 0.5}. Hence, we have three diff erent simulation specifi -
cations, each specifi cation was iterated 100 times (using the same 
random number seeds); we shall now present the fi ndings obtained 
with the  simulation experiment.

First, we refer to average values of each simulation specifi cation 
and compare the system performance in terms of both individual and 
joint innovations. As expected, the industrial environment perform-
ance is positively correlated with the rewiring parameter (see Figure 
4.3). As p increases, the overall number of innovations introduced, 
in the long run, increases. However, the gap among the three simula-
tions is quite narrow, varying from about 85 innovations achieved 
after 100 time steps when p 5 0.1 to a maximum of about 92 inno-
vations when p 5 0.5. Hence, there is approximately an 8 per cent 
improvement in the system performance raising p from 0.1 to 0.5.

Furthermore, it is interesting to note that initially the rate at which 
fi rms innovate is almost unaff ected by the rewiring parameter. In 
fact, the innovating performance in all three simulations is quite 
similar in the fi rst 20 time steps, when the speed of innovation is 
rather high. Subsequently, the pace at which fi rms introduce new 
products slows down considerably and the three simulations start 
diff erentiating in accordance with the rewiring parameter. Note that 
the system performance in terms of joint innovation resembles the 
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total innovations performance. This refl ects the fact that in the case 
of individual innovations the rewiring parameter has virtually no 
eff ect upon the speed of innovation.

In order to corroborate this fi nding, the correlation coeffi  cients 
between the rewiring parameter and the joint and individual innova-
tions were calculated.3 The correlation between JI and p was found 
to equal 0.20, suggesting the presence of a positive, although not 
very large, correlation between the two variables. As expected, the 
rewiring parameter resulted uncorrelated with individually per-
formed innovations. Additionally, we calculated the correlation 
between p and the average size of innovating partnership (see Table 
4.1) which resulted as marginally correlated. Interestingly, we found 
a much larger correlation between the number of joint innovations 
and the average number of agents involved in a partnership. In this 
case the coeffi  cient is positive and equal to 0.66, suggesting that the 
larger the partnership is, the higher is the ability to jointly innovate. 
This is a crucial fi nding which suggests more thorough investigation 
of partnership formations.

We shall attempt to do so by analysing single runs in more detail. 
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In order to underpin the key factors aff ecting innovating perform-
ances we will compare two runs which produce rather diff erent 
innovating patterns. Specifi cally, we compare what we could label 
a ‘good run’ (run 90) with what we label a ‘bad run’ (run 98). What 
qualifi es the run as good or bad is the total number of innovations 
performed after 100 time steps. Hence, a good run is one where a 
high number of innovations are performed and a bad run is one that 
is not very eff ective in terms of innovations.4

First, we compare the innovation performance in the two runs. 
We start by looking at the total number of innovations and the 
number of joint innovations achieved in each run, when the rewir-
ing parameter is set equal to 0.1 (see Figure 4.4). As we can see, the 
good run overperforms the bad run mainly because of the higher 
ability to perform joint innovations. Hence, we should look at the 
network characteristics which facilitate the creation of collaborative 
partnerships.

Table 4.1 Correlation coeffi  cients

p II JI Avg. par.

p 20.006 0.203 0.125
II 0.040 0.049
JI 0.657
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In doing so, we start by looking at the density of the acquaintances 
network in the two runs.5 As clearly emerges from Figure 4.5 (top 
left panel), the good run is characterized by a much denser acquaint-
ances network, resulting in higher opportunities for interactions. 
This fi nding is confi rmed by the density dynamic of the partnership 
network which grows faster and converges to a higher level in the 
good run (Figure 4.5, top right panel).

If we look more thoroughly at the partnership network we can 
underpin some other diff erences between the two runs. For instance, 
when looking at the cliquishness of the two graphs (Figure 4.5, 
bottom left panel) we notice that it grows at a similar fashion in 
the fi rst seven time steps; however, in the following nine time steps 
it drops in the good run and keeps growing in the bad run. After 
that, it grows slowly and steadily in both runs until it reaches the 
steady state equilibrium at values 0.39 and 0.45 respectively for 
the good run and the bad run. Hence, the cliquishness dynamic is 
non- monotonic in the good run. The slump in the pattern could be 
determined by the sharp increase in the average number of connec-
tions (depicted in Figure 4.5, bottom left panel) observable between 
time step 3 and time step 17. Moreover, in the long term the bad run 
reaches a superior equilibrium with respect to the good run, sug-
gesting that the presence of a more clustered network (that is, one 
with higher cliquishness) does not necessarily refl ect a more innova-
tive environment. Above all, what really seems to aff ect the system 
performance, in terms of achieved innovations, is the density of the 
network and the average number of contacts upon which each agent 
can rely in order to initiate a new collaboration. The poor perform-
ance observed for the bad run is, therefore, mainly imputable to 
the fact that it is a more sparse network with, on average, a smaller 
number of connections per agent.

This fi nding is refl ected in the size of the largest component.6 As 
shown in the bottom right panel of Figure 4.5, the size of the largest 
component (both for the acquaintances and the partnership net-
works) in the good run is almost three times bigger than that of the 
bad run. Basically, this fi nding suggests that the network structure 
in the good run off ers a much wider set of opportunities for interac-
tions than the one off ered in the bad run. In fact, after about 40 time 
steps a member of the largest component in the good run is con-
nected (that is, has a fi nite path length) with more than 30 agents and 
could join in a partnership composed by up to 20 agents.
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In the case of the bad run, the largest subset of connected 
agents equals ten and does not increase over time. Moreover, the 
largest component in the partnership network reaches seven at the 
most. This is implying that the opportunities for interactions (and, 
 therefore, joint innovating) are much slimmer in the bad run.

We could conclude that it is really a scale eff ect that determines 
the diverging performances in the two runs. The scaling factor 
aff ecting the innovation patterns is the number of connections 
present in both networks. Such connections play a vital role in 
facilitating partnerships and joint innovation activities. The two 
networks, while being built using the same parameters, diff er in 
some critical initial conditions: looking at Figure 4.5 we can imme-
diately observe that the acquaintances network of the bad run, com-
pared to that of the good run, is characterized by an initial lower 
density and a smaller largest component. Indeed these diff erences in 
the initial structure of the network shape the innovating patterns. 
Further insights will be provided by looking at the structure of the 
partnership networks which characterize the two runs examined. 
However, before stepping into the networks analysis we will briefl y 
present the results obtained in the good and the bad runs varying 
the rewiring parameter.

First, looking at Figure 4.6 we can observe that the good run is 
always outperforming the bad run in terms of innovations. It is also 
noticeable that by increasing p, the gap between the bad and the 
good run grows wider. Interestingly, increasing the rewiring param-
eter exerts an opposite eff ect on the performance of the good and the 
bad run. In fact, in the former case, higher values of p are associated 
with a growing number of innovations achieved; whereas in the 
latter case, growing values of p are inversely related to the innovative 
performance.

These results are apparently surprising as one would foresee that 
the addition of new links between distant fi rms would benefi t more 
the type of network emerging in the bad run – that is, one charac-
terized by a low density and an initially small largest component. 
However, we should recall that new links are added gradually, at 
the same pace as innovations are attained (that is, when 10 per cent 
of innovations have been attained, 10 per cent of links are added). 
Therefore, the faster is the initial speed of innovation, the faster 
will be the network growth. On the other hand, a network which 
initially innovates at a rather slow pace could get ‘locked in’ to an 
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 underperforming pathway. Hence, recalling what we said above, 
increasing the rewiring parameter seems to improve the system per-
formance only if the network is initially suffi  ciently dense and there 
is a suffi  ciently wide largest component. This result refl ects the fact 
that in a dynamic network, composed of a suffi  ciently large number 
of successful innovators, fi rms become more connected and hence 
increase their opportunities to partner.

In other words, when increasing the value of p there are two pos-
sible outcomes. On the one hand, there is a positive feedback eff ect: 
a network which is initially suffi  ciently well connected will perform 
well in terms of innovations. This will quickly increase the number 
of connections among fi rms which, in turn, will enhance their inno-
vative performance reinitiating the positive feedback process. On 
the other hand, there is a lock- in eff ect: a network which is initially 
highly disconnected will perform poorly in terms of innovations. 
This will undermine the available opportunities to increase the 
network density and, in turn, will impact negatively on the innovat-
ing performance. The two outcomes are exemplifi ed by, respectively, 
the good run and the bad run. As shown in Figure 4.6, the good run 
simulation attains nearly all possible innovations in the GIL and, 
therefore, 30 per cent and 50 per cent of new links are eventually 
added (see Figure 4.7). Conversely, the bad run attains less than 
50 per cent of innovations, and therefore far fewer additional links 
are added and density does not increase very much. The feedback 
between network density and innovation performance is strength-
ened with increasing p, resulting in a wider gap between good and 
bad run dynamics.

Figure 4.8 reports the growth pattern of the largest component. In 
this case also there are signifi cant diff erences between the good run 
and the bad run. However, as opposed to the case in which the rewir-
ing parameter was set equal to 0.1, with p equal to 0.3 and 0.5, the 
number of acquaintances shows a growing trend also in the bad run. 
Specifi cally, with p 5 0.3 the number of acquaintances in the largest 
component grows from 10 to 11 and with p 5 0.5 it reaches 18. 
Much higher values are obtained in the good run: now the number 
of acquaintances varies between 36 and 39 respectively for a value of 
p equal to 0.3 and 0.5.

We will now take a further step in our investigation, again using 
the JUNG libraries, to visualize the evolution of innovating net-
works. The following fi gures are some images which were displayed 
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and instantaneously captured over the course of the simulation 
experiments, that is, they are snapshots.

The confi guration of the network at diff erent time steps over the 
course of the good run and the bad run simulations will be com-
pared. In these simulation runs, the analysis will concentrate on the 
fi rst 50 time steps (that is, before the system reaches convergence), 
looking at snapshots before and after critical periods in the acquaint-
ance network evolution to explain better the innovation perform-
ance and development of the partnership network. Links present in 
the partnership relation are a subset of those present in the acquaint-
ance network: G(I, Gpartnership) [ G(I, G). As explained earlier, the 
diff erences between good and bad run are due to the diff erent initial 
location of the fi rms, whereas all other parameters are the same.

Figure 4.9 shows the acquaintance and the partnership networks 
(left panel and right panel, respectively) for the good run with 
p 5 0.1 at time step 5. The left- hand panel shows a relatively dense 
network with a wide largest component (compare with Figure 4.5). 
These networks are hardly altered from the initial condition – the 
acquaintance network contains just one additional, distant, link 
between vertex 0 and vertex 16. The partnership network displays a 
number of partnerships already activated at time step 5. Moreover, 
the network architecture displayed in this fi gure does not vary 
 signifi cantly when changing the value of p.

Figure 4.10 shows the evolution of the acquaintance network 
graph in the good run for diff erent values of p. Here, the networks 
are illustrated in a series of snapshots: time step 15 left- hand column, 
time step 30 centre column and time step 50 right- hand column.

Comparing the three rows one can see how the network becomes 
denser as the value of p increases. In fact, the rewiring allows links to 
be made between distant parts of the graph and off ers more potential 
partners, as illustrated in Figure 4.11.

Figure 4.11 shows the evolution of the partnership network graph 
in the good run for diff erent values of p at diff erent time steps. 
Notice how the rewiring of the acquaintance network graph alters 
the opportunities to network and hence the shape of the partner-
ship network. Interestingly, many of the links that are present in the 
partnership graphs for low values of p are not present at a higher 
value of p, where distant partnerships have become more important 
for innovation. For example the link between vertex 5 and vertex 
34, the link between vertex 2 and vertex 15, and the link between 
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vertex 18 and vertex 10, do not appear in the network for p 5 0.5. 
This fi nal network (p 5 0.5, time step 50: bottom right- hand panel) 
appears to contain almost as many distant partnerships as it does 
local partnerships.

In Figure 4.12 we depict the acquaintance and the partnership net-
works (left panel and right panel, respectively) for the bad run with 
p 5 0.1 at time step 5. As we mentioned in the corresponding good 
run network (Figure 4.9), at this stage there are no additional links 
added. Moreover, the network architecture (of both acquaintance 
and partnership graphs) at time step 5 does not vary signifi cantly 
when changing the value of p.

Similarly to Figure 4.10, Figure 4.13 shows the evolution of the 
acquaintance network graph in the bad run for diff erent values of p 
at diff erent time steps. The fi rst simulation performs very poorly in 
terms of additional links: there is only one link added between vertex 
3 and vertex 37. In this case, innovation remains low, as shown in 
Figure 4.4. This picture improves marginally when increasing the 
value of p (bottom panels); though the number of available links 
(that is, the space for possible partnership) is much lower when 
compared to the good run. Indeed this is refl ected in the partnership 
network displayed in Figure 4.14.

As we can see, the number of partnerships is rather low if com-
pared with the good run performance displayed in Figure 4.11. This 
result is invariant for increasing values of p, confi rming our earlier 
fi nding that increasing the rewiring parameter improves the system 
performance only if the network is initially suffi  ciently dense and 
there is a suffi  ciently wide largest component. Hence, the bad run 
appears to be locked in to an underperforming pathway.

Compared to the case of the good run, the partnership networks 
of the bad run are much more sparse and are not able to take advan-
tage of additional, distant links in the acquaintance network. From 
the network snapshot illustrations, it can be concluded that fi rms in 
the good run are able to take advantage of opportunities with distant 
connections, whereas fi rms in the bad run are not able to do so. This 
is immediately visible in the network fi gures, where partnerships 
span all parts of the grid in the good run simulation with p 5 0.3 and 
p 5 0.5 (time step t 5 30 and t 5 50 in Figure 4.11) whereas in the 
bad run the graphs remain mainly unconnected (Figure 4.14).

In the good run, acquaintance networks are more eff ectively 
mobilized as a resource of the fi rm. The initial network architecture 
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represents the space of opportunity for innovating and, as innova-
tions are attained, this leads to more dense network arrangements, 
with distant connections between innovating fi rms playing a crucial 
role. It also results in interactive learning processes. Conversely, 
in the bad run, the initial conditions (in terms of both density and 
largest component size) seem to impede the network from evolving 
and taking full advantage of possible distant connections.

All in all, the network analysis here presented has confi rmed 
earlier fi ndings, suggesting that a high rewiring parameter represents 
just a chance for partnering and innovating with distant fi rms. A 
chance which under unfavourable initial conditions (that is, low 
density coupled with a relatively small largest component) fails to 
produce any positive eff ect.7

In order to assess the robustness of our fi ndings we shall look 
at the whole set of simulations (that is, all 100 runs) and see if the 
results obtained looking at two single runs can be generalized. From 
the analysis conducted above we concluded that initial conditions, 
in terms of both density of the acquaintances network and size of 
largest component, aff ect the fi nal outcome of the system – that 
is, the overall innovative performance. This fi nding was largely 
independent of the value of the rewiring parameter, hence suggest-
ing that an initial low density and/or low largest component might 
trap the system into an underperforming equilibrium. We test this 
hypothesis by plotting the initial conditions against the steady state 
equilibrium. Specifi cally, we take the average performance (over the 
three simulation specifi cations) at the end of each run (ts 5 100) and 
plot it against the initial (ts 5 1) density of the acquaintance network 
and size of its largest component (note that both the density of the 
acquaintance network and the size of the largest component are 
invariant for diff erent values of p at ts 5 1).

Looking at Figure 4.15 we can observe that in both graphs there 
exists a positive correlation between initial conditions and fi nal 
outcome (see the positive slope of the trend lines in both graphs), 
which suggests that those systems initially endowed with a low density 
and/or a small largest component are likely to be underperforming if 
compared to systems with more favourable initial conditions.
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CONCLUSIONS

In this chapter a knowledge diff usion model with heterogeneous 
fi rms was presented. Firms were located randomly on a grid and 
were endowed with idiosyncratic competences (depicted as diff erent 
skill profi les) which could be used individually (that is, by a single 
fi rm) or jointly (that is, integrating them in partnership composed by 
two or more fi rms) in order to perform innovation. Firms that inno-
vated in partnership had the opportunity to acquire new skills (learn) 
by interacting with their partners. Moreover, we deliberately framed 
the simulation experiment in order to allow a feedback mechanism 
where successful systems (that is, those performing a suffi  ciently 
large number of innovations) became more widely connected. In this 
way, the structure could evolve into more dense network arrange-
ments as innovations were achieved, simulating the emergence of 
innovation networks.

In this model the network has been specifi ed as a knowledge 
resource, and knowledge integration the process by which the 
resource can be applied to innovation. This corresponds to the 
knowledge- based view of the fi rm, where fi rms are perceived as 
distributed knowledge systems which are required to integrate 
 specialized knowledge effi  ciently, both internally and externally.

The results of the simulation exercises presented in this chapter 
have shown that the initial architecture of acquaintance networks 
is a most important factor for innovation and learning to occur. 
Although initial skill profi le endowments are important, it is 
more than simply equating endowments of initial SP with fi rms’ 
performance. In fact, the performance of the system showed 
high sensitivity to the arrangement of the fi rms’ initial locations 
on the grid. Moreover, the way in which acquaintance networks 
were mobilized emerged as a key determinant of learning and 
 innovation patterns.

All in all, our simulation model has shown how the network 
structure within which fi rms operate could represent both an oppor-
tunity and a constraint to innovating performances: above all, what 
really seems to aff ect the system performance, in terms of achieved 
innovations, is the density of the network and the average number 
of contacts upon which each agent can rely in order to initiate a 
new collaboration. A sparse network with, on average, a smaller 
number of connections per agent leads to poor performances in 
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terms of innovations achieved, whereas a dense network provides the 
right environment for partnership to occur and eff ective innovation 
 networks to emerge.

NOTES

1. Note that in this model we assimilate the concept of knowledge to that of skill. 
Although rather similar, recall that some authors have distinguished between 
these two concepts. For instance, in Chapter 2 we discussed the distinction 
between tacit knowledge and skill suggested by Senker (1993).

2. Firms’ innovation performance is recorded by means of an innovation ‘score’. 
A record is kept of the number of times an agent has succeeded in an individual 
innovation or a joint innovation as FM or partner.

3. All correlation coeffi  cients have been calculated by pooling together the three 
batches. Hence, correlation coeffi  cients were calculated over a sample of 300 
observations, where each observation refers to a single run.

4. Specifi cally, we selected the good and the bad runs in the following way: fi rst, the 
average performance at the end of each run was calculated (that is, the average 
was calculated over the three simulation specifi cations); then, all 100 runs were 
ordered in a list according to their average level of performance; fi nally, the good 
run was randomly selected from the top 10 per cent of the distribution (that is, 
among the ten best runs) and the bad run was randomly selected from the bottom 
10 per cent of the distribution (that is, among the ten worst runs).

5. Recall that the density of a graph is a measure of its cohesion: a dense graph is a 
graph in which the number of edges is close to the maximal number of edges. On 
the contrary, a graph with only a few edges is a sparse graph.

6. The nodes in a disconnected graph may be partitioned into two or more subsets 
in which there are no paths between nodes in diff erent subsets. Each connected 
subgraph is called a component. The largest of such subgraphs will be the largest 
component.

7. Note that by looking at the networks confi gurations displayed above another con-
clusion can be drawn. In the case p 5 0.1 a comparison can be made between the 
good run and the bad run: in both cases the trend is relatively steady innovation, 
but the partnership network shows decreasing cliquishness by the time the good 
run simulation reaches time step 15 and the partnership graph shows a reduction 
in cliquishness of around 25 per cent (see Figure 4.5, bottom- left panel).

  In this simulation, a relatively dense largest component at time step 5 (see 
Figure 4.9, right panel) gains three new members by time step 15 (see Figure 4.11, 
top left panel). These are vertices 24 (connected via vertex 18), 23 (connected via 
vertex 0) and 14 (connected via vertex 23). There are no additional links made 
among nodes that are already members of the component. Recall that cliquish-
ness is at a maximum when a vertex is linked to a single other vertex (where it 
has a value of 1) and at a minimum when it has no links, or if it has two or more 
links but none of the adjacent vertices are connected directly to each other (where 
it has a value of 0); this action is responsible for the above- mentioned reduction 
in cliquishness of the acquaintance network (observed in Figure 4.5, bottom- left 
panel). This eff ect is not seen in the bad run and does not appear to be a general 
behaviour of the good run class of simulations.
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5.  Empirical studies on knowledge 
fl ows

This chapter deals with empirical studies on learning patterns and 
knowledge fl ows. As discussed in the fi rst part of this book, knowl-
edge fl ow is a rather complex phenomenon which can be broken 
up into several processes. In Chapter 2 we distinguished between 
knowledge gain and knowledge diff usion processes; the former 
referring to formal and controlled fl ows and the latter referring 
to informal and largely uncontrolled fl ows. This classifi cation is 
also useful when one has to defi ne empirical measures of knowl-
edge fl ows. In fact, as discussed earlier on, knowledge gains relate 
to fl ows of disembodied knowledge which could be measured by 
using, for instance, data on technologies and patents trade (Arora 
et al. 2002).1 However, the applied researcher faces a much harder 
task when attempting to measure informal knowledge diff usion 
processes. In this case there are few available data in the offi  cial 
statistics;2 hence, extra eff orts need to be undertaken in order to 
gather sound information on the direction and the intensity of such 
fl ows.

This second part of the book, being about empirical research, 
will shed some light on the advances in the literature on measur-
ing informal knowledge fl ows as well as on the relevance of model 
validation as a tool for testing models against the real world. 
Specifi cally, in the following sections of this chapter we will concen-
trate our attention on a recent body of empirical literature which 
has developed some new and well- crafted techniques to measure 
informal knowledge fl ows. Then, in Chapter 6 we will present a 
methodological discussion on theoretical and applied models upon 
which we will elaborate on the issue of agent- based model valida-
tion. Finally, in Chapter 7, we will apply validation methodology 
to the knowledge diff usion model presented in Chapter 4 of this 
book.



86 Knowledge diff usion and innovation

MEASURING KNOWLEDGE DIFFUSION: 
A CHALLENGE FOR APPLIED RESEARCH

Most of the recent empirical literature on informal knowledge dif-
fusion focuses on the relevance of localized knowledge spillovers 
for innovation. As mentioned in Chapter 4, since the seminal con-
tribution of Alfred Marshall (1920), scholars have reasoned on the 
relevance of geographical and relational proximity in facilitating the 
circulation of new ideas among fi rms, institutions and various other 
actors, promoting processes of incremental and collective innovation 
(Giuliani and Bell 2005). In fact, as discussed broadly in Chapter 2, 
the relevance of proximity for new ideas to spread rests on the tacit 
nature of certain knowledge, which requires face- to- face interactions 
in order to be transferred.

Departing from these considerations, several empirical research-
ers have focused their attention on clusters and networks as the locus 
of knowledge diff usion. However, recent studies have stigmatized 
‘the role of fuzzy social relationships and ill- defi ned spillover mecha-
nisms as the basis of knowledge fl ows and learning processes within 
territory- bounded communities’ (Giuliani and Bell 2005, p. 48), and 
have consequently proposed more structured mechanisms that shape 
these fl ows and processes (for example Dicken and Malmberg 2001; 
Malmberg and Maskell 2002; Amin and Cohendet 2004).

Following these guidelines, several authors have attempted to 
measure knowledge fl ows in a more direct and reliable way. A major 
eff ort has been made in order to produce an accurate defi nition of 
the type of social relations which leads fi rms to cooperate and share 
knowledge. Social network analysis has provided researchers with a 
powerful tool to achieve such an aim.3 Cantner and Graf (2006), for 
instance, applied network analysis to investigate knowledge fl ows in 
the network of innovators operating in the city of Jena in Germany. 
Meder (2008) further investigates the determinants of cooperation 
agreements in research and development (R&D) activities, focusing 
on both geographical and technological proximity as key factors 
which facilitate knowledge sharing.

Further insights have been provided by Giuliani and Bell (2005) 
who used network analysis to investigate the structure of knowledge 
fl ows, focusing on heterogeneous cognitive characteristics of wine 
producers operating in the Colchagua Valley in Chile. Morone 
et al. (2006) followed a similar approach, analysing the diff usion 
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 patterns of various types of knowledge (distinguishing among tech-
nical knowledge, law system- related knowledge and market- related 
knowledge) in the cluster of organic producers operating in the 
 province of Foggia in Italy.

A diff erent approach was followed by Berends et al. (2006), who 
investigated knowledge sharing in industrial research. In their study 
the authors did not use social network tools: rather, they relied on an 
ethnographical analysis, based on passive participant observation. 
This allowed the researchers literally to trace all knowledge diff usion 
patterns which occurred within a fi rm.

In what follows we will review these recent studies, pinpointing 
the major elements of novelty introduced in each work and their 
contribution to providing sound and accurate measures of knowl-
edge diff usion. Far from being exhaustive, this review aims solely at 
providing the readers with some examples of recent and innovative 
approaches to the investigation of empirical knowledge fl ows.

MEASURING KNOWLEDGE DIFFUSION 
WITHIN INNOVATION NETWORKS

As mentioned above, in a recent paper Cantner and Graf (2006) 
studied knowledge diff usion patterns in Jena (Germany). This 
empirical investigation uses the tools provided by social network 
analysis in order to analyse the evolution of the innovator network. 
The authors use data on patents4 that were applied for at the German 
patent offi  ce and were disclosed between 1995 and 2001.5 To include 
all patents that are relevant for Jena the authors collected all patents 
where at least one of the inventors named on the patent resided in 
Jena at the time of application. Following this procedure they gath-
ered information on 334 distinct innovators and 1114 patent appli-
cations. Altogether 1827 inventors (977 of whom resided in Jena at 
the time of application) were involved in the development of such 
patents, which covered 29 out of 30 technological classes.6

These data were used to build two types of innovator networks. The 
fi rst network links innovators by the kind of technological knowl-
edge they have created – that is, the authors defi ne a simple measure 
of technological overlap counting the fi elds of research each pair of 
fi rms have in common. The second type of innovator network relates 
to the notion of knowledge transfer through personal  relationships 
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and is built in two alternative ways – that is, fi rms or research insti-
tutes are related if scientists know each other through working on 
joint projects (cooperation) or move from one organization to the 
other (scientist mobility). All in all, the authors defi ne three types of 
innovator networks: (1) the technological overlap network; (2) the 
cooperation network; (3) the scientist mobility network.

The technological overlap network is constructed by defi ning 
fi rst the two- mode sociomatrix with rows representing innovators 
and columns representing technological classes; subsequently, the 
authors construct the adjacency matrix computed as the product of 
the two- mode sociomatrix and its transpose. This network is inter-
preted as the potential for cooperation as it defi nes the degree of 
technological proximity among actors. Cantner and Graf maintain 
that being part of such a network is a necessary condition for coop-
eration as actors share a minimum of common knowledge which 
is needed for understanding each other (Cantner and Graf 2006, 
p. 467).

A visual inspection of the technological overlap network suggests 
that larger innovators form the centre of this network. This fi nding 
does not come as a surprise as it follows from the fact that large 
innovating fi rms are more likely to be involved in several fi elds of 
research. An exception to this fi nding is represented by Jenapharm, 
a large specialized fi rm operating in the pharmaceuticals sector, and 
therefore on the periphery. Looking at the evolution of this network 
over the two time periods considered shows that some fi rms move 
towards the periphery as they follow a strategy of higher specializa-
tion. A key public institution (that is, the University of Jena), on the 
other hand, moves towards the centre of the network as it increases 
the range of research fi elds in the second period.

Looking at basic descriptive statistics of the technological overlap 
network in the two periods the authors fi nd increasing cohesion. 
This is interpreted as a stronger focus on core competencies, where 
the activities of the central actors become increasingly important for 
the whole network.

As already discussed, the existence of a link in the technological 
overlap network does not imply any real knowledge fl ow among two 
fi rms, nor that the two fi rms are actually related to one another. This 
problem is partially overcome by looking at the two other relational 
networks, which are constructed following a procedure similar to 
the one employed in the construction of the technological overlap 
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network. By creating a two- mode sociomatrix where the innova-
tors are the nodes (rows) of the network and the inventors on the 
patent are the characteristics (columns) of these innovators, Cantner 
and Graf identifi ed those inventors that have worked on research 
projects for more than one innovator, thereby creating linkages 
among these innovators. As mentioned above, the authors consider 
two diff erent criteria for a relationship to be established. The fi rst 
criterion relies on direct cooperation: whenever the authors fi nd a 
patent with more than one innovator (co- application), they assume 
it to be a cooperation. Their second criterion is less direct: ‘[i]f an 
inventor is mentioned on patents applied for by diff erent, not co- 
applying innovators within one of the two periods of observation 
(1995–1997 and 1999–2001) . . . [we establish] a link between those 
innovators that is referred to as scientist mobility’ (Cantner and Graf 
2006, p. 470).

Looking at the evolution of these two networks it emerges that 
the knowledge among large, core actors increasingly fl ows through 
formal cooperation while smaller, surrounding or peripheral actors 
rely more substantially on informal, personal relations (captured by 
scientist mobility) as a means of knowledge diff usion.

Comparing the data collected over the two time spans allows 
one also to characterize the innovators according to their innova-
tor status, that is, entry, exit and permanent. Studying the entry–
exit dynamic for the network of technological overlap leads the 
authors to conclude that: ‘the dynamics of the system tends towards 
an increasing focus on core competencies of the local innovation 
system; that is, innovators on the periphery of the network exit and 
new entrants position themselves closer to the core of the network’ 
(Cantner and Graf 2006, p. 478). Finally, employing the network 
regression methodology the authors do not register persistent link-
ages through cooperation. This last fi nding is interpreted as evidence 
of the fact that actors do not tend to cooperate with previous part-
ners. However, enduring relations and trust turn out to be relevant 
elements for scientist mobility: as workers or scientists change their 
jobs, they carry knowledge about competencies and the trustworthi-
ness of previous colleagues or their prior employer (Cantner and 
Graf 2006, p. 478).

All in all, this paper adds to the empirical literature on knowl-
edge fl ows as it uncovers some relevant mechanisms of coopera-
tion and cluster formation (such clusters being the loci of informal 
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 knowledge diff usion). Moreover, it sheds light on the relevance of 
scientists’ cooperation and their mobility (which are indirect sources 
of  knowledge fl ows) for innovation to occur.

Further insights on knowledge diff usion processes which occur 
through cooperation among innovating fi rms are provided by Meder 
(2008). The author presents an empirical analysis on the impacts of 
technological and geographical proximity on cooperative innovation 
activities, analysing the interplay of both dimensions. In particular, 
Meder attempts to answer the question of whether technological and 
geographical proximity aff ects the choice of the cooperation partner. 
As discussed in Chapter 2, both these dimensions of proximity are 
relevant for knowledge fl ows to occur. ‘The degree of knowledge 
exchange and the success propensity of an R&D cooperation depend 
on the technological proximity between the potential cooperation 
partners . . . An increasing technological proximity facilitates knowl-
edge exchange, which is one core incentive to engage in an R&D 
cooperation’ (Meder 2008, p. 5). Moreover, Meder observes that 
the benefi cial eff ects of geographical proximity ‘seem to be due, in 
particular, to the possibilities off ered by face- to- face contacts . . . 
[which] are required for the exchange of tacit knowledge which is, 
again, a core incentive to engage in R&D cooperation’ (Meder 2008, 
pp. 5–6).

Similarly to Cantner and Graf (2006), Meder uses patents data 
drawn from the ‘Deutsche Patentblatt’ publication7 and examines 
the initializing conditions for engaging in interactive learning proc-
esses. Such conditions are examined by analysing the impact of dif-
ferent actors’ characteristics on cooperative agreements in the fi eld 
of R&D. Cooperation agreements refer to the year 2003 whereas 
independent variables refer to the period 1998–2002. This allows 
the author to introduce a dynamic element into his analysis as the 
willingness to engage in a specifi c R&D  agreement today depends on 
factors developed in the past.

Meder performs a regression analysis using a dummy as the 
dependent variable which takes the value of one if the fi rm has 
engaged in a cooperative agreement in 2003, and zero if otherwise. 
In that year 1333 German actors fi led for 1089 collaborative patents. 
This is a rather small proportion of the potential collaborative agree-
ments which include all possible pairs of cooperation. The dataset 
ends up with 887 778 observations (possible pairs of cooperation), 
with 1089 observed cooperations.
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The set of independent variables includes: technological prox-
imity (defi ned as the technological diff erences among fi rms and 
constructed using information on technological fi elds reported on 
patents); geographical proximity (defi ned as the distance in space 
between two fi rms and measured in kilometres according to the 
postal code marked on the patent application); attractiveness of 
being cooperation partner (this variable accounts for the valuable 
knowledge which is off ered by actors of a certain pair in the dataset 
and is calculated using information on the number of patent applica-
tions of the three years 2000–2002); former cooperation experiences 
(this variable uses information about the cooperation activities 
of actors in the fi ve years between 1998 and 2003, distinguishing 
between pairs in which both actors have cooperation experience and 
pairs in which only one partner has previous experiences); public 
research agreements (defi ned as a dummy which has a value of one if 
at least one actor in a pair is identifi ed as a public research actor).

Running a ‘prior correction’ logit model8 the author obtains 
some interesting results. First, the author observes that technologi-
cal proximity and geographical proximity enhance (independently) 
the probability of being involved in a collaborative R&D project. 
Moreover, combining both dimensions of proximity does not exert 
an extra eff ect on the cooperation probability. Meder found also 
that pairs of actors where one actor had experiences in cooperation 
(at least one co- application for 2003) display a lower cooperation 
probability than pairs where neither actor had such experiences; and 
pairs where both actors had cooperation experiences in terms of co- 
applications in the past were more likely to fi le for a patent together 
than pairs without such experiences. Finally, it emerged that pairs of 
actors identifi ed as public research actors have no higher probability 
to engage in a common R&D project than other pairs of actors.

The element of novelty of this paper (similarly to the Cantner 
and Graf study) rests on the use made of patent data in order to 
defi ne cooperation. Meder builds a database which allows him to 
identify the infl uences of technological and geographical proximity 
on the probability of cooperation agreements in the fi eld of R&D, 
such cooperation agreements being perceived as an indirect measure 
of knowledge diff usion. However innovative, Cantner and Graf 
(2006) and Meder (2008) both use somewhat indirect measures of 
knowledge sharing which inevitably casts doubts on the eff ective 
 measurement of knowledge fl ows among cooperating agents.
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More direct measures of knowledge diff usion are needed in order 
to gain confi dence on the actual dimension of informal learning. In 
what follows we will present three studies which addressed this issue, 
using case studies largely based on fi eldwork.

MEASURING KNOWLEDGE DIFFUSION 
WITHIN SOCIAL NETWORKS

By means of a fi eldwork study, Giuliani and Bell (2005) investigated 
diff erences in fi rms’ knowledge endowments and analysed how 
such diff erences infl uence the formation of intra-  and extra- cluster 
knowledge networks. Among other things, the authors attempted 
to understand whether: (1) fi rms with higher absorptive capacity9 
are more likely to establish knowledge linkages with extra- cluster 
sources of knowledge; and (2) such fi rms gain leading positions 
within the cluster. We shall concentrate our attention on these two 
research hypotheses. The relevance of extra- cluster knowledge rela-
tions rests on the fact that sole reliance on localized knowledge can 
result in the ‘entropic death’ of the cluster that remains locked in to 
an increasingly obsolete technological trajectory (Camagni 1991; 
Grabher 1993; Becattini and Rullani 1993; Guerrieri et al. 2001; 
Cantwell and Iammarino 2003).

As already mentioned, the empirical analysis was largely based 
on social network methodology and used primary data at fi rm 
level gathered via interviews (based on a structured questionnaire) 
in a sample of fi rms operating in the wine cluster. Interviews were 
directed to technical employees (chief oenologist or the cellarman), 
which provided reliable information about the history and current 
characteristics of the fi rms and proved to be key nodes in the cogni-
tive interconnections between fi rms. Along with general background 
and contextual information, the data gathered in the interviews 
were used to develop a set of quantitative indicators in three key 
areas: (1) the ‘absorptive capacity’ of the fi rms; (2) their intra- cluster 
knowledge communication patterns; and (3) their acquisition of 
 knowledge from extra- cluster sources.

Specifi cally, absorptive capacity was broken into four components 
(the level of education of the technical personnel employed in the 
fi rm; each professional’s months of experience in the industry; the 
number of fi rms in which each professional had been previously 
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employed; and the type and intensity of R&D undertaken by the 
fi rm) which were summarized in an index employing principal com-
ponent analysis. Intra- cluster knowledge communication patterns 
were measured using diff erent centrality indices drawn from graph 
theoretical methods. Such indices include: (1) out- degree centrality 
index;10 (2) in- degree centrality index;11 (3) betweenness;12 (4) in- 
degree–out- degree centrality index.13 Finally, a measure of external 
openness (which allowed measurement of the acquisition of knowl-
edge from external sources) was computed as the number of linkages 
with extra- cluster sources of knowledge.

Applying these techniques allowed the authors to defi ne and 
measure intra- cluster knowledge fl ows and establish the relevance 
of extra- cluster knowledge sources. This, in turn, led the authors 
to assess the knowledge structure of the cluster and to provide 
answers to their research hypothesis – that is, whether fi rms with 
higher absorptive capacity were more likely to acquire extra- cluster 
knowledge, and whether such fi rms had a central position within the 
cluster.

Overall the network studied by Giuliani and Bell displayed the 
characteristics of an open knowledge system ‘as many of its con-
stituent fi rms have established linkages with external sources of 
knowledge’ (Giuliani and Bell 2005, p. 54) such as leading research 
and technology transfer institutions and universities. Additionally, 
knowledge fl ows into the cluster from international sources; in 
particular, some local wine producers (labelled by the authors as 
‘interface actors’ or ‘nodes of connections’) were engaged in knowl-
edge relations with foreign consultant oenologists that play a major 
role in the transfer of frontier knowledge and techniques in the fi eld 
(Giuliani and Bell 2005, p. 54). Along with what was postulated by 
the authors, the level of interaction with external sources of knowl-
edge varied according to the absorptive capacity of individual fi rms.

Figure 5.1 (reproduced from Giuliani and Bell 2005) depicts 
intra- cluster knowledge diff usion patterns. Similarly to the network 
graphs presented in Chapter 4, this fi gure is quite informative as it 
shows the direction of knowledge fl ows (that is, the arrow of each 
tie) and the absorptive capacity of each fi rm (that is, the diameter of 
the node).

First and foremost, the authors observe that: ‘fi rms tend to inter-
connect diff erently to one another: in particular one group of fi rms 
(centre of the fi gure) are linked, transferring and receiving  knowledge 
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from each other. In contrast, another group of fi rms (top left) remain 
cognitively isolated’ (Giuliani and Bell 2005, p. 57). Once they had 
established the existence of heterogeneous cognitive positions within 
the cluster, the authors attempted to test whether fi rms that were 
more cognitively interconnected in the cluster knowledge system also 
had higher absorptive capacities.

By means of a set of correlation tests Giuliani and Bell were 
able to underline the existence of a statistically signifi cant relation-
ship between fi rms’ absorptive capacity and the diff erent centrality 
indices discussed above. Their empirical fi ndings showed clearly that 
average absorptive capacity varies considerably across the diff erent 
cognitive positions. Particularly interesting results emerged from the 
correlation between the absorptive capacity and the in- degree–out-
 degree centrality index. As pointed out by the authors:

[t]his result supports the idea that a threshold for inter fi rm knowledge 
exchange exists, so that when fi rms’ absorptive capacity is very low, the 
cognitive distance with other fi rms’ knowledge bases becomes too high 
(i.e. infi nite) and the fi rms tend to be isolated. Correspondingly, those 
fi rms that are suffi  ciently above the minimum threshold have a higher 
probability of being interconnected with other local fi rms. (Giuliani and 
Bell 2005, p. 58)

Combining the data about the external openness of fi rms and the 
cognitive position of fi rms within the local knowledge system, the 
authors were able to identify fi ve main learning patterns within 
the cluster, which were summarized in fi ve types of ‘cognitive role’: 
(1) technological gatekeepers (TG);14 (2) active mutual exchangers 
(AME);15 (3) weak mutual exchangers (WME);16 (4) external stars 
(ES);17 (5) isolated fi rms (IF).18 In conclusion, the study conducted by 
Giuliani and Bell makes a valuable contribution to empirical knowl-
edge fl ows literature as it sheds light on the processes which control 
intra- cluster and extra- cluster knowledge diff usion processes. The 
methodology employed in their study, largely based on network and 
graph theory, has proved useful to associate heterogeneous fi rms’ 
characteristics (mainly referring to the knowledge base of the fi rm) 
to the diff erent role that individual fi rms play within the cluster. All 
in all, this study ‘suggests that a cluster is a complex economic and 
cognitive space where fi rms establish knowledge linkages not simply 
because of their spatial proximity but in ways that are shaped by their 
own particular knowledge bases’ (Giuliani and Bell 2005, p. 64).
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As already mentioned, a similar study has been conducted by 
Morone et al. (2006). The authors studied knowledge diff usion pat-
terns in a backward area located in the south of Italy (that is, the 
province of Foggia) and investigated the occurrence of knowledge 
fl ows in two diff erent networks: (1) the network of local organic 
industrial fi rms; and (2) the network of fi rms and local institutions. 
Moreover, the authors argue that it is important to include institu-
tions in such a network as they play a vital role in gathering infor-
mation and knowledge from diff erent sources (which, sometimes, 
lie outside the local network): some institutions produce knowledge 
by themselves (for example research institutes and research depart-
ments); others exchange information and knowledge among them-
selves and subsequently diff use it to fi rms; and others diff use codifi ed 
knowledge obtained from legal and technical sources.

An initial set of organic producers was selected with the focus 
group technique. Subsequently, the fi rms’ network structure was 
augmented following a free recall approach. The sample of local 
institutions included all institutions which supported organic food 
production. All in all, the authors questioned a sample of 66 fi rms 
and 16 institutions.

The questionnaire, submitted with face- to- face meetings both to 
fi rms and institutions, was structured in two parts. The fi rst part 
aimed at gathering general information on the characteristics of the 
fi rm or institution. The second part aimed to collect information 
on relations and, more precisely, on the existence of ties and their 
nature.

First the authors defi ned the network of interactions, which con-
tains all ties amongst the fi rms regardless of their nature (that is, 
whether they are a trade relation, information exchange or a longer-
 lasting cooperative relation). Subsequently the authors used the 
same actors to build a new network (which is a subset of the whole 
network of interactions) called the ‘communicative network’. It 
contained only those ties identifi ed as ‘communicative exchanges of 
knowledge’. The communicative network was further broken down 
into three subtypes: technical knowledge that can aff ect directly the 
fi rm’s productivity, organic production laws, and knowledge or 
information about markets and consumers.

The quite high level of desegregation of the analysis performed 
allowed the authors to investigate knowledge fl ows distinguishing 
among diff erent types of knowledge. First and foremost, despite a 
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cohesive ‘network of interactions’ among organic producers, the 
authors observed that knowledge- based exchanges among fi rms 
were fairly marginal. Foggia’s organic producers appeared not to 
be taking full advantage of social networks, perhaps due to negative 
attitudes about cooperation.

However, the authors found that such a communication void was 
partially fi lled by active local institutions (see Figure 5.2). In fact, 
the fi rms’ institutions networks were much more dense and eff ec-
tive in diff using knowledge. Specifi cally, the authors showed that 
institutions were more eff ective in diff using juridical and technical 
knowledge (sector specialists such as agronomists, colleagues and 
organic farmers provide most technical support) and less eff ective in 
providing commercial or market information.

All in all, this study contributes to empirical literature on knowl-
edge diff usion in various ways. First, it underlines the fact that 
proximity and the existence of social ties are just necessary (and not 
suffi  cient) conditions for knowledge to diff use informally. In order 
for knowledge to spread eff ectively across a social network, the 
actors involved should be willing to engage in informal diff usion, 
and a certain degree of cooperation and trust needs to be present 
among actors. Moreover, this study shows that institutions can play 
a vital role in promoting knowledge fl ows. Finally, distinguishing 
among various types of knowledge allowed the authors to reach a 
fi ner grain of inspection and to point out which types of knowledge 
circulate more easily than others.

MEASURING KNOWLEDGE DIFFUSION IN 
INDUSTRIAL RESEARCH

A rather diff erent approach was followed by Berends at al. (2006) 
who performed an in- depth analysis of knowledge diff usion pat-
terns19 by means of two fi eld studies conducted on two diff erent 
industrial research groups.20 Following an ethnographic approach, 
the authors studied the actual practices of researchers by implement-
ing a passive participant observation: ‘one of the authors temporarily 
shared a room with diff erent researchers, followed them to meetings 
and to their laboratories, joined them for coff ee and lunch breaks 
and on other social occasions, but did not actively participate in their 
research’ (Berends et al. 2006, p. 87). Following this methodological 
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approach allowed the authors to identify 227 episodes of knowledge 
sharing21 which were classifi ed by means of a coding technique. This 
coding process eventually yielded three dimensions that were used 
to distinguish between mechanisms for the origination of knowledge 
sharing. The three identifi ed dimensions of knowledge sharing refer 
respectively to: (1) the shared content (what is shared?): the authors 
distinguish between new content or existing content; (2) the source 
determining the sharing process (who is the actor who determined 
the content of knowledge sharing?): the authors distinguish among 
the person who is sharing his/her knowledge, the person that this 
person is sharing his/her knowledge with and the management which 
might determine the content of knowledge sharing; (3) the orienta-
tion of knowledge sharing (with what objective in mind is existing 
information selected or new information developed?): the authors 
distinguish among four possible orientations – orientation towards 
one’s own problem (the sharing person’s problem), orientation 
towards the other’s problem, orientation towards a shared problem, 
or not oriented towards a particular problem.

These three dimensions can be combined in 24 logically possible 
knowledge- sharing mechanisms, out of which 16 were observed in 
the 227 episodes of knowledge sharing identifi ed in the case study. 
Some of these mechanisms also involve, along with knowledge 
sharing, the creation of brand new ideas. Seven mechanisms were 
described in detail in the paper, also making good use of real exam-
ples drawn from the fi eldwork which help in clarifying the  occurrence 
of the actual knowledge- sharing processes.

The fi rst mechanism is labelled ‘diff usion’ and it occurs whenever a 
member of an organization selects and communicates existing infor-
mation without being oriented towards a particular problem. In this 
case the knowledge sharing is not meant to help anyone in particular. 
‘Information retrieval’ is the second mechanism, which takes place 
when someone who needs a particular piece of knowledge or informa-
tion obtains it by asking someone who has it. The content of knowl-
edge sharing is thus not determined by the sharing person but by the 
other, and is oriented towards the other’s problem. ‘Information 
pooling’ arises when the person sharing information chooses to 
do so because of a problem shared with others. ‘Collaborative 
problem- solving’ is a mechanism which consists of developing new 
information with regard to a shared problem (this is a case in which 
knowledge sharing is accompanied by knowledge creation).
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The four knowledge- sharing mechanisms described above were 
found in the episodes observed in both fi eld studies and correspond 
to models of knowledge sharing that are assumed in particular 
streams in the literature. Three other mechanisms that were fre-
quently observed have received little attention in the mainstream 
literature on knowledge sharing and, therefore, represent an interest-
ing element of novelty in the study of Berends et al. Such mechanisms 
have been labelled ‘pushing’, ‘thinking along’ and ‘self- suggestion’. 
In the fi rst of these originating mechanisms, pushing, the sharing 
person chooses to provide someone else with existing information. 
This mechanism is typical of gatekeepers, who monitor (external) 
developments and pass on to their colleagues what they think might 
be useful to them. Thinking along occurs when someone develops 
new ideas, hypotheses or questions with regard to someone else’s 
problem, and it is not confi ned to informal meetings between two 
researchers. Finally, self- suggestion occurs when someone thinks 
about his/her own problem during interaction. The need to explain 
one’s own problem or the need to defend one’s own ideas stimulates 
a person to come up with new explanations, solutions, arguments 
and conclusions in the same way as people can think about someone 
else’s problem. Note that both thinking along and self- suggestion 
involve new knowledge creation while sharing knowledge.

Along with the defi nition of the knowledge- sharing origination 
taxonomy, the authors provided an explanation as to why each 
mechanism is valuable for R&D and a detailed description of the 
preconditions required by each mechanism to be eff ective. Indeed, 
the depth of the study allows the authors to underpin several rather 
specifi c characteristics of knowledge diff usion. This is the major 
element of novelty introduced by this study; however, as acknowl-
edged by the authors themselves: ‘the concepts and fi ndings dis-
cussed . . . should be tested and elaborated in further research. It 
should be explored whether the same origination mechanisms can 
be found in other organizational functions, such as engineering and 
marketing’ (Berends et al. 2006, p. 94).

CONCLUSIONS

The studies here presented represent major advances in the empiri-
cal understanding of informal knowledge diff usion mechanisms. 
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However, a problem common to all the empirical studies presented 
in this chapter rests in their adherence to the case study. In fact, 
although quite deep at the level of analysis, these research works are 
quite narrow in the scope of their investigations; and therefore their 
fi ndings suff er from lack of generality. This undermines the possibil-
ity of drawing general conclusions from such empirical investigations 
and calls for alternative approaches to the empirical investigation of 
knowledge diff usion.

We will come back on this issue in the following chapter, where we 
present a methodological discussion on the core distinction between 
applied and theoretical models. This investigation will lead us to 
discuss various agent- based models’ validation techniques which 
could prove to be an alternative and more general approach to 
empirical investigation on knowledge diff usion patterns.

NOTES

 1. As pointed out by Cantner and Graf: ‘[t]he conscious exchange of technological 
knowledge between actors can be organized in diff erent types of arrangements. 
The normative basis for a market organization is a contract between the parties 
which relies on well defi ned property rights and actors largely communicate via 
the price mechanism. Certainly, there are markets for technologies where licences 
for patents, etc. can be traded . . . The transfer of knowledge can also be organ-
ized hierarchically; i.e. within fi rms where the researcher is obliged to leave the 
inventions to the employer. Here, the contractual obligations form the basis for 
a hierarchical structure of coordination’ (Cantner and Graf 2006, pp. 463–4).

 2. A notable exception is provided by the Community Innovation Survey, an offi  -
cial EU- wide survey that asks business enterprises to report innovation outputs, 
innovation inputs and, most importantly, sources of knowledge for innovation 
eff orts. Firms are asked to rate the importance of knowledge fl ows for innova-
tions from a number of sources such as suppliers, other fi rms in the fi rm group, 
customers, universities and so on. Two major disadvantages of these data 
refer to their nature of being subjective (as they refer to the perceived impact 
of knowledge fl ows) and qualitative (as they do not measure the quantity of 
 knowledge fl owing in and out the fi rm).

 3. Social network analysis has its historical roots in the disciplines of sociology, 
social psychology and anthropology, and it focuses on networks’ structural 
description. It represents a distinct research perspective within the social sci-
ences as it is based on the assumption that relationships among interacting 
units are essential in understanding individual and social dynamics. Therefore 
it off ers theories, models and empirical studies articulated in terms of relational 
analyses.

  In the words of Wasserman and Faust: ‘a social network consists of a fi nite set 
or sets of actors and the relation or relations defi ned on them’ (1994, p. 20). Such 
relational ties between actors are channels for the transfer or fl ow of resources 
(either material or immaterial) such as knowledge.



102 Knowledge diff usion and innovation

 4. It is worth noting that the use the information in patent citations involves some 
diffi  culties. One major problem is that patents likely measure a selected form 
of knowledge increase, since not all innovations are patentable, neither are all 
patentable innovations chosen to be patented (Crespi et al. 2007).

 5. Referring to such a time span allowed the authors to investigate the dynamics 
of the networks. Specifi cally, Cantner and Graf (2006) split the sample into two 
periods of equal length which were subsequently compared. The fi rst period 
includes all patents disclosed between 1995 and 1997 while the second period 
covers the years 1999 to 2001.

 6. As stated by the authors, the classifi cation into 30 technological classes was 
obtained employing the International Patent Classifi cation elaborated jointly 
by the Fraunhofer- Institut für Systemtechnik und Innovationsforschung (FhG-
 ISI), the Observatoire de Sciences et des Techniques (OST), and the Science and 
Technology Research Policy Unit of the University of Sussex (SPRU).

 7. This database includes information from the German patent offi  ce and the 
European patent offi  ce.

 8. Note that the database constructed by Meder is strongly unbalanced (due to the 
large number of zeros present in the dependent variable). As shown by King and 
Zeng (2001) for strong unbalanced datasets logistic regressions sharply under-
estimate the probability of rare events and lead to ineffi  cient results. Using the 
prior correction model allows correction for this shortcoming.

 9. Absorptive capacity is here defi ned as the stock of knowledge accumulated 
within the fi rm, embodied in skilled human resources and accrued through in- 
house learning eff orts.

10. This index measures the extent to which technical knowledge originates from a 
fi rm to be used by other local fi rms. The indicator was computed on dichoto-
mous bases (which refl ects the presence or absence of such a linkage) and on a 
valued base (which analyses the value given to each linkage by the knowledge 
user – ranging from 0 to 3).

11. This index measures the extent to which technical knowledge is acquired by or 
transferred to a fi rm from other local fi rms. This indicator, too, was computed 
on a dichotomous base and a valued base.

12. This index measures the degree of cognitive interconnectedness of a fi rm on the 
basis of its propensity to be in between other fi rms’ knowledge linkages.

13. This index measures the ratio between the knowledge received and that trans-
ferred by each fi rm, and allows distinction among net ‘absorber’ of knowledge, 
net ‘source’ of knowledge and mutual exchanger of knowledge.

14. Firms that have a central position in the network in terms of knowledge transfer 
to other local fi rms and that are also strongly connected with external sources of 
knowledge.

15. Firms that form a central part of the local knowledge system with balanced 
source–absorber positions within the cluster. They also have relatively strong 
external links. Although they are less strongly connected to external sources 
than the TG fi rms, they behave in a similar way to ‘technological gatekeepers’ 
by bridging between external sources and local absorbers of knowledge.

16. Firms that are similar to AMEs in that they are well linked to external knowl-
edge sources and play a relatively balanced source and absorber role within the 
cluster. However, compared with AMEs, they are less well connected to other 
fi rms in the cluster.

17. Firms that have established strong linkages with external sources, but have 
limited links with the intra- cluster knowledge system. These weak intra- cluster 
links are primarily inward and absorption- centred.

18. Firms poorly linked at both the local and extra- cluster levels.
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19. In their paper the authors refers to knowledge diff usion as ‘knowledge sharing’. 
For the sake of clarity and homogeneity we will continue to refer to knowledge 
diff usion patterns.

20. The fi eld work was conducted at the Buijs Group, part of the NatLab, the largest 
laboratory of Philips Research, and at the Oil and Gas Innovation Research 
(OGIR), the exploratory research group of Shell Global Solutions.

21. In their paper the authors refer to knowledge sharing as the deployment of 
knowledge in communication with others. This description is very similar to 
what we have labelled ‘knowledge diff usion’, that is, an informal and largely 
uncontrolled fl ow of knowledge. In what follows we shall stick to the authors’ 
original notation.
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6.  Theoretical and applied 
methodologies of agent- based 
models

The objective of this chapter is to discuss the approaches of applied 
and theoretical modelling, to emphasize diff erences in the nature of 
modelling enquiry and to suggest that these diff erences – axioms of 
modelling methodology – should be recognized as starting points 
that determine the way the enquiry is planned, carried out and 
 evaluated by modellers.

This is followed by a closely related discussion of validation of 
agent- based models. Here, validation is considered quite broadly, 
encompassing both inputs and outputs to the modelling as well as 
its incorporation into all stages of the model building and analysis. 
It draws on a diverse review of literature from computer science 
 perspectives, from sociology and economics, and from applied 
agent- based models.

This discussion will pave the way to the study conducted in the fol-
lowing chapter. The objective is to place the applied model presented 
in Chapter 7 within the methodological framework introduced, and 
to give the reader some context for this book outside the specifi c 
domain of knowledge and innovation.

THEORETICAL AND APPLIED MODELLING

Broadly speaking there are two streams of investigation that are 
possible to classify usefully. The fi rst type of enquiry, referred to 
as foundational agent- based social simulation (Moss 2001), is con-
cerned with the formulation and verifi cation of social theory and 
the design of agent architectures. Some of the most striking fi ndings 
about the dynamics of agent- based models were achieved with early 
foundational models like Schelling’s segregation model (Schelling 
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1978), the Santa Fe Artifi cial Stock Market (Arthur et al. 1997) or 
Sugarscape (Epstein and Axtell 1996). The fi nding that simple rules 
can generate complex behaviour, which was demonstrated early on, 
has been a basis for much further interest and subsequent application 
in a variety of research fi elds. Such insights of foundational model-
ling have also led to concerted study of the general properties of 
complex systems such as non- linearity, emergence, self- organization, 
and so on.

A second stream of modelling, labelled representational agent-
 based social simulation, is concerned with the use of multi- agent 
systems to describe observed social systems (Moss 2001). It has 
developed as researchers from other domains – as well as decision-
 makers from industry and the public sector – are fi nding that agent-
 based models may be applied to problems of an empirical nature. 
The problems and questions which they seek to address often have a 
high level of complexity, and it is in this situation where agent- based 
modelling is one of the tools which seems to off er some promise.

TYPES OF PROBLEM ADDRESSED WITH 
AGENT- BASED MODELS

Foundational and representational modelling streams correspond 
strongly to problems of a theoretical and an applied nature, respec-
tively: in this chapter we use the terms interchangeably. However, as 
will be presently discussed, the boundary between the two strands of 
research is not always so clear cut.

Agent- based approaches often integrate social (and economic and 
ecological) models with physical systems. However, there are impor-
tant distinctions to draw between physical modelling and social 
modelling in relation to the normal way that each type of model 
is confronted with reality – which can be usefully classifi ed into an 
‘open’ or a ‘closed’ type of system.

A ‘closed’ system is one typifi ed by a physical science laboratory 
where all input variables can be controlled or can be precisely meas-
ured and are therefore known. Validating a model of a closed system 
is greatly aided by this ability to perform controlled exploration. One 
can provide the same inputs to the closed laboratory system as those 
provided to the (theoretical or simulation) model with a great degree 
of certainty. The ability to test propositions in the laboratory, by 
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means of repeated experiments over a large range of parameteriza-
tions, can be very helpful in developing scientifi c knowledge. For the 
physical world this has resulted in a (well- validated) general theory 
that has proved to be accurate and has developed cumulatively over 
the generations.

In the natural and social sciences, on the other hand, it has proved 
less possible to develop general theory. Knowledge has usually been 
constrained to local contexts and has not been generally applicable; 
general theory has not been well validated in relation to real- world 
observations and experiments. The latter point is a main critique 
which has been directed towards assumptions of classical economics. 
In natural science, Oreskes writes (Oreskes et al. 1994), the concept 
of conventional validation against reality is misleading. Models are 
bound to be less accurate representations because the systems they 
purport to represent are ‘open’ systems – that is, they are real- world 
systems that do not have a complete, known set of input values. 
Therefore models will not be able to capture all of the unknowns 
but must fi nd proxies for these uncertainties, which also means that 
they will not be able to generate a unique result (or simulation run) 
comparable with an observation.

The idea of confi rmation is introduced (Oreskes et al. 1994) as an 
imprecise measure for the extent to which a theory or model matches 
with what is known about the behaviour of an open system. A model 
or theory should aim for adequacy, it is argued. In empirical social 
simulation, the target being an open system, CAVES (2007) propose 
that such confi rmation could be provided by activities involving 
stakeholder validation (see below for further information) of the 
legitimacy of a model.

There is a related debate which, on the one hand, views agent-
 based social simulation as a starting point for ‘controlled, repeatable 
experiments to test hypotheses about how the world can be the way 
it is. Without a laboratory in which to perform these kinds of experi-
ments, there can be no such thing as a bona fi de scientifi c theory of 
anything’ (Casti 1997, p. x). In other words, it is a new approach for 
social science that calls upon the rigour of natural science methods 
to generate a qualitatively diff erent type of knowledge. It is an 
approach which demands, on the other hand, that the ‘laboratory’ be 
suffi  ciently accurate in its depiction of the ‘world’ that correct infer-
ences can be made from the model. Because of the ‘open’ nature of 
social systems and the diffi  culty of capturing all of the unknowns, this 
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inference step cannot be guaranteed, and becomes subjective, which 
will be followed up in the discussion of model validation later in the 
chapter.

There now follows a discussion of methodological considerations 
that need to be made in following the theoretical or applied school of 
investigation. Foundational modelling is undertaken with respect to 
a target area of social theory or widely held ‘stylized facts’ – empiri-
cal regularities derived from a number of studies. Facts may be held 
in diff erent degrees of certainty, as well as in diff erent degrees of gen-
erality. Certainty relates to whether the theory is well established and 
supported by evidence or whether it is contested, whereas generality 
relates to whether such statements hold under a wide range of condi-
tions or whether they have in fact been shown to be special cases. All 
such theories are falsifi able, in principle.

We include logics in the foundational category. For any logical 
theory, a corresponding simulation model can be built to represent 
that theory. A number of theorems can then be tested – in the sense 
of attempting to fi nd a resolution to the theorem. Validation of a 
theorem is the production of a proof. Conclusions can be drawn 
about social dynamics based on proving theorems: this is a useful 
technique and one which does not require additional empirical 
data. Further foundational knowledge can be derived from ana-
lytical proofs, and would also include many existing modelling or 
 simulation studies.

Foundational modelling therefore proceeds towards the specifi ca-
tion of a model representing the salient aspects of its target theory. 
The formalization step involves focusing on aspects of the theory rel-
evant to the study, clarifying these aspects and producing conceptual 
models, as shown on the left- hand side of Figure 6.1.1

The conceptual modelling phase terminates with a complete speci-
fi cation of a model which can then be translated into a simulation 
model, that is, a concrete implementation of the conceptual model 
ready to be run.2 Generally speaking this requires adding assump-
tions as much as it involves abstracting from a body of theoretical 
knowledge. This is because a theory is often underspecifi ed in several 
dimensions as compared to what is desired from an agent- based 
model, which often requires a lot of design information. So, the 
left- hand side of Figure 6.1 shows the formalization step as one of 
adding information in order to specify the theory more concretely in 
a conceptual model.
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This step is vital to the actual implementation of the simulation 
model. Experiments with the theoretical model are carried out with 
the objective of gaining a better understanding of this type of system 
and contributing to knowledge by confi rming or refuting an existing 
hypothesis, by inducing that some new (previously unanticipated) 
social mechanism is at play, or by generating some original facts 
relating to and expanding the existing general theory.

Now focusing on the empirical modelling where the objective 
is to apply the methodology to a well- defi ned study where there is 
substantive access to fi eld data, it is natural that the abstraction step 
involves reducing complexity in comparison with the real- world 
system, and by so doing developing an applied model that, by the 
nature of its being simpler and more amenable to study, produce 
some insight into the more complex real- world counterpart. It 
should be simpler – in terms of being easier to understand the micro 
and macro behaviour and how these are linked – whilst as accurately 
as possible representing the relevant aspects of the target.

Generally speaking, the aspects to be represented in the concep-
tual model are determined by the available information, the intuition 
of the model designer, and through consultation with any stakehold-
ers who may be infl uencing the whole study in terms of their problem 
formulation. As shown in Figure 6.1 the completion of this phase 
involves reducing the available information to produce a manage-
able yet suffi  ciently representative conceptualization (the notion of 
suffi  cient simulation, that is, conceptual accuracy, is discussed in the 
section below on conventional validation).

Empirically focused agent- based simulation aims to address par-
ticular social issues that are often quite local and time- specifi c. 
It is usually used in conjunction with other methods of fi eld-
 based research or in conjunction with other decision support tools. 
However, an agent- based model tends less towards implementa-
tion as a management tool. Two of its main strengths when used 
in an applied context are: (1) bringing forward a common basis of 
understanding among diff erent parties involved in a study; and (2) 
exploring the consequences of diff erent possible policy interven-
tions. The latter comes with the proviso that one must remain aware 
of the large range of uncertainty inherent in complex systems, the 
lack of accuracy in the results (with respect to the target) and the 
 implications of these facts for model predictability.

What is common across both foundational and applied modelling 
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is that something about the target is inferred from the behaviour of 
the formal simulation model. An essential diff erence is that whereas 
foundational models relate to largely closed systems, empirical 
systems are by defi nition open. It follows from these principles that 
what can be expected from foundational and empirical models is 
very diff erent, and that the methodology is diff erent.

The inference step just mentioned is, of course, based on validation 
of the model. Validation is an important step because it improves 
modellers’ confi dence in the results – more precisely, in the strength 
of the inference from conceptual model results to the target system.

VALIDATION OF AGENT- BASED MODELS

Validation is normally understood as ‘determining whether the 
simulation model is an acceptable representation of the real system 
given the purpose of the simulation model’ (Kleijnen 1999, p. 647). 
In the agent- based model literature this is becoming an important 
issue. The reason for the growing interest around validation proce-
dures is strictly related to the nature of the models. In fact, as sug-
gested by many authors, computer- simulated models lack a common 
methodological protocol with respect both to the way models are 
presented and to the kind of analysis that are performed (Leombruni 
et al. 2006). The absence of a shared methodological protocol (which 
leads to a lack of comparability), coupled with the perceived lack 
of robustness of agent- based models (Windrum et al. 2007) are, 
most likely, among the main reasons why mainstream literature (for 
example orthodox neoclassical economics) is so reluctant to give 
agent- based simulation models equal dignity to models with closed 
form solutions. Marks (2007) maintained that better validation 
would reduce any scepticism about model results and usefulness. 
The question at stake is how to prove ‘that model outcomes refl ect 
persistent (locally generic) aspects of the system under study, rather 
than a modeller’s choice of parameter settings, initial conditions, or 
software/hardware platform preferences’ (CAVES 2007, p. 6).

However, providing a conclusive answer to such questions is a dif-
fi cult task due to the high degree of complexity of agent- based models 
(see Chapter 3). This results in the absence of reduced form equations 
more suitable for empirical validation and in methodological dif-
fi culties for developing standardized validation procedures. Whilst it 
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might not be possible to build up a defi nitive approach to validating 
agent- based models, researchers have proposed several procedures 
that modellers can follow to improve the level of confi dence placed 
in the model fi ndings. In what follows we shall attempt to contribute 
to the debate on validation by suggesting a comprehensive meth-
odological framework of analysis able to embrace various strategies 
proposed so far in the literature. We will start by surveying the most 
conventional approaches to validation and subsequently extend the 
methodological debate to other approaches to validation.

Conventional Approach to Validation

Validation is typically understood as a way of assessing the fi t of the 
model Data Generation Process (mDGP) to the real- world Data 
Generation Process (rwDGP). In other words, validating an agent-
 based model requires undertaking several steps which will increase 
the confi dence that the model is a good representation of the real 
world and will enhance its predictive power. This can be achieved 
by following two distinct, but not mutually exclusive, approaches: 
modellers can validate model inputs (for example model param-
eters) against the real world, and/or validate the output of the 
model against the historical output of the real world system. The 
fi rst validation approach is also referred to as micro- level valida-
tion (CAVES 2007) or as empirical calibration (Windrum 2007); the 
second approach applies to the macro level of the analysis and refers 
to the extent to which modelled results concur with the real world.

Following Marks (2007), we can introduce a general formaliza-
tion of the conventional approach to macro validation. Let set M be 
the exhibited outputs of the model over time and S be the specifi c, 
historical output of the real- world system over time. Let set Q be the 
intersection, if any, between the set M and the set S, Q ; M > S. We 
can characterize the model output in fi ve cases:

1. If there is no intersection between M and S (Q 5 [), then the 
model is useless.

2. If the intersection Q is not null, then the model is useful, to some 
degree. In general, the model will correctly exhibit some real-
 world system behaviours, will not exhibit other behaviours, and 
will exhibit some behaviours that have not historically occurred. 
That is, the model is both incomplete and inaccurate.
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3. If M is a proper subset of S (M , S), then all the model’s behav-
iours are correct (match historical behaviours), but the model 
does not exhibit all behaviour that has historically occurred. The 
model is accurate but incomplete.

4. If S is a proper subset of M (S , M), then all historical behav-
iour is exhibited, but the model will exhibit some behaviours 
that have not historically occurred. The model is complete but 
inaccurate.

5. If the set M is equivalent to the set S (M 3 S), then the model is 
complete and accurate.

Hence, according to Marks (2007), the model is incomplete if S\Q is 
non- null, so that the model does not exhibit all observed historical 
behaviours. And the model is inaccurate if M\Q is non- null, so that 
the model exhibits behaviours that are not observed historically. 
Figure 6.2 illustrates these relationships.

We should, however, note that if on the one hand correlation 
between real- world data and model output is a necessary condi-
tion for accuracy, on the other hand accuracy is not a suffi  cient 
condition for causality. ‘Simply because the observed data fi ts the 
construction of a model does not necessarily mean that the model 
approximates the reality correctly’ (CAVES 2007, p. 10). This 

(1) (2)

S S

M

Q M

(3)

S Q M

(4)

S Q M

(5)

M Q S

Source: Marks (2007).

Figure 6.2 Validity relationships
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 observation raises a general criticism of the formalization just pre-
sented as we believe that output accuracy and model accuracy are 
diff erent concepts which should be kept distinguished. Specifi cally, 
the former occurs when historical observed data (real- world data) is 
a proper subset or is equivalent to the output data generated by the 
model, whereas the latter occurs when the model Data Generating 
Process accurately replicate the real world Data Generating Process. 
We schematically illustrate the diff erent levels of comparison in 
Figure 6.3.

In Figure 6.3 we distinguish among input comparison (micro 
validation), output comparison (macro validation) and DGPs com-
parison. The latter comparison aims at confronting the two data 
generation processes and, therefore, validating the modelled behav-
ioural rules with the true rules of behaviour. This last level of com-
parison is indeed the most diffi  cult as the rwDGP is extremely hard 
to investigate; this is especially true when studying complex systems 
where the rwDGP can be completely unobservable. Typically, such 
comparison goes beyond the conventional approach to validation. 
We will now present some protocols for output validation which are 
compatible with the conventional approach just discussed.

Protocols for Validation

Following Windrum at al. (2007), we shall now consider the follow-
ing three protocols for validation: the indirect calibration approach, 
the Werker–Brenner approach and the history- friendly approach.3

The fi rst approach, the indirect calibration, is quite straightfor-
ward: it fi rst performs validation, and then indirectly calibrates the 
model by making use of the parameters that are consistent with 
output validation. The empirical validation process is constituted 
by four pragmatic steps: fi rst, the modeller should identify a set 
of stylized facts that he or she is interested in reproducing and/or 
explaining. In the second step, the modeller should create the model 
in a way that the mDGP is kept as close as possible to empirical 
and experimental evidence about behaviour and interactions. This 
process implies drawing together all possible data about the underly-
ing principles that inform real- world behaviours so that the model’s 
context is not a too unrealistic one.4 This empirical evidence on the 
stylized facts should then be used to limit the parameters’ space as 
well as to redefi ne the initial conditions in case the model turns out 
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to be non- ergodic.5 Following this third stage, the modeller, in the 
fi nal step, should aim at understanding in a more thorough way the 
causal relations characterizing the stylized facts in question and/or 
investigate whether new stylized facts (diff erent from those observed 
in the fi rst step of the validation process) came to the fore. These 
new stylized facts, under certain circumstances, can be validated by 
the modeller ex post by further investigating the subspace of param-
eters that have proven to be resistant to the third step, that is, those 
 consistent with the stylized facts of interest.

Real world
(rw)

mDGP rwDGP

Output of the
model (M)

Real world
output (S)

Causality

comparison

Comparison for conventional 
macro validation

Model
inputs and 

assumptions

Conceptual
model

Comparison for conventional
micro validation

Output completeness
and accuracy 

Model completeness
and accuracy 

Source: Based on CAVES (2007).

Figure 6.3 Comparison for validation
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The second approach to empirical calibration of agent- based 
models is the Werker–Brenner procedure, which is made up of 
three steps (Werker and Brenner 2004). While the fi rst two steps 
are similar to the calibration exercises just discussed, the third step 
presents a novelty. The main diff erence lies in the fact that here the 
empirical parameters are chosen directly to calibrate the model. 
More specifi cally, step one refers to existing empirical evidence in 
order to calibrate the model’s initial conditions and the ranges of 
its parameters, which should be specifi ed for parameters for which 
there is little or no reliable data. In step two the modeller performs 
the empirical validation of the outputs for each of the model specifi -
cations defi ned in step one. This should help to reduce the plausible 
range of values within the initial dimension space. According to 
Werker and Brenner, one way of actually carrying out this output 
validation could be using the Bayesian inference procedures, where 
each model specifi cation is assigned a likelihood of being accepted, 
having in mind the percentage of ‘theoretical realizations’ that are 
compatible with each ‘empirical realization’. In this way, it is pos-
sible to limit further the initial set of model specifi cations (parameter 
values) as the modeller keeps only those parameter values which 
received the highest likelihood of being accepted by the current 
empirical realization. On the other hand, model specifi cations that 
are not compatible with currently known data are set aside.

Following this comes step three which entails a calibration process 
which draws on those sets of models which survived the second step. 
This step, which might involve consulting expert testimony from 
historians, is called by Werker and Brenner ‘methodological abduc-
tion’. Now, the underlying structural model is identifi ed from the 
shared properties and characteristics of the ‘surviving’ models. The 
authors argue that: ‘these [shared] characteristics can be expected to 
hold also for the real systems (given the development of the model 
has not included any crucial and false premises)’ (Werker and 
Brenner 2004, p. 13).

The third approach to validation is the history- friendly one which, 
like the calibration approaches discussed above, aims at creating a 
model more in line with the empirical evidence. However, it is diff erent 
from other approaches in that it makes reference to the specifi c histori-
cal case studies of an industry to model parameters, agents’ interactions 
and agents’ decision rules. In other words, it is an approach which uses 
specifi c historical outlines in order to calibrate the agent- based model.
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According to this approach, a ‘good’ model is one that can 
produce various stylized facts observed in an industry (Malerba et 
al. 1999; Malerba and Orsenigo 2001). Malerba et al. (1999) out-
lined the approach and then applied it, examining the transition in 
the computer industry from mainframes to desktop PCs. Malerba 
and Orsenigo (2001) subsequently applied the approach to the 
role played by biotech fi rms in the pharmaceutical industry. This 
approach entails the construction of industry- based, agent- based 
models, where detailed empirical data on an industry are required 
for the model building, analysis and validation. Hence, models 
are based – in both the building and the validation phases – on a 
wide range of available data, which are gathered through empirical 
studies as well as anecdotal evidence or histories written about the 
industry in question. These data assist the modeller in specifying the 
model’s agents (their behaviour, decision rules and interactions), and 
the environment in which they operate. They also facilitate the iden-
tifi cation of initial conditions and parameter values of key variables 
likely to produce the observed history.

Finally, in the model validation phase, the gathered data can 
be used for comparison of the model output (the ‘simulated trace 
history’) with the ‘actual’ history of the industry. It is precisely in 
this dimension that the history- friendly approach distinguishes itself 
from other approaches: by giving weight to the use of historical case 
studies to guide the specifi cation of agents and environment, and 
to identify possible key parameters. The followers of the history-
 friendly approach claim that it is possible to reach a correct set of 
structural assumptions, parameter settings and initial conditions 
through a process of backward induction. As put by the authors, 
such a correct set of ‘history- replicating parameters’ would facilitate 
the conduction of a sensitivity analysis to establish whether ‘history 
divergent’ results are possible.

Alternative Approaches to Validation

The conventional validation approach discussed above, aims for 
what could be labelled ‘replicative validity’: the model matches 
data already acquired from the real system (Zeigler 1985 [1976]). 
However, we can augment the conventional approach to validation 
by considering two other types of validation: ‘predictive validity’: 
the model matches data before data are acquired from the real 
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system; and ‘structural validity’: the model ‘not only reproduces the 
observed real system behaviour, but truly refl ects the way in which 
the real system operates to produce this behaviour’ (Zeigler 1985 
[1976], p. 5).

Basically, predictive validity requires ex post replicative validity, 
whereas structural validity requires validation of the mDGP, which 
can only be obtained by comparing it with the rwDGP. In practical 
terms structural validity necessitates, fi rst and foremost, an eff ective 
model design. In fact, as maintained by various authors (CAVES 
2007), this is a crucial step which might include in built validation 
techniques.

Recently, Edmonds and Moss (2005) raised the question of 
whether a model design should be kept as simple as possible (the 
so- called KISS approach – Keep It Simple, Stupid) or as descrip-
tive as possible (what the authors have labelled KIDS – Keep It 
Descriptive, Stupid). This question intrinsically relates to the issue of 
validation. In fact, it has been argued that: ‘KIDS models, because 
of their descriptive content, are more amenable to scrutiny and 
criticism by stakeholders and experts than KISS models, which too 
easily become enigmatic and obscure. This attribute of KIDS models 
also makes them easier to validate and less capable of “garbage in 
garbage out” errors’ (CAVES 2007, p. 8).

A diff erent approach to model design is the so- called TAPAS 
(Take A Previous Model and Add Something) method which is 
potentially compatible with both KISS and KIDS. Such an approach 
enables the docking technique of validation which involves the con-
ceptual alignment of models and can be used to check whether an 
agent- based model (ABM) is a special case of another model (Axtell 
et al. 1996). ‘Docking probably has the most potential to provide 
ABM with a standardized validation technique’ (CAVES 2007, p. 9); 
however, it does not replace the need for validation against the real-
 world environment as the conventional understanding of validation 
checks whether the model is a good representative of the reality 
(CAVES 2007, p. 20).

VALIDATION BY COMPARING MODELS

The previous sections have detailed a number of approaches to 
model validation, demonstrating the various steps entailed: for 
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example, correlation between model outputs and historical out-
comes, observation of real- world data- generating processes, con-
ceptual accuracy, and induction of stylized facts from empirical and 
experimental evidence, not all of which involve direct comparison 
with empirical data. A number of additional validation procedures 
involve comparison among models.

Figure 6.4 expands on the model development process described 
earlier by illustrating a further step where more than one model is 
considered together, and can hence improve the validation. Recall 
that the formalization step involves specifying the theory or empiri-
cal knowledge more precisely into a set of rules and processes suit-
able to be translated into a computer program, that is, a simulation 
model.

Figure 6.4 shows two implementations of the same conceptual 
model. It might be desirable to use diff erent architectures or pro-
gramming platforms to study the model, for example diff erences in 
the speed of simulation or ease of programming might be an impor-
tant factor, whilst it is also clearly valuable to test several models, 
thus reducing the possibilities of error. This type of comparison, rep-
lication, involves reviewing both the conceptual model and the alter-
native implementation of that model, and checking that inputs and 
outputs are the same (Axtell et al. 1996; Edmonds and Hales 2003). 
This step therefore incorporates verifi cation, one of its objectives 
being to check that the model is behaving according to the design, 
as well as validation. Validation is implicit in replication because 
the comparison may lead to respecifi cation of the conceptual model 
in order to bring it into closer convergence with the target system. 
In other words, diff erences among implementations might reveal 
assumptions that have not been made explicit, and any new assump-
tions revealed in this way may improve confi dence in the model.

The fi gure also shows that several conceptual or aligning models 
may be developed from the same area of theory. Docking is the 
process of comparing two simulation models when they are close 
enough to show the same features and behaviours: in other words, 
when the two respective conceptual models overlap signifi cantly. The 
experiment will investigate a subset of the space of input assumptions 
that overlap, and will compare outputs of the two models for con-
sistency (for example Axtell et al. 1996). The objective, as discussed 
in the above section, is to validate both models.

The thesis of this chapter is that approaches to validation 
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 necessarily diff er according to the type of modelling undertaken, 
whether empirical or foundational, and that this necessity is due to 
the nature of the target system. It is argued that empirical modelling 
addresses the behaviour of open systems, where models are impos-
sible to validate in the conventional sense of obtaining an accurate 
representation. In this case, validation must be aimed at addressing 
critiques that relate only to the purpose of the model and the particu-
lar focus aspects of the target, with an understanding that such an 
enterprise will never be complete, and that all input factors are not 
known or are uncertain in behaviour.

Foundational modelling, on the other hand, has a diff erent set of 
considerations. First, it is more feasible for conventional methods of 
validation to be applied, as the areas of uncertainty are here less of a 
constraining factor. Second, the whole parameter space can likely be 
investigated in a way that is not possible when addressing real- world 
complexity.

Validation involves comparing simulation results with earlier 
analyses and knowledge of the area. It is also more likely to reach a 
defi nitive conclusion in relation to previous fi ndings, as opposed to 
applied modelling which has an iterative character (and has the sub-
jective concept of confi rmation as discussed earlier). Output valida-
tion corresponds with the more conventional scientifi c notion of the 
term (macro validation), as discussed earlier (see Figure 6.3).

Therefore, it is natural to expect diff erences in the methods used. 
These factors contribute to diff erences in methodological protocol 
(and the lack of common standards, as discussed earlier). Diff erent 
methods that have been used can also be divided roughly along these 
lines, that is: (1) theoretical model validation involves conventional 
methods supplemented by computer simulation – laboratory experi-
ments, role- playing games, theorem proving, sensitivity analysis; (2) 
applied model validation implies social research, statistical and ‘real’ 
(non- orthodox, for example evolutionary economic as opposed to 
neoclassical economic) techniques including model calibration and 
stakeholder validation.

However, having made clear these diff erences, it is worth point-
ing out that the two approaches are often closely linked in practice. 
Figure 6.4 shows a third type of comparison among agent- based 
model implementations in which there is an interesting crossover 
point in validation. The fi gure shows the divergence in model devel-
opment pathways which follow from these two streams, and it shows 



 Theoretical and applied methodologies of agent- based models 121

where they might explicitly cross over – what we have labelled ‘con-
necting’ models.

The research project may commence with development of an 
abstract model of an archetypal social situation, or it may com-
mence with development of a detailed model of a specifi c empirical 
system. In the fi rst case, the research project may commence with a 
hypothesis about how a particular social process is thought to occur. 
This theory may be enriched with a limited number of generalized 
facts drawn from the literature or from the results of other theo-
retical studies. The model will be developed, along with a choice of 
parameters, to capture a wide domain and the conclusions will be 
about general behaviours of this kind of system. The study may then 
be followed by a more empirical type of investigation, where the 
model is applied to a given situation which is local to a region, or to a 
period in time for example, or in any case to a specifi c instance of the 
phenomenon being investigated. The advantage of this approach is 
that the general model can be used to support and guide the empiri-
cal data- gathering stages. The danger is that the model may be mis-
guided in its initial assumptions and does not, therefore, have utility 
in the empirical study.

The second case starts with a case study- centric investigation, 
collecting data and involving location- specifi c expertise. This is fol-
lowed by development of a more generic model aiming to abstract 
from the former model and explore the more systematic outcomes of 
classes of models.

In either case, this would involve not only selecting a diff er-
ent grain of analysis; it also means selecting a number of diff erent 
assumptions. If selecting from an alternative theoretical or empiri-
cal focus, it also encompasses methods that link foundational and 
empirical modelling.

It is possible to apply one or more validation methods in order to 
switch from a theoretical to an applied context using, for example, 
input validation, and this is what will be demonstrated in Chapter 7. 
Throughout the presentation, we shall be concerned with the con-
nection between these two models. Connecting models is the activity 
of comparing the structure and behaviour of an applied model with 
that of a theoretical model. The aim is to validate models in rela-
tion to other models, and to increase their scope and utility in both 
 theoretical and applied contexts.

In this section it was argued that the way in which validation 
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 protocol, approach and activities are chosen diff ers largely across the 
theoretical–applied axis. Model calibration was discussed in depth 
above. Now we shall briefl y introduce the other methods mentioned 
in the text.

FURTHER VALIDATION METHODS

Sensitivity analysis is a method for understanding the relationship 
between the model inputs, in terms of parameter choices or assump-
tions data, and the model outputs. After determining which input 
variables are to be analysed, simulations are carried out and the sen-
sitivity of the outputs to variations in the inputs are measured.

Laboratory experiments are used, most notably in economics, 
to make a simplifi cation of complex real- world processes and put 
them under rigorous scientifi c scrutiny. The experimental approach 
involves constructing an artifi cial system in the laboratory where all 
of the inputs can be carefully controlled and the interactions moni-
tored. This can be combined with a simulation experiment approach; 
that is, the laboratory experiment is compared with a simulation 
experiment, and experimental fi ndings then lead to inferences about 
the nature of the artifi cial system. In this scenario, the target of the 
simulation model is the artifi cial (observed) system. An important 
distinction needs to be made between the artifi cial system, which is 
a closed system, and the kind of real- world system addressed by an 
empirical model, which is not closed.

Role- playing games are a related technique often used in par-
ticipatory research to elicit local knowledge or to co- learn on certain 
issues with stakeholders. An exercise in which initial game rules are 
similarly prescribed can help to inform on which individual strate-
gies players are following and how they are interacting, especially in 
terms of group dynamics. Follow- up discussions can be of a refl ec-
tive nature and may in fact be open- ended. This leads to a construc-
tivist approach: the model underlying the game can be adapted as a 
shared representation among diff erent stakeholders.

Stakeholder validation focuses on feedback processes with the 
stakeholders, that is, it provides the opportunity to review either the 
decision rules or the model itself through contact with participants or 
key informants. This could involve, for example, checking the valid-
ity of model assumptions according to stakeholders’ expertise, or 
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checking the outputs of simulations against what has been observed 
by stakeholders or according to what they believe to be plausible. It 
is a way of comparing mDGP with rwDGP with those not familiar 
and knowledgeable about the latter.

The idea of theorem proving is to relate the content of a simula-
tion with a theory that the simulation model corresponds to. If it 
is possible to generate all simulation trajectories and show that a 
particular theorem holds true in all simulation model results, this 
can be considered a proof of the theorem. In other words, a seman-
tic proof of certain regularity in a simulation can be implemented 
by generating all trajectories and observing whether the regularity 
holds in all of them (Terán 2001). This can only be attempted for 
models with a highly restricted number of inputs or decision rules 
or agents, due to the high computational requirements for carrying 
out the simulations, and so it is of limited use for generating knowl-
edge about empirical ABMs (which are computationally intensive in 
particular).

CONCLUSIONS

In this chapter the approaches of theoretical and applied modelling 
have been discussed. It was argued that the development and testing 
of theory falls into the foundational modelling classifi cation whereas 
the application of models to real- world cases is described by represen-
tational agent- based modelling. Figure 6.1 showed the main stages 
in the model- building process, which begins with the defi nition of a 
target system. The rest of the chapter then concentrated on the role 
of model validation, which aims to ensure good representation of the 
target. We discussed both the conventional meaning of validation in 
physical science as well as how this can be approached when dealing 
with uncertainties in natural and social science, and particularly in 
the relatively new area of agent- based social simulation.

Several protocols for validation were discussed in some detail, 
from which it could be concluded that validation of model data-
 generating processes (mDGP) is perhaps the most challenging 
area. The next section introduced three ways of comparing model 
implementations, methods which are clearly open to the comparison 
of mDGP. Replication, docking and connecting models can also 
contribute to validation, it was argued, because they can result in 
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respecifi cation of the conceptual model. Here, we made several addi-
tional remarks on the method which we labelled ‘connecting’ models 
where, interestingly, applied models are compared with theoretical 
models in order to generate further insights.

Validation is important to establish confi dence in the use of 
models to address and analyse real- life problems. However we also 
argued that it should be considered when addressing foundational 
questions of a socio- economic nature, in other words when the 
target of the modelling is an area of social or economic theory. This 
could be done in any of the ways we have been discussing, that is, by 
comparison with other models (mDGP) to improve the conceptual 
model, input validation to increase the relevance of the model to a 
particular case, output validation (macro validation) to test for the 
reproduction of stylized facts. Then, we suggested specifi c methods 
that we would consider using for theoretical and applied model 
 validation and described these in more detail.

Having discussed the relevant methods of validation and how 
they are selected according to the modelling objectives, the follow-
ing chapter will illustrate how this might be done by returning to the 
model presented in Chapter 4 and calibrating this model with input 
data from a case study.

NOTES

1. Not all conceptual models, of course, are formal models; in the present context 
formal conceptual models are the ones of interest.

2. This end- game involves ironing out inconsistencies and unclear aspects of the 
conceptual model so that the logic is complete.

3. For an extensive discussion of these three approaches and their limitations, see 
Windrum et al. (2007) and Windrum (2007).

4. As mentioned earlier, this second step can be diffi  cult to establish when dealing 
with complex systems because they are open systems.

5. In fact, an ergodic system that evolves for a long time ‘forgets’ its initial state.
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7.  Validating the model of 
knowledge diff usion and 
innovation

Elaborating on the methodological discussion developed in Chapter 
6, we shall now attempt to validate the knowledge diff usion model 
developed in Chapter 4. Specifi cally, we will make use of a micro-
 validation approach, ensuring that the structural conditions and 
geographical arrangements incorporated into the model capture the 
salient aspects of the empirical system under investigation. We will 
do so by means of an indirect calibration to validate model inputs 
(that is, initial parameterization) against the real world (that is, data 
collected from case study).1 This calibration exercise should allow 
an increase in the adherence of the model to a real case study and 
should provide an example of how validation of an applied model 
can be conducted.

The chapter is structured as follows: fi rst, two applied models on 
knowledge diff usion are reviewed and the employed validation tech-
nique is discussed; then, the case study used to calibrate the agent-
 based model developed in Chapter 4 is introduced; hence, validation 
is implemented, results are examined and a set of policy actions to 
enhance the innovative performance in the system are considered. 
Finally, some concluding remarks both on the relevance of the vali-
dating methodology as well as on the achievements obtained with 
this validation exercise are presented.

A BRIEF REVIEW OF VALIDATING 
KNOWLEDGE DIFFUSION MODELS

In this section we briefl y present two applied models of knowl-
edge  diff usion which have been validated using two diff erent 
 methodologies. The fi rst model (Morone and Taylor 2004b) here 
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discussed uses calibration as a validating tool and attempts to inves-
tigate how knowledge diff uses among individuals endowed with 
diff erent levels of education by means of face- to- face interactions. 
Primarily, the authors focus upon the processes of knowledge dif-
fusion and learning, and the emerging network characteristics that 
result from these interactions. The calibrated simulation model 
makes use of socio- geographical data from the Greater Santiago 
de Chile case study. This model could be considered a calibrated 
extension of Morone and Taylor (2004a), discussed in Chapter 3, as 
it departs from similar assumptions but develops a more complex 
learning structure.

Specifi cally, the authors consider a population of 232 heteroge-
neous agents distributed over a grid that resembles the geographi-
cal confi guration of the metropolitan area of Greater Santiago de 
Chile. The grid is divided into 34 comuna (districts), each corre-
sponding to a defi ned district of Santiago and thus having diff er-
ent dimensions and diff erent population densities.2 Each agent is 
initially assigned a district and then allocated to a cell at random 
within that district. Neighbourhoods, which may contain cells from 
several districts, are constructed according to the von Neumann 
defi nition and the initial local network is created by connecting an 
agent with all other agents located within her/his neighbourhood. 
It also defi nes a cyber network as the ideal network connecting all 
those agents who have access to the Internet. The cyber network 
generates a second system which has no geographical dimension but 
connects agents located in far distant regions through information 
and communication technology (ICT) support. As opposed to the 
local network, all agents who have access to the Internet are neigh-
bours within the cyber network (that is, the visibility is equal to the 
size of the system).

Each agent has a list of acquaintances which includes the members 
of the local network and the cyber network. However, the result-
ing network structure changes over time as each agent can learn of 
the existence of other agents through interactions with her/his local 
neighbours (that is, she/he can be introduced to the acquaintances of 
her/his acquaintances). Moreover, agents can stop interacting with 
some of their acquaintances if the connection does not tend to result 
in useful interactions. Hence, the number of acquaintances changes 
over time, but does not necessarily increase over time.

Each agent is also endowed with a complex cognitive structure – 
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that is, the cognitive map – which contains information on the level 
and kind of knowledge he/she possesses. The structure of the cogni-
tive map is that of a tree which resembles, although in a simpler way, 
the fi rms’ skills universe depicted in Chapter 4. The data which are 
used to calibrate and initialize the model are a subsample of the 1998 
edition of the Encuesta de Ocupación y Desocupación and provide 
information on the location of agents in the grid, their initial level of 
knowledge and specialization (that is, measured as years of school-
ing and kind of school attended), and whether they have access or 
not to ICT facilities (that is, whether they belong or not to the cyber 
network).

The basic objective of the simulation experiments is to test whether 
knowledge diff uses homogeneously throughout the population or 
whether it follows some biased path generating divergence and 
inequality. By tuning the initial parameters the authors were able 
to simulate the impact of a policy intervention and, therefore, fore-
cast the impact of policy action aiming at increasing the minimum 
level of schooling, or enhancing the diff usion of information and 
 communication technologies.

The results of the simulation exercise suggested that under the 
initial conditions observed in Greater Santiago de Chile (that is, a 
high level of knowledge inequality) there is a high risk of exclusion 
for those people initially endowed with a low level of education. 
Moreover, studying the spatial dimension of the exclusion process, 
the authors found that knowledge inequality is more likely to 
increase if an initial situation of a low level of knowledge is coupled 
with geographical exclusion. In other words, those people who start 
with a relatively high level of knowledge (that is, schooling) will 
always be able to gain from informal face- to- face learning, while 
those with a lower level of schooling might be trapped in a lower 
knowledge equilibrium if their low level of knowledge is cumulated 
with  geographical exclusion.

As mentioned above, these fi ndings allow the authors to forecast 
the impact of policy action aimed at reducing the knowledge gap. 
Specifi cally, the authors identifi ed two possible policy actions which 
could help to curb knowledge inequality: the policy- maker could 
increase the level of education of more backward and marginalized 
people, and/or reduce the geographical gap between centre and 
periphery. This latter policy could be implemented through the devel-
opment of infrastructure bridging the centre–periphery  distance, 
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as well as through investments in ICT especially  concentrated in 
peripheral areas.

In a second paper Morone et al. (2007) employed a diff erent tech-
nique to validate a similar agent- based model of knowledge diff u-
sion. Again, the authors considered a population of heterogeneous 
agents endowed with a cognitive map representing their knowledge 
structure, in which exchange of knowledge is by means of face- to-
 face interactions. As opposed to the previous model, in this paper 
agents were allocated in a one- dimensional wrapped grid (that is, a 
ring) and three static network structures were considered: a regular 
network, a random network and a small world network.3

The authors aimed at defi ning the main factors which infl uence 
the speed and the distribution of knowledge diff usion within a closed 
network. They identifi ed four fundamental factors: (1) the learning 
strategies adopted by heterogeneous agents; (2) the network archi-
tecture within which the interaction takes place; (3) the geographical 
distribution of agents and their relative initial levels of knowledge; 
(4) the network size. Validating the model by means of a laboratory 
experiment, the authors attempted to single out the impact of each 
of these factors on learning dynamics.

The experiment was run at the University of Bari in the ESSA 
laboratory, and 14 players took part in the experiment. Each experi-
mental player was initially endowed with a cognitive map repre-
senting his/her cognitive structure and initial knowledge level. The 
aim of the game for each player was to increase his/her own level 
of knowledge by means of face- to- face knowledge exchanges. Each 
experiment lasted 100 time steps and during each time step each 
player had the opportunity to acquire a bit of knowledge by interact-
ing with one of his/her neighbours. The setting for knowledge fl ows 
was that of a gift economy in which players exchanged knowledge 
freely.

From a methodological point of view, combining a labora-
tory experiment with an agent- based model allowed the authors 
to perform both a macro- level validation (that is, comparing the 
output of the model against the ‘real- world’ experimental results) 
and a more articulated validation of the model Data Generation 
Process (mDGP) against the real- world Data Generation Process 
(rwDGP). This second validating step was conducted by investi-
gating the learning strategies adopted in the lab and developing a 
simulated strategy able to replicate those strategies. Moving along 
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the footsteps of evolutionary economists like Nelson and Winter 
(1982), Silverberg et al. (1988) and Dosi et al. (1995), the authors 
argued that they developed a sort of history- friendly model which 
was labelled an experimentally friendly model (refer to Chapter 6 for 
further discussion on experimental studies as a means of agent- based 
model validation).

Investigating the experimental results, it emerged that players 
followed, in the vast majority of cases (almost 60 per cent), a ‘width-
 fi rst learning strategy’ – that is, a learning strategy in which agents 
preferred broadening the scope of their knowledge rather than 
acquiring more specialized knowledge. Moreover, letting simulation 
agents replicate such a strategy led to a model able to mimic quite 
closely the experimental learning pattern. This fi nding was then 
compared with those obtained using a set of alternative simulated 
learning strategies and showed that the output validation was best 
achieved when this component of the mDGP resembled what we had 
observed in the laboratory, that is, the width- fi rst learning strategy.

Further results were obtained by examining those factors which 
aff ect knowledge fl ows. First and foremost it was shown that learn-
ing dynamics is aff ected by the learning opportunities provided to 
each agent in the network. By ‘learning opportunities’ the authors 
mean the chances each agent has to interact with knowledgeable 
agents. From this fi nding it followed that a particular geographical 
distribution of agents (endowed with diff erent knowledge) could 
substantially aff ect learning dynamics. In order to test independ-
ently the eff ect upon learning dynamics of the network structure and 
of the geographical distribution of agents, the authors ran batches 
of simulations for each network’s structure, while allocating the 
agents in diff erent ways for each simulation. Then, they computed 
the average performance of each network – hence clearing out the 
geographical eff ect. Once they had been corrected for any possible 
geographical bias, the authors could conclude that small world 
networks do perform better than regular networks, but consistently 
underperform when compared with random networks.

The studies here discussed provide two alternative approaches to 
agent- based model validation and, according to the methodologi-
cal discussion developed in Chapter 6, serve diff erent purposes: the 
calibrated model study being designed to forecast the impact of 
policy action (which is simulated by changing the initial conditions 
tuning key parameter values), and the experimental study being 



130 Knowledge diff usion and innovation

more  suitable for output validation and DGPs comparisons. In 
what follows we shall present a case study on organic production in 
a backward area of southern Italy which will be the base for the cali-
bration exercise of the model of knowledge diff usion and innovation 
presented in Chapter 4.

ON THE CASE STUDY

The model developed in Chapter 4 will now be calibrated using 
primary data collected in a backward area located in the south of 
Italy (the province of Foggia) on a group of fi rms operating in the 
food sector and, specifi cally, involved in the production of organic 
food. The food sector has always been regarded as a low- technology 
industry, having been associated with low- tech transformation of 
agricultural products. In comparison with other major industrial 
sectors, research and development activities in the food industry are 
of minor weight. All the same, the food industry has gone through 
dramatic changes during the past few decades.

First, the food industry, like most of the manufacturing sector, 
experiences increased competition both on the domestic and on the 
international markets. Second, it has been losing the confi dence of 
the general public due to a series of severe food safety shocks, such 
as the ‘mad cow’ (BSE) or foot and mouth diseases in the UK or 
the dioxin in chicken crisis in Belgium. Finally, environmental and 
cultural concerns have entered the food debate, directing consumers’ 
attention towards issues of long- term ecological sustainability as 
well as animal rights (Boudouropoulos and Arvanitoyannis 2000). 
In this sense, the fundamental challenge that the agricultural sector 
and the food supply chain have been facing over the last few years 
(and indeed are still facing) is to move from a supply- oriented strat-
egy to a demand- led one, driven not only by economic considera-
tions, but also by social, cultural, ecological and other values which 
refl ect changing consumer preferences and new legal and regulatory 
frameworks.

In response to these changes, the food industry found itself in a sit-
uation where it was forced to introduce innovations as a response to 
rising pressures from two fronts. On the one hand, food enterprises 
needed to keep up with stricter regulation covering food safety, food 
quality and environmental standards. On the other hand, pressure 
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also arose from various stakeholders (for example environmental 
non- governmental organizations or the general public) to go beyond 
these statutory regulations. As a result, food standards and labels 
(such as organic food) were developed in order to identify companies 
that implemented strategies that went in this direction.

Avermaete and Viaene identifi ed three innovation strategies often 
adopted as a response to such pressures: (1) food safety and quality 
systems; (2) environmental management strategies; and (3) labelling. 
‘In contrast with conventional innovation, these strategies are based 
on innovations for which the procedures are set by an external party. 
At the same time, the strategies go far beyond technological innova-
tions. Information, communication and networking play a key role 
for successful implementation of the three mentioned strategies’ 
(Avermaete and Viaene, 2002, p. 3).

The processing of organic products represents a type of innova-
tion which encompasses the three strategies mentioned above. It 
diff ers from traditional innovation strategies since, rather than 
an incremental product innovation or basic process innovations, 
organic producers actually reposition themselves and their whole 
product line on the principles of organic production and at the 
same time keep their traditional product line (Grunert et al. 1997). 
Hence, switching to organic production is in itself an innovation 
which results in the production of an output that better responds 
to changes in consumers’ tastes. However, once switched to organic 
production, fi rms will constantly have to comply with externally 
defi ned standards and product characteristics; this will require 
constant innovating and learning capabilities. Such capabilities rely 
largely on fi rms’ aptitude to optimize communication within and 
among themselves in order to guarantee the achievement of specifi c 
food standards.

Along this line of reasoning, our applied study aims to investigate 
how relevant knowledge diff usion is for organic production. Using 
the Foggia organic food database will allow us to investigate and 
model the potential innovative capability of this cluster of fi rms. 
In the area of Foggia there are 120 organic industrial fi rms out of 
which we chose a cluster of 32 units selected with the focus group 
technique.4 This technique provides qualitative information on a 
specifi c theme by playing on the interaction and confrontation of 
points of view expressed by participants in a discussion conducted 
by a facilitator (European Commission, 1999). In this case study, 
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participants of the focus group belonged to local public institutions, 
research centres, entrepreneurial associations and certifi cation agen-
cies (that is, quality control agencies), from whose interaction we 
obtained a draft of the organic fi rms’ network that was checked and 
corrected during the direct survey. Note that, although relevant,5 in 
this study we are not considering extra- cluster knowledge relations 
nor fi rms–institutions knowledge fl ows, as we focus our attention 
solely on intra- cluster knowledge fl ows which occur among fi rms. In 
Figure 7.1 we report the geographical distribution of the 32 fi rms. A 
list of the corresponding names, the province to which they belong 
and knowledge base6 is reported in Table 7.1.

The questionnaire, which was submitted with face- to- face inter-
views, was structured in two parts. The fi rst part aimed at gathering 
general information on the characteristics, location and knowledge 
base of the fi rm. The second part aimed at collecting information on 
relations and, more precisely, on the existence or not of ties, their 
nature and, in the case of communicative relations, the kind of infor-
mation exchanged.

These data were used in an earlier work (Morone et al. 2006 – see 
Chapter 5) where we showed how organic food producers proved 
not to be very effi  cient in transferring knowledge among involved 
agents. However, the underlying network’s architecture showed 
potential for knowledge transfers. Implementing a calibrated model 
of innovation fostered by interactive learning will allow us to inves-
tigate the true potential of this network of fi rms and, eventually, 
prescribe some policy measures to enhance the knowledge diff usion 
and ability to innovate of such a network.

RESULTS OF THE SIMULATION MODEL

As mentioned earlier, we present here the results obtained using a cal-
ibrated version of the model discussed in Chapter 4. For this model, 
we also used the JAVA platform with the RePast (Recursive Porus 
Agent Simulation Toolkit, North et al. 2006) libraries for implement-
ing the model and JUNG libraries (Java Universal Network/Graph 
Framework, 2007; O’Madadhain et al., 2005) for analysis of the 
networks data. The model architecture is identical to that described 
in the earlier chapter. However, some of the data collected from the 
case study described above will be used to parameterize the model. 
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Table 7.1 Firms’ knowledge base

No. Interviewed fi rms Location Knowledge base of 
the fi rm

Low Medium High

 1 ANGARANO SRL Cerignola x
 2 BIOFACTORY SAS Cerignola x
 3 OLEIFICIO SAN 

SALVATORE SNC
Stornara x

 4 DONNALISA SRL San Severo x
 5 OLIVETO BELMONTE 

DI BALDASSARRE 
ANGELICA

San Severo x

 6 AZIENDA AGRICOLA 
DOTT. CACCAVO

Foggia x

 7 CIPAM SCARL Foggia x
 8 COSEME SRL Foggia x
 9 SANTO STEFANO SRL Cerignola x
10 B AND B SRL Stornara x
11 NAPPI SRL Stornara x
12 ORTODAUNIA SRL Stornara x
13 CI.SEME SNC Stornarella x
14 MOLITORIA NUSCO 

SRL
Ascoli 
Satriano

x

15 SARACINO MIRIAM Ascoli 
Satriano

x

16 OLEIFICIO LE FASCINE 
SRL

San Severo x

17 L’AGRICOLA PAGLIONE Lucera x
18 JOLLY SGAMBARO SRL Cerignola x
19 IL PARCO DI 

CASTIGLIEGO MARIA
San Giovanni 
R.

x

20 FRANCO LA DOGANA & 
C. SAS

Orta nova x

21 SOTTO LE STELLE DI 
PALLADINO RACHELE

San Giovanni 
R.

x

22 D’ARIES ANTONIO Lucera x
23 LA QUERCIA SCARL Foggia x
24 LA NUOVA ARPI SCARL Foggia x
25 SPIAVENTO SRL San Severo x
26 CANTINE VINARIS SAS San Severo x
27 SANTACROCE Deliceto x
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Specifi cally, we will use fi eld data to defi ne the network within which 
fi rms operate and we will use information collected about fi rms’ 
knowledge bases in order to defi ne the initial skills profi le of each 
fi rm. In Table 7.1 we classifi ed fi rms into three groups according to 
the amount of training activity undertaken. We have fi rms with a 
high knowledge base (HKB), fi rms with a medium knowledge base 
(MKB) and fi rms with a low knowledge base (LKB).

Except for the calibrated model settings defi ning the number of 
agents, the knowledge bases and the network structure,7 we used 
the same fi xed parameters as those employed in Chapter 4. In other 
words we have the following: number of time steps 5 100, number of 
agents 5 32, number of radical innovations 5 60, number of incre-
mental innovations 5 60, number of skills per innovation 5 5, total 
number of skills 5 200. The number of skills possessed by agents 
is set as follows: LKB 5 35, MKB 5 45 and HKB 5 55. Moreover, 
the rewiring parameter p was varied as values drawn from the set: 
{0.1, 0.3, 0.5}. Hence, as we did in Chapter 4, we specify three diff er-
ent simulations,8 whose results are presented hereafter.

At the outset, we want to look at the innovation patterns in the 
three simulations. In Figure 7.2 we report the innovation curves 
of both total and joint innovations. The system reaches the steady 
state in less than 15 time steps achieving just 11 innovations, out of 
the 120 available. This poor performance did not allow the network 
to evolve (no extra links were added as the system never reached 10 
per cent of the innovations) and, therefore, the three simulations 
are identical. Recalling that the rewiring parameter was increasing 

Table 7.1 (continued)

No. Interviewed fi rms Location Knowledge base of 
the fi rm

Low Medium High

28 PARADISO TOMMASO & 
C. SAS

Cerignola x

29 EMMAUS SOC. COOP. Foggia x
30 EUROAGRO

ALI-MENTARE
Ascoli 
Satriano

x

31 DI TUCCIO RAFFAELE Cerignola x
32 PUGLISSIMA SRL Cerignola x
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the number of connections in the system as new innovations were 
attained, we can conclude that the poor performance of the system 
prevents the rewiring parameter from showing its positive eff ect. 
This preliminary fi nding is in line with the main stylized facts emerg-
ing from the empirical investigations conducted by Morone et al. 
(2006) and discussed in Chapter 5, where a poor performance in 
terms of knowledge- based exchanges was observed among Foggia’s 
organic producers.

We should now try to understand the reasons behind such poor 
performance. As we observed in the theoretical model, two key 
variables aff ecting the system performance are the density of the 
acquaintances network and the size of its largest component. As 
both these variables measure the opportunity for integrating knowl-
edge, they have direct implications on the innovative performance 
of the system.

In Table 7.2 we report a summary of the main network statistics 
for the acquaintance and the partnership network. As we can imme-
diately observe, the acquaintances network is static over time, all 
network statistics being identical at the beginning and at the end 
of the simulation. This is a highly disconnected system with just 14 
links connecting a population of 32 fi rms. It follows that the density 
is very low and the largest component is small in size. The partner-
ship network is particularly small as it reaches a maximum of four 
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links at the end of the simulation. This, of course, is refl ected in a low 
density, low cliquishness and a small largest component.

As discussed in Chapter 4, it looks as though the system is locked 
in to an underperforming pathway which is determined by the low 
density of the system. In other words, the relatively small number 
of connections existing among the fi rms involved in the innovation 
process undermines their ability to perform well in terms of innova-
tions. In order to test this hypothesis we will run new simulations, 
adding more links between fi rms. This will change the network 
confi guration, increasing the system connectivity and its density. 
However, adding new links can reshape the network in rather dif-
ferent ways depending on where such new links are added. Hence, 
this time we will carry out repeated simulation experiments (batches 
of 100 runs each), to dispose of artefacts introduced by the random 
aspect of network reconfi guration. We will then look at the average 
performance over the batch.

In Table 7.3 we report the results obtained by increasing the 
number of links, specifying the number of innovations achieved 
at the end of the simulation both individually and jointly. We can 
immediately observe that, although there is an improvement as we 
increase the number of links, the system performance is still, overall, 
rather poor. Moreover, we can notice that our fi rst simulation run 

Table 7.2  Summary statistics for the acquaintances and partnership 
networks

Number 
of edges

Number 
of links

Density Cliquishness Size of the
largest

component

Acquaintance network
Beginning of 

simulation
32 14 0.014 0.375 7

End of 
simulation

32 14 0.014 0.375 7

Partnership network
Beginning of 

simulation
32  2 0.002 0.125 2

End of 
simulation

32  4 0.004 0.125 4
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is performing well when compared to the average performance of 
 comparable runs (compare the fi rst row of Table 7.3 with Figure 
7.2).

All in all, these new simulations suggest that, under the prevail-
ing condition of the organic producers operating in the province of 
Foggia, increasing the density of the system is not an eff ective policy 
action to increase their innovative performance. This outcome seems 
to counter earlier results obtained in Chapter 4, where we showed 
how the initial density of the system (along with the initial size of the 
largest component) was signifi cantly aff ecting the fi nal outcome of 
the simulation.

A possible explanation for such an outcome could be that fi rms 
are endowed with an insuffi  cient knowledge base. In other words, 
the amount of skill present in the system is not suffi  cient to perform 
a large number of innovations even when the density of the system 
increases signifi cantly.9 In order to test this hypothesis we shall 
increase the initial knowledge endowment of fi rms and compare 
their performances in terms of innovations achievements with earlier 
results. We increase the initial skill profi le by adding ten extra skills 
to each fi rm. Hence we now have the following skills distribution: 
LKB 5 45, MKB 5 55 and HKB 5 65.

In Table 7.4 we report the results obtained running the new simu-
lation batches. As we can see, the system performs overall better; 

Table 7.3  System performance when increasing the network density 
(average results over 100 runs)

Number 
of edges

Number 
of links

Density Innovations achieved at the 
end of the simulation

0.1 0.3 0.5

II JI II JI II JI

32 14 0.014 3.74 3.56 3.74 3.56 3.74  3.56

32 24 0.024 4.05 6.34 3.99 6.34 3.94  6.28

32 34 0.034 4.17 7.25 4.13 7.43 4.34  7.78

32 44 0.044 5.19 9.35 5.33 9.95 5.47 10.11
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however, a signifi cant improvement arises only when adding 20 and 
30 new links. Moreover, the system performance, although improved 
when compared to previous simulations, is still far from the upper 
bound of 120 new products.

As we keep increasing the initial knowledge base of fi rms we 
can notice that the system performance progresses in a non- linear 
fashion with the increase of the system’s density. As we can see in 
Figure 7.3, adding 20 extra skills produces a signifi cant increase in 
the innovative performance, mainly when coupled with a denser 
network. Moreover, the performance diff erential observable when 
moving from less to more dense networks increases with the increase 
of the knowledge base up to 20 extra skills, at which point it starts 
reducing.

This fi nding suggests that the eff ectiveness of new connections 
between fi rms initially increases with the knowledge endowment of 
the cluster: increasing the network density exerts diff erent eff ects, 
depending on the amount of knowledge present in the system, 
with more knowledgeable systems benefi ting relatively more than 
less knowledgeable systems up to a certain level, and less subse-
quently. The trend becomes more evident as we increase the rewiring 
 parameter p (contrast left and right panels in Figure 7.3).

Looking at Figure 7.3 we can also notice that comparable per-
formances can be achieved by combining the two actions (that is, 

Table 7.4  System performance when increasing the network density 
and the knowledge base (average results over 100 runs)

Number 
of edges

Number 
of links

Density Innovations achieved at the 
end of the simulation

0.1 0.3 0.5

II JI II JI II JI

32 14 0.014  4.69  8.26  4.69  8.26  4.93  8.48

32 24 0.024  4.88  9.46  5.01  9.65  4.93  9.47

32 34 0.034  6.46 13.69  7.26 14.51  6.98 15.36

32 44 0.044 10.52 20.95 10.22 21.71 10.92 22.43
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increasing fi rms’ knowledge base and increasing the density of the 
system) in diff erent ways. For instance, with p 5 0.1 a similar level 
of new products (around 50) can be achieved by adding 20 new skills 
and 20 new links as well as by adding only 30 new skills. Likewise, 
around 60 new innovations can be achieved either by adding 30 
new skills and 10 new links or by adding 20 new skills and 30 new 
links. This would suggest that a policy- maker aiming at increasing 
the innovativeness of the system could achieve similar results with 
 diff erent mixes of the two policy actions.

However, we should recall that these are average results drawn 
from batches of 100 simulations each. Hence, in order to assess 
the eff ectiveness of such policy actions we should also look at the 
dispersion around the mean value. Interestingly, if we compare the 
standard deviation in all cases where the system achieves compara-
ble results, we can notice that this tends to be larger whenever the 
mix of policy is more ‘density- oriented’ (that is, it involves a larger 
increase in the density of the network rather than an increase of its 
knowledge base). This suggests that a ‘knowledge- oriented’ policy 
action would produce more stable results, reducing the volatility 
of the outcome. In Table 7.5 we report the number of innovations, 
and the corresponding standard deviations, for the two exemplifying 
cases mentioned above.

This fi nding also suggests that a density- oriented action can 
produce exceptionally bad results as well as exceptionally good 
results (that is, further away from the average performance, see the 
grey line in Figure 7.4), this depending on which fi rms are connected. 
Hence, increasing the system density can produce better results if 
the right connections are activated. This is pointing at a nice feature 
of the model: establishing the right connections can be worth more 

Table 7.5  Average number of innovations and standard deviation for 
two comparable outcomes obtained with diff erent policy 
mixes (p 5 0.1)

Average s.d.

Knowledge- oriented 52.59 60.78
(8.38) (13.81)

Density- oriented 50.96 63.54
(18.15) (18.46)
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than a generalized increase of fi rms’ knowledge base, suggesting the 
importance of some specifi c linkages (or the eff ects of their absence) 
within innovation systems (and broader socio- economic systems) 
(Bryant, 2001). Hence, a well- crafted policy action, targeting the 
right fi rms and establishing the right connections, can be less costly 
and more eff ective than actions aiming at a generalized improvement 
of fi rms’ knowledge base.

There are two possible approaches for assessing the validity of this 
last fi nding. First, we can defi ne a general rule to activate new links 
in a more intelligent way rather than adding them randomly, run 
new batches of simulations, and inspect the average results. This will 
allow us to develop a broad- in- scope and robust assessment of the 
relevance of diff erent rules for new links activations.

A second strategy entails an in- depth investigation of two compa-
rable runs (that is, extracted from the same batch, hence obtained 
with the same parameterization but diff erent initial network con-
fi guration) performing rather diff erently (that is, one run performing 
exceptionally well and one run performing exceptionally poorly). 
This will allow us to pinpoint specifi c structural diff erences between 
the good and the bad run and, in turn, to identify the key deter-
minants of heterogeneous performances. In what follows we will 
pursue both approaches.

We start by defi ning three alternative ways of activating new links. 
We will run the same simulations as those depicted in Figure 7.3, 
adding new links: fi rst departing from high knowledgeable fi rms, 
then departing from medium knowledgeable fi rms and, fi nally, 
departing from low knowledgeable fi rms. As we increase the number 
of connections moving from more to less knowledgeable fi rms, we 
expect to observe a reduction in the overall performance of the 
system. Looking at the results reported in Table 7.6 we can immedi-
ately see that in almost all cases the system performs better if the new 
connections start from knowledgeable agents. Hence, increasing the 
density of the system is more eff ective when the centrality of highly 
skilled fi rms increases. This is in line with our expectations and con-
fi rms our earlier fi nding that a more accurate selection of agents to 
be connected results in a better performance of the system.

We will now look at a good run and a bad run10 extracted from 
the same batch. Specifi cally we look at runs 65 (bad run) and 93 
(good run) extracted from the batch with 20 new links, 20 new skills 
p 5 0.1 and random selection of new links. First, we look at the 
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innovation performance in the two runs. In Figure 7.5 we reproduce 
the total number of innovations and the number of joint innova-
tions achieved in each run. As we can see, the good run takes about 
40 time steps to converge towards the steady state, whereas the bad 
run converges to its stationary equilibrium in less than 20 time steps. 
Approximately 26 per cent of the total innovations achieved in the 
good run (that is, 25 out of 93) are obtained through individual inno-
vation, whereas in the bad run this share does not exceed 20 per cent 
(that is, 4 out of 20).

Given that the initial knowledge base of the fi rms is the same in 
the two runs (that is, each fi rm is endowed with exactly the same 
skill profi le in the two runs), this fi nding suggests that interactive 
learning, occurring while jointly innovating, is playing a crucial 
role in enhancing the ability of fi rms to innovate individually. In 
fact, if we look at the number of skills learned through interactions 
in the two runs, we can see that they add up to just 73 skills in the 
bad run, and 346 skills in the good run. This diff erence is due to the 
fact that interactive learning occurs any time there is a successful 
joint interaction (that is, any time two or more fi rms jointly inno-
vate). As shown in Figure 7.5, the number of joint innovations in 
the good run is more than four times as large as the number of joint 
innovations (JI) in the bad run (that is, 16 JI in the bad run vs 68 JI 
in the good run). Hence, we can conclude that a good performance 
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in terms of joint innovations exerts a positive externality on the 
capability of innovating individually, via  interactive learning.

We shall now turn our attention to the determinants of joint inno-
vations, attempting to identify the reasons behind the performance 
gap across the two runs. As we know, the two runs are identical, with 
the exception of the way in which the extra 20 links have been added. 
Hence, the explanation of the performance’s diff erential must lie in 
the emerging diff erent network structures.

In Table 7.7 we report a set of summary statistics for the two runs 

Table 7.7  Summary statistics for the acquaintances and partnership 
networks (good run vs bad run)

Bad run Number 
of edges

Number 
of links

Density Cliquishness Size of 
the largest 
component

Acquaintance network
Beginning of 

simulation
32 34 0.034 0.307 27

End of
simulation

32 34 0.034 0.307 27

Partnership network
Beginning of 

simulation
32  1 0.001 0.063  2

End of
simulation

32 11 0.011 0.406  3

Good run Number 
of edges

Number 
of links

Density Cliquishness Size of 
the largest 
component

Acquaintance network
Beginning of 

simulation
32 34 0.034 0.291 29

End of
simulation

32 36 0.036 0.318 30

Partnership network
Beginning of 

simulation
32  4 0.004 0.025  2

End of
simulation

32 24 0.024 0.326 19
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registered at the beginning and at the end of each simulation. As 
expected, the acquaintance networks are highly comparable: they 
have similar levels of density and cliquishness, and a largest compo-
nent of a comparable size. Most of the diff erences emerge when we 
look at the partnership networks, the good run displaying a much 
wider size as well as a much wider largest component at the end of 
the simulation.

This diff erence stems from the fact that more innovations are per-
formed in the good run. However, it also suggests that in the good 
run a larger number of fi rms are involved in the innovation process: 
nearly 80 per cent of the fi rms operating in the good run are involved 
in at least one innovation process, whereas this percentage drops to 
50 per cent in the bad run.

Further insights can be obtained by looking at the distribution of 
innovations across fi rms. In the good run there are eight fi rms (namely 
fi rms 10, 12, 14, 15, 18, 20, 22 and 31) involved in two- thirds of the 
innovation activities, suggesting that such agents play a central role in 
shaping the overall performance of the system. In fact, these fi rms have 
established very eff ective partnerships which allow them to achieve a 
large number of innovations. These eff ective partnerships are not 
present in the bad run and result in a drastic drop in the productive-
ness of such fi rms. A case in point is provided by fi rm 18 (see Table 
7.7 where we report the fi nal confi guration – that is, the confi guration 
reached in the steady state equilibrium – of the partnership networks 
of both good runs and bad runs) which is the best- performing fi rm in 
the good run (along with fi rm 15), participating in 18 innovations, but 
does not take part in any innovation in the bad run.

This example points out that, in our model, connections are the 
real driver of innovations: in the good run fi rm 18 is connected, 
among others, to fi rms 22 and 15 (whereas these two links are both 
missing in the bad run), and successfully innovates six times with 
fi rm 22 and eight times with fi rm 15; the remaining four innovations 
are achieved individually thanks to knowledge spilled over from 
previous interactions with these two partners. Other examples of 
successful partnerships, present in the good run but not in the bad 
run, are those established between fi rm 14 and fi rm 12 and between 
fi rm 15 and fi rm 30 (see Figure 7.6) which resulted in a total of seven 
new products.

Finally, it is interesting to observe how the initial knowledge base 
of fi rms is not aff ecting their innovative performance (see Figure 
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7.6). For instance, fi rm 12 has a low KB but yet participates in 15 
innovations. This confi rms, once again, that links (or their absence) 
is what really shapes fi rms’ innovative performances.

CONCLUSIONS

In this chapter we have presented a calibrated agent- based model of 
knowledge diff usion and innovation. This is an applied version of 
the theoretical model presented and discussed in Chapter 4 which 
off ered us the opportunity to test the adherence of our theoretical 
model to an applied case study.

Overall, the results of the applied model confi rmed the general 
trends observed in the theoretical model and the main stylized facts 
emerging from the case study performed in Morone et al. (2006) and 
discussed in Chapter 5. However, the calibrated model presented 
in this chapter also allowed the pinpointing of some features of the 
system specifi c to the case study. In particular, we could assess the 
impact of diff erent policy actions aiming at enhancing the innova-
tive performance of the local system. Results of the applied agent-
 based model showed that establishing the right connections was 
more eff ective than a generalized increase of fi rms’ knowledge base, 
and pointed out the importance of linkages (or the eff ects of their 
absence) within innovation systems.

In fact, the presence of few highly eff ective partnerships exerted 
several positive eff ects on the fi rms’ cluster as a whole, increasing 
the amount of knowledge diff used informally (interactive learning) 
in the system and favouring the involvement of a larger number of 
fi rms in innovation activities. These, in turn, resulted in an enhanced 
overall innovative performance. As far as policy- making is con-
cerned, we could conclude that well- crafted policy action, targeting 
the right fi rms and enhancing the overall system connectivity, could 
be more eff ective and less costly than implementing generic training 
programmes extended to all fi rms.

NOTES

 1. Strictly speaking, in the calibration exercise presented in this chapter we are not 
following all four pragmatic steps of indirect calibration discussed in Chapter 6. 
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However, we refer to it as indirect calibration since from the analysis of stylized 
facts performed in a previous work (Morone et al. 2006, discussed in Chapter 
5), we believe that the model architecture developed in Chapter 4 is well suited 
to investigate innovation activities occurring in the system under empirical 
investigation. Moreover, as required in the indirect calibration approach, the 
parameters’ space is restricted in accordance with the empirical data gathered in 
the case study.

 2. Note that the relative populations of each of the 34 comuna composing the grid 
were respected in the calibration process.

 3. For a detailed description on how to create such network structures please refer 
to Watts and Strogatz (1998).

 4. Note that this cluster of fi rms is smaller than the one used in Morone et al. (2006) 
and discussed in Chapter 5, as it excludes those fi rms added following the free 
recall approach.

 5. As stated in Chapter 5, the relevance of extra- cluster knowledge relations rests 
on the fact that the mere reliance on localized knowledge can result in the 
‘entropic death’ of the cluster that remains locked in to an increasingly obsolete 
technological trajectory.

 6. Note that the knowledge base (KB) of the fi rm is proxied by the amount of train-
ing provided to the employees of the fi rm. Specifi cally, we distinguished among 
four types of training (training course, participation in seminars and confer-
ences, guided tours relevant to the production activity, other training activities) 
and classifi ed as low KB those fi rms providing none, as medium KB those fi rms 
providing one or two types of training activities, and as high KB those fi rms 
providing three of four training activities.

 7. Note that in this model we use a predetermined initial network which refl ects 
the actual geographical locations of fi rms and the informal networks of entre-
preneurs; whereas in the theoretical model presented in Chapter 4 fi rms were 
randomly allocated in a space (the grid) that represented acquaintance proxim-
ity (Fioretti 2001).

 8. Note that, diff erently from what we did in Chapter 4, we do not run batches 
of simulations as we now have a fi xed network structure. Hence the following 
results refers to single runs. Subsequently, we will randomly place additional 
links to increase the system density.

 9. This would also explain why the simulations presented in Chapter 4 performed, 
on average, considerably better when compared to those presented in this 
chapter. In fact, although the average amount of skills endowment assigned to 
fi rms in the two models is comparable, the two systems diff er both in terms of 
knowledge distribution across fi rms (that is, in Chapter 4 it follows a normal 
distribution, whereas in this model we defi ned just three levels of knowledge 
base – low, medium and high) and total skills endowment (that is, in the model 
presented in this chapter we have a smaller population of fi rms when compared 
to the population of fi rms defi ned in Chapter 4).

10. Following a procedure similar to the one used in Chapter 4, we select the good 
and bad runs from within a batch in the following way: fi rst, we order all 100 
runs in a list according to their average level of performance; then the good run 
is randomly selected from the top 10 per cent of the distribution (that is, among 
the ten best runs) and the bad run is randomly selected from the bottom 10 per 
cent of the distribution (that is, among the ten worst runs).
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8.  Final remarks and future 
research

WRAPPING UP IDEAS

In modern societies knowledge is rightly considered a key resource in 
promoting innovation and economic development. As was emphati-
cally stated in a World Bank report a decade ago: ‘Knowledge is 
like light. Weightless and intangible, it can easily travel the world, 
enlightening the lives of people everywhere’ (World Bank 1999, p. 
1). However, knowledge sharing is not as simple and straightforward 
as it would seem at fi rst sight. This is because valuable knowledge is 
hard to codify and, therefore, requires experience, personal contacts 
and direct interactions in order to be shared.

The classic distinction between tacit and codifi ed knowledge is, in 
fact, a major issue in understanding knowledge diff usion patterns. 
If tacit knowledge corresponds to the portion of knowledge that 
each person possesses but cannot tell,1 then transferring it repre-
sents a problem. The magnitude of this problem depends crucially 
on two issues: fi rst, how relevant tacit knowledge is for innovation 
(as opposed to codifi ed knowledge) and, second, whether it is pos-
sible to improve the codifi ability of tacit knowledge. Both issues 
have attracted the attention of researchers without the emergence 
of a clear consensus. However, there is agreement on the idea that 
tacit and codifi ed knowledge fl ow in rather diff erent ways. This calls 
for a deeper understanding of knowledge structure when discussing 
 diff usion processes.

Another problem associated with knowledge sharing arises from 
the growing specialization that technical knowledge has undergone 
over the last 200 years and, even more markedly, over the last 
quarter of a century. As put by Brusoni et al. (2001): ‘Since the 
Industrial Revolution, the production of useful knowledge, like the 
production of artifacts, has become increasingly specialized and 
professionalized, with the continuous emergence of new and useful 
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disciplines and subdisciplines’ (2001, p. 597). Today’s production 
requires the input of a wide range of specialized knowledge, and 
this has profound and contrasting implications for knowledge diff u-
sion patterns. On the one hand, the growing number of disciplines 
for the design, development and manufacturing of new products 
amplifi es the need to rely on knowledge developed externally to the 
fi rm and, therefore, promotes knowledge sharing to complement 
in- house research and development eff orts. On the other hand, 
transferring specialized knowledge is not feasible as it would be 
extremely ineffi  cient due to learning costs associated to specialized 
knowledge transfer. Hence, fi rms act to create links with other fi rms 
and/or institutions through which they can integrate disparate and 
specialized knowledge needed to innovate. This calls for a deep 
understanding of fi rms’ partnership networks and, more generally, 
the geographical dimension of knowledge fl ows.

SUMMARY OF THE BOOK

Both these issues have been taken up in this book in order to defi ne 
a unifying theory of knowledge diff usion. In Chapter 2 we presented 
a taxonomy of knowledge fl ows which stems directly from the tacit–
codifi ed distinction. In the proposed taxonomy we made a fi rst 
distinction between knowledge gain and knowledge diff usion. The 
former relates to those processes of knowledge fl ows which deliber-
ately involve a barter among subjects; the latter refers to unintended 
knowledge fl ows which can be economically exploited by the recipi-
ent agent. Knowledge gain does not require geographical proximity 
among actors since the exchanged knowledge is mainly codifi ed and 
can be easily transferred (making use, for instance, of information 
and communication technologies).

Conversely, the kind of knowledge being diff used is typically tacit 
in nature, and requires direct interactions (as it is spatially sticky) as 
well as suffi  cient ‘absorptive capacity’ to be eff ectively recombined 
in the cognitive framework of the recipient agent. Knowledge gain 
was subsequently decomposed in knowledge exchange and trade, 
whereas knowledge spillover, transfer and integration were defi ned 
as subclasses of knowledge diff usion.

In Chapter 3, then, we took a further step towards the defi nition of 
a theory of knowledge diff usion, presenting a survey of some of the 
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most relevant theoretical studies on knowledge diff usion. We started 
by presenting some of the earliest diff usion models (that is, epidemic 
models) which were reconciled to knowledge diff usion under the 
double assumption that innovation needs information (on its exist-
ence and its value) to be diff used and that information equates to 
knowledge. Subsequently, we presented a series of more sophisticated 
diff usion models which, making use of game theory, accounted for 
heterogeneous agents with heterogeneous beliefs. However improved, 
such later studies suff ered from a conceptual limitation which rests 
on the dichotomous defi nition of learning. The acknowledgment of 
such problems led us to introduce a new class of models which, from a 
 diff erent methodological perspective, study knowledge fl ows patterns. 
This class of model makes use of agent- based simulations and, basi-
cally, counters the logical argument for diff usion followed in earlier 
models: knowledge is now considered as an input of innovation which 
can be acquired by direct interactions. Hence, fi rms share knowledge to 
innovate and not, as assumed in earlier studies, knowledge on innova-
tions. This is, in our view, a critical step forward as it shifts the  attention 
from innovation to knowledge as a key input for innovation.

Moving along the path set by this second class of models, in the 
fourth chapter we presented an agent- based simulation model which 
provided an original attempt to establish the complex relations 
linking knowledge- sharing patterns, fi rms’ partnering and the inno-
vative capability of fi rms. Using an agent- based approach allowed 
us to capture the dynamics and complexity present in the diff usion 
model. The objective was to understand the dynamics which lead 
fi rms to partner together and jointly innovate. The unit of the analy-
sis was the fi rm, whose knowledge domain was defi ned as an articu-
lated and complex structure in which more specialized knowledge 
was pegged to less specialized knowledge. Such a structure, labelled 
skill profi le, was allowed to branch and, therefore, fi rms could spe-
cialize in diff erent fi elds. The learning process through which fi rms 
acquired their initial skills resembled their in- house research and 
development eff orts.

Heterogeneous fi rms, endowed with diff erent skills, would most 
likely need to integrate their knowledge in order to innovate. 
Innovation was defi ned as the vector of skills required to create a 
new product. If one fi rm possessed all required skills to accomplish 
an innovation, then this fi rm would innovate individually. However, 
if the fi rm was not able to innovate individually, it would try to 
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partner with its acquaintances and jointly innovate. Partnering hap-
pened through direct interactions among neighbour fi rms. Firms’ 
neighbourhoods were created at the initialization phase when fi rms 
were randomly allocated over a grid and were allowed to establish a 
connection with those fi rms located within their visibility range (we 
used a Moore neighbourhood structure with a grid size equal to 20, 
visibility equal to two and a total population of 40 fi rms).

Once a partnership was established, the fi rm and the partner tried 
to achieve the selected innovation by integrating their respective 
skills. If such an integration process was not eff ective (that is, the 
innovation was not achieved), the search process would continue 
expanding the partnership to other fi rms. Note that we allowed fi rms 
to increase their number of connections over time, using a rewiring 
probability p (that is, the percentage of additional links connecting 
distant fi rms) which was initially set equal to 10 per cent. New links 
were added gradually, at the same pace as innovations were attained. 
Several batches of simulations were run (each batch was composed 
of 100 runs), reconfi guring each time the network structure and 
keeping initial parameterization constant.

Some interesting results were drawn from the simulation exercises. 
First, looking at the system performance we observed heterogene-
ous outcomes: the number of achieved innovations varied quite 
signifi cantly across diff erent runs. Investigating the causes of such 
an outcome led us to establish a positive relation between the initial 
density of the network and the steady state performance of the 
system. This fi nding suggested that geography had a role in shaping 
innovative patterns: networks where fi rms were located close to each 
other resulted in more innovative environments and outperformed 
sparse systems. This outcome was consistent with the earlier assump-
tion that tacit knowledge is spatially sticky and requires proximity to 
fl ow among actors.

Subsequently, we investigated how this result varied, increas-
ing the percentage of new links added when innovating. Letting p 
reach fi rst 30 and then 50 per cent we observed that the gap between 
well- performing runs and badly performing runs grew larger. This 
came as a surprise, as one would expect that a sparse network would 
benefi t more from the introduction of distant connections. However, 
the poor performance in terms of innovation held back the positive 
impact brought about by higher values of p and limited the network 
possibilities to increase its density. This, in turn, locked  in the system 
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to an underperforming equilibrium. On the contrary a positive feed-
back eff ect occurred in the case of well- performing runs, enhancing 
their innovative performance. Looking at the network confi guration 
we confi rmed these fi ndings, showing how increasing the rewiring 
probability allowed well- performing runs to establish a relatively high 
number of distant connections, as opposed to badly performing runs 
which maintained prevalently localized neighbourhood structures.

Chapter 4 concluded the theoretical part of this book, providing 
new insight to the issue of defi ning knowledge diff usion patterns and 
innovations. However, several questions arose from the discussion 
developed in the fi rst part of the book. For instance, having defi ned 
knowledge as a complex phenomenon, how do we measure it? And 
more importantly, how could we measure informal and complex 
patterns of knowledge diff usion (such as knowledge integration, as 
depicted in Chapters 3 and 4)?

To such relevant questions we attempted answers in the second 
part of the book, which dealt with empirical and applied studies 
on knowledge diff usion. It began with a survey of recent empirical 
studies on knowledge diff usion. Departing from the consideration 
that the available data mainly refer to the notion of information and/
or provide just too vague proxies of knowledge, several authors have 
attempted to measure knowledge fl ows in a more direct and reliable 
way. A major eff ort was made to produce an accurate defi nition of 
the type of social relations which lead fi rms to cooperate and share 
knowledge. Social network analysis provided researchers with a pow-
erful tool to achieve such an aim. Using this tool made it possible to 
establish the role played by specifi c actors in sharing knowledge and 
allowed us to identify and measure inward and outward knowledge 
fl ows. Indeed, most of the recent research in this area has relied on 
case studies collecting accurate data ‘in- the- fi eld’ using questionnaires 
and interviews.

Such in- depth studies have allowed us to underpin some key 
features of knowledge diff usion patterns, such as the role played 
by knowledgeable actors (represented by fi rms with a large knowl-
edge base) in facilitating intra-  and extra- cluster knowledge fl ows, 
the existence of various relational networks for various types of 
knowledge shared (which could span from technical, to juridical, to 
pure tacit, and so on), the mechanisms through which knowledge is 
integrated among colleagues operating in the same fi rm, and various 
other features.
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Although these studies represent major advances in the  empirical 
understanding of informal knowledge diff usion mechanisms, we 
observed how their adherence to the case study undermines the pos-
sibility of drawing general conclusions. This problem suggested the 
need to explore alternative approaches to the empirical investigation 
of knowledge diff usion.

We came back to this issue in Chapter 6, where we presented a 
methodological discussion on the core distinction between theoreti-
cal and applied models, drawing this distinction within the realm of 
agent- based simulation models. In this chapter we identifi ed foun-
dational modelling as that which is engaged with modelling a target 
area of social theory. Formalization of the theory involves clarifi ca-
tion of the theory and development of conceptual models able to be 
implemented in a computer program. Experiments are carried out 
with the objective of gaining a better understanding of the theory by, 
for example, confi rming or refusing an existing hypothesis.

Rather diff erent is the approach followed by empirical modellers. 
Here the objective is to apply the methodology to a well- defi ned 
study where there is substantial access to fi eld data. It is natural that 
the abstraction step involves reducing complexity in comparison 
with the real- world system, and by so doing developing an applied 
model that, by the nature of its being simpler and therefore more 
amenable to study, might produce some insight into the more 
complex real- world counterpart.

The discussion on theoretical and applied models was followed 
by a closely related analysis of validation of agent- based models. 
Validation was considered quite broadly, encompassing both inputs 
and outputs to the modelling as well as all stages of the model build-
ing and analysis. It related to both theoretical and applied models. 
The relevance of validating agent- based models stems from the fact 
that researchers need to be sure that model outcomes refl ect persist-
ent (locally generic) aspects of the system under study, rather than a 
modeller’s choice of parameter settings, initial conditions, or software 
platform preferences. In spite of the relevance of this issue, computer-
 simulated models lack a common methodological protocol for model 
validation. Whilst it might not be possible to build up a defi nitive 
approach to validating agent- based models, we presented a classifi -
cation of the main procedures that modellers can follow to establish 
the level of confi dence that can be placed in the model fi ndings and, 
therefore, improve that level of confi dence placed in such models.
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This methodological discussion paved the way for the applied 
model developed in the seventh chapter of the book, which was 
an applied version of the model presented in Chapter 4, validated 
by means of calibration. The calibration exercise involved the col-
lection of primary data on a group of fi rms located in the south of 
Italy, operating in the food sector and involved in the production of 
organic food. The crafting of the model was identical to the theo-
retical model presented in Chapter 4 with the exception that in the 
calibrated model we had a network of 32 fi rms whose connections 
corresponded to the real links observed and recorded in the fi eld 
work. We also used data on fi rms’ knowledge bases in order to create 
the initial skill profi le of each fi rm.

The applied model confi rmed the general trends observed in the 
theoretical model, but allowed us to pinpoint some features of the 
system specifi c to the case study. In particular, we could assess 
the impact of diff erent policy action aiming at enhancing the inno-
vative performance of the local system. From this investigation we 
could conclude that establishing the right connections was worth 
more than a generalized increase of fi rms’ knowledge bases, pointing 
out the importance of linkages (or the eff ects of their absence) within 
innovation systems. As a policy implication we could conclude that 
a well- crafted policy action, targeting the right fi rms and enhanc-
ing the overall system connectivity, could be more eff ective and less 
costly than implementing generic training programmes extended 
to all fi rms. Both learning and innovations could be achieved more 
eff ectively by means of direct interactions among producers.

FUTURE TRENDS AND FUTURE RESEARCH

This book attempts to bring new insights on the widely debated topic 
of the knowledge economy and, specifi cally, on the relation existing 
between knowledge diff usion patterns and innovative activities. In 
spite of the documented progresses made in recent years in under-
standing the full complexity of the problem, we feel this is an area 
of investigation which deserves further attention. Future research 
should, in our view, consider both theoretical studies and empirical 
investigations, as they are complementary to each other.

Theoretical investigations should, for instance, aim at clarify-
ing further the processes of knowledge fl ows considering the role 
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of institutions. In general, interactions need institutions (such as 
markets). However, considering knowledge sharing, markets might 
fail to provide the right incentives and additional institutions will be 
needed (Steiner 2003). Hence, eff orts should be directed to under-
stand which institutions might provide the right incentives for col-
laboration and knowledge sharing. We indicate two areas of research 
where the role of institutions should be further investigated.

First, moving from the idea that connectivity and knowledge 
sharing cannot be eff ectively coordinated by conventional markets 
(Helmstädter 2003), some scholars have recently pointed at clusters 
as learning organizations which could eff ectively deploy non- market 
devices by which fi rms could coordinate their activities with other 
fi rms and other knowledge- generating institutions. Thus, clusters add 
up to more than an agglomeration of fi rms and should be regarded as 
informal institutions facilitating the cooperation between fi rms and 
public, semi- public and private research and development institu-
tions (Steiner 2004). In this sense, the role of clusters should be further 
investigated and researchers should make extra eff orts in shaping and 
modelling the institutional nature of such local environments.

Second, as just mentioned, public and private research institutions 
play a vital role in prompting knowledge creation and diff usion, and 
this is even more true in some knowledge- intensive sectors where 
universities play a major role. As pointed out in a recent paper by 
Rosell and Agrawal (2009), in just 14 years, from 1980 to 1993, the 
number of patents issued annually to US universities increased by 
316 per cent, from 390 to 1622. Understanding how and how much 
of this knowledge produced outside the fi rm fl ows into private 
companies is a rather relevant issue, which has serious policy impli-
cations if we consider that in the policy arena, ultimate economic 
benefi ts are increasingly seen as the primary policy motivation for 
the public support of scientifi c research (Jaff e and Trajtenbergnber 
1996). Bearing this in mind, knowledge diff usion models should be 
extended to integrate knowledge fl owing from public and private 
research institutions into fi rms. This would add to the existing theo-
retical literature, introducing a new level of heterogeneity among 
actors since research institutions and private companies behave dif-
ferently and pursue diff erent goals.

The empirical literature has encountered several problems in 
addressing the issue of knowledge diff usion. As discussed broadly 
in Chapter 5, most of these problems stem from diffi  culties associ-
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ated with measuring the fl ow of an intangible asset like knowledge. 
A large number of empirical studies on knowledge fl ows made use of 
patent data, using patent citations as a proxy for knowledge diff usion. 
However, these types of data do not capture the whole magnitude of 
the phenomenon as not all innovations are patentable, and neither are 
all patentable innovations chosen to be patented. To overcome such 
problems several researchers have performed in- depth case studies, 
using ethnographic methods to capture better the dynamics of knowl-
edge fl ows and generate new insights into communication patterns.

However, we would also like to emphasize the contribution that 
modelling can provide to the study of knowledge diff usion. Whilst 
applied agent- based modelling presents researchers with a powerful 
tool which can be exceptionally useful in understanding complex 
dynamics, such models have high input information demands and 
are diffi  cult to validate with conventional tactics. Conclusions and 
policy relevance tend to be quite specifi c to the case investigation. 
This suggests the need for more abstract models which can provide 
results more adherent to a general theory. Our personal feeling is that 
this simplicity is a desirable feature of the more theoretical models, 
as it facilitates a better understanding of the modelled processes.

One aspect that we have highlighted in the discussion of validation 
protocols is the diff erent ways in which model implementations can be 
compared. In our view, future research needs to theorize better how a 
dual modelling approach can be carried out. How, in other words, the-
oretical and applied models can be compared in terms of model Data 
Generation Process (mDGP) and in terms of simulation outputs. The 
utility of developing a suite of related models in this manner should 
be further investigated, and from a technical point of view it would be 
useful to refl ect on how diffi  cult and time- intensive this is.

There is potential that further modelling work could support the 
analysis of the role of institutions, of geographic aspects of fi rms’ 
interaction networks, of the interaction between intellectual prop-
erty regimes and innovation systems, for example. Certainly, further 
eff orts are required to develop such models and model methodolo-
gies, which represent an important challenge for future research.

NOTE

1. As discussed in Charter 2, in Polanyi’s view, we know more than we can tell.
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