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Preface

Why ?

As | am finishing this book, Science magazine is running a special issue about the
sequencing of the macaque genome. It turms out that macaques share about 93 per-
cent of their genes with us, humans. Previously it has been already reported that
chimpanzees share about 96 percent of their genes with us. Yes, the macaque is our
common ancestor, and it might be expected that, together with the chimps, we con-
tinued with our natural selection some 23 million years ago until, some 6 million
years ago, we departed from the chimps to continue our further search for better
adaptation. Actually it was not quite like this. Apparently it was the chimps that
departed from us; now that we have the macaques as the starting point, we can see
that the chimp’s genome has way more mutations than ours. So the chimps are fur-
ther ahead than we are in their adaptation to the environment.

How did that happen, and how is it then that we, and not the chimps, have
spread around all the Earth? Apparently at some point a mutation put us on a differ-
ent track. This was a mutation that served an entirely different purpose: instead of
adapting to the environment in the process of natural selection, we started adapting
the environment to us. Instead of acquiring new features that would make us better
suited to the environment, we found that we could start changing the environment
to better suit us — and that turned out to be even more efficient. And so it went on.
It appears that not that many mutations were needed for us to start using our brain-
power, skills and hands to build tools and to design microenvironments in support
of the life in our fragile bodies — certainly not as many as the chimps had to develop
on their road to survival. Building shelters, sewing clothing or using fire, we created
small cocoons of environments around us that were suitable for life. Suddenly the
rate of change, the rate of adaptation, increased; there was no longer a need for mil-
lions of years of trial and error. We could pass the information on to cur children, and
they would already know what to do. We no longer needed the chance to govern the
selection of the right mutations and the best adaptive traits, and we found a better
way to register these traits using spoken and written language instead of the genome.

The human species really took off. Qur locally created comfortable microenvi-
ronments started to grow. From small caves where dozens of people were packed in
with no particular comfort, we have moved to single-family houses with hundreds of
square meters of space. Our cocoons have expanded. We have learned to survive in
all climatic zones on this planet, and even beyond, in space. As long as we can bring
our cocoons with us, the environment is good enough for us to live. And so more

ix
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Preface

and more humans have been born, wirh more and more space occupied, and more
and more resources used to creare our microcosms. When microcosms are jowned
togecher and expand, chey are no longer “micro.” Earch 1s no longer a big planec wich
infinite resources, and us, the humans. Now 1t 15 the humans’ planet, where we dom-
inate and regulate. As Vernadskii predicred, we have become a geological force thar
shapes this planer. He wasn’c even talking abour climate change ac cthar rime Now
we can do even cthat, and are doing so.

Unforcunately, we do not seem to be prepared to underscand thac. Was there
a glicch in thac mutacion, which gave us the mechanism and the power buc forgot
about che self-control? Are we driving a car that has the gas pedal, but no brake?
Or we just have not found it yet? For all these years, human progress has been and
still 1s equared to growth and expansion We have been pressing the gas to the floor,
only accelerating. Buc any driver knows thar ac high speed it becomes harder co steer,
especially when the road is unmarked and the descination is unknown. At higher
speeds, the price of error becomes faral.

Buc ler us take a look at the other end of the speccrum. A colony of yeast planred
on a sugar substrate starts o grow. Lt expands exponentially, consuming sugar, and
then 1t crashes, exhausting che feed and suffocacing in 1ts own products of metabo-
lisro. Keep in mind chat chere 1s a lot of similaricy berween our genome and that of
yeast. The yeast keeps consuming and growing; it cannot predict or understand the
consequences of 1ts actions. Humans can, but can we act accordingly based on our
understanding? Which part of our genome will take over? Is it the parc thac we share
with the yeast and which can only push us forward into finding more resources, con-
suming them and multiplying? Or is 1c going to be the acquired parc chat s respon-
stble for our intellect and supposedly the capacity to underscand the more distanc
consequences of our desires and the actions of coday?

So far there is not much evidence n favor of the latter. We know quite a few
examples of collapsed civilizations, buc rhere aie not many good case studies of
sustainable and long-lasting human societies. To know, to understand, we need to
model. Models can be different. Economics is probably one of the most mathema-
tized branches of science after physics. There are many models in economics, buc
those models may not be the best ones to take inro account the other sysrems that
are drniving the economy. There s cthe nacural world. which provides resources and
takes care of waste and pollution. There is the social system, which describes haman
relationships, life quality and happiness. These do nort easily fit inco che linear pro-
gramming and game theory chat are most widely used in convenrional economics.
We need other models if we wanrt to add ™ ecological ” to ™ economics. ”

So far our major concern was how to keep growing. Just like che yeast popula-
tion. The Ancient Grecks came up with thearies of oikonomika — the skills of house-
hold management. This is what lacer became economics — che science of production,
consumption and distribution, all for the sake of growth. And thac was perfectly fine,
while we were indeed small and vulnerable, facing che huge hostile world out there.

Ironically, ecology, oikology — the knowledge and understanding of che house-
hold - came much later. For a long rime we managed our household wichout know-
ing 1t, without really underscanding what we were doing. And that was also OK, as
long as we were small and weak. After all, what kind of damage could we do to the
whole big powerful planet? However, at some point we looked around and realized
that actually we were not that weak any more. We could already wipe out encire spe-
cies, change landscapes and turn rivers. We could even change the climate on the
planer.
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Preface xi

It locks as though we can no longer afford “ economics ” - management wirhout
knowledge. We really need to know, to understand, what we are doing. And thac is
what ecological economics 1s all abour. We need to add knowledge about our house-
hold to our management of ic.

Understanding how complex systems work 1s crucial. We are part of a complex
system, the biosphere, and we further add complexicy to it by adapting this biosphere
to our needs and adding the buman component with its own complexities and
uncertainties. Modeling is a fascinating tool that can provide a method to explore
complex sysrems, to experiment wich them without destroying them at the same
time. The purpose of this book 1s to introduce some of the modeling approaches that
can help us to understand how chis world works. | am mostly focusing on tools and
methods, rather than case studies and applications. 1 am trying to show how mod-
els can be developed and used — how they can become a communication tool that
can take us beyond our personal understanding to jount community learning and
decision-making.

Actually, modeling is pretty mundane for all of us. We model as we think, as we
speak, as we read, as we communicate — and our thoughts are mental models of the
reality. Some people can speak well, clearly explaining what they think. [t s easy to
communicate with them, and there 1s less chance for misunderstanding. In contrast,
some people mumble incoherent sencences thac it 1s difficult to make any sense of.
These people cannot build good models of their thoughts - the thoughts might be
great, but they still have a problem.

Some models are good while others are not so good. The good models help us to
understand. Especially when we deal with complex systems, it is crucial that we learn
to look at processes in their interaction. There are all sorts of links, connections and
feedbacks in the syscems that surround uvs. If we want to understand how these sys-
tems work, we need to leam to sort these connections out, to find the most impar-
tant ones and then study them in more detail. As systems become maore complex,
these connections become more distant and indirecr. We find feedbacks that have a
delayed response, which makes t only harder to figure out their role and guess their
importance.

Suppose you start spinning a big flywheel. [¢ keeps rotating while you add more
steam to make it spin faster. There 1s no indication of danger — no cracks, no squeaks —
it keeps spinning smoothly. An engineer might stop by, see what you're doing and gert
very worried. He will tell you thart a flywheel cannor keep accelerating, that sooner or
lacer tc will burst, the internal tension will be too high, the material will not hold “Oh,
it doesn’t look that way,” you respond, after taking another look at your device. There
is no evidence of any danger thece. But the problem is that there is a delayed response
and a threshold effect. Everything 1s hunky-dory one minute, and then “boom!” — the
flywheel bursts into pieces, metal is flying around and people are injured. How can
that happen? How can we know that 1t will happen?

Oh, we know, but we don’t want to know. Is someching sumilar happening now,
as pait of the global climate change story and its denial by many politicians and ordi-
nary people? We don't want to know the bad news; we hate changing our lifestyle.
The yeast colony keeps growmng tll the very last few hours.

Models can help. They can provide understanding, visualization, and impaorrant
communication tools. The modeling process by itself is a great opportunity to bring
together knowledge and data, and to present them in a coherent, integrated way. So
modeling 1s really important, especially if we are dealing with complex systems that
span beyond the physical world and include humans, economtes, and societies.
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xii Preface

What?

Thus book originated from an on-line course that [ started sore 10 years ago. The
goal was to build a stand-alone Interner course that would provide both access to the
knowledge base and interaction between the instructor and the students. The web
would also allow several mstructors at differenc locations to participate n a collabo-
rative teaching process. Through theiw joint efforts the many teachers could evolve
and keep the course n the public domain, promoting truly equal opporcunicy in edu-
cation anywhere n the world. By constantly keeping the course available for asyn-
chronous teaching, we could have overlapping generations of students involved at
the same time, and expect the more advanced students 1o help the beginners. The
expectation was that, in a way that mumics how the open source paradigm works for
software development. we would start an open education effort. Clearly, the ultimate
test of this idea is whether it catches on i the virtual domam. So far it is still a work
in progress, and there ace some clear harbingers thar 1t may grow 1o be a success.

While there are always several studencs from different countries around che
world (mncluding the USA, China, Ireland, South Africa, Russia, etc.) taking the
course independently, I also use the web resource in several courses I teach in ¢lass.
[n these cases | noriced that students usually started with printing out the pages from
the web. This made me think thac mavke after all 2 book would be a good idea.

The book has gone beyond the scope of the web course, with some entirely new
chapeers added and the remaining ones revised. Sull, 1 consider the book to be a
companion to the web course, which [ intend to keep working and updated. One
major advantage of web tutonals s that new facts and findings can be incorporated
almost as soon as they are announced or published. It rakes vears to publish or update
a book, but only minutes to insert a new finding or a URL into an existing web struc-
ture. By the nime a reader examines the course things will be different from whart
[ originally wrote, because there are always new ideas and results to implement and
present. The victual class discussions provide additional material for the course. All
this can easily become part of the course modules. The book allows you to work off-
line when you don’t have your computer at hand. The on-line part offers interacrion
with the instructor, and downloads of the working models.

Another opportunity opened by web-based education can be described as dis-
tributed open-source teaching, which mimics the open-source concepr that stems
from the hacker culture. A crucial aspect of open-source licenses 1s that they allow
modifications and derived works, but they must also be distributed under the same
terms as the license of the original software. Therefore, unlike simply free code that
could be barrowed and then used in copyrighted commercial distributions, the open-
source definition and licensing effectively ensures thar che derivatives stay in the
open-source domain, extending and enhancing it. Largely because of this feature, the
open-source community has grown very quickly.

The open-source paradigm may also be used to advance education. Web-based
courses could serve as a core for joint efforts of many researchers, programmers, edu-
cators and students. Researchers could describe the findings that are appropnate for
the course theme. Educators could orgamize the modules in subsets and sequences
that would best match the requirements of particular programs and curnicula, and
develop ways 1o use the tools more effectively. Programmers could contribute soft-
ware tools for visualization, interpretation and communication. Students would test
the materials and contribute their feedback and guestions, which 1s essential for
improvements of both content and form.
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Preface xiii

Some of this is stil in the tuture. Perhaps if you decide ro read the book and rake
the course on-line, vou could become part of this open-source, open-education cffort.

I believe that mudeling cannor be really raught. only learmed, and that ic is a skill
and requires a lot of practice - just as when babies learn to speak they need to prac-
rice saving words, making mistakes, and gradually learning te say them the night way.
Similarly, with formal medeling, without going rhrough the pitfalls and surprises of
modeling, it is not possible to understand the process properly. Leaming the skill
must be a hands-an experience of all the major srages of madeling, from dara acguisi-
rien and building conceprual models to formalizing and ireratively improving sim-
ulation models. That is why 1 strongly recommend rhar yvou loek on the web, ger
vourself a rrial or demo version of some of the moedeling software thar we are working
with in this bock, then download rhe models that we are discussing. You can then
not just read the book, bur also follow the story with the model. Do the reses, change
the parameters, explore on your own, ask questions and try o find answers. 1o will be
way more fun that way, and it will be much more useful.

Best of all think of a topic that is of interest to you and start working on your indi-
vidual projecr. Figure our whar exactly you wish to find our, sec whar dara are availal-le,
and then go through the modeling steps that we will be discussing in the book.

The web course is at htep:fwww.likbez.com/AV/Simmod.himl, and will remain
open te all. You may wish to register and take it. You wall find where it overlaps with
the book, vou will be able to send your questions, pet answers and interact with other
students.

At the end of each chapter, you will find a kiklicgraphy. These books and arti-
cles may not necessarily be ahout models in a conventicnal sense, but they show how
complex systerns should be analyzed and how emergent properties appear from this
analysis. Check out some of those references for more in-depth real-life examples of
different kind of models, svstems, challenges and solutions.

Best of all, learn to apply your systems analysis and moedeling skills i your eve-
ryday life when vou need to make small and big decisions, when you make your next
purchase or go ro vote. Learn to look at the system as a whole, to identify the ele-
ments and the links, the feedbacks, controls and forcings, and o realize how things
are interconnected and how inepertant it s to step back and see the big picture, the
pussible delayed effects and the critical states.
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1.1

. Models and Systems

Model

System

Hierarchy

The modeling process
Model classifications
Systems thinking

SUMMARY

What's a model? Why do we model’ How do we model! These questions are
addressed in this chaprer. It is a very basic introduction to the trade. We shall agree
on defimitions — what is a system, whart are paramerers, torcing functions, and bound-
anes? We will also constder some uther basic questions — how do we build a concep-
tual model! How are elements connecred? Waar are the flows of material, and where
1t actually nformation? How do interactions create a positive feedhack that allows
the system to run our of control or, conversely, how do regative feedbacks manage
keep a system in shape” Where do we get our parametess from? We shall then briefly
explore how models are buile, and try to come with some dichetomies and classes for
different models.

Keywords

Complexity, resolution, spatial, temporal and strucrural scales, physical models,
mathematical models, Neptune, emergent properties, elements, holism, reduction-
ism, Thalidonude, flows, stocks, interactions, links, feedhacks, global warming, struc-
ture, functiny, hierarchy, sustainability, boundaries, varables, conceprual model,
modeling process.

Model

We model all the rnme, even

A model is a simplification of reality though we don't think about

it. With words that we speak or

write, we build models of what

we think. | used to have a poster in my otfice of a big gorilla scratching his head
and saving: “You think you understocd whar | said, bur U'm net sure thar whart
[ said is what | thought.” One of the reasons 1t is sometimes hard to communicarte
is that we are not always cood at modeling our thoughts by the words that we
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Norte that the models we builld are dehned by the purposes that they serve. If,
for example, you only want to show a friend how 1o get to your house, you will draw
a very simple diagram, avouding description of various places of interest on the way.
However, if you want your friend to rake notice of o particular locatien, you might
also show her a photograph, which is also a madel. Its purpose s very ditterent, and
so are the implemenration, the scale and the details.

The best model, indeed, should strike o
balance between realism and simplicity. The

The best explanation is as simple human senses seem to be extremely well tuned
as possible, but no simpfer. to the levels of complexity and reselution that

are requued to give us a model of the world
that s adequate to our needs. Humans can
rarely distinguish objects thar are less than

Albert Einstein

L mm in size, bur then they hardly need to in
their everyday hfe. Probably for the same reason, more distant objects are modeled
with less detail than are the close ones. If we could see all the details across, say, a
5-km distance, the bram would be overwhelmed by the amount of informarion it
would need ro process. The ability of the eve to focus on individual objects, while
the surrounding picture becomes somewhat blurred and leses derail, probakly serves
the same purpose of simplifying the image the brain s currently studying. The model
is made simple, but no simpler than we need. If cur vision is less than 20/20, we sud-
denly realize that there are certain important features that we can no longer model.
We rush to the optician for advice on how to bring our modeling capabilities back to
certain standards.

As in space, m time we also register events only of appropriate duranion. Slow
motion escapes our resolution capacity. We cannot see how a tree grows, and we can-
not register the movement of the sun and the moon; we have to go back to the same
observation point to see the change. On the other hand. we do not operate wo well
at very high process 1ates. We do not see how the fly moves tts wings. Even driv-
ing causes problems, and quite often the human brain cannot cope with the flow of
informanion when driving too fast.

Whenever we are interested in mare detall regarding time or space, we need to
extend the modeling capabilities of our senses and bratn with some additional devices —
microscopes, telescopes, high-speed cameras, long-term moenitoring devices, etc
These are required for specific modeling goals, specific temporal and sparial scales.

The image created by our senses s static; s a snapshot of realivy. 1o s only
changed when the reality wself changes, and as we continue observing we ger a series
of snapshots that gives us the idea of the change. We cannor modify this model to
make 1t change in time, unless we use our imagination to play “what f?" games.
These are the mental experiments that we can make. The models we create curside
our brain, physical models, allow us to study certamn features of the real-life systems
even without modifving their prototypes — for example, a model of an airplane is
placed 1n a wind twnnel to evaluate the aerodynamic propeities of the real auplane.
We can study the behavior of the airplane and its parts in extreme conditions; we
can make them acrually break without risking the plane itself — which is, of course,
many times more expensive than its model. (For examples of wind tunnels and how
they are used, see hrep://wre.larc.nasa.gov/.)

Physical models are very useful in the “what 1f?” analysis. They have been widely
used in engineering, hydrology, architecture, etc. In Figurel.l we see a physical model
developed to study stream flow. [t mimics a real channel, and has sand and gravel
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A physical model to study stream flow in the Main Channel Facility at the St Anthany Falls
Laboratory (SAFL) in Minnesota,
The model is over BOm long, has an intake from the Mississippr River with a water
discharge capacity of 8 5m® per second, and is configured with a sediment {both gravel
and sand) recirculation system and a highly accurate weigh-pan system for measuring
bedload transport rates (http/fwww.nced umn edu/streamlab06_sed_xpaort}.

represent the bedforins and allow us ro analyze how changes in the bottom profiles can
affect the flow of water in the stream. Physical models are quire expensive 1o create
and maintain. They are alse very hard to modify, so cach new device (even if 1t is fairly
similar to the one already studied) may require the building of an entirely new physical
model.

Mathemartics offers another tool for modeling. Once we have derived an ade-

quare marhematical relationship for a certain process, we can start analyzing 1t in
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many different ways, predicting che behavior of the real-hfe object under varying
conditions. Suppose we have denved a model of a hody moving in space described by
the equation

S=V-T

where S is the distance covered, V is the velocity and T 1s time.

This model is obviously a simplification of real movement, which may occur
with varying speed, be reciprocal, etc. However, this simplification works well for
studying the basic principles of motion and may also result in additional Andings,
such as the relationship

T=

<|w

An important fearure of mathematical models 15 that some of the previously
derived mathemarical properuies can be applied to a model in order to create new
models, at no additional cost. In some cases, by studying the mathemanical model we
can derive properues of the real-lifc system which were not previously known. It was
by purely mathemartical analysis of a model of planetary motion that Adams and Le
Verner fust predicted che position of Neptune 1n 1845. Neptune was later observed by
Galle and d’Arrest, on 23 Seprember 1846, very near to che location independently
predicted by Adawms and Le Verrier. The story was similar wich Pluto, the last and che
smallest planet in the Solar System (alchough, as of 2006, Pluto is no longer consid-
ered ro be a planet; it has been decided that Pluto does not comply wich the definicion
of a planet, and thus ¢ has been reclassified as a “small planet”). Actually, the model
that predicted its existence turned out to have ecrors, ver 1t made Clyde Tombaugh
persist in his search for the planet. We can see that analysis of abstract models can
result 10 quite concrete findings about the real modeled world.

All models are wrong because they are
always simpler chan che reality, and chus some

All models are wrong ... Some features of real-life systems get musrepresented
models are useful. or ignored m the model. Whart is the use of

modeling, then? When dealing with some-
thing complex, we tend to study it step by
step, looking at parts of the whole and ignor-
ing some details to get the bigger picture.
Thar 1s exactly what we do when building a model. Therefore, models are essennal
to understand the world around us.

[f we understand how something works, 1t becomes easier to predicr 1ts behavior
under changing conditions. [f we have buillt a good model that takes into account
the essential features of the real-life object, its behavior under stress will likely be
similar to the behavior of the prototype that we were modeling. We should always
use cautton when extrapolating the model behavior to the performance of the proco-
type because of the numerous scaling 1ssues that need be considered. Smaller, simpler
models do not necessarily behave i a similar way to the real-life objects. However,
by applying appropriate scaling factors and choosing the right materials and media,
some very useful results may be obrained.

When the object performance 1s understood and 1ts behavior predicred, we get
additional information to control the object. Models can be used to find the most sen-
sitive components of the real-hfe system, and by modifying these components we can
cfficiently cune the system inco the desired state or set 1t on the required trajecrory.

William Deming
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A
B
SEULCRI M flements and interactions.
We first identity elements in the system {A}, then figure cut
which ones are connected (B). Next we start describing the
c types of interactions (C - which element influences which, and

how). By putting together these kinds of relationship diagrams
we can better understand and communicate how systems
work.

energy (light, heat, electricity, cte.), money, etc. It 15 something that can be meas-

ured and tracked. Also, if an element is a donor of this substance the amount of
substance in this element will decrease as a result of the exchange, while at the same
time the amount of this substance will increase in the receptor element. There is
always a mass or energy conservation law in place. Nothing appears from nothing,
and nothing can disappear to nowhere.

The second type of exchange ts an information flow. In this case, element A gets
the information about element B. Element B at the same time may have no infor-
mation about element A. Even when element A gets information about B, element
B does not lose anything. Information can be about the state of an element, about
the quantity that it contains, about s presence or absence, etc. For example, when
we sit down for breakfast, we eat food. As we eat, there 1s less food on the table and
more food m our stomachs, There 1s a flow of material. At some point we look at the
clock on the wall and realize that it is time to stop eating and go to work. There is a
flow of information from the clock to us. Nothing has been raken from the clock, yet
we learned something from the informarion flow that we used.

When describing flows 1 a system it 1s useful to identdy when the flows play a
stirnulaning or a damipening effect. For example, consider a popularion growth process.
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KDL Hierarchies in systems,

Systems may be presented as interacting subsystems. Syslems themselves interact as
parts of supra-systems. There are various hierarchical levels that can be identified to
improve the descriptions of systems in models. Elements in the same hierarchical level
are usually presented in the same level of detail in the space—time-structure dimensions.

same level. However, lower levels of those similar systems are hardly important for
this system. They enter the higher levels in terms of theuwr function; the individual
elements may be negligible but their emergent properties are what martter. Fiebleman
describes this i his theory of integrative levels as follows: “For an organism at any
given level, its mechanism lies at the level helow and its purpose at the level above”
(Fiebleman, 1954: 61).

For example, consuler a student as a systern. The student 1s part of a class, which
is the next hierarchical level. The class has certain properties that are emergent for
the set of students that enter 1t. At the class level, the only thing that is important
about students is their learning process. [t does not matter what individual scudents
had for breakfast, or wherher they are tall or shorr. On the other hand, their indi-
vidual ability to learn is affected by thew individual properties. If a student has a
headache after the party on the night hefore, he or she probably will not be able to
study as well as a neighbor who went to the gym instead. The class as a whole may be
characterized by a certain degree of academic achievement thar will be different from
the talents and skills of individual students, yer thar will be the benchmark that the
reacher will considler when working with the class. Each student affects this emer-
gent property to a certain extent, but not entirely. On the contrary, the class average
affects each individual student, setting the level of instruction that 1s to be offered by
the reacher. Different classes are assemibled into a school, which is the next level in
the hierarchy. Schools may be elements in 1 Regional Division, and so on.

At the orher end of this hierarchy, we can start by “decomposing” each indivaid-
ual student, looking ar his or her body organs and considering their functions — and
so on, until we get to molecules and atoms. There are many ways we can carry out
the decomposttion. Instead of considering a student as an element of a class, we may
look at that student as an element of a family and build the hierarchy 10 a different
way. As with modeling in general, the type of hierarchy thar we create is very much
driven by the goals of our study. The hierarchical approach s essential in order o
place the study ebject wirhin the context of the macro- and micro-worlds — that is,
the super- and subsystems — relative tw it
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According to T, Saary (1982), “hierarchies arc a fundamental tool of the human
mind. They invalve ideneifying the elements of a problem, grouping the elements
into homogeneous sets, and arranging these sets in different levels.” There may be a
variety of hierarchies, the simplest of which are linear - such as unwerse — galaxy —
constellation. — solar system — planet — ... — molecule — atom — nucleus — proton.
The more complex ones are networks of interacting elements, with multiple levels
affecting each of the elements.

It s important to remember —— B -
that there are no real hierarchies in therarchies do ot exist. We w e up

the world we study. Hierarchies are & understand a system and to communicate
always creanons of our brain and mr;mderstamfag to athers.

are driven by our study. They are
just a useful way to look at the system, to understand it, to put it in the context of
scale, of other components thar affecr the system. There s nothing vbjective about
the hierarchies that we develop.

Far example, consider the hierarchy that can be assumed when looking at the
Earth system. Clearly, there are ecological, economic and social subsystems. Neo-
classical economists may forget about the ecclogical subsystem and put together therr
theories with only the economic and social subsystems in mind. That s how you
would end up with the Cobb-Douglas production function that calculates ourput as
a function of labor (social system) and capiral (economic system).

Environmental economists would certainly recopnize the importance of the eco-
logical system. They would wanr to take into account all three subsystems, but would

think abour them as if they were acting side-by-side, as equal components of the whole
(Figute 1.4A). For them, the production funcoion 1s a product of population (labor),
resources (land) and capital. All three are equally tmportant, representing the social,
natural {ecological) and economic subsystems, respectively. They are also substicurable:
you can cither work more or invest more to ger the same result. You can also come up

Ecological

. Ecological
Economic 9

Economic

Ecological

‘Social

CTLCMBE M Different ways 10 present the ecological—economic—social bierarchy in the Earth system.

Hierarchies are subjective and serve particular purposes of the analysis.



15

' 5&.:1 ale and Systems 1

waldy o prwe L e a! pomeds o servoes amhcalonlare Bove rowchorwoney g meel|
wpEy Do reenrEnadre b ctanel werprad o an e aperies,

Ecoloieaf covnomsns aswldl argue than b gz pear the 1 oght s o feck o 1hes
erdn v s thesd ws o s Taset od wgprtal coa et i e ibsend of Dt
satzees D hes wonld wigue that v cannal compensate s aoatirsl cesouoe -
1y |ame! = by wowrking mewe cromvesng rore momey . Theretsr=, ghe oy andd
sl svsre vz e wraally sulsvarems of the aloleacal serem Achinerdm osarc by
worsld thererre winenae (F e | 4B

Aosonal o betaen val soenist wonle azgiee thae all the sooeemg e atanainps
are prodocsil wochon theseral s Taere s no remon soctalk abvace eee soonomy
ahie Pire st sl avareim e WERAT e 090 0oy e Beita o b e ped
wirang tudevelop the econoroe subsveem Thewhone s mas come o wiib s
avvaitboer Teererc by Fuone 13000 Wl e v et " eal” omie ' 1 deprerads g
e tocas b the iesEanen

e il b congidenng susteinebllity and susteinsble development in move detsdl in Chapier 7.
Hereg, I8t us uss this notion 0 dermanstrate-how systams and higrarchies may be & useful tool
for some far-teaching conclusicns. The World Comenission on Emasonment and Development
(WECED, 1887) introduced the idea of sustainability several decades aga, but thers is still no
single agrend deliniticn for i, Most wousd agree that it implias that a system is 1o be main-
talned at a certain level, held within cartaln irmits Sustanabiiby denles fUun-gwey growth, but
also preciudes amr substantial et backs or cuts. While most - probably all — natural sysiema
go through a renewsl cycle, whare growth |5 followad by decling and eventual disimegration,
gustainabdity in 5 way has the goal of prevening the svaam from declining and collapsing.
Originally the Brundiand Commission came up with tha concapt of sustamatslity at the gio-
bl level, 25 & way 1o protect our Bospners from becoming uninhabitable By humans, and
humen lives bacoming full of suffenng and urmail bacause of the lack of natural rescurces
and &asimilative capacity of the planst.

Howevar, samshow in the anvimoamental mowement the goaf of sustainability was
tranalated into the regional and local levels. Indeed. the famous Schumacher idea of “Think
glohally = act lecally” apparently means that the obvious path 1o global sustanabdity o5
thraugh makeng. sure that owr [ocal systems ara sustainabée, |s that really the cager Lel us
apply some of 1he ideas about hierarchiss and systerms.

Keap in mind that renswal elows for readjusiment and edaptation. However, 1 is the
naxt higrarchical level that bénafits froom this adaptation, Repewal in companents helps a svs-
lam to parsist; therefare, for a hierarchical system fo extend its existence, 10 be sUSiasuabe,
15 subsysiems need 10 g0 through renewal cytles, In this way, tha death of subsystams con-
tributes 1o tha sustaimabilty of the sugrs-system, providing meterial and space for recgane
atlen and adaptation. Costanza and: Patten {1905; 19680, locking &t sustainability in terms of
component Iurwrrt'gr or existence time, recognaad that “evaluticn cannot Gocur unlass thara
5 Emited longevity of the componeat parts sothat new alternatives oan be selactad *

Sustainability ot a systern borrows from sustainabity of & supra-svatern and rests pn
leck: of sustainataity in subsysterns. This meght be hard o perceive, because at first glance
it seams that a system reade of sustainebls, lasting companents should be sustaineble as
well. Howaver, in systams theory It has been kong recognized that “the whals is mose than
the swm of parts” Ivon Bertalanffy, 1968: 55}, that a systern function is not proviced only by
the functions of its components, and thessfare, in fact. system sustainability is not @ prog-
uot of sustainabla parts and wios versa. This is espedally true for living, dvnamically evalwng
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all of them, or some of them are entirely unknown? Which are che limiting ones,
where are the gaps in our knowledge? What are the interactions between the
elements?

We mighr already need 10 go back and forth from the goals to the data sews. If

our knowledge is insufficient for the poal in mind, we need either o update the data
sets to better comply with che goals, or to redefine the goals to make chem more fea-
sible ar the existing level of knowledge.

By answering the basic questions abour space, time and structure, we describe

the concepiual model of the system. A conceprual model may be a mental model, a
sketch or a flow diagram. Bulding the right conceptual model leads us halfway to
success. In the conceprual model, the following components of the system should be
clearly identified.

1.

Boundaries. These distinguish the system from the outside world in both time and
space. They are unportant in deciding what marerial and information flows inte
and out of the system, which processes are inrernal (endogenous) and which are
external {exogenous). The outside world 1s something that we assume is known
and do not try to explore in our model. The outside world matcers for the model
only in terms of s effects upon the system thar we are studying.

Variables. These characrerize the elements in our system. They are the quantities

that change n the system that we analyze and report as a result of the modeling

exercise. Among variables, the following should be distinguished:

e Srare variables, or oucpur variables. These are che outpurs from the model. They
are determined by inpucs that go o the model, and by the model’s internal
organization or wiring.

e I[ntermediate or auxtliary variables. These are any quantities defined and com-
puted in the model. They usually serve only for intermediate calculations; how-
ever, in some cases looking ac them can help us to understand what happens
“under the hood” in the model.

Parameters. These are generally all quantities that are used to describe and run a

model. They do not need to be constant, bur all their values need to be decided

before the model runs. These quantities may be further classified into the follow-

Ing categories:

e Boundary condinons. These describe the values along the spatial and tempo-
ral boundaries of a system. For a spatially homogeneous system we have only
mitial conditions, which describe the state of the vanables at time ¢ = C when
we start the model, and the length of the model run. For spaually distributed
svstems. in addition we may need to define the condirions along the houndary,
as well as the geomerry of the boundary 1tself.

o Constants or paramerers In a narrow sense. LThese are the various coefficients
and constants measured, guessed or found. We may want to distinguish between
real constants, such as gravity, g, and, say, the half-saturation coefficient, K,
in the Michaelis—=Menten function chat we will consider in the next chaprer.
While both of them take on constant values in a particular model run, g will be
always the same from one run to ancther, but K may change quite substantially
as we improve the model. Even if K comes from observations, 1t will normally
be measured with certain error, so the exact value will nort be really known.

e Forcing functions. These are parameters thar describe the effect of the out-
side world upon the system. They may change in time or space, but they do
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not respond to changes within the system They are external to 1, driven by
processes i the higher herarchical levels, Climatie conditions (raiofall, tem-
perature, etc.) cerrainly affect the growth of tomatoes in my garden, but the
tomatoes hardly affect the temperature or the ramnfall patterns. If we build a
model of tomato growth, the temperarure will be a forcing function.

o Control functions. These are also paramerers, except that they are allowed to
change to see how their change atects systems dynamics. Lo is like tming the
knob on a radio set. Every nme the knob is dialed o a certamn position, hut we
know that it may vary and will result i a different performance by the system.

Nate that in some texts parameterss will be assumed only in the narrow sense of
constants thar may somerimes change, like the growth rate or half-saturation coef-
ficients, However, this may be somewhat confusing, since forcing functions are also
such paramerters of they are fixed. Suppose we want to run a model with the tem-
perature held constant and equal to the mean over a certan pened of time - say,
the 6 months of the growth season for a crop. Then suppose later on we want to feed
into the model the actual data that we have measured for temperature. Temperature
is now no longer a constant, but changes every Jday according to the recorded time
series. Does this mean that temperature will no longer be a parameter! For any given
moment 1t will sull be a constant. It will only change from time to time according
to the data available. Prohably, it would make sense still w trear it as a parameter,
except now 1t will be ne longer constant hut will change accordingly.

Suppose now that we approximare the course of temperatures by a function with
some constants that control the form of this function. Suppese we use the sine func-
tion and have parameters for the amplituide and the peried. Now remperature will no
longer ke a parameter. Note that we no longer need to define all the values for tem-
perature before we hit the "Run” button. Instead, remperature will become an inter-
mediate variable, while we will have two new parameters in the sine function thar
now specifies temperature — one parameter (B = 4) will make the period equal w 6
months, the other parameter (A) will define che amplitude and make the remperature
change from a minimal value (0) o the maximal value (40, (f A = 20} and back over
this period of time, as i the hunction:

o 3% g
+

65 2

Temperature = A * SIN|¢ * 5 + A

where tis time, m1sa constant 7 = 314, and A and B are parmineters. [t B = 2, then
the peried will change from 6 to 12 months. Both A and B are set before we start
running the maodel.

There may be a number of ways to determine model parameters, including the
fullowing.

1. Measurements in situ. This is probably the best method, since the measurements
define the value ot exactly whart 1s assumed m the model. However, such measure-
ments are the most labor- and costantensive, and they also come with large mar-
gins of error. Besides, in many cases such measurements may not ke possible ar all,
if & parameter represents some aggregated value or an extreme condition that may
not occur in reality (for example, the maxinal temperature for a population o
olerate — this may chffer from one orgamsm to another, and such conditions may
ke hard to ind i veality).
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2. Expenments in the lab (in vitro). These are usually performed when in situ exper-
iments are impossible. Say we rake an organism and expose it to high temperatures
to find out the limits of its tolerance. We can creare such conditions artificially in
a lab, but we cannot change the temperature for the whole ecosystem.

3. Values from previous studies found from licerature, web searches or personal com-
munications. If data are available for similar systems, it cerrainly makes sense o
use them. However, always keep 1n mind that rhere are no two dentical ecosys-
rems, so it is likely that there will be some error in the paramerers borrowed from
another case study.

4. Calibration (see Chapter 4). When we know what the model ourpur should look
like, we can always tweak some of the parameters to make the model perform at
s best.

5. Basic laws, such as conservation principles and rherefore mass and energy balances.

6. Allometric principles, stoichiometry, and other chemical, physical, etc., proper-
ties. Basic and derived laws may help to establish relationships between param-
eters, and therefore identify ac least some of them based on the other ones already
measured or estimated.

7. Common sense. This always helps. For example, we know that populatton num-
bers cannot be negative. Setting this kind of boundary on certain parameters may
help with the model.

Note that in all cases there 1s a considerable level of uncerrainty present in the val-
ues assigned to various model parameters. Further testing and tedious analysis of the
model is the only way to decrease the error margin and deal with this uncertainty.

Creating a conceptual model is very much an artistic process, because there can
hardly be any exact guidelines for that. This process very much resembles that of per-
ception, which s individual to every person. There may be some recommendations
and suggesrions, but eventually everybody will be doing it in his or her own personal
way. The same applies to the rest of the modeling process.

When a conceptual model 1s creared, it may be useful ro analyze it with some tools
borrowed from mathematics. In order to do this we need to formalize the model - that
is, hnd adequare marhematical rerms to describe our concepts. Instead of concepts,
words and 1mages, we need to come up with equations and formulas. This is not always
possible, and once ugain there 1s no one-to-one correspondence between a conceptual
mode| and its mathematical formalization. One formalism can tum out to be better
for a particular system or goal than another. There are certain rules and recommenda-
tions, but no ultunarte procedure 1s known.

Once rhe model 15 formalized, its further analysis becomes pretty much techni-
cal. We can first compare the behavior of our mathematical object with the behavior
of the real system. We srart solving the equanons and generate trajectories for the
variables. These are to be compared wich the daca available. There are always some
parameters that we do not know exactly and that can be changed a httle to achieve
a better fit of the model dynamics to the one observed. This is the so-called calibra-
tion process.

Usually 1t makes sense to first identify those parameters that have the largest
effect on system dynamics. This is done by performing sensitivity analysis of the model.
By incrementing all the paramerers and checking out the model inpur, we can iden-
tify to which ones the model 1s most sensitive. We should then focus our artention on
these parameters when calibrating the model. Besides, if the model has already been
tested and found to be adequate, then model sensitivity may be translated into system
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sensitiviry: we may conclude rhar the system is most sensitive to certain parameters
and therefore the processes that these parameters describe. If the calibration does net
look good enough, we need to go back to some of the previous steps of cur modeling
process (reiterate). We may have got the wrong conceptual model, or we did nor for-
malize it properly, or there is something wrong in the data, or the goals do not march
the resources. Unfortunately, ence again we are plunged inro the imprecise “artistic”
domain of model reevaluation and reformulation,

If the fit looks good enough, we mught

Once you j’m Lt W»d&f&fmd{:ﬂﬁ Wit your

want to do another test and check if the model
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not used in the calibration process. We want
to make sure that the model indeed represents

You dow’t buddd a wodel going dows a stracght the system and not the particular case that was
path. You budd a wuodefﬁ&:k«gjm cuveles. described by the data used to tweak the param-

1.5

eters in our formalization. This is called the
validaton process. Once agawy, if the fit does not match our expectations we need to
¢o back to the conceptualization phase.

However, if we are happy with the model performance we can acrually start using
it. Already, while building the model, we have increased our knowledge abourt the
system and cur understanding of how the system operates. That is probably the major
value of the whole modeling process. [n addition ro that we can start exploring some
of the conditions that have not yet oceurred in the real system, and make estimates
of 1ts behavior in these conditions. This is the "what if " kind of analys:s, or the sce-
nario analysis. These results may become imporeant for making the right decisions.

Model classifications

There may be several criteria used to classify models, We will consider examples of
many of the madels below in muchk more derail in the following chapters. Here we
give a brief overview of the kinds of madels that are ourt there, and try to figure ways
to put some order in their descriptions. Among many ways of classifying the models
we may consider the following:

1. Form: i which form is the model presented?
o Conceptual (verbal, descriptive) — only verbal descriptions are made. Examples
include the following.

- A description of directions to my home: Take Road 5 for 5 mules East, then take
a left io Main Streer and follow througn tweo lights. Take a vight 1o Cedar Lane. My
house s 3333 on the lefr. This is a spatial medel of my house location relative
to a certain starting point. [ describe the mental model of the route to my
house in verbal rerms.

— A verbal portraw of a person: He is all with ved hatr and green eyes, his cheeks
are pale and his nose ts prmpled. His left ear is larger than the night one and one of
fis front teeth is missing. This is a static verbal model of a person’s face.

— Verbal description of somebody's behavior: When she wakes up i the morn-
ing, she is slow and sleepy until she has her fust cup of coffee. After that she stares
10 move somewhat foster and has her bowl of ceveal with the second cup of coffee.
Cnly that brings her back to her normal pace of life. This is a dynamic condi-
tional verbal model.
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— A verbal descniption of a rainfall event: Rainfall occurs every now and then. If
cemperature is below 0°(C) (22 F) the raim is called snow and it is accumulated as
snow ar ice o the terrain. Otherwise it comes i liquid form and pare of it mfilrrates
meo the subsurface laver and adds o the unsanerated storage underground. The rest

stays on the surface as surface water.

e Conceprual (diagrammaric) — in some
cases a good deawing may be worth a
thousand words. Examples include the N
following.

- A dingram that may explain vour
model even better than words.

— A drawing or an image 5 also a
model. [n some cases it can offer  we are here
much more information than the

verhal description, and may be also smiies /
easier 1o understand and communi-
cate among people. Also note that
in some cases i diagram can exclude some of the uncer-
tainties that may come from the verbal description. Far
example, the verbal model cited above mentioned the
left ear, but Jid not specify whether it is the person’s
left car or the person’s left ear as seen by the vbserver.
This ambiguity disappears when the image is offered.

— Dynamic features can be included in an animation or a
Cirtoan.

— A conceprual model of the hydrologic cvcle.

Transpiration

A \ \
Evaporation Precipitalion \\\\ \\ \

Overland
flow

Surace water

saturated
) exchanges
d—b‘| Saturated water

& u'ptiow

~——» Groundwater
flow

o [hysical — a reconstruction of the real object at a smaller scale. Examples

include the tollowimg.
— Martchbox toy cars.

- Remember those mannequing they put in cars to crash them against a brick
wall and sce whar happens to the passengers? Well, those are models of
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humans. They are no good for scudving 10Q, bur they reproduce certain features
of a human body that are important to design car safery devices.

- Anairplane model n a wingd tunnel.

- A fairly large (about 50-m long) model was creaced in the 1970s to analyze
currents in Lake Balacon (Hungary). Large fans blew air over the model and
currents were measured and documented.

— A physical model to study stream flow (see Figure 1.1).

e Formal (mathemarical) — that is when equations and formulas reproduce the
behavior of physical objects. Examples include the following.

- Q =mC(t — ) —amodel of heat emiteed by a body of mass m, when cool-
ing from cemperacure £ to temperature t;. C is che heat capacity parameter.

— Y = Yy 2% — a model of an exponentially growing population, where Yy is
the intcial populanion and d is doubling time.

2. Time: how 15 time treated 1n the model?

e Dynamic vs static. A stacic model gives a snapshot of the reality. In dynamic
models, time changes and so do the variables 1n the model. Examples include
the following.

— A map 15 a static model; so is a photo.
— A cartoon is a dynamic model.
— Dufferential or difference equations are dynamic models.

o Continucus vs discrete. [s time 1incremented step-wise in a dynamic model, or 1s
it assumed to change constantly, in infinitesimally small increments? Examples
include the following:

- Yon may wacch a roy car roll down a wedge. Ir will be a physical model wirh
continuous time.

— QGenerally speaking, systems of differential equations represent continuous
time models.

— A difference equacion 1s a discrete model. Time can change, but it is incre-
mented in steps (1 munute, 1 day, | vear, ecc.)

— A movie is a chscrete model. Motion 15 achieved by viewing separate images,
taken at certain intervals.

e Stochastic vs deterministic. In a decerministic model, the state of che sysrtem
at the next time step 1s encirely defined by the state of the system ac the cur-
rent time scep and the transfer functions used. ln a stochascic model. there may
be several future states corresponding to the same current state. Each of these
future states may occur wich a certain probability.

3. Space: how 1s space treated in the model?

e Spaual vs local (box-models). A point model assumes that everything 1s homo-
geneous (n space. Either it looks at a specific locality or it considers averages
over a certan area. A spatal model looks at spanal vanability and considers
spatially heterogeneous processes and variables. Examples include the following.
- A demographic model of population growrh in a cicy. All the population

may be considered as a point variable, the spacial distribution is not of inter-
est, and only the total population over the area of the ciry 15 modeled.

- A box model of a small lake. The lake 15 considered to be a well-mixed con-
tamer, where spatial gradients are ignored and only che average concencra-
tions of nutrients and biota are considered.

— A spanal hydrologic model. The watershed 15 presented as an arrayv of cells
with water moving from one cell to another downhill, along the elevation
gradient.
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o Contmuous vs discrete. Like time, space may be represented eicher as continu-
ous or as a mosaic of uniform objects. Examples include che following.

- A painang vs a mosaic. Both represent a spatial picture and both look cuite
simular from a distance. However, at close observation 1c is clear that smooth
lines and color changes 11 a painting are substicuted by discrete uniform ele-
ments in the mosaic, which change thew color and shape in a stepwise manner,

— Differential equations or equations in partial derivatives are used for con-
tinuous formalizations.

— Finice elements or difference schemes are used to formalize discrete models.

4. Srructure: how is the model structure defined?

e Emprrical (black-box) vs process-based (simulation) models. In empirical mod-
els, the output is linked to the mput by some sort of a mathematical formula
or physical device. The strucrure of the model is not imporcant as long as the
input signals are translated into the output ones properly — thac is, as they are
observed. These models are also called black-box maodels, because they operate
as some closed devices on the way of the information flows. [0 process-based
models, individual processes are analyzed and reproduced in the model. In any
case, it 15 not possible to go into all the details or to describe all the processes in
all cheir complexity (it would not be a model then). Therefore, a process-based
model may be considered as being built from numerous black boxes. The individ-
ual processes are still presented as closed devices or empirical formulas; however,
their incerplay and feedbacks between them are taken into account and analyzed.

e Simple vs complex. Though gualiratively clear, this distinction might cum out
to be somewhat hard to quancify. ¢ 15 usually defined by the goals of the model.
Simple models are built to understand che system 10 general over long time
intervals and large areas. Complex models are creared for detailed studies of par-
ticular system funcuions. The increased structural complexity usually has to be
compensated by coarser temporal and spatial resolutions.

5. Method: how is the model formulared and scudied?

e Analytic vs computer models. Analytical models are solved by inding an ana-
lytical mathematical solution to the equations. Mathematical models easily
become oo complex to be studied analytically. Instead, numerical methods are
derived rhat allow solving equarions on a computer.

o Modeling paradigm.

Scock-and-flows or systems dynamics models assume that the system can

he represented as a colleccion of reservowrs (that accumulate biomass,

energy. macerial, ecc.) connected by pipes (chat move the material between

TESErvOITs).

- [ndividual- (or agenc-) based models. These describe individual organisms as
separate entities that operate in time and space. There are rules that define
the bebaviot of chese agents, theit growth, movement, ete.

— Newwork-based models.

- Input/output models.

— Artificial neural networks.

6. Field-related classificarion: what field is the model 1 (e.g. ecology)?
e Population models. These are buile ro scudy the dynamics and structure of
populations. A population 1s easily characterized by its size, which may be why
population ecology 15 probably the most formalized branch of ecology.
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o Communtty models take several populations and explore what happens when
they incteract. The classic predator—prey or host—parasite systems and models of
trophic interactions are the most prominent examples.

e Ecosystem models arcempr o represent the whole ecosystem, not just some
components of it. For example, a model has been developed for the wetland
ecosystem in che Florida Everglades (hcep://my.sfwmd.gov/pls/porcal/urlipage/PG _
SFWMD_HESM/PG_SFWMD_HESM_ELMavpage=elm). 1t includes che
dynamics of water, nutrients, plants, phytoplankton, zooplankton and fish. The
goal 15 to understand how changes in the hydro-peried affect the biota in
that area, and how the biora (plancs) affects hydrology.

7. Purpose: what is the mode! built for?

o Models for understanding would normally be simple and qualitauve, focusing on
particular parts or processes of a system — for example, the predator—prey model
rthac we consider m Chapter 5.

e Models for education or demonstration. These are built to demonstrate particu-
lar features of a system, to educate students or stakeholders. For example, the
well-known Daisy World model 1s used to demonstrate how the planet can self-
regulate 1ts temperature, using black and whice daisies (See htip://www.infor-
matics.sussex.ac.uk/research/projectsfdaisyworld/daisyworld.html for more about
the maodel or hup://library.chinkquest.org/C003763/flash/gaial . htm for a nice
Flash animanion).

o Predictive models are detailed and scrupulously tested simulacions that are
designed to make real decisions. A perfect example is a weather model that
would be used for weacher forecasts.

o Knowledge bases. Models can serve as universal repositories of mnformanon
and knowledge. In this case, the model structure purs various data in a context
providing conceptual links between different qualitative and quanutative bits
of informanon. For example, the Multi-scale [ntegrated Models of Ecosystem
Services (MIMES ~ hriep/ffwww.avm.edufgiee/mimes/) organizes an extensive
body of informanion relevant to ecosystem services valuation in five spheres:
anthroposphere, atmosphere, biosphere, hydrosphere, and lithosphere.

Systems thinking

In more recenct years, people have really starced to appreciate the importance of che
systems apptoach and systems analysis. We are now talking about a whole new mindset
and worldview based on this understanding of systems and the interconnecred-
ness between components and processes. With systems we can look at connections
between elements, at new properties that emerge from these connecnions and feed-
backs, and ac the relationships between the whole and the part. This worldview s
referred to as “systems thinking.”

The roots of systems thinking go back to studies on systems dynamics at MIT led
by Jay Forrester, who was also the inventor of magnetic-core memory, which evolved
into the random access memory used in all computers today. Even though back in
1956 he never mentioned systems thinking as a concept, the models he was building
clearly chiseled out the niche that would be then filled by this type of holisnic, inte-
grative, cross-disciplinary analysis. With his background in electrical and compurer
engineermng, Forrester has successfully applied some of the same engineering principles
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to social, economic and environmental problems. You can find a certain resemblance
between electric circuits and systems diagrams that Forrester has introduced. The titles
of his most famous books, Industrial Dynamics (1962), Urban Dynamucs (1969) and
World Dynamics (1973), clearly show the types of applications rhar have been srudied
using this approach The main idea 15 to focus on the system as a whole. lnstead of
rradinional analytical methods, when in order to study we disintegrate, dig inside and
study how parts work, now the focus is on stud=ying how the whole works, how the
parts work together, what the functions are, and what the drvers and feedbacks are.

Forrester’s works led to even more sophisticated world models by Donella and
Dennis Meadows. Their book, Limits to Growth (1972), was published in paperback
and became a national bestseller. Systems dynamics got a major boost when Barry
Richmond at High Performance Systems introduced Stella, the first user-friendly
icon-based modeling software.

Despite all the power and success of the systems dynamics approach, it still has
its limits. As we will see later on, Stella should not ke considered to be the ultimate
modeling tool, and there are other modeling systems and modeling paradigms that
are equally important and useful. It would be wrong to think that systems approach
and the ideas of systems thinking are usurped by the systems dynamics methods.
Systems can be described mn a variety of different ways, not necessarily using the
stock-and-flow formalism of Stella and the like.

Systems thinking is more than just systems dynamics. For example, the so-called
Life Cycle Assessment (LCA) 1s clearly a spin-off of systems thinking. The idea of
LCA is that any economic production draws all sorts of resources from a wide variery
of areas. If we want to assess the true cost of a certain product, we need to rake into
account all the varnious stages of 1ts production, and estumate the costs and processes
that are associated with the different other products that wenr inco the production
of this one. The resulting diagrams become very complex, and there are elaborate
databases and economertric models now avatlable to make these calculations. For
example, to resolve the ongoing debate about the efficiency of corn-based ethanol as
a substitute for o1l, we need to consider a web of interactions (Figure 1.6) that deter-
mine the so-called Energy Return on Energy luvested (ERQEI). The 1dea is that you
always need to invest energy to derive new energy. If you need to invest more than
you get, it becomes meaningless to run the operations. That is exactly why we are
not going to run out of oil. What will happen 1s it will become more expensive 1n
terms of energy to exrract it than we can gain from the product. That s when we
will stop pumping oil to burn 1t for energy, but perhaps will still extrace it for other
purposes, such as the chemical industry or material production.

So if ey, is the amount of energy produced and e, 1s the amount of energy used
in production, then EROEI e = e, /e, In some cases the net EROEI index s used,
which is the amount of ¢energy we need to produce to deliver a unit of net energy to
the uset: e’ = ey /(e €n)- Ore’ = ef(e—1). As we unwind the various chains of
products and processes that go nto the production of energy from com, the EROEI
dramatically falls. The current estimate stands at about 1.3, and there are still some
processes that have not been mcluded in chis estimace. A true systems chinking
approach would require that we go beyond the processes in Figure 1.6 and also look
at social impacts as well as further ecological impacts, such as the eminent deforesta-
tion that is required for expanded corn production, and the loss of wildlife that will
follow. Taking all that into account, the question anses: wich an EROEI of 1.3 or
less, 151t worth 1t? To compare, the EROEI for crude oil used to be about 10C; nowa-
days it 1s falling o about 10.
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Further reading

von Bertalanffy, L. (1968}, General Svstem Theory. George Brazller = This 15 an mooducton to
systems theory, and one of the classics of this approach.

Hall, C, and Day, J. (1977). Ecosvstem Modeling m Theory and Pracuice. An Invoduction wath
Case Flistories. Wiley. - An excellent collecnion of papers on the theoy of modeling dlustrared by
a variery of models from very different tiers of Ife.

Ford, A, (1999}, Madelng the Environment. l¢land Press. — An entively Stella based textbook
Gives a neat mtroduction o modelmg the way it can be perfiazned without really knowing what 1s
acing on beneath the Stella inrerface. The book is perfect for a muthemancally deprived modeler

Berlinski, D. {1978). On Systerns Analysis. An Essay Concerung the Limitations of Some
Marhemarical Methods i the Social, Polirical, and Biological Sciences. MIT Press. — A cunous
cuitecton of entigues of some very famous models. May be vecommended o better undevstand that
madels ave not the wlumare salution, that there arve always covtain limitadinns o their wse and thar
these limitations showdd be explicitly made part of the model.

Thm-e is some conmoversy about who actually sad, "All models ave wrong . Some models are wse-

ful”. Accindimg to some texts o was William Deming; at least that o what McCoxy claims m his collec-

tior: of quores McCoy, I (1994). The Best of Demmg. Statistical Process Conrral Press. However,
others attribute it to Geoige EP. Box in "Robustness i the stategy of scientific model build-
ing”, page 202 of Robustnesy m Stadstics (1979}, Launer, R.L. and Wilkinson GN., Editors.

Academic Press. Atter all it doesn't really matter who said it firsst; it is certainly very true.
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Saary. T.L. (1982). Decision Malang for Leaders. Lifetune learning Publicanions. p.28 — This
is not exactly related 10 modeimg but gives a good analysis of hierarchies and their applicanons in
decision making. Saaty distinguishes between structural and funcoonal hievarchwes. In structural
hierarchies systems are decomposed mto therr consutuene paves m descending order accordmg to
structural Droperues such as size, shape, color, age, eww This is the type of hievarchies most useful
in building process-based models. Saary 1s analyyung funcaonal hierarchtes that are created accord-
g to the essennal relationships between the elements. His hierarchies are essennal to analyze the
decision makmg process and help in conflict resolution

Some philosophical interpretations of hierarchies can be found in Haught, J F (1984). The
Cosmuc Adventure: Science, Religion and the Quest for Purpose. Paulist Press (also available online
at heepe//www.rehigion-onlme.org/showchapterasp’ricle= 1948&C=1814) An mteresting analysis
of hievarchical levels and then mueraction is performed by Fiebleman, J. (1954). Theory of Integrative
Levels. Thz Briash Journal for the Philosophy of Science, 5 (17): 59-66.

There 1s more on sustainability tn Chaprer 7, The Bruntland Commission report gwes a good ingroduc-
tion to the concept: WCED (World Commussion on Environment and Developrent, 1987). Our
Common Future. Oxford University Press. Some of the issues related to hierarchy theory are pre-
sented by von Berralanfy, L. (1950). An Qutline of General System Theory. The British Journal
for the Phiosophy of Science, 1 (2)- 134-165. For more on how sustanabiliey relates to longeuty
and evenmally ~ to hierarchies see: Costanza, R , and Patten, B. {1995). Defining and predicting
sustainabiliy. Ecological Econonucs: 15, 193-196. For an overview of sustamahility, us defintnons,
and how different 1t can be m different hierarchical levels see Voinov, A. (2007). Understandimg and
communicating sustainabilty: global versus regional perspectives. Environ. Dev. and Sustain. (heep:ff
www.springerlink.com/content/e 77377661 p8)2786/). If you want to see how this can be related to
discounang, see Vomov, A. and Farley, ]. (2007). Reconctling Sustainability, Systemns Theory
and Discounting. Ecological Economucs, 63:104—113.

The modeling process 15 very well described by Jakeman, A |.. Letcher R A, and Norton J.P
(2006). Ten 1teratuve steps in development and evaluanion of enviionmental models.
Environmental Modelling and Software- 21( 5): 602-614.

There are quite a few web sites on Systems Thinking. htrp:f/wwiw.thesystemschinker.com/system-
sthinkinglearn heml gwes a good overview of the field. Another good introduction s avadable at
heep://www.thinking.net/Systems_Thinking/Intro _to_ST/intro_to_st.huml

The several classic books that led to many concepts of systems thinking are by |.Forrestec: (1969).
Urban Dynamics. Pegasus Communications, Inc.; (1962) Induserial Dynamics, The ML T, Press
& John Wiley & Sons.; (1973) World Dynamics, Weight-Allen Press; and a general overview in
his 1968 boolc. Principles of Systems, Pegasus Communications.

Another classic 15 the book by Meadows D. H., Randers ]., and Meadows D. 1. (1972). Limits to
Growth, Signet. Its paperback edition was a bestseller at that tme. More recently the topic was revis-
teed in the 2004 edition. Limits to Growth: The 30-Year Update, Chelsea Green, 368 p.
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. The Art of Modeling

Conceptual model
Modeling software
Model formalization

“How to avoid false proof?

Wh =

allow no hasty and predetermined judgment;

. decompose each difficult problem into simple ones that you can resolve;
. always start with simple and clear, and gradually move on to more

complex;

. make complete surveys of all done before and make sure that

nothing is left aside.”
Descartes

SUMMARY

There 15 really a lot of art in bulding a good model. There are no clear rules, only
guidelines for good practice. These are constantly modified when required by the
goals of modeling, the data available, and the particular strengths and weaknesses
of the research team. In many cases it is possible to achieve the same level of success
coming from very different direcrions, choosing different solutions. However, there
are certain steps or stages that are common to most models. It 1s important to under-
stand these and learn to apply them. Any system can be described n the spatial,
temporal and structural context. It is important to be clear about these three dimen-
sions iy any model, to avoid inconsistencies or even errors.

We start with a conceptual model describing the system in general terms, qualita-
tively. If needed, we will then fnd the right quantitative formalizations for the proc-
esses involved. We may apply theorerical knowledge or rely on data from another
similar system o do this, or we can base our searclh on data that are available only
for the particular system we are studying and try to reproduce these in our equations.
As a result, we will ger either process-based or empirical “hlack-box" models. They
both have their strengths and weaknesses.

A brief introduction 1o Srella, a systems dynamics modeling package, is pre-
sented, with step-by-step instructwons for maodel building using this formalism,

29
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It is impartant to have a version of this or other stular software (Madonna, Simile,
Vensim, or the like) and start practicing, since modeling is like playing a plano — it s
hard to learn to do it only by reading books and listening to lectures. You have to get
your hands dirty and do it yourself.

Keywords

Time. space, structure, conceptual models, resolution, Superfund, bwlogical time,
grids, black box models, empirical models, process-based models, Bonnunr's paradox,
systems dynamics, software, Stella, stocks and flows, exponential growth, hmiting
factors, Michaelis-Menten function.

There is no predefined prescription for how to build a good model. It is the model-
building process itself that is most valuable for a better understanding of a system, for
exploring the interactions between system components, and for 1denzifying the pos-
sible effects of various forcing functions upon the system. Once the model has heen
built it is a useful ool to explain the system properties, and in some cases may lead
to new andings about the system, but 1t is clearly the process of modeling that adds
most o our knowledge abour and understanding of the system.

Even though we do not know the ultimate model-making algorithm, we are
aware of some key rules that are always usetul to keep in mind when creating a model.
By adhering o them, a grear deal of frustration and various crises can be avoided. The
list of such rules can be quite long, and varies slightly for every modeler and every
modeled system. Therefore, as in arc in modeling — experience is probably the most
valuable asset, and there 15 no way to avand all errors. We can only ty to decrease
their number.

Conceptual model

In mast cases. the madeling process starts with a conceptual model. A conceprual
model 15 a qualiative description of the system, and a good conceptual model 1s half
the modeling effort. Te create a conceptual model, we need to study the system and
cellect as much information as possible both about the syscem irself and about simi-
lar systems studied elsewhere. When creating a conceptual model, we start with the
goal of the study and then try to explam the system thar we have in terms that weuld
march the goal. In designing the conceprual model, we decide what temporal, spa-
tial and structural reselutions and ranges are needed for our study e reach the goal.
Recipracally, the conceptual model eventually becomes important to refine the goal
of incde! development. In many cases the goal of the study is guite vague, and it s
only after the conceprual model has been created and the available data sers evalu-
ated that the goals of modeling can become clear. Modeling is an essentially iterative
process. We cannot prescribe a sequence of steps that take us to the goal; it is an
adaptive process where the target 15 repeatedly adjusted and moved as we go along,
depending both on our modeling progress and on the external conditions that may
be changing the scope ¢f rhe study. [t s hke shaoring at a moving rarget — we cannot
make the target stop to take a good aim and then stare the process; we need to learn
to readjust, 1o refine our model as we go. Buillding a gocd conceprual model is an
imporrant step on this path.
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it ayitia i

Temporal domain

[ the temporal domain, we fivst igure out the specinc rates (resolution) of the mawin
I . I F

processes that we are o model and decide for how long (range) we want to observe

the system. If we are looking at bacterial processes with micreorganisms developing

and changing the population size wichin hours, it is unlikely that we would want to

track such a sysrem (o1 over a hundred vears. On the other hand, if we are modeling

a forest we can probably ignore the processes that are occurring within zn hour, but
we would want to wateh this system for decades or even centuries.

If there 15 litedle change registered over the study pered, the model may not need
to be dynamic. It may be static and focus on other aspects of the system. For example,
a photo can be a snapshot thar captures the state of the system at a particular moment,
shots can be averaged over a certain time interval. In a way every

or a series of
phote is Lke that,
since  I1r 18 never

really mstantaneous.
Some time needs to
pass  between  the
moment the shur-
ter opens and the
moment it closes. A
picture on a photo
can be just a little
kit blurred, repre-
senting the change
i the system while
the  shutter  was
{J;\)f'.ﬂ, a“{{ we lT'J'(‘lY
net even netice it

it the exposure was

A photo az a snapshot may net be an instantansous

short  enough.  In
some photos where
the expusure was

model. I may actually represent averages over time for
certain sysiem components

not set right this
comes  oul  quite
clearly, and in most cases these photos end up in the trash bin, except when we acru-
ally wanted to see the trajectory of the object while it was moving and intentionally
kept the shutter open for a while. That would he a static rep
system, in a way showing its average stare.

sentation of a dvnamic

It temporal change is impertant, we need to identity how this change occurs. In
reality, thme is continuous. However, in some cases it may be useful to think of time
as being discrete and to descnibe the system using event-based formalism. Or we can
think of change in time as a sequence of snapshots. A zeries of snapshots creates a
better representation of dynamics. That is how a movie is made, when by alternating
many static images we create the feelmg of moving objects,

If a dynanuc approach is selected and warranted to answer the quesrions posed
i the study, we should start thinking about the appropriate resolution of our tempo-
ral model. To have the movie smoothly rolling, we need ro display ar least 16 snap-
shots per second. I this model thar we watch on the screen, the temporal resolution
is then one-sixreenth of a second. This resolution is dicrated by the goal, which is
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Time can be different in gifferant Systems We ate very used 10 the Bme that we e in,
tand to think: thet this is e only Tme hat really mamers, Aceualy. sach JyTem Bohal
nn:prdtnnt:m ST TS Counter, and hurmans repnasent only One Such Tystem with 5 own
_r Everything that happans within the LmEfame of an eerage hurnan Mesgan sedms 1o
Much MGTe Than what happens ovel other penoas of e - whathd oAger Or shorier

- The litaspan of most slementary partcles is less than 1™ s This value is 1oy maan-
Innh_l_tn'q.u‘,ltdn-_u not refste o any processes that we know snd cane 300Ut AL Tha other
axirame, thers are stars with lifespans of W1¥ o more years. Now, thes numbes |8 30 hugs that
w8l CANNOT BEBOCIATE Much with it and think sboul i = iotally abstrect Torms. e seem 10
carg less about systems that evalve in considerabily different imescales Large mamimals lve
far A0 and mohe vaars, and wa card & lot mone abour thiem, hian, 3oy, aboul inaacts, whao iive
fnrtrﬂnwhn Squashing a mosquito is no big deal 10 us, NOr & SIRpPNg 0N an ant

Whils sorme religions, suth a5 Butddham. sre guite concamad Bbog! (e n ganatal and
consider it 8 5in to kil even an insect, they do Not and cannot ca'e Sbout the myriads of bacte-
r1 live around us, the e cycles of whith we puposefuly o iInachernently interfere with,

imagine how many bactara you kill when you lake sntiboncs! Smilarly, our concems
sem to fade when we siar looking at longer Umescalss Mos? pecple cenainly care for Puil

n, perhaps to a large extent betause the children’s bespan overaps cansidarably with
our own, The mare distant The genarstion, 1he less concemed we Seem 1o be sbout them.
Howr Blse would wie axpian owr obSessaon with the ea of sconarmic grimadth which s almaost
ahways associated with futher esoute CONBUMPBON 81 e Bnd and polliybon &t e othar?
There was certsinly & pengd in homan history when sconomic growth cmamg more possibil-
tiea for future generations it jed the growing populavon of people. d heiped to fight disease.
ard it has significanthy decresssd mortaliny. Thers wsad 1 be cleal comaation Berwean the
size of the econcrmy, messuned by, say, the Gross Nabonsl Product IGHP], and ks gapacianty
or guality of lile in gereral Bt @5 thel &8 he Céss. or e o AOw aecRadine (™8 CiTying
capacity and mosthy borroswing fromi the fulure, from o children, grendchildren end future
generations? Clasry, v &ro teking mons mesources Then »& &ns muming back 1o the pocl,
The global footprnt Qoes way' beyond The sog of thes plansl, Dut Bnce we 8ra nal used o
thinking in multole trmescales. v 00 Hol 886M 10 Care DOUT hal We ate Blsady apiNg
the conasequences of senilar thoughtiessness by orevious penerstions. and inveating milliona
and bilions-of dollars to Sean up the mesd that wad el for us by ouF predecsssars.

Dng such exampis 15 the Superfund - an envieonmantal program astablished 1o (ake carm
of the sbandoned hazidous waste 464 1 B M8 the neme of the fund eatablhed by the
Comprehensive Environmental Response. Compensation and Liabiity Act of 1980 (CERCLA).
This law was enactad in e wake of e discovery of rowc weste dumps such g Love Canal
and Times Beach in the 1970s The EPA uses this Act and tha money 10 clean up such sites,
and 10 compel responsdie paMes 10 perfonm clear-upd OF resmburse the governmenl for
EFf-lad clearups. Al this Bma there are some 1,623 Superiund stes. and he numbar o
steadily increesing . Whils the emoumt of monsy that goes imto the fund varies from year 5o
year fin 1995 the program rece~ed $143 billan in approprations. 17 pears (ater i recewed
5125 bilkon], vt pre-sulll taking ebout lons snd billiona ol golisrs. That is the lagaey ol phe-
vicks genergiions. We are abeady § peseraton thet sufters from the: utwise emvironmantal
decsons of our predecessois.

Y=t &t the same Time wa continds o edvocate econamio growth and sre tending 1o leave
avan o probiers, did iewer regiurted Ior gur Bncestors 10 cope with tham intaradinghy,
in some gther cultures, which we may want to call mors “primitive” than Wastern onvilizations,
there used 10 be more wmiasest in long-tarm effects. The Great Lew of the oquois Confedernacy



g g\,-'E'I:EFﬁE Sewnce and Modeling for Ecologcs! !l:uni:'mlEE

“in cur pvery delberaton we must consaer DUl DEC:SionS On the Mt
m—m * Are there any modern mﬁﬁmumwm mod

ﬁ‘ﬂﬁm;mmtmm?
mmtﬁm systems Bme am:i:lnq.m. M#:m;m
ﬁﬂrwm in plants, far exam of :
not matter Plants do not do somathing simpty beceuse |t 8 o'clodk in the marning. what
*WMHNEWnquﬁﬁwdmﬂmmmimﬂﬂm;
=say, 5'C. In such systerns it ® sense fo in termd 3
 sme. alsa called biological time; to figure out grow, s
ﬂu‘#ﬁﬂﬁlmmmnhnnﬁMh‘MH

S| 1L me -8

where 4 is the tempersture on day / hnmmmdm untd there wil be & seres
o wam dava over which ita biological time excesds B cartain value, 1f the sprng fs werm,
iﬂltﬂhﬂ#ﬁw&d’ﬂhhmhnﬂﬂi . Dufing & cold ssfing 1l can take
Mhﬂlh‘hm sctive termpetdture to sccumulate, Temparature in this system
MMMIanm Glearly it is o totally differsnt limescale, in
MWMMmm“lmMMWHMm

Spatal domain

Fop tha st ual Jomricnin, wo aw 0 aiahe s b Jesgsidanes ebonp thy i s al e ol
s m b imstel b eoomgh bl hetevagroesty o die sesiens ooy g
spaily Faipie i bewonpior o sar rthe ggen b dosns e spanially o gene
st bow aheor Tipge sopmeres on wby (horhie simem paiets are wraborme amd cen fle
L BT LT L T M oot NPRrRe | PN PPV (Y T 1-,1-1':I'l"'| |l|l"lll'.r|.h tcaman ool i
mwvile” e log are Berer simguintinco b Aowl Lo Farcbowe need 1o s * ds ol just
thio roees ew b rhar we wara e mesdel m phe wlole eoeer, an et rhe whinde
wareshet W heer L ome raa e Nl 1 P e il e F gy sem

I pistaie o P 20 desibes Swew o bike eomsvnien van bn modeled
miogemr B aeewes lian Pere e lair pants of (o spstenn Lhal moy Ty osadei el
Bemmm sorrer e arkd orprewrmed ey owome averape valoes e geamery o ke Labe i
bew bl abe cererd besper pare aoorsidered 10 ke 4 sEper s SmirRinmERL @ed i
palehissded @ bectr Tha di b Dbl secviieniis we sseaneed o be enioels inmed
el e el e ihe ek desonlwd Gy imie Leper Ao omal wamer eomsiens
tlie swpamaal rerger i @ bwarky debned worhe Labe booeslamies

Tr s cvampaem=w ol e i L, s shoiis hass dimterent part= o e rodin
b arsammernbel 0oer. wt we bere desnibe thiein siilly Facli conmpariient
may I servs o 0 e wed e mades see cowesed oo a saeoeober sy e ol
thie 1 e il amaaererr rhar marter wr ow mew dhom cheir spanal ronkpurmnine, as
wr ewdd e o o s mar b ey P rhar el o dznl mienediaely e criownter
B gwal et A perdpae Wt e bl by the poetlabion ol e I'I'l'.'||."'"..-:.lr| s e ryieye
thie sesbem spotcally woth o nap o a 10 300 200 el v bl m e | B0 Flowe
Lo e e oww e e o che mar ree Jogieced e dhap che com Poler £
ligrfir



1w Arl of Modeling 35

m Corcesteel Model ol 8 sod el e sen aidio ol b lekd Bocbyibam

I myanummme tha fas pas porpee: nl thy ake helawee the thamnchee, 7 metsliomon and 3 epldemmoe

M4 pagp part whm g gho1osymhesas arcory 4§ the e i pringp. shie shg e wstens, thar amn me e e
v | Peam Uibatacea 5. Moty Tha | U SRADE GF [N SHEMATTE D00 RO 1 PRIy SPIEY, BN 8 o B0y [ 54 Ty det
lons quite thfleneer s e feal lake

hinmmmmﬁmmﬂmﬂm that wa can
explore by locking &t bow photos used 1o be formed before the digital eva. We have nated
sbove that bluried images are a result of a moving object projecting over saveral pixaly or
raing on the Sim. Grain size refers fo the site of the siver orystals in the emulsion, Therefore,
with the same amount of light and length of mxposure you will kkely get a sharper Image
M I:l-ﬂin sze = hig enough that the abjgct ¢an travel in space whils still projecting onto

nhpuﬂmhﬂm “Slow” llima requsre much more Bxposee to produce

Jemage than da “fast” films, Fast filma hove larger grains and are thus better suted
hwmarﬂuﬁm shots Iwhere the shor exgosuse time limits e 1ousl bght

hmﬂmhuﬂﬁr graing and better coloe rerdition than fast films. The

- smaller the crystals, the finer the detail in the photo and the siower the fim — 30 the hights
1h| fion, the longes it takes 1o the obyect 1o mprint on the fim, the siower t5e
nH!ﬂMmrgmumm It looks 88 though these @ a certain tradi-of Bgtweon

an festlution in this knd of model. in T case. this is by chami
__nﬁunﬁ:,hﬂrﬂﬁum 4 computer models, you will find similar
rangoments, bul then it will be the computar speed, for example, that will kkely et your
ﬂnmmwﬂwmnumﬂm

1 wesonisraon oo oy conmpoten diplas s 1120 0 Tem poarls Banls el o lames
Erretdeg 1B g e teonhic wiite adoms e woads jevel amt e snape v e aame 0.l
How wdbrms Homeser widy e sl | aan seny csig ¢ e e wripldim s o
are almase ind skt mhable o epal g gt oibs TR oeedly VN ek wd SO0 S

AR paEls el Larae and delale of s oo pm e werr warred s sver aimcr



—acemagne T e T ST ——
Systems Science and Modeling for Ecological Economics

36
11
1
|
1 i | 11
1T am
— e
mE 1
f u

s AL Uniform grid of equal square

= — cells

A watershed is represented by different landuse

g types. The grid simply mimics the raster information

that comes from a landuse map. The cell is given

the attribute of the landuse that covers the largest

1 1 proportion of the area of a cell.

impossible to work with. Agan, depending upon the system specifics and the goal of
our model, we would wanr to use different spatial resolutions.

It 1s not just the size of the grain that is important the form of the grain also
matters. Should we use a gnd of unuform, equal-sized square cells, as we would do on
a rasterized map (Figure 2.3} Or perhaps the cells should not be unifonn, represent-
ing the actual configuration of the ecosystem?! And where do we draw the boundary
in this case — especially if there 15 an exchange of material across the boundary, as
is the case at the outler of a hay? And how small should che cells be (Figure 2.4)?
Perhaps a tiangulated grid would be berrer (Figure 2.5)7 This certainly works bet-
ter if we have non-uniform spatial complexity and need to describe certain sparial
entities in more detail than others. Suppose we model a warershed. It makes sense
to have finer resolunion along rhe river to capture some of the effects of the riparian
zone. On the other hand, vast stretches of forest or agricultural land may be pre-
sented as spatially homogeneous entities — there is no need to subdivide them into
smaller areas. The boundaries may also need a higher resolution. A wiangular grid
serves these purposes really well. Bur then other consideranions also come into play:
What data do we have! How much complexity can we afford with the type of com-
puter that we have at our dwposal? What are the visualization tools thar we have to
make the most of the model results?

Maybe instead of triangles we prefer to use hexagons (Figure 2.6). These can do
a better job describing dispersion, since they measure about the same distance from
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ALY Polygons as spatial compartments.

The area s described by much smaller number of entities. Flows between compartments need special
attention, In most cases they are connected with some other processes, like river flow, for example.

the center to the boundary and they are symmetrical 10 terms of diagonal flows. No
marrer 1 which of the six directions we go, the links with neighboring cells will be
the same. This 15 not so in the case of square cells, if we want them to communicate
with eight surrounding cells, assuming diagonal flows.

Perhaps polygons could be used, as in the case of vector-based Geographic
Information Systems (GIS) such as ArcINFO (Figure 2.7). Here the space is described
by polygons, which are presented in terms of vectors of coonhinates for all vertices of
the polygons. Converting regular continuous geographic maps into vector-hased dig-
ital sets is usually performed in a tedious process of “digitizing," using special equip-
ment thar registers the coordiares of vanious pomts chosen along the boundary, The
more points vou choose to describe the polygon that will approximate the area digi-
tized, the higher the precision of the dhgital image and the closer it is to the onginal,

Polygons are good for map and image processing, since they create a digital
mmage that 1 more accurate with far less information ro store, To achieve the same
accuracy with raster maps, we would need many more cells and therefore much larger
data sets. However, fur purposes of modeling, polygons are quite hard to handle if
vou want to streamline processing. Each polygon is unique, and needs to be spe-
cially defined. If somethung changes — say, land 15 converted from one landuse type
to another — then the model may need to be reinivalized. Triangular grids seem 1o
present a good compromuse, offering greater flexihility: the size of each triangle might
vary, yet it 1s still a triangle, with three boundaries and three vertices, and each can
be handled in @ similar way in the model.

Choosing the nght spatial representation und designing a good spatial grid is a
craft in its own nght. As you have seen, there are eniform and non-uniform grids,
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triangular, hexagonal, square, etc. prids. For a complex model of a large spatial object,
say the Chesapeake Bay or an ocean, the design of a grid can take many months if not
years. There are also software tools that help to design the nght gnd, Model performance
and even results can change substantially when switching from one gnd to another, so
the importance of this step in the model-building process should not be underestimared.

Structural domain

Finally, we decide how ta represent the structure of the system. One important dis-
tinction is between empirical and process-based models {(Figure 2.8). An empinieal
model may he considered as a “black box,” which rakes cerrain inpurs and produces
outputs in response to the inputs, Perhaps hecause we do not know, or do not care,
or cannot afford greater compuning resources or laxer deadlines, we make a deliberare
deciston not to consider what happens and how inside the hlack box that presents
the system. The internal structure in this case 1s not analyzed, and our only goal s
to find the appropriate function o rranslate inputs into outputs. This s usually done
by staustical methods. We have information about the data sets thar describe the
inputs, and we have the dara regarding ourpur values. We then try to represent the
numerical values of outpurs as mathemartical funcrions of mpurts. Below, we will con-
sider an example of how this can be done.

In the case of a process-hased or mechanistic model, we atrempr to look inside
the black box and try to Wdentify sume of the processes thar occur in the system, ana-
lyze them and represent them in a series of equarions. Process-based models employ
the addirional information abour the system thar we may have from previous studies
of analogous systems, or about the individual processes that we are looking at. They
may use certain theoretical knowledge coming from a variety of disciphnes. Tn this
sense, a process-based model may be even more useful than the informaton avail-
able ahout the system studied.

It should be noted, though, that all process-based models are still empirical, in
a sense. We can never describe all the details of all the processes in a system. It is

A

inputs
a, outputs
a, E—
2 —> b,
da
B inputs e
2, —p:l_—l_|~ outputs
P— e
N T | o
84

B IR A Ablack-box model, where the output is calculated as a function of the inputs:
b, = fla,,85,a5,3,), without looking at what s happening inside the system. B. A white-hox model, where the
structure of the system is analyzed and represented in the model.



—— - e ———— — - —_——— - ~ —

The Art of Modeling 41

just that we go mro further depth in the system, providing more detail about the
processes in it. Yet we still end up with cercain black boxes, which we do not wish to
ov cannot consider m any more derail. If that were not the case, we would hardly be
accomplishing the major goal of any modeling effore. which is a simplification of the
system description. We would be ending up with models as complex as the original
systems, and therefore delivering little value for purposes of synthests.

If we choose to build a process-based model, we may start describing the struc-
ture by using a diagram, representing the major components of the system: varables,
forcing functions and control functions.

When deciding on the model strucrure, it is important to match the strucrural
complexity with the goals of the study, the available dara, and the appropriate tempo-
ral and spatial resolution. For example, if we are modeling fish populations (Figure 2.9),
which grow over several vears, there is little use in considering the dynamics of bacre-
nal processes. which have a specific rate of hours. In this case we may consider the
bacterial population to be m equilibrium, quickly adapting to any changes occurring in
the system in “fish tune”, which is weeks or months. We may stll wanr to consider the
bacrerial biomass for mass balance purposes, but in this case 1t makes perfect sense to
aggregate it with the detriral biomass.

However, certain fast processes may have a detnimental effect upon the system.
For example, it s well known char fish kills may occur during night-time and 1n the
early morning hours, when there is still no photosynthesis, but only respiration from
algae in the system. As a result, cthe oxygen content may fall below cerrain threshold
levels. The oxygen concentrations in this case vary from hour to hour, whereas fish

Nutrients (PN} Fertilizers Feed ™

A

Silver Carp

) v
Bighead Carp
R Phytop%.

-

~

Zooplanklon —p Bottom fauna
v T
A A 4
AN Delntus + bacleria

MOnceptual model of a fishpond.

This model is not very detailed. it represents the chosen state variables and some of the forcing functions
{fertilizers, feed). Itis not clear what the other forcing functions involved are, such as environmental, climatic
conditions. There is also no indication of the spatial and temporal scale. Apparently this information is
contained in the narrative about the model that usually goes together with the diagram.
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R DICRIMIN  Conceptuai model of a lake ecosystem structure.

The model structure is different for the different spatial segments used in the model.

bicmass changes mach more slowly. We might want to consider oxygen as part of the
system, to make sure that we do not miss such critical regimes.

In the lake ecosystem model shown in Figure 2.10, in addition to trephic rela-
tions certain spatial properties are present. The diagram shows how the model struc-
ture is presented in the three vertical segments thar describe the pelagic part of
the lake. In the upper parr three phytoplankton groups (AL, AZ, A3) are present;
they are food for zooplankton (Z) and fish (R). Various forms of nutrients {(organic
and wnorganic nitrogen (NOW, NIW?} and phosphorus (POW, PIW) are supplied
by decomposition of detritus (I2). In the bottom segments, there are no biota, only
nutrients (P1S, POS, NOS, NIS} and detritus,

Conceprual models may present more than flows of marerial. Figure 2.11 shows
a diagram used in a simple model developed to analyze susrainable development i a
socio-economic and ecological system. The model will be considered in more detail
in Chaprer 7. Here, note thar, in addition to the variables, the diagram also centamns
information about the processes and their causes. [t describes both the flows of mate-
rial and information in the systen.

When making all these decisions about the model structure, its spatial and tem-
poral resolution, we should always keep in mind rhar the goal of any modeling exer-
cise is to simplify the system, to seek the most inportant drivers and processes. It
the madel becomes too complex to grasp and to study, its utility drops. There is lit-
tle advantage ir substituring one complex system: that we do not understand with
another complex system thar we also do not understand. Even if the madel is simpler
than the onginal system, it is quite useless if it is still too complex to shed new light
on the system and to add to the understanding of it. Even if vou can perform experi-
ments on this model that you might not ke able to do in the real world, is there
much value in that if vou cannot explain vour results, iigure out the causes, and have
any trust in what you are producing!



Tha A mg 43

Bonnini's paradox

I thought that thia was an orlginal way to phrase this: the danger and low wtility of sub-
tituting one complox aysterm with another. But then | lesrned that something simiar has
baan alrendy described by Dutton and Starbuck In 1571 as the “Borninis paradox™

A rriocal @ Bl in grder o schusve undamtinoing of n obsanved cilissl procosE and the
magal (8 stated a8 bemg & smulbion pragram o ode: et the assurrpbons and fno
Honal relations miy be #s complex and reslistic ps possibi. The resulting program pro-
duces autputy resemblng those observad in the road workl snd mepiees confidence that
tha riill COLAT process has been scounely reprosented Howeer Decaune the Bssump-
fens Noaporated in the madel st complar and thes Mubal NWdIpeTINoes Mo
abscure, hrﬁwﬂhmummﬂuﬁﬂﬂwﬂﬂlmm

Starbuck and Dutton, 1871

!
1!
£
E=
.E -]
B oogmed 21
s L AL
X{ ki
Econeemiat > Irrvestmant
deresiapement ‘ S g Ceapn bal
&.,

m [oncepmia =gl o § e seoname; ano gColngya sysrpm Jrsgned m analyss
sustmnghie peysinpraerr See Cngpyer 7 ige mocs Jengies §oger iy miodgs|

b vrg«lEi ;.,_.l oy 1 a arg il g afwres e _‘I. WO | | SRR RTE TR RENEY J TIT § ,||t|...|,\_- E.[..'ni:'q .I-\. i
voo i dmmn it metd s meer praeses Tl owo e orees were deoel e vms (g e
il L=k werr et wbeniny geoes e marenal oeosrerp, whyle rRies wer o -

indiong re Bon weeween them Losng the mamabisng, Forester coemed oomphds



A i L T e e e i T T Y

a4 Systems Science and Modeling for Ecoleogical Economics

> LEVEL

FAUCET D

BATHTUB

- —P material flow

.- = = - = » information flow

Reprodudction Development . 4, [] variable {factor)

l_"_‘Develapment‘ 4 -
Eggs Larvae % Pupae Adults

i .
1l !’
- -

i ° 3

Death Death Death Death

m Forrester's formalism for conceptual diagrams.

The rate and the level are two main icons that can be used to put together more complex diagrams such as the
one for the insect population {from: hitp://www.ento.vt.edu/~sharov/PopEcolilec/struct html).

models for such systems as cities, industries and even the whole world. Similar formal-
ism was later used in several modeling software packages.

Odum created another set of symbols to model systems based on the energy
flows through them. He called them energy diagrams. and used six main icons (see
Figure 2.13}. All systems are described in terms of energy, assuming that for all varia-
bles and processes we can calculate the “embodied™ energy. In this case, energy works
as a general currency to measure all processes and “things.”

In many software packages (like some of those considered in the nex: para-
graph}, conceprual diagrams are used to input the model. For example, one of the
reasons that systems dynamics software such as Stella became so popular in modeling
is that they are also handy tools to put together conceptual diagrams, and, more-
over, these diagrams are then automatically converted into numeric computer mod-
els. Figure 2.14 presents a sample conceptual model tor a river system put together on
the Stella interface. It describes the river nerwork as a combination of subwatersheds,
river reaches and reservoirs. The Stella interface can be used as a drawing buard o
put together varicus conceptual diagrams and discuss them with other people in a
pracess known as partictpatory modeling. In this case, the major value of the interface
is that it 15 possible to easily add or delete variables and processes and immediately
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R SLCEINER  Ogum's formalism for energy-

based conceptual diagrams.

A. Source of energy, B. Sink (loss of energy from
— system}, C. Starage tanlk, 0. Production unit {takes

in energy and information to create other quality of

energyl, E. Consumption unit, F Energy mixer or

r— D
— F work gate.

see the impact on mode! perfarmance. The model self becomes a toal for delibera-
tion and consensus building.

Very similar diagrams can be put together using other systems dynamics soft-
ware, such as Madonna, Vensim, Powersim or Simile. In these software packages,
“stock-and-flow” formalism is used to describe the system. The diagrams are also
known as flow diagrams, because they represent how material flows through the
system.

As we will see below, a somewhat different formalism is used in such packages
as GoldSim, Simulink and Extend. Here we have more flexibilicy in describing whart
we wish to de in the model, and the model dees not present onlv stocks and flows.
Groups of processes can be defined as submodels and encapsulated into special wcons
thar become part of the won set used to put together the diagrams. As usual, we
get more funcrionality and versatility at the expense of a steeper learning curve and
higher complexity of design.

Yet another option in building conceptual diagrams is provided by the Universal
Madeling Language (UML), which is a standardized specification language for object
modeling. Tt is designed as a diagrammaric tool that can be used to build models
as diagrams, which can be then autcmatically converted into a number of object-
oriented languages, such as Java, C++, Pythen, etc. In this case vou are actually
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Figure 2.14 Using Stella to create conceptual diagrams as stock-and-flow representaticns of
processes in systems.

almost writing computer code when developing the conceptual model. Once again,
even more universality and almost infinite flexibilivy is achieved ar the price of vet
greater effore spent in mastering the tool. Figure 2.15 presents a sample conceptual
diagram created in UML ro formulare an agent-based model of a landscape used by
sheep farmers, faresters and National Park rangers, who are interacting on very dif-
ferent remporal and spatial scales with different development objectives {sheep pro-
duction, timber production and nature conservation, respectively).

There are several types of diagrams that can be created using UML. One of them
is the activity diagram, which describes the temporal dimension of your model. The
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RN A UML class diagram of a system can be used both as a conceptual diagram and as a
way to program the model ifrom: http://jasss.soc.surrey.ac.uk/6/2/2.html, reproduced with kind permission of
the Journal of Artificial Societies and Social Simulation, Centre for Research on Social Simulation, Surrey).

class dingram presented in Figure 2,15 in a way corresponds to the structural dimen-
sion, but also has elements of the spatial representation such as that displayed in the
lake model in Figure 2.10. Most software tools designed to create UML diagrams,
such as Visual Paradigm (heep:/fwww visual-paradigm.com/product/vpuml/), also pro-
vide code generaters that will convert your UML diagram mro computer code in a
language of your choice.
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More recently, there have been attempts te standardize the conceprual, diagram-
matic representacion of systems using domain oncologies. A domain ontology repre-
sents a cerrain domain, ccosysterm or parc of an ecosystem by defining the meaning
of vartous terms, or names as they apply to those ecosystems. The 1dea 15 o define all
cthe various components of ecosystems and present their interactions in a hierarchi-
cal way, so that when you need to model some part of the world you can pull out
the appropnate sec of definitions and connections and have your conceprual model.
Several formal languages have been proposed to describe such ontologies. Among
them, OWI. is probably the best known, and is designed o work over the World
Wide Web. [t is yet to be seen how these ontological approaches will be accepred
by the nodeling community. As with ocher actempts to streamline and automare
the modeling process, we may be compromising its mosc essencial part — that is, the
exploration and research of cthe system. s elements and processes, at the level of
detall necded for a particular scudy goal. Any actempe o automace this part of che
modeling process may forfeit the exploratory part of modeling and thus diminsh the
new understanding about the system that the modeling process usually offers.

To conclude...

Conceptual diagrams are powerful modeling tools that help design models and com-
municate them to stakeholders 1 case of a collaboracive, pacticipacory modeling
efforc. In most cases, building a conceptual diagram is che first and very wmportant
step In the modeling process.

“A maxim for the mathematical modeler: start simply and use to the fullest
resources of theory.”

Berlinski

When making decisions regarding a model’s structure, its spattal and tempo-
ral resolution, we should always keep in mind char the goal of any modeling exer-
cise 1s to simplify che syscem and to seek the most important drivers and processes
(Descartes’s second principle). If the model becornes too complex to perceive and to
study, its ucility drops. As stated above, there is little gawn in substicuting one com-
plex system that we do not understand with another complex syscem that we also do
not understand. Even if the model is simpler than the original system, it 1s useless (f
it is still coo complex to shed new light and to add to the understanding of the sys-
tem. So our fist cule is:

KEEP IT SIMPLE

[c is better to start wich a simplified version, even if you know 1¢ 1s unrealistic,
and chen add components o 1. [t helps a loc when you have a model that always
runs and the performance of which you understand. This is much betcer than pucting
together a model that has everything in it 1 satisfy the most general goals and
requirernents. Complex models are hard to handle, they tend to go out of control,
they behave counter-intuitively and produce unreliable and uncertain results. At
every step of model development you should try to have a running and tested ver-
sion of the model, and you can then build more into ir. You will then always know
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at what point the model fails and no longer produces something reasonable, and chus
what kind of recent changes have caused rhe problem. Our second rule is:

KEEP IT RUNNING. KEEP TESTING IT

Everything you know about the system 1s good tor the model. The more you
know abour the system, the berier the model However, that does not mean that
all the available data and informarion from previous or similar studies have to end
up as part of the model. Modcling and dara collection are 1erative processes; one
drives another. You never know which data at what scage of the modeling study will
be required, and how these will modify your interpretation and understanding of the
system. At the same nime, one of the most important values of the modeling effort is
chat 1t brings together all the available informarion about the system in an organized
and structured format. The model then checks that these data are full and consist-
ent. Even if che model turns out to be a failure and does not produce any reliable
predicrions and conclusions, by bringing the data together new understanding s cre-
ared and important gaps in our knowledge may be idenufied. So the third rule is:

THE DATA DRIVETHE MODEL. THE MODEL DRIVES THE DATA

No matter whether the goal of the model is reached or the model fails o produce
rhe expecred results, the modeling effort is always useful. When building a model, a
grear deal of information is brought rogether, new understanding is created, and new
networks and collaborations berween researchers, experimenters, stakeholders, and
decision-makers are emerging. This clearly brings a study to a new level. We chere-
fore conclude thac

THE MODELING PROCESS MAY BE MORE IMPORTANT
THANTHE PRODUCT

Modeling software

There is a lot of software currently available that can help ro build and run madels.
Between the qualitative conceptual model and the computer code, we could place a
variety of sofcware tools that can help to convert conceptual ideas 1nto a running model.
Usually chere 1s a trade-off between universality and user-friendliness. At one extreme
we see computer languages that can be used to translate any concepts and any knowl-
edge into working compurer code, while at the other we find realizations of particu-
lar models thai are good only for the particular systems and conditions that they were
designed for. In between, there is a variety of more or less universal tools (Figure 2.16).
We can distinguish berween modeling languages. which are compurer languages
designed specifically for model development, and extendable modeling systems, which
are modeling packages that allow specific code to he added by the user if che existing
methods are nor sufficient for their purposes. In contrast, there are also modeling sys-
tems, which are completely prepackaged and do not allow any additions to the methods
provided. There (s a remarkable gap between closed and extendable systems in terms of
their user-friendliness. The less power the user has to modify the system, the fancier the
graphic user interface is and the easier it is to learn the system. From modeling systems
we go to extendable models, which are actually individual models that can be adjusted
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Figure 2.16 Hierarchy of modeling software.

for diffetent locations and case studies. In these, the model structure is much less flex-
ible, the user can make choices from a limuced list of options, and « is usually jusc che
parameters and some spatial and temporal characteristics thar can be changed.

Models

Any model we run on a computer comes as a prece of software. Therefore, in some
cases, (0 solve a particular modeling rask we may try to find an appropriate model
that has been developed previously for a similar case, and see 1f this software pack-
age, if available, can be adapted to the needs of your project. This can save you rime
and money; another benefir is that the model may have already heen calibrated in a
vartety of locarions and circumstances, and thus be more easily accepted by a group



of stakeholders. Some models are distributed for a price, while others are available
free of charge. The Register of Ecological Models (REM = hurps/fecoawizum-kassel.
defecobas html) is a mera-darabase for models in ecology. It can be a good starting

pownt 1if you are lonking for a particular model, In some cases vou will he able to
download the executables from the website, in others you will have to contact the
authors. For the vast majority of models the source code s unlikely to be available,
and we can never he sure what actually goes on insule the processor. We can only
look at the vurput and the documentation, run scenaros and analyze trends, but ulti-
martely we have to trust the madel developers that the model is programmed prop-
erly. We also can make no changes to this kind of model.

The fact that models come as software hlack boxes may he anc of the reasons that
model re-use 15 not very common. It may take a long tume to learn and understand
an off-the-shelf model, and it can be guite frustrating if, after this investment of time
and effurt, we ind that the model 15 not quite applicable t our case. It certainly helps
when models are well documented, have pood user guides and tutorials, and come with
nice graphic user interfaces (GULY. Most of the models that are commercially distrib-
uted have very slick GUIs that help set up these tools for particular applications. For
example, the WEAP (Water Evaluation and Planning system — heepe/fwww.weapZ 1.
orgfindex.asp) is a user-friendly software rool that helps with an integrated approach
to water resources plannmg. The core of the model 1s a water balance model that cal-
culates the dynamics of supply and demand in i river system. To set up the model che
user is guided through o series of screens, which stare with a river schemaric thar can
be arranged on top of an ArcView map, and then takes care of dara inpur wich a series
of dialogue boxes for water use, loss and re-use, demand management, priorities, erc.
The results are then displayed in the same GUI in charts and tables, and on the sche-
matic of the river system. Scenarios that describe different demand and supply meas-
ures are driving the svstem, and are connected with the various results.

These user nterfaces certainly help with using the models; however, extending
the model capabilities is not a straighttorward ask, if icis possible ac all. In particular
when models are not open source, it is usually an “all or nothing” deal - vou erther
use the model as it is, or drop w entirely if it does not have some of the features
needed for your study.

Some models are deliberarely desighed as games, with special emphasis put on
the graphic interface and ease of use. One good example 15 the SimCity computer
game, which has a sophisticated socio-economic and ecological model at its core, but
ni one other rhan the model developers has ever seen this model and users do not
know whether the model was calibrated or valulated. The purpose here 15 tw enhance
the interactive utility of the program, to maximize its user-friendliness and simplify
the learning process.

Extendable models

Some models and modeling systems are designed in such a way that they allow addi-
tions to their strocture. For example, QASIS {Operational Analysis and Simularion
of Ilntegrated Systems) is a software package designed to model river, reservoir and
hydropower systems o develop operating policies and optimize water vse, QASIS
has a graphical user interface that allows easy confipuration of the systent. You can
describe Low the niver system looks, locare the inpurs and wichdrawals, and enter
historical Jdata sets that the system is to work wieh. In addition, there is an Operation
Control Language (OCL) — a special language used to enter rules and constramrs that
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arc specific for your case study. OCL also acts as a bridge from OASIS to other com-
puter programs. Users can express all operating rules as operating goals or operating
constraints, and can account for both human control and physical constraints on the
system. Thus takes care of all sorts of “if~then” operations, which can go beyond just
operational rules. To model any system, the problem must simply be approached as
a set of goals and constraints. The software then works out the best means of mov-
ing water through the system to meet these goals and constraints. OCL allows data
to be sent and received between OASIS and other programs while the programs are
running, and each program can then react to the information provided by the other.
Thus you are dealing with a prefabricated “closed” system, vet have some flexihility
to modify 1t to the particular needs of a study. There is clearly more flexibility than
in case of a pre-packaged model; however, the user 15 still operating within the ser of
assumptions and formalizations embedded in the model core of the software. There
are also limitations to what QCL can handle as extensions to the QASIS system.

Modeling systems

Unlike pre-fabricared models, which are after all developed for specific systems, there
are also generie software tools that can help to bulld models of any systems. These are
probably most interesting to consider when a new modeling task is in order. However,
the more versatile and powertul the system gers, the harder it becomes to master it
and the more inclined modelers will be to stick to whar they already know how to use -
the well-known "hammer-and-nail” paradox, which we will revisic in Chaprer 9.

Here, we will give a brief overview of some sofrware tools that are available for
modeling, along with some recommendations about their applicability. It should
ke noted thar there 1s a great Jeal of development in progress, and new features are
being added 10 the software packages quite rapidly, so it 15 always recommended that
vou check out the latest developments on the respecrive web pages. Note that nei-
ther of these roals implies any kind of care model; they can be used o put together
any models, However, each one assumes a particular modeling paradigm and there-
fore has certain linitanons,

Systems dynamics tools

Most of these appeared as an cutgrowth of the systems dynamics approach of Jay
Forrester and his DYNAMO language. Stella was inspired by Forrester's formalism,
and quickly gained worldwide recognition. In the following years a number of other
software packages huve appeared thar are better than Stella i many aspects, and are
certainly worth invesnigating and comparing prior to any purchase decisions,

STELLA — isee systems (formerly HPS), http://www.iseesystems.com/ - Free Player
and 1-maonth trial version - Mac/Win

Most used in academia, and has much legacy code developed. Over the past decade has been heavily pri-
aritizing the User Interface features with nice capabilities to create game-like models, where the modeling
part can be hidden from the user and only the front-end, which is similar to a Flight Simulator dashboard, is
provided, Recent addition of isee NET Framework promises more integration with other tools, but is not exten-
sively used and tested yet.
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Vensim -Ventana Systems, http://www.vensim.com/ - Free Vensim PLE (personal
learning edition) - Mac/Win

Same basic features for stock-and-flow modeling as Stella, with recent addition of some important function-
ality, such as calibration {will automatically adjust parameters to get the best match between model behav-
ior and the datal, optimization {efficient Powell hill-climbing algorithm searches through the parameter space
looking for the largest cumulative pay-off), Kalman filter, Monte Carlo analysis, Causal Tracing {a tree diagram
shows a selected variable and the variables that "cause” it ta changel, etc. Vensim DLL is a way to commu-
nicate with other applications such as Visual Basic, C, C++, Excel, multimedia authoring tools, etc. The DLL
allows access to a Vensim model from custom-built applicatians; it can send data to Vensim, simulate &8 model,
make changes to model parameters, and collect the simulation data for display.

PoweRrsivi - Powersim, http://www.powersim.com/ - Free Player and trial version,
Win

This modeling toal has mostly been catering for the business community. Communicates with MS Excel, Powersim
Solver is a companion product that handles calibration, optimization, risk analysis and risk management

Maoonna — UC Berkeley, http://www.berkeleymadonna.com/ - Free RunTime
version, Win/Mac

Runs many times faster than Stella. Will do parameter calibration [curve fitting), and optimization. Has several
more numeric methods to solve ardinary differential equations. Stella compatible: will take Stella equations
almost as is and work with them.

MopeLMakerd - Exeter Software (formerly Cherwell), http:/iwww.exetersoftware.
com/cat/modelmaker.htm! — No free versions, Win

Same as the others in this category, plus quite extensive optimization and numeric methods, including
Marquarct or Simplex methods, simulated anrealing and grid search methods of initial parameter estimation;
ordinary, weighted, and extended least squares methods of error scaling; comprehensive statistical report-
ing; Monte Carlo global sensitivity with 14 distribution types, 5 different integration methods - Runge-Kutta,
Mid-Point, Euler, Bulirsch-Stoer and Gear. Gear’s is an appropriate solver for stiff simulations where processes
happen on very different timescales.

SIMILE - Simulistics (formerly open-source AME, Agroforestry Modelling
Environment)}, http:/Avww.simulistics.com/ — Free Evaluation Edition, Mac/Win/Linux

Allows object-based representation that handles disaggregation and wdividual-based modeling, auto-
generales C++ model code, plug-and-play modules. Supports modular modeling: any part of a madel can be
extracted and used separatefy. Has plug-in displays, allowing field-specific graphics. Also has optians for spa-
tial models with scme basiclinks te GIS.
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The basic mathematical formalism and the interface conventions used in all these
packages are quite similar, so once you have mastered one of them 1t should be quite
easy to switch ro another if you are looking for certain special features.

Pros: The development of all this modeling software has certainly simplified the
process of building models. to the extent thar programming s no longer needed
to put rogether models, and only very basic numenc and mathemarical skills are
required. Systems dynamics has become widely used in a variety of applications.

Cons: There is also a reverse side to 1. Most of the software developers advertising
their products will tell you thar building a model is now as simple as clicking your
mouse. Unfortunately this is srill not quire so, and can hardly ever be so, since modeling
is primarily a research process that requires knowledge and understanding of the system
to generate more knowledge and more understanding. By simply putting together dia-
grams and pretending thar now you can run a model of your system, you may gener-
ate false knowledge and llusions. The modeling systems are indeed very helpful if you
know how to build madels; orherwise, they can become deceprive distractions.

Systems diagrams

An outgrowth of the systems dynamics approach is what we called systems diagrams
tools. The software discussed here has many mote icons than the stocks, flows and
parameters that the systemns dynamics tool operates with. Whole submodels or solv-
ers for mathematical equanions, say, partial differential equations, may be embed-
ded into specially designed icons that later on become parrt of the roolbox for furure
apphcations. Once again we ger more functwnality and flexibility, but cerranly at
the expense of a much steeper learning curve.

ExTEND — Imagine-That, http://www.imaginethatinc.com/index.html - Free Demo,
Win/Mac

As follows from the name of the product, the system is extendable. It encourages modularity, providing
the functionality to encapsulate certain processes and subsystems into blocks that can be further reused.
Extend models are constructed with library-based iconic blocks. Each block describes a calculation or a step
in a process. Interprocess communication allows two applications to communicate and share data with one
anather. This feature allows the integration of external data and applications into and out of Extend models.
Information is automatically updated between Extend and Excel, can be connected with databases (Open
DataBase Connectivity), has embedded ActiveX or OLE {Ohject Linking and Embedding), and works with DLL
(Dynamic-Link Library). Block-building is based on ModL - a language that provides high-level functions and
features while having a familiar look and feel for users with experience programming in C. Also allows script-
Ing ta develop “wizards” or self-madifying models. Evolutionary Optimizer employs powerful enhanced evolu-
tionary algorithms 10 determine the best model canfiguration.

GoLbSim - GoldSim Technology Group, http://www.goldsim.com — Free Evaluation
and Student version, Win

Uses the same approach based on an extendable library of icons (“hierarchical containers”) for a variety of
processes. The user controls the sequence af events, and can superimpose the occurrence and consequences



The Art of Modeling 55

of discrete events onto continuously varying systems Dther features include particularly strong stochastic,
Monte Carlo simulation component to treat uncertainty and risks inherent in all complex sysiems, embedded
optimization, sensitivity analyses (e.q. 1arnado charts, statistical measures); external dynamic finks to programs
and spreadsheets, and direct exchange of data with ODBC-compliant databases. Models can be saved as
player files. There are several extension modules le.qg. for Contaminant Transport using solvers for PDE, finan-
cial analyss, etc.).

SimvuLink — The Mathworks, http://'www.mathworks.com/products/simulink/index.
html - Free trial and web demo, Win/Mac/UNIX

Built on top of MATLAB {see below). Provides an interactive graphical environment and a customizable set
of block libraries, which can be extended for specialized applications. More power, but harder to master. Can
generate C code for your models, which can be further embedded into other applications. Based on the same
concept of expandable libraries of predefined blocks, with an interactive graphical editor for assembling and
managing block diagrams, with functionality to interface with other simulation programs and incorporate
hand-written code, including MATLAB algorithms. Has full access to MATLAB for analyzing and visualizing
data, developing graphical user interfaces, and creating model data and parameters.

Pros: Power, versatility, fiexibility, expandahility,

Cons: In a way the pros become rtheir cons, since after investing much time to fully
master these systems it is most likely that they will become your “hammer” for the
future. Besides, when hecommyg wedded to proprietary software there is always a risk
of running into limitations that will be hard to evercome.

Modeling languages, libraries and
environments

Compilations of model languages, libraries appropriate to specihc applications, and
software environments are even more general, rely less on some embedided assump-
tions about the model structure and the logic of compurtations, bur require more pro-
gramming efforts,

Spreadsheets

The well-known spreadsheets are probably the most widely known software apph-
catiens that can also help build quire sophusticated mmodels. Microsoft Excel is hy
far the best-known and widely used spreadsheet. However, there is also Lotus 123,
which acrually pioneered the spreadsheer concept and is now owned by 1BM, or
the open-source Open-Office suite. Both offer very similar functionality. The other
aption 15 o use Google spreadsheers, which are found on the web and can be shared
among several developers, who can then access and update the document from any-
where around the world using just an Internet browser.

The basic funcuonality that comes with spreadsheets is that formulas can be
programmed using some very simple conventions. For dynamic models these formu-
las can be reiterated, using a TIME column, and using the results of previous calcula-
tions {rows) to generate the values for the next time step.
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Pros: These tools are free or almost free, since they come as part of Microsoft Office,
which is more or less standard these days, or can be downloaded as part of Open-
Office, or can be used over the Internet with Google. Another advantage 1s that
many users already know how to use therm.

Cons: Spreadsheets can quickly get very cumbersome as model complexirty increases,
especially if you are trying to add dynamics to 1t. There is no good GUI for modeling,
so models may be hard to present and visualize. Only the simplest numeric methods
can feasibly be implemented (say. Euler for ODE).

Mathematical solvers

There are several specialized marhematical packages designed to help solve marh-
emarnical problems. As such they can be useful for modeling, since, after all, mod-
els are mathemanical entities which need o be solved. These packages are not very
helpful 1n formulating models. In this regard chey are as universal as spreadsheecs,
but unlike spreadsheets, which are quite well known and intuicive to use, the math-
ematical packages have a steep learning curve and require learning specialized pro-
gramming languages. On the benefic side, the computing power and versatilicy of
mathematical methods is unsurpassed.

MATLAB -The MathWorks, http://www.mathworks.com/products/matlab/ — Free
trial version, Mac/Win/Unix

This is a high-level technical computing language and interactive environment tar algarithm development, data
visuahzation, data analysis and numenc computation. Itis faster ta master MATLAB than C ar Fortran, but it cer-
tainly requires a major investment of time. Includes mathematical functions for linear algebra, statistics, Fourier
analysis, filtering, optimization {including genetic algorithms), and numerical integration; 2D and 3D graphics
functions for visualizing data; tools for bullding custom graphical user interfaces; and functions far integrating
with external apphcations and languages, such as C, C++, Fortran, Java, COM, and Microsoft Excel. May be
a great tool to analyze models, but offers little help in canceptualizng and building them. There are sister prod-
ucts, such as Simulink {see abave) ar Simscape that are designed ta handle the modeling process.

MaTHemaTica —Wolfram Research, http://www.wolfram.com/products/
mathematica/index.html - Free web seminars and demos, Mac/Win/Linux/Unix

The software integrates numeric and, importantly, symbolic computations. It prowides automation in algorith-
mic camputation, interactive document capabilities, powerful connectivity, and rich graphical interfaces in 2D
and 3D. It is based on its own advanced programming language, and it needs time and effort 1o master this.
Has no specific tools to support modeling per se, but can be very useful to solve, run and analyze already
built madels. Can be very useful to study individual functions that are used in your model — for example, to test
how parameters impact the functional response (see, for example, http//www.wolfram.com/products/
mathematica/newinb/content/Dynamicinteractity/FindSampleCodelnTheWolframDemonstrationsProject.htmll.

Pros: Mathematical power that is hard to match.

Cons: Steep learning curve, requires a solid mathemarical background.
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Environments

Llp ro 80 percent of a modeling code may support various input/output functionality
and interfaces with dara and other programs. It makes perfect sense to butld software
packages that would take care of these data-sharing and communication procedures,
so that modelers can focus on the actual formalization of processes and systerms.
There are numerous modelmg environments develaped to support modeling and to
increase model funcrionality,

OrenMI - OpenMI Association, http://www.openmi.org/openminew/ — Open
source, platform-independent

OpenM| stands for Open Modeling Interface and Environment, a standard for model linkage in the water
domain. OpenMI avoids the need to ebandon or rewrite existing applications. Making a new component
OpenMI-compliant simplifies the process of integrating it with many other systems. [t provides a method to
link models, both legacy code and new ones. OpenM| standardizes the way data transfer is specified and
executed. it allows any model to talk to any other model (e.g. from a different developer| without the need for
cooperation between model developers or close communication befween integrators and model developers.
Based on Java and NET technology, currently OpenMI has some 20+ comphant models in its library.

SME - UVM, http://’www.uvm.edu/giee/IDEAS/Imf.htm| — Open source,
Mac/Linux/Unix

The Spatial Modeling Environment iSME} links Stella with advanced computing resources. It allows modelers
to develop simulations in the Stella user-friendly, graphical nterlace, and then take equations from several
Stella models and automatically generate C++ code to construct modular spatial simulations and enable dis-
tributed processing over a network of parallel and serial computers. It can work with several GIS formats, and
also provides a Java viewserver to present results of spatial simulations in a vanety of graphic farmats,

SAMT - ZALF, http://www.zalf.de/home_samt-Isa/ — Open source, Linux

Spatial Analysis Modeling Tool (SAMT) is a modeling system with some GIS features, designed to help with
spatial analysis. It is an open system that links to different models lespecially fuzzy-models, neural networks,
etc ). I1 can also link to a general-purpose modeling language DESIRE.

Pros: Added functionality ro other models and modeling tools.

Cons: Hardly any, since modeling environments mostly serve other modeling para-
digms rather than imposing any of their own upon the user. In most cases, it is the
next level of modeling that may require quite good modeling and systemic skills.
Usually, user and developer groups are quite limited and are very much driven by
enthusiasm. Therefore, future developruent and support may be quite uncerrain.

Agent-based tools

Agent-based modeling requires more comphcated formalism to describe the behav-
ior and dynamics of individual agents and their spatial distribution and behavior.,
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Perhaps for this reason there are no "drag-and-drop” and “click-and-run” software
packages available so far. All software tools in this area are designed around some
programming language. It can he cither versions of high-end full-flledged program-
ming languages such as C++ or Java, or a simplified lanpuage such as Logo. However,
it still requires some programming to get the model to run. All packages have links
to GIS dara, though some make a special effort to emphasie that This connection
usually goes in one direction, and s provided by routines that import data from raster
G1S (ArcView, ArcGlS) and make it available for the modeling rools.

Swarm - Swarm Development Group, http://www.swarm.org/wiki/Swarm_main_
page — Open source, any platform

This is a collection of softwarte libraries, written in Qbjective C, ariginally developed at the Santa Fe Institute
and since then taken up as an open-source project with developers all over the world. Swarm is a software
package for multi-agent simulation of complex systems. It is specifically geared toward the simulation of
agent-based models compased of large numbers of objects. EcoSwarm is an extension library of code that
can be used for individuai-based ecological models (http/Awww humboldt edu/~ecomodel/index.htmi

ReprasT - ROAD (Repast Organization for Architecture and Development), http://
repast.sourceforge.net/ — Open source, any platform

Repast {REcursive Porous Agent Simulation Toolkit} is an agent-based simulation toolkit originally developed
by researchers at the University of Chicago and the Argonne National Laboratory. Repast borrows many con-
cepts from the Swarm toolkit. It is different in its muluple pure implementations in several languages (Java, C#,
Net, Python} and its built-in adaptive features, such as genetic algarithms and regression. Includes hbraries
for genetic algorithms, neural networks, random number generation, and specialized mathematics, has built-in
systems dynamics modeling capabilities, has integrated geagraphical information systems {GIS) support.

MASON - George Mason University, http://cs.gmu.edu/~eclab/projects/mason/ —
Open source, any platform

MASON Stands for Mulu-Agent Simulator Of Neighborhoods ... or Networks ... or something ... the develop-
ers are not sure. [t contains both a Java model library and an optional suite of visualization tools in 2D and 30.
It can represent continyous, discrete or hexagonal 20, 30 ar Network data, and any combination of these.
Provided visualization tools can display these environments in 2D or in 30, scaling, scrolling or rotating them
as needed Documentation is limited.

Cormas - Cirad, http:/icormas.cirad.fr/iindexeng.htm - Freeware

Programming environment to model mult-agent systems, with focus on natural-resources management. It is
based on VisualWorks, a programming environment which allows the development of applications in SmallTalk
programming language and is freely available from a third-party website.
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OrpenSTARLOGO ~ MIT, http:/feducation.mit.edu/starlogo/ — Open source,
Mac/Win

A programmable modeling environment for exploring the behaviors of decentralized systems, such as bird
ilocks, tratfic jams and ant colonies, and designed especially for use by students. Itis an extensicn of the Logo
pragramming language, which allows contral over thousands of graphic individuals called "turtles” in parallel,
Comes with a nice interface, making it user-friendly and ready to use. Some basics of the Loge language are
simple to learn, and users can start modeling ir less than an hour.

NEeTl.oco - Uri Wilensky (Northwestern University), http://ccl.northwestern.edu/
netlogo/ - Freeware, Mac/Win/Linux

Netlogo, a descendant of StarLogo, 1s a multi-platiorm general-purpose complexity modeling and simulation
enviranment. The design is similar to StarLogo; it also has a user-interface. It is written in Java and mcludes
APIls so thatit can be controlled from external Java code, and users can write new commands and reponers
in Java. It comes with hundreds cf sample models and code examples that help beginners to get started. It is
very well documented, and also has a systems dynamics component.

Pros: These systems offer perhaps the only possible way to identify emergent proper-
ties that come from interaction between agents. Most of the applications are open
source, which creares infinite possibihities for linkages, extensions, and improvements.

Cons: Require programming skills, therefore may take a considerable rime to learn,

Wrap-up of software

[t should be noted that there are hundreds and mavbe thousands ot software pack-
ages thar can be related to madeling, and by no means can we overview even a small
fraction of them. My goal here was to look ar some representative examples and try
to put them in some order. Clearly, for heginners, espectally those with no or few
quantitative and programmimg skills, it makes more sense to start at the easier end of
the spectrum and explore some of the existing models or modeling systems. They will
take care of much of the tedwus model organization and make sure that the model
is consistent, they may help wich unit conversions and logic of computations, and
they will immeduately offer some numenc methods to run a simulation. In some cases
they may actually work as is, "off-the-shelf,” for some applications that are repeated
frequently for similar systems. As tasks become more complex, there will probably
be the need 1o move higher up the diagram in Figure 2.16, and explore some of the
muore sophisticated madelig tools and methods.

Mast of the software tools, Like living organisms, go through life stages: atter they
are born, they develop, reach macurity, and then sometimes dechne and die. It is hard
to predict what the future of many of these products will be, especially when they are
corporately owned and depend upon the dyramics of world markers. In this regard,
well-developed open-source produces promise more continuity, but even they can
fade away or be replaced with something better. This is what we are now seeing with
Swarm, which tends to murph inte ather produces, such as Repast. Similarly, SME
has been hardly developing over the past few vears. In the proprietary world, there
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does not seem to be much progress in the ModelMaker development. Simuilarly, Srella
seems to be relying on 1ts previous success and has not shown much improvement over
the past several years. There are also the models that are offered by federal agencies,
which are free to download and use, but for which the source code 1s closed and gro-
prietary. Except for the price factor, there is no big difference between these and the
closed commercial products; in both cages users have very lictle to say about the future
development of the software and entirely depend on some obscure decision-making
process and funding mechanism, either 10 cthe corporate world or by the government.

The botrom line 1s that we need to keep a close eye on all these systems, and
he flexible enough to migrate from one to another. The “hammer—natl” syndrome
should be avoided. No modeling software 15 universal; there are always systems that
could be better modeled using a different formalism and differenc mathematics and
software. If you confine yourself to only one modeling system, you may start to cthink
thac modeling is only what the software is offering. In reality, there are numerous dif-
ferent approaches, and all of them may be worth considering when deciding how to
model the system of interest.

Models budr vsing open-source software are most desirable, since they can be
modified to meet particular needs of various applications. Moreover, they can be tested
and fAxed if errors are found. While commercial proprietary software comes as closed
“black boxes”, where you can never be sure what’s inside, open-source models are
open, and the source code can be viewed and modified. On the other hand, commer-
cial products tend to be better documented and supported. One rule of thumb 1s that if
a project has involved a great deal of brainpower and enthusiasm, go for open source;
if chere is good funding for the project, go for commercial products.

Modeling is iterative and interactive. The goal is frequently modificd while the
project evolves. [t 1s much more a process than a product. It becomes harder 1o agree
on the desired outcomes and the features of the product. This certainly does not help
when choosing the right software package to support modeling efforts. There is also a
big difference between software development and modeling, and software engineers
and modelers may have differenc artitudes regarding software development. For a
software engineer, the exponennal growth of computer performance offers unlimited
resources for the development of new modeling systems. Models are viewed by soft-
ware engineers merely as preces of software that can be built from blocks or objects,
almost automatically, and then connecred, perhaps even over the web, and distrib-
uced over a network of computers. It (s stmply a matcer of choosing the right archi-
tecture and writing the appropriate code — the code is either correct or not; either
¢ works or crashes. Not so with a research model. Instead, scientists would say thac
a model is useful only as an eloquent simplification of reality, and needs profound
understanding of the system to be builc. A model should tell more about the system
than simply the data available. Even the best model can be wrong, and yet stll quite
useful if it enhances our understanding of the system. Moreaver, it often takes a long
ume to develop and test a scientific model.

As a result of this difference in point of view and approach, we tend to see
much more rapid development of new languages, software development tools, and
code- and information-sharing approaches among software engineers. In some cases,
new software packages appear faster than their user community develops. In contrast,
we see relatively slow adoption of these tools and approaches by the research mod-
eling community. The applied modeling community, driven by strict deadlines and
product-oriented, may be even more reluctant to explore new and untested tools,
especially since such exploration always requires additional investment for acquisition,
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installation and learming. The proliferation of madeling software, as in the case of sys-
tems dynamics modeling tools, may even be considered an inpediment, since 1f there
were only one or two modeling tools generally accepted by all then these could he
used as a common modeling platform, as a communication tool e share and distrib-
ute models With so many different clones of the same basic approach we get a whole
variety of dialecrs. using which it may be harder to find common greund.

In this book we will mostly be using Srella for our demonstrations. Srella's suc-
cess 1s largely due to its user-friendly graphic nterface (GUL) and a fairly wise mar-
kering program that mostly targets students and univeraty professors. Stella helps to
illustrare a lot of modeling conceprs. [ do not intend o endorse or promore Stella in
any way; it 15 no berrer than the other soltware packages available. [t is just a marrer
of my personal experience and the legacy code thar s available. Therefore, you will
need ro ger at least a rrial or Player version of Srella to be able ro do rhe exercises
and study the models that are presented in this book and can be downloaded from
the hook websire. Doing this i alternative packages s an option that s only encour-
aged. Some systems dynamics tools described above offer tools to read and run Srella
models, For example, Maconna will rake Srella equations and, with some minumal
tweaking, will run them - acrually many times faster — and offer some additional
exciting features. We will see how this works in Chaprer 4.

The basic marhematical formalism and the interface conventions used 1n all
these packages are quite similar — so once you have mastered one of them, it should be
quite easy te switch o another if vou are looking for certain special fearures [f you are
unfamiliar with Stella, some limired instrucnions are available below. As mentioned
above, the GUI in Stella is extremely user-friendly and the learning curve ss gradual,
so it should not take long for you to be able to use it for the purposes of this course,

A very quick introduction to Stella and the like

Before you start learning Stella or some of the other modeling packages described above,
please ensure that you realize there are different modeling paradigms used in these packages
and in certan respects this makes it hard to compare them. In this book we are mostly studying
dynamic models, 50 we will be locking for software that can help us with this kind of modeling.
The dynamic feature means that the systern that we study changes over ume and that there
are vanables that evolve, This also means that there are certain imitaticns and certain conven-
uons. There are systems that are not very well suited to mode ing with Stella and the ke If
we simply want 1o use Stella for certain calculations we may probably dc it. but this may not
be the best way 10 go — using, say, Excel may be much simpler Fcr example, certain standard
econocmic systems, which are usually formulated in terms cf scme equilibrium state, may be
hard 1c define in Stella, unless we move away from the equiibnum and consider the tfransiticn
processes as well. Stella has very hmited capabilities for statistical analysis 't a simple empincal
model is all you need, you may be better off with a statisucal software package, which would
also be much better for analyzing uncertainty and generating mecre sophisticated staustcs

Keep in mind that Stella and seme other dynamic modeling packages assume the
sc-called "stock-and-flow"” formalism, where the system is to be described in terms cf res-
ervoirs, called stocks, which are connacted with pipes that carry Hows Siccks are therefore
always measured in terms of certain guantities of material, energy, bicmass, population
numbers, ete, while flows are always rates of material transferred per unit of time, or
energy passed per unit cf 1ime, etc So when using Stella we start with identifying the state
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variables, which will be called stocks, and then figunng out what makes these variables
increase (because there are Hows of matenal or energy coming inl, or decrease (because
there are flows that go outl While all sorts of formulas can be used to define the flows, the
stocks can be changed only by the flows; they cannot e calculated in any other way.

Stella coens with a graphic menu that contains & number of icons.

—— STELLA® Research50—— ———— IE
o#e |- IEJIE’TAI

The first four are the man building blocks for your model Figure 2 17 describes what
they are

The recliangles are to represent the
state vanables, which are also
called “Stocks” in Stella. They are
T 1\ to descrbe tne elements in your

S VARIABLE

system. These are the quantities
that change in the system thal you
Paramaiers, analyze and which you report as S

State suxiliary Its of th odeli
Geitables wosiables results of the modeling exercise.
For each of the siate variabie a
differential (difference) equalion
(see Chapter 3) will be created in
Stella.

Conneciors

_(Ellw

Flows

The flows represent Ihe processes N 9
in which materials {or quantities) (L

are taken from cne slate variable FLOW

and added to another. The cloud is
used to show that material is
exchanged with the oulside of the
system.

Circles represent parameters or
auxiliary variables (also called
“Converters” in Stella. These are all Q
the quantities that are either PAFAM
constant in the model or will be
calculated based on the values of
the state vanables.

Lines with arrows are to show what @%}@

depends upon what. They are 10
feed the value from one Stella con ;
: FLOW
into another. They cannol move il ‘j

material or guantilies; they only e
convey information.

FAaHAM

EETICRIARA  Main building blocks in Stella. Note that thay are the same in Madonna, Simile
and others.
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To bulld @ model using these tools, first click on the State vanable icon and then somewhare
in the window, where this vanable will be located on the diagram. The variable appears with a
"Nename” name. Clck on this tifle and type the name that you want this vanable to have.

O==—— == STELLA® Research 5.0 == — B
SEEREEEEFRERENE - NEE
% SYARIABLE

MNext, click on the Flow icon and cheose where you want to draw the flow that will go inte or
from the state vanzable. Then hold on the mouse tutton and drag the cursor from where the
flow slarls to where it goss. If you want a state vanable 1o recewve a flow or 10 be dramed by
a flow, make sure that the State vanable icon 15 highlighted as you put the cursor on top of
it. If 1t does, then it will be attached 10 the flow, if it does not, then it wili not be associated
with the flow — and this might create a preblem in the future if you do not notice that there is
a cloud placed somewhere on top of your State variable or right next to . You will ke thinking
that the flow s there, while in reality it is not.

As you drag the flow from one element to ancther, you can make it angle if you nit the
Shift key. This is useful to keep the diagram tidy and clear. Then give a name to the "Noname”
flowe similarly to the above.

[ =—————————————=CSTFLLA® Research5.0=————————FH B

O=[C[+] _[oEal [ [m=[A] E\[FIE]

S vARIAELE
=

5
v -
ba=——F—)
g O
L
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You miay now need to add an auxiliary variable. In a similar way to above, choose the circle
icon and place it scmewhere on your disgram. Give it a name. If you click and hold an any
ol the names ¢l the elements in the diagram, you can drag the name around the icon that it
belongs to. This is useful to keep your diagram tidy.
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Finally, use the conneclor arrows 1o link variables, flows and state wvariables. Just as with
flows, after choosing the connector icen vou click the mouse on the crigin of informaticn and
then drag the arrow 10 connect it with the recipient of tha information

By drawing this diagram, you have slready formulated one differential {or rather differ
ence} equation that will go inte your model.

S_VARIABLEN) = S_VARIABLE(t — dt) + FLOW* ot
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Next, vou need to specify the actual size of FLOW and the initial condition for S_VARIABLE.
Before you go any further, switch the model from the so-called "Mapping Mode” 1o the
"Modeling Mode.” To do this, click on the button on the lefi-hand side that shows the globe
You may natice that " 7" will appear on all elements in the diagram that need further definition
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If you double ¢hck on the parameter icon, this dialogue window appears:

) PARALE
& Standard ) Summer
[ Array
Required inputs | BEO0E

O PARAM = .
{ Prace right hano side of eguation here..)

[ “Become Graph | Document || Message_. || Cancel | oK |

Even though it requires 1hat you "place the right-hand side of equation here" in reality all you

need 1o do s give the value tor the parameter that you want 10 use in your model Suppose

the rate you want to use i1s 0.01. Simply type that value Iin instead of the highlighted words, and

click on the “"OK™ button [or hit the “Enter” key) Il for same reason you prefer only 10 chick,

you can also use the numerical pad offered in the dialogue box. You can also use some arith-

metic expressions, ke 1/100, or choose seme of the built-n functions that are histed 1ere,
Next we double click on the fiow icon and open this dialogue box.

= FLOW O '::3
® UNIFLOW () BIFLOW
Upit conversion

Regquired Inputs FE A [Builtins
] S_VARIABLE = @EEE [ass

O PARAM (H5)8)(] |ano
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( 2] ARRAYSUM

seflows=
{ Place right hand side of equation here..}

[ Become Graph | [  Dacument || Message.. || Cancel |[ oK |
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Now indeed you are to "place the nght-hand side of equation here” The required inputs are
isted above, and if you click on any of them they will be copied :nto the equatic field. Here,
describe the flow as a product of the available stock in 5_VARIABLE. and the rate coefiicient
thal has already been specified in PARAMETES: PARAMETER®S_VARIABLE goes into the
equanon field

Chck "QK" and similarly doudle click on the State variable icon. This opens the dialogue
window to specify the initial conditions

[Js_VARIABLE
@) Reservoir ) Conveyor ) Queue ) Oven
M Non-negative
Oarray
Allowable Inputs BO0X
% FLOW C] DEEE)
O PARAM WEED
WEE)0
0 LI
)
I INITIAL(S_VARIABLE) = ...
{ Place initial value here...}
[ Document ] [ Message... H Cancel H 0K

The list of "Allowable inputs” may be somewhat coniusing, because it s only rarely that you
will need any cf the flows or other state variables to speaty the initial conditions. In most
cases you will simply type a constant - say, 10 Or you may store this constant as a parami-
eter and then refer to 1110 this box,

Note that there is a check-box that says "Nen-negative” By default, all state variables
come checked as non-negative. This can be quite misleading. You want the flows in your
model to make sense and to work in such a way that the stocks do not get depleted and
negative. By clamping them with this check-box, you lose track ol what 1s really happening
in your model. You may well be generating some totally crazy behavior that 1s supposed to
make a steck negative; however, you will not even notice that if that vanable s clamped. 1115
recommended that you keep this box unchecked, unless you reslly know what you are doing
and have a clear understanding of the effect of various flows on the state vanable

Now that all the guestion marks have gone, your model is ready to run. You can alsc
check out the equations that you have generated by clicking on the downward arrow in the
upper left-hand corner:
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The eqguation here describes the exponential growth model:

[T] S_YARIABLE() = §_YARIABLE(L -dt) + [FLOW) * dt
INITS_YARIABLE = 10
INFLOWS:

S FLOW= PARAM'S_VARIABLE
() PARAM=0.1

Betore you start running the medel, specify what you want the output to lock like, Returning
10 the other icens at the top of the window, the next group of three is maostly for conven-
ience, these are not essential 1o create models The first one allows you tc place buttons n
the diagram, which may be handy for navigation or for model runs. Instead of going through
menus, you can get something done by simply pressing a
bution in the diagram. The next icon allows you to group  LA® Research 5.0 =i—0u=

certain vanables and processes inte sectors, this is useful @l |.,_|ﬁ|m|Ai E
1o achieve more order in the diagram. It also allows you o

run only certam parts of the model. The third icon allows %

you 1o wrap certain detalls about processes and display Create | pisplay Create
them as one icon 1n the diagram, this alse mostly serves graphic | value  text
esthelic purposes. Create lable Box

The next group of fouris the Qutput Tools

e {(hick on the Graph icon, choose a place on the diagram, and click again. A new window is
opened to display the graphs. Double click anywhere in that window, and a dialogue box
is opened. By double ¢licking on any of the values in the left-hand side you add them o
the hist of vanables on the right-hand side. These will be graphed (no more than five per
graphic). You can check out the different puttons and options available. The most usetul
is tne scaling, which is controlled by highlight:ng Iclicking once} a variable among those
selected and then chcking on the arrow to the nght of it You can then change the mirimal
and maximal values for this var.able that will define the scale in the graph.

Graph Type: @ Time Series () Scatter ()Bar () Sketchable

[ Comparative T Connert Dots [ Benchmark
Allowable Selected
LN _VAHIARLE - 1. 1 S_VARIABLE T
E3P
() PARAM (<< |
=
w122 s

[ Show Numbers On Plots
(4 Show Grid [] Thick Lines
[ Make 5 Grid Segments

Title: |Untitied

Min Manc S &Hew
Scale; [ set | Page: 1
from To

Display: [0 |[100 | [ cancel ]|! 0K l
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* |7 a very similar way, you car define a Table using cutput values that variables take during
the course of the simulation. Choose the Table 1con, click anywhere in the diagram. and a
Table window opens, double click anywhere in that window, and a dislogue box opens.

Allowable Selected
Blank Line B [ S _VARIABLE =]
LoiS VAREADLE
| =<
() PARAM -
L lf- >
Table Type: Orientation: Lif |
[] Comparative 4 vertical
Report: Report flow values:
@ Beginning balances @ Instantaneous
(O Ending balances ) Summed ANEW
Report interval: ‘: Page: \t‘}},
] Every DT

Title; |Untit|edrab|e Cancel ]|] 0K !

* Once again, choose the variables that you want to display and specify some of the charac-
tenstics of your Table. Similarly, you can generate oulput for an individual vanable. In this

case, you will get the value that it attains by the end of the simulation.

e As 3 result, for the model being buiit 1t 15 pessible to design the output and run the model
by choosing "Run” from the Run menu, or pressing Comrmand-R (on 3 Mac) or Ctrl-R {in

Windows). In this case, the graphic of exponential growth 1s displayed
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Finally, lock at the Editing Tools presented by the fourth group of icons.
* The navigation cursor (the hand) is the one you will mostly

be using 10 open ana close windows and to arrange ele-
ments ol your diagram The paintbrush icon 1s to add
some color to the diagram — you can color individual gle-
ments of change the color of your graphics. The ‘dyna-
mite’ icon is used to delete things in the diagram. Be
careful - there 1s no "unda” in Stella until version 8, 1f you
blow something up, 1t 15 gone! To use this toal, click on
the dynamite icon, choose the element you want 10 delete, and click on 11, this will high-
hght what 1s 1o be blown up. Do not release the mouse bution until you have venfied that
what 1s highiighted is really what you want to get rid of!

The "ghost"” is very useful when you need to connect elements that are very far apart

Dalale
Ghost

Nawgalmn

cursor Color

in tne diagram. In that case, the diagram gets too busy «f vou do all the connections directly
Click on the ghost icon, then on any of the elements in the diagram you want to ghost
A copy ol it will be created that can be put anywhere else in the diagram.

Once acain, here are the mam bulding elements in Stella:

M aterial ow
t
| betweer Sncks | External stock
\

s ¥ ) \, Sector !

Aunhary
variable,

M adel
output as
atable

parameler

Nd!T‘IEé\

Anilliary varsable
as a graph

Irformation Tows
betweear components

This brief overview covers only some of the basics of Steia. However, it may oe sutficient as
a starter, since most of the dialogue boxes and menu options are quite self-explanatory and
may be mastered oy the good old trial-and-error method. Please note that:

* You cannct connect two stocks with an intormation flow; only matenal flows can change

a stock. The information about a stock can afiect a material flow or an auxiliary vanable but
not the information flow.

A matenal flow 15 assumed 10 be posmive If 1t becomes negative, Stella will clamp it to
zero. A negative inflow 1s actually an outilow; therefore, since you specify the direction of
your flow, the sign matters, and Stella makes sure that all flows are positive. If you need a
flow that can become negative, use the biflow option A tiflow can go in both directions.
Make sure that you have the positive flow associated with the direction in which you first
drew the biflow. The negative flow will then go in the opposite direction.

You cannot connect auxilary variables with material flows. Only nformation flows are
appropriate in this case.
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Alsa please note the following rules of good style when building your models

o Try to keep your diagram tidy. Avond long connectors and confusing names, and avoid cnss-
crossing flows. The easier it is to read your diagram, the less errors you will make and the
more appealing it wall be to anyone else who needs 1o uncerstand the moder.

® There 15 no such thing as 100 much decumentation. Every vanable or How in Stelia has
a document option, which 1s usetul 10 record your 1deas and cornmenis aboul what you
are modeling and the assumptions you are making. It is extremely important both for the
maodel developer and the model user.

As mentioned above in our review, general-purpose spreadsheet software is a
sumple alternative to Stella and the like. For example, Excel may be used to build
many models considered in this book (see Figure 2.18). You can download this
model (Model_Of_Exponential_Growth) from the book website, and experiment

" @ File Edit view Insert Format Tools Data Window Help

Ded8RYV | sRF|(o- - (4® x~ L@

-}

1| Hetvatica « 10 . BIH|EE;E,$%, B iE
BE E| = | =BS+$B$2*85-(‘.;_[formulala the value in the
B S— next cell based on tha value
T ‘_"E = 5 \En the previous one
:‘i_J_équéli"on: dxdt = ax  exporertisl growthmodel
2 8= 0.1 growthrale
3 xD= 10 initil condition
A [ Time
5 1 "
f 2 121 | 150000
1 3 13.31
4 14,641
1 5 16,1051 | 140000
[ 10 § 1771561 ’
11 71948717
Tz 8 214358881 | 120000
13 4 235734789 l
_]'“q 10 25 3374248 100000
15 1T 28 5311671
16 12 313842838
112 « 13 34.5227121 80000
18, 14 37.974983% /
19 15 417704817
20 16 459437269 £0000
FiB 17 505447028 /
22 18 555991731
El 19 6 1530304 | 000
ol 20 §7.2749993
25 21 74 0024934 20000
| 26 32 814027434 /
27 23 895430243
| 28 24 984373268 l—
L 5 108 347058 111 21 31 41 51 &1 71 B1 4&i

R LCRIREE  An example of a spreadsheet madel for an exponential growth system (see Chapter 5 for
mare detail).
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with the parameter and the formalizacion of cthe equation. It becomes quite difficult,
if possible ar all, to do this modeling for numerical methods other than Euler. Also,
it gets very complicated as the model structure becomes more complex. Check out
another example (Predator_Prey_Model), which 15 a two-variable model of preda-
tor—prey dynamics. It s sull doable, but not as much fun as in the systems dynamics
software.

2.3 Model formalization

The model formalization stage requires that each of the processes assumed 1n the
conceprual model in a qualitative form be described quantitatively as a mathematical
formula, logical statement or graph. This s what you do in Stella when you double
click on any of the flow icons and get the dialogue box that invites vou to spec-
ify the rnight-hand side of the equations. Choosing the nght machematical descrip-
tion to represent your qualitative ideas about a process may be quite tricky and
ambiguous.

Ac chis stage, describe how you envision the rates of flows between various
variables. Suppose you are describing the growth rate of a bactenal populacion.
The variable s the population size. There are two processes assocrated: the birch
rate and the mortality rate. You need to decide how to describe both of these proc-
esses as functions of the state of the system (the current size of the populanion v
this case) and the state of the environment (temperature, available food, space,
etc.). Suppose that it is known that rhe reproduction rate s a function of tem-
perature, such that at low temperatures the divisions are rare, and as temperature
grows the number of divisions steadily increases until it reaches a maximal value.
Suppose that, based on the available data, you can describe this relationship by a
graphic shown 1 Figure 2.19. In this case, m is the maximal growth rate that
we know.

How do you input this information into the model? One option would be to use
the Stella graphing option and redraw the graphic in the model.

»
»
{

0 f

DL RN  0ne possible limiting function for temperature-dependent multiplication rate.
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[n the Stella model that you have started 10 build, rename the vanables to reflect the system
that 1s being considered now

= I
E, i‘ k_‘. E \_-_\..%. ,JE- ___/‘I
P——"Deaths — — —’_M aram
Population P
T imitation Temperalure

Now you have the stock that represents the population (measured here in biomass units
instead of numbers). The size of the stock is controlled by two flows: the inflow 15 the births,
similar to before, but now there is also the outflow, which 1s the deaths \n addition tc simply
having the births proportional to the size of the population, the temperature limitation 1§ intro-
duced by inserting the T_limitation tunction in the equation

Rirths = B_param*T_limitation *Population
T_limitation should be a function of temperature, as described above, To use the graphic func-
tion in Stella to define 11, double ciick on the T_limitation parameter Lo open the regular dia-

logue box that has temperature listed as the required input. Note the “To Graphical Function”
butten at the bottom left.

N Converter
& Tonmitation
Caveay
Required Inputs Bunlting
& Temperatute - Y ABY
== AMD @
=1 ARCTARM
- 7 ARFATMEAR
i ARAATSTDDEY
= ARBAT LI
Ld Lap
o LCROWTH
_— CTOOKTIME
oA £0s .
COSWAYE -
@ 1 limitation = Gragh of ..  Units,..
Tampeorarure - R —— )
To Graphical Function |~ Document ) 1 Message.. ‘_aﬁ(el POk

If vou click on this button, you will see arother panel, which is designed specificaliy t¢ input
a graphic that s 1o define what value this T_limitation parameter is to return, depending upon
the value that the temperature parameter will feed in.
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Graphical Function

1.000 NEEN R o
O R O U0 - O O Tepeania T i,
0.000 0.000
6.000 0.240
| T 12.00 0,465
limitatio 18.00 0.660
5 24.00 0.815
30.00 0.905
36.00 0.970
42.00 0.995
b ks : : 48 00 1006
— R o e sshipe g 54 00 1,000
0.000 : 60.00 1,000
/\ 0.000 £0.Q0 . o
Temperature Data Poits: 11
Edit Qutput. i N
_ ToEquation | . Delete Craph | = Cancel oK

In this case, a function is designed that will change between 0 and 1 {ike most of the limiting
functions), while the temperature values are anticipated to be in the range between 0 and 80.
Here the units for temperature are degrees Celsius, while the output of the imiting function
itself is dimensicnless — it wall be a modfier for the birth rate that will slow down growth to
zerc when temperatures are low, and will have optimal growth values at temperatures close to
50°C. Perhaps this is good enough for bacterial growth The actual values are then either typed
as numbers in the table provided in the dialogue box, or produced when you draw the graphic
usINg your curser Now the hmiting functon s finished wath, but it is still necessary 10 figure
out how to provide the data for temperature Certainly, another graphic can be produced;

Graphical Function

2000 | & N ¢
F\ % 3 Time  Temperature
/‘ N o .l oooo '0.000
4 : hoa 31 2% 4.000
s off semon e\ o b By S
Tempers { . . /. it o V| 8378 24.40
wre { ./ Foredon &b \ L] 1250 34.20
; } 156.25 0.00
187 50 40.00
218 75 35.80
250 00 29.00
s 281 25 14.00
0.000 312,50 4.800
143.75 0.600
[~ o000 1000,00 | 375.00 L.
Time Data Points: 33
£dit Outpuwt
[ ToEquation | | Delete Graph | . Cancel | (_ OK

Here, a umeseries for temperature I1s presented. using a bult-n called TIME 10 describe
how temperature is changing in with tme in the model. Some real climatic data can be cop-
ied from an Excel spreadsheet or text editor and then pasted into the table in the graphical
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tunction, or the graph can again be drawn using the cursor. In this case, a senes of annual
temperature cycles is defined where temperature varies from 0 to 40°C over a time pericd of
abeut 365 days There are data for about 3 years {or 1000 days), which can be seen in full in
the graphic if the “"ALT" key cn the keybcard is pressed and held:

Graphical Function

4000 |

Time Termperature

0.000 0.000

31.25 4.000

62.50 15.40

Tempera 93,75 24.40

ture 125.00 34.20

156.25 40.00

187.50 40.00

218.75 3580

250.00 29.00

0.000 ’ \/ ara i 500

ooo0 | [ A '+ 37800 | 343.75 0.600
¢ 000 1000.00 | 37500 0200

Time Data Points 33

Edit Qutput

To Equation | | Delete Graph | | Cancel (0K

Thuis graphical function is a nice feature, but it has one major drawback. If modifica-
tion of the function is required to reflect some newly acquired knowledge, it 15 neces-
sary to go into the graphic and manually redraw it. Suppose that you want to change
the curvature, so that the optimal birth rate is arrained faster, or suppose that the
maximal kirth rate should be increased - in all these cases, every time the graphic
needs to be redrawn. This may become quute boring, As any alrernative to the graphic
representation of the dara, you can assume a function thar would generate the kind
of response that you need. For example, for the temperature dependency shown
above the function

mi
F=

t+ e

can be used, where m is the maximum birth rate and 1, represents the temperature
at which the birth rate is half the maximal. This function happens to he known as
the Michaelis-Menten function, widely used to model growth kinetics and popu-
lation dynamics. Now there are two parameters that can easily modify the shape
of the function. By changing m it is possible tw raise or lower the asymprote, the
maximal value to which the function tends. By moving ¢, the function can be
made to grow faster (smaller t,) or slower (larger 1,). All these maodifications are
made without any need to redraw any graphics, but simply by changing a parameter
\"ﬂllle.
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Similarly, the timeseries for temperature can be defined as a tormula instead of a graph Of
course, if you are using real climatic data it makes perfect sense to stick to it and import it
into the graphic function, as described above However, it the timeseries is hypothetical. it
might be easer 1o have a fermula to present it For example, 1t is possicle to generate the
dynamics very similar to the graphic used above by using the following eauation

Temperaiure = 20 * SIN{TIME/365 * 2 * PI+ 3 " PI/2) + 20

It does take some effort to figure out the nght amplitude and phase for the SIN function;
however, even with some very basic knowledge of trigonometry and a few trial-and-error runs
in Stella, this can be done. [t can even be made more realistic if some random fluctuations In
temperature are added, using the RANDOM function - ancther built-in in Stella {just like SIN,
Pl or TIME - all these can be found 1If you scroll down the list of Stella built-ins that appear in

any parameter of flow dialogue box)

Temperature = 20 * SIN(TIME/365 * 2 * Pl + 3 * PI/2) + 24 + RANDOM{—4.4.0

The output from this model looks like this,

B rouition g PN TE

! 20000 00 -

i

[t may be hard quickly to find the right funcrion to represent the kind of response
that you have in mind for a particular process, It helps a lot if you know the behavior
of some hasic mathemarical functions; then you can put togerher the righr response
curves by combining certain functions, the behavior of which you know. Figure 2.20
contains a collection of some useful functions that may be used as building blocks to
describe vanous processes,

Note that for the numerical realization of the model you will need to provide
actual values for all the parameters that are used in the functions. Therefore, the
fewer paramerters a function uses, the easier it will be to find all the values needed.
It also helps a lot if the parameters used to describe a function have an ecological
mearng. In that case, you can always think of an experiment to measure their value.
For example, in the temperature function considered above, m can be measured as
the birth rate at eprumal conditions, when temperature is not limiting. Swnilarly, ¢
can he estimated as the temperature value at which kirth is approximately equal to
half the maximal. Both these parameters can be measured and can be then used in
the model. This is one of the hasic differences hetween process-hased and empirical



The linear function is probably the simplest and
computanonally the most efficient one, You can comgine
several lingar functions with "if ... then” condilions to describe)
more complex behavior The disadvantage of such

piecewise linear description is the lack of smoothness,

which may sometimes result in madel crashes if the time
step OT 15 too large.

a —inclination of the line,
b = the offset

Michaelis—Menten lunclion. Widely used in enzyme kinelics.
Also known as Monod function in population dynamics.

A very useful funclion to describe growth with saluration.

At low concentrations of substrate x, it limits growth,

growth is proportional o the availability of the substrate.

At very high concentrations of substrate growth tends tc

a maximum value and does nol exceed il

— a — maximum growth rate, delines the saturation level,
ax b = halt-saturation coefficient:
b+x U=a/2 whenx - b.

The s-shaped function is a modiflication of the
Michaelis—Menten function. By increasing s you can make
the funclion sleeper, decreasing ihe transilion penod

from low growth rale lo saluration. Also important that the
funclion approaches zera with a zera derivative. Makes
computations more stable in the vicinity of zero.

a — maximum growlh rate, defines the saluration level;
b — half-saturation coefficient
U= ai2 whenx=b.

L R I I O T T ' S T S BT BT B S
- o i ~

=] - i o ut o

_ax?
bi+xs

A Varialians of the hyparbolic function. Used 10 describe
processes thal are very last at low values of the controlling
varable and then rapidly decrease 10 a constant saturation
level. This can be, say, the dependence of fish mertality
on oxygen concenlrations in water. Al anoxic condilions
lhe mortality sharply increases

(=20 A R

— a — contrals steepness of decline;

= - Rt b - oftsal

- e bl S I I |
= T uwn

i5

o
o

U=af+b

w
(=}

A list of formulas to facilitate your choice of the mathematical expressions that can
properly describe the processes in your model.

Certainly there are many others that you might find more appropriate for your particular needs. To check

out how a function performs with different parameters and to choose the parameters that will best suit your
particular needs, you can input the function into, say, a spreadsheet program such as Excel, and build graphs
with various parameters. Another application that is especially useful for these purposes is the Graphing
Calculator. It comes as part of the Mac 08-X, and probably there are also versions for Windows. It should

be noted that in most cases using a farmula with parameters is preferred, rather than inserting a graphic, to
describe the process in your model. One significant advantage is that certain parameters that change the
form of the curve can be easily used to study the sensitivity of your mode| to these sorts of changes. Similarly,
changing graphics 1s a much more tedious job and more difficult ta interpret.



'Systems Science and Modeling for Ecological Economics

— a2 b0
—_— =05 be02s

L I L N R

U = aexplbx)

The exponent should be used with caution because il

always lends lo grow too fasl. It s useul only if the maximum
values for x are well delined and you can be sure that

they will not be exceeded.

a — offset;
b — sleepness.

16 —_—aeiih-02c=02

—_—a=01b 02 c-05
18 — R

Variations for the parabolic function Especially useful with

& <21, Otherwise it 1s very much like the exponent — grows oo
fast and tends o get ou! of control. When ¢ << 1 4 sgems 1o
reach a saturation level, but actually o shill continues 1o grow
but very slowly.

a — offset at zero;
b — contrels benavior at larger x values, whereas s conlrois
behawvior al lower x.

viev functon. Also used 1o describe growth with saturalion.
The saturation level can be controlled by ar addiional
parameter that mulliphes the whole funclion. Michaelis—Menlen
Tunction does practically lhe same, bul is simpler
compulationally

a - controls steepness

U = axexp(l — bx)

Steel function. A bell-shaped function that is useful to
describe processes inhibiled both al low and high values of
Ine controlling facter. Has been originally designed 0 limit
phyteplanicton growth by light.

a— modfies the maximum rate as well as the rate of {all at
nhitting values;
b - defines the cptimal values of the controlling factar.

—cCc=5an2 Eul05
—r=4 3gu(5b=02
—rC-43-05b-0032
—rwd aeiGeald

all =) if y ¢

pilx -c].f{d—c]]'l dx=c

Universal bell functicn A more complhcaled formulation

lor the bell-shaped function. Otten used lo describe lemperature
hmitanon. Disadvantage ~ many more parameters lo

geline Advantage — much more flaxibility and conlrol over
behawior. Can describe prelly much any bell lunction form.

a - value at zero;

b — value taken when x = d,

¢ — optimal value, where Ihe function is maximal;

5 - conliols the sleepness, when s = 1 the range of aptimality
can be made really big.

Figure 2.20 {Continued)
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3. Essential Math

3.1
i B
3.3
3.4

Time

Space
Structure
Building blocks

The full set of dynamic equations of a given physical system presented in one

of the approximate forms, along with the corresponding boundary conditions
and with the algorithm for the numerical solution of these equations — inevitably
containing means from a finite-difference approximation of the continuous fields
describing the system — form a physico-mathematical model of the system.

A.S. Monin

SUMMARY

Many models are based on some marhemarical formalisra. In some cases it may be
quite elaborate and complex; in many others it is straighttorward enough and does not
require more than some basic high-school marth skills to understand it. In all cases it
can help a lot if you know what the mathematics ave that stand behind the model
that you build or use. Most of the systems dynamics models thar we use in this book
are based on ordinary differential of difference equations. Some basics of those are
explained in this chaprer. We look at hew maodels can tend to equilibrivm conditions,
and explore how these equilibria can be tested for stability. If the spatial dimension is
added, we may end up with equartions in partial derivatives. We will see how the advec-
tion and diffusion processes can be formalized. Finally, in the structural domain we may
also find models that will be structurally rebust and stable. Such models are preferable,
especially when there is much uncertainty about model paramerers and processes.

Keywords

Discrete vs continuous, initial conditions, ordinary differential equations, state vari-
ables, difference equations, exponential growtl, time-step, numerical method, Euler
method, Runge-Kutta methed, equilibrimm, srable or unstable equilibrum, hox
models, compartmental models, continucus models, advection, diffusion, equarions
in partial derivartives, rigid and soft systems, structural stabiliry,
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Modeling and  systems analysis first  appeared as  mathemarical disciplines.
Reciprocally, much of modern mathemartics has originated from models in physics.
Until recently, a solid mathemarical background was a prerequisite of any modeling
effort. The advent of computers and user-friendly modeling software has created the
feeling thar marhemarical knowledge is no longer needed ro build realistic models,
even for complex dynamuic systems. Unfortunarely, this illusion results in many cases
in faulty models thar either misrepresent the reality entirely or represent it only in a
very narrow domam of parameters and forcing functions, while the conclusions and
predictions that are made are most likely to be presented as being quite general and
long lasting.

This does not mean that modeling cannot he done unless you have a PhD in
mathematics or engineering. Many of the software packages thar are currently avail-
able can indeed help a lot in the modeling process. They can certainly eliminare
most of the programming work needed. It is important, however, for the modeler to
know and understand the major mathemarical principles that are used within the
framework of those packages, orherwise the models will be prone to error. David
Berlinski offers some noteworthy examples of how models can be misused, misunder-
stood, and in error when the mathemarics is ignored.

Let us take another look at the model that we have developed in Stella. Open the maodei and
chek on the hittle arrow pomting downwards in the upper left corner. {In more recent versions
of Stella the interface has been changed and you have separate tabs on the left of the win-
duw for the imerface, the model and 1he eguations.)

eee - B  Stella_primer2.stm
O+04%<C OF (| mW=Ald ME&F&
2
be
What you get is a list of equations:
‘9606 Stelia_primer2.stm -
™ E
] Populatian(t) = Fopulation{t - dt) + (Births - Deaths) ™ ot
INIT Population = 10
INFLOWS.
=% Births = 8_param*T_limitation*Fopulation
OUTFLOWS:
=2 Deaths = M _param Population
2 B_param =01
1D M_patam = 005
v S_param = 12
O Temperature = QO'SIN(TIME!365"2‘P|'+3‘PI!2)+24+F?ANDOM(-4 a.0)
O T_limitation = Temperalure/(S_param=Temperature)
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So these will be the actuel equations that the model will be solving. The Graphic User
Interface has really just one ourpese: 10 formulate these equatons and then display the
results of solving them What are these equations, and how do they work?

3.1

As we have seen in the previous chapter, a systent may be considered in three dimen-
sions: temporal, spatal and structural. In the temporal dunension we decide how the
system evolves v time; in the spatial dimension we research the spatial organiza-
tion of the system; and in the structural dimension we define the complexity of the
madel. For each of these facets mathematics are used in madeling.

Time

Most computer models operate in discrete time. The tume 15 represented as a sequence
of snapshots, or states, which change momentarily every eiven time interval. The
major question to be answered when considering this temporal evolution of a system
is, what will be its state at time ¢ if its state is known at the previous tme t — 17 If we
know how the system changes state, then we can describe its dynamics once we know
the inital state of the system. Suppose we have a population of five cells and each
cell chvidles into two over one time-step —say, | hour. Then after | hour we will have
10 cells, since each cell 1s to be replaced by two; after 2 hours there will be 20 cells;
after 3 hours there will be 40 cells, and so on.

This s a verbal model of a system. Let us formalize it o describe 1t in math-
ematical terms. Let a{n) be the number of cells ar time-stepn = 1, 2, ... Then the
doubling process can be described by

an+ 1) = 2x(n) (3.1

If we provide the minal condition A = a, we can calculate the number of
cells after any n time-steps:

i{n) = a?2" {32

This is a simple model of exponental growth. The nice thing about the mathemarical

formalism is that it provides us with a general solution. Instead of doing iterative

(1e. repeating) calculations to find out the number of cells after, say, 100 divisions,

and redoing these calculations if instead of five initial cells we were to consider six of
them, we can immediately provide the result hased
on the general sulution (3.2).

However, this model can only describe systems

How did we get from (3.1) to (3.2)?
Certainly, if xin+ 1) =2x{n), then
similarty Xin} = 2x{n — 1) and x(n — 1) =
2xin — 2). Substituting, we get: xin} —
2xin -1} =2-2xn—2), and so on,
xn=2-2 ... 2x{0). Keeping in mind
that x0)=2a and that 2-2 .. 2(n
times) = 2%, we get the resultin (3.2},

that are very well synchronized in time, where all
the cells divide simultaneously and similarly, This
is quite rare tor real populations, where divisions
occur all the rime, and theretore the process is not
so discrete. In this case it makes sense ko assume
a different model thar we formulate in terms of
growth rate. Suppose thar cach cell produces one
new cell once an hour. This is more-or-less equiva-
lent to the above model, but now we can remove
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the synchronization. In two hours one cell will produce two cells, and in half-an-
hour a cell will produce half of a new cell. This may not make sense for an individual
cell, but with no synchronization this makes perfect sense for a population: of, say,
100 cells. It simply means that in half-an-hour 30 new cells will be produced. We
can then reformulate (3.1) as:

x{t+ A = %) + x(1)- Ar (3.3)

We have substituted ¢ for n to show that time no longer needs to change in inte-
ger steps. At 1s rhe time increment in the model, Note that of At = |, madel (3.3) is
wlentical o model {3.1}):

2t + 1= x(t)+ ()1 = 2x(t) (3.4)
However, if we run the same model with At = 0.3, we ger a different result:
x(t+0.5) = x(t} + x(t)- 0.5 = 1.5x(0)
Then similarly
(it + 1) =x(t+ 0.5+ x{t +0.5)- 0.5 = L.5x(t + 0.5).
Substituting from the above, we ger:

it + 1) =1.5-1.5x() = 2.25x(1),

which is different from what we had for At =1 1n (3.4). We see thar when we
change the time-step At, we get quite different results (see Figure 3.1). The more
often we update the populaticn of cells, the smaller the time-step in the model, the
faster the populaticn grows. Since new growth is based on the existing number of
cells, the more often we update the population number, the more cells we get to con-
tribute ro further growth.

Indeed, ler us take a closer lock ar Figure 3.1 and zoom in on the first two steps
(Figure 3.2). We start with a certain initial condition — say, 2. We decide to run the
model with a cerrain time-step — say, At = 1. According 1o (3.3), the next value at
x(1)=x(0) + x(Q)- A =2 4+ 21 = 4. Artime O we define (3.2) for the first time-
step, and we know thar during this period of time nothing is suppused te change in
the equation. Quly when we get to the next point in time do we re-evaluate the
variables in (3.3). Now we change the equation and diverge from the straight bold
line that we once followed: x(2) = x(1) + x{1)- At =4+ 4-1 =8

If we had chesen to run the model with a time-step At = 2, then we would have
stayed on the course longer {the broken line in Figure 3.2), and then x(2) = x{0) + x{0) -
At =2+ 22 = 6. See the difference’

Alternatively, if we had chosen to run the model with a time-step of At = 0.5, we
would have corrected the trajectory already after the first half-step taken (the dashed
line in Figure 3.2), and then later on every half-step we would have been correcting
the course. As a result, by the time we got to rime 2 we would have gort to a different
value, a substantially different one compared with the case with Ar = 2. So the smaller
the time-step we use, the more often we correct the course, the less the computational ervor-

Note that equation (3.3) is similar to the kind of equarions that we saw previ-
ously, gererated in Stella. Remember when we were clicking the little triangle in
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to the model formalization: 2.72 in (3.7) s not that much larger than 2 in (3.2).
However, the exponent that is used in the mode! blows up this difference tremen-
dously. The time-step used in the medel hecomes a crucial factor. This is something
to remember: madels with vapidly changing variables ave extremely sensitive 1o the size of the
time-step used.

So what does this mean in terms of our little Stella model? As we have seen above, there s
a dtin the equations tile. So now we know what 1t 1s all sbout. There 15 also a way to change
this dt. Click on the “Run” menu, and then choose “"Run Specs.” This will open a dialogue box
that contains the time specitizations tor your medel run. "From™ wall specify at what ume you
start the simulation, "To” tells when to end. “DT" Is the time-step to use In the simulation.

r ™
Run Specs
Length of simulation; Unit of time: Run Mode.
: " Hours ® Normal
From: 0 : g/ .
> Days _ Cycle-time
3 SAan [
To: 100 ﬁWeeks Interaction Mode:
P TR (U Months @ Normal
¥ C Quarters I Flight Sim
"_ DT as fraction 7 Years
Pause ———— - =
interval: © Other
Time
Integration Method: Sim Speed:
@ Euler's Method 0 real secs = 1 unit time

[ i |
_i Runge-Kutta 2 Min run length: 0 secs
JRunge-Kutta 4

! Analyze Mode: stores run results in memory ( 0.0 MB required )

{ Cancel ) (5O

Let us start with DT = 0.25 and run the model The result should ook something
like this

. ' Pogalsten o lerpesabe s

400 D=
ad
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If we now change the time-step 10 DT — 2 we will get a similar picture, but not exactly

the same:

B 1 Fopulatun Temnpan atur v

S00 D=y -
2z

o.oo 17300 50 00 37300 50601

Notice that with a larger tme-step we see that the temperature changes less frequently,
and, besides, the population grows tc a smal'er size. See the scale on the Population axis: it
has changed from 400 maximum te 300 Something we could expect: just as in Figure 3.2,
we see that the growth is slower when the time-step i1s larger, the vanables are updated less
freauenty, and therefere the growth base is smaller in each tirme-step

Equation (3.3} in a more general form s
x(t) = x(t —de) + f{¢, x(t), a)dt (3.8}

where f(1, x(1), a) is the transinon function that describes how the system changes at
time ¢. It depends upon the current state of the system x(t), and a vecror of parameters
a = (a,a3,...,a,). These parameters do not change over time. Sometimes we assume that
the paramerers are hidden and write simply f(r, x). As a differential equation, this will be:

%=ﬂe.x‘a]

Differential equations are very useful in formulating various dynamic models. The
lefe-hand side dx/dt is the instantaneous change in the size of variable x. On the
right-hand side, we can specify what the processes are that contribute to this change.
In the example above we have a very simple transition function: f(1, x(t), a) = x{r).
I real models, the funcrion can be quite complex.

Some of the more simple differential equations can be solved analytically.
However, once we start putting together realistic models of systems, very quickly we
arrive at equations that are roo complex for an analytical solution. These equarions
are then solved numerically, using o numerical method on a computer. The sunplest
numerical method 15 given by the approximation that is used in {3.8). The equation
in {3.8) is called a difference equation, and it is a numerical approximation of a dif-
ferential equation. As we have seen above, such difference equations are discrete and
can be solved on a compurer by going through all the time-steps starting from the
initial condition. The equation in (3.8) is also called the Euler method, which is the
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The more complicated and most often used version of the Runge-Kutra algo-
rithm uses a weighted average of several approximated values of f(t, x} within the
interval (r, ¢ + dr), The formula known as the “fourth order Runge—Kurta formula™ is

given hy

sle +di) = xte) +l%J(k, F 2l + 2k, + k)

where

k= fle,x@e)), ko=f

\

L de Tde, | o de o (dey,
r+_—},x(r}+l€,|l<,", k, ..f{f+?.1(r)+h’llazr|,

ky = flt + de, x(0) + dt ky)

To run the simulation, we also start with the

In our population model, if we choose
the Runge-Kutta 4 method we get the
population of exactly 1,484 after the
100 days of a run. That is a perfect
match with the analytic solution. Quite
outstanding!

initial condivion, at ty, xg = x{tp) and find x; =
x(to + dit) using the formula above. Then we plug
in x; to hnd x; = x(e; + de) = x(rp + 2de), and so
or. Onee again we pay a price for the nmproved
accuracy of calculations: now we have to calculate
the transition function four times,

The Runge-Kutta algorithm is known to be

very accurate and behaves well for a wide range of

problems. However, like all numerical methods,
it is never perfect and there are models where it
fals. One universal rule 1s that the smaller the time-step, ne marter what method
we use, the better the accuracy of rthe simulaton. To enswre that vou are getng the
vight result with yowr numerical method, you may want to keep decreasing the ume-step
unel vou do not see any difference m the vesults that you are genevating. There are some
adaptive step-size algorithms that do exactly that autemarically. Other algorithms
are also available, such as the Adams method or Bulirsch—Stoer or predictor—correc-
tor methods, that can be way more efhicient for some problems, especially when very
high accuracy is essennial. Just remember that there 1s always a price to pay for higher
accuracy. The smaller the tume-step, the longer it takes to run the madel. The muore
accurate the method, the longer it takes to run the model. However, sometimes one
method is simply better for a particular type of 2 madel — it runs faster and gives bet-
ter accuracy. So it always makes sense to try a few methods on your model and see
which one works best.

We have already seen that the size of the time-step chosen for the numerical
solution of the model can signihcantly change the cutpur produced. Ler us consider
another example. Suppose we are modeling a stock of some substance thart is accu-
mulated due to 4 flow coming in and is depleted by an outflow:

Stuff
. 6
‘\_.-', \'-«-. #(_ZJ’I

n QOut
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The equarions for rhis model will be:

[ S = Stult{! - gty + {In—Out) = at
INIT Stukt = 0
INFLOWS:

o In=1
OUTFLOWS

=% Out = GRAPH{SIUH)
(0.00, 0.09}, (0 1, 0.63), (0.2, 1 06}, {0.3. 1 32).(D.4 1.47). (0.5 1.56), (0.6, 1.62),
k (0.7 1.67) (08 1.72}, (09 1.75), (1,177)

The inflow 13 constant, whereas the outflow is a function of the subsrance accu-
mulated. It may be described by a simple graphic function of the form:

|2.uuu P .
0.000 0.090
0.100 0.630
0.200 1.060
0.300 1.320
0.400 1.470
0.500 1.560
0.600 1.620
0.700 1.670
0.800 1.720
0.900 1.750
1.000 1.770

B Stuff Data Points: D

If we first run the model with DT = 1 using the Euler method, we get a very
bhumpy nide, and an oscillating trajecrory:

| Stuff
g FeIp) (T MUpeN Py
1 D00
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The very same model but with a smaller time-srep of DT = 025 produces
entirely different dynamics:

| Sturr
. A s o i
| L
i sied o oot B e
! 000 . . y
Q00 300 E00 .00 1200

Time

Finally, 1t we switch to the Runge-Kutra, fourth-order merthod, we ger very
smoorh behavior, with the trujectory reaching saturanon level and staving there:

1 SHufrf
1 OB g A R R
1 a104
1 000 ; l i
200 500 300 1200
Tire

The very same model produces entirely different dypamics by simply changing
the time-srep assumed. Clearly you do nor wanr to run your model with too small a
DT, since 1t will require more computational time and may become more difficult to
analyze properly. However, roo large a DT s also inappropriate, since the results you
produce may be entitely wrong.

Here is ver another example rhat shows that DT marters and that ir s always
important to remember the equations that are solved to run your model. Quite ofren
in models we want to do somerhing to the entire amounr stored in ane of the vari-
ables. For example, ar certain times we need to deplete a reservour, and rhen starr
filling ic all over again. Or we may be looking ar an age-srructured populanon, when
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after reaching a certain age the entire population moves from one stage (say, eggs) to
another stage (say, chicks).

Let us consider a simple model of a flush tank that we all use several times a day.
Water flows into the tank at a constant Flow_Rate = R, which is altered by a floater
attached to a valve. As the water level rends to 2 maximum, the valve shuts the flow
of water off. Knowing the volume of the tank Tank_Capacity = V, we can describe
the inflow as

where T 1s the current volume of water in the tank.

The outflow is such thar every now and then somebody opens the gate and all
the available volume of water 1s flushed out. To describe che outflow, let us assume
that Use = u 15 a random value between [0, 1], and let us define Flush as:

T, otherwise

E - {0, if u<0.99 }

If we just puc these equations inco Stella, we will get this model:

Tank

= M

t) & d 3

O 0

. Inflow ™ g~
Flow Rate ‘{) Use

Tank Capacity

[t can be downloaded from the book website.
Using the Euler method and dt = 1, we will get:

ﬂ ) Tk
1

14.00

7R0.00 1000.!1‘0

170 SRR
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which looks exactly how we wanted. Every now and then the rank 1s empued, and
then it is gradually rehlled. Suppose now that instead of dr = | we wish t get a more
accurate solution and make di = 0.5. Now, the output looks guire different:

p T Ta
L3

T
. U Y S
o T T + ]
- 0007 w0 19 o0 0 00 700 1900 00
a@/‘ Gt ) EnteD s S

Not quite as expecred. The rank does not get empried any more. Whar has hap-
pened? Ler us look at the Stellu equations for this model:

[ Tank(f) = Tank(t - df) + (Inflow - Flush} * of
INIT Tank = {
INFLOWS:
= Inflow = Flow_Rate’(1-Tank/Tank_Capacity)
QUTFLOWS:
'-50 Flush = IF Use=0.999 THEN Tank ELSE O
() Flow_Rate =01
() Tank_Capucity = 12
(3 Use = RANDOM{0,1,14}

It is clear that, contrary to what we intended, the cutflow is not T, hut T - dt.
That is why dt started o modify the model output so dramatically. It should be
remembered rhat whenever a flow s deseribed in Stella or another similar package,
it is then multiplied by dt when it is inserted into the real equartions to be solved.
Therefore, of 1t 15 actually the entire stock that yvou wanr ro move, you should
describe the flow as T/dr. Then when it is inserted into the equations, the dr gets
cancelled out and we can really lux the entire amount as 1t was intended.

Therefore, the correcr Stella equartions should be:

(] tank{n = Tank(! - df) + (Inflow - Flush} * dt

INIT Tank = 0
INFLOWS:

"_55 Inflow = Flow_Rate"(1-Tank/Tank_Capacity)
OUTFLOWS: Y.

%‘9 Flush = IF Use=0.995 THEN'E&HKIE:QELSE a
C Flow_Rate = 0.9 — |

() Tank_Capacity = 12 Note this change!
() Use = RANDOM(D, 1,14}
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In this case the left-harwd side is the variation in your accounr, measured in § per
month. We make sure that the flows on the right-hand side are presented in similar
units. For example, it is important to remember that the interest rate k 1s monthiy,
and should therefore be recalculated from the more frequently used annual interest
rate.

When dx/d: = Q, chere 1s no change in the varable. If the inflows and outflows
ave balanced, the variable is ar equilibrium; 1t does not change because nothing s
added ro it and nothing 1s taken away. By setring dx/dr = 0, we can calculate the
equilibrium conditions i our model. From (3.9) we get:

kx+p-g=10

¢=9"F (3.10)

K

If vou make (g — p)k your ninal condition: x(C) = (g — p)/fk, there will never
be any increase or decrease in the value of the variable; your account will remamn
unchanged. A nice guideline to balance vour account! However, what will happen if
your initial condition s shghtly larger or smaller than the equilibrium (3.1C)?

I moxdel (3.9) of we are even shightly below the equilibrium: x < {g — p)/k then
dxfdr < 0. The dervarive is negative when che funcrion is decreasing. Therefore,
for values less than the equilibrium equation, (3.9) takes us further away from 1t
and we will be gerting decreasing values for the account (Figure 3.3). Similarly, +f
we start even slightly above the equilibrium, then x = (g — plk and dy/de = 0. Now
the derivartive is positive, so the functon grows, and therefore again we start mov-
ing awav from the equilibriunm. The farther we move away from the equilibrium, the
larger dx/dt gets, the farther it takes us away from the equilibrium. This positive feed-
back sets us on a path of exponential growth. The equilibrium state is unstable. If you
rake one step away from the equilibrium, even a very small one, you will slide further
away from 1t. Small deviations from the equilibrium will only increase with rune.

Here is another example. Suppose a population of woozles lives on a small island
that has enough grass to support only A woozles. If there are more wootles than

50025 -

50000 41— - e e

49975 : ; T |
0 250 500 750 1000

AECLCREBM  Unstable equilibrium. Small displacements from steady state result in increasing divergence
from it
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: ; :
0. 30. 60. 90. 120.

I DLCRTIEM  Stanle equilibrium. When system is perturbed from steady state A = 1000, it returns to it.

A, they die off from hunger. We can use the following formalism to describe thus
system:

“__-":h[]_iJ (3.11)
dt . A

Here, k is the growth rate of woozles and A is the carrying capacity of the island. As
x approaches A, the multiplier (1 - x/A) eifectively slows down the growth rare dx/
dt, making it zero when x = A. If somehow x becomes larger than A, this same mul-
tiplier makes the growth rate negative, providing thar the population size decreases
until it reaches the size x = A (Figure 3.4).

We see that x = A isan equilibrium point. Thete is vet another equilibrium poin,
whete dxfdt = & This is x = & From Figure 3.4, we readily see thar when 0 < x <2 A
the derivarive 1s positive and therefore x grows. If x could be negative (not the case in
our system, but it could be it the same tormalism was used for a different system), then
dx{dt < O and therefore x further decreases, tending to —o. The equilibtium x = 0 is
clearly unstable. On the contrary, as we can see when the system s perturbed from
the equilibrium x = A, the sign of the derivative is opposite to the sign of the pertur-
bation {negative feedback) and the system is returned to equilibrium. This equilib-
rium is stakle.

A classic illustration for the different types ot equilibrium is the movement of
a ball put in a convex bowl or on the same bowl turned upside down (Figure 3.5).
Even if you manage to balance it on top of a turned-over bowl, the slightest dis-
turbance from that state of equiliboum will allow the force of gravity 10 move the
ball further away. You do not even need to balance a ball inside a bowl; it will Aind
its way to the pomr of equilibtium by wself. The third, so-called neutral type of
equilibrium happens when the ball is placed on a flat surface. In this case, pertur-
bations from the state of equilibnium do not cause any further movement of the ball
(Figure 3.6).

Analysis of the equilibrium and its stability mav prove to be extremely impor-
tant for undersranding model behavior. [n some cases the model produces trajectories
that seem to converge to a certain state, no matrer what changes are made ro model
parameters. In that case, chances are that rthe trajectory is at equilibrium and there
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Exercise 3.3

dynamiecs of wizzkes on this ssiand ?
2. Are there iy equliiia i the wizzles moded* Are they sranle !
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Bars ar& larges then & carman Minirnal walgs & 1 ihee are e wnggles tan g they siond
find ‘a parinar for mating and the populstion dies off Tha cenying cRpacmy of Tre slang
whete wizzles e is also 4 Obwiously, 4 > 2 What oo wou'd cescioe the poBulabor
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spatially homogeneous component, also called a com-
partment. These are then linked rogether by flows of

<> material or energy. In effect, a compartmental model is

a number of box models joined together. For example,
this is how we might want to present a small scracified
lake, where the upper part of the lake (epilimnion) s
separated from the deep warters (hypohmnion) because
of the temperature gradient. The warmer water stays
on top and gets well mixed by wind-induced currents,

/

making this upper layer spatially uniform. However,
the currents are strong enough to mix only a certain
portion of water; the rest of the cooler warer is not
mvolved in the turnover and remains somewhart sepa-

rated from the epilimmon. It makes sense to represent each of chese spaual units as
separate box models and link them by certain fluxes, such as the sedimentation process
of marterial across the boundary of the two compartments.

Each of the box models may be described by a system of differential equarions
with initial conditions:

daX 3

d—cl = F(X,(t). P), X, (0) = X,
daX

d—: = KX, ), 5).%(0) = Xy,
daX

d[n = Fn (Xq ([)! Pn)sxn (O) = XO“

Here, once agaw, X, 15 the vector of the state vanables in compartmenc i, P, 1s the
vector of parameters used in the model in compartment i, Xy, is the vector of initial

conditions for compartment i.

As a discrete mterpretation, similar to that which Stella generaces, we ger a sys-

tem of differential equations:

X () =X, (t —dt) ~ F (X, (t — dt), P)de

These are then linked by flow equations:

X,(t) = X:(t = dt) + |Z X,t—dt)Q, —> X (- d)-Q,

L 151 #Fr

it
i
A

Here, we distinguish between two cypes of flows: advection and diffusion. Advection
describes motion caused by an external force (such as gravity, which causes sedimenta-
tion). Q defines the advective flux. Q, represents the flows that flow into the ith com-
partment from the surrounding jth compartments; Q, are the flows that flow out of
the ith compartment. Diffusion 1s defined by the gradient or difference between the

+ D;'(X)([—dt)—'x,(t—d[) di
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whnch -5 gUirte & distance! Soeneibeng simitar 45 foond In the subataric warldh 85 we
Fave sean, the tiny partickes of the microwsrld heve lifetemes of less than a milkonth of &
gecond, This is exiremely shom in the human tmescale. However, their sze iz aiso very
srrall and they trivel 91 hghtnng-tast velocities, To make mode sense of this oompanson,
physicists have oome Up with & messure called'a “particle second” — & unit of fimea equal
o 107 % secands, which 15 the nme needed for & partiche 1o travel over a distance a faw
times iis own size, Various parickes have Wetlimes that vary berwean 10 and 100,000 pariicle
seconcs ey

Such resolutions do not meke any sensa if we are considenng geclogical I:i'ﬂnq;l. TChE-
rEAT of gontmants of rising of mountaing Howewet, cenain slow processes may be abruptly
miterrupted by fast and vidlent fluctuations. Slow geclogical change yields 1o ap Earﬂqunk&
when in minutes and hours we see more disturbance than over the thousend years before
ihat. Modaling processas that oocur on a variety of scakes 5 3 big chaflengs, since it js pro-
hebitively hard o fepresant b Siow piocesses a the schle of the rapid ones, Hower, if wae
ignore the singulanties complately we may miss some really imporiant changes and ransior
mrations in this System,

When sizes don't differ that muech, thereis no exect reletignship between temporal and
spatlsd sgales For instance, sals régees i ther anvironment onte in evary, 4 Seconds. Even
though humans ara larger, thay can do 3 better job. For us, the world arolnd us ehenges
approximately ance every Y24th of a second. This resolution of ours 3 what defnes the rate
of change of snapshols in movias that wa waigh, If \we do it kess frequently, we E8E how
the moton becoees disconatinuous, figuies Start 1 move (njoarks, I we do it faster, we will
nat see the difference. We can actuslly insart anather frame end we will not register It They
sy that therm is 8 method of manipulating people, called tha “25th frame” This s whan a
25th frama i3 meerted and the moviea run a1 1/25th of a second. Thes single 2610 frame can
bé entitely oul of context. and hurmans to not Gonsciously register i, Howover, apparently
it affects gur subconscious and 1he information finds s way 1o the right parts of the brain;
influencing our opinkang and decissang,

Thiz would not b= posaibie far a fiy, whech scang the snveonment 20 times faster then
wi do. A fiy would state at the 25th frama for long enough to realize that sqn'-ntmﬂ_‘n.'lzqﬁily
ot of context was being displaved. On the other hand, & snedl would never sven see this
frama. Mareover, if you move fast ancugh, in 4 seconds you can pick a snail from the ground
and pit it in your begket. For the snail this kind of ransformatian will accur instantanscusly,
it wall never know how it got from one place 96 another. Thesa considerations are impestant
when choosing the sghi resolutions for vour models,

g i i -
Let e tabe o bk w o coaple o exaspies o Do thie sl ol eguatean con by
dervel

Modeling advection

armigder she sttt von o a cemarr conabmeend g space anel fowe s Suppase we are
Boge i o0 anby one spacil Jimension rechaps 2 lerp pipe o g cand T decaem
bt ot leeberomeneire we wii! agame et e whole lorgtl: of e caned ©an by
devnded nen puual segmenate, eoch Ax g The comgeananen of the suimtanes in
rach sprmenr wel b ke o e od et e o leesath S0 ab MoTaen A
Large e ngaghr we can chimk phonn ches medel s s commparrmenrai e aped we same o

the fopnaliem deconbed gl




Essential Math 103
ClL X-aX) Cit X) CLX+aX)
| S —_
r

4X

We also assume that there 15 a certamn velocity of flow in the canal, v, and that it
Is constant.

Let us now define the concentration of the conrtents in any given segment at rime
t + At assuming that we know the concentration there at time ¢ Since calculating
concentration may be confusing, let us write the equation for the rotal amount of
matertal in segment X at me © + A

Cl+ALx)-Ax=Cle.x) Ax+ Cle.x — Ax)-r-Ar — Cle, x}-r- At

v v
Rrplip e brom wepmgenn aburee Ao vt fooseginend

b fome
Rearranging the terms, we get:
Cle+ A, ) Ax—Cle, x) Ax =Cl,x —Ax)-v- At — Clr, x) - r- Ar

Dividing both sides by AxAr:
Cl+ At x)-Ax—Cle,x)>-Ax Cle,x = Ax)-r-Ac—Cle, x) v - Ac

Ax-At Ax- At

Or, cancelling Ax on the left-hand side and At on the nght-hand side:

At Ax

Cle+ A x) — Cl,x) L Clt,x — As) = Cle, x)

Now if we let Ax = Qand At — 0, we get the well-known advection equarion
as a partial differential equation:

de e

—_— = = —

h Ox

In discrete notation, the equation for concentration at the next time-step is:

S ) — Clyx = Ax)] 7 A (3.12)
Ax

Clt + Ar, x) = Clr )

[f we know the concentration at the previous nme-step, we can caleulate the con-
centration at the next time-step. To be able o use this equation at any (x, ¢}, we sull
need to dehine two more conditions. First, we need to know where to start — whar was
the distribution of material along the canal at the beginning, at time 1 = 0. That will
be the wutial condition:

Ci0, x) = ¢p(x)

Besides, if you lock at equation (3.12) you may notice that to solve it for any ¢
we need to know what the concentration at the lefi-most cell is, where x = 0. That
is the boundary condirion:

C{e,0) = b{1)
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There may be other ways to inirialize equarion (3.12) on the boundary. For
example, instead of defining the value on the boundary, we may define the flow,
assuming, say, that

C(,0) = C(1.1)

This will be a condition of no flow across the boundary, and will also be suffi-
clent to start the iterative process to solve equation (3.12).

Modeling diffusion

Let us now consider diffusion as the driving force of change in the concentration in
our system. The force that makes the substance move in this case is the difference
between concentrations in adjacent segments. It is also good to remember that in
this discrete approximation we are actually dealing with points on a continuum, in
thus case a line Ox. The concentrations that we are considering are located at these
points. We are dealing with average concentrations for the whole segments, and are
assuming that these averages are located at these nodes. Therefore, if there 1s no out-
side force to move the material, it would be reasonable to assume that the farther
away the points we consider are, the less material can be moved between them by
the concentration gradient.

D D
G, X — AX) C(t, X) Ct, X + AX)
o e - o &
*-__v_.l
AX

Just as before, let us define the concentration of material in any given segment
at time t + At, assuming that we know the concentration there at time t. The equa-
tion for the total amount of material in a segment at time ¢ + At is:

Clt+ At,x) Ax =
Clox)- Ax + C("'\'_A"')_C("x)-DchrC("'\'J“A")_C("‘X)‘I_)‘A;
Ax Ax

Clt,x+ Ax) — C(t, x)
Ax
the diffusive flux between two adjacent segments. D 1s the diffusion coefficient that
characterizes the environment, the media; it tells us how fast diffusion can occur in
this kind of media.
After some rearranging we get:

In this equation, 1s the empirically derived equation for

Cle, x — Ax) — Clt, x) B C(t, x) = Clr, x — Ax)

Ct + At, x) — C(t, %) _p Ax Ax
At Ax
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Once agan, if we let Ax — 0 and At — 0, we get the well-known diffusion
equation as a partial differential equation:

de . dc
At ifxt

In discrete notation, the equation for concentration at the next umc-step
becomes:

[Clt,x = Ax) = 2C{, x) + Clr,x + Ax)| D - At
Axl

Cle + At,x) = Cle,x) + (3.13)

If we know the concentration at the previous time-step, we can calculate the
concentration at the next time-step. Just as i the advecnion example, 1o caleulate
this equation at any (x, t) we need to define the nital condinon:

C(0,x) = C,x)

As for the boundary conditions, in thes case we will need two of them, We can-
not use equation (3.13) to caleulate the value both on the left-hand side boundary
C(r, 2) and on the right-hand side boundary Cit, N), where N is the number of the
maximal segment that we consider. Therefore, we need two boundary conditions:

Cle,0) =b,(1);  C(r,N) = by{1).

Stmilarly, there may be other types of boundary conditions, such as:
Cie,0)=C1,1), C{, N-—1)=Ci{t, N).

This will be a condition of no flow across the boundaries.

Structure

Consider a community of two compenng species thar eliminate one another. We can
describe this system by the following two ODEs:

dt (3.14)
dy
dt

where a and b are hunting efficiencies of species y and x respectively. This model can
be resoived analytically:

b _ by

"

dy ax
ax dx = by dy,

7 Pl
ax- — by = const
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A good way to look at system dynamics, especially in case of two variables, is to
draw the phase portrait, which presents the change in one variable as a function of
the other variable. Figure 3.7 presents the phase portrait for model {(3.14). It can be
seen that the two pepulations eliminate each other following a hyperbola. The initial
conditions define which trajectory the system will follow. In any case, one of the two
species gers eaten up first, while the other species remains. If the initial condition s
on the line equation \;'r(a_x) = \;m then the two populations keep exterminating
each other at infinite length, tending to complete mutual extermination. If the in:-
tial conditions are below this line, then v is exterminated and x persists. If the minal
conditions are above this line, then y wins. Models like those considered above may
be called ngid {Arnold, 1997}; their structure 15 totally defined. In contrast to a rigid
madel (3.14), a soft model would be formulated as:

i —h{x,v) ¥

de (3.15)
L J

ot

where a{x, ¥) and b{x, v) are certain functions from a certain class. It may be shown
that for moest functions a{x, v} and b(x, y) the phase portrait of system (3.15} is quali-
tatively similar to the one i system (3.14) (Figure 3.8). One of the species is still
exterminated, but the threshold line is no longer straight.

An important feature of model (3.15) is its strucrural stability. Changes in func-
tions alx, ¥) and bix, ¥} that describe some features of the populations do not change
the overall qualitanve hehavior of the system. Since in most cases our knowledge about
the objects that we model is nor exact and uses a good deal of qualirative descriprion,
soft models are more reliable for predicting the system dynamics. Unfortunately, there
are very limited analytical methods to study the structural stability of medels. The only
way to analyze structural stability in broader classes of models is to tun extensive sen-
sitivity analysis, varying some functions and relations in the model as well as changing
parameters and initial conditions,

5000 ................... :, .................. : ................... :, .................. E

> 25.00 4

0.00 i i
0.00 25.00 50.00

X

R LRI Phase portrait for the model of mutual extermination.



Structural analysis of models requires quite sophisticated mathemarics. Even for
a simple model like that above, analysis of its structural stability lies way bevond the
scope of this hook. In general, Table 3.1, from von Bertalanffy (1968), shows that
there is a very small domain of mathemartical models that can be analyzed by analyti-

cal mechods.

Most of the real-world models turn out ta be non-linear, with several or many
equatons. Besides, most of the systems are spatally distribured, which almost pre-
cludes analytical methods of analysis. However, there are numerous examples of
quite successful and stimulating analytical studies chat have led to new theories
and new understanding. Physics especially has an abundance of this sere of model.
Probably this is why most of the mathematics that is used in modeling came trom

physical applications.
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0.00 ; 50.00
X
MPhase portrait for the soft modelf of mutual extermination,
able Mathematical models that can be analyzed by analytical methods
Linear equations Non-linear equations
Equation One Several Many One equation | Several Many
equation equatons ‘ equations ecugbions equations
|
Algebraic Trivial Easy Essentially Very difficult Very difficult | Impossible
impossible
Ordinary Easy Dufficult Essentially  Very difficuit Impassible Impossible
differential IMmpossible
Partial Difficult Essentially  Impossibie | |Impossible Impassible Impossible
differential | impossible
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Ecology, social sciences and economics have yet to develop adequare mathemat-
wal merhods of analysis. Up tll now, most of the models i these sciences have been
numer:cal, analyzed by means of computer simulations.

Building blocks

Ler us consider seme of the main types of equations and formulas that you can encoun-
ter tn dynamic models (Figure 3.9). 1f you have a good feel for how they work, you can
pur together quite sophisticated models using these simple formalizations as building
Elocks While, indeed, complex non-linear models are notorious for springing surprises,
for their unexpected behavior, it is always nice to have some level of control regarding
what is going on in the model. Knowing some of the math behind the equations and
formulas in a modeling software package such as Stella will add some predicrabiliry to
how your model may behave, Knowing how some of the very simple formalizarions
perform as stand-alone modules will help you to construct models that will be berter
behaved and easier to calibrate. Cerrainly, interaction of these processes will creare
new and uncertamn behavior, which it will be hard or impossible to predict in some
cases. However, in many other cases you will ke able to have a prerty good expectation
of what the outpur will be when you put together the building blocks.

{A) Constant growth

dx/dt = a

where a = const

Solulion: x = ¢ + at,
¢ — inihal condition for x In

There is a conslant flow of materiai inlo the stock. If there is also a constant oulflow, then consider
a as tne net rate of flow, @ = in — oul

{B) Exponential growth

dx/dt = a

where a = const |

s o

&3 - |
i
Solulion x = ¢e? 3 Oﬁj,/ _

LU | |

The added positive feedback creales exponential growth. Dynamics can easily get out of control
because ol the very fast growth. Keep a small, especially at first when you are only lesling the model.

Growth: (A) Constant growth; (B) Exponential growth; {C) Growth with saturation,
(D) Growth with peaking; |E) Delayed response.
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(C) Growth with saturation

dwdt = ax - bx? ' s
where a and b = consl " /
ol I, |4 7
ace™ L 1 i '
Solution® ¥ = ————— N " ot N E
at+bee”-1)
et 3 3 5 7o

The exponential growth 1s now dampened by exponential decline. At smaller populations the linear
funclion {ax) dominates. As numbers increase the parabola (bxZ) overwhelms and shuts down growth.
The sotution 1s the so-called fogistic equalion. Note thal the model is identical to the model with
carrying capacily’ ax - bx? = ax({1 — bx/a). The carrying capacity in this model is then a/b.

When x = a/b Ihe growth is zero and the model salurates.

(D) Growth with peaking

dx/dt = ax — bxS!

where a, b, and s = consl

A simple way to make the model peak and then decline is to have a variable exponent in the outflow part
and make this outflow grow with time. In this case again at first the outflow is very small and the system
grows. Later on the outliow becomes dominant and gradually reverses the dynamics eventually getling
the system down lo zero. Used less often than Lhe first three blocks but still may be handy.

(E) Delayed response

de/dt = ax - bxZ(t — At),
where a and b = const t *;O
At - is time delay £3

L
1y
In Dt

ML

A powerful way to get prefty confusing resulls. In this model of saturated growlh (see above) we assumed
that mortality is controlled by the populalion size several time-sleps ago. This may be if we assume hat
mortality is due 1o a disease and the disease has an incubation period of Al If Af = 1 we slill have a
saluration. If At = 2 we suddenly run inlo oscillations as shown in graph. Wilh At > 2 we have a population
peak and collapse somewhat similar to the dynamics in the previous block. The delay lunction should be
always used with caution, since it can easily destabilize your model.

Figure 3.9 TSNS
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Further reading

If you feel that your math is too flaky you may want to vefresh t Any textbook in calculus will
be more than enough. Try this one for example: Thomas, G.B , Finney, R.L. (1989). Elemens of
Calculus and Analytic Geomerry Addison-Wesley These days you can also find a lot on the web.
Just type “differenval equations” mio Google and you will ger quute a few links with precey good expla-
nanons to choose from.

Berbnski, D (1978). On Systems Analyss An Essay Concerning the Limutanons of Some
Mathematical Methods i the Social, Political, and Buological Sciences. MIT Press — This does a
really good job ¢ xplaming why mathemancs can be quite important for building good models Berlinsk:
may be overly critical of some of the classic modeling treanses, including books of Berwalanffy and
Meadows, however most of his criticism makes a lot of sense. It is important to remember that mod-
els are more than mathemaucal objects, and that in some cases they may be useful even with flawed
or inadequate mathematcs.

Viadimir 1. Amold has been stressing the difference berween soft and rgid madels in his {997 presen-
tanons. His classic hook: Arnold, V. 1. (1992). Ordinary differential equations. Springer-Verlag —
Can be recommended jor those who want to get a beuer understanding of modeling with ODE’s and
master some analyocal techmques.

von Bertalanfty, L. (1968). General System Theory. George Braziller — Contans some important
mathemancs and ideas about the bulding blocks i modeling.
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4. Model Analysis

Sensitivity analysis
Model calibration
Maodel testing
Conclusions

SUMMARY

There are many ways in which a model can be analyzed and rested, and some of them
have become more-or-less standard for the trade. There mayv be many unknowns or
assumptions that go into the model. Sensitivity analysis 15 a wav to fgure out how
important these assumprions are and what effect they may have on the model perform-
ance. Sensitivity can be tested by disturbing a model component that 1s not known for
certain (a parameter, a function, a link), and then seeing how this disturbance propa-
gates through the model structure and how different the results that come from the
disturbed model are. A second standard analysis is performed ro see how closely the
model can be made to reproduce the experimental data (qualitative and quantita-
tive). This is model calibration. The model paramerers are modified to minimuze the
difference between model ourput and the available data. Finally, other tests can be
conducted to validate the madel and verify its peformance. This analysis includes dif-
ferent methods, ranging from diligent debugging of software code and mathematical
formalizations to camparisons with independent data sets, and extensive scenario runs.

Keywords

Uncertainties, paramerters, initial conditions, critical parameters, inverse problem,
data madel, error model, Theils index, R? index, weighted average, empirical model,
trendline, process-based modeling, objective function, minimization, trial and error,
optimization, Madonna software, curve fitting, open svstems, CLIMBER model, vali-
dation, verification, scenaniu, credibility.

Choosing variables and connecting them with flows and processes is not enough to
build a model, Actually, this is just the beginning of the modeling process. By iden-
tifying the variables and formalizing the processes that connect them, in Stella or i
any other modeling tool, only one possible description of the system is created. We
still need to make sure that this description really describes the system, and then try
to use the model in a meaningful way to generate additional knowledge about the
system. Why else model ar all?

This stage of testing and working with the preliminary maodel built s called
maodel analysis. |f the model is a mathematical formalization — say, a system of ordi-
nary differential equations — we may try to solve the equations. If this is possible, we
get a functional representation for all model variables and can pretty much say what

111
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they will be at any time or place, and see clearly how different paramerers affect them.
However, as previously indicated, the chances are quite slim that we will get an ana-
lytical solution. We may still try to analyze the phase plane of the model variables and
derive some general understanding of the model behavior - perhaps by testing for equi-
librium conditions, or trying to identify when vanables grow and when they decline
The more results we can denve from this analynical analysis the berter, because all the
analytical information we obtain 1s general and it describes the system behavior for al.
kinds of parameter values that we may insert into the model - not just the single set of
parameters that we use when we run the model numerically on the computer.

Sensitivity analysis

If no analyical analysis is possible, we have to turn to numerical methods. Using
Stella, in order to see how the model performs we need to "Run it. By doing this,
we numerically solve the system of difference equations that Stella has put rogether
hased on the diagram and process formalizations that we have formulated. A numeri-
cal solution of a model requires that all parameters take on cerrain values, and as a
result 18 dependent on the specifed parameter values. The result of a model run is
dependent on the equations we choose, and the initial conditions and paramerers
that are specified. Some parameters do not matter much; we can vary them quite sig-
nificantly, but will not see any large changes in the model dynamics. However, other
paraeters may have a very obvious effect on the model performance. Even small
changes in their values result in dramatically different solutions.

Analyzing model performance under vanous conditions 1s called sensitivity analy-
ss. It we start modifying a parameter and keep re-running the model, instead of a
single trajectory we will generate a bunch of trajecrories. Similarly, we can start
changing the initial conditions or even some of the formalizations in the process
descriptions. By companng the model output, we get an idea of the most essential
parameters or factors 1 the model. We also get a better feehing of the role of indi-
vidual parameters and processes in how the model output is formed, what parameters
aftect what variables, and within which ranges the parameters may be allowed to
vary. This is very important because, in contrast to an analvtical sclution where we
could find an equation relating mode! output to the input parameters, with numeri-
cal models we do not have any other way o learn what the connection 1s berween
the various parameters and the model output, except by rerunning the model with
different parameter values. Wheress in the analytcal solution we can use a formula
that clearly shows how a parameter alfects the output, in case of numeric Tuns we
know nothing about what to expect from the cutput when a parameter changes.

In Stella, there is a method of making estimates for model sensitivity. KN Help

Choose "Sensi Specs...” in the Run menu. A window will open that will s:““:‘ %R
allow you ta set up your sensitivity test | stan
The following steps will be required: Sector Specs...

1. Double click on the parameter that you want to test for model
sensitivity, It will be moved to the nght pane. |
2. Haghlight the parameter in the right pane

Sensi Specs... MY

Run Specs...  UMR
Range Specs...

| Check Units
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3. Set the number of parameter values that you wish 1o test for.

4. Choose how you want the parameter to change its value.

5. Make sure you click the Set button to fill in the table on the right, where parameter vaives
will be automatically calculated to run the model.

Sensitivity Specs

Allowable Selected (Value)
) Fopulatian 'B_param (0.1)
E osoen :
O M_para i 2
O S_param 1 i
| =
—
‘ | €2}
|
T
| i
| :
| |
) \i’ar-;lacr\ Type: E# Value .
f® |ncremental T ool
# of Runs: T Mribution e 2 0133 m

s S0y S -

7, Paste data 5 < _ as R

Defiin 3 Start: 0,01 # Sensitivity On
{_Graph fnd; 05 _ Prunt Setups

¢ Table "Cancel | | 0K

It vou now click "OK" the model will run several times in a row for the differant values of
the paramster chosen. Before you do that, vou need to prepare your cutput. Make sure vou
create 3 "Comparative” graph 1o see the difference in the cutput that you will be generating.
For example, in the mecdel that we were bullding above, If we start changirg the Birth Rate
parameter we will produce a family ¢f curves, which show that the model is quite sensitive to
changes in this paramater,

. DefineGraph >
Graph Type: @ Time Serles | Scatter i Bar (" Shetchable
™ Comparative Connect Dats _ Bencnmark
Selected
~a o L[ Populanon ¥
o
O Temperature
O T lrmatatran
Tie: | Untitled
] Show Numbers On Plots ™ Thick Lines _ Hide Y-axis Labely
™ Show Grid _ Hide Detall
' Make 5 Grid Segments  _ Mark for export
. Fa¥)
i Max Page: i
Scale: St <7
From To

LU (o) (@00
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It you modity ancther parameter, say the one that is related to the effect of temperature,
you will get another bunch of trajectories.

You may already nolice that apparently the change in this parameter has a less prominent
effect. While you can see some considerable vanation, you do not get the curve to declinge to
zero — at least not for the values of the parametar chosen for this experiment

Sensitivity analysis explores the parameter space and can help us 1dentify some
of the ¢rineal parameter values, where the model might, for example, crash or run
away 0 infimry. Every combination of parameter values translates into a specific
model output. 1t 15 like testing the landscape for hidden surprises and trying to cap-
ture rrends tn model behavior in response to the changing combinations of parameter
values, iguring out how to make certain variables grow, or decline and atr whar rime.

Later on in the modeling process, when we collect evidence of the model actually
representing the system, and have sufficient confidence in the model performance, we
can perform further sensitivicy analysis to the point where we make conclusions about
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Qualitative comparison may become difficult as we close on our target, gettiing
the model output almost 1dentical to data. We may be sull improving the results
somewhat, but we can no longer distinguish the gains by simply staring at the graph-
ws. Another case 1s when we ger a better match between output and data in one
time range for one set of parameters, but achieve a becter march wich a differenc tune
range for another set of parameters. Which parameters do we choose then? In these
cases. visual comparisons can fail. Quanorative machematical formulas can then
become useful. One simple formula for the errar model is:

E:iu (4.1)

=1 yIZ
where x, are the data points and v, are the values in the model outpur that cotre-
spond 1n time or space to the data points. Note char this formula tracks the relative
proximicy of che two models — that 1s, for larger values we allow larger ertors. The
smaller the eror, E, the bhetter the model calibration. This index is quite similar
Thel’s measure of forecast quality:

(i(X. -y
i=1
f = ]1/2

"
>ov!

=1

E (4.2)

In some cases, we may be concerned only with the average values over certain
ume periods. Then we can compare the mean values:

E, = A i I A (43)

u
n n

Very often, the metric used to compare the models is the Pearson moment prod-
ucr correlation coefhicient,

YKy, T 9L KDY,
=1 =1 ! (44)

n ( n 2 n n @
anF—[Zx. 2|3y,
=I
| J

=] =1 i=|

or the R? value, which is equal to r*. This correlation coefficienc is good for matching
the peaks. Note that unlike the above error models, where the best fit came with the
mintmal value of E, here the best fit 1s achieved when > = ],

These formulas become more cumbersome if we calibrate for several variables
at once. In the sunplest case, we can always take an average of ercor models for indi-
vidual state variables:

I3
SE
Ek - =1
I
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A DLCIEN  Experimental model of the microbial system.

where E_ are the individual errors calculated using equations {4.1)-(4.3) or similar met-
rics. In some cases, calibration with regard to one vanable may be more important than
the fit for the other anes. For example, when we have the hest dara model for a certain
variable bur very approximate information about the others, we would want to make
sute that we calibrare more to the reliable informarion, while the importance of other
data sets may be secondary. In this case, we may want to introduce certaim weights inte
the formula so that particular vanables get mote attention in the comparison:

L
> wE,
i=1

W k

where w; are the weighrs associated with k different variables,

The error model is then affected most of all by rhe vanable that has the higher
weight. This means it is more efficient to ger the error down for char variable as far as
possible, since the rotal error then gets reduced the most.

Ler us consider an example. Suppose that we have been running an experiment in
rhe lab measuring the growth of a batch of microorganisims over a period of 100 hours,
taking a sample every 5 hours. We then use a spreadsheet progran: to store the results
and to present them in a graphic format (Figure 4.1). Also suppose that we are measur-
mg & certain limiting factor - say, temperature, or substrate availabilicy — that describes
how suitable the lab environment is for the growth of the organisms that we are observ-
ing (Figure 4.2). We are normalizing this measured value to bring 1 within a range of
[C,1]. This can be done if we divide all the dara by the maximum chserved value.

Let us bunld a model of the system. Suppose we are not interested in the struc-
ture of the system and want to build an empirical, “black-bux" model.

Empirical model

The output that we have consists of the data abour the number of organisms. The
input is time, and the information about the temperature in the environment. One
sumple empincal model can be created immediately in a spreadsheer program. For
example, in Excel it is called “adding a trendline to the graph.”
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CEUICERRM A trendline as a black-box model that uses time as input.

In this case, the only input information that is used is time. The model is the
equation of the line, which is a polynomial of order 2:

v =-0.0978x? + 14.554x — 81.443

As we can see in Figure 4.3, the trendline does a pretry good job of representing
the model results, though there is obviously a difference between the model cutpur
and the data poirts available. Note that Excel labels the independent variable x, while
in our case it should rather be ¢ for ime. By adjusting some of the parameters in the
model, we may make the model output closer to or further away from the data points
measured in the experiment. Actually, this is exactly how Excel came up with this
equarion. It took a general form of a second-order polynomial and started ro tweak the
three coeficients. We can see how this works if, instead of “Adding the trendline” in
the Chart menu, we set up a general form of polynomial and use the “Solver” oprion
in the “Tools" menu. We will then be able acrually to see how the values of the three
cocfficients will be modified while Excel will be optimizing something to get the two
curves to match as closely as possible.

This process of twesking the model parameters 1 an attempt to get a better
representation of the data available is the calibration of the model. In our case, the
coefficients of the polynomial are the unknown model parameters that have been
varied in an attempt to get the pelynomial trendline as close as possible to the data
points.
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AICLCIRRM A fifth-order polynomial as a black-box model that uses time as input.

The R-squared value for the model described above is R? = 0.9232. Recall that
this error model 15 such thar the fit is gerting better as R? is approaching L. If we use
another model, a sixth-order polynomial, we can improve the R? value and raise it
to R = 0.9775 (Figure 4 4) In this case we will have to guess the best values for
seven parameters instead of three. Even though we get very high R? values from
these models, they have the problem of generating negative output at certain times.
This should ke prohibited due to the nature of the modeled process — the population
numbers cannot be negative.

The simplest way to avoud this is to clamp the model with an “if”" statement:

o=l 0 iF—0.0978x* +14.554x ~81.443 < 0

T [-0.0978xF +14.554x — 81.443,  otherwise

This would be then our empirical model, where the numeric coefficients are the cali-
brated values.

There are other statistical tools that are available in Excel (such as the Solver or the
Goul Seek tools) or in other packages that may be further used for a refinement of our
calibration. We may also try to bring in the other available data set — that s, tempera-
ture — and run multiple regression for time and temperature to try to improve further our
empirical model; however, this will require more sophisticated statistical rools than Excel,
unless we formulate our own equation and use the Solver to munimize the error model.

In anv case, what ts important is that, when building these empirical models, we
entirely relv on the information that we have in the dara sets. We come up with some
type of equation and then quite mechanically adjust the parameters in an attempr to
reproduce the data as well as possible. All the information we know about the system 15
in the dara. It may be somewhat risky to use the same model in different conditiens -
for exaraple, when the temperature is consistently 59 lower, Temperature has not been
included i this model at all, and clearly the results will be totally off if it changes.

Process-based model

Instead of further exploring the empirical model, let us try to build a process-based
model for the microbial system that we are studying. We will draw on some of our
understanding of population growth, consider some of the processes that mayv be
invelved, and describe them in the model. This brings up a whole different paradigm
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of modeling, where, in additon to the mformation contained in the dara sers, we
bring in other information available fron similar studies conducred before on similar
systems, or from general ecological theory, or from mass-conservation laws, or simply
from common sense.

For the microbial systerm that we are considering, just as for any other pepulation, the proc-
esses of growth and death are most likely playing an important rofe. Perhaps we can try
to describe the hfe of the whole population in 1erms of these two processes. The simplest
mode! of population growth can be then presented by the following Steila equations:

Population(t! = Populationit — dt} + (Growth — Mortality] * dt

INIT

Population = 10

INFLOWS:

Growth = GrowthRate*Lim_facter*Population* (1 — Population/C_Capacily)

OUTFLOWS:

Mortality = MortalityRate * Population
C_Capacity = 500

GrowthRate = 0 6

MortalityRate = 0.15.

We can alse insert the values far the limiting temperature factor as a graphic:

Lim_factor = GRAPH{TIME}
(0.00, 0.305}, 110.0, 0.47), (20.0, 0.65), (30.0, 0 815, (40.0, 0.7), (50.0, 0.505), (60.0, 0.745),
(70.0, 0.93), (80.0, 0.86), (90.0, 0.71), {100, 0.00)

By looking at the cata points we see that after the initial period of rapid growth, the
pepulation size seems 1o saturate at a certain level As we have seen above, there is a simple
way to control growth in the model by introducing the Carrying Capacity, which represents
the maximum number ol organisms that can survive in the lab environment With the param-
eters listed above, the model produces the following dynamics:

1: DATA 2: Population
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Curve (1) on the graph represents the experimental values that we nave been observ-
ng. while curve (2] 15 the simulated behavior. Here, too, we see that there 1s 3 certain
error or distance between the two models The size of this error depends on the parame-
ter values used in the model. Let us run sensitivity analysis for the three parameters in this
rmodel.
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These graphics show how the model reacts to changes in GrowthRate (from 0.3 1o
0.8}, C_Capacity lfrom 300 to 700) and MoralityRate (from 0.1 to 0.3) We may notice that
changes in growih rate and mortalily have a rather similar effect, mostly altering how the pop-
ulation changes during the imitial growth penod As might be expected, the carrying capacity
value defines where the population saturates later on. \WWe may already start to make some
mean ngful changes 1o the parame*ers, trying to make the output closer 1¢ the data.
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To keep track of our gains and losses, we can put together an error model. Described in
terms of Stella equatons, 1ne error model might be as follows

Errarit! = Errorit—at) 4+ {Er_In} * dt
INIT Error = 0

INFLOWS:

Er_In = Population — DATA|A2/DATAAZ

This formula reproauces the metrics described above as the sum of sgquares E in (4 1)
Notice that at each ume-step we add angther error term, which makes 1t equivalent to the
summation that we see in (4.1}, Kegping in mind the results of sensitivity analysis, we can
now start to tweak some of the model parameters and see how this changes the oistance
between the data and pooulation that s also measured by the error vanable. Maost ikely
the GrowthAate will nead to go down a little to make the population grow slower, but the
C_Capaoity should probably go up to make it saturate at a higher level. Thal should bring the
model output somewhat closer 1o the Data. This Is an terative tnal-and-error process that
may or may nel get us o tne perfect match

You may have noticed that there 15 a difference in calibrating empirical and
process-based models. In empirical models, we rely entirely on the information that
we have in the data sets. We come up with some rype of equarion, and then quire
mechamcally adjust the parameters in an attempr to reproduce the data as well
as possible. All the information we know about the system is i the dara, and the
paramerers usually can take any values as long as the error model is minimal.

In process-based models calibration is different, since we are restricted by the
ecological, physical or chemecal meaning of the paramerers that we change. Besides,
there are usually some esumares for the size of the parameters: they are rarely pre-
cisely measured, bur at least the order of magnitude or a range is usually known.
Moreover, there are other factors thar may play a role, such as confidence in the
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available estimates for the parameter, sensitivity of the model to a parameter, etc.
These are imporrant considerations in the calibration process.

At the bottom of any calibration we have an optimization problem. We will
learn more about optimization in Chapter 8, but here we just want to note rthat
optimization in this case is about seeking a minimum for the error model. We have
certain parameters for which values are known and others thar are only estimated
within a certain domain of change. We call the latter ones “free” parameters. These
are the ones to change in the model 1n order to munimize the size of the error. To per-
form opamization, we first formulate a goal funcaion (also called an objective function).
Then we try to make this funcuon as hetle (or as large) as we can by changing differ-
ent parameters that are involved. In case of calibration, the goal function 1s the error
model E = {(P, C, R), described as a function of the parameter vector P, the vector
of initial conditions C and the vector of rescrichions R. So we search for a minimam:

min E

over the space of the free parameters P and nicial condicions C, making sure chat
the restrictions R (such as a requiremenc that all state variables are positive) hold.
lc is rare chat there is a real system model that will allow chis task ro be solved ana-
lycically. e 1s usually a numerical procedure chat requires the employment of cerrain
fairly complicared software.

There are difterent ways to solve this problem. One approach is to do it man-
ually, as we did above with the so-called crial-and-error method or educated-guess
approach. The model is run, then a parameter s changed, then the model is rerun,
the output is compared, the same or anocher parameter 1s changed, and so on. It
may seem quite tiresome and boring. buc actually this process 1s extremely useful in
underscanding how the system works. By playing with che parameters we learn how
they affect oucpur (as in the sensitivity analysis stage), but we also understand the
synergetic effects thar paramecers may have. In some cases we get quite unexpected
behavior, and it takes some chought and analysis to explain how and why the spe-
cific change 1n paramecers had this effect. If no reasonable explanation can be found,
chances are there is a bug in the model. A closer look at che equations may solve the
problem: something may have been missed, or entered wich a wrong sign, or some
effect may not have been accounted for.

In addition o the educated-guess approach, there are also formal mathematical
methods thar are available for calibration. They are based on numerical algorithms
thac solve the optimizacion problem.

Sorne modeling systems have the functionalicy to solve che optimizacion problem
and do the curve ficting for models. One such package 1s Madonna. One big advan-
tage of Madonna is that it can also rake Stella equations almost as is and run them
within (ts own shell. Madonna also has a nice graphic user incerface of its own -
so it is as well for us to start putting the model cogether directly in Madonna, if we
expect some optimization o be needed.

To do the parameter calibration for our Stella model in Madonna we will have to:

* (o to the Stella equations
¢ Save them as a text file (File -> Save As Text)
¢ Open the file from Madonna, using the Open command in the File menu
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+ (Alternatively you can "choose all” and "copy” the equations from 5tella, and then "paste”
them directly into an Equations window In Madonna; however, in this case you will have 1o
remove all the "INFLOW:" and "OUTFLOW:" statements in the equations by hand)

» Define the control specs such as the STARTTIME, STOPTIME, and DT

The madel is now ready to rur in Madonna.
Running the same population model, built now in Madonna, we get the following cutput,
which is - not surprisingly — identical to the Stella cutput:
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As we start running the medel, the first thing we notice is that Madenna runs much
faster than Stella. That is bacause in contrast to Stella, which interprets the equations on the
fly, Madcnna has a buili-in compiler that first compiles cur modal and only then runs it. On
scme models, the difference is guile significant, up to orders of magnitude. This is espacially
essential for optimization, since all optimization sigorithms require numerous model runs to
be performed.

The next thing we need to do to ¢alibrate our madel 15 input the data into Madonna. This
is done as parl of the optimization dialogue, which in this case is called Curve Fitting In the
"Faramsters” menu, we choose “Curve Fit..." A dialogue box will open:

Tl e 2 el CUPVe it (AR e it i R R R T
i i Farameters: o
IMIT Error 2 |
INIT Population Toad i mmiam: [0
|r r-||:,'|€||\_' e -
|Growthiaze <t Remave « | Guess #1: i: ]
BTl Rai e ;
— | i
- > i
[ Muttiple fits:
 feyatr - -
FiL Variable: Aodss | |
To Dataset; |#calibdata T&] [ o Remave o |
Eolllbl Ll l i i
Import Datasel.. =1
Wiyt !
Tolerance: | Cancel I ¢
U
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Here, we need to specify four items

Now, If we press the "OK” button, some number crunching will begin; after 144 model runs
we will get a new set of parameters that provides a much closer fit between the data and
the simulation model.

The new values for the model parameters are:

Choose the free parameters that can be changed for model calibration

For each parameter, identify the maximal and minimal allowed values, and two “guesses” —
values In the domain of change that will be used to initialize the optimization process
Choose the state variable that we are calibrating — “Population” in this case

The data set to which we wish to calibrate the model - “#icalibdata” in this case The data
set should be in a file, one value on a row which can be generated, say, from Excel if the
data are saved as Text On clicking the “Import Data set. .” button, we will be given the
opportunity to choose the file with the data.

Y =T E =y Y T— = g re
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C_Capacity = 5773, GrowthRate = 0.42061, MortalityRate = 0.0760512

The calibration problem may not have a unique solution. There may be sev-
eral parameter vectors P that produce almost similar output or deliver the same or
almost the same minima to the optimization task. In that case, it may be unclear
what parameters to choose for the model. Other considerations and restric-
rions may be used to make the decision. For instance, with C_Capacity = 600,
GrowthRate = 0.5, MortalityRate = 0.1, we get a it almost as good as that achieved
with Madonna. Which of the two parameter sets should we choose for the model?
Normally this decision 1s made based on the other information about the system that
1s available. For example, rhere may be some experimental data that would either
identify a value for one of the rate coefficients, or at least put a range on them. Then
we can see which of the calibrated values is in better agreement with these restric-
tions. In some cases this information may not be available. and there may be some
uncertainty about the system. This can further drive our experiments with the sys-
tem, or tell us more about the system behavior.

Suppose we have done our best when finding the values for all the parameters in
the simulation model and yet still the error 15 inappropriately large This means thac
something is wrong in one of the models that we are comparing. Either the concep-
tual model needs to be revised (the structure changed or the equations modified), or
the chosen scales were incorrect and we need to reconsider the spatial or temporal
resolution. Alternatively, the data are wrong - which happens quite often, and can
never be dismissed as a possibiliry.

To conclude, there are different ways to describe systems by means of models.
There are different models that may be buile. The process of adjustment of one model to
match the owtput from another model 1s called cahbration. This is probably the most gen-
eral dehnition. In most cases we would speak of calibration as the process of fitting
the madel output to the available data points, or “curve fitung.” ln this case, it is the
data model that ws used to calibrate the mathematical model.

Note that there is hardly any reason always to gwe preference to the data model.
The uncertainty in the data model may be as high as the uncertainty in the simulation
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The solution is to approximate the parameter values based on the data we have
about che dynamics of state variables, or flows. That is the model calibration procedure.
We are solving an tnverse problem: finding the parameters based on the dynamics of
the unknowns. This would be fine if we could really solve that problem and find che
exact values for the parameters. However, in most cases this 1s also impossible and,
instead, we are finding approximate solutions that come from model ficting. But chen
how 1s this different from the fitting we ¢o when we deal with empirical models? In
that case, we also have a curve equarion wich unknown coefficients, which we deter-
mine empirically by finding the best combination of parameters that make the model
output as close as possible to the dara.

The only difference is that instead of some kind of generic equation in the empir-
ical models (say, a polynomial of some form), in process-based models we have par-
ticular equations thar have some ecological meaning. These equations display certain
behavior by themselves, no matter what parameters are inserted. A polynomial can
generate pretty much arbitrary dynamucs as long as the right coefficients are chosen.
However, an equation of exponential growch will always produce an exponent, and,
say, a classic predator—prey system (considered 10 the next chapter) wil always pro-
duce oscillations, no matter what coefficients we insert. Of course, for some param-
erers they may crash even before generating any meaningful outpur, but otherwise the
dynamics will be determuned by the type of equations used, at least for a large enough
range of coefficients. So we may conclude that, w a large extent, we are building a
good model as long as we chose the night dynamic equations to describe our system.

On top of the basic dynamic equations we overlay the many other descriptions
for the processes that need to be included in the model. These may be the limiting
factors, describing che modifying effect of temperature, lighe or other external condi-
tions. There may be some other derails that we wish to add to the system. However,
if these processes are not studied experimentally, and if the related coefticients are
not measured, their role in the model is no different from that of the coefficients that
we have in an empirical model. In both cases we figure out their values based on a
time-senes of model output; in both cases the values are approximate and uncertain.
They are only as good as they are the best ones found; we can never be sure that a
better parameter set does not exist.

So the bottom line 15 that there is a good deal of empuricism 1n most process-
based models, and the more paramerers we have estimared in the calibration process,
the more empiricism is involved, the less applicable the model will be in situations
outside the existing data range. How can we make sure that we have really captured
the essence of the system dynamuics, and can reproduce the system behavior beyond
the domain that we have already studied?

To answer these questions, the model needs to undergo a process of vigorous test-
ing. There is not {(and probably never will be) a definite procedure for model testing
and compatisons. The obvious reason is that models are built for various purposes;
their goals may be very different. Moreover, these goals may eastly change when the
project is already underway. There is no reason why goal-setting should be left out
of the iterative modeling process. As we start generating new knowledge and under-
standing with a model, its goals may very well change. We may start asking new ques-
tions and need to modify the model even before it has been brought to perfection.

Besides, ecological and socio-economic systems are open, which makes their mod-
cling like shooting at a moving rarget. While we are studying the systermn and building
a mode!l of 1t, it 1s already evolving. It evolves even more when we start administer-
ing control, when we try to manage the ecosystem. As a result, models can very well
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Another important step in model analysis s vertfication. A model is verthed
when it is scrupulously checked for all sort of internal incensistencies, errors and
bugs. These can be i the equations chosen, in the units used, or in links and con-
nections. There may simply be programming bugs in the code that is used o selve
the model on the computer, or there may be conceptual errers, when wrong data sets
are used to drive the model. Once again, there s hardly a prescribed method to weed
these out. Just check and recheck. Run the model and rerun it Test it and rest again,
There is no agreed procedure for model verification, especially when models become
complex and difhcult to parameterize and analyze. We just keep studying its behavior
under all sorrs of conditions.

One efficient method of model testing is to run the model with extreme values
of forcing functiens and paramerters. There are always certain ranges where the fore-
ing funcrions can vary. Suppose we are talking about temperature. We make the tem-
perature as high as it possibly can be in a parricular system, or as low as it can be, and
see what happens to the model. Will it sull perform reasonably well? Will the output
stay within certain plausible values, or will the model crash? If so, we need to try o
hgure our why. [s it something that can be explained? If so, then probably the model
can be sull salvaged and we may simply need w remember that the forcing function
should stay within certain allowed limits. [f the behavior cannot be explained, we
need to keep digging — most likely, there 1s something wreng.

Just as when we are testing 2 new car, the best wav to find out how it performs
is to force 1. Step on the pedal, and let it run as fast as it can. See if somerthing
coes wrong, and where it might fail. The beauty of testing the madel is that it is not
wrecked when it goes wrong! If we force the car wo hard, we will ruin it. With the
model, we can do whatever we want to it — change all the parameters as much as we
wigh, If the computer does not overheat, we can always go back to previous parain-
eter values, and the model will run again like new. However, we will collect some
valuable infermation about what to expect from t, where the bugs and the features
are, what we can let users do to it, and where we should add some limits to make sure
they do not have surprises that we cannot explaim.

Anather important check is based on first principles, such as mass and energy
conservation. It is important to make sure that there is a mass balance in the model,
so that nothing gets created from nothing and nething s lost.

Running scenarios is another great way to test 2 model. This step may already be
considered as model use rather than just testing. A scenaric in this context is a story
about what can hagpen o the system. To define a scenario, we need ro formulate
all the forcing funcuions (say, patterns of climate, or pollution loading, or landuse
patterns) and all the contral parameters {say, management rules, or external global
variables). In a way, we are modeling what the external forcings are to which the sys-
tem will be reacting. For example, if we are considering a maede! of landuse change
for an urban area, we can formulate a so-called “husiness as usual” scenario that wll
assume that all the existing development trends continue into the future: the popu-
lation, the econemy, the investments, ete. will continue to grow at the same rate,
there will be ne additional contrals ar limits introduced, or climatic perturbations,
etc. These we feed into the landuse model and run it to generate patterns of landuse
under this scenario.

We may then figure out a different scenariv — perhaps a sustainable develop-
ment plan. We will need to formulate this in terms of the model. This means that
we translate the sustamnable development plan into the parameter values and forcing
functions that will most closely describe that. In a way, we model what we think will
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be a sustainable furure. In our case we may assume thar there 1s a control over popu-
lation growth, so that certamn birth-rate reductions are introduced. Furthermore, we
will tie economic growth to the natural resources that are available in the area, and
make the growth rate slow down as natural capirtal gets depleted We can also include
some rules for invesrments that would stimulate the green economy. As a resulr, we
will get a different set of parameters that control the model, and the model run will
now produce some different pattern of landuse as a result of this scenario.

Yet another scenario can be pur together for devastating climartic conditions - say,
a storm that will flood the area and destroy property and population. We will need to
formulate some climatic conditions describing this storm. Once again, we are model-
ing cerrain conditions or forcings for the system. Note that scenarios ate also models,
coherent and feasible models of external conditions that will then drive the model of
the system that we are studying.

Note that scenano runs are also powerful tools of model testing. In this case, we
are likely 1o explore the unknown domains of model parameter values. We do not
have the data about the model behavior that we might expect, but we do wanr the
model to produce something qualitatively reasonable. If thar does not happen, we
may question che model validity and have some clues where to look for errors. For
example, if 2 model of sustainable growth results in pacterns of furcther urban sprawl,
this would be a warning \ndicating that somerhing is not working right in the model.
We should take a closer look at the formalism we used, or perhaps at the parameter
values that we calibrated.

The botrom line regarding all this resting 1s that there 15 no perfect model. It
is hardly possible to get a perfect calibration, and the validation results will Likely
be even worse. No matter how long you spend debugging the model and rhe code,
there will always be another bug, another imperfection. Does this mean chat this is
all futile? By no means! As long as we reach new understanding of the system, as
long as the model helps to communicate understanding to others and to manage and
control the system, we are on the right path and our effores will be fruitful. Any model
that is useful s a good model.

Conclusions

One obvious conclusion from all the above is that putting the model together is nor
just about esrablishing variables and connecrions and writing the equations for them.
We also need to do a lot of number crunching, running the model many times. If the
model 1s complex and requires a great deal of computer power to run it, we will be
limited in the extent of testing and improving that can be done with the model. We
will have to be prepared to do che job on our slow deskeop (and spend more time),
or we will need to find a more powerful super-computer {and spend more $3), or we
will have to hmit ourselves in the amount of testing and calibrating that we can do
{and get a poorer model and less well-understood system). Yet another oprion 1s to
go back to the model design stage and try 1o simplify the model.

There is a potential Catch-22 in this process. On the one hand, the more infor-
mation about the system we can use 1n our model, the more processes we can include
and the more detail about these processes we can formalize, the better our model
should be and the more 1t should be able o tell us about the real system. On the
other hand, the more complexity there is burlt into the model, the longer it will take



hAriel Andalbysis 136

v ehe e imang e wall beoalde o alonl, ehe e underasndong e w0l s
thr fo Jdwrme driet thie omoeded et thie Tens dwero e selioale @ oo e w0l e

Phas o why s Beep eepestipg od agasgee chat imealel g ool ple ays L aters
v A b bt Juig the ctuadelegy presme wr aerd Bl b o Palamar o ile
el A rmpien iy pebihel® Bae we nasitanam covie ever tbhe reade imoa s
b g cent amples no el e e wweia T e che o moudel s amplesary manon e
g oal the ety Lo e menily nope afl ok Uy pame  deeg e mEy peer oo B,
v PEg Jr e rwade o 'III|'|I"-.Ih. A0 mewnd sl oed s i Dar ol g e I-".g-rl rasl
ey e wre s et e by amsibyen Wl el o e Lasee cbonks o e rude
fwrve s Lo ol amg moguien oo thae el synrema dyiams s I slemi! e il ma
e Al ow LeaPoo R e S0 paramerer Bf 1R, Pob DREW N BT g Ml
rorr g ared ket s ke dn o Bk ey

Phmwrrr rhay meowdu neon g semple oo baeocad effoni wof br oav g ane ) cngyung
Parwrsnre WRurndy s mar =iee o 5 lineir Boce sl aeoceh There mai b
|||.|.-|. -h!l e T P £l i mofd ey e |I"|-H,-a.'|ll| |I||"|. s e el Il..hl ,I|||I|E
ey afudr @ 6l oo paoimrtn v poesrs sedilenli becoones vere vouial e e wsicm
e JEmimpeans wowateb moabese darsliolis: especwliy of weaw paramete
s g aed e g e prepsses and neomab e aee s hese pnedel Compeneni
T e U gk ey U g @ounin Af mealel i

Clepgian & a0 smpotacd componént of a0 Aduatic soosvilam Lack ol ooygen mey taussé A
fish-lall. The ahosis that s dangevous fo: fish will ocour at O, levels of sbout 2mg or less. F
W wiin to model & fahpond, we might tharstors ‘wan 1o include oxygan 25 3 state variable
and wwould probably 83d an ceygen forcing
s function for fish mortality in this function,
— B 0 just es needed, the monality would incresse
& onygan concantrabions fell below 2.
Suppose we Duild this hodel and. stam
nunring if with the data that wa have, and
wiln the existing wiomnation we newer et
awewhers even close 1o hypoda. Wa can
aabede pun the moded for coygen cohCEnIra
Pors wall over Imgh. Thes indicates that all
e ensTnTy anehais that wa pecorm will
vreguvocally el us TEl Thane © shachasly N0 sanainely 0 Coygan-related parareters, and
il wAll Deoond wily SNlIng 10 fefMowe the reltvan] processes from he midel Shouldn'y we
make the model 25 simple 25 possibie? And wihy would we want 1o have the redundercy of
B e stETe vanabls 1051 eno Bll he essocsied processes” Howarsar, if e do this and start
"managing” the eoosystem Dy, sy, mosasng e amount of feh feed that we apply, we bie
weery liiggshy Slowndly 10 fridreg T SyShem Iowets the 2mgA Fnishold The process and the param-
iers wiould then become wery important once agen, but they sre no longer in the model, snce
wi have “simplified " it We ane now undeng B moded that &= o longer valid. since it is ignoring
SOITIE ATMDBOManTt IOoeSsEs in he SySiem

B — R R S S S
DEF 115 EEF DRE & 4 §E S5 HES T TS

Fovhaed i 1596 Jefwe inandel wombiinn o i sl orrd degrer of eliel o ibe
valufire of amenkel = crashy o oome wr e s arad den e mabeeg T b P .o
the “sarmy ew™ derer de gl = cvioibe | “ame | ooy = palif wd = jampn ool wich



136

Systems Science and Modeling for Ecological Economics

the decision to be made. This 1s probably a good way to frame it. Here, we include
both the model goal and rhe model users in the evaluation process. Indeed, there s
no use talking abour some overall universal model validity; the model is valid only
with respect to the goals that it is pursuing, and only the users of the model can
define whether it suits their needs or not.

There is a good deal of concern abour the uncertamties that are inherent in
almost any modeling effore. Pretty much any stage of the modeling process is full of
uncertainties. We stare from the goals of the study and immediately we realize that
there are different expectations that various users may have for a model. The goals are
comrmunicated in some lingustic form, in words, and this i itself is a model of a col-
lection of thoughts or ideas abour whar we want, Such models already may be fuzzy,
and may change as the mind, knowledge and ieas of people evolve. Especially when
we are dealing with socio-economic processes that include people, their opinions, and
priotities, we immediately enter a realm of huge uncertamey and much guesswork.

Very much like in quantum physics, where the mere occurrence of the experi-
ment influences its results, so 1t s 0 social work, where, for example, by polling peo-
ple and asking them a question we immediately bias the outcome by how we ask
the question and by the simple fact of the question, which already can make peo-
ple think differently from how they might have done without being exposed to the
guestion.

“How do you value thar forest?” Well, chances are the respondents never
even noticed the forest and could not care less about s existence. However, now
that they are asked abour it, they may start thinking: "So why would they ask me!
Actually yes, there is that forest. And | remember going there as a kid. Once. And it
was pretty cool. And how am | going to look if | say that | don't care about this for-
est! No, probably | should say that | value it at least somewhat. And maybe actually
there is value in it, or why would they ask otherwise? We see that the response 1s
already different from what 1= was supposed t be at first. The person quickly buile a
mental model, analyzed 1t and produced an answer, which in fact 1s sull full of uncer-
rainties, especially since we will never know what the real chain of thought was and
what intermediate evolution the person's mind had gone through.

[t does not ger any better as we step up to the next stages of model building.
As we have already seen, we hypothesize all sorts of things about a system when we
model it. Besides, we need to simplify it, introducing even more uncertainties. And
then of course there is all of the calibration process, when looking at the sensitivity
test should he enough to realize that different parameters can result in a dramatically
different model output. A model that does not have much sensitivity to its param-
eters, that is quite robust, will be adding less o the overall uncertainty chan will a
model that i1s very sensitive to certain parameters. Sensitive parameters then need to
be measured with especially high accuracy, which may not be possible in some cases.
Obviously, as models become more complex, overall uncertainty also grows very fast.
In some cases, greater complexity can make the model more robust 1o variations
in parameters; however, this normally comes at the expense of overall muodel con-
trollabilicy, when the complex model starts to operate as an entity in itself, and we
approach the Bonnini paradox situation — that is, we replace the real-life complex
system by another complex system — the model.

Still, we will inodel. There 15 simply no other better way to perform analysis and
to produce synthesis. We have to find a way to simplify a complex system if we want
to understand 1. As long as we are readv to go back, to try again, 1o reiterate and
test, test, test, we will eventually end up with a useful product. And if it is useful, it
means that the model we have built 15 a good vne.
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5. Simple Model,
Complex Behavior
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Classic predator—-prey model
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Spatial model of a predator-prey system
Conclusions

SUMMARY

Non-linear systers are those chat can generate the most unusual and hard to predice
behavior. A system of two species where one eats the other is a classic example of
such non-linear interactions. The predator—prey model has been well scudied analyt-
ically and numerically, and produces some very exciting dynamics. This simple two-
vartahle model can be further generalized to explore systems of many species that are
linked into trophic chains. Further complexity is added when these populations are
considered spanially as so-called metapopulations.

Keywords

Lotka—Volterra maodel, non-linear systems, trophic function, equilibrium, phase plane,
carrying capacity, Monod funcrion, Kolmogorov theorem, periwinkle snail, even
and odd trophic levels, Yellowstone wolves, Stella arrays, Sumule, Spanal Modeling
Environment (SME).

Two-state-variable systems have been honored with the most artention from marh-
emarical modelers. This may be readily explained by the dramatically increasing com-
plexity of mathematical analysis as the number of variables grows. As seen previously,
it is only the simplest madels that can be treated analyrically. On the other hand. two
state variables produce much more interesting dynamics than one vanable, especially
if there is some non-linearity included. Mathemauically, such systems are more chal-
lenging and certainly more rewarding. All sorts of exciting mathemarical resules have
come from analysis of these systems. In addition to advancing marhemarics, analy-
sis of these simplest two-state-variable systems has provided a wealth of results that
may have important ecological implications and are certainly interesting in the art of
modeling even tin more general and complicated cases.

One of the st and also hest-studied communities is the so-called “predarnr—
prey” system, where organisms of one population serve as food for those of the other.
Vito Volterra studied fish populations, and in 1926 formulated a model char torned
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out to be very insightful regarding the understanding of population dynamics. Alfred
Lotka proposed the same model in 1925, so the model s sometimes known as the
Lotka—Volrerra model, or just the Volterra model, since it was he whao did most of
the mathematical analysis.

Classic predator-prey model

Suppose we are considering a predator—prey system, where rabhits are the preys and
walves are the predators. The conceptual model for this system can be presented by
the simple diagram in Figure 5.1.

In this case we are not concerned with the effects of the environment upon the
community, and focus only on the interactions between the two species. Let x(t) be
the number of rabbits and ¥(t) be the number of wolves at time t. Suppose that the
prey population is limited only by the predator and, in the absence of wolves, rabbits
multiply exponennally. This can be described by the equation:

d_x:‘n (5.1)
de ’

When the wolves are brought inta play, they start to consume rabhits at a rate of
V = V(x), where V(x) is the number of rabbits that each wolf can find and ear over
a unit time. Narurally this amount depends on the number of rabbits available, x,
because when there are just a few rabbits it will be harder for the wolves to hnd thew
than when the prey are everywhere. The farm of the function for V(x) may be differ-
ent, but we may safely assume that 1t 1s monotone and tncreasing. Then the equation
for rabbits will be

dx

& ax - Vi(x) 5.2)
a0 {

The growth of the wolf population 15 determined by the success of the wolves'
hunting activities. It makes sense to assume that only a certain part of the biomass
{energy) consumed 15 assinulated, while some part of 1t is lost. To account for that,
we describe the growth of the wolf popularion as kV(x)y, where 0 < k << 1 is the effi-
ciency coefficient. The wolf population declines due to natural morality, with i being
the mortality rate. As a result, we get a system of two ordinary differential equartions
{QDE) to describe the wolt=rabbit communuity:

dx )
m =ax — V{x)y
f (5.3)
d ;
LA eV (x)y — py
de

N N

Rabbit |—>| Wolves —
Births anbits Predation | Deaths
3 SN

A DL A simple conceptual model for a predator-prey system: wolves eat rabbits,
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[n the absence of rabbits, the wolf population exponentially decreases. V{x} 1s
called the rrophie function, and it describes the rare of predation as a function of
the prey abundance. The form of the trophic function s species-specific, and may
also depend upon environmental conditions. Usually it grows steadily when the prey
population is sparse, but then tends to saturation when the prey becomes abundant.
Holling has wentihed three mam rypes of trophic funcrions, as shown in Figure 3.2.

The first two types of cthe trophic functions (A, B) are essenually the same,
except that in case B the function has a well pronounced saturation threshold. The
third type of trophic function behaves differencly for small values of prey densities. [t
tends to zera wirth a zero denvarive, which means thar near zero the trophic function
decreases faster than the prev density. This behavior is found 1n populations that can
learn and find refuge fram the predator. For such populations there is a betrer chance
to perstst, because the predator cannoc drive che prey o total extinction.

Volterra conssdered the simplest case, when the trophic function is linear. This
corresponds to funcrion B below the saturation threshold. The wolves are assumed to
be always hungry, never allowing the rabbats to reach saturation densities. Then we can
think that the trophic function s linear: V = fix. The classical Volterra predator-prey
maodel is then formulated as:

—it = ax — fix

I (5.4)
oy

e J‘ 3 —_—

5 fxy — py

It can easily be seen that this system has two equilibria. The first s cthe so-called
trivial one, which is when both the walves and the rabbits are driven to extincrion,
x =0, y =0. There is also a non-trivial equilibrium when x* = wkp, % = 2/f8.
Obviously, if the community is ar an equilibrium srarte, it stays there. However, the
chances thar the initial conditions will exactly hit the non-trivial equilibrium are null.
Therefore, it is imporrant to find our whether the equilibria are stable or not. For a
simple model like this, some qualitative study of the phase plane may precede further
analytical or numerical analvsis of the madel. In facr, we may note that when there
are more rabbits than at equilibrium (x > x*), the population of walves decreases
{dv/dr < 0). The opposite is true when x <2 x*, Similarly, when there are more walves
than at equilibrium (y > y*}, the population of rabbits declines (dx/dt < 0); it grows

VT Vo4 Va
— - — — — - — — 4 — - 4 - — - - —
X x x

A B Cc

2GR  Different types of the fraphic function, according to Halling.
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when v < y*. We may therefore break the phase plane into four areas and in each of
them show the direction of the wajectory of the model solution (Figure 5.3).

This qualiwative analysis already shows that there appears to be some cyclic move-
ment around the equilibrium point. The trajectories are likely to wind around this
point. There is stull a chance thar the pom is stable, in which case we start circling
around the equilibrium, gradually moving back it the center. However, this qualita-
tive analysis enly indicates that the model trajectories will loop around the non-trivial
equilibrium, bur it is not clear whether these loops form a spiral converging towards the
equilibrium (point stable) or whether the sparal will ke heading away from the center
(point unstable). In any case, we may expect oscillations in populations of rabbit and
wolf. Let us see what a simple Stella model can rell us abour the dynamucs in the preda-
tor—prey system (Figure 5.4).

You can either pur rogether a model yourself for further analysis, or download it
from the book website, The phase portraw very well matches our expecrations. We do
get the loop that behaves exactly as our qualitative analysis predicted. As expected,
the model produces cyclic behavior, where an explosion in the rabbit population
is followed by a peak in the wolf population. The rabbits are then wiped out, afrer

v

X

R IR The direction of change on the phase plane for the Volterra madel.
Inl, both x and y decling; in Il, x declines as y grows; in Il1, x grows and yfalls, in IV, both x and y grow.
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LI The Stella diagram for the predator-prey model.
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which the wolves die from starvation, almost to extinction. When there are very few
welves left, the rabbits start to multiply again and the pattern recurs (Figure 5.5). If
we run the model with the Euler method, we see that there is no trend towards the
equilibrium n the center, and the amplitude of the ascillations gradually increases
until the system crashes. However, if we switch to the Runge—Kutta fourth-order
method, we ind that actually we get a closed loop in the phase plain. Populations
of both wolf and rabbit follow the same identical trajectory, going through the same
partern of oscillavions (Figure 5.6). There is no convergence towards the equilibrium
i the center, and neither is there a run-away from it, which we erroneously sus-
pected at first when running the model with the Euler method.

However, unless we find an analytical solution we cannor be really sure that this
will be the kind of behavior that we get under all conditions and combinations of
parameters. Luckily, in the ume of Vito Volterra there were no computers and he
studied the model quite rigerously, analytically proving thar the model trajectories
always loop around the equilibrium point.

It may be noted that the initial conditions turn out to be very important for the
cverall amplitude of the cycle. Note that if all the parameters stay the same but the
initial conditions are modified the system still produces a cycle, although its form
may change quite dramatically. This is a somewhat unexpected result, showing that
the curtent state of the system depends very much upon the state of the system a
considerable length of time ago, when the initial conditions were established to start
up the process.

The changes in the parameter values also do not change the overall form of the
trajectories, which are sull looping around the non-trivial equilibria. However, they
do move the loops on the phase plane (Figure 5.7).

Stella is unlikely to ger the loops using any other methad of integration than
fourth-order Runge-Kutta. The Euler methoed quickly results in inereasing oscillations

R R RE TS

Wolves

0.00

I
0.00 5.00 10.00
Rabbits

LR The Volterra model solved with the Euler method.

The trajectory unwinds further away frem the equilibrium in the center, until the svstem crashes.
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1. Rablnts 2: Wolves
5.00
h
1
2.50 H
0.60 | | T ]
0.00 12.50 25.00 37.50 50.00
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A

2.00 -

Wolves

0.00 T T 1
0.00 2.50 5.00

Rabhbits
B

I BLCICICH  The dynamics of prey and predator in the Volterra model as solved by the Runge—Kutta

fourth-order method.
A Graphs for the Wolves and Rabbits. B. Phase portrait for the Volterra model.

that eventually explode the system. Second-order Runge-Kurta perssts for longer,
but evenrually also tends te fall apart. This 15 another illustration of the importance
of careful chotce of the time-step and ngorous analysis of the influence of the time-
step upon the simulation results. If there were no analytical solution available for the
Volterra model and we had been running i with the Euler method i Stella, we would
have been gerting qualitatively different results, and would not even be suspecting thar
the true dynamics of the system are rorally different.

The major result that comes from the Volrerra madel is that population cycles
often registered in field studies may be explained by some internal dynamic fearures
of the system. They do not necessarily stem from some environmental forcings, such
as the seasonal variations in climatic factors. Cycles may occur simply as a result of
interaction berween the two species.
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L ISLCICRER  Oynamics of Rabbits and Wolves with carrying capacity introduced for Rabbits.
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R DLCICRE  Phase portrait for the Volterra model with prey saturation run with different initial
caonditions.

the system dynamics does not depend upon the initial conditions. The coexistence
state appears to be stable, and the oscilatory hehavior s only transient (Figure 5.9).

As might be expected, the model alsa hecomes more robust with respect ro rthe
numerical method for its solurion. We can safely run the model with Euler method
and much larger time-steps. yet still arrive at the same steady stare (Figure 5.10).

Let us consider some further adjustments far the Volterra niodel. As nored
above, anocher simplification in the model, that was hardly realistic, was the assump-
tion regarding the lincar trophic function. The wolves remained equally hungry, no
matter how many rabbits rhey had already eaten This seems unlikely. Let us now



Systems Science and Modeling for Ecological Economics

3_00_[__ . R
Y : : Rabbits v, Wolves

1.50

—

0.00 +— T T 1 T T
000 1.50 3,00 4,50

A DLCRII  Phase portrait for the Volterra model with prey saturation run using Runge—Kutta (blue)
and Euler {red) methods.

choose a Holling type 1l functional response, assuming a Monod trophie function, tw
describe how wolves eat rabbits:

5 02
ki K+x

Here, f 15 the maximal growth rate and K 15 the half-saturation coefhcient. The
funcrion makes sure that the process (predation, in this case) occurs with saturation
at 8, and it reaches f/2 when the prey population 15 equal to K (this explains the
“half" in the name) The function is identical to the Michaelis-Menten function
that we encountered above: for some reason in population dynamics it is known as
the Monod funcrion, while in chemical kinetics it is known as Michaelis-Menten.

The dynamics in this model are somewhat similar to those i the classic model.
We get non-damping oscillations for the variable, or a cycle in the phase plane.
However, there is a major difference: now, different initinl conditions result in the
same limit cycle. No matter where we start, we end up looping along the same trail
in the phase plane. This is called a imit cyele, and it is stable (Figure 5.11). There are
mathematical methods to prove that the cycle in this casc s indeed stable; however,
this is a bit too complex to describe here.

As in the previous case, when prey growth was stabilized by carrying capacity,
here again the model can be solved by the Euler method as well as by Runge-Kutta.
Whenever you have a “stable” situation that attracts the trajectories, Euler works
too. The cycle it generates will be slhightly different from that which the Runge—
Kutta method derives, but qualitatively the behavior of the system will be identical.

ERE

Folmogorov (1936) considered a very general system that covers all the cases
studied above. He analyzed a system of two ordinary differential equations:

ﬁ = a(x)x — Vix)y
(Jl.t (56)
D~ Kxy
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A ELCRTMM  Phase portrait for the Volterra model with prey saturation and type-2 trophic function for
predation. Note that different initial conditions resultin the same limit cycle.

We can sec that Volrerra’s system is a special case of this system; however, there

are many other systems that can be also described by these equations — the Vulterra
system 15 just one of them. The functions «(x), V(x) and K{x) can be any, although

ds

long as we are describing population dynanucs they have to comply with certain

obvious restrictiens:

—_—

dofdy < 0; Q) = 0 = z(sc) — thus is to say that the prey birth rate is decreasing

as the prey population grows {the derivative of over x 1s less than Q), gomng from
positive to negative values. This is something we were getting with the carrving
capacity function in (5.5), which is quite a natural assumption for populations
with intraspecific competition and a lunited resource. With this assumption, even
with no predator to control it the prey population grows, but it is then stabtlized
at a certmin value given by the equation «{(x°) = Q.

dK/fdx = 0; K(O} <2 0 < K(e) - this 15 to make sure that the predator birch rate
increases with the prey population. It starts with a negatve value, when there 1s
no food available, and then increases to positive values.

Vix) = 0 for x = 0; and V(0) = 0 - this is to make sure that the trophic funcrion
is positive for all positive values of the prey population. Tt also equals zero when
there are no prey.

Under these conditions, system (5.6) has either two or three positive equilibria:

The trivial equilibriax = 0,y = 0

2. x = x" {where x" is the solution to e(x) = C; 4y =0

d

Point (x*, ¥%), which is the solution to

alx*)et — V{e*)y* = 0
K{x*)=0

at a{x*) = 0, that 1s when % < xv,
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LR A general diagram of a trophic chain of length g and a Steila model that describes it.
Here, a species preying or another species is in turn prey to another predator. N is the external resource

flow:ng into the system. T, are the biomasses or numbers of organisms in the trophic levels

e o TrophicChaind = Run 1271, T2, T3, T4, IS vs. TIME===————§] &
2 fun * 3150 11eps n 0 0167 seconds

32 gy e s | eeirgn T

‘ €3.75 s w2 B W08 5625 B2 #Lo
- TrophicChainl - Stiders - - .. . .@
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A CLCREIMEN  Dynamics of five trophic levels in a traphic chain. Odd and even trophic levels behave
differently.



those ones in the even levels. By further increasing the inflow into the system we do
not change the values in the even levels, whereas the odd levels gradually continue
to increase thew equilibrium biomass.

To check whether this is just a coincidence thar muighe go away if parameter val-
ues are modified, or whether 1t 15 something real regarding the system dynamics, we
may take a look ar the equations and hgute out the equilibria. In the most gencral
form, the equations for the model are:

T: = N b L||T1T:
T-‘: = LllT|T: - Ll‘_lTJTw‘

L= I.I1-_|T| !T: - I“llﬁri'-l—‘i"'!

= "k—]Tk T —u Ty

The last equation yields an equilibrium ar:

Uy

which means that this equilibrium is independent of the flow of marerial o the
system.
Also:

which allows us to caleulate back, starting from Ty _, all the equilibria for odd (even)
rrophic levels if k is even {odd). Note that all of them are constant and independ-
ent of N. From the first equation, we have ewcher T) = M/{u,T,), or T; = N{u, T, ).
Therefore, if we know all the equilibria for odd trophic levels, we can calculate the
vilue for Ts, and then use T,y | = u, - T2 /u,, to calculate all che remaining equilibria.
Similarly, if k is odd and we know all the even equilibria, we can calculate T, and
then build up the equilibrium values for all the remaining even trophic levels.

What 15 important is that we ger every other trophic level constant and inde-
pendent of the amount of flow into the system, whereas material accumulares only
on the remaining trophic levels, We have an alrernating partein of equilibna, where
every other trophic level simply passes material chrough to the next trophic level. The
analytic rreatment confinms some of the assumptions that we made from warching the
dynamics of the system 10 Madonna. Mareover, it confinas that this is really the way
the system behaves beyond the simulation period and parameter values chosen.

The overall dynamics look quire similar to the second case discussed above, when
we introduced carrying capacity for the prey population (equation 5.5). This might
well be expecred, if we realize rhat ar carrying capacity we have a constant flow of
external resources into the system, which is exactly the formulation we are considering
now: N = const. So the fact that the system equilibrates and the equilibrium appears
to be stable 15 quite consistent with what we observed in the simple two-species system.
Whar is somewhart surprising is the distinctly different behavior observed in the odd
and even trophic levels.
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R DLCICRED A Stella model of a five-level trophic chain with mortality.

In the model above we assumed that natural mortality is negligible compared
with the predator uptake. Suppose this is not so. Let us consider a trophic chain,
which has a certain fraction of biomass removed from each trophic level due to
mortality (Figure 5.14), and see how the model dynamics is mfluenced hy changes in
the amount of resources N provided ro the system.

The apparently subtle change in the model formulation results in quite substan-
tial differences in the system dynamics. Once again, we can easily put the model
together in Stella or, even better, in Madonna. If we look at how the system reacts
to changes in the flow of the external resource N, we may see that now, for substan-
tially high flow into the system, all the hve trophic levels can coexist and equilibrate
at certain values thar appear to be stable. If we start to decrease the external flow
N, the species equilibrate to lower and lower values, unul the last, ffth, tephic
level becomes extinct. The fourth level then follows and so on, untl all species
become extinct when there are no external sources of energy or material (N =0)
(Figure 5.15).

This result may have an interesting ecological interpretation. The more resources
flow into a trophic chain, the longer the trophic chain that can be sustained. Not
only do the equilibrium values increase; also, entirely new trophic levels spring up.
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LGN  Dynamics of five trophic levels in a trophic chain with mortality.
The length of the trophic chain is defined by the amount of resource flowing into the system.

This kind of phenomenon has been observed i real-hife systems. In agriculeure, it
has been noticed chat when larger amounts of fertilizers are applied new pests appear,
which effectively extends the existing trophic chain, adding 4 new level to .

At this rime, however, we stll can make gualitative conclusions only abour the
system we have analyzed, and only lor the paramerer values that we have used. With
respect to paramerer values, the system seems 1o ke quice robust. We may starr modify-
ing the coefficients 1n a fairly wide range (as long as rhey sray ecologically feasible -
that is, positive and perhaps less than | for most of the rate coetheients, like moraliey).
The system behavior seems to be the same. However, if we want to consider a trophic
chain with more species involved, we may need to put together anuther model and
repear the analysis. [t is most likely that, qualitatively, the dynamics will be che same,
bure seill we can never be 100 percent sure unless we perform some analvtical treatment.

A full analytical solution to this problem can be found in Svirezhev and Logofet
(1983). Here, ler us take a quick glance ar what the equilibria can look like, and
what makes species fall out of the system. The system of algebraic equations chat
defines the equilibria in this model is quite simple:

AW‘ check to see ff"ﬁwe ‘s
N-=dT, —uTT; =0 wmefhmj'lym m_qeém-ofm
ul—uTy—d, =0 analytical seudy. Even. ifa full
solution i impessilile, ;eeu’;»oum
u!—l—ri'l - UlTll"l _d, = J ot ALt ’ ot
_ qet somwe constraints on parameters
T —~di=1 arhyfoﬁfwenwequm&rm




Systems Science and Modeling for Ecological Economics

From the tast equation, we immediately get:

us +d
= - T const.

T, =

U,

Playing with the odd and even numbers, as we did above, we can now calculate
the other equilibria:

UAj} + d1

y = —

U,

where we can substitute the value for T, from the above and see that T, = const.
Knowing Ty, we can calculare

T, - N_
d] T UIT:

Note that this time the equilibrium is dependent on the external flow N. So far, all
the equilibria have been positive at any time. Based on the second equarion, we can
now calculace

u Ty —dy
U,

Z

Ty =

For this equilibriun we need o make sure that T > dsfu, otherwise the equilib-
num is negative and makes no ecological sense. This condition translates immediacely
into a requirement for N: the flow of external resource has to be larger than a certain
value. Similarly, for T; to be non-negative we need Ty = dyfu;y or, substituting for Ts,

Uqu
d u

T >24 2
Uy Ly

This explains why, with decreasing N, the equilibria for T|, T; and Ts are getting
smaller and smaller, and eventually the species ceases to exist as the equilibria become
negative. However, this does not explain the fate of the other two trophic levels, T,
and T, which are supposedly constant and independent of N. So what is going on’?

Let us take a closer look at the model dynamics in the animation above, Norte
that actually at first, when we start cutting the input of N, the equilibria for T, and
T, are indeed fixed and do noc change. It is the other three equilibria that show
a downward trend. It i1s only after Ts hits zero that T, and T, start to change. But
note: when Ts becomes extinct, we no longer have the same five-level trophic chain.
Instead we have only four trophic levels, and the equations that we are to solve now
change. Now, for four trophic levels, we have T, and T, constant and independent of
N, whereas T, and T, are defined by N and decrease with N. Indeed, this is what we
see in the animation. Now T and Ty stay fixed until T hits zero, when once again
the system and the equations are redefined. Again the system has an odd number of
levels, and now T; becomes fixed while T, and Tj start to fall.

Now that we have figured out what goes on in the system, we can with far greater
confidence describe the system behavior with an arbitrary number of trophic levels.
There 15 strong evidence that the equilibria are stable, and we have understood how
the odd and even trophic levels are alternating their behavior as the flow of resource
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into the system changes, We also know that the paramerers of the model define the
intervals in the N continuum that correspond to the particular numbers of trophic
levels in the system. Let us look ar how the system evolves in the other direction,
when we start with N =0, and then start increasing N. Once N = 0, there 15 a
resource that can suppart ane species. As N increases, the population i this trophic
level keeps growing until N passes a threshold, after which another species in the next
rrophic level appears. Ar this point the first trophic level stabilizes, and from now on
all the resource is transmitred to the new trophic level, the population of which starts
ro grow. Nexr, after N passes anorher threshold, another, third trophic level appears.
Now the second trophic level freezes, while the hrst and the third (odd) trophic lev-
els starr 1o grow. Then, at some point, as N passes another threshold, a fourth (even)
rrophic level becomes established. From now on, odd levels become frozen, and even
levels starr to grow biomass. And so on,

In both the trophic chains considered above, we had the input of external resource
independent of the biomass in the first trophic level. We assumed that it was the
resource that was always limiting growth, and there were as many organisms in that
trophic level as were needed to uptake all the resource that was made available. This
is different from what we had in the classic model. What will the trophic chain look
like if the resource is not hmiting! This may appear to be a fairly subrle change in
the system; ho wever, the dynamics will be quite different.
Let us put together a simplified version with only three trophic levels:

Tty =Tt — dt) + (N = Ry)1*dt
INITT, =1

No=wuy*T,

Re=5*T4 % Ty

Tofth = Talt = dt) + (R, — Ry)*dt
INITT, =2

Ry=u"T,"T,

Ry = u"T;"Ts

Taith = T4t — dt) = (R, — Ryl*dt

INITTy =1

By =u," 1,771,
F'_'] = U3'T3

ug =01

u; = 0.1

u =01

uy =01

Nore that in this model N 15 not constant; instead, ir is a linear function of Ty
Now the model looks exactly the same as the “classic” model bur with cne additional
trophic level. We can import theses equations nro Madonna, or quickly assemble
the model in Stella or one of the other puckages to do some preliminary qualita-
rive analysi_s. With the model "as 5" we ger the familur oscillations (Figure 5.16).
However, if we change the coefficients u, even slightly, we get a dramatically differ-

ent picture: either the species become extincr, or they start 10 grow exponentally
(Figure 5.17).
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LI BLCICIA  Dynamics in a three trophic level madel with no resource limitation with unequal rate
coeficient. The system either dies off or species produce infinite growth.

If ue or us are even slightly increased, trophic levels Ty and T; grow exponen-
tially while T keeps ascillating appreaching a positive equilibrium. A similar trend
is produced when uy o1 uy are decreased. If uy or uy are even slightly decreased,
trophic levels T, and Ty go extinct while T; keeps vscillating approaching a positive
equiltbrium. A sinilar trend is produced when u; or uy are increased.

A quick analytical look at the equilibria gives us only a very general 1dea about
the underpinnings of these tends. First, we find that there are two equations for
equilibrium in the second trophic level: T; = uy/u;, and T, = usfu;. Second, we see
that for the cauilibria in the first and third trophic levels we have wT; = u;Ty. The
equilibrium in the sccond trophic level is therefore feasible only if ujuy = uquy.

These calculations explain some of the qualitative dynamics we observed above.
If ujuy = uouy, we get stable oscillations: f ujus > ugup, we have the downward
trend that leads to spectes extinctions. Otherwise, we have oscillations following an
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exponential growth trend. We could have been expecting this from what we saw in
the model; however, it might have been hard to guess the exact relationship between
the parameters thac defines the course of the trajectones, We also see thart there is a
relationship between T, and T, which makes them behave in a stmilar way — some-
thing we also observed from the model outpur.

However, this 1s probably all we can say ahout the system, based on this prim-
itive analysis. We do not know what makes T, and T grow to infnity or vantsh
from the system, when the parameters are chosen in some specific way. Unlike the
“classic” model, which produced the loop in the phase plane for any combination
of parameters, now a loop 1s possible only for specific values. Moreaver, it would be
hard to imagine in real life an exact equality of the kind ujuy = upu;. Therefore, we
may conclude that a three- or more rrophic level system of the predator—prey type 1s
unstable and unlikely to exist in reality,

What will happen if, instead of three, we have four rophic levels? Will the results
be the same’ The answer is a definite NO. To our surprise, the system always persists,
even though it goes through some dramatic oscillations which in many cases appear
to resemble chaos. Once again, it is strongly recommended that you reproduce the
model in one of the modeling packages. Below are the equations that you can simply
paste into Madonna and enjoy the model performance yourselt:

Tyith = Tyft—dt} + (N — Ryi*dt

INITT, =1

N=ul*T,

Ry =u,"T)*T,

Talt) = Tsft = dt) + (R, — Ry)*dt
INITT, =2

H] = L.]'T]'TZ

Ry =" To* T4

Talt) = T4lt = dt) + (R; — R4j*dt
INITTy =1

Rz = u"T3* T,

R3 = U:].T:]'Ta
leﬂ = Tq‘lt = dt} + |:R3 o Hd)hd'[

INITT, = 1
Ry = 3" T3"T,
H,1 ;UQ’T,_I
ngo.'

Uy — 01

Uy = 01
'..13':0.1

u, =01

The variety of designs that the trajectories produce when we start modifying the
parameters 15 truly remarkable. A few examples appear in Figure 5.18. In the left-hand
column we are looking at the regular graphs of state vanables vs time; in the right-hand
column we have the scatter graphs, where T, and T; are displayed as funcrions of T,.
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R LCRREE  Adding another trophic level (fourth] stabilizes the system and makes 1t persist, even

though some of the pscillations seem to be chaotic.

The ieft-hand column shows the dynamics of the four pepulations; the right-hand column graphs are phase
dynamics of populations of the first two trophic levels as functions of the third trophic level population.
These show how irreqular the ascillations may become.
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Spatial model of a predator-prey system

The models we have looked at so far have been local - that is, spatially they had no
resolution, assuming that the whole area that we were modeling was uniform, and
thac the same populations wich the same parameters of growth and death were dis-
tributed across the area. We cid not know of care about any spatial differences. But
what if that 1s not the case’

Suppose we do care about spacial differences. Suppose thar the populations have
different numbers across the landscape. How can we model the system in this case?

First, let us decide on how to represent space. In Chapter 2, we saw several ways
to make space discrete so that we can put the spatial dimension into a model. We
need to decide on the form and size of the spacial segments chat we wish to use. In
doing that, as always in modeling, we will be looking at the goal of the study and the
spatial resolution of the data that are available. Then we will select modeling soft-
ware for these spatial simulations.

Stella may not be the best tool for this. Theoreucally, we could replicace our model
several times and have several stocks for prey and several stocks for predator, represent-
ing their numbers in diffecent spatial locations. We could also add some rules of tran-
sition between these stocks, representing spatial movement between different places.
The Stella model would look like Figure 5.19 (see page 165). In this case, we assume
that organisms migrate to the compartment where the existing population size 1s lower

This could probably work for two, three or four locations — maybe even ten — but
then the Stella model would become almost incomprehensible. We could use the
array functionality in Stella, which would make 1 a little bit easier to handle. If you
are unfamiliar with arrays i Stella, read the pages of the Help File. 1t does a really
good job of explaining how to set up arrays in Stella. For example, the model above
on a3 X 3 gnd of 9 cells can be presented with a dagram that looks quite simple
(Figure 5.20; see page 165); however, the equations are not simple at all:

Rabbits|coll,row1](t) = Rabbits[col1,row1)it—=dt) + (R_births[coll,row1]—Predation {col1,row1]—
R_migration(col1,row1]) > dt
INIT Rabbits(col1,row1] =1
Rabbitslcol1,row2){t) = Rabbits|coll row2](t—dt) + (R_births(col1,row2) —Predation[col row2] -
R_migrationjcot1,row?2]) * dt
INIT Rabbits[coll,row2] = 2
Rabbitscol1,row3](t) = Rabbitscol1,row3|{t—du + (R_births[col1,row3]—Predation[col1,row3] -
R_migration|col1,row3]) = dt
INIT Rabbits(coll,row3) = 3
Rabbits(col2,row1]{t) = Rabbits[col2,row1](t—adt) + (B_birthslcol2,row1]—Predation|col2,row1]—
R_migrationlcol2,row1]) * dt
INIT Rabbits(col2,row1] = 3
Rabbits|col2,row2](t) = Rabbits{cal2,row2]{t—dt) + (R_birthslcol2,row2) —Predation(col2,row2]—
R_migration{coi2,row2)) * dt
INIT Rabbits|col2,row2] = 2
Rabbits{col2,row3](ti = Rabbits[col2,row3|(t1—dt) + (R_births(col2,row3)— Predationlcol2,row3] —
R_migration[col2,row3]} * dt
INIT Rabbits[col2,row3| = 1
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Rabbits|col3,row1(t} = Rabbits|col3,rowi|(t—adt} + (R_births|col3,row1|—Predation|col3,row1]-
R_migration(col3,row1]} * dt
INIT Rabbits[col3,row1] = 1
Rabbits(col3,row?2|(t) = Rabbits|col3,row?2|{t—dt) + (R_birthsicol3,row2|—Predationicol3,row2] —
R_migration{col3,row2]) * dt
INIT Rabbits[col3,row?2] = 2
Rabbits[col3,row3](t| = Rabbits|col3,row3lit—at) + (R_births[col3,row3|—Predation[col3,row3j—
R_migration{coi3,row3]) * dt
INIT Rabbits|col3,row3] = 3

INFLOWS:

R_birthslcolumn,row] = alpha*Rabbits|column,row|

OUTFLOWS:

Predation{column,row| = beta*Rabbits|column,row!|* Wolves[column,row]|
R_mugration(col1,row1] = gamma*{Rabbits{col1,row1}—Rabbits(col2,row1]} +

gamma* (Rabbits(coll,row1]—Rabbitsicol1,row2})

R_migrationfcoll,row?2] = garmma*{(Rabbits[col1,row?2]—Rabbits|col1,row ]} = (Rabbits|col?,
row?2])—Rabbits[col2,row2]) + (Rabbits|coll,row2)—Rabbits[coll,row3]))
R_migration[col1,row3] = gamma* {{Rabbislcol1,row3]—Rabbits[col?,row2]} + (Rabbitslcol1,
row?2]—Rabbits[coi2, row3]} }

R_migration[cal2,row1] = gamma*({Rabbits[col2,row1]—Rabbits(col1,row1]) + (Rabbits|col2,
row1]—Rabbits{col2,row2]) + (Rabbits(col2,row1]—Rabbits{coi3,row1]))
R_migration|col2,row2]| = gamra*{(Rabbits|col2,row2]~Rabbits{col2,row1]} + (Rabbits(coi2,
row?]—Rabbits(col2,row3]) + {Rabbits[col2,row?2)—Rabbits[ccl1,row?2]) + (Rabbits[col2,row?2]—
Rabbits|col3, row2})}

R_migration|col2,row3) = gamma*{(Rabbits(col2, row3|~Rabbits{col1,row3|) + (Rabbits(col2,
row3] - Rabbits(col2,row?2]) + {Rabbits|col2,row3]—-Rabbits|col3,row3]))

R_ migration(col3,row1] = gamma*{(Rabbits(col3,row1)—Rabbits|col2,row1]) + (Rabbits(col3,
row1]—Rabbits(col3,row?2)})

R_migration(col3,row2] = gamma*((Rabbits[col3,row?2] —Rabbits|col3,row ]} + (Rabbits[col3,
row?2]—Rabbits|co'2,row?2]) + (Rabbitsicol3.row2] —Rabbits(col3,row3])}
R_migrstion{col3,row3| = gamma*{{Rabbits|col3,row3]| —Rabbits(col3,row?2] + (Rabbits[col3,
row3|—Rabbits(col2,row3])}

Wolves[coll,row1]{t) = Wolves|col1,row1]{t—dt) + (Uptakelcoll,row1]—
W_mortalitylcol1,row1]~W_migration[col1,row1])) * dt

INIT Wolveslcoll,row1] = 1

Wolves|col1.row2](t) = Wolves[col1,row2){t—dt) + (Uptake(col1,row2] -
W_mortality[col1,row2] =W _migration[col1,row?2]) * dt

INIT Wolveslcoll,row2] = 2

Wolves|col1,row3]{t) = Wolves|col1,row3l|(t—dt) + (Uptakejcol1,rowd]—
W_mortality[col,row3]—=W_migrationlcol1,row3]) * dt

INIT Wolves|coll,row3| = 3

Wolves|col2.row1 [{t) = Wolves[col2,rowT[(t—dt} + (Uptakelcol2,row1]—
W_mortelity(col2,row1]—-W_migration(col2,row1]) * ot

INIT Wolves|col2,row1] = 3

Wolves(col2,row2](t) = Wolves|col2,row2|(t—dt) + (Uptakelcol2,row2)—
W_mortality|col2,row?2|—=W_migration(col2,row?)) * dt

INIT Wolves|col2,row?2] = 2
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Wolves|colZ,row3]{t) = Wolves[col2,row3)(t—dt) + (Uptakelcol2,row3]—
W_mortality[col2,row3]=W_migration[col2,row3]j * dt

INIT Wolves(col2,row3] = 1

Wolves(col3,row1]{t) = Wolves(col3,row1]{t—dt) + (Uptake(col3,row1]—
W_mortality(co!3,row1]~W_migration[col3,row1]} * dt

INIT Wolves[col3,row1] = 1

Wolves(col3,row?2)({t) = Wolves|coi3,row?2]){t—d1) + (Uptakelcol3 row2)-
W_monality[col3,row2]—W_mugration[col3,row2]) * dt

INIT Wolves(col3,row2] = 2

Wolves[col3,row3}({t) = Wolves|col3,row3]{t—dt) + (Uptekelcol3,row3] -
W_mortalityfcol3.row3|—=W_migration|col3,row3]) * dt

INIT Wolves|col3,row3} = 3

INFLOWS:

Uptake[column,row] = k*Predation[column,row)

OUTFLOWS:

W_mortality[column,row] = mu*Wolves[column,row]

W_migration[col1,row1] = delta* {{Wolves[coll,cow1]—=Wolves|col2,row11) + (Wolves|coll,
row1]—Wolvesicol T.row2)))

W_migration|coll,row?] = delta* ({(Walves|col1,row2] —Wolves|coll,cow1]} + {Wolvesicoll,
row?2]-Wolves|col2,row2)) + {(Wolves|col1.row2|—Wolves(col1,row3]))
W_migration[coll, row3) = delta*({(Wolves|col1,row3] -Wolves|col1,row2]) + (Wolves|coll,
row?2|—Wolves|col2,row3)))

W_migration(col2,row1) = deita* ((Wolves|col2,row1]—Wolves|col1,row1]) + {Wolves(col2,
row1]—-Wolves[col2,row?2]) + (Wolves|col2,row1|—=Wolves|col3,row1]))
W_rmigration{col2,row?| = delta*({Wolves|col2,row2] —Wolves|col2,row1]) + (Wolves|col2,
row2]—Wolves|col2,7ow3)) + (Wolves[col2,row?2|—Wolves(col 1, row?])} + (Wolves|col2,
row2]—Wolves [col3,row2]1

W_rmigration|col2,row3| = delta*{(Wolves|co'2,row3]—Wolves[col1,row3]} + {Wolves[col2
row3]—Wolves(col2,row?2]) + (Wolvesl|coi2,row3]—Wolves|col3,row3])}
W_migration[col3,row1] = deha*{(Wolves|col3,row1]—Wolves|col2,row1}) + (Wolves[col3,
row1]—-Wolves|col3,row?2l))

W_migration{col3,row?2| = delta*((Wolves(col3.row?2]-Wolves|col3,row1]) + (Walves|col3,
row?2]—Wolves|col2,row2]) + (Wolves|col3,row2] —Wolves[coi3,row3])
W_migration[col3,row3| = delta*((Wolves[col3,row3]—Wolves|col3,row2)) + (Wolves|col3,
row3]—Wolves|col2.row3)))

alpha =1

beta = 1

delta = 0.02

gamma = 0.01

k=01

mu =201

In particular, it is a real headache to define the equations of movement, migra-
tion. We assume that our cells are arranged as in Figure 5.21, and both wolves and
rabbits can move to the next cell if the population size there is lower than in the
current cell. There will be lots of clicking on the Stella diagram to define all the
connections. As the number of spatial cells grows, the model description quickly
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LI A two-compartment Stella model of a predator—prey system.
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Figure 5.20 JESSpS compartments can be modeled using the array functicnality in Stella.
The diagram is tidier, but it is still quite cumbersome 10 describe the intercompartmental flows.
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m A Simile model for the predator—prey system. Note that there are many more icons 1o
use when constructing madels. The whole model can be described as a submodel (called a Cell, in this casel.

becomes very cumbersome; ir becomes especially hard ro inpur the dara, visualize
the outpur, or define various scenarios that involve spatial dynamics. Imagine defin-
ing a model with a hundred or more array elements! There has to be a betrer way o
do this.

Ler us rake a look at sume other software touls that may be more suited 1o these
tasks than Stella. One potentially powerful tool for spatial modeling is Simile, and
we will explore an example in that modeling system.

Simile model

The predator—prey system itself 1s very simple to put together, especially if we
already know Stella conventions. The basic interface in Simile is almost dentical
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Figure 5.23 Qutput from the Simile predator—prey model using the Plotter helper to create a
time-dependent graph.
This is identical to what we were generating in Stelia.

(Figure 5.22). Here, we shightly modined the model, describing Grass as prey and
Rabbits as predator. That would be one trophic level below what we were consid-
ering above, but there is really no need for much change i how we formularte the
model, Whereas in its systems dynamics Simile follows Stella’s formalism quire
closely, 1t also goes way beyond Stella’s funcrionality in a lor of ways. As vou may
notice, in Figure 322, there are quite a few more icons or building blocks in Simile.
We will not go mito much detail descnibing all of them — that can always be done by
downloading the free tnal version of the package and exploring the different exam-
ples and contributed models. The Help hle and the Tutorial for Simile 15 nowhere

nearly as foolproof as in Stella, so be prepared to spend quite some time if you decide
to explore the more advanced features of the software.

Among these features let us mention the following.

¢ Modularity. In Simile, you can create a “submodel” that can be then used in other
maodels. This is handy for disaggregation of models, for creating spatial models or
for substituting one model component for another.

e C++ code. Simile generates C++ code, which can be used within the framework
of other systems, interfaces or environments. It can be ported te different compil-
ers producing optimized compurer code.

o Extendable interfaces. All inputjoutput is handled by Tel/Tk programs called
“Helpers.” Users can create their own Helpers to suit the needs of a particular
application, and port these programs into the software. For example, the outpur

for the model in Figure 5.22 shown in Figure 5.23 comes from a particular Helper
designed to plot model results.
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00 e 30

A ILCIEREE A two-dimensional graphic visualization that the Spatial Grid display helper generates.
The intensity of the color corresponds to the population numbers of Rabbits in different cells,

There is actually an easier (bur also not very well-documented) way ta do this if
you defne the array as being 2D. You do this by double clicking on the background
of your stack of cells, which opens a dialogue box:

(R0

Properties of Cell

_m Advanced !

Control of number of instances:

 Using population symbols
Using number of data records in file

S

@ Using specified dimensions 10.10
Background shade:
i Clear Colour... ;| Image.. !

Notes:

Description: |

Comments

Here we can input the dimensions of the array, making it two-dimensional. Let
us specify the dimensions 10,10. Now the array will be rreated as rows and columns,
and we will not need 10 worry about the conversion of a linear array into a marrix.
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—Rabbits, run 1
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Time

L TLCREIEN  Using the Plotter helper to output an ensemble of trajectories for all the cells in the model.
The initial conditions are generated in random in the [1,2] interval, and each cell then develops on its own.

To view the results of our spatial runs, we can choose the helper called “grid dis-
play.” When defining the grid display we will be requested o “click on the variable
containing the positions of [Ds of the columns” ~ click on the “col” variable. Then
we will be asked to choose the variable to di:spluy. and will click on Rabbirs.

If we now run the model, we can observe how Rabbit populations vary in all the
cells (Figure 5.26). Note that in this case the graphic display produces an ensemble
of 100 curves, which originate somewhere in the interval [1,2] and then oscillate like
in the predator—prey model considered before.

So far, the cells have been working independently. There has been no interac-
tion between variables in different cells. Thar 1s not particularly interesting. Ler us
now make the Rabbits move honzontally. Suppose that, as in the Stella model we
considered above, we want to make Rabbits move from cells with higher density o
cells where there are less Rabbits. This is similar to the diffusion process. For each
cell we add the migration flow (Figure 5.27). which calculates the movement of
Rabbits in each of the four dircctions: front, back, lefit and right. First, we define an
array of Rakbits in all cells - R_A. Then

Migration = delta * (if col > 1 then Raobits-element{IR_AL {row — 1) * size +
col — 1) else 0) + (1 col < size then Rabbits-element{|R_A row — 1) *size + col + 1)
else 0} + Uf row>1 then Rabbits-element{{R_Allrow — 2} * size + cal} else 0} +
(f row < size then Raphits-element{lR Al row * size + coll else 01
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RETICRRYE  Spaual predator—prey model in Simile with migration added for Rabbits.
The R_A variable stores the values for Rabbits in all cells as an array. The decision for migration (s based an

the number of Rabbits in adjacent cells. Rabbits jump to the neighboring cell if the population there is less than
in the current cell.

This was pretty clumsy, but straightforward. For each cell, we compare the
number of Rabbits with the numbers in che four adjacent cells. I che difference s
positive, we get a positive flow from che cell to the neighboring cell. If it is negative,
we get a flow from the neighboring cell into the center cell. Here, we used the ele-
ment built-in funcnion elemenc([A],(}, which ceturns the ith element of array A. Note
that here we are translating the 21D definition in terms of (row,cell) back into the 1D

definitian.
To test how this works, we will inicialize the model differently. Let us make the
Rabbits biomass equal, say, three only in one cell (e.g. i = 25), and make the biomass

equal one in all other cells. Let us also switch off all the ecological predator—prey
dynamics by sectng the growth, deach and predation rates to zero. If testing a partic-
ular process, honzontal dispersion in this case, it 1s important to ensure that nothing
is interfering with it. If we run the model, we will see how rabbits gradually disperse
across the area (Figure 5.28). Note that we have also added a variable, sum R, to
the diagram. This variable is equal to sum([R_A]), another built-in function which
returns the sum of elements of an array. This is useful to check that we are not losing
or gaining rabbits; it works as a mass conservation check. As long as sum_R does not
change, we are OK.

What is also nice about Sumile 1s that we can change the size of the area and the
number of cells just by changing the “size” vanable and the number of instances of
the “Cell” array. This can be done by double clicking on the Cell submodel and then
specifyg the dimensions. For example, we can switch from the 10 X 10 grid that
we were exploring above to a 100 X 100 grid in just a moment, and start generating
similar dispersion patcerns on a much finer grid of cells (Figure 5.29). Imagine build-
ing a similar model ona 100 X 100 grid in Scella!
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Simile can also save equations; however, here it s done using a programming language,
Prolog, which makes it a bit harder to read for somebody unfamiliar with the conventions of
that language - especially when the model becomes more complex For simple models like
the one we are studying, 1t is still quite easy to understand what the statements are about.
Below 1s the Grass-Rabbits model as described in Simile

Model R_G_array10000
Enumerated types: null
Variable R_A
RA= [Rabbits]
Where:
(Rabbits| = Cell/Rabbits
Variable sum_R
sum_R = sum((R_Al)
Submodel Cell
Submodel Cell is a fixed_membership submodel with dimensions [10000).
Enumerated types. |
Compartment Grass
Initial value = 2
Rate of change = + Growth — Grazing
Compartment Rabbrts
Inimal value = If (index(1) == 2550) then 300 eise 1
Rate of change = + Uptake — Mortality — Migration
Comments:
For random initia'ization rand_const(1,2)
Flow Grazing

Grazing = beta*Grass*Rabbits
Flow Growth
Growth = alpha>Grass
Flow Migration
Migration = delta*((if col > 1 then Rabbits-element{|R_A],row — 1)*

size + coi—1) else 0) + (if col<size then Rabbits-element((R_A],(row—1)*size + co! + 1) else
0) + Of row > 1 then Rabbits-element(|R_A],{row—2)*size + col) else 0) + (f row<size then
Rabbits-element{|R_A],row*size + col) else 0)}

Where.
[R_Al= /R_A

Flow Mortality

Mortality = mu*Rabbits
Flow Uptake

Uptake = k*Grazing
Variable alpha

alpha = 1
Variable beta

beta = 1
Varizble col

col = fmod(index(1) — 1.size) + 1

Variable delta
delta = 0.1
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Varizble k
k= 01
Varnable mu
mu = 0.1
Variable row
row = floor(iindex(1) — 1isizel + 1
Vanable size
size = 100

10 R o
TR Spatial output for the model with migration.

First we use a simplified initial condition to make sure that we can generale a pattern of dispersion, as we
might expect 1o see in a model that is similar to the diffusion process.

Rabbits (100x100. time = 100.0)

1 B [
m The same model but with 10,000 cells active.

Switching from one model dimension 1o another is easy, it requires only changing one parameter and the
definition of the array size.

Now that we are confident about how rabbits move horizontally, we can swirch
the ecological processes back on and see how the system performs in space. Once
again initalizing Rabbis and Grass randomly over the landscape, we can see how,
due to dispersion, the patches become blurred; every now and then, when Grass is



Systems Science and Modeling for Ecologica

FAD0MS 1100: 100 e =0 Dy FAts 11002 100 Wi ¢ 4200

PADDM M 10D e = 4D Fanbns | D100 e = 6501

3 e E— [

Figure 5.30 RSN output for the model with randomly generated initial conditions. The diffusion
creates blurred patterns of distribution of Rabbits.

depleted, the overall population falls to a low then, following general predator-prey
dynamics, Rabbits reappear (Figure 5.3C). We can also ourput the resules as time
graphics for each cell. Figure 5.31 presents ensembles of |0,000 curves for Rabbits
and Grass in each of the 10,0CC cells. This graphic and the quantity of computations
that stand behind it should really be appreciated. Interestingly, in spite of all this spa-
tial variabihty, the totals for Rabhits and Grass follow exactly the classic predator-
prey pattern that we have seen hefore (Figure 5.32). Well, almost exactly, as we can
see from the scatrer-plot XY diagram wn Figure 5.33. Whereas previously for just two
variables in one cell the Runge-Kutta method produced an exact ellipsoid, winding
over and over itself again and agan, with 10,000 instances of the same model the
behavior becomes quite different. There is certainly far more reason to expect that it
is the error that accumulates and takes us slowly off track. Let us check: s it the error
that causes this, or something else’

The first remedy to decrease computation error is to switch to higher-order
numerical methods or 1o decrease the time-step. There is nothing better in Simile
than Runge-Kutta, so higher-order methods are not an oprion. However, we can eas-
ily decrease the time-step. Above, we had DT = C.1. Let us make 1t DT = 0.01. Now
it will take us almost 10 times longer to run the model, yet unfortunately we are not
getting any different outpur. Still the trajectory keeps winding towards the center. So
what else could be causing it?
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m Using the plotter, we can view dynamics for all the 10,000 cells.

Let us go back to the original model. In order to get there, we will remove
the horizontal fluxes (Migration = Q if delta = 0), and initialize all the cells
the same. Now we are simply running a bunch of predator—prey models simul-
tancously. To make the model run faster. we can also make the spatial dimen-
stons smaller: ler us set the size equal to 2, and the dimension of cells equal o 4.
If we now run the model, we will finally ger the expected ellipse (Figure 5.34A).
Next, let us initialize the four cells that we have randomly selected. The result is
somewhat unexpected (Figure 5.34B), and answers our dilemma: it is the random
numbers in the initial conditions that make the total population dynamics so dif-
ferent. It we increase the number of cells (size = 10), the populations tend to be
less chaotic and tend towards a limit cycle (Figure 5.34C). The graphic in Figure
5.34D is produced by the same 10,000 cells with horizonral migration switched
on (delta = 0.1), as we had n Figure 5.33, but after some 1,500 time-steps. We
see that here also there is a clear wend 1o the center, where the population almost
equilibrates.

This 15 quite remarkable, since, as you may recall, one of the major critiques
of the classic Lotka—Volterra model was that 1t depends so much upon the initial
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f Rabbits and Grass in all the 10,000 cells.

The totals seem to follow the classic predator-prey oscillations observed before, when dealing with a spatially

aggregated modei.
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L LCREEN A scatter graph (or XY graph) where the numbers for Grass are displayed as a function

of the number for Rabbits. it shows that the oscil

lations are damping.
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R DLCIERESN  Resolving the mystery of dampened ascillations.

A.When we have no spatial heterogeneity, the population is spatially uniform, and we have an ideal predator-
prey ellipse as in the classic model. B. With the population randomly initialized in just four cells we get a
chaotic behavior that fills the whole interior of the ellipsaid. C. With 100 cells randomly initialized, the area of
chaotic dynamics shrinks to a smaller domain. D. With 10,000 cells there is no mare chaos and the trajectories
tend to a small imited cycle, around which they keep oscillating. This behaviar no longer depends upon the
initial conditions, as long as the ceils are initialized with different values.

conditions. The classic model describes a population over a certain area, where spa-
tial heterogeneities are ignored and all the organisims are lumped into one number
representing the total population. However, in reality they are certamnly unevenly
distributed over space. If we split the space into just o few regions and present the
dynanmics in this spatial context, we ger results thar are significantly different from
the classic model. Acrually, it turns out that the stable oscillations are an artifact
of the averaging over space. With several spaual entities we have a converging
dynamic, which also no lenger depends upon the initial conditions.

If we take a closer look at the spatial distributions rhat correspond to this quasi-
equilibrium state, we may find some weird spatial patrerns (Figure 5.35). Starting
from the randomly distributed initial condinons (Figure 5.35A), after some 1,000
iterations, as the trajectory on the phase plane converges toward the center of the
ellipsoid a spatial pattern emerges that, while changing to a degree, still persists, as
can be seen from the series of snapshots raken approximately every 3¢ irerations
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m The spatial distribution in the 10,000-cell model with migration

Starting with randoem initial conditions (A), after some 1,000 iterations a pattern s formed, which ther persists
{B-1). Thus there is a pattern that emerges both in time and space.

(Figure 5.35B=1). It is noc clear how and why this pattern emerges, but it 1s interesting

to register that emergent patterns can result from this kind of non-hnear dynamics,
Using the so-called association submedel concept in Simile we could put
together much more elegant solutions for this model; however, these models also

become far more difficult to build and comprehend

Let us put together an association submodel called MextToCell. It will be
defined by two relationships: “self” and “neighbor.” These are cell attributes that are
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provided by the stack of cells with che submodel in each of them. The existence of
NextToCell submodel is defined by the condinon cond!.

Cell
N\
gelf
delta NextToCell
T neighbe migration
mu
—’"‘\.\_,/ ~ condl
/ N
é:a N\ &-—b e ?
Mortality /./ o
— 8___,—-"
row ~—— —

condl = I {col_self == col_neighbor and row_self == row_neighbor} and
abs{col_self-col_neighbor) < 1.5 and abslrow_self-row_neighbor) <1 5

This condition is true only if the coordinates (col, row) of the two cells are adja-
cent to each other — chat 1s, the difference between the col and row coordinates 1s
less than 1.5 and the cell is not self. In thus way we can describe all eight cells in the
vicinity of a given cell. For each of these neighbor cells we define a variable called

migration = Rabbits_neighbor — Rabbits_self

This is the difference between the numbec of Rabburs in the cell and the neigh-
boring cell. This value 15 then fed back mro the model and is used ro define the flow
called

In = delta*sumi{migration_seif})

Here we are summing all the migrations for the eight neighboring cells and, with
the diffusion rate of delta, using this sum to update the number of Rabbies in the cur-
rent cell. Note that when

Rabbits_neighbor > Rabbits_self

the flow is positive, and 1t 15 negacive otherwise. This should be sufficient to describe
the diffusion process of Rabbits 1n our system. lndeed. if we run the model we get
some very plausible distribution that looks very similar to what we have been gener-
ating above — but, we have to agree, this formulation is way more elegant.
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SME model

Let us explore yer another way to build and run spatial models. The Spatial Modeling
Environment {SME) is not quite a modeling system, since it does not require a lan-
guage or formalism of its own. It can rake the equations from your Stella model and
translate them into an intermediate Modular Modeling Language (MML), which is
then rranslated into C++ code. At the same time, SME will link yeur model to spa-
tial data if needed.

Iet us first put the same Grass-Rabbits model into Stella and make sure chat
it tuns properly. As a result, we will end up with the following system of Stella
equations:

Grass(t) = Grassit — dij + (G_growith  Grazing)*d1
INIT Grass = 2

INFLOWS:

G_growth = alpha*Grass

OUTFLOWS:

Grazing = beta*Grass*Rabhits

Rabbits{tl = Rabbitstt — dt) + (Uptake — R_martalityl*dt
INIT Rabbits = 1

INFLOWS:

Uptake = k*Grazing

OUTFLOWS:

R_mortality = mu*Rabbits

alpha =1

beta = 1

k=01

mu =01
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For these Stella equations, we do <Edit ->> Select All> and then <Edit ->
Copy>.

Next, we open a Text Editor on our computer (on a Macintosh it will be BBEdit,
ot TextEdit; in Windows 1c is probably the NotePad) and paste the equations into
the file, then save the file using the .eqns extension and naming it R_G1.eqns.

We now need to get SME running. SME is open source and 1s available for
download from Source Forge, the main repository of open-source projects. The URL
is htep:/fsoutceforge net/projectsfsmodenv. SME is available for Linux and Mac OSX
operating systems; there is no Windows version so far. Once we have downloaded
and installed SME, we need to ser up the SME project.

Having chosen a name for our project — let us say R_G, representing
Rabbits&Grass — we open the Terminal window and enter the command:

>SME project R_G

If the installation has been done properly, this sets up the project directory. Now we
can put the equations file that we created in Stella into the directory Models. We
will call the model R_G1 and perform the SME command:

>SME model R_G1
Now we get:

Current project directory is /Documents/SME/Projects/
Current project 1s R_G

Current model 1s xxx

Current scenario is xxx

Current model set to R_G1

Current project set to R_G

[t is not important at this time, but let us also choose a scenario name. We will see
what that is later on. Using the command

>SME scenario S1
we get:

Current project directory I1s /Documents/SME/Projects/
Current project 1s R_G
Current model 1s R_G1
Current scenario 18 S

Now we can import and configure the model:
>SME impornt

This will take rhe equation file and translate it into the MML (modular modeling
language) spectfication. There will probably never be any need to see cthe result, but
for the sake of cunosity 1t 1s possible to look at the file Models/R_G 1. MML for the
MML specification and then look at Models/R_G1/R_G1_module.xml, which 15 the
same file mn an intermediate XML specification.

At the same nme the first config file has been generated 1 Config/R_G1.MML.
config. This file still contains just a list of all variables and parameters of the model.

Let us do the build command now:

>SME build
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Something is processed, there are some messages, and at the end it can be seen
that some C++ code has already been compiled. This is not importanr at this ume,
since we will probably sull need to do some more configuring before we get some-
thing meanmngful. What is important is that a couple of more config files ave gener-
ated. See whar is in the Config directory now:

R_Gl.biflows, R_Gl.conf, R_GL.SI, and R_G1.Sl.conf.out

The most important file 1s R_Gl.conf. This will be the config filc that we will
be working with most of the time. At this rime 1t has cthe following list of parameters:

# global DS(10,0) n{1) s(4332) ngi{0) op(0) OT{1,0.20) d(C} UTM(0,0.0,0.0) UTM(1,1.0,1.0)

$ R_G1_module

* ALPHA pm{1}

* BETA pm{1)

* GRASS s{1) sC(C)

* GRAZING ftiu)

* G_GROWTH ft(u)

* K pm(Q 100000)
* MU pm(0 100000)
* RABBITS s{1) sC(C)

* R_MORTALITY ft(u)

*TIME

* UPTAKE ft{u}

If we compare this file with the Stella equations above, we see that 1t contains infor-
mation about all the pacameters that we had chere. In the equations:

alpha =1
beta =1
k=01

mu=201

we find the samc values in the R_G1.conf file.

What we have lost are the initial conditions. Thar 1s because in Scella we
defined the initial condirions 1n the state vanables boxes, rather than as paramecers.
SME does nor like that. Let us quickly go back to Stella and fix ic by defining initial
conditions 1n terms of some auxthary paramecers:

INIT Grass = G_init
INIT Rabbits = R_init
G_int=2

R_init =1

Note the tny difference between this set of equations and whac we had above. We will
now have to do another >SME import and >SME build. Keep in mind that whenever
we alter the equanons, we need to do a re-import and a rebuild. We do nor need w re-
import and rebuild if we only modify the parameters in the config file. However, (f any of
the parameters are redefined as spatial, a rebuild is needed. We will gec back to this later.
So another SME import modifies the R_Gl.MML.config file - but when we
run SME build the R_Gl.conf file will not be changed. Thus is a level of protec-
tion co make sure cthac the config file wich all the valuable spatia) information is not
inadvertently overwntten, by re-importing and rerunning the Stella equations that
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do not contain this daca. This might be a little confusing; however, it is important to
protect the spaual version of the config file.

The outpur from the last rebuild can he found in R_G1.S].conf.out, and if this
is really what you want to do, you can delcte your R_G1.conf file and rename the
R_GL.Sl.conf.out into R_Gl.conf. This 15 what we will do now to get the following
as the config file for the model.

# global DSi1.0,48) n{1) s(4332) ngl0) op(0) OTi1.0,0.0,20.0) ¢t 0) UTM(0,0.0,0 0}
UTM(1,1.0,1 0}
$ R_G1_module

* ALPHA pm(1)

* BETA pm(1)

* GRASS s(1) sC(C}

* GRAZING ft{ul

> G_GROWTH fu)

* G_INIT pm(2)

* K pm(0.100000)
* MU pm(0.100000}
* RABBITS s{1) sC(C)

* R_INIT pm(1)

* R_MORTALITY  ftiu)

*TIME

* UPTAKE fi{u)

Note that the intial conditions are now properly defined in chis file. We are ready
to run the model in SME. However, fitst let us take another look at the conhg file. We
have already guessed that pm() 1s a parameter in Stella. Whatever value the param-
eter had i Stella, it was automarically transferced into the config file. Also, the stare
variables (GRASS and RABBITS in this case) are described by two commands, s() and
sC(C). What are they? The best available documentanion for SME 15 on the web at
hrep://www.uvm.edu/giee/SME3/frp/Docs/UsersGuide.html. Most of the coromands are
described chere, though not in the most foolproof way. For the state vanables, we learn
thar (1) means that we will be using the first-order precision numeric method. We
might also learn that the rwo commands that were generated by the SME build com-
mand are actually not quite consistent with the larest documentation: the sC{C) com-
mand could be erased and instead the s command should be s(C1C). However, SME will
still run wich the sC(C) comimand. “C” means that the variable should be clamped ~
that is, 1t will not be allowed to become negatwve. It is not unusuzl to ind these kinds of
glitcches m open-source code; after all, chese guys are not paid to wnite the fancy tutorials
and documents to make cheir software useful! We have to either bear with them (after
all, the software 1s free) or, even better, help them. We can always contribure our bug
reports and pieces of documentation that we put together while exploring the program.

Next we need to configure the output. So far it is undefined; we do not know
what the program will ourput and where will it go. Let us use the P{0,0) command to
see how the state variables change. The lines for GRASS and RABBITS will now be:

* GRASS P(0.0} s(C1C)
* RABBITS  P{0,0) sIC1Q)

Note that we have also got rid of the ourdated sC(C) command. Just one more
thing before we run the model. Take a look ac the furst line in the config file, the
one that starts with #global. This is a set of general configuration commands char are
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placed there by default by the translator. The two important ones that we may want
to change right away are the OT() and the d{) commands. Check out the SME docu-
mentation to learn more about them. The d() command sets up the debug level - that
i, the amount if information thar will be provided into the command line interface.
When we have d(0), that 1s the minimal amount. [f we want ro see what equations
are solved in which order and whart acrually happens during our model run, we prob-
ably need to bump up the debug level, making it d(1) ar d{2).

The OT command defines the time-step, the start and the end of the simulation,
Right now we have OT(1.0,0.0,20.C), which means that we will run the model with
a time-step of 1, starting from day 0 and finishing on day 2C. This will nor allow us to
go beyond 20. If we wish to have a longer simulation rime, we need to change it 1o,
say, OT(1.C,C.0,10C.0). Now we can make up to 100 steps.

Finally we can run the model, using

=>SME run

See what happens. In the command line interface we get:

[AV-Computer:SME/Projects/R_G| voinov% SME run

" ** Spatial Medeling Environment, Copyright (C) 1995 {TXU-707-542), Tormn Maxwell
*** SME comes with ABSOLUTELY NO WARRANTY

" This is free software, and you are welcome to redistribute il

*** ynder the terms of the GNU General Public License.

Current project directory is /Documents/SME/Projects/

Current project is R_G

Current model 1s B_G1

Current scenaric is xxx

Running SME model R_G1 in serial mode, cmd:
[Documents/SME/Projects//R_G/Driver/R_G1

-ppath [Documents/SME/Projects/ -p R_G -m R_G1

-ci /Dacuments/SME/Projectsf/R_G/Config/R_G1.conf -pause 0 -scen xxx
info: Setting Project Name to R_G

info.

Allocating medule BR_G1_maodule; ignorable: D

info. Reading Contig Files

info: Opening config file: /Documents/SME/Projects/R_G/Config/R_G1 conf:
info: Reacing config file

warning: this pragram uses gets{}, which is unsafe.

SME=

Here, the driver stops and waits for us ro tell it what to do next. It looks Like gih-
berish, but may actually contain some important information — especially if we run
into errors. To run the model for 3 days, we use

SME=r b
[f we have the debug level set ar d( 1), we will probably get:

info: Setup Events

info: CreateEventlists

info: ProcessTemporzlDependencies
info: ProcessSpatialDependencies
info: CreateEvenilisis
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inte: FilllnitiahizationList

info: Spht & Sort Lisis

info. Setup Variables

infe: Setting Up Frames & Schedules

info: Allocating Memary

info: Posting Events

info Opened xml File /Documents/SME/Projects/R_G/Models/R_G1/xxx/R_G1_
module xml.

info; ***r¥¥=ssssxsrr=axns fracuting Event R_G1_module StateVarlnit ar time
0.000000

infp; ***ersexxxxcnxzrssesr pPyacyting Event R_G1_module:FinalUpdate__S__ at
time 5.000C0C

TCL>5

SME=

The model now stops again, and another r command 15 required to continue. Ler
us run it ol day 100:

SME = r 100
Mow it stops and waits again. To quit, we do
SME = X

[t ts important to ensure that Enter is pressed after each of these commands.
This is it. Now where are the results? Ga to Projects/R_G1/DriverOutput. Here,
we might notice that two more files have been generated:

GRASS.PTSP_p_0
RABBITS.PTS.P_p_1

These files cannot be seen until we have quit the model run; they appear only
afrer the X command has been issued. Now that we have exited SME, the hles should
be there. These are simple timeseries, with output for GRASS and RABBITS respec-
tively. The first column is the rime, the second column s the value of the state vari-
able. One way to look at these results is to simply copy and paste the files into Excel
or another spreadsheet program. We can draw the graph and see that, afrer a couple
of oscillations, the GRASS population crashes tollowed by the slow dving off of the
RABBITS. This is not exactly what we would expect from a standard predator—prey
model. Where are those nice population numbers, going up and down indefinuely’

Of course, we were running the mode! with the first-order Euler method. That is
a pretty rough approximation. Let us switeh to a mure accurate numeric method. We
open the config file and change to the fourth-order method:

" GRASS P{0,0) sIC4C)
" RABBITS P{0,0) siC4C)

Mote that previously we had s(C1C), now we have s{C4C). Thus does it If we
rerun the model (SME run, then ¢ 100}, exit (X}, go to the DriverQurput directory
and paste the output files into Excel, then we will get what we were expecting - nice
lasting oscillations of both variahles.

However, where are the spatial dynamics? We could ger all this in Stella withour
the trouble of setting up the model in SME. But how can we expect anvthing spatial if
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we have nor defined anything spatial in our model? So far, we have simply replicated
the Stella model. Now let us go spatial. First of all we will need some maps to describe
the areas for grass and rabbuts. Suppose we choose the area shown 10 Figure 5.36.
These days, the simplest way to generate these maps is to use Arclnfo or ArcGIS,
the monopolist on the GIS market. However, if we run GRASS, an open-source G1S
(do nort confuse with one of the variables in chis model) that will also work. Anyway,
whart we need to do is generate a simple ascii file that will first of all describe che
study atea 10 our model. This will have Is mnside the study area and Os everywhere
else. It may look like this in one of the formars that SME rtakes, 1.e. the Mapll format:

FILETYPE=INTERCHANGE

ROWS=62

COLUMNS=67

CELLSIZE=200 0O0C00C

FOAMAT=DEC

INFO="hunt wsh"
DATA=0000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000C0000000000000000000000000
0000000000000000000000000000000000011000000000000000000000000000000

10000000000000000000000000
100000000000000000000000000
1000000006000000000000000000
100000000000000000000000000
0000000000000000000000000000
00000000000000000000000000000
0000000000000000000000000011 1 0000000000000000000000000000000
00000000000000000000000000011100000006000000000000000000000000006000
0000000000000000000000000001110000000006000000006000000000000000000G¢0
00000000000C000000000000000C110000000000000000000000000000000000000
000000000000000000600000000000060000000000000000000000000000000008060C
0000000000000000D0D0D006000000D000000000000000000000000000000000000000
LABELS

000C0001100000000000001 1
00000001000000000000003 1
000000000000000000000000°
0000000000006000000000001
0000000000000000000000000 1
00000000000000000006C00000 1 1

0000000000000000000000000000000000011100000000000000130000000000000
00000000000000CC000000000000000000111111000000000001111110000000000
0000000000000000000000000000C000011111111511100011191111411110000000
00000000000000000000000000000001 111171111111 414113111191111911000000
000000000000000000060C0000000CCH I 11111 LTI T141111114111111110000000
000000C0C0000060000000000000000t1 1147417111115 111111111111100000000
000000000000000000000000000011 1791111111773 1111711111111§011100000000
00000000000000C000000000000111111113131111111111111110000110000000¢€C
000000000000000000000000001 111114111 111111§11711911Y3100000000000000
000000000000000000000000001 11111 111111311111111113111000000000000000
00000000000000000000000001 11X TST1EYE111111111°711911100600000000000000
000000000000000000000000 T ¥ Y £ 1ST1VTLILI51)1115111100000000000000000
0000000000000000000000001T 11111577311 11113139111111t100000000000000000
0000000000000000000000001 ¥V F11 1TV 111111111111111100000000000000000
00000000000000000000002 151111111111V 11111111 71111000C0000000000000
000C0O0C0O00000R0000QCOCOCCHIITITIIIIT I ET1I(111111100000000000000000
0DQ0D00D00O0D000DODAO0000DTI T T I LTI AT LTI TITEITE111111111000000000C0C0000
0000C0000000000G000DOT 1T AT LI LI (11111111111 711000000000000000
0000000000006 C0O00000 11T 1T 1T 1I YT 1144141011111 11111111100000000000000
0000000000C0DQ0OQO0TTTTTITHITITII I YENLTL 148101 1131111100000000000000
0000000000C0000 T 1111 1T T A1 EE 111111 111111111111 1111(100000000¢0000
0000000000001 101111 AT TTIITTIN 1IN RT T4 T3 (111111111000000000000
0000000000001 T 1111111 LTI TEE I it 1 i1 1411111100100000000
0CO0000000 1T 111111V T4 T Tt T T Tty t131911111114100000000
000000001t I TIT1 111 11 LT3 181 T340t 191 1313111711111 11000000
0000000 1T ITIFL I 131411413131 v TP 11111113 1111111113511000000
0000000111111 Y11V Y 1T A1 1V 81T it 11411111113 111111111911110000
060000011111 T T YT I 1141 3Ty 118111177 11111113111171111111113D000
00000001 11 1§11 1F¢1 134110131 13181111 17111111717111111111¢4111111D0DO
0CO0O00O0TH I 1 T T Iy T T 1 11T T I i1 11 1111111119119 917191§1191000
00000011 1413111 T A8 TT3 T3 T 101111141ty I 19 fietidi 1111313111 151000
0000001413141 1111183 113441 Tty i fr i1t its1ieii19111111131000
0000001 1111114131111 719131110111 1810913131381 911114191 313111111000
00000011141 11111111111 11418 T F 91188 8 i i1 1393113131311 1111171000
000000 14T T 111111 T 1111145411541 83 810100311 111131131313131111110000
000000 Y " T T 1T E T T IT I T T I a1 11 1973113131391 18111111111110000
0000COTTHT 1IN LAt Tt A I I T T T i 11914111111 11111Y11100000
000000 VI T T T T I T I Tt T T T I T ir11191111111111111111000000
0000001 I I T T I T AT I I I i1 1111111411111 113111000000
CO0OO0OI I A1 AT I T T I I I Tt T At i f11i1111111113111111000011100000
00000011 ¥t 1 11111111 T AV IET YV IIT1I1 711111117 (11111111000000000000
0000001 11141110011 (3111141111111 11137111100000711(111000000000000
0000001111 11100000t 5111111111 (11111111 1§111000000001000000000000000
000000111 1141000000011 (11114111111 114111§(000000000000000000000000
0000009 111110000000007111111113111¢11111111000C000000000000000000000
000000111110000000000041 111113111111 111¢110000000000000000000000000
0000000¢110000000000003111111341311131§11110000000000000000000000000

INERRREEREREERRE

IEEREREREERERERE

(1313131911111

[REERREEEREERER

TT1111 19y 111)

1111111001
11110000
{
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m A map that defings the study area in SME.

This is very similai to the Arclnfo ascir format. Everything will be the same
except for the hrst header lines:

nocals 62

NrOws &7

wilcormer  443396.06231037

yilcomer 241834 36232137

celisize 30

NODATA value -2933
000C00CO0OCGOO0CO0CO0C000O00000G000Q0000000000000000000000000000000C000
o000DAOODOCDOCDO0DO0CO0GCOICON0COD003C00C0O000000000000000000000A00Q0000
0D0000C0OCDOCO0CO0G00CGO0CG000C00C00C110000000000000000000000000000040
000000000CO0CD0CO0OCO00CNONA00CHV000CT1100000000C000001100000000000040
00000A000CO0GCI0000C20C00CGO00CO0C0O0Y11111000003G00001171112000000000

The bottom line 15 that it does not matcer what software is used, as long as we
can get our map hles into one of these ascii formars. One thing o watch out for,
especially when preparing data in Windows, s the EQOL — end of line - symbol. It s
different in Windows and Unix. Since SME is using Unix convenrions, it is likely to
choke when it has to read fles with the “wrong” EOL symbol. Try the dos2umix com-
mand to convert the files — usually i comes wath the standard distribution of Unix or
Linux, although t does not come with Darwin, the Mac O5-X Unix kernel. Luckaly,
on a Macintosh there are ather ways to handle this. For example, BBEdit allows a
choice of format for the text files,

Now that we have the map, let us get 1t into the model. As we remember, it s
mostly the config hle that SME uses to link the model with the data. We define the
model as spatial using the g{) command:

$ R_G1_moedule glA /Documents/SME/Projects/R_G/Data/Mapsiirea.arc, default,
[Documents/SME/Projects/R_G/Data/Mapsiarea.arch ALD,D)

The long path [Documents/SME/Projects/R_G/Data/Maps/Area.arc points to
the Area arc map that is the Arclnfo ascii formart for the study area that we have
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chosen. Now we have munalized the model as being spatial, but have not identified
any sparial variahles: all ¢f them are still treated as single numbers. To do that we can
use another SME command - oi(). It is called “overnide nitalization,” and has two
parameters. If the first parameter is positive, then the varnable 15 assumed to be con-
stant. If the second parameter is positive, then the vanable 15 assumed o be spatially
distributed. So if we configure, say, GRASS as

* GRASS 5(C4AC) o0, 1]

we should ger what we want - a spatially distribuzed variable.

Next let us deal with the giaphic output. This s handled by the sco-called
Viewserver, which we now need to stare up.

Let us add ver anather command to the previous line:

* GRASS DDi) 5{CAC) «it0,1)

The D) command establishes a connection with the Viewserver - a very
important piece of software used 1o display the results of spatial simulation. The
Viewserver should be started using the command startup_viewserver. It is better to
do 1t from a separate terminal window, since the Viewserver generates a long com-
mand line output that will clog the terminal that is being used to run SME.

Let us also generate spatial output for the other model vanable, RABBITS:

* RABBITS DDI) s{CAC)

Note that in this case we do not even need ro declare the variable as spatial.
In the moedel it s dependent upon an already spatial vanable (GRASS), so it will
hecome spatial automatically.

Onece we have started the Viewserver and done another SME run, we can see that
the Viewserver receives output from the running model and a new data set is added
to the list on the left panel of the Viewserver. If we highlight one of the dara sers
and then choose a 2D animation viewer and click the "Create” button, we will ger an
image of the map that is now dynamically changing as the variables change their val-
ues across the whole area. You can warch how the Grass and Rabbits alternate their
hiomasses, changing from mimimal (blue) te maximal (red) numbers (Figure 5.37).

Figure 5.37 Simple spatial dynamics when all cells are the same.

A. Grass (max. 2.043, min. 0.3279], B. Rabbits (max. 1.285, min. 0.7642).
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Let us now make the model sparially heterogeneous. Suppase we have a spatially
hererogeneous initial condirion far the GRASS biomass, and thar grass 1s not uni-
formly distributed but has different biomass in different locations. We will ininalize
the GRASS variable with a map that has different values in different cells. Ler us use
the map in Figure 538

Note that the spatial extend of this map is different from that of the map above.
That is ©OK. SME will crop this map te match it to the arca defined above by the
study area map. How do we input this new map? Back to the conhg file. This time
instead of defrung the wnirial condition for GRASS as a constant parameter pm(2),
we will use a map:

*GUINIT diA /Documents/SME/Projects/R_G/DatafMaps/Biomass.arc,
{Documents/SME/Projects/R_G/Data/Maps/Area.src)

Again, we have to provide the full path to the map fle that we wanr to use. There
15 actually a better way to do it using the Environment hle. This file should reside in the
Data direcrory, and it contains all the paths that we may wish to use in the conhgura-
tion files. For this model, we will put the following two lines into the Projects/R_G/
Data/Environment fle:

MAPS = /Documents/SME/Projects/R_G/Data/Maps
RMAP = /Documents/SME/Projects/R_G/Data/Maps/Area. asc

The first line defines the Maps directory, which we seem to be constantly refer:
ring to. The other line is the full name of the reference map, or the study area map,
which 1s used to crop all the nther maps in the project.

Now some of the lines in the conhguration hle can be much shorrer:

$ R_G1_module giA, $IRMAP} cefault. $IRMAPT AL(0.0}

*G_INIT diA, SIMAPSHBiomass.arc, ${RMAP)H

mnnlher map used to define spatially heterogeneous initial conditions for Gross
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Muoreover, the biomass map thar we used to initialize the model has values
between 0 and 61. The minal condinon thar we used before was 2. 1t would be nice
if we could scale the map ro some values rhar would be claser ra those we had ongi-
nally, and we can use the S() command ro do that. The syntax of this command is
S(a,b), which means that if x 15 the inpur value then the result of this command 1s
y = a*x 4 b. So finally if we use the command

* GUINIT dia ${MAPSYBiomass are, ${RMAP) S(.01e + 00,1.0)

rhis means that we will inpur the map from the Biomass.are tle, then each value will
he multiplied by Q.01 and added to |- That will be the result used in the simularions.
Also nore thar we no longer need the oi{0,1) command, since we now have the ini-
nal condition rhat initalized the variakle as a spatial one, which ensures that all the
rest of the variables connecred ro rthe spanal one will also be sparial.

Thus s a hietle more mteresting: now there are some spatal varmnons, and there
are some differences in how various cells evolve (Figure 5.39). However, there is still
no imteraction between cells, and the real spatial context 15 not present. We simply
have a whole bunch of models running in syne, but they do not interace wicth each
other.

Making cells "ralk” to each other is a litrle more complex than anything we have
done so far, Whereas until now we hive simply used some predefined commands, and
the maodel we builr i Stella, from now on :f we are to define some meaningful spatial
interaction we will need to do some programming.

There are some modules thar we can use in the Likrary of Hydro-Ecological
Maodules (LHEM — hrrpifgiee.uvim edu/LHEM); however, there arc not too many
things we can do with those pre-designed modules. [ we really want to be able to build
complex spatal models, we will probahly need ro be capable of some level uf C+ +
programmning. SME supports so-called User Caode and offers full access to s classes
and merhods, which can significantly help us 1 designing our own code for spatial
d\'l'h"“lt-h.

Suppuse for the Rabbits & Grass model we wish to allow rabbits to move
between cells i search of better grazing condinons. We will assume rhat whenever
rabbics ind that there is more grass in the neighboring cell, a cerran proportion of

R DLCREREEN  Spatial dynanics with no migration,

A. Grass imax, 1.490, min, 0.5}, B. Rabbits (max. 1.142, min_ 0.86).
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rabbits from the current cell will move to the cell with mure grass. Let us wnite the
code that will describe this behavior of the predator:

;&*u;l:i—d-}_!-l!-!|->‘-bi-lo»oanlola-|o--|ll.!-alloaalln-aai/
[

#include "Rabgith”

;n-.q--q-.qqnq».-ncq.;(-1Q-ﬁgl**tiilfiiill‘--'ttci-Qnnobq-l}
i

vaid MoveRabbits{ CVariable& Rablnts, CVariable& Grass, CVariable& Rate |
!l moves rabbits toward more grass. if there are lesa rabbis there
/f arguments come from MML.cenfig fi e, first arg is always varable being configured.

Grid_Direction il;
float fr, R_moved = 0.,

DistributedGnd& gnd = Rabbits.Gridi);
grid.SetPointOrderingl0),
/f sets gnid ordenng to default orderning (row-col) tordering #0)

Rabbits.LinkEdgesi(}:
Grass LinkEdgesi);

static Clvanable® B_Flux = NULL,
iHR_Flux = = NULL}
R_Flux = Grass.GetSimilarvanable!" R_Flux"};
I intermediate increment ta Rabbits
R_Flux- = Set{0.0};

for( Pix p = grid first{); p; grid next(p} )
{

const OrderedPoint& pt = gnid. GetPointipl;
/f sets currertPoin:

il lgrid.onGrid(pt) } continue;
I lonGrid = = Falsel - = Ghost Point

float g_max = Grassipt);
Pix p_max = p;

{/ for each point calculate where i1s the max Grass in the vicinity
torl il = firstGD{; moreGDlL; incrGDO) |

{

/{ enum Grid_Direction (NE = 2, EE, SE. 5§, SW. WW, NW, NN},

Pix rp = gnd NeighborPix{ p, il I
/ relative to pt, takes enum Gnd_Drrection as arg

flirp
{
const OrderedPoint& rpt = grid GetPointirp);
if | Grasslrp1) > g_max }
{ g_max = Grassirp1).
p_max =rp,
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const OrderedPoint& pt_max = grid GetPoint{p_max);
/] sets currentPoint

{// 1f there 1s a cell in the vicinity where there 1s more Grass, then a
// portion of Rabbits moves to that cell
if { g_max>Grass(pt))
fr = { Rabbits(pt)> Rabbits(pt_max) ) ?
(Rabbits(pt)—Rabbits(pt_max)} * Rate(pt} : O;

(*R_Fluox}{p1_max) + = fr;
(*R_Flux}{pt)— = fr:
R_moved + = fr;

}// end acea loop

Rabbits.AddData(*R_Fluxj,
printf ("\ninfo: Rabbits moved = %1 R_moved);
}

/**il***ii***iK"l*'lll***********ﬁﬂ*******dﬁ**l****k*******&/

So here we have only Rabbits moving horizoncally from one cell to another in
search of a better life. How do we tell SME that there is something new that the
model wants to take o account?

First, we go all the way back to the MML.config file that we can find in the
Config directory. In this file we add a command for Rabbics:

* RABBITS UF({ Rabbit, MoveRabbits, GRASS, RATE)

Here, Rabbit is che name of the file that contains the above C++ code. Actually
its name is Rabbir.cc, and 1t resides 1in the UserCode directory. MoveRabbits 1s the
name of the function in this hle that we use. GRASS and RATE are two variables
that are passed to this funcrion. While GRASS has always been there, RATE is
new. The way we get it nto the config file 1s by modifying the Stella model and add-
ing another variable. Once again, we have to export the equations and then do the
“SME import” command. Alternatively, we can modify the equation file that we cre-
ated earlier from Stella equations. We simply need to add one line:

rate = 0.5

and then we can also do this by hand in the R_G1.MML.conhg file. Note, however,
that this 1s somewhat risky, since 1t 1s very easy to forget about some of these small
modifications of the equartion file, and there 15 no way we can import these modi-
ficattons from the equations to the Stella model. As a result, once we have fnally
decided that we wish to modify the Stella model for some other reason later on, most
likely we will forger abour these modifications. When rtaking the equations from
Stella and creating a new equation file, we will lose all these previous changes. The
model will suddenly perform quite contrary to expecrations, and 1t will take a while
to hgure out why and ro redo all the little updates. So while every now and then ir
seems very simple to modify just the equation file, actually it is much better if all the
modifications are done directly to the Stella model.

As we remember, whenever the equanons or the MML.config file is changed we
need to do the SME import command. Then we can do the SME build command, and
update the config file to add the RATE parameter to it as well. Remember - cicher
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it has to be done by hand, or the hle can be renamed to use the R_(G].S1.conf.out
instead. As a resulr, we get:

" RATE om0 5}

Are we ready o run? Almost, but there s still one gliteh to fix. The variables
that we have been passing ro the newly designed function to move Rabhits are all
assumed to be sparial.

MoveRabbits CVariable®& Rabbits, CVanable& Grass, Cvanable& Rate )

However, the RATE paramerer as we defined it above is a scalar. There is an
easy fix. Just add the override command

* RATE prmifQ 5 o(Q, 1)

and you will be back i the game. Alternatively, you could also define this parameter
asa map:

* RATE d{A S(HMAP) $S{RMAP} S(.5e + 00,0.0)

Here we wed rhe study area map to mutialize this parameter, which, with this
scaling factor, is identical to what we did above. However, this could be any map,
which would probably be the only reasonable way to define this parameter if we
wanted it to be spatially heterogeneous.

Alternatively, if we do not want chis parameter to be spatial, we must not refer
te it as if it were spatial in the code. Replace Rarel(pt) for Rate Value(). Rare. Value()
is a scalar, it will not need to be initialized by a map or a spatial variable. It will 1ake
pm(Q.9).

Finally, we are ready to hir the “SME run” command and watch somerhing mov-
ing across the landscape - rabbits hoping from one place to another, grass dying and
regrowing back when the predators leave, and so on (Figure 5.40).

Certamnly. this was not as easy as putting rogerher a model in Stella, or even
Simile. However, for somebody comfortable wirth C+ 4 1t would not be a big deal
and acrually may rurn out to be simpler than learning the new formalism required for
Simile. Once we are n rhe programiming language mode, we have all the power we

B

mmua! dynamics with migration towards the cells with higher density of Grass.

Clusters of high density are formed when Rabbits from severa! cells jump into a cell with higher Grass
abundance, A, Grass {max. 1.490, min. 0.5), B. Rabbits (max. 1.142, min. 0.861
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need to create any complex model. So 10 a way, SME may be treated as a nice inter-
face between Stella and C++ power madeling.

Conclusions

A very simple model can produce an amazingly Jiverse collection of behavior pat-
terns. The facr that the predator—prey madel conrains non-lineanty makes 1t a very
exciung system to explore. After many generations of mathematicians and modelers
studying the system, it still every now and then produces some interesting results,
especially if we add some detail in either the structural or the spatial interpretation.
There are probably hundreds if not thousands of papers about the dynamics in such
or stmilar two-species systems.

What is always most intrnigwing abour models is when we find some emergent
properties that were not at all expected when we first looked at the system. For
example, the fact that pure species mteractions may produce persistent oscillations
in population numbers could be hardly expecred. With everything constane in the
system, with no external forcings, no climaric or environmental conditions involved.,
we still ger vartahility in species populations.

Systems with linear functional response are usually more predicrable. It is when
we hind feedbacks that have a non-linear effect in the system rhat we should expect
surprises. These systems need especially careful analysis, They are also hardest ro
analyze analvtically.

Providing for spatial heterogeneity only adds to the list of surprises. Why would
the spatial distribution make the predator-prey oscillation converge! Why does it
stabilize the system! How general can these conclusions be!? Does this mean chat
more diversity i the system also means more srahility? How far can we go in this
sort of generalization!

These are all exciting questions thar bea further research.
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Thes 15 an excellent example of whar analyucal studies can do in research uf population dynamics.
Two-spectes commuminies, inchiding Volterra model are very well presented, as well as the theory of
trophic chams. The hook alse covers the contents of the classic paper by Kaolmogorov, AN, w hech
was published in fralian in 1936: Sulla Tearia di Valterra della Lora per U'Esistrenza. Gom,
Instiwero Tral. Atan, 7, B4-8C. Unfortunately the hook is also guice hard ta get. Some of
the ideas have been further develuped in Logofer 1.0, {1993). Marvices and Ghraphs: Stabiliey
Problems m Marhemutcal Ecology, CROC Press, ‘

To vead move deails aboit the wolves in the Yellowstome see the aracle by Virginia Morell (2007).
Aspens Return 1o Yellowstone, With Help From Some Wolves. Science, Vol, 317(5837): 438—
439. The amazmg story about the effect of blue crab on dune fevmation is reported by Cheryl Dybas
anan NSF web sie ar hurpf/fwww. nsf govfod/Ipafinews/C2/1ip0209 16.hem.

T T pe 2 ; : 3
Simile can be }ormd at the Stmudisncs Ine web site ar h[[p ,I".'Ww“‘smlullsncs,cm'n,‘. You can down-

load & mal versiom thar will let you vun the models but will not aliow saving vour changes. It s a good
I i B
wery i expiove the software and the models that we have in this hook.
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The Spatal Modeling Environment, SME, s an open sowrce project on SowrceForge See hrep.ff
sourceforge.ner/projects/smodenv. Some example projects and latest developments velated to the
SME can ve found at hrep:/fwww.ovmedu/giee/IDEAS/

Some ideas about the vole of spaual inceractions i addimg stabdiey to the system can be found in
Maynard-Smith, J. (1978). Models i Ecology Cambridge University Press. Later on these effects
were studied for so-called mewapopulanons, which are collecticns of meeracnng populations of the sume
spectes. There is even special software packages developed o study such poprdations. RAMAS s one
of those (see htp:/fwww.ramas.com/mpmodels.hom). To learn more about metapopulations see for
example, Hansky, 1., Gaggiotti, O. eds. (2004). Ecology. genencs, and evolution of mewapopula-
aoms. Elsevier Academirc Press.
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SUMMARY

There are critical natural resources that are essential for human suzvival, and water is
certainly one of them. The dynamics of wazer, its quantity and quality mirror what is
happening at the watershed, and can serve as an indicator of overall environmental
quality. We first consider various parts of the hydrologic cycle. and some of the Jdif-
ferent processes thar move water and that define its quality and quanury m ditferent
storages. We then purt these processes together into a unit model that can describe
dynamics of water in a small, conhned and spatially homogeneous plot or cell. A vari-
ety of temporal, spatial and structural scales and resolutions may be considered, as dic-
tated by the goal of the medeling effort. We then present several ways in which water
can be described over spatally heterogeneous area. The lumped mudeling approach
uses relatively large spatial compartments or hydrologic units, which are then con-
nected over a stream network. [n the grid-cell approach, local dynamics are replicated
across an array of gnd cells that are driven by raster maps for variahles and parameters.
It time is not important, it is better to focus on spatial aspects using a GIS approach.

Keywords

Excludable and rival resources, scoping model, rainfall, snowfice, surface water,
groundwater, unsaturated zone, infiltration, precipitation, Julan day, evaporation,
National Climatic Data Center, photoacuve radiation, bi-flow, porosity, transpira-
tion, percolation, field capacity, soil moeisture, hydraulic conductivity, sail types,
Melaleuca, Delay function, TR-55, retention, curve number, surface roughness, hori-
zontal water transport, vertical water transport, lumped models, hydrologic unats,
HSPE SWAT, grid-based models, SME, GIS-based models, stormwater, ram barrel,
retention pond, rain garden, LIDAR, ArcGG1S, watershed management.

E I A

Water, energy and land are the three most crucial limiting resources on this planet,
This makes 1t especially important to understand how the systems related to these
resources cperate, the most efficient ways to control the depietion of these resources,
and how the resources can be restored 1f damaged. In this chapter, we start with warer.

Water is essential for life on this planet. The water content of a human body is
about 60 percent. Humans can survive for more than 3 weeks without tood, but far only
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3 days without water. There are some reports of longer survival times, up to as many
as 7-8 days; however, irreversible damage to the organism s most likely to occur ear-
lier than that. and in any case it will be thirse rather than hunger chat will kill furst.

Water 15 also required tor other organisms and plants to persist. [t 1s an impor-
tant transport mechanism that delivers nutrients to the plants. Ar the same time,
it provides a mechanism for pollution reduction through dilution. While most ecol-
ogists will rell you that “pollution dilurion 13 not a soluoon,” unnl recently it was
probably the main — it not the only - way to remove toxins and waste from our envi-
ronment. Or rather to make them less toxic, since dilution certanly does not remove
them. In 2000, Fornme magazine predicted thar warer “will be to the Z1st century
what oil was to the 20th."”

Note that as long as we rely upon purely renewable warter (as well as energy),
it is non-nval and non-excludable. That 5, solar energy and ramfall are available,
mare or less unttormly, over vast territories. Whoever is there has access o thar water
and energy. We cannot prevent our neighbor from having equal access to sunshine
or rainfall, or collecting it in sume way. We cannort exclude someone from using ir,
and since there 1 no rivaley it makes no sense o artempt to do so. Cerrainly there
may be geographical differences. We know that there is very much more warer in the
Pacific North Wesr than in the Sahara, but these are regional distinctions. Locally,
everybody in the Pacific Narth West still has equal access to rainfall and sunshine,
just as everybody in the Sahara has equal access to the rainfall and sunshine there.
However, as soon as we need to dip into reserves, inro fassil water or energy, or even
into the temporary reserves (lakes, reservoirs, or forest and crop blomass), immedi-
arely the resources become excludable and rival (Daly and Farley, 2004). We can put
a fence around a veservorr, privarize a forest, or outlaw pumping water from under-
ground — like Israel did in Palestine. This changes the whole political landscape, and
requires different types of management. As resources become scarcer and we dip into
stucks, we are creating potential for conflict situations (water and energy wars).

Let us comsider some sinple models related to the water cycle, and figure vut
how they can be used to increase our understanding of what 1s happening with warer.

Modeling as a hydrology primer

As in other models, we should first Jdecide on the spatial and temporal scales that are
to be used in our hydrologic model. At varying temporal scales processes look fairly
different. Consider a major rainfall event when, say, during a thundersrorm there 15 a
downpour that brings 10c¢m of rain in 1 hour, then the storm moves away and there
15 0o more rain over the next 23 hours,

If we assume a l-minute time-step in our model, we will need to take into
account the accumularion of water on the surface, its gradual infiltration nto the
sotl, and rhe removal of water by overland flow. If we look more deeply into the
unsaturated layer, we can see how the front of moisture produced by the infiltrating
water will be moving downwards through the layer of soil, eventually reaching the
saturated layer. After the rain stops, i a while all the surface water will be removed,
cither by overland flows or by infilration. A new equilibrium will be reached in the
unsaturated layer, with some of the water accumulating on top of the saturared layer
anl ef'["t‘_‘cl'ivelyl causing its level to rise somewhar, and the rest of the water staying in
the unsaturated layer, increasing the moisture content of soil.



Water 199

Now suppose thar the model time-step is 1 dav. The picrure will be rowlly dif-
ferent. In 1 day we will see no surface warer ar all, excepr in rivers or streams. In
other parts of the landscape, the water will already have either gor into the soll or
run downhill to a nearby stream or pond. The unsaturated laver will not show any
warer-front propagation; it will have already equilibrated at the new state of moisture
conrent and groundwarer level. The processes look quire different 1n the model. And
we probably already needed ro know somerhing about the hydrologie processes in
our system ro hgure all this out.

Similarly, the sparial resolution is important. If all the variables are averages over
a certam area, then within rhis area we do nor distinpuish any variability, and the
amaunts of surface warer, snow/ice, unsarurated and saturared warer are considered to
ke rhe same. If we are looking at a -on? cell this does not cause any problem, and it
15 easy [0 imagine how to measure and track rhese varmbles. However, if we are con-
sidermg a much larger area — say 1km® - then within a single cell we may find hills,
depressions, rivers and ravines. The geology and suils inay be also quite different, and
need ro be averaged across the landscape. We may be able to track many more proc-
esses, bur the model cost will increase accordingly as we will need far more data and
greater computer power to deal with these spatially detailed models.

For the first reration of our modeling process, let us assume that the area of
interest 15 a small warershed with quite uniform geo-morphological conditions, with
mote or less homegeneous soils, and ler us suppose that we wish to igure our the
amount of water that drawns off this watershed into the river downstream. With this
goal in mind, we can probably consiler the system using a Jaily time-step — ar least
as a first iteranion. A simplified conceptual model of hydrologie processes for this sys-
tem 1s presented in Figure 6.1 This diagram 1s only the up of the iceberg, wirh a lor
of fairly complex processes that may be further described in much more derail. At
this point, it 1s important to decide on the most important featines of the system that
need be considered.

We chose the following four variables for this general model:

1. SURFACE WATER - water on rhe sutface of the land (1n most cases it is in
rivers, creeks, ponds and depressions).

2. SNOW/ICE - at freezing temperatures surface water becomes ice, which then
melts as temperature rises above 0°C.

3. UNSATURATED WATER — the amount ol water in rhe unsaturated layer of
ground. Imagine the ground as a sponge; when we pour water onto it the sponge
will hold a certain amonnt before it starrs dripping. All the time water can still be
poured ento and held by the sponge, it is in the unsaturared condition,

4. SATURATELD WATER — the amount of water n the saturated ground. Once the

sponge can no longer hold additional warer, it becomes saturated. As with surface
warer, it we add water to the sarurared zone, its level increases.

These variables are connected by a variety of processes that we also need to under-
stand in order to build a meaningful model. When working on complex models, it
helps considerably if we split the whole system into components, or modules, and
Lﬂlevvlop some sunplified models for these wmodules. Lt is very likely that some modi-
heations will be needed when pulling all the modules togerther again; however, as
previously discussea_!. it is so much easier to deal with a simplified model than to get
lost tn the jungle of a spagherti diagram of a complex model with numerous pmces:es
and interactions, and no clear understanding of whar affects what
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m Conceptual model of unit hydrology.

Note that this diagram describes certain processes as if they were spatially distributed with a horizontal
dimension present (runoff “moves” water from rainfall to a pond, saturated water also movesl|. In fact, when
we run the model we assume that all these vanables are uniformly distributed over the whale area and are
represented by “point” quantities or concentrations.

Modeling is truly an iterative process As stated many times before, we want ¢ know the
spatial and temooral scales before we start building the model. But how do we higure them
out If we have only a vague idea about the system? What are the processes involved? At
what times are they important, and do we want to include them at all? Or perhaps there are
some other important processes that we ae simply unaware of.

Indeed, there is no prescribed sequence of events Perhaps you want to start with a so-
called "scopning mode ™ - a model that would put together whatever you already know about
the system in a rather qualitative format, omitting al' the details that a'e not clear, outlining
the system In general and the processes that we think are important. This you can start dis-
cussing with colleagues and with potential future users of the model. These users are the
ones who formulated the initial goal of the study, so they are mast likely 10 know sometning
about the systemn. Start talking to them or, even better, engage them in a participatory mod-
eling process — something we will be discussing in a lot more detail in Chapter 9.

In any case, do rot think that there 1s anything final In your decis:ons about tne scales
and processes There will always be a reason and a chance te come back and make improve-
ments. Tnat 1s the beauty of computer medels: they exist in virtual reality, to build them you
do not have to have something cut. ploughed, extracted or destroyed, and you can easily
madify or refocus them if necessary.

Water on the surface

The surface water variable s used o model warer on the surface of the land. If we are
looking at an arca with no steep gradients and fairly lugh p_orential rainfall (for exam-
ple, the Flotida Everglades or other wetlands), then surface water can accumulare
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in significant ameunts before it is absorbed by the soil. In this case it is necessary to
consider the process that connects the accumulated surface water and the underlying
unsaturated layer. This process is known as mfileradon. In most terrestrial areas with
steeper slopes, most of the surface water will drain off into rivers, creeks, ponds and
depressions in which it will accumulate over a layer of saturated water. Therefore, there
will be no infltration. [nstead, there will be an exchange process berween the surface
water and the saturated laver.

[t 15 hard to isolate a unit of surface warer without connecting it with the sur-
rounding neighborhood. Much of the surface-water transport 1s due o horizontal
fluxes, and therefore a box-model approach will be only approximate when modeling
surface-water dynamics. However, with appropriate spatial and temporal scaling we
can think of an aggregated unit mode! o represent surface water in a homogene-
cus unit cell, assuming thar we are modeling the total amount of water over a large
enough area and one that can somehow be 1solated from the other terntores. This
can be a small watershed, or an agricultural feld, for which we can monitor the
inflows and outflows. A simple conceptual model can be described as in Figure 6.2,
There are two major processes involved: precipisarion and infiloration

Precipuaucn is probably the process that 1s intwtively most obvious. We deal
with precipitation in our everyday lives when we decide whether we might need an
umbrella cn going out for the day. The amount of precipitation 15 what we are con-
cerned with when building a hydrologic model. 1t s alse important to know in what
form (liquid or sohd - rain or snow) the precipitation will arrive. Precipitation is
recorded, by most of the meteoralogical stations, in millimeters or inches per day. A
sample data sheet for precipitation registered ac Baltimore Washington Airport, MD
in 1996 is shown 1n Figure 6.3.

In Figure 6.3 0.0T stands for traces, which eans that the precipitation was
recorded at levels below measurement accuracy. In many cases it is possible to
ind metcorological data for a specihc area ar the National Climatuc Data Center
(NCDC: http://www.nede.noaa.gov/). For example, on entering this site and choos-
ing Maryland, then the station at Baltimore Washington Airport, the relevant data
can be found. A graphic can also be generated for a table such as that reproduced
here. The data can be downloaded in numeric format t use 11 a model. Temperature
is important for us to decide whether the precipitation is rain or snow. The Snow/lce
model below describes this process.

Infileration 15 the process by which water from the surface is taken into the
ground by means of gravitational and capillary forces. The rate of infiltration defines
how much water will be left on the surface to contribure to the rapid runoff, and how

Precipitation Evaporation

To/From snowlice

Infittration upflow
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Figure 6.3 Precipitation data at Baltimare Airport in Maryland (USA).
Notice the treacherous inches/day used as a unitin this data set.
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SGULCHGE A bare-bones Stella model for local surface hydrelogy, and output from this model.

much will go into the ground and then travel slowly through the porous media. We
will consider infiltration in more detail below, when discussing the unsaturated water

storage,

A Stella model that corresponds to this conceptual model of surtace hydrol-

oy is presented in Figure 6.4, We have only one stock and two flows, and no



feedbacks. [n thus case we assume rhar the surface warer is delivered by rain and then
gradually infilcrates inwo the ground. The rainfall is fast, whereas infiltration is slow.
However, rainfall occurs only sometimes, whereas inhltration 1s continuous. The
cquations are:

Surface_Waler(tl = Surface_Water(t - dt) + (Rainfail - Infiltration) * dt

INIT Surface_Water = 0.01

DOCUMENT. The surface water is assumed te be a function of two processes, Rapid rainfall
provides surface water, which then graduzlly infiltrates into the ground,

Rainfall = Precipitation* 0 0254
DOCUMENT: Converting rainfall in inchesfday to m/day

Infiltration = 0 01
DOCUMENT. Infiltration rate (m/dayl In reality this rate depends upon sl ¢characterstics,
habiat type. slope, pane:n of rainfall.

DayJul = moditime-1,365) + 1
DOCUMENT Julian day, 1 thru 385 This 1s a ¢ounler that resets the day 10 zero after 365
iterauons. Meeded to use the same graph function for seversl years of madel runs.

Precipitation = GRAPH (DayJul)
1,00, C02), 12.00, 0.34), 13.00, 0.00). (4.00, 007}, (5.00, 000}, 600, 018, (700, 0 46).

{354, 0.00}, 1355, 0.00), (356, 0.15), 1357 0.00}, (358. 0.00). (359. 0.00.. (360, O 02), {361
0.00). (362, 0.00). (363. 0 0N). i364, 0 00), (365, 0.00!
DOCUMENT: Rainfall from Beltsville. MD 1969 {in/d}

Note a few interesting features here, which may be helpful in other models. Fiest,
notice the units. We have put together the model in meters and days, as would nor-
mally be the case in science. However, the data came from a US meteorological sta-
tion where they still use inches for measurements. Therefore, we need the converter

Rainfall = Precipitation * 0.0254

where we use the conversion factor
I inch = 0.0254m. It 1s extremely | Mind the units. They can h:ﬁptut‘,var.w
important to make sure thar all units W;‘{'gfﬁ;rr consiftency. Do not vely on the
are consistent throughout the mode!. o
Wl fl automatic undt checks offered by soue
hile Stella offers some background .
mﬁwm'e packages; you wild undevstand your

functionality to help track the units,
it is really in your best interest to | 5w better of you track the wnits yousself
make sure that you are always aware
of the units in cach parameter and process and ascerrain thar the units mate h, both
in time and space. The more involved you are in the model structure and formula-
tion and the less you rely on some of the built-in automatic features, the more you
will learn about the system and the better you understand ic.

Another trick is the introduction of the Dayjul variable, which i the Julian
day calculator. The data we have from the station are for only 365 days. In étella,
once the data in a Graphic function are exhausted, the very last value is raken and
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Systems Science and Modeling for Ecological Economics
finding a station that is located close to the site being modeled. [t 1s most problemartic
to obtain data on solar radiation {also known as photoactive radiation — PAR). For
some reason 1t is not one of the standard observations, and direct measurements are
rare. Therefore, in cur model we will estimarte 