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Introduction 

Numbers have exercised their fascination since the dawn of civilization. 
Pythagoras discovered that musical harmony depended on the ratios of 
small whole numbers, and concluded that everything in the universe was 
Number. Archimedes promised the tyrant Gelon that he would calculate 
the number of grains of sand required to completely fill the universe, and 
did so. 

Two thousand years later Karl Friedrich Gauss remarked that 'in 
arithmetic the most elegant theorems frequently arise experimentally as 
the result of a more or less unexpected stroke of good fortune, while 
their proofs lie so deeply embedded in darkness that they defeat the 
sharpest inquiries'. 

Leopold Kronecker said that 'God himself made the whole numbers: 
everything else is the work of man'. 

No other branch of mathematics has been so beloved by amateurs, 
because nowhere else are gems so easily discovered just below the surface, 
aided today by pocket calculators and computers. Yet no other branch 
has trapped and defeated so many great mathematicians, or led them to 
their greatest triumphs. 

This is an elementary dictionary. It presents a multitude of facts, in 
simple language, avoiding complicated notations and symbols. The 
Glossary explains some basic terms. Others are explained where they 
occur. Names in square brackets acknowledge the original discoverer or, 
in some cases, first known reporter of a particular fact. 

The tables at the back are for the benefit of readers who cannot wait 
to look for their own patterns and properties. Computers and calculators, 
of course, can very easily produce more extensive tables; indeed they are 
an indispensable aid to any modern number puzzler who is not a cal­
culating prodigy. 

One of the charms of mathematics is that good mathematics never 
dies. It may fade from view, but it is not demolished by later discoveries. 

Aristotle's physics was primitive and rudimentary. Archimedes' 
mathematics still shines brilliantly. I have given credit to the originators 
of the most important properties and ideas, where these are known, and 
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INTRODUCTION 

a chronological table offers some perspective on these historical figures. 
It would be impossible to credit all the sources for every property 

referred to. This is not a compendium of historical scholarship. I have 
given precedence to the discoverers, where known, and the sources, 
where these are unique to the best of my knowledge, of the most striking 
and unusual properties, only. I have also given details of texts to which I 
am heavily indebted for some of the longer entries. 

In contrast to a dictionary of words, it has not always been obvious 
where a particular property should be entered. Is the fact that 
52 = 32 + 42 a property of 5, or of 25? Generally speaking, if the larger 
number cannot be easily calculated, the entry is under the smaller 
number. Thus, look for properties of 1445 under 144. 

More general searches, for sums of cubes, say, may be made using the 
Index. 

Hundreds of books and journals have been trawled in search of curious 
and interesting numbers. If a particular property is missing, it could be 
that there was no room for it, or it could be sheer ignorance on my part. 
Corrections and suggestions for additional entries will be welcomed, 
though I cannot promise to answer letters personally. All new material 
used in future editions will be acknowledged. 

D.W. 

July 1985 

No new entries have been added to this 1987 reprint. However, a number 
of corrections have been made and ambiguities and infelicities removed 
since the 1986 edition. I should like to thank J. Bryant, J. G. D. Car­
penter, Stephen J. Harber, Chris Hawkins, David C. Maxwell, Roy S. 
Moore, Ean Wood and James R. Wood for their comments and sugges­
tions, David Willey for his scholarly discussion of the history of attempts 
to construct 17-,257- and 65,537-gons, and especially Tony Gardiner for 
his detailed attention to the text. 

D.W. 

July 1987 



A List of Mathematicians 
in Chronological Sequence 

Ahmes c.1650 BC 
Pythagoras c.540 BC 
Hippocrates c.440 BC 
Plato cA3(}-c.349 BC 
Hippias cA25 BC 
Theaetetus cA17-369 BC 
Archytas cAOO BC 
Xenocrates 396-314 BC 
Theodorus c.390 BC 
Aristotle 384--322 BC 
Menaechmus c.350 BC 
Euclid c.300 BC 
Archimedes c.287-212 BC 
Nicomedes c.240 BC 
Erastosthenes c.230 BC 
Diocles c.180 BC 
Hipparchus c.180-c.125 BC 
Heron of Alexandria c.75 
Ptolemy c.85-c.165 
Nicomachus of Gerasa c.100 
Theon of Smyrna c.125 
Diophantus I st or 3rd century 
Pappus c.320 
Iamblichus c.325 
Proclus 410-485 
Tsu Ch'ung-Chi 430-50\ 
Brahmagupta c.628 
AI-Khwarizmi c.825 
Thabit ibn Qurra 836-901 
Mahavira c.850 
Bhaskara 1114--c.1185 
Leonardo of Pisa, called Fibonacci c.1170-after 1240 

9 



LIST OF MATHEMATICIANS 

al-Banna, Ibn 
Chu Shih-chieh 
Pacioli, Fra Luca 
Leonardo da Vinci 
Diirer, Albrecht 
Stifel, Michael 
Tartaglia, Niccolo 
Cardano, Girolamo (also known as 

Cardan) 
Recorde, Robert 
Ferrari, Ludovico 
Viete, Fran90is 
Ceulen, Ludolph van 
Stevin, Simon 
Napier, John 
Cataldi, Pietro Antonio 
Briggs, Henry 
Kepler, Johannes 
Oughtred, William 
Bachet, Claude-Gaspar, de Meziriac 
Mersenne, Marin 
Girard, Albert 
Desargues, Girard 
Descartes, Rene 
Fermat, Pierre de 
Brouncker, Lord William 
Pascal, Blaise 
Huygens, Christian 
Newton, Isaac 
Leibniz, Gottfried Wilhelm 
Bernoulli, Johann 
Machin, John 
Bernoulli, Niclaus 
Goldbach, Christian 
Stirling, James 
Euler, Leonard 
Buffon, Count Georges 
Lambert, Johann 
Lagrange, Joseph Louis 
Wilson, John 
Wessel, Caspar 
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1256-1321 
early 14th century, c.1303 

c.l445-1517 
1452-1519 
1471-1528 
1486/7-1567 

c.l500-1557 
1501-1576 

c.1510-1558 
1522-1565 
1540-1603 
1540-1610 
1548-1620 
1550-1617 
1552-1626 
1561-1630 
1571-1630 

c.1574-1660 
1581-1638 
1588-1648 

c.1590-c.1633 
1591-1661 
1596-1650 
1601-1665 

c.l620-1684 
1623-1662 
1628-1695 
1642-1727 
1646-1716 
1667-1748 
1680-1751 
1687-1759 
1690-1764 
1692-1770 
1707-1783 
1707-1788 
1728-1777 
1736-1813 
1741-1793 
1745-1818 



Laplace, Pierre Simon de 
Legendre, Adrien Marie 
Nieuwland, Pieter 
Ruffini, Paolo 
Argand, Jean Robert 
Gauss, Karl Friedrich 
Brianchon, Charles 
Binet, Jacques-Philippe-Marie 
Mobius, August Ferdinand 
Babbage, Charles 
Lame, Gabriel 
Steiner, Jakob 
de Morgan, Augustus 
Liouville, Joseph 
Shanks, William 
Catalan, Eugene Charles 
Hermite, Charles 
Riemann, Bernard 
Venn, John 
Lucas, Eduard 
Cantor, George 
Lindemann, Ferdinand 
Hilbert, David 
Lehmer, D. N. 
Hardy, G. H. 
Ramanujan, Srinivasa 

LIST OF MATHEMATICIANS 

1749-1827 
1752-1833 
1764-1794 
1765-1822 
1768-1822 
1777-1855 

c.1783-1864 
1786-1856 
1790-1868 
1792-1871 
1795-1870 
1796-1863 
1806-1871 
1809-1882 
1812-1882 
1814-1894 
1822-1901 
1826-1866 
1834-1923 
1842-1891 
1845-1918 
1852-1939 
1862-1943 
1867-1938 
1877-1947 
1887-1920 
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Glossary 

BIQU ADRA TE An old-fashioned term for a fourth power, a number 
multiplied by itself three times. 10 x 10 x 10 x 10 = 10,000, and so 
10,000 is a biquadrate. 

COMPOSITE A composite number is an integer that has at least one 
proper factor. 14 = 2 x 7, as welI as 14 x I, is composite. 13, which 
only equals 13 x I, is not; it is prime. 

CUBE A number that is equal to another number multiplied by itself 
twice. 216 = 6 x 6 x 6, and therefore 216 is a cube. See PERFECT 

SQUARE. 

DIG I T The digits of 142857 are the numbers 1,4,2, 8, 5 and 7. Occasion­
alIy a number is written with initial zeros, for example 07923. When 
this is done, the initial zero is ignored when the number of digits is 
counted, so 07923 counts as a 4-digit number. 

DIVISOR An integer that divides another integer exactly. The divisors 
of 10 are 10,5,2 and 1. DIVISOR and FACTOR are synonyms in this 
dictionary. 

PROPER DIVISOR (or PROPER FACTOR) A divisor ofa number which 
is not the number itself, or 1. The proper divisors of 10 are 5 and 2, 
only. 

FACTOR See DIVISOR. 

FACTORIAL Factorial n, or n factorial, usualIY written n! and often 
pronounced 'n bang!', means the product I x 2 x 3 x 4 x 
5 ... x (n - 1) x n. For example, 6 factorial = 6! = I x 2 x 
3 x 4 x 5 x 6 = 720. 

HYPOTENUSE The Greek term for the longest side of a right-angled 
triangle, the one opposite the right-angle. In the well-known 3-4-5 
right-angled triangle, the side of length 5 is the hypotenuse. 

INTEGER A whole number. 
I R RAT 10 N A L Any real number that is not rational, and therefore any 

number that cannot be written as a decimal that either terminates or 
repeats. The numbers 7t = 3·14159265 ... ; e = 2·7182818 ... and 
.fi = 1·41421 ... are all irrational. 

MULTIPLE A multiple of an integer is any other integer that the first 
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GLOSSARY 

integer divides without remainder. If P is a multiple of Q, then Q is a 
Jactor of P. Any integer has infinitely many multiples, because it can 
be multiplied by any other integer. 

OF THE FORM This phrase, like REPRESENTED AS, is used to indicate 
that a number is equal to an expression of a certain type. For example, 
all primes, except 2 and 3, are of the form 6n ± I, meaning that every 
prime is either I more or less than a multiple of 6. 17 is of the form 
6n ± I, because it is in fact equal to 6 x 3 - I. 

PERFECT SQUARE An integer that is the square of another integer. In 
other words, its square root is also an integer. 25 = 52 and 144 = 122 
are perfect squares. In this book it will usually be taken for granted 
that SQUARE means PERFECT SQUARE, and similarly CUBE means 
PERFECT CUBE and so on. 

PERMUTATION A permutation of a sequence of objects is just a 
rearrangement of them. EBDCA is a permutation of ABCDE. 

CYCLIC PERMUTATION A permutation is cyclic if it merely takes 
some objects from one end and transfers them, without changing their 
order, to the other end. CDEAB is a cyclic permutation of ABCDE. 

POWER In this book, power will be a general term for squares, cubes 
and higher powers. 

PRIME A prime number is an integer greater than I with no factors 
apart from itself and I. 17 is prime because the only integers dividing 
it without remainder are 17 and I. 

PRODUCT The product of several numbers is the result of multiplying 
them all together. The product of the first five prime numbers equals 
2 x 3 x 5 x 7 x I I = 2310. 

RATIONAL Any number that is either an integer or a fraction 
(the ratio of two integers). All rational numbers can be written as 
decimals that either terminate or repeat. For example, 1/7 = 
0·142857142857 ... and 1/8 = 0·125. See IRRATIONAL. 

R E C I PRO CAL Only reciprocals of integers ar", referred to in this dic­
tionary. The reciprocal of an integer n is the fraction I/n. 

REPRESENTED AS This phrase, like OF THE FORM, is used to state 
that a number is equal to an expression of a certain type. For example, 
25 can be represented as the sum of two squares, because 25 = 16 + 9 
and 16 and 9 are both squares. See OF THE FORM. 

ROOT The square root of a number n, written In, is the number that 
must be multiplied by itself to produce n. Since 7 x 7 = 49, J49 = 7. 

The cube root of a number n, written ~, is the number that must 
be multiplied by itself twice to produce n. Since 5 x 5 x 5 = 125, 
Vi2s = 5. Fourth roots, and higher roots (fifth roots, sixth roots 
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GLOSSARY 

and so on) are defined in the same way. For example, since 
2 x 2 x 2 x 2 x 2 = 32, the fifth root of 32, written 132, = 2. 

SQU ARE The square of a number is the number multiplied by itself. 
Thus 12 squared, written 122 , = 12 x 12 = 144. 

TRANSCENDENTAL NUMBER A real number that does not satisfy 
any algebraic equation with integral coefficients, such as 
x 3 - 5x + II = O. All transcendental numbers are irrational and can 
be written, in theory, as non-terminating, non-repeating decimals. 
Most irrational numbers are transcendental. 

UNIT FRACTION The reciprocal of an integer. 1/13 and 1/28 are unit 
fractions. 2/3 is not. 

cp(n), pronounced 'phi [fie] n' is the number of integers less than n, and 
having no common factor with n. So cp(l3) = 12, because 13 is prime, 
and cp(6) = 2, because the only numbers less than 6 and prime to it 
are I and 5. 

d(n) is the number of factors of n, including unity and n itself. 

u(n), pronounced 'sigma n' is the sum of all the factors of n, including 
unity and n itself. So u(6) = I + 2 + 3 + 6 = 12. 

cp(n) and u(n) appear occasionally in the text. All three functions are 
listed in Table 8. 
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-land; 

negative and complex numbe~s 

At the age of 4, Pal Erdos remarked to his mother, 'If you subtract 250 
from 100, you get 150 below zero.' Erdos could already mUltiply 3- and 
4-digit numbers together in his head, but no one had taught him about 
negative numbers. 'It was an independent discovery,' he recalls happily.· 

Erdos grew up to be a great mathematician, but a surprising number 
of schoolchildren without his extraordinary talent will answer the 
question, 'How might this sequence continue: 8 7 6 5 4 3 2 I 0 ... ?' by 
suggesting, 'I less than nothing!' or 'minus I, minus 2 ... !' 

Children in our society are floating in numbers. Whole numbers, 
fractions, decimals, approximations, estimations, record-breaking large 
numbers, minusculely small numbers. The Guinness Book of Records is a 
twentieth-century Book of Numbers, including the largest number in 
this Dictionary. 

A mere handful of centuries ago numbers were smaller, fewer and 
simpler. It was seldom necessary to count beyond a few thousand. The 
Greek word myriad, which suggests a vast horde, was actually a mere 
10,000, a fair size for an entire Greek army, but to us a poor attendance 
at a Saturday football match. 

Fractions often stopped at one-twelfth. Merchants avoided finer 
divisions by dividing each measure into smaller measures, and the small 
measures into yet smaller, without going as far as Augustus de Morgan's 
fleas: 'Great fleas have little fleas upon their backs to bite 'em/And little 
fleas have lesser fleas, and so ad infinitum.' 

The very conception of numbers proceeding to infinity, in any direc­
tion, appeared only in the imaginations of theologians and the greatest 
astronomers and mathematicians, such as Archimedes, who exhausted a 
circle with indefinitely many polygons and counted the grains of sand 
required to fill the universe. 

To almost everyone else, numbers started at I and continued upwards 
in strictly one direction only, no further than ingenious systems of finger 
arithmetic, or the clerk's counting board, allowed. 

(Zero, a strange and brilliant Indian invention, is not used for 
counting anyway. The Greeks had no conception of a zero number.) 

These numbers were solid and substantial. To Pythagoras and his 
followers a number was always a number of things. To arrange a number 
such as 16 in a square pattern of dots was their idea of advanced and 
abstract mathematics. 

• John Tierney, 'Pal Erdos is in town. His brain is open', Science, October 1984. 
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-1 and i 

To merchants also, numbers counted things. 
To the later Greeks, numbers were still lengths of lines, areas of plane 

figures, or volumes of solids. What does a sphere with a volume - IO 
look like? 

How could they make sense of numbers less than zero? 
Early mathematicians did sometimes bump into negative numbers, in 

the dark as it were. They tried to avoid them, or pretended that they 
were not there, that they were an illusion. 

Diophantus was a pioneer in number theory who still thought in 
strongly geometrical language. He solved many equations that to us 
have one negative and one positive root. He accepted the positive and 
rejected the negative. He 'knew' it was there, but it made no sense. 

If an equation had no positive root, he rejected the equation. 
x + IO = 5 was not a proper equation. 

Perhaps it was a misfortune for a number-theorist to be born Greek. 
The Indians did not think of mathematics as geometry. 

Hindu mathematicians first recognized negative roots, and the two 
square roots of a positive number, and multiplied positive and negative 
numbers together, though they were suspicious also. 

Bhaskara commented on the negative root of a quadratic equation, 
'The second value is in this case not to be taken, for it is inadequate; 
people do not approve of negative roots.' 

On the other hand, the Chinese had already discovered negative 
numbers for counting purposes. By the twelfth century they were 
freely using red counting rods for positive quantities and black rods 
for negative, the exact opposite of our bank statements before com­
puterization. They did not, however, recognize negative roots of equa­
tions. 

As any schoolteacher will recognize, a chasm separates the simple act 
of counting backwards from the idea that negative numbers can be 
operated on in the same manner as positive numbers (with a couple of 
provisos). 

How many generations of schoolchildren have never progressed 
further than the magic incantation, 'Two minuses make a plus!' 

Craftsmen do not need negative numbers to measure backwards along 
a line. They turn their ruler round, or hold the ruler firmly and walk 
round the length they are measuring. 

Merchants and bank clerks may easily juggle credits and debits 
without any conception that they are subtracting one negative number 
from another. Their intentions are honourably practical and con­
crete. 
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-land; 

In fact, they made a practical contribution to the notation of math­
ematics. Our familiar plus and minus signs were first used in fifteenth­
century German warehouses to show when a container was over or 
under the standard weight. * 

Number-theorists had a different problem. They met negative numbers 
stark naked, in the abstract. The number that when added to 10 makes 5 
is just a number - or is it a fake number? 

Renaissance mathematicians were as distrustful as Diophantus or 
Bhaskara. 

Michael Stifel talked of numbers that are 'absurd' or 'fictitious below 
zero', which are obtained by subtracting ordinary numbers from zero. 
Descartes and Pascal agreed. 

Yet, in the early Renaissance, one of the most difficult known prob­
lems was the solutions of equations, which often cried out for negative 
solutions. A few mathematicians accepted them, and even took a giant 
step further. Cardan was one. 

The solutions to quadratic equations had been known since the 
Greeks, though Renaissance mathematicians continued to recognize 
three different types, illustrated by x 2 = 5x + 6; x 2 + 5x = 6, and 
x 2 + 6 = 5x. No negative coefficients! 

The cubic equation was much harder. 
Cardan, in his book The Great Art, still presented the cubic in more 

than a dozen different varieties, and solved them, using an idea he took 
from Tartaglia. 

Yet he recognized negative numbers and even approached their square 
roots. 

The very first square root of negative number on record, J81 - 144, 
is in the Stereometrica of Hero of Alexandria. Another, JI849 - 2016 
was met by Diophantus as a possible root of a quadratic equation. They 
did not take them seriously. Neither did fifteenth-century European 
mathematicians. 

Cardan proposed the problem: Divide 10 into two parts such that the 
product is 40. 

He first said it was obviously impossible, but then solved it anyway, 
correctly giving the two solutions, 5 + J=I5 and 5 - J=I5. 

He concluded by telling the reader that 'These quantities are "truly 
sophisticated" and that to continue working with them would be "as 
subtle as it would be useless".' 

The square roots of negative numbers! If negative numbers were false, 
• Martin Gardner, 'Mathematical Games', Scientific American, June 1977. 
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absurd or fictitious, it is hardly to be wondered at that their square roots 
were described as 'imaginary'. 

Even today, the theory of complex numbers is one of several hurdles 
that are recognized as separating 'elementary' from 'advanced' math­
ematics. 

Pal Erdos's most famous proof is of the Prime Number theorem, 
which says that if n(x) is the number of primes not exceeding x, then as x 
tends to infinity, 

n (x) log x 

x 

tends to 1. 
It was originally proved in 1896 using complex analysis. Here, 'com­

plex' does not mean complicated, though it was, but using complex 
numbers. Erdos in 1949 published a proof that avoided complex numbers 
entirely. Such a proof is called 'elementary'. Here 'elementary' does not 
mean easy, merely that ccmplex numbers are not used! 

John Wallis accepted negative numbers but wrote of complex numbers, 
'These Imaginary Quantities (as they are commonly called) arising from 
the Supposed Root of a Negative Square (when they happen) are reputed 
to imply that the Case proposed is Impossible.' 

Wallis sounds (if I may say so) when talking of complex numbers 
(when he does) much like Bhaskara on numbers less than zero. 

Mathematicians had reasons to be suspicious. Negative numbers, 
quintessentially -I, do possess properties that positive numbers lack. 

A friend of Pascal, Antoine Arnauld, argued that if negative numbers 
exist, then -1/1 must equal 1/-1, which seems to assert that the ratio 
of a smaller to a larger quantity is equal to the ratio of the same larger 
quantity to the same smaller. 

Most educated adults today would reject this idea after a moment's 
thought. No wonder this paradox was discussed at length. 

Complex numbers are even more fiendish. Is .J=Iless than or greater 
than, say, 10? Neither, as Euler realized. The very idea of greater than or 
less than breaks down, and has to be reconstructed in a new form, a 
form incidentally that will also resolve Arnauld's paradox. 

Fortunately, negative and complex numbers work, just as the cal­
culator's red and black rods, or the warehouseman's + and - signs 
work. 

Mathematicians were forced to accept negative and imaginary 
numbers, long before they had solved the conundrums that they posed. 
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o 
Euler boldly used P in infinite series, and published his exquisite 

formula, eiw = - I. He also introduced the letter i to stand for p. 
Wessel, Argand and Gauss independently discovered around 1800 

that complex numbers could be represented on a graph. 
When Gauss introduced the term 'complex number' and expressed 

complex numbers as number pairs, their modem conception was almost 
complete. 

F. Cajori, A History of Mathematical Notations, 2 vols., Open Court, 1977 
(reprint); G. Cardan, Ars Magna (1545); and Augustus de Morgan, A Budget of 
Paradoxes (1872). 

o 
Zero 
A mysterious number, which started life as a space on a counting board, 
turned into a written notice that a space was present, that is to say that 
something was absent, then confused medieval mathematicians who 
could not decide whether it was really a number or not, and achieved its 
highest status in modem abstract mathematics in which numbers are 
defined anyway only by their properties, and the properties of zero are 
at least as clear, and rather more substantial, than those of many other 
numbers. 

The Babylonians in the second century B C used a system for math­
ematical and astronomical work in which the value of a numeral 
depended on its position. Two small wedges indicated that a place within 
a number was unoccupied, so distinguishing 207 from 27. (270 was 
distinguished from 27 by context alone.) 

Whether this Babylonian system was transmitted to neighbouring 
cultures is not known. 

Our system, in which the 0 is an extra numeral, originated in India. It 
was used from the second century BC to denote an empty place and as a 
numeral in a book by Bakhshali published in the third century. 

The Sanskrit name for zero was sunya, meaning empty or blank, as it 
does today in some Indian languages. Translated by the Arabs as sifr, 
with the same meaning, it became the European name for nought, via 
the Latin zephirum, in different ways in different countries: zero, cifre, 
cifra, and the English words zero and cipher. 

In AD 773 there appeared at the court of Caliph AI-Mansur in 
Baghdad an Indian who brought writings on astronomy by Brahma­
gupta. 
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o 
This was read by AI-Khwarizmi, the great Arab mathematician, whose 

name gave us the word 'algorithm' for an arithmetical process and more 
recently for a wider class of processes such as computers use, and who 
wrote a textbook of arithmetic in which he explained the new Indian 
numerals, published in AD 820. 

At the other end of the Muslim world, in Spain at the beginning of 
the twelfth century, it was translated by Robert of Chester. This 
translation is the earliest known description of Indian numerals to the 
West. 

There are several records of Arabic, that is, Indian, numerals being 
taught over the next century and a half. About 1240 they were even 
taught in a long and not very good poem. Yet they spread very slowly 
indeed, for two reasons. 

The Arabic system did not just add a useful zero to the old Roman 
numerals; learners had to master the Arabic numerals I to 9 as well, and 
the zero numeral was a puzzle in itself. 

Was zero a number? Was it a digit? If it stands for nothing, then 
surely it is nothing? But as every school pupil knows, if you add a 
harmless zero to the end of a number, you multiply it by IO! Our ten 
digits were often presented as the digits I to 9, plus the cypher, the zero: 
'And there are nine figures that have value ... and one more figure 
outside of them which is called null, 0, which has no value in itself but 
increases the value of others.' 

The twelfth-century Salem Monastery manuscript had sounded a 
Platonic note: 'Every number arises from One, and this in turn from the 
Zero. In this lies a great and sacred mystery' though Plato started with 
One and knew nothing of any zero. 

Merchants and bookkeepers had another reason to hesitate. To avoid 
tampering with written records, important amounts of money were 
written in full, in which case Indian numerals have no advantage, 
useful though they were for actual calculation. 

A decisive step was taken by the first great mathematician of the 
Christian West, Leonardo of Pis a, called Fibonacci, who also features in 
this dictionary as the discoverer of the Fibonacci sequence. 

Leonardo gives details of his life in his most famous book, the Liber 
Abaci. Leonardo's father was the chief magistrate of the Pisan trading 
colony at Bugia in Algeria. Leonardo spent several years in Africa, 
studying under a Muslim teacher. He also travelled widely to Greece, 
Egypt and the Middle East. 

No doubt many merchants before Leonardo had noticed that the 
merchants they traded with used a very different system of numerals. 
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o 
Leonardo compared the systems he met, and concluded that the Indian 
system he had learned in Africa was by far the best. 

In 1202, and in a revised edition in 1228, he published his Book of 
Computation, the Liber Abaci, a compendium of almost all the math­
ematics then known. 

In it he described the Indian system. Having learned of it as a mer­
chant's son, he described its use in commercial arithmetic, in calculating 
proportions and mixtures, and in exchanging currency. 

The final practical triumph of zero and its Indian numerals came with 
the spread of the printed book, and the rise of the merchant class. 

Textbooks of arithmetic were among the most popular of the early 
printed books. They taught the merchant's children the skills with 
numbers that were becoming more and more essential at the same time 
as they gave the final push to counters and the counting board, and 
established the new numerals. 

We so easily take zero for granted as a number, thai it is surprising to 
consider that the Greeks had no conception of nothing, or emptiness, as 
a number, and doubly curious that this did not stop them, or many other 
cultures, from creating mathematics. Even when the Greeks treated limits 
and very small quantities, they had no conception of a quantity 'tending 
to zero'. It was sufficient that the quantity was less than another quantity, 
or might be made as small as desired. 

Familiarity with zero did not exhaust its interest for mathematicians, 
who anyway had some problems in handling this extraordinary number. 

Brahmagupta stated that 'positive or negative divided by cipher is a 
fraction with that for denominator'. This was called 'the quantity with 
zero as denominator'. 

Mahavira wrote in his Compendium a/Calculations: 'A number mul­
tiplied by zero is zero and that number remains unchanged which is 
divided by, added to or diminished by zero.' Did he think of division by 
zero as repeated subtraction, which had no effect? 

The fact that zero added to or subtracted from a number left the 
number unchanged was a mystery directly comparable to the Py­
thagoreans' refusal to accept I as a number, since it did not increase 
other numbers by multiplication. 

Both these facts are part of the abstract definition of a field, of which 
ordinary numbers are an example. A field must contain a 'multiplicative 
identity', usually labelled I with the property that if g is any other 
element in the field, then I x g = g x I = g, and an 'additive identity', 
usually labelled 0, with the properties that for any g, 0 + g = g + 0 = g, 
and division by 0 is forbidden. 
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0'1100010000000000000001000000000000000 ••• 

Like unity, 0 proves exceptional in other ways. It is an old puzzle to 
decide what 0° means. Since aO is always I, when a is not zero, surely by 
continuity it should also equal I when a is zero? 

Not so! O· is always 0, when a is not zero, so by the same argument 
from continuity, 0° should equal O. 

The values of functions such as O! (factorial 0) are decided conven­
tionally in order to make maximum sense and to be of maximum use. 

The low status of zero in some~ircumstances is a great advantage to the 
lucky mathematician. When Lander and Parkin were looking for sums of 
5 fifth powers whose sum was also a fifth power, one of their solutions 
included the number 05 • This solution immediately qualified, because 
powers of 0 do not count for obvious reasons, as a sum of 4 fifth powers 
equal to a 5th power, and destroyed a conjecture of Euler. (See 144.) 

Karl Menninger, Number Words and Number Symbols, Massachusetts Institute 
of Technology Press, 1969. 

0'110001000000000000000100000000000000000 ... 
Liouville's number, equal to 10- 1' + 10-2 ' + 10-3 ' + 10-4 ' + . '.' 

Liouville proved in 1844 that transcendental numbers actually do 
exist by constructing several, of which this is the simplest. Cantor later 
proved that almost all numbers are transcendental. 

0'12345678910111213141516171819202122 •.. 
The digits of this number are the natural numbers in sequence. Like 
Liouville's number, and nand e, it is transcendental. 

It is also normal, that is, whether expressed in base 10, or any other 
base, each digit occurs in the long run with equal frequency. It is not 
known whether nand e are normal. 

Tests of the square roots of the integers 2 to 15 (4, 9 and 16 excluded) 
in bases 2, 4, 8 and 16, suggest that they are also normal. 

Beyler. Metropolis and Neergaard. Mathematics of Computation. 24. 1970. 

0'207 879 576 350 761 908 S46 955 ••• 

The value of ji or e-f (where j = F). 
These two expressions are equal by Euler's relationship, elK = - 1. 

16/64 
When Denis the Dunce reduces this fraction by cancelling the sixes, he 
gets the right answer, 1/4. 

There are just three similar patterns with numbers less than 100: 
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0·5 

19/95 = 1/5 26/65 = 2/5 49/98 = 4/8 

These are all examples oflonger patterns. Thus 16666/66664 = 1/4 also. 
There are many variations on this theme: 

3544/7531 = 344/731 143185/17018560 = 1435/170560 

373 + 133 37 + 13 34 + 254 + 384 3 + 25 + 38 

373 + 243 37 + 24 74 + 204 + 394 7 + 20 + 39 

Alfred Moessner, Scripta Mathematica, vols. 19 and 20. 

0·301 029 995 663 981 ... 
The logarithm of 2 to base 10. To calculate the number of digits in a 
power of 2, multiply the index by log 2 and take the next highest integer. 

Thus, the 127th Mersenne number, 2127 - I has 39 digits because 
127 x 0·30103 = 38·23. 

0·318 309 886 183 790 671 537 767 526 745 028 724 068 919 291 480 
7[-1 

0·367 879 441 171 442 321 595 523 770 161 460 867 445 811 131 031 
e- I 

As the number of letters and envelopes in the problem of the mis­
addressed letters increases (see 44. SubjaclOrial), the probability that 
every letter will be placed in the wrong envelope rapidly approaches this 
limiting value. 

The same problem may be simulated by well shuffling two packs of 
cards, and turning up pairs of cards, one from each pack. The probability 
that there will be no match among the 52 pairs is approximately e- I . 

0·434 294 481903251827651 128918916605082294397005803 ••• 
The logarithm of e to base 10. 

0·5 
! 

There are twelve ways in which the digits I to 9 can be used to write a 
fraction equal to 1/2. 

6729/13458 has the smallest numerator and denominator, 9327/18654 
the largest. 

The same puzzle can be solved for other fractions. 
1/7 = 2637/18459 

and the same fraction with both numbers doubled, 5274/36918. 
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0'577 215 664 901 532 860 606 512 090 082 402 431 .•• 

4/5 = 9876/12345 

Mitchell J. Friedman, Scripta Mathematica, vol. 8. 

1 1 1 1 
The sum C(s) = 1 + - + - + - + - + 2" 3" 4' 5' ... 

can also be written as an infinite product, 

2' 3' 5" 7' II' 
(s) = 2' _ 1 x 3' _ I x 5" _ 1 x 7" _ 1 x"iT'=t x ... 

in which the numerators are powers of the primes. Because of this rela­
tionship many problems about the distribution of prime numbers depend 
on the behaviour of this function. 

Riemann conjectured that, considered as a complex function with 
complex roots, its roots all had real part equal to 1/2. So important is 
this possibility that many mathematical proofs have been published that 
assume that Riemann's hypothesis is true. 

This profound conjecture is generally considered to be the outstanding 
problem in mathematics today. It is known that the first Ii billion 
roots are of the conjectured form. However, many phenomena of this 
type are known in which trends for small numbers are misleading. 

It was announced in December 1984 that the Japanese mathematician 
Matzumoto, working in Paris, had finally proved it, but his proof was 
flawed. Riemann's hypothesis remains unproved. 

0'577215664 901 532860 606 512 090 082 402 431 .•. 

Y. Euler's constant, sometimes called Mascheroni's constant, calculated 
by Euler to 16 places and also named gamma by him in 1781. 

It is the limit as n tends to infinity of 1 + 1/2 + 1/3 + 1/4 + 1/5 + 
... + I/n - log n. 

It is not even known whether y is irrational, let alone whether it is 
transcendental, though it is known that if it is a rational fraction alb, 
then b is greater than 1010.000. 

R. P. Brent, Mathematics o/Computation, 31,1977. 

0'607927 101 .•. 

~ = (-.!.. + -.!.. + -.!.. + -.!.. + -.!.. + )-1 
x2 12 22 32 42 52 ... 

It is the probability that if two numbers are chosen at random, they will 
have no common factor, and also the probability that one number chosen 
at random is not divisible by a square. 
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0'831907" , 

2/3 
The uniquely unrepresentative 'Egyptian' fraction, since the Egyptians 
used only unit fractions, with this one exception. All other fractional 
quantities were expressed as sums of unit fractions. 

From the Rhind papyrus: Divide 7 loaves among 10 men - Answer: 
2/3 + 1/30. 

Because they multiplied by repeated doubling, then adding, they used 
tables of double unit fractions. In the Rhind papyrus is a table going up 
to double 1/101. 

2(7 = 1/4 + 1/28 
2/11 = 1/6 + 1/66 
2/97 = 1/56 + 1/679 + 1/776 

Egyptian fractions are a fertile source of problems. For example, 
Erdos and Sierpinski have conjectured, respectively, that 4/n and 5/n are 
each expressible for all n as the sum of 3 unit fractions. [Guy] 

0'693 147 180559945309 417 232 121 458 176568 075 500 134360 
log 2 (to base e) = I - 1/2 + 1/3 - 1/4 + 1/5.,. 

0'7404 ••• 

How closely can identical spheres be packed together? The obvious 
way is to arrange one layer on a plane so that each sphere touches 6 
others, and then arrange adjacent layers, so that each sphere touches 3 
others in each layer (12 in all) and so on. However, no mathematician 
has been able to prove this 'obvious' fact. 

If that were the closest packing, the density would be this number. 
'Many mathematicians believe, and all physicists know, that the 

7t 
density cannot exceed r.o .' [Rogers] 

v l8 

0'831907 ••• 
I/W), where (3) = I/P + 1/23 + 1/33 + 1/43 + ... 

It is the probability that if 3 integers are chosen at random, no common 
factor will divide them all. 
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0'9068 ••• 

0'9068 ••• 

2.fi 
Identical circles packed together in a plane in a hexagonal array, so 

that each touches 6 others, cover this proportion of the plane. 

1 

Unity 
The Greeks did not consider I, or unity, to be a number at all. It was the 
monad, the indivisible unit from which all other numbers arose. 
According to Euclid a number is an aggregate composed of units. Not 
unreasonably, they did not consider 1 to be an aggregate of itself. 

As late as 1537, the German Kobel wrote in his book on computation, 
'Wherefrom thou understandest that I is no number, but it is a genera­
trix, beginning, and foundation for all other numbers.' 

The special significance of I is apparent in our language. The words 
'one', 'an' and 'a' (a shortened form of , an') are etymologically the same. 
So are the words 'unit', 'unity', 'union', 'unique' and 'universal', which 
all come from the Latin for one. It is no coincidence that these words are 
all exceptionally important in modern mathematics. 

The Greeks considered that I was both odd and even, because when 
added to an even number it produced odd, and when added to an odd 
number it produced even. This reasoning is completely spurious, because 
any odd number has the same property. They were right, however, to 
notice that I is the only integer that produces more by addition than by 
multiplication, since multiplication by I does not change a number. In 
contrast, every other integer produces more by multiplication than by 
addition. 

It is because multiplication by I does not change a number that 1 
hardly ever appears as a coefficient in expressions such as x 2 + x + 4. It 
is pointless to write x as lx, unless we wish to emphasize some pattern. 

On the other hand, I is of vital significance when summing infinite 
series. The series, 

has no sum if x is greater than I, because each term is then greater 
than the previous term. If x = I, then the series becomes 
I + I + I + I + I + I ... and still has no sum. But when x is any 
number less than I, then the sum of as many terms as we choose to add 
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approaches as closely as we wish to I/(l - x), without ever exceeding 
that number, and the infinite series has a finite sum. 

What did the Greeks do about fractions? Surely they recognized that 
the indivisible unit, I, could be divided into 2 parts, or 3 parts, or 59 
parts? Not at all! They took the view that the original unit remained 
the same, while the result of the division, say 1/59, was taken as a 
new unit. Indeed, we stilI talk of a fraction whose numerator is I as a 
unit fraction. 

This interpretation fits the usage of merchants and craftsmen through­
out the world. How much easier it is to consider 2 centimetres, rather 
than 0·02 metres, though they are mathematically the same! Psy­
chologically, it is much simpler to invent new units of measure for small, 
and large, quantities, and completely avoid using very small or very 
large numbers. 

I appears in its modern disguise as the generatrix, the foundation of 
other numbers, in so many infinite sequences. It is, of course, the first 
square number, but it is also the first perfect cube, and the first 4th 
power, the first 5th power ... the first of any power. 

It is also the first triangular number, the first pentagonal number ... 
the first Fibonacci number and the first Catalan number! 

N. J. A. Sloane lists 2372 sequences which have been studied by 
mathematicians in his Handbook of Integer Sequences. With a minimum 
of fiddling he arranges for every sequence to start with the number l. 

Into how many pieces can a circular pancake be cut with n straight 
cuts? It is natural to start with the I piece, the whole pancake, which 
remains after zero cuts. 

In how many ways can n objects be arranged in order? Modern 
mathematicians naturally start with I object, which can be 'arranged' in 
just I way. The Greeks would undoubtedly have argued, very plausibly, 
that the sequence should start with 2 objects, which can be arranged in 
order in 2 ways. They would have claimed that I object cannot be 
arranged in any order at all. 

I is especially important because of its lack of factors. This suggests 
that it should be counted as a prime number, because it fits the definition, 
'A prime number is divisible by no number except itself and I', but once 
again I is usually considered to be an exception. 

A conventional reason depends on an important and favourite 
theorem, that any number can be written as the product of prime factors 
in only one way, apart from different ways of ordering the factors. Thus 
12 = 2 x 2 x 3 and no other product of prime numbers equals 12. 

This theorem would have to be adjusted if I were a prime, because 
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then 12 would also equal I x 2 x 2 x 3, and I x I x 2 x 2 x 3 and so 
on. Untidy! So I is dismissed from the list of primes. 

Euler had a different reason for rejecting I. He observed that the sum 
of the divisors of a prime number, p, is always p + I, the prime p itself 
and the number I. The exception, of course, to this rule turns out to be 
I. The simplest way to dispose of this exceptional case is to deny that I is 
prime. 

Because I is so small, as it were, and has no factors apart from itself, it 
does not feature in many of the properties in this dictionary. To write I 
as the sum of two squares, it is necessary to write I = 12 + 02 which is 
trivial. In the same way, I can be written as the sum of 3 squares, or even 
of 5 cubes, which is even more boring. 

Similarly, I is the smallest number that is simultaneously triangular 
and pentagonal. Also boring! 

Indeed, I might be considered to be the first number that is both 
boring and interesting. 

Yet it does appear in this dictionary in a small but essential way. 
Precisely because it has no factors, it is never obvious whether expressions 
such as 2s - I, the 5th Mersenne number, or 22 ' + I, the 3rd Fermat 
number, will have any factors. 

When Euclid wanted to show that the number of primes is unlimited, 
he considered three primes, by way of example. Call them, A, Band C. 
Multiply them together, and add I: is ABC + I prime? If so there is a 
prime larger than any of A, B or C. If ABC + I is not prime, then it has 
a prime factor, which cannot be any of the primes A, B or C. So there is 
at least one more prime ... 

Euclid's argument would not have worked if he had considered 
ABC + 2, or ABC + 3. Only I will guarantee his argument. 

Our number line, familiar to children in school, extends at least from 
o to infinity, and the gaps between the whole numbers are filled by in­
finities of fractions, irrational numbers, and even more transcendental 
numbers. 

The Greeks' idea of number was simpler and inadequate for the 
purposes of modern mathematicians. Yet one great mathematician saw 
the whole numbers, starting with I, as the only real numbers. 'God made 
the integers,' claimed the nineteenth-century mathematician Kronecker. 
'All the rest are the work of man.' 

I is not the first number in this dictionary, but in its own way it is the 
foundation on which all the other entries are based. 
Karl Menninger, Number Words and Number Symbols, Massachusetts Institute 
of Technology Press, 1969. 
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1-25992 1049894873 16476 ••• 

1'060660 ... 

3)2 
4 

Prince Rupert proposed the problem of finding the largest cube that 
may be passed through a given cube, that is to say the size of the largest 
square tunnel through a cube. 

Pieter Nieuwland first found the solution. In theory, making no allow­
ance for physical constraints such as friction, a cube of side 1·060660 ... 
may be passed through a cube of side I. The axis of the tunnel is not 
parallel to a diagonal of the cube, but the edges of the original cube are 
divided in rational proportions, I: 3 and 3: 13. 

D. J. E. Schrek, 'Prmce Rupert's Problem', Scripta Mathematica. vol. 16. 

1'082323 ••• 

90 
The limit of the sum 1/14 + 1/24 + 1/34 + 1/44 + ... 

1'202056 ••• 
The limit of the sum I/P + 1/23 + 1/33 + 1/43 + ... 

It is relatively easy to sum the series I/r" when n is even. Euler calcu­
lated all the values from 2 to 26. The sums are all multiples of 1[". 

It is far harder to calculate the sums for odd n. It is known that 
1·202 ... is irrational, but not whether it is transcendental. 

1-25992 10498 94873 16476 ••• 

{/2 (cube root of 2) 

The duplication of the cube 
The three famous problems of antiquity werc the duplication of the 
cube, the trisection of the angle and the squaring of the circle. Ideally, 
the Greeks would have preferred to solve each of them using only an 
unmarked straight edge and a pair of compasses. 

The legend was told that the Athenians sent a deputation to the oracle 
at Delos to inquire how they might save themselves from a plague that 
was ravaging the city. They were instructed to double the size of the altar 
of Apollo. 

This altar was cubical in shape, so they built a new altar twice as large 
in each direction. The resulting altar, being eight times the volume of the 
original, failed to appease the gods and the plague was unabated. 
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1'414213562373095048801688724209 69807 85697 ••• 

To find a cube whose volume is double that of another, is equivalent 
to finding the cube root of 2. 

The Greeks interpreted this requirement geometrically. Hippocrates 
showed that it was equivalent to the problem of finding two mean 
proportionals between two lines of length x and 2x. In other words, 
to find the line segments of lengths p and q such that x/p = p/q = 
q/2x. 

This is impossible with ruler and compasses, as Descartes proved two 
thousand years later in 1637. 

The Greeks, however, were not limited to lines and circles, and in 
searching for solutions they created some of the finest achievements of 
Greek mathematics. 

Archytas of Tarentum solved the problem by finding the intersection 
of three surfaces of revolution, a cone, a cylinder and a torus whose 
inner diameter was zero. 

Menaechmus is supposed to have discovered the conic sections, the 
parabola, ellipse and hyperbola, while attempting to solve this problem. 
He solved it by finding the intersections of two parabolas, or alternatively 
by the intersection of a parabola and a hyperbola. 

Two Greeks, Nicomedes and Diocles, invented curves specifically to 
solve the problem, called the conchoid and the cissoid respectively. 

1-414213562373095048801688724209 69807 85697 ••• 

Root 2 
The square root of 2, and length of the diagonal of a unit square. 

Pythagoras or one of his school first discovered that the ratio of the 
diagonal of a square to its side is not a ratio of integers, that is, it is 
irrational. 

This discovery had a profound effect on the Pythagoreans, who had 
supposed that every phenomenon could be explained in terms of the 
integers. 

Theodorus, who taught mathematics to Plato, subsequently proved 
that the square roots of the numbers from 3 up to 17 are irrational, apart 
from the perfect squares 4, 9 and 16. He apparently stopped at 17, for no 
obvious reason, but clearly did not have a general proof that every 
integer is either a perfect square or its square is irrational. 

A sequence of best possible approximations to root 2 is 
1/1 3/2 7/5 17/12 41/29 99/70 239/169 577/408 ... 

7/5 was a Pythagorean approximation. The Babylonians used 17/12 as 
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1·444 667 861 ••• 

a rough approximation to root 2, and I + 24/60 + 51/602 + 101603 

(= 1,4142155 ... ) as a more accurate approximation. 
The fractions in this sequence are the bcst possible approximations for 

a given size of denominator. They are related by the simple rule that, if 
alb is one term, the next is (a + 2b)/(a + b). (Theon of Smyrna in the 
second century knew that if alb is an approximation, then 
(a + 2b)/(a + b) is a better one.) 

They have many other properties. For example, every other fraction 
has an odd numerator and denominator. Split the numerator into the 
sum of two consecutive numbers: 

41 20 + 21 

29 29 

Then, 202 + 2}2 = 292. 
They also provide solutions to Pel\'s equation: x 2 - 2y2 = ± l. 

72 - 2 X 52 = -I 
172 - 2 X 122 = + I 
4}2 - 2 x 292 = -I 

and so on. 
Roland Sprague describes a very beautiful property. Write down the 

multiples of root 2, ignoring the fractional parts, and underneath the 
numbers missing from the first sequence: 

124 5 
361013 

7 8 9 II 12 .. . 
17 20 23 27 30 .. . 

The differences between the upper and lower numbers is 2n in the nth 
place. 

Roland Sprague, Recreations in Mathematics, London, 1963. 

1·444 667 861 ••• 
I eo 
The solution to Steiner's problem: for what value of x is x~ a maxi­

mum? 
H. Dorrie, 100 Great Problems of Elementary Mathematics, Dover, New York, 
1965. 

t XX ••• 

Euler proved that the function XC where the height of the 
tower of exponents tends to infinity, had a limit if x is between 
r = 0·065988 ... and this upper limit, e\-. 
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1'61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 ... 

1'6180339887498948482045868 34365 63811 772030917980576 ... 

The Divine Proportion 
The Divine Proportion or Golden Ratio, equal to 

J5 + I 
2 

In the pentagram, which the Pythagoreans regarded as a symbol of 
health, the ratio AB to BC is the Golden Ratio. So is the ratio AC to AB, 
and similar ratios in the same figure. 

c 

Q 

Euclid in his Elements calls this division 'in the extreme and mean 
ratio' and used it to construct first a regular pentagon, then the two most 
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1-6180339887498948482045868 34365 63811 772030917980576 . .. 

complex Platonic solids, the dodecahedron, which has 12 pentagonal 
faces, and the icosahedron, which is its dual. The mystical significance of 
these beautiful polyhedra to the Greeks was naturally transferred to the 
Golden Ratio. 

There is some evidence that the ratio was important to the Egyptians. 
The Rhind papyrus refers to a 'sacred ratio' and the ratio in the Great 
Pyramid at Gizeh of an altitude of a face to half the side of the base is 
almost exactly 1·618. 

The Greeks probably used it in architecture but no documentary 
proof remains. There is no doubt that it was consciously exploited by 
Renaissance artists, who knew it as the Divine Proportion. 

Fra Luca Pacioli published in 1509 De divina Proportione, illustrated 
with drawings of the Platonic solids made by his friend Leonardo da 
Vinci. Leonardo was probably the first to refer to it as the 'sectio 
aurea', the Golden Section. The Greeks, surprisingly, had no short 
term for it. 

Pacioli presented 13 of its remarkable properties, concluding that 'for 
the sake of salvation, the list must end (here)" because I3 was the 
number present at the table at the Last Supper. Fra Luca also reduced 
the 8 standard operations of arithmetic to 7 in reverence to the 7 gifts of 
the Holy Ghost. 

'The Ninth Most Excellent Effect' is that two diagonals of a regular 
pentagon, as in the figure above, divide each other in the Divine Pro­
portion. Tie an ordinary knot in a strip of paper, carefully flatten it, and 
the same figure appears. 

Kepler, who based his theory of the heavens on the five Platonic 
solids, enthused over the Divine Proportion, declaring 'Geometry has 
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two great treasures, one is the Theorem of Pythagoras, the other the 
division of a line into extreme and mean ratio; the first we may com­
pare to a measure of gold, the second we may name a precious jewel.' 

Renaissance artists regularly used the Golden Section in dividing the 
surface of a painting into pleasing proportions, just as architects 
naturally used it to analyse the proportions of a building. The first 
Italian edition of De Architectura by Vitruvius uses the Golden Ratio to 
analyse the elevation of Milan Cathedral. 

The psychologist Gustav Fechner revived this aesthetic aspect of the 
Golden Ratio in his attempts to set aesthetics on an experimental basis. 

He endlessly measured the dimensions of pictures, cards, books, 
snufiboxes, writing paper, and windows, among other things, in an 
attempt to develop experimental aesthetics 'from below'. He concluded 
that the preferred rectangle had its sides in the Golden Ratio. 

Le Corbusier, the architect, followed this belief in its efficacy in de­
signing The Modular. He constructed two series in parallel, one of 
powers of the Golden Ratio, and the other of double these powers. A 
fellow architect detected the double influence of the Renaissance and the 
Gothic spirit in it, and correspondents rushed to support Le Corbusier's 
claims for its harmonizing properties. 

Mathematicians now either call the Golden Ratio t, first letter of the 
Greek tome, to cut, or they use the Greek letter '1', following the example 
of Mark Barr, an American mathematician, who named it after Phidias, 
the Greek sculptor. 

If the greater part of the line is of length 'I' and the lesser part I, 
then 

which may also be written as 

1 
'1'2 = 'I' + I, or as - = 'I' - 1 

'I' 

In other words, it is squared by adding unity, (1·618 ... )2 = 2·618 ... 
and its reciprocal is found by subtracting unity, 

.!.=J5-
'I' 2 

(Occasionally its reciprocal is called the Golden Ratio, which can be 
slightly confusing.) 

If a rectangle is drawn whose sides are in the Golden Ratio, it may be 

38 



1-61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 __ _ 

divided into a square and another, similar, rectangle. This process may 
be repeated ad infinitum. 

It is possible to draw an equiangular spiral through successive vertices 
of the sequence of rectangles. The diagram shows an excellent ap­
proximation to this spiral, a sequence of quarter circles. The spiral tends 
towards the point where the diagonals of all the Golden Rectangles 
meet. 

This spiral is similar to itself, so it is no surprise that it occurs fre­
quently in nature, in the arrangement of sunflower heads, spiral shells, 
and the arrangements of leaves on branches. 

The Golden Ratio itself is intimately related to the Fibonacci se­
quence. 

Like cp2, the higher powers of cp can all be expressed very simply in 
terms of cp: 

cp + I 2cp + I 3cp + 2 5cp + 3 8cp + 5 

Each power is the sum of the two previous powers, and the coefficients 
of cp form the Fibonacci sequence over again, as do the integer parts of 
the powers. 

cp has many other properties. 
It is equal to the simplest continued fraction: 

I + I 
I + I 

I + I 
I + ... 

which is also the slowest of all continued fractions to converge to its 
limit. 
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The successive convergents are 1/1 2/1 3/2 5/3 ... the numerators 
and denominators following the Fibonacci sequence. Two easy to re­
member approximations are 377/233 and 233/144. Coincidentally, 
355/113 is an excellent approximation to n. 

Thomas Q'Beirne explains a more obscure but equally beautiful prop­
erty: calculate the multiples of cp and cp2 by the whole numbers, 0, 1,2,3, 
4, 5 ... rejecting the fractional parts. The result is a sequence of pairs: 
(0,0), (I, 2), (3, 5), (4, 7), (6, 10), (8, 13), (9, 15) ... 

This sequence has the triple property that the differences between the 
numbers in each successive pair increase by one; the smaller number in 
each pair is the smallest whole number that has not yet appeared in the 
sequence, and the sequence includes every whole number exactly once. 
As a final flourish, these pairs of numbers are all the winning combina­
tions in Wythoff's game. 

H. E. Huntley, The Divine Proportion; Historical Topics for the Mathematics 
Classroom, NCTM, Washington, 1969. 

1'644 934 066 ... 

6 
The sum of the series liP + 1/22 + 1/32 + 1/42 + ... 

1'732050807 S68 877 293 527 446 341 50s 872 366 942 ... 
The square root of 3, the second number, after root 2, to be proved 
irrational, by Theodorus. 

Archimedes gave the approximations, 1351/780 < J3 < 265/153 (or 
26 - 1/52 < 15J3 < 26 - 1/51). 

These satisfy the equations 135P - 3 x 7802 = I and 2652 -
3 X 1532 = - 2, which are consistent with the view that Archimedes 
had some understanding of Pell equations. 

1'772 453 850 905 516 027 298 167483341 145 182797 ... 

In =rm 
The factorial function, n!, which is defined for all positive integers and 

by convention for 0, can be defined by means of an integral for non­
integral values of n. This function is denoted by nn + I). rm = .,fo. 

1'90195 
The approximate value of Brun's constant, equal to the sum, 1/3 + 
1/5 + 1/5 + 1/7 + 1/11 + 1/13 + 1/17 + 1/19 + 1/29 + 1/31 + ... 
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where the denominators are the twin primes. It is sometimes calculated 
without the repetition of 1/5. 

(It has also been calculated starting I + 1/3 + 1/3 + 1/5 + 1/5 + 
1/7 + ... leading one mathematician briefly and optimistically to 
conjecture that its sum was n.) 

It is not known if the number of prime pairs is infinite. However, this 
sum is known to converge, in contrast to the sum of the reciprocals of 
the primes, which diverges. 

Its value is exceedingly hard to calculate. The best estimate is 
1·90195 ± 10- 5 • 

2 
The number 2 has been exceptional from the earliest times, in many 
aspects of human life, not just mathematically. 

It is distinguished in many languages, for example in original Indo­
European, Egyptian, Arabic, Hebrew, Sanskrit and Greek, by the pres­
ence of dual cases for nouns, used when referring to 2 of the object, 
rather than I or many. A few languages also had trial and quaternal 
forms. 

The word two, when used as an adjective, was often inflected, as were 
occasionally the words three and four. 

Modern languages reflect the significance of 2 in words such as dual, 
duel, couple, pair, twin and double. 

The early Greeks were uncertain as to whether 2 was a number at 
all, observing that it has, as it were, a beginning and an end but no 
middle. 

More mathematically, they pointed out that 2 + 2 = 2 x 2, or indeed 
that any number multiplied by 2 is equal to the same number added to 
itself. Since they expected multiplication to do more than mere addition, 
they considered 2 an exceptional case. 

Whether 2 qualified as a proper number or not, it was considered to 
be female, as were all even numbers, in contrast to odd numbers, which 
were male. 

Division into two parts, dichotomy, is more significant psychologically 
and more frequent in practice than any other classification. 

The commonest symmetry is bilateral, two-sided about a single axis, 
and is of order 2. 

Our bodies are bilaterally symmetrical, and we naturally distinguish 
right from left, up from down, in front from behind. Night is separated 
from day, there are two sexes, the seasons are expressed in pairs of pairs, 
summer and winter separated by spring and autumn, and comparisons 
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are most commonly dichotomous, such as stronger or weaker than, 
better or worse than, youth versus age and so on. 

2 and division into 2 parts isjust as significant in mathematics. 2 is the 
first even number, all numbers being divided into odd and even. 

The basic operations of addition, subtraction, mUltiplication and 
division are binary operations, performed in the first instance on 2 
numbers. 

By subtraction from zero, every positive number is associated with a 
unique negative number, and 0 divides all numbers into positive and 
negative. Similarly division into I associates each number with its re­
ciprocal. 

2 is the first prime and the only even prime. 
2 is a factor of 10, the base of the usual number system. Therefore a 

number is divisible by 2 if its unit digit is, and by 2" if 2" divides the 
number formed by its last n digits. 

Powers of 2 appear more frequently in mathematics than those of any 
other number. 

An integer is the sum of a sequence of consecutive integers if and only 
if it is not a power of 2. 

The first deficient number. All powers of a prime are deficient, but 
powers of 2 are only just so. 

Euler asserted what Descartes had supposed, that in all simple poly­
hedra, for example the cube and the square pyramid, the number of 
vertices plus the number of faces exceeds the number of edges by 2. 

Fermat's last theorem states that the equation x!' + y" = z" has 
solutions in integers only when n = 2. The solutions are then sides of a 
right-angled Pythagorean triangle. 

Fermat's equation being exceedingly difficult to solve, several mathe­
maticians have noticed in an idle moment that nX + n' = n% is much 
easier. Its only solutions in integers are when n = 2, and 21 + 21 = 22. 

Goldbach conjectured that every even number greater than 2 is the 
sum of 2 prime numbers. 

The binary system 
The English imperial system of measures used to contain a long sequence 
of measures, some of which are still in use, in which each measure was 
double the previous one. Presumably they were very useful in practice, 
though it is unlikely that most merchants had any idea how many gills 
were contained in a tun: 

I tun = 2 pipes = 4 hogsheads = 8 barrels = 16 kilderkins = 32 
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firkins or bushels = 64 demi-bushels = 128 pecks = 256 gallons = 512 
potties = 1024 quarts = 2048 pints = 4096 chopins = 8192 gills.· 

The numbers appearing in this list are just powers of 2, from 2° = I 
up to 213 = 8192. 

These measures could very easily have been expressed in binary 
notation, or base 2. 

Every number can be expressed in a unique way as the sum of powers 
of 2. Thus: 87 = 64 + 16 + 4 + 2 + I, which can be written briefly as 
87 = 1010111. 

Each unit indicates a power of 2 that must be included and each zero a 
power that must be left out, as in this chart for 1010111: 

64 32 16 8 4 2 
yes no yes no yes yes yes 
10101 I I 

The binary system was invented in Europe by Leibniz, although it is 
referred to in a Chinese book which supposedly dates from about 3000 
BC. 

Leibniz associated the I with God and the 0 with nothingness, and 
found a mystical significance in the fact that all numbers could thus be 
created out of unity and nothingness. Without accepting his math­
ematical theology we can appreciate that there is immense elegance and 
simplicity in the binary system. 

As long ago as 1725 Basile Bouchon invented a device that used a roll 
of perforated paper to control the warp threads on a mechanical loom. 
Any position on a piece of paper can be thought of as either punched or 
not-punched. The same idea was used in the pianola, a mechanical piano 
popular in Victorian homes, which was also controlled by rolls of paper. 

The looms were soon changed to control by punched cards, which 
were also used in Charles Babbage's Analytical Engine, a forerunner of 
the modern digital computer, which relied on punched cards until the 
arrival of magnetic tapes and discs. Binary notation is especially useful 
in computers because they are most simply built out of components that 
have two states: either they are on or ofT, full or empty, occupied or 
unoccupied. 

The same principle makes binary notation ideal for coding messages 
to be sent along a wire. The I and 0 are represented by the current being 
switched on and ofT. 

Long before mechanical computers were invented, the Egyptians 

• Keith Devlin. Guardian, 20 October 1983. 
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multiplied by doubling, as many times as necessary, and adding the 
results. For example, to multiply by 6 it is sufficient to double twice, and 
add the two answers together. Within living memory, Russian peasants 
used a more sophisticated version of the same idea, which was once used 
in many parts of Europe. 

To multiply 27 by 35, write the numbers at the top of two columns: 
choose one column and halve the number again and again, ignoring any 
remainders, until I is reached. Now double the other number as many 
times: 

27 35 
13 70 
6 .J.4G 
3 280 
I 560 

945 

Cross out the numbers in this second column that are opposite an even 
number in the first. The sum of the remaining numbers is the answer, 
945. 

One of the simplest and most basic facts about a number is its parity, 
whether it is odd or even, that is, whether it is divided by 2 without 
remainder. 

All primes are odd, except 2. 
All known perfect numbers are even. 
The sum of this series: 

I I I I 
-+-+-+-+ .. 
I" 2" 3" 4" . 

is far easier to calculate if n is even than if it is odd. 
The simplest kind of symmetry is twofold, as when ink is dropped on 

to a sheet of paper, and the paper is folded once and pressed down to 
produce a symmetrical blot. 

Parity appears in well-known puzzles such as Sam Loyd's 'Fifteen' 
puzzle. Every possible position of the tiles can be classified as either odd 
or even. If the position you are attempting to reach is of opposite parity 
from your starting position, you may as well give up and go home. It is 
impossible to reach. 
F. G. Heath, 'Origins of the Binary Code', Scientific American, August 1972. 
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2'094551 ••• 
The real solution to the equation x 3 - 2x - 5 = O. 

This equation was solved by Wallis to illustrate Newton's method for 
the numerical solution of equations. It has since served as a test for 
many subsequent methods of approximation, and its real root is now 
known to 4000 digits. 
F. Gruenberger, 'Computer Recreations', Scientific American, April 1984. 

2-236 067 

J5 
2'302585092994045684 017 991 454 684 364 207 601 •.• 
The natural logarithm of 10. 

2'506 628 ••• 

J2; 
The constant factor in Stirling's asymptotic formula for n! and there­

fore the limit as n tends to infinity of 

n!e" 

nnJn 
2'618033 ••• 
The square of cp, the Golden Ratio, and the only positive number such 
that In = n - I. 

2'665144 ••• 
2J' 

The 7th of Hilbert's famous 23 problems proposed at the 1900 Math­
ematical Congress was to prove the irrationality and transcendence of 
certain numbers. 

Hilbert gave as examples 2J' and eX. Later in his life he expressed the 
view that this problem was more difficult than the problems of Riemann's 
hypothesis or Fermat's Last theorem. 

Nevertheless, eX was proved transcendental in 1929 and 2J' in 1930, 
illustrating the extreme difficulty of anticipating the future progress of 
mathematics and the real difficulty of any problem - until after it has 
been solved. 
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2·718281828459045235360287471352662497757247093699 ... 
e, the base of natural logarithms, also called Napierian logarithms, 
though Napier had no conception of base and certainly did not use e. 

It was named 'e' by Euler, who proved that it is the limit as x tends to 
infinity of (1 + l/xY 

Newton had shown in 1665 that eX = 1 + x + x 2/2! + xl /3! + ... 
from which e = 1 + 1 + 1/2! + 1/3! + 1/4! + ... a series which is suit­
able for calculation because its terms decrease so rapidly. 

By chance, the first few decimal places of e are exceptionally easy to 
remember, by the pattern 2·7 1828 1828459045 ... 

The best approximation to e using numbers below 1000 is also easy to 
recall: 878/323 = 2·71826 ... 

Like n, e is irrational, as Lambert proved. 
Hermite proved that e is also transcendental in 1873. 
e features in Euler's beautiful relationship, eiK = - I and, more 

generally, e is related to the trigonometrical functions by eiO = 

cos 8 + isin 8. 
It possesses the remarkable property that the rate of change of ~ 

at x = t, is e, from which follows its importance in the differential 
and integral calculus, and its unique role as the base of natural loga­
rithms. 

3 
The first odd number according to the Greeks, who did not consider 
unity to be a number. 

To the Pythagoreans, the first number because, unlike I and 2, it 
possesses a beginning, and middle and an end. They also considered 3, 
and all odd numbers, to be male, in contrast to even numbers, which 
were female. 

The first number, according to Proclus, because it is increased more 
by multiplication than by addition, meaning that 3 x 3 is greater than 
3 + 3. 

Division or classification into 3 parts is exceptionally common. In 
many languages, the positive, comparative and superlative are dif­
ferentiated. In English the sequence once-twice-thrice goes no further. 

There were trinities of gods in Greece, Egypt and Babylon. In Christian­
ity, God is a trinity. 

In Greek mythology there were 3 Fates, 3 Furies, 3 Graces, 3 times 3 
Muses, and Paris had to choose between 3 goddesses. 

Oaths are traditionally repeated 3 times. In the New Testament, Peter 
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denies Christ three times. The Bellman in 'The Hunting of the Snark' 
says, more prosaically, 'What I tell you three times is truer 

The world is traditionally divided into three parts, the underworld, the 
earth, and the heavens. 

The natural world is 3 dimensional, Einstein's 4th dimension of time 
being unsymmetrically related to the 3 dimensions of length. In 3 
dimensions, at most 3 lines can be drawn that are mutually perpen­
dicular. 

The Greeks considered lengths, the squares of lengths, which were 
represented by areas, and the cubes of lengths, represented by solids. 
Higher powers were rejected as unnatural. Numbers with 3 factors were 
sometimes considered as solid, just as a number with 2 factors was 
interpreted by a plane figure, such as a square or some shape of rectangle, 
or by one of the polygonal figures. 

(A commentator on Plato describes even numbers as isosceles, be­
cause they can be divided into equal parts, and odd numbers as 
scalene.) 

They also associated 3 with the triangle, which has 3 vertices and 3 
edges, and was the commonest figure in their geometry and ours. 

The trisection of the angle was one of the three famous problems of 
antiquity, the others being the squaring of the circle, and the duplication 
of the cube. 

The problem is, or was, to trisect an arbitrary angle, using only a 
ruler, meaning an unmarked straight edge, and a pair of compasses. 
Like the duplication of the cube, it depends, in modern language, on the 
solution of a cubic equation. 

Descartes showed that this can be accomplished as the intersection of 
a parabola and a circle, but unfortunately the required points on the 
parabola cannot be constructed by ruler and compasses. 

It can however be solved by the use of special curves. Pappus used a 
hyperbola, and Hippias invented the quadratrix which can be used to 
divide an angle in any proportion. The conchoid invented by Nicomedes 
will trisect the angle and duplicate the cube. 

Euler proved that in any triangle, the centroid lies on the line joining 
the circumcentre to the point of intersection of the altitudes, and divides 
it in the ratio 1: 2. 

A circle can be drawn through any 3 points not on a straight line. 
There are just 3 tesselations of the plane with regular polygons, using 

equilateral triangles, squares, or hexagons as in a honeycomb. 
3 is the second triangular number, after the inevitable 1. Gauss proved 

that every integer is the sum of at most 3 triangular numbers. The 18th 
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entry in his diary, dated 10 July 1796, when he was only 19 years of age, 
reads EYPHKA! num = .1 + .1 + .1. 

All numbers that are not of the form 4"(8m + 7) are the sum of 3 
squares. 

3 divides I less than any power of 10. Consequently a number is 
divisible by 3 if and only if the sum of its digits is divisible by 3. 

3 is the second prime, and the first odd prime, the first prime of the 
form 4n + 3, and the first Mersenne prime, since 3 = 22 - I. 

It is the first Fermat prime, 3 = 22° + I 
All sufficiently large odd numbers are the sum of at most three primes. 

[Vinogradov, 1937] 
It is the first member of a prime pair, 3 and 5, the next few pairs being 

(5, 7), (II, 13), (17, 19), (29, 31), (41, 43) ... It is not known if the 
number of prime pairs is infinite. 

It is the first member of an arithmetical progression of 3 primes, 3->-
7. 

3 = I! + 2! 
The first case of Fermat's Last Theorem. x 3 + y3 = Z3 has no solution 

in integers, proved by Euler. 
The smallest magic square is of order 3. 

3'14159265358979323846264338327950288 41972 •.. 

n, the most famous and most remarkable of all numbers, is the ratio 
of the circumference of a circle to its diameter, and the area of a unit 
circle. 

n is the only irrational and transcendental number that occurs 
naturally, if only as a rough approximation, in every society where 
circles are measured. 

In the Old Testament, I Kings 7:23 implies that n is equal to 3. The 
Babylonians about 2000 BC supposed that n was either 3 or 3 1/8. The 
Egyptian scribe Ahmes, in the Rhind papyrus (1500 BC), stated that the 
area of a circle equals that of the square of 8/9 of its diameter, which 
makes n equal to (16/9) squared or 3·16049 ... 

Such crude values were adequate for primitive craftsmen or engineers. 
To the Greeks however, who were the first 'pure' mathematicians, n had 
a deeper significance. They were fascinated by the problem of 'squaring 
the circle', one of the 'three famous problems of antiquity', that is, of 
finding by a geometrical construction, using ruler and compasses only, a 
square whose area was exactly, not approximately, equal to a given 
circle. 
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Archimedes, by calculating the areas of regular polygons with 96 
sides, determined that 7t lay between 3 10/71 = 3'14085 ... and 3 
10/10 = 3·142857 ... Archimedes also found more accurate approxima­
tions to the value of 7t. 

This last value is 31/1 or 22/1, known to generations of schoolchildren. 
It is also the best approximation to 7t, using the ratio of two numbers 
less than 100. In binary 7t = 11·0010010000111111011 ... This can be 
rounded to the repeating decimal 11·001001001 ... , which is equal to 
3 1/1. 

Ptolemy, the Greek astronomer, used 377/120 (= 3·1416 ... ) but the 
next great improvement was in China where Tsu Ch'ung-Chi and his son 
stated that 7t lay between 3·1415926 and 3·1415927 and gave the 
approximation 355/113. This is the best approximation of any fraction 
below 103993/33102. 

Tsu's result was not improved until AI-Kashi in the fifteenth century 
gave 16 places correctly. European mathematicians at this time were well 
behind. Fibonacci, for example, found only 3 decimal places correctly. 

In the sixteenth century, however, the European mathematicians 
caught up and then forged ahead. 

The most successful and the most obsessive was Ludolph van Ceulen 
who spent much of his life on the calculation of 7t, first finding it correct 
to 20 decimal places, then to 32, and finally to 35 places. He did not live 
to publish his final achievement, but it was engraved on his tombstone in 
a Leyden church. When the church was rebuilt and his tomb destroyed, 
his epitaph had already been recorded in a survey of Leyden, and his 
lifework preserved, but a more lasting monument is the name 'Ludol­
phian number' which has been used for 7t in Germany. 

About the same time, Adriaen Metius very luckily 'discovered' Tsu's 
very accurate approximation 355/113, by taking two limits that had 
actually been calculated by his father, 377/120 and 333/106 and simply 
averaging the numerators and denominators. This is guaranteed to 
produce a number lying between the two original fractions, but that is 
all. 

Ludolph's methods were basically the same as Archimedes'. With 
developments in trigonometry, much superior methods became avail­
able. 

Snell calculated 34 places by using the same geometrical operations 
that allowed Ludolph to calculate only 14, while Huygens calculated 7t 

to 9 places by using only the regular hexagon! 
Further advances followed rapidly as mathematicians began to under­

stand and use infinite series, limits and the calculus. 
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None of the calculations of Ludolph or his predecessors had shown 
any regularity at all in the decimal digits of n. Franrrois Viete, the father 
of modern algebra, showed in 1592 for the very first time a formula for 
n: 

n I 

2 Jt Jt + t Jf Jt + t J! + ! Ji ... 
A pattern at last! John Wallis followed with: 

n 2 2 4 4 6 6 
-=-x-x-x-x-x-x 
2 I 3 3 5 5 7 

Isaac Newton, having returned to Grantham in 1666 to escape the 
Great Plague, easily found n to 16 places using only 22 terms of this 
series: 

3J3 (I I I I ) 
n = -4- + 24 12 - 5 X 2 5 - 28 X 27 - 72 X 29 - ••• 

In 1673 Leibniz discovered that 

n I I I I 
-=1--+---+--4 3 5 7 9 ... 

This series is remarkable for its simplicity, but it is hopelessly inefficient 
as a means of calculating n, because so many hundreds of terms must be 
calculated to obtain even a few digits of n. 

However, by an ingenious sleight of hand, John Machin in 1706 
replaced it by a similar formula that allowed him efficiently to calculate 
to 100 decimal places, far beyond the efforts of Ludolph van Ceulen. 

Euler, who first used the Greek letter n in its modern sense, gave an 
even more impressive demonstration of the power of these new methods 
by calculating n to 20 decimal places in just one hour. 

Euler was a great mathematician, as well as a walking computer. It 
was he who first revealed the extraordinary relationship between n, e, 
the base of natural logarithms, i, the square root of - I, and zero: 
eiK = -\. 

Johann Lambert took another significant step forward whcn he proved 
that n is irrational. He also calculated, by using continued fractions, the 
best rational approximations to n, from 103993/33102 all the way up to 
1019514486099146/324521540032945. 

n by this time had long ceased to be merely the ratio of the circum­
ference to the diameter, but the task of simply calculating as many deci­
mal places as possible had not entirely lost its glamour. Indeed, scores 
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of calculations were published. One of the fastest was to 200 places by 
Johann Dase (1824-1861), completed in less than two months. 

Dase had been a calculating prodigy as a child and was employed, on 
the recommendation of Gauss, to calculate tables of logarithms and 
hyperbolic functions. 

In 1853 William Shanks published his calculations of 1l to 707 decimal 
places. He used the same formula as Machin and calculated in the process 
several logarithms to 137 decimal places, and the exact values of 2721. 

A Victorian commentator asserted: 'These tremendous stretches of 
calculation ... prove more than the capacity of this or that computer for 
labor and accuracy; they show that there is in the community an increase 
in skill and courage ... ' 

Augustus de Morgan thought he saw something else in Shanks's 
labours. The digit 7 appeared suspiciously less often than the other 
digits, only 44 times against an expected average of appearance of 61 for 
each digit. De Morgan calculated the odds against such a low frequency 
were 45 to I. 

De Morgan, or rather William Shanks, was wrong. In 1945, using a 
desk calculator, Ferguson found that Shanks had made an error; his 
calculation was incorrect from place 528 onwards. Shanks, fortunately, 
was long since dead. 

Electronic computers are, of course, vastly superior to human cal­
culators. As early as 1949 the EN I A C calculated 1l to 2037 places in 70 
hours - without making any mistakes. In 1967 a French CDC 6600 
calculated 500,000 places, and in 1983 a Japanese team of Yoshiaki 
Tamura and Tasumasa Kanada produced 16,777,216 (= 224) places. 

What is the point of such calculations? Curiously, it is chiefly to 
investigate just the kind of irregularities that de Morgan thought he had 
spotted. It is generally believed that 1l is normal, and that there is in 
some sense no pattern at all in the decimal expansion of 1l, that although 
it is produced by a definite process, it is effectively random. 

It certainly looks random to a rapid examination, despite a chunk of 
six consecutive 9s between decimal places 762 and 767. Martin Gardner 
has explained another 'pattern', which occurs much earlicr. Here are the 
6th to 30th decimal places, slightly spaced to cmphasize the pattern: 

... 26 53589 793238 46 26 43 383279 ... 
A little further on, the 359th, 360th and 361st digits, counting '3' as 

the first, are 3-6-0, and 315 is similarly centred over the 315th digit. 
Such patterns, however, would be expected if 1l is truly random. 

Indeed, every possible pattern ought to appear sooner or later. The 
sequence of digits 123456789 should appear! Does it? No, not so far, 
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apparently, but that is no surprise, because a mere 16,000,000 digits is 
nothing compared to the endless sequence of digits to come ... 

The first 16 million digits, by the way, have passed all the tests of 
randomness used on them so far. 

What has happened meanwhile to the Greek ambition to square the 
circle? Several Greek mathematicians thought that they had done so, 
though their results were at best close approximation. 

Mathematicians, not surprisingly, soon learned by experience that the 
problem was either extraordinarily difficult, or impossible to solve, but 
their expert opinions had little effect in dampening the ardour of a 
legion of circle-squarers, some of them exceedingly eminent (in their 
own, different fields), who could understand the statement of the prob­
lem, but not its difficulties. 

Nicholas of Cusa (1401-1464) was a cardinal and a famous scholar. 
He gave 3·1423 as the exact value, but partly redeemed himself by giving 
a genuinely good trigonometrical approximation, which was later used 
by Snell. 

Joseph Scaliger was another notable scholar, a brilliant philologist, 
with ambitions to be a mathematician, who tried to square the circle. His 
attempts were refuted by Viete. 

Even more curious is the case of the English philosopher Thomas 
Hobbes (1588-1679) who had learned something of the latest de­
velopments in mathematics from Mersenne in Paris. His attempts to 
square the circle were refuted by John Wallis, whom Hobbes then fool­
ishly attacked. They spent the next quarter-century in bitter argument, 
doing Wallis no harm at all, but damaging Hobbes's otherwise high 
reputation. 

Jacob Marcelis, in about 1700, supposed that he had squared the 
circle. His exact value for 1[ was: 

31.008.449.087.377.541.679.894.282.184.8~4: 
6.997.183.637.540.819.440.035.239.271.702 

which suggests that he shared some of Shanks's enthusiasm for hard 
work, without the same justification. 

One attempt to square the circle almost reached the statute books. In 
1897 House Bill No. 246 was presented to the House of Representatives 
of the State of Indiana. It was based on the circle-squaring efforts of one 
Edwin J. Goodwin, a physician but no mathematician, who boldly titled 
his proposal 'A bill introducing a new mathematical truth'. Despite 
being both very obscure and very absurd, it sailed through its first 
reading but was held up before a second reading due to the intervention 
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ofC. A. Waldo, a professor of mathematics who happened to be passing 
through. Its second reading has not taken place to this day! 

Such is the pathological self-confidence of many circle-squarers that 
the breed will no doubt flourish for ever. To mathematicians, however, 
the problem of squaring the circle was finally answered in 1882 by 
Lindemann who proved that TC is transcendental, that is, it cannot be the 
root of any algebraic equation with rational coefficients and only a finite 
number of terms, more than eighty years after Legendre, having just 
proved TC and TC 2 irrational, and reflecting on the history of failure to 
square the circle, made exactly the same suggestion. 

Since every number constructed with ruler and compasses satisfies such 
an equation, no such construction will ever succeed in squaring the circle. 

Lindemann's proof, appropriately, used Euler's beautiful relation­
ship. 

TC has lost some of its mystery, but little of its fascination. It is no 
longer surprising to find that TC appears, for example, in a problem on 
probability. 

Count Georges Buffon (1707-1788) the biologist, who also translated 
Newton on calculus into French, showed that if a needle is dropped 
from a height randomly on to a parallel ruled surface, the length of the 
needle equalling the distance between the lines, then the probability that 
the needle falls across a line is 2/TC. 

Why does TC appear in the answer? In this case, because the problem 
concerns angles, which concern trigonometrical ratios, which concern 
TC ••• 

Several investigators have performed experiments to test this con­
clusion. De Morgan records that one of his pupils made 600 trials and 
obtained TC = 3·137. 

Scores of infinite series involve TC in their sums. They are scarcely less 
beautiful for being well understood. 

These are as surprising as they are pretty: 

TCj2 = I + ! _ ! _ ! + ! + ~ _ ~ _ ~ + ... 
4 3 5 7 9 II 13 15 

TC - 3 I 
-- - + ...,-----::::---". 

4 2 x 3 x 4 4 x 5 x 6 6 x 7 x 8 

This is a more important result: 

6 

I I I 
1+-+-+-+ 22 32 42 ... 
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If only the odd numbers are used: 

n2 I I I I 
-= I +-+-+-+-+ 8 32 52 72 92 ... 

Euler first calculated the sums of the even powers of the reciprocals, 
all the way up to the 26th power: 

I I I 224 X 76977927 X n26 
- + - + - + = -----:-----126 226 326 . . . 27! 

n2/6 is also equal to this infinite product, through all the primes, also 
discovered by the prolific Euler: 

22 32 52 72 I J2 
--- x --- x --- x --- x --- X 
22 - I 32 - I 52 - I 72 - I 112 - 1 

The Indian genius Srinivasa Ramanujan, who had much in common 
with Euler, produced some extraordinary infinite sums and approx­
imations to n. By a geometrical argument he found 

(92 + ~2y = 3.14159265262 ... 

He also gave 

63 
25 (17 + 15j5)/(7 + 15j5) 

and the extraordinary 

992 2n./i =-
1103 

correct to 9 and 8 places respectively. 
The most recent method for calculating n, which was used by Tamura 

and Kanada for their calculation to 16 million places, is based on Gauss's 
study of the arithmetic-geometric mean of two numbers. 

Instead of using an infinite sum or product, the calculation goes round 
and round in a loop. It has the amazing property that the number of 
correct digits approximately doubles with each circuit of the loop, so that 
going round a mere 19 times gives n correct to over 1 million decimal 
places! 

Here is a simple loop for calculating n: 
The steps must be followed in sequence, up to 

(A + B)2 

4C 
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which is the first approximation to 1t. Then return as the arrow indicates 
to the first step and go round again. The equals signs stand for 'let -­
be --' rather than equality as in an equation, so the first instruction 
says 'let Y have the value N. 

y= A 

A+B 
A=--

2 

B = .JiiY 
C = C - X (A - Y)2 

X= 2X 

(A + B)2 
PRINT 4C 

The initial values are, A = X = I, B = 1/j2, and C = 1/4. 
Here are the values of 1t after going round just 3 times on a pocket 

calculator. It is already correct to 5 decimal places! 

loops approximation to 1t 

1 2·9142135 
2 3·1405797 
3 3·1415928 

3-162277660168 379 331 998893544 432 718 533 719 ••. 

JW 
3'321928 ••• 
log2 10 

To discover the number of digits of a power of 10, when expressed in 
binary notation, multiply the index by this number, and take the next 
highest integer. 

Thus 1000 = 103 ; 3·321928 ... x 3 is approximately 9·96, so 1000 in 
base 10 will in binary be of 10 digits. In fact, 100010 = 11111010002. 

4 
The first composite number, the second square, and the first square of a 
prime. 

The Pythagoreans called numbers divisible by 4, even-even. For this 
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reason, 4, and also 8, were associated with harmony and justice, in 
contrast to the scales that symbolize justice in modern Western law. 

4 is also associated by the Pythagoreans with the tetraktys, the pattern 
of the first 4 numbers arranged in a triangle. 

They postulated 4 elements, earth, air, fire and water, symbolized 
respectively by the cube, octahedron, tetrahedron and icosahedron. The 
remaining Platonic solid, the dodecahedron, was associated with the 
sphere of the fixed stars, and later with the quintessence of the medieval 
alchemists. 

A person's temperament was determined by combinations of 4 
humours. 

Being 2 by 2, there are 4 cardinal points of the compass and 4 corners 
of the world, and 4 winds. 

In the Old Testament there were 4 rivers of paradise, one for each 
direction, supposed to prefigure the 4 gospels of the New Testament. 

The quadrivium of Plato divided mathematics, in his general sense of 
higher knowledge, into the discrete and the continuous. The absolute 
discrete was arithmetic, the relative discrete was music. The stable con­
tinuous was geometry and the moving continuous, astronomy. 

The most pleasing musical intervals are associated with the ratios of 
the numbers I to 4. 

The Greeks also associated 4 with solid objects, notwithstanding 
their association between 3 and volume. They followed the natural 
progression, I for a point, 2 for a line, 3 for a surface, and 4 for a 
solid. 

The simplest Platonic solid, the tetrahedron, has 4 vertices and 4 faces. 
A square has 4 edges and 4 vertices. A cubc has square faces, whIle its 

dual, the octahedron, has 4 faces about each vertex. 
Being 22 , a plane figure with bIlateral symmetry about two different 

lines is divided into 4 congruent parts. 
Einstein's space-time is 4-dimenslOnal. However, in recent theories, 4 

dimensions arc insufficient. 
A hyperbola can be drawn through any 4 points in the plane, no three 

of which arc colinear. 
Every integer is the sum of at most 4 squares. This celebrated theorem 

may have been known empirically to Diophantus. Bachet tested it suc­
cessfully up to 120 and stated it in his edition of Diophantus, to which he 
added some of his own material. 

It was studied by Fermat and Euler, who failed to solve it, and finally 
proved by Lagrange in 1770. 

Only one-sixth of all numbers, those of the form 4"(8m + 7), however, 
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actually require 4 squares. The remainder are the sum of at most 3 
squares. 

Ferrari first solved equations of the 4th degree. His solution was 
published by Cardan in his Ars Magna. 

The general equation of higher degree cannot be solved by the use of 
radicals. 

The 4-colour problem 
For more than a century the 4-colour conjecture was one of the great 
unsolved problems of mathematics. Some mathematicians would still 
say that it has not been solved satisfactorily. 

In October 1852, Francis Guthrie was colouring a map of England. It 
suddenly occurred to him to wonder how many colours were needed if, 
as is natural, no two adjacent counties were given the same colour. He 
supposed the answer was 4. 

It was published in 1878, setting in motion a bizarre but not untypical 
sequence of events. 

Kempe thought that he had proved it in 1879, but eleven years later 
his proof was shown to be faulty. Meanwhile, in 1880, the conjecture 
had been proved again, but this proof was also flawed. 

However, these attempts were valuable in deepening mathematicians' 
understanding of the problem. Indeed, many important concepts in 
graph theory were developed through attacks on this problem, which 
however proved extremely resistant. 

The solution was finally achieved in 1976 by Wolfgang Haken and 
Kenneth Appel who transformed the problem into a set of sub-problems 
that could be checked by computer. 

Mathematicians have been sceptical because of the lengthy math­
ematical reasoning involved, and the length of time, 1200 hours, 
taken on the computer. The very existence of a proof that few other 
mathematicians will ever be able to check is a recent development in 
mathematics. Another example of the same phenomenon is the classifi­
cation of finite groups. This classification is now complete but the entire 
proof is spread across thousands of pages in different journals published 
over the years. This contradicts the traditional idea of a proof as an 
available means of confirming a thesis and persuading others also that it 
is true. 

4 is exceptional in not dividing (4 - I)! = 3!. It is the only composite n 
which does not divide (n - I)!. 

Brocard's problem asks: When is n! + I a square? 4! + I = 52. 
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A number is divisible by 4 if the number represented by its last two 
digits is divisible by 4. 

Starting with any number, form a new number by adding the squares 
of its digits. Repeat. 

This process eventually either sticks on I, or goes round a loop of 
which 4 is the smallest member: 4 - 16 - 37 - 58 - 89 - 145 - 42 - 20-
4 ... 

If a number in base lOis a multiple of its reversal, their ratio is either 4 
or 9. 

4 is the only number equal to the number of letters in its normal 
English expression: 'four'. 

4'123105 ••• 
ft, the highest root to be proved irrational by Theodorus. 

5 
The Pythagoreans associated the number 5 with marriage, because it is 
the sum of what were to them the first even, female number, 2, and the 
first odd, male number, 3. 

5 is the hypotenuse of the smallest Pythagorean triangle, that is, a 
right-angled triangle with integral sides. 

The Pythagoreans also associated this triangle with marriage and 
Pythagoras' theorem was sometimes called the Theorem of the Bride. 
The sides 3 and 4 were associated with the male and female respectively, 
and the hypotenuse, 5, with the offspring. 

The 3-4-5 triangle is the only Pythagorean triangle whose sides are 
in arithmetical progression, and the only one whose area is one-half of 
its perimeter. 

The mystic pentagram, which was so important to the Pythagoreans, 
was known in Babylonia and probably imported from there. 

The Pentagram was associated with the division ofline in extreme and 
mean proportion, the Golden Section, and also with the fourth of the 
regular solids, the dodecahedron, whose faces are regular pentagons. 
The early Pythagoreans did not know the fifth regular Platonic solid, the 
icosahedron. 

By constructing a nest of pentagrams inside a regular pentagon, it is 
relatively easy to show that subtraction of the sides and diagonals can be 
continued indefinitely. It has been suggested that this pattern led to the 
idea that some lengths are incommensurable. 

The Pythagoreans, according to Plutarch, also called 5 nature, because 
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when multiplied by itself, it terminates in itself. That is, all powers of 5 
end in the digit 5. They knew that 6 shares this property, but no other 
digit. 

In modern terminology,S and 6 are the smallest automorphic num­
bers. 

5 is the sum of two squares, 5 = 12 + 22, like any hypotenuse of a 
Pythagorean triangle. 

It is also a prime, the first, of the form 4n + I, from which it follows 
that it is the sum of two squares in one way only. 

5 is the first prime of the form 6n - l. All primes are one more or one 
less than a multiple of 6, except 2 and 3. 

Pappus showed how to construct a conic through any 5 points in the 
plane, no 3 of which are colinear. 

5 is the second Fermat number and the second Fermat prime: 
5 = 22 ' + I. Only 5 Fermat primes are known to exist. 

The 5th Mersenne number, 25 - I = 31 and is prime, the third to be 
so, leading to the third perfect number, 496. 

5! + I is a square. 
Every number is the sum of 5 positive or negative cubes in an infinite 

number of ways. 
The general algebraic equation of the 5th degree cannot be solved in 

radicals. First proved by Abel in 1824. 
Lame showed that the Euclidean algorithm for finding the highest 

common factor of two numbers takes in base 10 at most 5 times as many 
steps as there are digits in the smallest number. 

5 is a member of two pairs of twin primes, 3 and 5, and 5 and 7. 
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5-11-17-23 is the smallest sequence of 4 primes in arithmetical pro­
gression. Add the prime 29 to form the smallest set of 5 primes in 
arithmetical progression. 

5 is probably the only odd untouchable number . 
. The volume of the unit 'sphere' in hyperspace increases up to 

5-dimensional space, and decreases thereafter. 

Counting in 5s 
This might seem a natural base for a counting system, since we have 5 
fingers per hand. However, only one language uses a counting system 
based exclusively on 5, Saraveca, a South American Arawakan language, 
though 5 has a special significance in many counting systems based on 
to and 20. For example in many Central American languages, the 
numbers 6 through 9 are expressed as 5 + I, 5 + 2 and so on. 

The Romans used V = 5, L = 50 and D = 500, so 664 was 
DCLXIIII. (The idea of placing an I before V to represent 4, or I before 
X for 9, for example, which makes numbers shorter to write while making 
them more confusing for arithmetic, was hardly ever used by the Romans 
themselves and became popular in Europe only after the invention of 
printing.) 

Divisibility 
Because 5, like 2, is a factor of 10, decimal fractions such as 1/20, whose 
denominators are products of 2s and 5s only, have finite decimal ex­
pansions and do not recur. 

More precisely, if n = 2P54, then the length of lin as a decimal is the 
greater of p and q. 

If 11m is a recurring decimal, and lin terminates, then limn has a 
nonperiodic part whose length is that of lin, and a recurring part whose 
length is the period of 11m. 

The Platonic solids 
There are 5 Platonic solids, the regular tetrahedron, cube, octahedron, 
dodecahedron and icosahedron, all but the cube being named after the 
Greek word for their number of faces. 

They were all known to the Greeks. Theaetetus, a pupil of Plato, 
showed how to inscribe the last two in a sphere. Euclid showed, by 
considering the possible arrangements of regular polygons around a 
point, that there are no more than 5. 

Kepler used them, with typical confidence in their mystical properties, 
to explain the relative sizes of the orbits of the planets: 
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The earth's orbit is the measure of all things; circumscribe around it a dodeca­
hedron, and the circle containing this will be Mars: circumscribe around Mars a 
tetrahedron, and the circle containing this will be Jupiter: circumscribe around 
Jupiter a cube, and the circle containing this will be Saturn. Now inscribe within 
the earth an icosahedron. and the circle contained in it will be Venus; inscribe 
within Venus an octahedron, and the circle contained in it will be Mercury. You 
now have the reason for the number of planets. 

The idea of a polyhedron can be extended to more than 3 dimensions, 
just as a polyhedron can be considered as a 3-dimensional polygon. 

There are 5 cells in the simplest regular 4-dimensional polytopes, called 
the simplex, which also has 10 faces, 10 edges and 5 vertices, so that it is 
self-dual. 

The Fibonacci sequence 
5 is the fifth Fibonacci number. 

Leonardo of Pisa, called Fibonacci, discussed in his Liber Abaci this 
problem: 

A certain man put a pair of rabbits in a place surrounded on all sides 
by a wall. How many pairs of rabbits can be produced from that pair in 
a year if it is supposed that every month each pair begets a new pair 
which from the second month on becomes productive? 

Assuming that the rabbits are immortal, the number at the end of 
each month follows this sequence. (Leonardo omitted the first term, 
supposing that the first pair bred immediately.) 

I I 2 3 5 8 13 21 34 55 89 144 233 
It was christened the Fibonacci sequence by Eduard Lucas in 1877, 

when he used it, and another sequence now named after himself, to 
search for primes among the Mersenne numbers. 

It is one of the curious coincidences that occur in the history of 
mathematics that a problem about rabbits should generate a sequence of 
numbers of such interest and fascination. Rabbits, needless to say, do 
not feature again in its history. 

Its first and simplest property is that each term is the sum of the two 
previous terms. Thus the next term will be 144 + 233 = 377. This was 
surely known to Fibonacci, though he nowhere states it. Mathematicians 
do not always state the obvious. 

Kepler believed that almost all trees and bushes have flowers with five 
petals and consequently fruits with five compartments. He naturally 
associated this fact with the regular pentagon and the Divine Proportion. 
He continues: 
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It is so arranged that the two lesser terms of a progressive series added together 
constitute the third ... and so on to infinity, as the same proportion continues 
unbroken. It is impossible to provide a perfect example in round numbers. How­
ever ... Let the smallest numbers be I and I, which you must imagine as unequal. 
Add them, and the sum will be 2: add to this I, result 3; add 2 to this, and get 5; 
add 3, get 8 ... As 5 is to 8, so 8 is to 13, approximately, and as 8 is to 13, so 13 is 
to 21, approximately. 

This statement could scarcely be clearer, but it was not until 1753 that 
the Scottish mathematician Robert Simson first stated explicitly that the 
ratios of consecutive terms tend to a limit, which is cp, the Golden Ratio. 
These are the first few ratios: 1/1 2/1 3/2 5/3 8/5 13/8 21/13 
34/21 55/34 89/55 144/89 233/144 ... 

Successive ratios are alternately less than and greater than the Golden 
Ratio. After 12 terms the match with cp is correct to 4 decimal places. 
For much higher values the Fibonacci sequence matches the geometric 
sequence cpo very closely indeed. 

(This is a consequence only of the rule that each term is the sum of the 
two preceding terms. Start with any two numbers, construct a generalized 
Fibonacci series, by adding successive terms to get the next, and their 
ratio will tend to cp.) 

More precisely, as Binet discovered in 1843 the nth Fibonacci number 
is given by the formula: 

F. = (I + J"S)' - (I - J"S)' 
2' x J"S 

There is another version of this formula, which is simpler to use in 
practice. Because 

is only 0·618 ... when n = I and rapidly becomes very sma II indeed, F. 
is actualIy the nearest integer to 

_I (I + J"S)' 
J"S 2 

For example Fs is the integral part of 21.00952 ... which is 21. 
Simson also discovered the identity: F._1F'+ 1 - F.2 = (_I)', 

which is the basis for a puzzling trick first presented by Sam Loyd. 
Draw on graph paper a square whose side is a Fibonacci number with 

odd subscript, say 8. Divide it as shown, and the pieces can be reassembled 
to form a rectangle with area 65. Where has the extra square come from? 
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8 

5 

8 8 

Nowhere, of course. The diagonal of the second figure is actually two 
halves of a long thin parallelogram, with area I unit. It seems to be a 
genuine straight line only because the slopes of the two sides, 3/8 and 
2/5, are so similar. If we had started with a higher Fibonacci number, 
say, 21, the illusion would be even closer and even more convincing. 

The number of Fibonacci identities is literally endless. 
Lucas discovered a relationship between Fibonacci numbers and the 

binomial coefficients: 

F. + 1 = (~) + (y) + (n ; 2) + ... 

For example: 

F12 = 144 = e~) + en + G) + G) + G) + (~) 
= I + 10 + 36 + 56 + 35 + 6 
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Catalan showed a similar result: 

2'-\ F. = C) + 5 G) + 52 G) + ... 

The sums of the first n terms, and of the terms with even subscript and 
odd subscripts can all be expressed very neatly: 

F\ + F2 + F3 + F4 + ... F. 
F I + F 3 + F 5 + F 7 + ... F 2'-\ 
F2 + F4 + F6 + Fs + ... F2 • 

= F'+ 2 -

= F2• 

= F2 '+ 1 - I 

Similarly, Ft + F~ + F~ + ... + P" = F.F.+ I , which can be 
illustrated nicely in a figure, which naturally is almost identical to the 
figure on page 39: the proportions of this figure, 55 : 34 are already a fair 
approximation to cpo 

2 
21 

342 

82 
2 

13 
2 f.1 52 '--

2 '.2 
2 

There arc many morc identities similar to Simson's, such as: 

Charles Raine ingeniously connected Fihonacci numbers to Pytha­
gorean triangles. Take any 4 consecutive Fibonacci numbers; the pro­
duct of the outer terms and twice the product of the inner terms are the 
legs of a Pythagorean triangle: for example, 3, 5, 8, 13, gives thc two legs, 
39 and 80, of the right-angled triangle 39-80-89. Thc hypotenuse, 89, is 
also a Fibonacci number! Its subscript is half the sum of the subscripts 
of the four original numbers. Finally, thc area of the triangle is the 
product of the original four numbers, 1560. 
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(Incidentally, no four terms of the Fibonacci sequence can be in 
arithmetic progression.) 

The sums of the two series 

I I I I 
-----+----- ... 
I x 2 2 x 3 3 x 5 5 x 8 

and 

I I I 
--+---+---+ + ... 
I x 3 3 x 8 8 x 21 21 x 55 

are equal to cp-2. [Pincus Schue] 
The number of Fibonacci numbers between nand 2n is either I or 2, 

and the number of Fibonacci numbers having the same number of digits 
is either 4 or 5. [K. Subba Rao] 

The Fibonacci numbers possess very elegant divisibility properties. 
Consider two numbers, m and n. If m divides n, then Fm divides F •. If 
the highest common factor of p and q is r, then the highest common 
factor of F p and F q is Fr. It follows that any two consecutive Fibonacci 
numbers are coprime. 

Every prime number divides an infinite number of terms of the 
sequence. In fact, if p = ± I mod 5, then Fp _ 1 is divisible by p, and if 
p = ± 2 mod 5, then F P+ I is divisible by p. 

If m is any number, then among the first m2 Fibonacci numbers there 
is one divisible by m. 

If F. IS prime, then n must Itself be prime, with one exception: F 4 = 3, 
3 is prime but 4 IS not. However, the converse IS false. 

The FibonaccI sequence IS also linked In a surprismg way with the 
growth of plants. Kepler may have realized thiS. He writes: 

It is in the likeness of thiS self-developing serIes that the faculty of propagatIOn is, 
in my OpInIOn, formed; and so In a flower the authentJc flag of thiS faculty IS 
shown, the pentagon. I pass over all the other arguments that a delightful rumina­
tion could adduce In proof of thiS. 

What were Kepler's other arguments? He does not say, but in the 
nineteenth century Schimper and Braun investigated phyllotaxis, the 
arrangements of leaves round a stem. 

Leaves grow in a spiral, such that the angles between each pair of 
successive leaves are constant. The commonest angles are 180°, 120°, 
144°,135°, 138°27', 137"8', 137"38', 137°27', 137"31' ... which seem to 
be tending to a limit. 
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What that limit is becomes clearer when they are expressed as ratios of 
a complete circle. 

These ratios are, respectively, 1/2, 1/3, 2/5, 3/8, 5/13, 8/21, 13/34, 
21/55 and 34/89, the ratios of alternate members of the Fibonacci 
series. 

To put that another way, the numerator and denominator of each 
new fraction are sums of the numerators and denominators of the pre­
vious two fractions. These ratios tend to the limiting value cp-2, and the 
limiting angle is approximately 137"30' and 28 seconds, which divides 
the circumference of a circle in the Golden Ratio. 

The smallest ratios, 1/2 and 1/3, are found in grasses and sedges but 
are otherwise not very common, though commoner than 1/4 and 1/5, 
which do exist and form part of another Fibonacci-type sequence. 

The most frequent leaf arrangements are 2/5, found in roses, and 3/8. 
Much higher ratios, however, appear much more clearly in the scales of 
a fir cone or the florets ofa sunflower, which are packed closely together. 
The packing is highly regular, forming sets of spiral rows, or parastichies, 
two of which are more prominent than the rest. 

A pineapple usually has 8 and 13 parastichies. A sunflower may have 
from 21/34 up to as high as 89/144. Even 144/233 has been claimed for 
one giant plant. 

(Although plants of the same species and even of the same family tend 
to have the same parastichy numbers, the higher numbers especially do 
vary from plant to plant. The phyllotaxis may even change as a plant 
grows, starting with a low ratio such as 1/2 or 1/3 and then changing to 
higher ratios.) 

Why do plants grow this way? Less entranced by the Fibonacci 
numbers than mathematicians, botanists are more interested in an 
explanation, on which they do not yet agree. 

One plausible theory, which might be explained by chemical inhibition 
of growth, is that each primordium, the primitive leaf bud, develops in 
the largest gap available. Whatever the botanists eventually decide, 
mathematicians will continue to delight in this connection between 
rabbits and the plants they eat. 

The Fibonacci numbers have other uses in more advanced math­
ematics. 

The Russian Matasyevic used Fibonacci to finally solve Hilbert's 10th 
problem. No algorithm exists that, given any Diophantine equation, 
will decide within a finite number of steps whether it has a solution. 
He exploited the rate at which the sequence of Fibonacci numbers 
increases. 
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They have also recently found further uses in computer science, in 
designing efficient algorithms for constructing and searching tables of 
data, for example. 
Johannes Kepler, The Six-cornered Snowflake, Oxford University Press, Oxford, 
1966. 

5'256 946 404 860 ••• 
The approximate 'volumes' of the unit 'spheres' in dimensions from 
upwards are: 

dim.1 
2 

dim. 2 dim. 3 dim. 4 dim. 5 dim. 6 dim. 7 
3·1 4·1 4·9 5·263 5·1 

The volume is a maximum in 5 dimensions, and declines thereafter. 
If however the dimension is regarded as a real variable, able to take 

non-integral values, then the maximum volume occurs in 'space' of this 
dimension, 5·256 ... 

The volume is then 5·277768 ... compared to the volume in 5 
dimensions of 5·263789 ... [David Singmaster] 

6 
The second composite number and the first with 2 distinct factors. 

Therefore the first number, apart from I, which is not the power ofa 
prime. 

The Pythagoreans associated 6 with marriage and health, because it is 
the product of their first even and first odd numbers, which were female 
and male respectively. 

It also stood for equilibrium, symbolized by two triangles, base to 
base. 

It is the area and the semi-perimeter of the first Pythagorean triangle, 
with sides, 3, 4, 5. 

The first perfect number, as defined by Euclid. Its factors are I, 2, 3 
and 6 = I + 2 + 3. 

It is the only perfect number that is not the sum of successive cubes. 
St Augustine wrote, 'Six is a number perfect in itself ... God created 

all things in six days because this number is perfect. And it would remain 
even if the work of six days did not exist.' [Bieler] 

6 is also equal to I x 2 x 3, and is therefore the 3rd factorial, 3!, and 
also the second primorial. 

No other number is the product of 3 numbers and the sum of the same 
3 numbers. 
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I, 2, 3 is also the only set of 3 integers such that each divides the sum 
of the other two. 

6 also equals J(J3 + 23 + 33 ). 

It is the only number that is the sum of exactly 3 of its factors, which 
is the same as saying that I can be expressed uniquely as the sum of 3 
unit fractions, the smallest of which is 1/6: I = 1/2 + 1/3 + 1/6. 

62 ends in 6. The other digit with this property is 5. 
Every prime number greater than 3 is of the form 6n ± I. 
Any number of the form 6n - I has two factors whose sum is divisible 

by 6. 
6 is the 3rd triangular number, and the only triangular number, apart 

from I, with less than 660 digits whose square (36) is also triangular. 
The following property is due to Iamblichus. Take any 3 consecutive 

numbers, the largest divisible by 3. Add them, and add the digits of the 
result, repeating until a single number is reached. That number will be 6. 

The second and third Platonic solids, which are duals of each other, 
the cube and the octahedron, have 6 faces and 6 vertices respectively. 

The first, the tetrahedron, has 6 edges. 

Regular polytopes 
There are 6 regular polytopes. They are the analogues in 4 dimensions of 
the regular polyhedra in 3 dimensions and the regular polygons in 2 
dimensions. 

Each polytope has vertices, edges, faces and also cells. Two of them 
are self-dual, the others form two dual pairs. 

number number number number 
name of cells o.ffaces of edges of vertices 

simplex 5 10 10 5 
tesseract 8 24 32 16 
16-cell 16 32 24 8 
24-cell 24 96 96 24 
l20-cell 120 720 1200 600 
600-cell 600 1200 720 120 

6 equal circles can touch another circle in the plane. 
One of the 3 regular tesselations of the plane is composed of regular 

hexagons. 
Pappus discussed the practical intelligence of bees in constructing 

hexagonal cells. He supposed that the cells must be contiguous, to allow 
no foreign matter to enter, must be regular, and therefore either tri-
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angular, square, or hexagonal, and concluded that bees knew that a 
hexagon, using the same material, would hold more than the other 
shapes. 

Pappus, claiming that man has a greater share of wisdom than the 
bees, then went on to show that of all regular figures with equal peri­
meter, the one with the larger number of sides has the larger area, the 
circle being the limiting maximum. 

Kepler discussed the 6-fold symmetry of snowflakes, and attempted to 
explain it by considering the close packing of spheres in a hexagonal 
array. 

Pascal discovered in 1640 at the age of 16 his theorem of the Mystic 
Hexagram. If any six points are chosen on a conic section, labelled 1,2, 
3,4,5,6, then the intersections of the lines 12 and 45, 34 and 61, 56 and 
23, will lie on a straight line. 

I 
I 

Brianchon enunciated the dual theorem, in which the 6 original points 
are replaced by 6 tangents to the conic. 

6·283185 ••• 
2x 

The ratio of the circumference to a radius of a circle. The number of 
radians in a complete circle. 
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7 
7 days in a week, and therefore associated with 14 and with 28 days in a 
lunar month. 

The 4th prime number, and the first of the form 6n + I. 
The start of an arithmetical progression of six primes: 7, 37, 67, 97, 

127, 157. 
7 and II are the first pair of consecutive primes different by 4. 
The 3rd Mersenne number, 7 = 23 - I, and the second Mersenne 

prime, leading to the second perfect number. 
The first number that is not the sum of at most 3 squares. The sequence 

of such numbers continues, 15 23 28 31 39 47 55 60 ... 
7 = 3! + l. n! + I is prime for n = 1,2,3, 11,27,37,41,73,77,116, 

154, 320, 340, 399,427, and no other values below 546. 
Brocard's problem. When is n! + I a square? The only known solu­

tions are n = 4, 5 and 7: 7! + I = 5041 = 7P. 
The Fermat quotient 

2P - 1 -

p 

is a square only when pis 3, or 7. 
Lame proved in 1840 that Fermat's equation, x 7 + y7 = Z7 has no 

solutions in integers. 
If a, b are the shorter sides of a Pythagorean triangle, then 7 divides 

one of a, b, a - b or a + b. 
Because 72 falls short of 50 by only I, 7 was called by the Greeks, the 

rational diagonal of a square of side 5. 
All sufficiently large numbers are the sum of 7 positive cubes. 
To test if a number is divisiblc by 7: multiply the Icft-hand digit by 3 

and add the next digit. Repeat as often as necessary. If the final answer is 
divisible by 7, so is the original number. 

Alternatively, start by multiplying the right-hand digit by 5 and adding 
the adjacent digit. Repeat as before. 

7 numbers are sufficient to colour any map on a torus. Surprisingly, 
this was known before the 4-colour conjecture was solved for plane 
maps. 

At least 7 rectangles are required if a rectangle is to be divided into 
smaller rectangles no one of which will fit inside another. The smallest 
rectangle that can be tiled 'incomparably' is 13 by 22. * 

At least 7 rectangles are also required to divide a rectangle into smaller 
rectangles of different shape but equal area. 

• A. C. C Yao and E. M. Reingold, Journal (1 Re"ealiOlwl Malhel/ialiCl, vol M 
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An obtuse-angled triangle can be divided into not less than 7 acute­
angled triangles. 

There are 7 basically different patterns of symmetry for a frieze 
design. 

The regular 7-gon is the smallest that cannot be constructed by ruler 
and compass alone. 

7 is the smallest prime the period of whose reciprocal in base 10 has 
maximum length. 1/1 = 0·142857142857 ... (See 142,857.) 

The problem of St lves 
This Mother Goose rhyme is well known: 

'As I was going to St Ives, I met a man with seven wives. Every wife 
had seven sacks, and every sack had seven cats, every cat had seven 
kittens. Kittens, cats, sacks and wives, how many were going to St Ives?' 

Problem 79 of the Rhind papyrus, written by the scribe Ahmes, which 
dates from about 1650 BC, concerns: 

Houses 7 
Cats 49 
Mice 343 
Spelt 2401 
Hekat 16807 

TOTAL 19607 

The resemblance is remarkable. Moreover, there is a connecting link, 
of sorts. Leonardo of Pisa, called Fibonacci, in his Liber Abaci (1202 
and 1228) also includes the same problem. Pierce comments that it seems 
to be of the same origin as the House that Jack built, and that Leonardo 
uses the same numbers as Ahmes and makes his calculations in the same 
way. 

It is tempting to suppose that this problem is indeed more than 3500 
years old, and has survived essentially unchanged throughout that 
time.* 

8 
The second cube: 8 = 23 . The only cube that is one less than a square 
8 = 32 - I and theonlypowerthat differs by I from another prime power. 

• R. J. Gillings, Mathematics in the Time of the Pharaohs, Massachusetts Institute of 
Technology Press, 1972; and Charles Pierce, quoted by Carolyn Eisele in 'Liber Abaci', 
Scripta Mathematica, vol. 17. 
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The sixth Fibonacci number, and the only Fibonacci number that is a 
cube, apart from 1. 

The number of parts into which 3 dimensional space is divided by 3 
general planes. 

There are 8 notes in an octave. 
The first number in English alphabetic sequence. 
It is possible to place the maximum 8 queens on a chessboard, so that 

no queen attacks any other, in 12 essentially different ways. 
8 times any triangular number is I less than a square. 
A number is divisible by 8 if the number formed by its last three digits 

is divisible by 8. 

Magic cubes 
Perfect magic cubes, in which all the rows, columns and diagonals of 
every layer, plus the space diagonals through the centre, sum to the same 
total are impossible for orders 3 (3 x 3 x 3) and 4 (4 x 4 x 4). It is not 
known if such cubes can exist for orders 5 and 6. 

Magic cubes do exist for order 8. The first was privately published in 
1905, a method of construction was again discovered in the late 1930s, 
and in 1976 Martin Gardner published an example constructed by 
Richard Myers. 

Myers discovered how to construct vast numbers of them by super­
imposing three Latin cubes and using octal notation when he was a 16-
year-old schoolboy. 

Soon after Gardner reported on Myers's discovery, Richard 
Schroeppel and Ernst Straus independently found order-7 magic cubes. 
Martin Gardner, Scientific American, January 1976. 

The octal system 
8 is the base of the octonary, octenary, or octal system. 

Emmanuel Sweden borg, the Danish philosopher, wrote a book 
advocating base 8. It has much of the simplicity of the binary system. 

All its factors are powers of 2, yet numbers of a reasonable size do not 
take an absurdly large number of digits to express. 100 in base 10 is 144 
in base 8 and 1100100 in binary. The binary is much harder to remember 
(always a great disadvantage for practical purposes) and longer, though 
it can be obtained instantly from the octal 144 by replacing the digits by 
their binary expression. 1-4--4 becomes 1-100-100 or 1100100. 

Arguments for changing to base 8 completely are weaker than for 
changing to duodecimal. But because of connection with binary, it has 
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been used extensively in computers, though since the IBM 360 series 
was introduced in the early 1960s, using base 16 (hexadecimal), it has 
fallen out of favour. 

A deltahedron is a polyhedron all of whose faces are triangular. 
There are an unlimited number of them, since any deltahedra has 

exposed faces to which another triangular pyramid can be attached. 
However, only 8 of them are convex. 3 of these are the regular tetra­
hedron, octahedron and icosahedron. 2 more are a pair of tetrahedra 
glued face to face, and a pair of pentagonal pyramids glued face to 
face. 

The octahedron has 8 triangular faces, and 6 vertices and 12 edges, 
making it the dual of the cube, which has 8 vertices, 6 faces and 12 
edges. 

Thus, if the 6 mid-points of the faces of a cube are joined together, 
they form an octahedron. Conversely, the 8 mid-points of the faces of an 
octahedron join to form a cube. 

9 
The third square, and therefore the sum of two consecutive triangular 
numbers: 9 = 3 + 6. 

Written as '100' in base 3. 
The first odd prime power, and with 8 the only powers known to 

differ by I. 
The only square that is the sum of two consecutive cubes: 9 = 13 + 23 • 

The 4th Lucky number, and the first square Lucky number apart 
from I. 

9 = I! + 2! + 3! 
The smallest Kaprekar number apart from 1: 92 = 81 and 8 + I = 9. 
9 is sub factorial 4. 
There are 9 regular polyhedra, the 5 Platonic solids and the 4 Kepler­

Poinsot stellated polyhedra. 
9 is the smallest number of distinct integral squares into which a 

rectangle may be divided. The smallest solution is 32 by 33 and the 
squares have sides 1,4,7,8,9, 10, 14, 15, and 18. 

The Feuerbach, or nine-point circle 
In 1820 Brianchon and Poncelet proved that the feet of the altitudes, the 
mid-points of the sides and the mid-points of the segments of the altitudes 
from the vertices to their point of intersection, all lie on a circle. 
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Feuerbach proved two years later that this circle also touches the 
inscribed and three escribed circles of the triangle, and in consequence it 
is often known as the Feuerbach circle. 

Because 9 is one less than the base of our usual counting system, there 
is a simple test for divisibility by 9. 9 divides a number if and only if it 
divides the sum of the number's digits. 

Arithmetical sums may be checked by the process called 'casting out 
nines'. This came to Europe from the Arabs, but was probably an Indian 
invention. Leonardo of Pisa described it in his Liher Abaci. Each number 
in a sum is replaced by the sum of its digits. (Originally it was replaced 
by the remainder on dividing by 9, which is a long way round of coming 
to the same result.) 

If the original sum is correct, so will the same sum be when performed 
with the sums-of-digits only. 

Which fits better, a round peg in a square hole or a square peg in a 
round hole? This can be interpreted as, which is larger, the ratio of the 
area of a circle to its circumscribed square, or the area of a square to its 
circumscribed circle? 

In 2 dimensions, these ratios are 7t/4 and 2/7t respectively, so a round 
peg fits better into a square hole than a square peg fits into a round hole. 

However, this result is true only in dimensions less than 9. 
For n ;;?; 9 the n-dimensional unit cube fits more closely into the n­

dimensional unit sphere than the other way round. * 
• David Singmaster, 'On Round Pegs in Square Holes and Square Pegs in Round Holes', 
Mathematics Magazine, vol. 37. 
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There are no configurations of 7 or 8 lines such that there are 3 points 
on each line and three lines through eaeh point that can actually be 
realized geometrically. 

There are 3 essentially different such configurations with 9 lines. The 
first of these is the configuration of Pappus' theorem, whieh is a special 
case of Pascal's Mystie Hexagram. 

Waring's problem 
In 1770 Edward Waring wrote in his Meditationes algebraieae, 'Every 
integral number is either a cube, or is a sum of two, three, 4, 5, 6, 7, 8 or 
nine cubes; it is furthermore a biquadrate or is a sum of two, three, etc., 
all the way up to nineteen biquadrates, and so on in like manner.' * 

This difficult problem has still not been completely solved, though 
Hilbert proved that for each power, k, there exists a number, g(k), such 
that every sufficiently large number can be represented by at mostg(k) kth 
powers. 

Not all numbers, of course, are 'sufficiently large' and it remains a 
problem to determine which numbers for each power k require more 
than g(k) powers to represent them. 

Waring was correct about cubes, though only a finite set of numbers 
actually requires 9, and he was right about 4th powers, though again, 19 
is more than sufficient for all but a finite set of numbers. 

Magie squares 
The first 9 numbers ean be arranged in a magic square so that all rows, 
columns and both diagonals have the same sum, 15. This can be done in 
essentially only one way, all solutions being related by reflections and 
rotations to each other. 

The illustration on p. 76 is the Lo Shu, the magic square as it was 
known to the ancient Chinese. 

This pattern has other beautiful properties. The number 5, halfway 
between I and 9, naturally occupies the middle cell. 

All four lines through the central 5 are in arithmetical progression, 
with differences 1,2,3,4 rotating anti-clockwise from 6-5-4 to 9-5-1. 

The sums of the squares of the first and third columns are equal: 
42 + 32 + 82 = 22 + 72 + 62 = 89. The middle column gives 
92 + 52 + J2 = 107 = 89 + 18. 

The squares of the numbers in the rows sum to 101,83 and 101, and 
101 - 83 = 18. 

• Scripta Malhemalim, vol 7. 
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There are just 8 ways in which the magic total 15 can be made by 
adding 3 of the integers I to 9. Each of these 8 ways occurs once in the 
square. 

9'869604 .. . 
x2 

Legendre proved in 1794 that x2 is irrational. 

10 
The base of our counting system, it therefore has the simplest test of 
divisibility. The number of consecutive zeros, counting from the units 
place, is equal to the power of 10 by which the number can be divided. 

The 2nd number to be the sum of 2 different squares: 10 = J2 + 32 • 

10 is not, however, the difference of 2 squares, because it is of the form 
4n + 2. The sequence of numbers that are not the difference of 2 squares 
is 2 6 10 14 18 

The 4th triangular number: 10 = I + 2 + 3 + 4. There are 10 pins in 
a triangular array in a bowling alley. 

It is the only triangular number that is the sum of consecutive odd 
squares. 

The 3rd tetrahedral number: 10 = I + 3 + 6, where I, 3 and 6 are 
the triangular numbers. 

Among any 10 consecutive integers there is at least one that is relatively 
prime to all the others. [8. G. Eke] 
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IO! = 6!7! The only known solution to n! = a!b! apart from the general 
pattern, (n!)! = n!(n! - I)!. 

The base of Briggs's logarithms. 
Euler conjectured in 1782 that two mutually orthogonal Latin squares 

do not exist of order 4n + 2. 
This is true for order 6, but false for orders 10, 14, ... as Bose, 

Shrikhande and Parker proved in 1959. 
In the figure, every bold digit appears once in each row and column, 

and so does every italic digit. Moreover, every pair of digits from 00 to 
99 appears just once in the figure. 

46 57 68 70 81 02 13 24 35 99 

71 94 37 65 12 40 29 06 88 53 

93 26 54 01 38 19 85 77 60 42 

15 43 80 27 09 74 66 58 92 31 

32 78 16 89 63 55 47 91 04 20 

67 05 79 52 44 36 90 83 21 18 

84 69 41 33 25 98 72 10 56 07 

59 30 22 14 97 61 08 45 73 86 

28 11 03 96 50 87 34 62 49 75 

00 82 95 48 76 23 51 39 17 64 

The news of Euler's failure, unlike most mathematical discoveries, 
made headlines in the newspapers, and Bose, Shrikhande and Parker 
were nicknamed 'Euler's spoilers'. 

Desargues's theorem defines a configuration of 10 lines, with 3 points 
on each line and 3 lines passing through each point. 
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Take a number, and mUltiply its digits together. Repeat with the 
answer, and repeat again until a single digit is reached. The number 
of steps required is called the multiplicative persistence of the 
number. 

10 is the smallest number with multiplicative persistence of I. The 
smallest numbers with multiplicative persistence 2 to 8 are: 

(I) 2 3 4 5 6 7 8 

(10) 25 39 77 679 6788 68889 267889 

The smallest number with multiplicative persistence of II is 
277777788888899. No number less than 1050 has a greater multiplicative 
persistence and it is conjectured that there is an upper limit to the mul­
tiplicative persistence of any number. 
N. J. A. Sloane, 'Multiplicative Persistence', Journal of Recreational Mathematics, 
vol. 6. 

The decimal system 
The Greek philosopher Aristotle and the Roman poet Ovid agreed that 
we count in lOs because we have ten fingers. It is as reasonable to 
conclude that some cultures count in 5s based on individual hands, and 
that counting in 20s is based on using the hands and the feet. 

To count a small number of objects is not difficult. Indeed, it is 
sufficient to have a standard sequence of names for them, such as one­
two-three-four-five-six-seven-eight-nine-ten. 

The difficulty arises when it is desired to count many objects. The 
necessarily limited set of basic names must somehow be repeated in 
different combinations. The clearer and simpler the system of repeti­
tions, the easier it will be to count, and, just as significantly, to cal­
culate. 

The ancient Egyptians recorded numbers by grouping symbols for 
powers of 10. This is as cumbersome as the Roman system, still used 
occasionally in public inscriptions. 

Our modern system of counting in lOs, and the variants that are used 
in computers, such as bases 2, 8, and 16 and alternatives that are some­
times proposed, such as the duodecimal system or base 12, are all founded 
on two principles, the use of zero and the place-value principle. 

When the value of a numeral depends only on where in the number 
it appears, a limited set of numerals, only 0 and I in binary, can be 
used to count in a very simple and regular manner, as high as we 
please, and to calculate by simple and powerful algorithms, known to 
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school pupils as 'sums' though they do much more than merely add 
numbers together. 

Pierre Simon de Laplace remarked that this very simplicity 'is the 
reason for our not being sufficiently aware how much admiration it 
deserves'. 

The Roman system used the letters I, V, X, L, C, D, M to stand for I, 
5, 10, 50, 100, 500, 1000. These numbers go up in jerks, alternately 
increasing fivefold and doubling. 

The value of a digit in our system simply increases tenfold with every 
step to the left: I - 10 - 100 - 1000 - 10000, and so on. 

Unfortunately, 10 is not an ideal base for a system in which merchants 
and dealers have to measure small quantities, fractions of a whole, 
because only halves and fifths can be represented by whole numbers. 
Even a simple fraction like a quarter has to be represented by a fraction 
of IOths. 

Consequently, although using a number system based on 10, an extra­
ordinary variety of systems of weights and measures was used through­
out Europe in historical times based on mixtures of units. They all 
agreed in using 8ths, 12ths, 20ths, 60ths, 24ths, anything but the awkward 
10th. 

Not until 1791 when the Paris Academy of Sciences recommended a 
new metric system did any generally acceptable and uniform system start 
to emerge. I metre was defined to be 1/40,000,000 part of a circumference 
of the earth through the poles. The ratios between units were to be 
always powers of 10. Greek and Latin prefixes were used for larger and 
smaller units, respectively, as in this table: 

prefix meaning 

kilo x 1000 
hecto x 100 
deca ordeka x 10 
deci x 0·1 
centi x 0·01 
milli x 0·001 

Today, two other prefixes are especially common: 'mega' meaning 
x 1,000,000 and 'micro' meaning x 0·000001. 

The metre as the unit of length was used to define units of volume and 
mass, and today all scientific measurements are based on the metric 
system. 

For mathematicians, on the other hand, IOths posed no problem. All 
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they wanted was a system for representing indefinitely small quantities 
that was as easy to use as the usual base 10 for whole numbers. 

Adam Riese took a large step forward in 1522 when he published a 
table of square roots, explaining that the numbers had been multiplied 
by 1,000,000 and so the roots were 1000 times too large. 

Fran~ois Viete, in 1579, published a book in which he used decimal 
fractions as a matter of course, and recommended their use to others, 
and Simon Stevin in 1585 published a 7-page pamphlet in which he 
explained decimal fractions and their use. Stevin also had the foresight 
to recommend that a decimal system should be used for weights and 
measures and coinage and for measuring angles. 

There is a postscript to the history of decimal fractions. The notation 
of decimals still varies between the English, who place the decimal point 
at the middle level, the Americans who place it on the line, and conti­
nental Europe where a comma is used. 

The Pythagoreans 
Pythagoras and his disciples taught that everything is Number. Numbers 
to them meant strictly whole numbers, integers. Fractions were con­
sidered only as ratios between integers. 

The Greeks distinguished between logistike (whence our term logistics), 
which meant numeration and computation, and arithmetike, which was 
the theory of numbers themselves. 

It was arithmetike that Plato, a convinced Pythagorean, insisted should 
be learned by every citizen of his ideal Republic, as a form of moral 
instruction. It was a profound shock to their philosophy when J2 was 
discovered to be not the ratio of two integers, although it was undoubt­
edly a length and therefore, to the Greeks who thought of numbers 
geometrically, a number or ratio of numbers. 

Pythagoras himself or his disciples discovered that harmony in music 
corresponded to simple ratios in numbers. Indeed, it was this discovery 
that provided the earliest support for their doctrine. Aristotle records 
that, 'They supposed the elements of number to be the elements of all 
things, and the whole heaven to be a musical scale and a number.' 

The octave corresponds to the ratio 2: I because if the length of a 
musical string is halved, it sounds one octave higher. The ratio 3: 2 
corresponds to the fifth and 4: 3 to the fourth. 

Somewhat less harmonious intervals were represented by rather larger 
numbers. A single tone was the difference between a fifth and a fourth, 
and was therefore 9:8, which is 3:2 divided by 4:3. 

(The problem of constructing a complete seale is very complex, and 
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has engaged the efforts of musicians to the present day. All solutions 
involve approximation. It is not possible for example for a fixed scale, 
such as a piano possesses, to include all the perfect fifths and fourths 
that the performer would like. The violinist has an advantage here over 
the pianist. The solution that divides the octave into 12 equal tones gets 
none of them perfectly correct.) 

The basic ratios could be represented in the sequence 12: 9 : 8 : 6 and 
the sum of these numbers, 35, was called harmony. 

More commonly, the Pythagoreans thought of these ratios as involving 
only I, 2, 3 and 4, whose sum is 10, which is the base of our counting 
system. How elegantly everything fits together! No wonder they felt 
confirmed in their diagnosis of the vital significance of Number. 

The number 10 can also be represented as a triangle, which they called 
the tetraktys. To the Pythagoreans it was holy, so holy that they even 
swore oaths by it. 

o 
00 

000 
0000 

Later Pythagoreans described many other tetraktys. Magnitude, for 
example, comprised point, line, surface and solid. 

The primitive aspects of Pythagorean belief died out very slowly. 
Their musical discoveries did not die out at all. They were true science, 
two thousand years before modern science displayed the whole numbers 
in the chemist's Periodic Table or the physicist's model of the atom. 

Precisely because music was for so long a unique example of genuine 
numbers-in-science, it had an overwhelming effect. Leibniz wrote, 
'Music is a secret arithmetical exercise and the person who indulges in it 
does not realize that he is manipulating numbers.' 

That is not quite correct. Early classical composers, before the advent 
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of Romanticism, were often quite deliberate in their use of mathematical 
patterns to structure their music. 

Unlike the Greeks, we are not limited to the whole numbers, and 
today science often seems to be soaked in rational approximations, 
rational results from experimental observation. 

Yet underneath the complexity of modern science, the integers may 
still occupy a central role. Daniel Shanks gives many examples of their 
role in modern science. To relate just one of his examples, why is the 
force of gravity at double the distance reduced by a factor of 4? Why is 
the factor apparently 4 exactly, rather than 4 approximately? Probably 
because we live in a space of exactly 3 dimensions. 

The Pythagoreans' faith in the whole numbers may be vindicated yet. 
Daniel Shanks, Solved and Unsolved Problems in Number Theory, vol. I, Spartan 
Books, 1962. 

11 
The 5th prime. 

The smallest repunit, a number whose digits are all units. 
II, like all repunits, is divisible by the product of its digits. 
Because II = lO + I, there is a simple test for divisibility by II. Add 

and subtract the digits alternately, from one end. (Either end may be 
chosen as the starting poinL) 

If the answer is divisible by II, so is the number. 
This is equivalent to adding the digits in the odd positions, and in the 

even positions, and subtracting one answer from the other. 
II appears as a factor, and a multiple, though not by itself, in the 

imperial system of measuring length. 5! yards was one rod, pole or 
perch; 22 yards is a chain; 220 yards a furlong; and 1760 = II x 160 
yards makes I mile. 

II is the only palindromic prime with an even number of digits. 
Given any 4 consecutive integers greater than II, there is at least one 

of them that is divisible by a prime greater than II. 
The world we live in is apparently 3-dimensional, or 4-dimensional 

when time is counted as an extra dimension. 
According to the latest physical theory of supersymmetry, space is 

most easily described as II-dimensional. 
Seven of the dimensions are 'curled up on themselves'. Their physical 

effects would be directly observable only on a still inaccessible scale 
billions of times smaller even than that of subatomic particles. 

Another bizarre but spectacular idea related to supersymmetry is that 
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the basic units of both matter and force are phenomena called strings, 
and that the various fundamental particles correspond to the different 
ways these strings vibrate, like the harmonics of a violin. 

Bryan Silcock, 'The Cosmic Gut', The Sunday Times, 24 March 1985. 

The Lucas numbers 
II is the 5th number in the Lucas sequence: 
47 76 123 199 322 ... 

3 4 7 II 18 29 

This sequence is closely related to the Fibonacci sequence. Each term 
is the sum of the previous two terms, and the ratio of successive terms 
tends to the Golden Ratio as a limit. It is a curiosity that the Lucas 
sequence also has an easy-to-remember convergent to cp, 322/199. 

There is a formula for the nth term that is very similar to Binet's 
formula for the nth Fibonacci number: 

L = (I + .j5). + (I - .j5). 
• 2· 2· 

or L. = a· + b· where a and b are the roots of x 2 = x + I. 

This formula shares a useful property with Binet's. The second term 
decreases so rapidly that the Lucas numbers can be calculated by finding 
the nearest integer to the powers of cp: thus, cps = Il·09017 and 
Ls = II. 

Lucas discovered many properties of the Fibonacci sequence, and 
studied general Fibonacci sequences, in which each term is the sum of 
the previous two terms, but the initial terms are not necessarily I and I, 
or 1 and 3. 

He used the Fibonacci and the Lucas sequences to construct tests for 
the primality of the Mersenne numbers. 

The Lucas numbers can be expressed as sums of Fibonacci numbers: 

L. = F._ t + F.+ t 

It is always true that F. divides Fm •. For small values of n, the ratio 
is known and can be expressed in terms of Lucas numbers, for example: 

F 2 • = F.L. 
F J • = F.(L2• + (-I)·) 

Squaring the Fibonacci numbers, then alternately subtracting and 
adding 4, produces the squares of the Lucas numbers: 

5xJ2-4=J2 
5 x 22 - 4 = 42 

5 X 12 + 4 = 32 

5 X 32 + 4 = 72 and so on. 
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Naturally there are many formulae connecting the Lucas numbers 
alone, for example, L20 = Li - 2( -I)". 

12 
There are 12 months in the year, divided roughly into 4 seasons, 12 signs 
of the Zodiac, divided into 3 sets of 4 each, and 12 hours, repeated 
through each day and night. 

There are 12 different pentominoes, if pieces can be flipped over. 
Otherwise there are 18. 

12 is divisible by the sum of its digits and by their product. 
The product of the proper divisors of 12 is 122 = 144. 
122 = 144 and, reversing all digits, 2F = 441. 
The same pattern fits 132 = 169 and 3F = 961 and other squares of 

numbers with sufficient small digits. 
There are 12 tones in the modern 12-tone musical scale. 
12 identical spheres can touch one other such sphere, each of the outer 

spheres touching the central sphere and 4 others. 
The numbers of spheres that can touch one sphere in higher dimensions 

up to dimension 10 are: 

dim. 4 
24 

dim. 5 
40 

dim. 6 
72 

dim. 7 
126 

dim. 8 
240 

dim. 9 
272 

dim. \0 
306 

The dual polyhedra, the cube and the octahedron, each have 12 edges. 

Abundant numbers 
12 is the first abundant number, meaning that it is less than the sum of 
its factors excluding itself: I + 2 + 3 + 4 + 6 = 16. 

There are only 21 abundant numbers not greater than 100, starting 12, 
18, 20, 24, 30, 36 ... 

They are all even. Abundant numbers are essentially numbers with 
enough different prime factors. Most numbers have very few factors, 
and are deficient, that is, they are greater than the sum of their factors. 
All primes and powers of primes are deficient. 

The least deficient prime powers, as it were, are the powers of 2. The 
divisors of 2" excluding itself sum to 2" - I, only I less than the original 
number. For this reason such numbers are sometimes called almost 
perfect. 

Dividing the abundant from the deficient numbers are the very rare 
perfect numbers, exactly equal to the sum of their divisors. 

All multiples of a perfect or abundant number are also abundant. Any 
divisor of a perfect or deficient number is also deficient. 
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u(n) denotes the sum of the divisors of n, including n; 
u(l2)/12 = 12 + 16/12 = 28/12 or 7/3, which is, of course, a record for 
numbers up to 12. 

Any number that sets a record for u(/I)/n is called superabundant. It is 
known that there are an infinite number of superabundant numbers. 

The duodecimal system 
Although we take counting in tens for granted, there are disadvantages 
in using \0 as a base or as a ratio between standard measures. It is 
especially annoying that a simple fraction like a third cannot be rep­
resented exactly, but only as a repeating decimal fraction. 

The duodecimal system, based on 12, allows thirds, quarters and sixths 
to be expressed very simply. The 12 months of the year divide naturally 
into 4 seasons of 3 months each, the 12 signs of the Zodiac divide into 4 
groups of signs associated with fire, air, earth and water respectively. In 
many calendars the 12 months are divided into 6 short months and 6 
long months. 

It is also as easy to test a number for divisibility by 2,3,4,6,8, 12, 16, 
24 in base 12 ... as it is to test for divisibility in base 10 by 2, 5, 10, 
20 ... 

These were important advantages when calculation itself was a subtle 
art and difficult to learn, so important that all over Europe the \0 
system, based on our ten fingers, was mixed up with systems of units 
based on ratios of 2,4, and especially 12, or combinations of \0 and 12. 

Plato, describing his ideal state, established its coinage and weights 
and measures, the voting districts and representation in the assembly, 
and even the fines to be levied for offences, on a duodecimal system. 

The Romans used only duodecimal fractions. When Pliny the Elder 
estimated the area of Europe to the whole world he stated that it was 
'somewhat more than the third and the eighth part of the whole earth' 
using Roman fractions in the Egyptian manner, instead of saying 'eleven 
twenty-fourths'. [Menninger] 

They called one twelfth uncia whence our word ounce. When an uncia 
was not small enough, it was divided int,! 24 scruples, which might be 
subdivided again. The smallest unit, I calcus = 1/8 scruple = 1/192 
uncia = 1/2304 unit. 

Elsewhere the sexagesimal system, based on 60, has been used, especi­
ally for scientific calculation. Because 60 = 5 x 12 it has the advantages 
of \0 and 12 combined. 

We still count 12 inches to the foot, as well as using the metric sys­
tem. Everyone was familiar with the 12 pence in I shilling before 
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decimalization in 1971. This originated in Charlemagne's monetary 
standard: I libra = 20 solidi = 240 denarii, whence our '£' sign and 'd' 
for pence. 

We still talk of a dozen or dozens, though it is coming to mean 'quite a 
large number' rather than any exact figure, and the gross or dozen dozen 
is almost obsolete. 

In England there used to be a long hundred of 120 units and a short 
hundred of 100 units. It was often necessary to state whether 'one 
hundred' was by the 12-count or the IO-count. The great hundred of 120 
units is still used in Germany and Scandinavia. 

ButTon proposed that a duodecimal system be universally adopted, 
for counting and for all measures and coinage. So did Isaac Pitman, the 
inventor of Pitman shorthand, Herbert Spencer, the philosopher, H. G. 
Wells and Bernard Shaw, and many others. 

In 1944 The Duodecimal Society was established as a voluntary, 
non-profit-making organization in New York State. Its aims were 'to 
conduct research and education of the public in mathematical science, 
with particular relation to the use of Base Twelve in numeration, math­
ematics, weights and measures, and other branches of pure and applied 
science'. 

The Duodecimal Society proposed to add the letter X to represent 10 
and E to represent II, and claimed that counting by dozens can be 
learned by anyone in about half an hour. 

They were soon arguing that the terms decimal and decimal point 
were 'definitely improper' when referring to bases other than 10, as was 
reference to decimal fractions. 

Despite their enthusiasm there is no chance at all of the change to 
duodecimal ever being made. Indeed, over the last century or so the 
change has gone the other way, ever since the metric system was intro­
duced. 

Today, computers do so much more calculation, engineers work to far 
finer tolerances than the traditional craftsman ever imagined; fractions 
still otTer difficulties to many people but they are far more widely under­
stood than in the past, and, last but not least, the cost would be 
unbearable. 

The dodecahedron 
The number of faces of a dodecahedron, the 4th of the Platonic solids, is 
12. It also has 20 vertices and 30 edges, and is the dual of the icosahedron. 
If the mid-points of neighbouring faces of a regular dodecahedron are 
joined, for example, they form a regular icosahedron. 
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The regular icosahedron can be seen as an antiprism with pentagonal 
ends, plus 2 pentagonal pyramids. Not surprisingly, the presence of 
regular pentagons means the presence also of the Golden Section. In 
particular, if opposite edges of the anti prism are joined, then 3 rectangles, 
whose sides are in the Golden Ratio, are obtained, at right-angles to 
each other. 

It is an extraordinary fact, which at first seems absurd, that if a 
dodecahedron and an icosahedron are each inscribed in identical spheres, 
the dodecahedron occupies a greater volume, although the icosahedron 
has more faces and would seem therefore naturally to 'fit better'. In fact 
the dodecahedron occupies approximately 66·5% of the sphere, the 
icosahedron only 60·56%. 

The rhombic dodecahedron, first described by Kepler, also has 12 
faces. Imagine cubes packed together to fill space. The 6 cubes adjacent 
to anyone cube can each be cut into 6 pyramids by joining their centres 
to the vertices. If these pyramids are then glued to their facing cubes, 
each cube becomes a rhombic dodecahedron, and the rhombic dodeca­
hedrons pack the space completely, just as the cubes did, with the differ­
ence that each rhombic dodecahedron has double the volume of the 
corresponding cube. 

13 
A notoriously unlucky number. This superstition has been linked to the 
13 who sat at table at the Last Supper, but it probably originated only in 
the medieval period. There is a word for fear of the number 13, such as 
fear of living on the 13th floor of an apartment block: triskaidekaphobia, 
from the Greek for 'fear of thirteen'. 

There are 13 times 4 weeks in a year, and 13 cards in each suit of a 
standard pack. 

Ironically, 13 is the 5th Lucky number, and also the 6th prime and the 
7th Fibonacci number. 

13 is the second smallest prime, p, the period of whose reciprocal is 
l(p - I). 

1/13 = 0·076923076923 ... (1/3 is the smallest such prime). 
Exactly half the multiples of 1/13 from 1/13 to 12/13 have periods that 

are a cyclic permutation of this string. The other multiples all have 
periods that are cyclic permutations of 153846. 

The sequence of digits forms a pattern that is more apparent when 
arranged as in this figure: 
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7 

6 

9 

• 
5 

12! + 1 is divisible by 132. 

The Archimedean polyhedra 

o 

• 4 

2 

3 

There are 13 Archimedean polyhedra, named after Archimedes who 
wrote a book on them, now lost. Kepler was the first modern math­
ematician to describe them. 

They are described as semi-regular, because their edges and vertices 
are all the same, and their faces are all regular polygons though not all of 
the same type. 

Two infinite classes of polyhedra are also semi-regular, the regular 
prisms and the regular antiprisms. 

Kepler also discovered the smaller and greater stella ted dodeca­
hedrons, rediscovered with two other polyhedra that are regular but not 
convex by Poinsot. 

There are also 13 dual Archimedcan polyhedra, whose vertices, but 
not the faces themselves, are regular, and a number of stellations of the 
Archimcdean solids, corresponding to the Kepler-Poinsot stellations of 
the Platonic solids. 

There are also a number of beautiful compound polyhedra, which 
demonstrate the symmetry of the vertices of the inscribed solid. 

What convex polyhedra are possible if all symmetry conditions are 
dropped, except for the regularity of the faces? This was answered only 
recently, in the 1960s. The regular-faced convex polyhedra are: the regu-
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lar prisms and antiprisms, the 5 Platonic solids, the 13 Archimedean 
polyhedra, and 92 others. 

N. W. Johnson, 'Convex Polyhedra with Regular Faces', Canadian Journal of 
Mathematics, 18 (1966). 

The theorem of Pythagoras and Pythagorean triples 
The theorem of Pythagoras, that in a right-angled triangle the sum of the 
squares on the shorter sides is equal to the square of the hypotenuse, has 
been familiar to generations of schoolchildren. Indeed, it is so famous 
that it is even the punch line of a joke, ' ... which proves that the squaw 
on the hippopotamus is equal to the sum of the squaws on the other two 
hides.' 

More proofs have been published of Pythagoras' theorem than of any 
other proposition in mathematics, several hundred in all. 

The 3--4-5 triangle is the simplest example of a Pythagorean triangle, 
that is, a right-angled triangle with integral sides, but it is only one of an 
infinite set, which continues with 5-12-13, hence the present entry, 6-8-
10 which is not primitive because it is just a multiple of the 3--4-5 triangle, 
and then 7-24-25. 

The Babylonians about 2000 BC were familiar with Pythagorean 
triangles, though we do not know what they called them. The famous 
cuneiform tablet, Plimpton 322, lists fifteen sets of numbers that are the 
sides of right-angled triangles. 

The author of this tablet apparently knew that the numbers 2pq, 
p2 - q2 and p2 + q2 are the sides of a right-angled triangle. (It is also 
true that the sides of any right-angled triangle that do not have any 
common factor are of this form.) 

The Greeks almost certainly obtained at least the idea from further 
east, and either Pythagoras himself or one of his disciples discovered a 
proof of the geometrical proposition. 

The 3--4-5 triangle has a number of properties not shared by other 
Pythagorean triangles (apart perhaps from multiples such as 6-8-10). 

It is the only Pythagorean triangle whose sides are in arithmetic pro­
gression. It is also the only triangle of any shape with integral sides, the 
sum of whose sides (12) is equal to double its area (6). 

Curiously, there is at least one other Pythagorean triangle whose area 
is expressed with a single digit: the triangle 693-1924-2045 has area 
666,666. On average, one-sixth of all Pythagorean triangles have areas 
ending in the digit 6, in base 10; one-sixth end in 4 and the other two­
thirds end in O. [W. P. Whitlock Jnr] 
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There is an infinite set of triangles such that the hypotenuse and one 
leg differ by I. They follow this pattern: 

32 = 9 = 4 + 5 
52 = 25 = 12 + 13 
72 = 49 = 24 + 25 

32 + 42 = 52 
52 + 122 = 132 

72 + 242 = 252 ... 

There is also an infinite number of triangles whose legs difTer by one, 
though they are not so simple to calculate. 

Starting with the formula for the sides: 2pq, p2 - q2 and p2 + q2, 
where p and q are any two integers, if p and q generate a triangle whose 
legs difTer by I, the next such triangle is generated by q and p + 2q. 

The 3-4-5 triangle is generated from the formula by I and 2, so the 
next almost-isosceles triangle will be generated by 2 and 5. It is 20-21-
29. 

By applying the rule (p, q) -+ (q, P + 2q) repeatedly, we obtain this 
sequence: I 2 5 12 29 70 169 408 ... Taking any two suc­
cessive members of the sequence for generators produces an almost 
isosceles Pythagorean trian9!e. Of course, the triangle can never be 
actually isosceles, because .J2 is irrational. The same sequence of num­
bers occurs in the best approximations to j2 by fractions. 

The formula already given for the sides of a right-angled triangle 
implies that the length of the hypotenuse is also the sum of two squares. 

Girard knew and Fermat a few years later proved the beautiful 
theorem that every prime of the form 4n + I; that is the primes 5, 13, 17, 
29,37,41,53 ... is the sum of two squares in exactly one way. Primes of 
the form 4n + 3, such as 3, 7, II, 19,23,31,43,47 ... are never the sum 
of two squares. 

Leonardo of Pisa already knew that the product of two numbers that 
are each the sums of two squares is also the sum of two squares. 

It follows that the square of any of these numbers, say 13 2 , is the sum 
of two squares, and therefore the hypotenuse of a right-angled triangle. 
The converse however is more complicated; thus, 172 + 1442 = 1452 

and 145 is not prime, though it is the product of 5 and 29 both of which 
are primes of the form 4n + I. 

There are other ways to obtain Pythagorean triples. Take any pair 
of consecutive odd or even numbers, and add their reciprocals. For 
example, 1/3 + 1/5 = 8/15. Then 8 and 15 are the legs of a right-angled 
triangle: in fact, 82 + 152 = 172. This method is equivalent to making 
one of the generators in the usual formula equal to I, so produces only a 
subset of all possible triangles. 

If any two of the sides of a right-angled triangle are taken as generators 
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for a new triangle, then the resulting triangle will contain the square of 
the third side of the original triangle as one of its sides. [W. P. Whitlock 
Jm] 

Thus, take 3 and 4 from the 3-4-5 triangle. The new triangle is 7-24-
25, which contains 52 as one of its sides. 

14 
In the imperial system of weights and measures, the number of pounds 
weight in I stone. 

Also the number of days in a fortnight. 
14 is the 3rd square pyramidal number: 14 = I + 4 + 9. 
14 and 15 are the first pair of successive numbers such that the sums 

of their factors, including the numbers themselves, are equal: 
1+ 2 + 7 + 14 = I + 3 + 5 + 15 = 24. 

14 is the smallest number, n, such that there is no number with exactly 
n numbers less than and prime to it. The sequence of such numbers 
continues: 26 34 38 50 ... 

Equilateral triangles with integral sides, which have irrational areas, 
can be approximated by Heronian triangles with integral sides and 
area. 

The first approximation is the Pythagorean triangle with sides 3, 4 and 
5, and area 6. 

The second approximation is 13, 14, 15 with area 84, where 14 is 
calculated as 42 - 2. 

The third approximation is 193, 194, 195, where 194 = 142 - 2, and 
the 4th is 37,633-4-5, and so on. 

IS 
The first product of 2 odd primes. 

The sum of the rows, columns and diagonals of the smallest magic 
square. 

Triangular numbers 
15 is the 5th triangular number. There are 15 balls in a snooker triangle. 

The Greeks named the triangular numbers, and formed them by 
adding up the series I + 2 + 3 + 4 + 5 ... 

The general formula for the nth triangular number, denoted by Tn, is 
In(n + I) and the sequence starts: I 3 6 10 15 21 28 ... 

(The total value of the colours in snooker is 27, one less than the 7th 
triangular number, because the values of the colours only go from 2 
to 7.) 
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tn(n + 1) is also a binomial coefficient, so the triangular numbers 
should appear in Pascal's triangle. They do, as the third diagonal in each 
direction. 

The triangular numbers are the simplest of the polygonal numbers. 
There are many relationships between them. Each square number is the 
sum of two successive triangular numbers. Alternatively, as Diophantus 
knew, each odd square is 8 times a triangular number, plus 1. 

Each pentagonal number is the sum of three triangular numbers in an 
especially simple way. 

• o /-, ...... - ...... -
/,/,,, 

/'" / 

For every triangular number, Tn, there are an infinite number of 
other triangular numbers, T m, such that TnTm is a square. For example, 
T3 x T24 = 302. 

On the other hand, the square of any odd number is the difference 
between two relatively prime triangular numbers. 

Another relationship between triangular numbers and squares: 

T. = n2 - (n - 1)2 + (n - 2)2 - (n - 3)2 + (n - 4)2 - ... ± 1 

There is a beautiful relationship between the triangular numbers and 
the cubes: n+1 - n = (n + 1)3, from which it follows that the sum 
of the first n cubes is the square of the nth triangular number, for 
example: 1 + 8 + 27 + 64 = 100 = 102. 

This points to a connection with the sums of 5th powers, because it 
is always true that P + 23 + 33 + ... + n3 divides 3(ts + 2S + 3s 
+ ... + nS). M. N. Khatri points out that adding the triangular 
numbers themselves produces this curious pattern: 

TI + T2 + T3 = T4 
Ts + T6 + T7 + Ts = Tg + T lo 

Til + TJ2 + TI3 + TI4 + TIs = TI6 + TI7 + TIs 
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and so on, from which he deduces among other facts that every 4th 
power is the sum of two triangular numbers. For example, 74 = T 41 + 
Tss· 

Two relations between the triangular numbers alone: Ti = T. + 
T._ IT.+ 10 and 2T.T._ I = T.'_I. 

The series formed by summing the reciprocals of the triangular 
numbers converges: I + 1/3 + 1/6 + 1/10 + 1/15 + 1/21 + 1/28 + 
... = 2. 

15 and 21 are the smallest pair of triangular numbers whose sum and 
difference (6 and 36) are also triangular. The next such pairs are 780 and 
990, and 1747515 and 2185095. [Dicksonjlt happens that 6 is 'the only 
number besides unity with fewer than 660 digits whose square is a 
triangular number'. [Beilerj 

Some numbers are simultaneously triangular and square. The first is, 
of course, I. The next four are 36, 1225,41616 and 1413721. The roots 
of these numbers, 1,6,35,204, 1189 ... follow a simple pattern illustrated 
by 1189 = (204 x 6) - 35. 

These are found by using a fact already mentioned, that 8T. + I is 
always a square. If the triangular number is itself a square, say X2, then 
we have the Pell equation: 8X2 + I = y2. 

The general formula is 1/32 «17 + 12J2)· + (17 - I2J2). - 2). 
There is also a rule for obtaining one solution from another: ifT. is a 

perfect square, then so is T 4.(.+)). 
On the other hand, no triangular number can be a cube, or fourth or 

fifth power. 
Charles Trigg gives examples of palindromic triangular numbers. 

There are 40 palindromic triangular numbers below 107 • The smallest, 
apart from 1,3 and 6, are 55, 66, 171,595,666 and 3003. T 2662 = 3544453, 
so the number itself and its index, 2662, are both palindromic. T IIII and 
TIII.III are 617716 and 6172882716 respectively. 

16 
The 4th square and 2nd fourth power, after l. 

The first square to be the sum of 2 triangular numbers in two ways: 
16 = 6 + 10 = I + 15. 

All sufficiently large numbers are the sum of at most 16 4th powers. 

Euler showed that the only solution to if = b" is 42 = 24 = 16. 
The Pythagoreans knew that 16 is the only number that is the perimeter 

and the area of the same square. 
16, like 12, has often been proposed as a base for a new system of 
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counting. J. W. Mystrom in the nineteenth century proposed that the 
numbers I to 16 in this system should be named: an, de, Ii, go, su, by, ra, 
me, ni, ko, hu, vy, la, po, fy and ton. 

With the advent of electronic computers, it has become the base of the 
hexadecimal system. 

Order-4 magic squares 
The first 16 numbers can be arranged in many ways to make an order-4 
magic square in which each row and column and both the diagonals 
have the same sum, which will a[wavs be 34. 

The illustration shows the magic square from Durer's engraving 
Melancholia. The numbers in the middle of the bottom row give the year 
in which it was made, [514. 

Many magic squares, like the 3 x 3, have extra and elegant properties. 
This one was described by Alfred Moessner: 
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12 13 1 8 

6 3 15 10 

7 2 14 11 

9 16 4 5 

The sums of the cubes of the numbers along each diagonal are equal, to 
4624 = 682 • 

The sums of the squares of the numbers in the 1st and 4th rows are 
equal. The same property is shared by the 2nd and 3rd rows, and by the 
1st and 4th columns and the 2nd and 3rd columns. 

Alfred Moessner, 'A Curious Magic Square', Scripta Mathematica, vol. 13. 

The hexadecimal system 
The base of the hexadecimal system, used in computers. To the usual 
numerals 0 to 9, the six letters A, B, C, D, E and F are added, standing 
for the numbers 10 to 15. 

Numbers are then constructed on the usual principles. Thus 6C5 
stands for 5 units, C = 12 sixteens, and 6 sixteen-squareds, or 5 + 
12 x 16 + 6 x 256 = 1733. 

Because 16 = 24 it is exceptionally easy to change hexadecimal into 
binary. Simply change each numeral mto its binary equivalent, adding 
an initial zero if necessary to make each into a string of four digits. (This 
is not necessary for the first digit, only.) 

In the same example, the first digit, 6, is 110 in binary. C = 12 is 1100, 
and 5 is 101 which can be written 0101. String them together in their 
original order, and 6C5 = 1733 in base 10, and 11011000101 in binary. 

Almost perfect numbers 
16 is almost perfect, because its factors, excluding itself, sum to one less 
than itself: I + 2 + 4 + 8 = 15. 

All powers of 2 are almost perfect. 
Whether an odd almost perfect number exists is, of course, unknown. 

I say 'of course' because the existence of almost any kind of perfection in 
an odd number is 'not known'. 

If a number's factors, excluding the number itself, sum to one more 
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than the number, then the number is caIled quasi-perfect. It is known 
that a quasi-perfect number must be the square of an odd number, 
which is odd, but no one knows if any quasi-perfect numbers exist, 
which is odder. See 28 and perfect numbers. [Guy] If a quasi-perfect 
does exist it is large, greater than IOJS and has at least 7 distinct prime 
factors. 

17 
The 3rd Fermat prime: 17 = 22 ' + I. 

Gauss proved at the age of 18 that a regular polygon can be con­
structed with the use only of a straight edge and compasses only if the 
number of sides is the product of distinct Fermat primes, of the form 
22" + I. 

It is possible therefore to construct a regular 17-gon with ruler and 
compasses only. 

The period of 1/17 is of maximal length, 16: 
1/17 = 0.0588235294117647. 

17 is the first sum of two distinct 4th powers: 17 = 14 + 24. 
17 is equal to the sum of the digits of its cube, 4913. The only other such 

numbers are I, 8, 18,26 and 27, of which three are themselves cubes. 
Choose numbers a, b, c ... in the interval (0, I) so that a and b are in 

different halves of the interval, a, band c are in different thirds, a, b, c 
and d are in different quarters and so on. 

Not more than 17 such numbers can be chosen. 
There are 17 essentiaIly different symmetry patterns for a waIlpaper 

design. 
17 is the highest number whose square root was proved irrational by 

Theodorus. 
According to Plutarch, 'The Pythagoreans also have a horror of the 

number 17. For 17 lies halfway between 16 ... and 18 ... these two 
being the only two numbers representing areas for which the perimeter 
(of the rectangle) equals the area.'· 

n2 + n + 17 is one of the best known polynomial expressions for 
primes. Its values for n = 0 to 15 are all prime, starting with 17 and 
ending with 257. 

The only known prime values for which pq - I and qP - I have a 
common factor less than 400000 are 17 and 3313. The common factor is 
112643.t 

• Van de Waerden, Science Awakening, Oxford University Press, New York, 1971. 
tN. M. Stephens, 'On the Feit-Thompson Conjecture', Mathematics oJ Computation, 
vol. 25. 
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18 
18 = 9 + 9 and its reversal, 81 = 9 x 9. 

This pattern works in any base. For example, in base 8: 7 + 7 = 16 
and 7 x 7 = 61. * 

The cube and 4th powers of 18 use all the digits 0 to 9 once each: 
183 = 5832 and 184 = 104976. 

18 is equal to the sum of the digits of its cube: 183 = 5832. 

19 
The 3rd number whose decimal reciprocal is of maximum length, in this 
case 18: 1/19 = 0.052631 578947 368421. 

There is a simple test for divisibility by 19. 100a + b is divisible by 19 
if and only if a + 4b is. 

19 is the 3rd centred hexagonal number: 19 = I + 6 + 12. 
There is only one way in which consecutive integers can be fitted into 

a magical hexagonal array, that is, so that their sums in all three direc­
tions are all equal. Thc numbcrs I to 19 can be so arranged, a fact first 
discovered by T. Vickcrs. 

19! - 18! + 17! - 16! + ... + I is prime. The only other numbers 
with this property are 3, 4, 5, 6, 7, 8, 10 and 15. [Guy] 

All integers are the sum of at most 19 4th powers. 

20 
The sum of the first 4 triangular numbers, and therefore the 4th tetra­
hedral number: 20 = I + 3 + 6 + 10. 

An icosahedron has 20 faces and its dual, the dodecahedron, has 20 
vertices. 

20 is the second semi-perfect, or pseudonymously pseudoperfect 
number, because it is the sum of some of its own factors: 
20=10+5+4+1. 

The smallest semi-perfect is 12, which is also the first abundant 
number. The next are 20, 24 and 30. 

The vigesimal system 
20 has a special significance in many systems of counting and of weights 
and measures. 

Base 20, called vigesimal, was used by the Mayan astronomers and 
calendar makers whose culture flourished from the 4th century A D. 
Their system was positional and included a zero, centuries before the 
appearance of Indian numerals in Europe. 

• D. Y. Hsu, Journal of Recreational Mathematics, vol. 10. 
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20 occurs in the old English coinage in '20 shillings in the pound' and 
in the imperial system of weights and measures. 

20 is a score, and ages in biblical language are often expressed in 
scores: 'The days of our years are threescore and ten; and if by reason 
of strength they be fourscore years, yet is their strength labour and 
sorrow.' 

'A score' or 'scores' survives as an expression for a largish number. 

21 
The 6th triangular number, and therefore the total number of pips on a 
normal dice. 

Ifa square ends in the pattern xyxyxyxyxy, then xy is either 21,61 or 
84. 

The smallest example is: 5088539892 = 25893238212121212\.* 
21 is the smallest number of distinct squares into which a square can 

be dissected. 
The side of the dissected square is 112. t 

22 
For n = 22, 23 and 24 only, the number of digits in n! is equal to n. 

The maximum number of pieces into which a pancake can be cut with 
6 slices (see opposite). 

The sequence, starting with I slice, goes: 2 4 7 II 16 22 
29 37 

22 is a palindrome, whose square is palindromic: 222 = 484. 
Many palindromes with sufficiently small digits have this property, for 

example, 11, III, 1111, 121,212 and so on. 

Pentagonal numbers 
22 is the 4th pentagonal number. 

The pentagonal numbers form the series: 
70 ... 

5 12 22 35 51 

The formula for the nth pentagonal number is !n(3n - I). 
They can be formed in the Pythagorean manner as patterns of dots, 

forming successively larger pentagons (see p. 92). 
The formula, of course, produces values when n is a negative integer, 

in a way that the diagrams do not, so the sequence open in both directions 
reads: . .. 40 26 15 7 2 0 I 5 12 22 35 60 ... 

• J. A. H Hunter, Journal of R,,<realiollal MalhemClli< I. vol. 6 
t A. J W DUljvestlJn. Journal oj Comhinatorial TI",orr. vol 25. 1978, pp 240 43. 
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If these numbers are arranged in ascending order, a different pattern 
may be seen in their differences: 

I 2 5 7 12 15 22 26 35 40 51 57 70 77 92 100 
I 3 2 5 3 7 4 9 5 II 6 13 7 15 8 

The alternate differences form the natural numbers, 1,2, 3,4, 5, 6, 7 
... and the odd numbers, I, 3, 5, 7, 9, II, 13 ... 

A very beautiful and important theorem was discovered by Euler, 
which involves the complete sequence in a surprising way. He started to 
multiply out the infinite product: 

(I - x)(1 - x 2)(1 - x 3)(1 - X4) ••• 

and discovered that the first few terms were: 

I - x - x 2 + X S + x 7 - Xl2 - XiS + ... 
At first he felt unable to prove, except by this informal induction, that 

the indices of the powers of x were indeed the pentagonal numbers, 
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22·459 157 718 361 045 473 427 152 . .. 

though the pattern was so strong that it was completely convincing, and 
he was satisfied to develop from it another theorem. 

Euler proved that if a(n) is the sum of the divisors of n, then a(n) = 
a(n - I) + a(n - 2) - a(n - 5) - a(n - 7) + a(n - 12) + a(n - 15) 
- a(n - 22) - ... 

The sum continues as long as the terms represent the sum of the 
factors of positive numbers. If a(O) appears as the last term, then it must 
be replaced by n. 

For example, a(12) = a(ll) + a(lO) - a(7) - a(5) + a(O) = 12 + 
18 - 8 - 6 + 12 = 28. 

This relationship can be used to calculate the values of a(n) if you 
know the appropriate previous values, which is itself curious, because 
to find the sum of the divisors of a number you apparently need to know 
its factors and therefore whether or not it is prime, but none of this 
information is needed to use the formula! 

Euler was also interested in the partitions of a number, that is, the 
ways in which it can be represented as the sum of other positive integers. 
5 can be partitioned in 7 ways: 5 is 5, or 4 + I, or 3 + 2, or 3 + I + I 
or 2 + 2 + I or 2 + I + I + I or I + I + I + I + I. 

The number of partitions of n is denoted by p(n). It turns out 
that: 

p(n) = p(n - I) + p(n - 2) - p(n - 5) - p(n - 7) + p(n - 12) + ... 

This sequence also continues as long as the partitions of positive 
numbers are involved. This time p(O) counts as 1. 

22·459 157 718 361 045473427 152 ... 
xe 

It is not known whether this number is rational or irrational. 

23 
23 and 29 are the first pair of consecutive primes differing by 6. 

23 is one of only two integers that actually needs 9 cubes to represent 
it. The other is 239. 

23 = 23 + 23 + (7 x P) 
It is required, of course, that the cubes be positive. If negative cubes 

are allowed then, for example, 23 is equal to 33 + 4( - 1)3, a total of only 
7 cubes. 

In general, if negative cubes are allowed, then it is definitely known 
that all integers that do not leave a remainder of 4 or 5 on division by 9 
can be represented as the sum of only 4 cubes. 
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23 is the 4th prime the period of whose reciprocal is of maximum 
length. 

The smallest number of rigid rods of unit length required to brace a 
square is 23. 

23 is the largest integer that is not the sum of distinct powers. 
23! is 23 digits long. 
If there are 23 or more people in a room the probability that at least 2 

of them have the same birthday is greater than 50:50. 

23'10345 .. . 
The sum of the reciprocals, I + 1/2 + 1/3 + 1/4 + 1/5 + . .. is 
unbounded. By taking sufficiently many terms, it can be made as large 
as one pleases. 

However, if the reciprocals of all numbers that when written in base 
10 contain at least one 0 are omitted, then the sum has this limit, 
23·10345 ... 

R. P. Boas and J. W. French, 'Partial Sums of Harmonic Series', American 
Mathematical Monthly, 1971. 

23-140692632779269005729086 . .. 

This number is transcendental. 

24 
The number of hours in a day. Also 24 scruples in an ounce, and 24 
grains in a pennyweight. 

24 is divisible by the sum of its digits and by their product. 
The smallest number, the product of whose proper divisors is a cube. 
x 2 x 3 x 4 x 6 x 8 x 12 = 243 • 

The sum of the first 24 squares, which is the 24th square pyramidal 
number, is itself a square: 

12 + 22 + 32 + ... + 242 = 702 

This is the only solution to this pattern, though other sequences of 
consecutive squares not starting with I can sum to a square. For example, 
182 + 192 + ... + 28 2 = 772 • 

If identical spheres in space of 24 dimensions are arranged in a 
Leech lattice, each sphere will touch 196,560 other spheres. This is 
almost certainly the densest possible sphere-packing in 24 dimensions. 
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Suitable cross-sections of the Leech lattice packing give rise to the 
densest known packings in all lower dimensions, except for dimensions 
10, II and 13. 
N. J. A. Sloane, 'The Packing of Spheres', Scientific American, January 1984. 

Factorials 
24 = 4 x 3 x 2 x I and is therefore 4 factorial, written 4! and often 
read as '4 bang' even by mathematicians, or '4 shriek' by school­
children. 

n! increases in size very rapidly indeed. 20! is already 
2,432,902,008,176,640,000. 

Many very large factorials have been calculated. Horace Uhler calcu­
lated that, 'The first digit of 450! falls in the 100lth place to the left of 
the decimal point ... this number may be fancifully dubbed the Arabian 
Nights' Factorial.' 

I,OOO,OOO! has recently been calculated by Harry Nelson and David 
Slowinski, who twice held the record for the largest known prime. It has 
5,565,709 digits and the computer printout was 5 inches high. 

The factorial function turns up everywhere in mathematics. There are 
n! different ways of arranging n objects in order. 

There are 52 x 51 x 50 x 49 ways of choosing 4 cards from a pack 
of 52 if the order makes a difference, and choosing 4H, 3S, QD and JC 
for example is not the same as choosing QD, 3S, JC and 4H. 
52 x 51 x 50 x 49 can be written very neatly as 52!/48!. 

If the order does not make a difference, then any of the 4! = 24 ways 
of choosing the cards will be equivalent, and the total must be divided by 
4! It can now be written 52!/48!4!. 

Note that the two factorials on the bottom can be multiplied in any 
order. This corresponds to the fact that 4 cards can be selected from 52 
by picking out 4 cards and retaining them, or by selecting 48 cards and 
throwing them away. 

Factorials appear in a very thin disguise in Pascal's triangle, which 
was used by Cardan, Tartaglia, Pascal and others to solve problems 
of combinations and probability as well as to calculate binomial co­
efficients. 

If 52!/48!4! is written, as is usual, as an, or as (si) (it makes no 
difference!) then Pascal's triangle, on the left, can also be written as on 
the right: 

Reading across the 4th line, (x + 1)3 = x 3 + 3x2 + 3x + I. 
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24 

The entries in Pascal's triangle are all integers, which illustrates the 
fact that the product of any n consecutive integers is always divisible 
by nL 

Factorials also appear in the difference triangles for sequences of 
powers. Here the final differences for 5th powers are all 5! 

32 243 1024 3125 7776 16807 

31 211 781 2101 4651 9031 

180 570 1320 2550 4380 

390 750 1230 1830 

360 480 600 

120 120 120 120 

It also appears in the infinite series for eX and for the trigonometrical 
ratios such as sin x and cos x. 

sin x = x - x 3 /3! + x S15! - x 7 j7! + .. . 
eX = I + x + x 2 /2! + x 3 /3! + x 4 /4! + .. . 

Bearing in mind the connection between n:, circles and the trigono­
metrical ratios, Stirling's formula is not unbelievable, merely astonishing: 
n! - nne-n jhn. 

Like Euler's relationship, it links together several important numbers 
and functions, though this formula is only approximate, as the - symbol 
indicates. 

n! is just as significant in the theory of numbers. 
Both Wilson's theorem and its converse are true: p is prime if and only 

if (p - \)! + I is divisible by p. Leibniz knew Wilson's theorem long 
before it was published by Edward Waring in 1770. It was Waring who 
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ascribed it to Sir John Wilson giving him his own kind of immortality. In 
theory it can be used to test if a number is prime. In practice, it is an 
absurd test, because n! is so large. It is not plausible to test if 23 is prime 
by dividing 23. into 22! + I. 

The notation itself is of interest. Mathematics demands notations that 
are simple and striking and appropriate. What could be more appropriate 
than the exclamation mark for a function that increases in size so 
rapidly! 

Augustus de Morgan, the scourge of circle-squarers and other 
unfortunates, was most upset when the '!', which had been invented 
in Germany by Christian Kramp in 1808, made its way to England. 

He wrote, 

Among the worst barbarisms is that of introducing symbols which are quite new 
in mathematical, but perfectly understood in common, language. Writers have 
borrowed from the Germans the abbreviation n! ... which gives their pages 
the appearance of expressing admiration that 2, 3, 4, etc., should be found ID 

mathematical results.· 

If he had stopped to consider the psychology of its use, he would have 
appreciated that users would very quickly ignore the shock! horror! 
aspect and see, literally, only its mathematical meaning. 

Factorials, like Fibonacci numbers, can be used as the basis for a 
notation for numbers that does not depend on any particular base. 
Simply divide the number by the largest factorial below it, then repeat 
with the remainder, and so on. 

2000 = (2 x 720) + (4 x 120) + (3 x 24) + (I x 6) + (2 x I) = 
(2 x 6!) + (4 x 5!) + (3 x 4!) + (I x 3!) + (I x 2!) + (0 x I!) or 
2431 10 in factorial. 

Adding two such numbers is tricky and multiplication is a kind of 
nightmare, but they have their specialist uses. 

H. Uhler, Mathematics Teacher, April 1953; and F. Gruenberger, 'Computer 
Recreations', in Scientific American, April 1984. 

25 
A square and the sum of 2 squares: 25 = 32 + 42 = 52. 

The Greeks represented the squares, as they did all polygonal numbers, 
by a pattern of dots. To turn one square into the next, it is sufficient to 
add a border of dots along two sides. The sizes of these borders are the 
odd numbers, I, 3, 5 ... 

OF. Cajori, A lIi.'tor}" of Mathematim/ Notations. vol. 2, Open Court. 1929. 

104 



0000 
0000 
0000 
0000 

It follows that the sums of the sequence of odd numbers are the square 
numbers. In particular, 52 = 25 = I + 3 + 5 + 7 + 9. 

Every square is also the sum of two triangular numbers: 25 = 10 + 15, 
which may be represented in a pattern of dots: 

00000 
00000 
00000 
00000 
00000 
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or in this number pattern: 
=)2 

I + 2 + I = 22 

I + 2 + 3 + 2 + I = 32 

I + 2 + 3 + 4 + 3 + 2 + I = 42 

1 + 2 + 3 + 4 + 5 + 4 + 3 + 2 + I = 52 
and so on ... 

Being an odd square, it is a source of the following pattern: split 25 
into successive integers, 25 = 12 + 13. Split its root likewise, 5 = 2 + 3. 
Then the 3 integers up to 12 and the 2 integers from 13 have the same 
sums of squares. 

The complete pattern starts: 

32 + 42 = 52 

102 + 112 + 122 = 132 + 142 

2)2 + 222 + 232 + 242 = 252 + 262 + 272 

and so on ... 
This may be compared with the pattern: I + 2 = 3; 

4 + 5 + 6 = 7 + 8; 9 + 10 + 11 + 12 = 13 + 14 + 15 and so on. 
All powers of 25 end in the same digits, 25. 
25 = 4! + I. This is the only solution of (n - I)! + I = nk. 

[Liouville] 
Fermat asserted correctly, without proving, that 25 = 33 - 2 is the 

only square that is 2 less than a cube. 

26 
26 is the smallest non-palindromic number whose square is palindromic: 
262 = 676. 

26 is equal to the sum of the digits of its cube: 263 = 17576. 

27 
The first odd perfect cube, apart from I. 

The number of points in all the colours at snooker, because it is one 
less tha~ the 7th triangular number, 28. 

The sum of the digits of its own cube: 273 = 19683. 
All integers are the sum of at most 27 primes. 
027 is the decimal period of 1/37, and conversely: 

1/27 = 0·037037037 ... 
If a 3-digit multiple of 27 is permuted cyclically, so that for example 
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513 turns into 135 or 351, then the resulting number is still a multiple of 
27. The only other number with this property for 3-digit numbers is 37. 

27 is the smallest integer that is the sum of 3 squares in 2 ways: 
27 = 32 + 32 + 32 = 52 + 12 + 12. 

The Syracuse algorithm starts with any number, divides it by 2 if it is 
even and multiplies it by 3 and adds I if it is odd. This process is then 
repeated. For example, the sequence starting with 17 runs: 
17 52 26 13 40 20 10 5 16 8 4 2 I. 

All the integers less than 1,000,000,000 have been tested, and every 
one eventually ends in the sequence 4-2-1. Of the first 50 integers, 27 
takes the longest, III steps, reaching a maximum height of 9232. 

It is not known whether every number eventually reaches I. 

28 
The number of days in the lunar cycle. 

In the imperial system of weights and measures, the number of pounds 
in a quarter. 

The 7th triangular number and the number of dominoes in a standard 
double-six set. 

The first triangular number to be the sum of 2 cubes: 28 = J3 + 33 • 

The longest known sociable chain is of 28 links, starting with 12,496. 

Perfect numbers 
28 is the second perfect number, following 6, meaning that 28 is 
the sum of its divisors, including unity but excluding itself: 
28 = I + 2 + 4 + 7 + 14. 

The first 4 perfect numbers, 6, 28, 496 and 8128 were known to the 
late Greeks. Nicomachus and Iamblichus listed all 4 and lamblichus, not 
unnaturally bearing in mind that he had no conception of the number 
base 10 as mathematically arbitrary, conjectured that there was one 
perfect number for each number of digits, and further that they not only 
ended in either 6 or 8, which is true, but that the 6s and 8s alternate, 
which is not. 

The sequence of unit digits actually goes 6--8--6--8-6--Q-8-8--6--6--8-8-
6--8-8 ... and every perfect number ends in either 28 or 6 preceded by an 
odd digit. 

Euclid, whose Elements is not limited to geometry, proved in Book I X 
that, 'If as many numbers as we please beginning from a unit be set out 
continuing in double proportion until the sum of all becomes prime, and 
if the sum multiplied into the last make some number, the product will 
be perfect.' 
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In other words, if, for example, I + 2 + 4 + 8 + 16 is prime, which 
it is, being 2s - I = 31, then 31 x 16 is perfect. In fact it is 496, the 
third perfect number. 

28 is equal to 22(23 - I) and 6 equals 2(22 - I). 
In each case the bracketed factors, 23 - I and 22 - I, which are 

Mersenne numbers, are prime. This is the critical condition. 
Euclid proved only that his rule was sufficient. It was Euler, 2000 

years later, who proved that all even perfect numbers (odd perfect 
numbers are quite a different matter) are of the form 2"-1 
(2" - I) where 2" - I is a Mersenne prime M". 

Every even perfect number is hexagonal and also therefore triangular. 
Only 28 is the sum of two equal powers: 28 = 33 + 13. 
It follows from the definition of perfection that the sum of reciprocals 

of the divisors of a perfect number is 2. For example, since 
28 + 28 = I + 2 + 4 + 7 + 14 + 28, we can divide through by 28 and 
obtain: 2 = 1/28 + 1/14 + 1/7 + 1/4 + 1/2 + 1/1. 

The product of the factors, including itself, of the perfect number 
P = 2"-IM" is po. 

Less obviously, every even perfect number, except 6, is a partial sum 
of the series J3 + 33 + 53 + 73 + 93 + ... For example, 28 = J3 + 33 
while 496 = J3 + 33 + 53 + 73. 

With the same exception, 6, it also follows from Euclid's formula that 
the digital root of an even perfect number is I, or, which amounts to the 
same thing, that every perfect number leaves the remainder I when 
divided by 9. 

The perfect numbers correspond one-for-one with the Mersenne 
primes, whose early history is sketched under J 27. As long as only hand 
calculation was available, the discovery of Mersenne primes depended 
on human labour in actually making the necessary calculations, and 
subtle theorems that showed that only possible divisors of a certain type 
need be tried. 

The labour for large numbers was immense. Mersenne himself stated 
that all eternity would not be sufficient to decide if a 15- or 20-digit 
number were prime. 

In 1814 Peter Barlow in an article in A New Mathematical and Philo­
sophical Dictionary wrote, 

Euler ascertained, that 231 - I = 2147483647 is a prime number; and this is the 
greatest at present known to be such, and, consequently, the last of the above 
perfect numbers, which depends upon this, is the greatest perfect number known 
at present, and probably the greatest that ever will be discovered; for, as they are 
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merely curious without being useful, it is not likely that any person will attempt to 
find one beyond it.· 

Barlow underestimated the fascination of record breaking for math­
ematicians, and he could not foresee the electronic computer. 

By allowing millions of calculations per second, the computer opened 
up vast reaches of numbers that had previously been inaccessible and 
allowed mathematicians to make effective use of much more powerful 
tests for primality. These tests decide whether n is prime, by analysing 
the factors of either n - I or n + I. 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Because of their special form, Mersenne and Fermat numbers are 

2M2 
22M3 
ztMs 
26M, 
212M13 
216MI7 
218MI9 
230M)1 
260M" 
288Mgg 

2106MI07 
2126M127 

2S7A1Ms21 

2606M607 
21278MI279 
22202M220) 
22280M2281 
232 16M 3217 
24252M425] 
24422M442) 
29688M9689 
2994OM9941 
2"212M1l213 
219936MI9937 
221700M2I7ol 
223208M23209 

~M44497 
286242M86243 
2132048M1320C9 
2216090M216091 

6 
28 

496 
8128 

33550336 
8589869056 

137438691328 

known to Greeks 
known to Greeks 
known to Greeks 
known to Greeks 
recorded in medieval manuscript 
Cataldi, 1588, M" = 131,071 
Cataldi, 1588, MI9 = 524,387 
Euler, 1772, M31 = 2,147,483,647 
Pervusin, 1883 
Powers, 1911 
Powers, 1914 
Lucas, 1876; E. Fauquembergue, 1914 
SW AC computer, 30 January 1952 
National Standards Bureau 
found at the same time as 2S20Ms21 
also found by S WAC, same team 
also found by S WAC, same team 
also found by S WAC, same team 

University of Illinois at Urbana, 1963 
Bryant Tuckerman, 1971 
Laura Nickel and Curt Noll, 1978 
Curt Noll, 1979 
Harry Nelson, David Slowinski, 1979 
Harry Nelson, David Slowinski, 1982 
1983 
Chevron Geosciences, 1985 

• Daniel Shanks, Solved and Unsolved Problems in Number Theory. vol. I, Spartan 
Books, 1962. 
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easier to test for primality than any other forms, and all the recent 
record-breaking primes have been Mersenne numbers, and have 
automatically led to a new perfect number. 

On the previous page is a complete list of the perfect numbers known 
to date: Mp stands for the Mersenne prime 2P - I. Bold type indicates 
that either the perfect number itself, or its associated Mersenne prime, is 
an entry in the main body of this dictionary. 

The latest four were all found on the CRA Y supercomputer. 
Is the number of perfect numbers infinite? There are no more perfect 

numbers up to the 27th in this table. The table itself shows perfect 
numbers occurring less and less frequently, with some surprising jumps. 
The largest is from the 12th to the 13th, where the index of the Mersenne 
prime jumps from 127 to 520, a more than fourfold increase in index. 
The index nearly doubles again from the 14th to the 15th to the 16th: 
607 to 1279 to 2203, from the 23rd to the 24th, and from the 28th to the 
29th. 

This suggests that perfect numbers thin out pretty quickly, but it 
says nothing about their total number. They could disappear com­
pletely - or there could be many more of them up among the un~ 
imaginably large numbers. (And most integers are indeed unimaginably 
large). 

Odd perfect numbers are a curiosity in themselves. 
Guy describes the existence of odd perfect numbers as one of the more 

notorious unsolved problems in number theory, and states that Tucker­
man, Hagis, Stubblefield, Buxton and Elmore have gradually raised the 
lower bound for an odd perfect to above 10200 , 'though there is some 
scepticism about the later proofs', which is encouraging for anyone who 
thinks mathematicians can always tell a sound proof from a good try. 

They and other researchers, without having produced any odd per­
fects, have discovered a great deal about them, if it makes sense to say 
that you know a great deal about something that may not exist. 

Descartes claimed that an odd perfect is a product of a square and a 
prime. 

Euler proved that an odd perfect must be of the form p. ·l· ~ ... 
where the p, q, r ... are all of the form 4n + I, a is of the same form, and 
b, c ... are all even. 

Coming to modern times, an odd perfect must have at least 8 distinct 
prime factors (II if it is not divisible by 3), and must be divisible by a 
prime power greater than 1018 • 

The greatest prime factor must be greater than 300,000 and the second 
largest must be greater than 1000. 
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Any odd perfect less than 109118 is divisible by the 6th power of some 
prime. 

29 
No sum of three 4th powers is divisible by either 5 or 29 unless they all 
are. [Euler] 

29 is the third number n, following I and 5, such that 2n2 - I is a 
square: 2.292 - I = 4)2. 

2n2 + 29 is prime for all values of n from I to 28. 
29 = (2 x 3 x 5) - I = primorial (5) - I. 
Primorial(n) - I is prime for 3, 5, II, \3,41,89,317,991, 1873,2053, 

and no other values below 2377. 
J. P. Buhler, R. E. Crandall and M. A. Penk, 'Primes of the form n! ± I and 
2 x 3 x 5 x ... x p ± I', Mathematics o/Computation, vol. 38, April 1982. 

30 

Primorials 
Primorial p is defined only if p is prime. It is then equal to the product of 
all the primes up to and including p. 

30 = primo rial (5) = 5 x 3 x 2 
30 is the smallest integer with 3 distinct prime divisors, 2, 3 and 

5. The smallest with 4 distinct prime divisors is primorial (7) = 
2 x 3 x 5 x 7 = 210, and so on. 

Most integers have very few distinct prime divisors. The average for 
numbers less than 100 is about 1·71. For numbers less than 100,000,000 
the average is only about 2·9. For 10100, a googol, the average is still 
only about 5'4, and for 10800801 it has risen only to about 23·9. 
Primorials are exceptional in this respect. 

30 is the greatest number such that all the numbers less than it and prime 
to it are themselves primes. 

The other numbers with this property are 2, 3, 4,6,8, 12, 18, and 24. 
There are only 2 Pythagorean triangles whose areas equal their 

perimeter. 
One is the 5-12-\3 triangle whose area and perimeter are both 30. The 

other is the 6-8-10 triangle, whose area and perimeter are both 24. 
30 is the area of the smallest rectangle on which a re-entrant knight's 

tour is possible. It can be done on either a 5-by-6 or on a 3-by-1O board. 
The smallest square board is 6 by 6. 

The dodecahedron and its dual, the icosahedron, each have 30 edges. 
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30! 
There are 30t ( = 5! squared) square yards in a square rod, pole or 
perch, or 2721 square feet. 

31 
25 - I. The 5th Mersenne number and the 3rd Mersenne prime, leading 
to the 3rd perfect number, 496. 

31 = I + 5 + 52 = I + 2 + 4 + 8 + 16 
One of only two known numbers that can be written in two ways as 

the sum of successive powers, starting from I. The other is 8191. 
The first prime number the decimal period of whose reciprocal is odd. 
1/31 = 0·0322580645 1612903225 ... 
Note these products: 

032258 x 2 = 64516 
032258 x 4 = 129032 
032258 x 5 = 161290 
032258 x 7 = 225806 
032258 x 8 = 258064 

and so on ... 

032258 x 9 = 290322 
032258 x 14 = 451612 
032258 x 16 = 516128 
032258 x 18 = 580644 
032258 x 19 = 612902 

Note also that 03225 + 80645 + 16129 = 99999 and 032 + 258 + 
065 + 416 + 129 = 900. 

(2 x 3 x 5) + I = primorial (5) + I 
Primorial (n) + I is prime for 2, 3, 5, 7, 11,31,379, 1019, 1021,2657, 

and for no other values below 3088. 

Two binary puzzles 
The Tower of Hanoi was brought out by Eduard Lucas under the name 
M. Claus in 1883, and provided a year later with a charming but wholly 
fictitious story: 

In the great temple at Benares, beneath the dome which marks the centre of the 
world, rests a brass plate in which are fixed three diamond needles, each a cubit 
high and as thick as the body of a bee. On one of these needles, at the creation, 
God placed 64 discs of pure gold, the largest disc resting on the brass plate, and 
the others getting smaller and smaller up to the top one. This is the Tower of 
Bramah. Day and night unceasingly the priests transfer the discs from one diamond 
needle to another according to the fixed and immutable laws of Bramah, which 
require that the priest on duty must not move more than one disc at a time and 
that he must place this disc on a needle so that there is no smaller disc below it. 
When the 64 discs have been thus transferred from the needle on which at the 
creation God placed them to one of the other needles, tower, temple, and 
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Brahmins alike will crumble Into dust. and with a thunderclap the world will 
vamsh. 

This account of Hindu theology is nonsensical, but the problem itself 
has a very neat solution involving powers of 2. 

In the figure the 5 rings on one peg are to be transferred to one of the 
other pegs. 

A c 

It will be found by trial and error that to transfer I, 2 or 3 rings 
requires respectively I, 3 and 7 moves. In general, to move n + I rings to 
peg A from peg B, requires that n rings be moved to peg C, that the 
largest ring be then moved to B, and the first n rings then moved to B by 
a repetition of the previous sequence. So the number of moves required 
is each time one more than double the previous total. 

The sequence therefore continues I 3 7 15 31 63 and the 
general term is 2" - I. The rings in the figure require 31 moves. In 
practice it helps mentally (or physically!) to mark the rings as alternately 
odd and even; if there are an odd number of rings to be moved, the first 
move should be on to the target peg, if even, on to the third peg. 

The Brahmin priests would need 264 - I or 18,446,744,073,709,551,615 
moves to complete their task, or nearly 600,000,000,000 years at one 
move per second all day and every day. 

Fibonacci considered the problem of the smallest set of weights 
required to weigh any weight up to a given amount. Tartaglia solved the 
problem when only one pan may be used, and Bachet solved :t when one 
or both pans may be employed. 

If the weights are placed in one pan of the balance only, the maximum 
weight that can be weighed with only 5 weights is 31, by using the values 
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1,2,4,8 and 16. In general, n weights from this sequence will weigh up 
to 2ft - l. 

Each weighing is performed in a unique manner represented by the 
value expressed in binary. To weigh 26, which is 11010 in binary, we use 
the 16, the 8 (not the 4) and the 2 (but not the unit) weights. 

Using both pans, the solution is similar, but now relies on expressing 
the weight as the sum and difference of powers of 3. With the weights I, 
3, 9, and 27 it is possible to weigh up to 40. In general the weights up to 
3ft will weigh up to a maximum of !(3ft +1 - I). 

Ball and Coxeter, 1974. 

32 
32 = 25 = 100,000 in binary notation. 

The melting point of ice on the Fahrenheit temperature scale. 

33 
A semi-prime is a number with only 2 factors. 33-34-35 is the smallest 
triplet of successive semi-primes. 

33 = I! + 2! + 3! + 4! 
33 is the largest number that is not the sum of distinct triangular 

numbers. 

Lucky numbers 
The prime numbers can be found by using the Sieve of Erastosthenes: 
write down the integers in order and strike out every other number, to 
get rid of the multiples of 2. Then strike out every third number in the 
original sequence to get rid of multiples of 3, and so on. 

Lucky numbers are constructed by a similar process. First strike out 
every other number, leaving the odd numbers: 

I 3 5 7 9 II 13 15 17 19 ... 
After I, the next odd number is 3, so strike out every third number in 

this sequence, leaving: 
I 3 7 9 13 15 19 ... 
The next number remaining is 7, so strike out every 7th number, 

starting with 19. And so on. 
The Lucky numbers are those that remain. The sequence starts: 
I 3 7 9 13 15 21 25 31 33 37 43 49 51 ... 
Lucky numbers share many properties with the prime numbers, which 

suggests that those properties, surprisingly, belong to the primes not 
because each prime has no factors but itself and I, but because of the 
way in which the primes can be constructed by the Sieve of Erastosthenes. 
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It is likely that any sequence constructed by a similar sieve will have the 
same properties. [Guy] 

34 
The magic constant of a 4 by 4 magic square. 

3S 
There are 35 hexominoes, each formed of 6 squares attached edge to 
edge. Surprisingly, although the total area of the 35 hexominoes is 210, 
which might make a rectangle 3 x 70 or 5 x 42 or 6 x 35 or 7 x 30 or 
10 x 21 or 14 x 15, not one of these rectangles ean actually be filled 
with the 35 pieces. 

After hexominoes, the number of n-ominoes rises rapidly. There are 
108 septominoes, of which I has a hole. There are 369 octominoes, 6 
having a hole, and 1285 9-ominoes, of which 37 have a hole. 

Pascal's triangle 
The numbers in Pascal's triangle are so important that they had to be 
included, although no one of them is more typical of the triangle than 
any other, so I have chosen 35 as their representative. 

I 
I I 

I 2 I 
3 3 I 

I 464 I 
5101051 

I 6 15 20 15 6 
I 7 21 35 35 21 7 I 

I 8 28 56 70 56 28 8 
9 36 84 126 126 84 36 9 

The triangle is named after Blaise Pascal, the brilliantly precocious 
mathematician, natural scientist and theologian who wrote a Treatise on 
the Arithmetical Triangle. 

Pascal, however, was the last rather than the first of many math­
ematicians who considered almost identical arrays in connection with 
the extraction of roots, problems in probability and combinations, and 
the calculation of binomial coefficients. He brought together and built 
on their results. 

Chu Shih-chieh in The Precious Mirror of the Four Elements (1303) 
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gives a pyramidal array identical to our modern arrangement, for 
determining one binomial coefficient from another. * 

It was first published in Europe in 1529 and was given in varying 
forms by, among others, Stifel, Tartaglia, who used it to calculate the ex­
pansion of a 12th power, and Cardan, who used it in problems of com­
binations and polygonal numbers, and by Herigone, who is supposed to 
have been Pascal's teacher, and whose works Pascal himself cites. 

Pascal defined the triangle by stating that each cell is occupied by the 
sum of cells above it, the edge cells being unity. He first deduced nineteen 
consequences, or, as we should say, theorems, including, 'In every 
triangle the sum of the cells of each base is a number of the double 
progression beginning with unity .. .' In other words, the sum of the 
numbers in row n is 2". 

(The top row, which is sometimes omitted, counts as row 0.) 
He went on to study 'orders of numbers' and the use of the triangle in 

calculating combinations, the division of stakes between gamblers, and 
binomial coefficients. 

The 'orders of numbers' were the diagonal sequences. The first dia­
gonal is occupied by units, the second by the natural numbers. The third 
diagonal is the triangular numbers, 1,3,6, 10 ... and the fourth is the 
tetrahedral numbers, I, 4, 10, 20, 35 ... which are the numbers of 
cannonballs needed to stack into triangular pyramids of increasing size. 
The subsequent diagonals can be interpreted as arrangements of higher 
dimension, from the 4th upwards, though Pascal possessed no such 
modern conception. 

To calculate 'combinations', for example the number of ways of 
selecting 3 dishes from a menu of 7, it is necessary only to go to the 4th 
number in the 7th line: it is 35, or in modern notation G) = 35 which 
can be calculated as (7 x 6 x 5)/(3 x 2 x 1) or as 7!/3!4!. 

Binomial coefficients are found in the same way. The coefficient of x 3 

in the expansion of (I + x)' is CD or 35, and the complete expansion is: 
(I + x)' = I + 7x + 21x2 + 35x3 + 35x4 + 21x5 + 7x6 + x7 

From the rule for constructing the triangle it follows that 

(;) + (m : I) = (: : II). 
which Pascal expressed in the language of orders. 

The triangle has many other features. Pascal himself wrote, ' ... 
leave out many more than I include; it is extraordinary how fertile in 
properties this is. Everyone can try his hand.' 
• F. N. David, Games. Gods and Gambling, Griffin, London, 1962. 
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The entries in row p, except the units, are divisible by p if and only if p 
is prime. 

The shallow diagonals, I, I-I, 1-2, 1-3-1, 1--4-3, 1-5-6-1, 1-6-10-4 
... sum to the Fibonacci sequence, I I 2 3 5 8 ... 

There are an infinite number of rows containing three numbers in 
arithmetical progression, such as 7-21-35. The next two such sets are 
1001-2002-3003, and 490314-817190-1144066. On the other hand, there 
are no triplets of numbers forming geometric or harmonic progres­
sions.· 

There is, however, a neat connection with the harmonic series, the 
reciprocals of the natural numbers: 

I = I 
I - 1/2 = 1/2 
I - (2 x 1/2) + 1/3 = 1/3 
I - (3 x 1/2) + (3 x 1/3) - 1/4 = 1/4 
I - (4 x 1/2) + (6 x 1/3) - (4 x 1/4) + 1/5 = 1/5 

and so on.t 
There are further connections with the Harmonic Triangle of Leibniz: 

1 
-
1 

- -
2 2 

I 
- - -
3 6 3 

1 I 
- - -
4 12 12 4 

1 I 
- - -
5 20 30 20 5 

I 1 I I 
- -
6 30 60 60 30 6 

and so on. 
Each fraction here is the sum of the numbers immediately below it. 

The terms in each row are the initial term divided by the corresponding 
Pascal triangle entries. 

Each entry is the sum of the infinite series that starts immediately 
below it to the left and continues downwards along the diagonal to the 
right, for example: 1/4 = 1/5 + 1/30 + 1/105 + ... 
• T. Motzkin, Scripta Mathematica, vol. 12. 
t Scripta Mathematica, vol. 8. 
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In Pascal's triangle, each number is the sum of either of the diagonals 
starting immediately above it, and taking the long way to the edge: for 
example, 35 = 15 + 10 + 6 + 3 + 1. (So the sum of the first 5 trian­
gular numbers is 35.) 

The first few rows of Pascal's triangle may give the impression that 
almost all its entries are different, apart from the left-right symmetry 
and the edge units. This is not so, as the appearance of three 6s and four 
lOs might suggest. (See 3003.) 

36 
The 8th triangular number, thought of by the Greeks as also the sum of 
the first 4 even numbers and first 4 odd numbers. 

It is also square, and the first number after 1 to be both square and 
triangular. 

The numbers that are both square and triangular are beautifully 
related to the best approximations to J2: 

and so on. 

number 

1 
36 

1225 
41616 

root 

1 
6 

35 
204 

factors of the root 

1 x 1 
2 x 3 
5 x 7 

12 x 17 

In each case the factors of the root are the numerator and denominator 
of the next approximation to J2. 

Because its square root is the 3rd triangular number, it is also the sum 
of the first 3 cubes: 36 = 13 + 23 + 33 • 

1-6-36 is the first set of triangular numbers in geometrical progres­
sion. 

36 is the largest 2-digit number divisible by the product of its digits. 
Every sequence of 7 consecutive numbers greater than 36 includes a 

multiple of a prime greater than 41. 

H. Gupta, Selected Topics in Number Theory, Abacus Press, Tunbridge Wells, 
1980. 

37 
Any 3-digit multiple of 37 remains a multiple when its digits are cyclically 
permuted. 

Every number is the sum of at most 37 5th powers. 
The 4th centred hexagonal number, obtained by arranging hexagonal 

layers of points around a central point. 
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\ 

The formula for the nth centred hexagonal number is 3n(n - I) + I. 
By a different division of the original diagram the nth centred hexa­

gonal number is equal to 6Tn_1 + I, where Tn is the nth triangular 
number. 
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38 
The magic constant in the only possible magic hexagon, which uses the 
numbers I to 19. 

39 
This appears to be the first uninteresting number, which of course makes 
it an especially interesting number, because it is the smallest number to 
have the property of being uninteresting. 

It is therefore also the first number to be simultaneously interesting 
and uninteresting. 

40 
Equal to two score. A biblical expression for a long period of time, for 
example, 40 days in the wilderness, 40 years of wandering in the desert. 

There are 40 rods, perches or poles in a furlong of 220 yards. 

41 
5-digit multiples of 41 remain multiples of 41 when their digits are 
permuted cyclically. 

Euler discovered the excellent and famous formula x 2 + x + 41, which 
gives prime values for x = 0 to 39 

There is no quadratic formula of the form x 2 + ax + b, with co­
efficients a and b positive and less than 10,000, which produces a 
longer sequence of primes. [Devlin] 

The '41' formula also gives prime values for negative values from -I 
to - 40 but this is the same set of primes repeated. 

The formula x 2 - 79x + 1601 is just a variation on the '41' formula. 
It gives prime values for x = 0 to 79, repeating each prime once. 

When Charles Babbage built a small trial version of his Analytical 
Engine he calculated a list of values of this function to show off its 
powers. At one demonstration, it is recorded, 

THIRTY-TWO numbers of the same table were calculated in the space of TWO 

MINUTES AND THIRTY S[("ONDS; and as these contained I:IGHTY-TWO 

figures, the engine produced thIrty-three figures every mInute, or more than one 
figure in every two seconds. On another occasion it produced FORTY-FOUR 

figures per mInute. ThIS rate of computation could be maintaIned for any length 
of tIme; and It is probable that few writers are able to copy with equal speed for 
many hours together. * 
* Sir David Brewsler, Leiters on Natural Magic, London, 1856 
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The writers referred to are the copyists who noted the figures that the 
machine produced. Of course, long after Babbage's brilliant experiments, 
and long after the development of the desk calculator, calculating pro­
digies were far faster than any machine. Indeed, if the time taken· to 
instruct the machine is, very reasonably, taken into account, they could 
beat early computers on many problems. 

In contrast, Morrison and Brillhart factored the 173rd Fibonacci 
number, 638,817,435,613,190,341,905,763,972,389,505,493 in rather 
more than 800 seconds into its two prime factors. With a slight change in 
the test, it could have been complcted in under 200 seconds. 

42 
The magic constant of the smallest magic cube, composed with the 
numbers 1 to 27. 

Catalan numbers 
42 is the 5th Catalan number. 

The sequence starts: 1 2 5 14 42 132 429 1430 4862 16796 
58786 208012 742900 2674440 ... 

The formula for the nth term is _1_ (2n). (The sequence sometimes 
n + 1 n 

starts with an extra I, thus: 1 2 5 14 ... in which case the 
formula must be adjusted accordingly.) 

Literally hundreds of sequences have been studied in the solution of 
mathematical problems, or have been studied for their own sake. 

The most important sequences, such as the square numbers and the 
factorials, turn up everywhere. The Catalan sequence is in the Top Forty 
in popularity, even if it does not reach the Top Ten. It occurs especially 
often in combinatorial problems. 

In how many ways can a regular n-gon be divided into n - 2 triangles, 
if different orientations are counted separately? The answer is the Catalan 
sequence. 

In how many ways can brackets be placed round a sequence of n + 
letters, so that there are two letters inside each pair of brackets? 

ab in I way: (ab) 
abc in 2 ways: (ab)c a(bc) 
abed in 5 ways: (ab) (cd) a«bc)d) «ab)c)d a(b(cd» (a(bc»d 

and so on. 
In how many ways can you move on a graph from the origin to 
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(2n + 2,0) with diagonal steps, never touching the x-axis, except at the 
star! and finish? Catalan once more. 

In how many ways can n votes be cast between two candidates, so that 
one chosen candidate is never behind in the counting? 

The answer to everyone of these problems is the sequence of Catalan 
numbers, demonstrating that these apparently very different problems 
are, in a very useful sense, equivalent to each other. 

44 
Euler's solution to the problem of finding a brick with integral edges and 
face diagonals is 44, 117 and 240. 

The lengths of the diagonals of the faces are 267, 125 and 244. The 
length of the space diagonal is not an integer. The problem of finding a 
brick in which all the diagonals are integral remains unsolved. 

Subfactorials 
Subfactorial5 = 5!(I - I/I! + 1/2! - 1/3! + 1/4! - 1/5!) = 44 

Nicolaus Bernoulli first considered the problem that may be expressed 
like this: n letters are written to different addresses, and n matching 
envelopes prepared. In how many ways can the letters be placed in the 
envelopes so that every letter is in the wrong envelope? 

The answer is subfactorial n. 
The sequence starts: 0 I 2 9 44 265 1854 14833 

45 
The 3rd smallest Kaprekar number, after I and 9. 

Every number greater than 45 is the sum of distinct primes greater 
than II. 

H. Gupta, Selected Topics in Number Theory, Abacus Press, Tunbridge Wells, 
1980. 

Polygonal numbers 
45 is the 5th hexagonal number, which can be calculated from the formula 
n(2n - I) when n = 5. 

The sequence of hexagonal numbers starts: I 6 15 28 45 
Polygonal numbers were studied by the Greeks. They were a natural 

development from triangular and square numbers, and can also be rep­
resented by patterns of dots: 
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• • • • • • 
• • 

• • • • • • • 
• • • • 

• • • • • • • • 
• • • • • • 
• • • • • • • • 

• • • • • • 
• • • • • • • 
• ••••• 
• • • • • • 

Polygonal numbers can be constructed by drawing similar patterns, 
but with a larger number of sides. 

There are formulae for each polygonal sequence, and these also form 
a pattern: 

name 

triangular 
square 
pentagonal 
hexagonal 
heptagonal 
octagonal 
and so on. 

formula 

in(n + 1) 
in(2n - 0) 
in(3n - 1) 
in(4n - 2) 
in(5n - 3) 
in(6n - 4) 

n=12 3 4 5 6 7 

3 6 10 15 21 28 
4 9 16 25 36 49 
5 12 22 35 51 70 
6 15 28 45 66 91 
7 18 34 55 81 112 
8 21 40 65 96 133 

Typically, the number I is simultaneously triangular, square, pen­
tagonal ... and so on for ever! 

The hexagonal numbers are equal to the alternate triangular numbers. 
All perfect numbers are hexagonal and therefore triangular also. 

There are other obvious patterns in this table. The vertical differences 
are constant in each column. Thus, the 5th numbers of each order differ 
by 10 which is the 4th triangular number, and they are all divisible by 5: 
15, 25, 35, 45, 55, 65, 75 ... 
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The horizontal differences are the natural numbers for the triangular 
numbers; the odd numbers for the squares; the sequence 4,7, 10, 13 ... 
for the pentagonal numbers; 5, 9, 13,17 ... for the hexagonal and so on. 

Take any square of entries, say 18-34 and 21-40. Multiply the opposite 
corners and subtract: (18 x 40) - (34 x 21) = 720 - 714 = 6, the 
triangular number at the head of the 18-21 column. 

There are other relationships between the polygonal numbers. For 
example, Hn = 4Tn_t + n, where Hn is the nth hexagonal number, 
and Tn the nth triangular. Relationships such as this can be used to find 
the sum of the sequence of hexagonal numbers. 

46 
A famous, or infamous, example of numerology: in Psalm 46, the 46th 
word is ·shake'. The 46th word from the end counting backwards is 
·spear'. Shakes pear! 

Why? Well, when the King James Authorized Version was completed 
in 1610, Shakespear was 46 years old! Geddit! 

47 
47 + 2 = 49: 47 x 2 = 94 

48 
The product of all the proper divisors of 48 is equal to 484 • 

If n is greater than 48, then there is a prime between nand 9n/8, 
inclusive. 

49 
49 is trimorphic. Its cube ends in the same digits: 493 = 117649. 

This is an example of a trimorphic number that is not automorphic. 
1/49 = 0·020408163265 ... , in which the powers of 2 appear in 

sequence, eventually overlapping so that the pattern, although still there, 
cannot be seen. 

49 is the first composite number with the property that all the fractions 
n/49, provided that n is not a multiple of 7, have periods that are cyclic 
permutations of each other. 

There are 42 such fractions, all of period 42. 
This occurs if and only if the number is a power of a prime whose 

reciprocal has maximum period. In this case 49 = 72 and 1/7 has 
period 6. 
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50 
Denoted by the letter L in Roman numerals. The Romans had separate 
letters for I, 10, 100, 1000, and for 5, 50 and 500. 

The letter V stood for 5, and is often conjectured to represent one 
hand of five fingers, in which case the X for 10 could be two hands, or 
alternatively it could be an abbreviation for a row of Is with a line 
through them to show that the round number 10 had been reached. 

100 was C, the first letter of centum, and 1000 was M, the initial letter 
of mille. In between came D for 500. 

By using these intermediate letters it was less tiresome and took less 
space to write numbers such as 856 or DCCCL VI, which otherwise be 
the monstrous CCCCCCCCXXXXXIIIIII. 

50 is the smallest number to be the sum of two squares in two different 
ways: 50 = 52 + 52 = 72 + J2. 

This follows from the fact that 50 = 5 x 10, the two smallest numbers 
that are each the sum of two squares. 

In a passage in his Republic Plato refers to the 'rational diagonal of 5' 
meaning 7, which, because 72 = 50 - I, is very close to being the square 
root of 50, and the diagonal of a square of side 5. Plato knew that the 
actual diameter, 5j2, is irrational. 

The sequence of numbers that are sums of squares in two ways con­
tinues: 50 65 85 145 

52 
The number of weeks in a year, divided into 4 quarters of \3 weeks each, 
and also the number of cards in a standard pack without jokers, divided 
into 4 suits of 13 cards each. 

Erdos calls a number 'untouchable' if it is never the sum of the proper 
divisors of any other number. 

The sequence of untouchable numbers starts: 2 5 52 88 96 
120 

53 
The smallest prime such that the period of its reciprocal is one-quarter 
of the maximum length possible, in this case, one-quarter of 53 - I, or 
\3. 

All fractions k/53, where k is a number between I and 52, fall into 4 
classes, the decimal period of every fraction in the same class being a 
cyclic permutation of the others in its class. 
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The 10th triangular number: 55 = ! x 10 x II. 

It is also Fibonacci. The only Fibonacci numbers that are triangular 
are 0, I, 3, 21 and 55. 

55, 66 and 666 are the only triangular numbers with fewer than 30 
digits that are composed of a repeated digit. 

Pyramidal numbers 
The 5th square pyramidal number. If cannonballs are piled so that each 
layer is a square, then the total numbers of balls in successive piles will 
be 1,5, 14,30,55,91, 140 ... The general formula for the nth number in 
the sequence is !n(n + I) (2n + 1). 

Further pyramidal numbers can be defined by imagining that balls are 
being piled in pentagonal, hexagonal layers, and so on, but it is no 
longer possible actually physically to pile the balls up in a regular pat­
tern. 

The formula for the number of balls in the nth 'pentagonal pyramid' is 
especially simple: !n2(n + I). 

To find all the numbers that are simultaneously triangular and square 
pyramidal is an unsolved problem. The only known solutions are 1,55, 
91,208335. 

55 is the 4th Kaprekar number. 
55 is a cubic recurring digital invariant. Add the cubes of its digits 

together; repeat twice, and 55 appears again: 

55: 53 + 53 = 250: 23 + 53 + 03 = 133: 13 + 33 + 33 = 55 

Every number greater than 55 is the sum of distinct primes of the form 
4n + 3. 

There are only 55 sets of integers a, b, c, d for which it is true that 
every integer is of the form ax2 + by2 + cz2 + du2 . 

G. H. Hardy, Collected Papers of S. Ramanujan, Cambridge University Press, 
Cambridge, 1927. 

56 

Tetrahedral numbers 
The 6th tetrahedral number. The sequence is: 1 4 10 20 35 56 
84 120 ... with general formula: !n(n + I)(n + 2). 

The traditional example of these numbers is a pile of cannonballs. The 
number of balls in each layer is, from the top downwards, 1,3,6, 10, 15 
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... which is the sequence of triangular numbers, quite naturally, because 
each layer is triangular in shape. 

So the tetrahedral numbers can be thought of as the sums of the 
triangular numbers. Continuing into higher dimensions, in 4-dimensional 
space, the piles of tetrahedral numbers can themselves be piled up into 4-
dimensional 'tetrahedrons', forming the 4-dimensional 'tetrahedral' 
numbers: I 5 15 35 70 ... whose general formula is -
-f .. n(n + I)(n + 2)(n + 3). 

57·296 ••• 
Approximately 57 degrees and 18 minutes. The number of degrees in 1 
radian. 

59 
Euler posed the problem in 1772: to find a number that is the sum of two 
4th powers in two ways. He also found the smallest solution: 
594 + 1584 = 1334 + 1344. 

60 
The base of a sexadecimal system of counting. 

The Sumerians as early as 3500 BC had a decimal system for business 
purposes and a sexadecimal system used by a small number of experts, 
based on lOs and 6s: 1, 10, 60, 600, 3600, 36000 ... 

The Babylonians used this sexadecimal system for mathematical and 
astronomical work. 

Systems based on 60 benefit from the many factors of 60. They have 
the advantages of a duodecimal system, and morc. 

In astronomy, the very ancient division of the Zodiac into 12 parts fits 
a sexadecimal system very well, and does not fit a decimal system at all. 

The division of the circle into 360 degrees, and the division of degrees 
into 60 and 3600 parts originated among Babylonian astronomers a few 
centuries BC. 

We still divide an hour of time or an angle of one degree into 60 
minutes and each minute into 60 seconds. These are the only common 
measurements that have not been metricated. 

60 degrees is the interior angle of an equilateral triangle. 

Highly composite numbers 
The 8th 'highly composite' number, defined by Ramanujan as a number 
that, counting from I, sets a record for the number of its divisors. 
60 = 22 X 3 x 5 is the first number with 12 divisors. 
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The sequence of 'highly composite' numbers starts: 2 4 6 12 24 
36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 

G. H. Hardy, Collected Papers of S. Ramanujan, Cambridge University Press, 
Cambridge, 1927. 

61 
13188208812 = 1739288516161616161 (See also 21.) 

63 
Kaprekar's process for 2-digit numbers leads to the cycle: 63-27-45-9-
81-63 ... In this cycle, 9 must be read as the 2-digit number 09. 

For example, starting with 5 and 3: 53 - 35 = 18; 81 - 18 = 63, 
entering the cycle. Or, starting with 9 and 3: 93 - 39 = 54; 54 - 45 = 9, 
entering the cycle at a different point. 

64 
The second 6th power, after I, and also a square and a cube: 
64 = 43 = 82 = 26 , 

It is therefore represented by 100 in octal and by 1,000,000 in binary. 
The smallest number with 6 prime factors. The next smallest are 96, 

128 (which has 7) and 144. 
Being a cube, it is the sum of consecutive centred hexagonal numbers: 

I + 7 + 19 + 37 = 64. 
Fermat's Little Theorem says that if p is prime then d p - I) - I is 

divisible by p, provided a is not divisible by p. 
For every prime p, there are values of a such that dp - I) - I is 

actually divisible by p2. 
The smallest such value for p = 3 is 82 = 64: 64 - I is divisible by 

32 = 9. 
For p = 5, the next prime, the smallest solution is 74 - I, which is 

divisible by 25. 

65 
The second number to be the sum of two squares In two ways: 
65 = 82 + J2 = 72 + 42 • 

65 is the magic constant in a 5 by 5 magic square. 

66 
The sum of the divisors of 66, including 66 itself, is a square: 
I + 2 + 3 + 6 + II + 22 + 33 + 66 = 144 = 122 , 
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The sequence of numbers with this property starts: 3 22 66 70 
81 

69 
The only number whose square and cube between them use all the digits 
o to 9 once each: 692 = 4761 and 693 = 328509. 

70 
The sum of its divisors, including 70 itself, is a square, 144. 

Weird numbers 
The smallest weird number. A number is called weird if it is abundant 
without being the sum of any set of its own divisors. The factors of 70 
are 1,2,5,7, 10, 14 and 35, which sum to 74, so it is abundant, but no set 
of them sum to 70. 

Weird numbers are rare. The only ones below 10,000 are 70, 836, 
4030, 5830, 7192, 7912 and 9272. 

Note that they are all even. It is not known whether an odd weird 
number exists. Professor Pal Erdos, who has the charming habit of 
offering money for the solutions to mathematical challenges, was 
offering, in 1971, $10 for the first example of an odd weird number, or 
$25 for a proof that none exist. This shows a nice judgement of the 
relative value of a counter example and a proof! 

71 
7)2 = 7! + I. This is the largest known solution to Brocard's problem. 

7)3 = 357911. The digits are the odd numbers 3 to II in sequence.· 
The numbers 5, 71 and 369119 are the only numbers less than 

2,000,000 that divide the sum of the primes less than them.t 

72 
cp(72) = cp(78) = cp(84) = cp(90) = 24 

This is the smallest set of four numbers in arithmetical progression 
whose cp values are equal. 

The next two 4-term arithmetical progressions with equal cp values 
start at 216 and 76236 and each also has common difference, 6.t 

725 = 195 + 43 5 + 46 5 + 47 5 + 67 5 is the smallest 5th power equal 
to the sum of 5 other 5th powers. 

• James Davies, Journal of Recrelllional MlIIhemlllil's, vol. 13. 
t Ibid, vol 14 
~ M. Lal and P Gillard, Malhl'malit's of Com pula lion. vol. 26 
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73 
All integers can be represented as the sum of at most 73 6th powers. 

76 
762 = 5776, which ends in the digits 76, which is therefore called 
automorphic. 

The only other 2-digit automorphic number below 100 is 25. 
Automorphic numbers are related to multiples of powers of 10. For 

example, 76 x 75 = 57 x 102. 

77 
Every number greater than 77 is the sum of integers, the sum of whose 
reciprocals is I. 

For example, 78 = 2 + 6 + 8 + 10 + 12 + 40 and 1/2 + 1/6 + 
1/8 + 1/10 + 1/12 + 1/40 = 1. 
R. L. Graham, 'A Theorem on Partitions', Journal of the Australian Mathematical 
Society, 1963; quoted in Le Lionnais, 1983. 

79 
The smallest number that cannot be represented by less than 19 4th 
powers: 79 = 15 x 14 + 4 X 24. 

81 
81 = 34 

The sum of the divisors of 81 is 121, a square. 
The fraction 1/81 = 0·012345679012345679012 ... 
This pattern occurs because 81 = 92 and 9 is 1 less than 10, the base 

of the decimal system. 
In another base, 6 for example, the reciprocal of (6 - 1)2 is 

1/41 = 0·012350123501235 ... 
81 is the only number whose square root is equal to the sum of its 

digits, apart from the trivial 0 and 1. 
81 is both square and heptagonal. 
Write the natural numbers in groups, like this: 

1 2,3 4,5,6 7,8,9,10 11,12,13,14,15 

Delete every second group, The sum of the first remaining n groups is 
then n4.* For example, 

1 + 4 + 5 + 6 + 11 + 12 + 13 + 14 + 15 = 81 = 34 
More straightforward is this pattern: 

• Dov Juzuk. Scripta Mathematica. 1939. 
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I = 3° 
2 + 3 + 4 = 32 

5 + 6 + 7 + 8 + 9 + 10 + II + 12 + 13 = 34 

14 + 15 + 16 + . .. + 39 + 40 = 36 

and so on.* The number of terms in each sequence is 1,3,9,27 ... 

84 
Little is known of the life of Diophantus. This verse from The Greek 
Anthology purports to give his age, which turns out to be 84. 

This tomb holds Diophantus Ah. how great a marvel! The tomb tells scientifically 
the measure of hiS lIfe. God granted him to be a boy for one-sixth of his life. and 
adding a twelfth part to this. he clothed hiS cheeks with down. He lit him the ligh1 
of wedlock after a seventh par1. and five years after his marriage he gave him a 
son. Alas. late-born wretched child! After attaining the measure of half his father's 
lIfe. chill Fate took him. After consolIng his grief by the study of numbers for four 
years. Diophantus ended his life. 

85 
The sum of two squares in two ways: 85 = 92 + 22 = 72 + 62. 

88 
88 is itself a repeated digit, and its square ends in a repeated digit: 
882 = 7744. 

89 
89 and 97 are the first pair of consecutive primes differing by 8. 

Double 89 and add I: repeat. to get a sequence of 6 primes, 
89 179 359 719 1439 2879. 

This is the smallest such 6-prime sequence.t 
Add the squares of the digits of any number: repeat this process, and 

eventually the number either sticks at I, or goes round this cycle: 89-
145-42-20-4-16-37-58-89 ... 

89 and 98 arc the 2-digit numbers that require most reversals-and­
adding to become palindromes. They each require 24 steps. 

89 is the II th FibonaCCI number, and the period of its reciprocal is 
generated by the Fibonacci sequence: 1/89 = 0·11235 ... 

90 
The number of degrees in a right angle. 

• M. N. Khatri. Scripta Mathematica. vol. 20 
t Journal of Recreational Mathemlll/(s. vol 13 
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The number of days in a quarter-year, counted as 13 weeks of 7 days 
each. 

91 is simultaneously triangular, equal to I + 2 + 3 + ... + 13; 
square pyramidal, equal to 12 + 22 + ... + 62; and a centred hexagonal 
number equal to I + 6 + 12 + 18 + 24 + 30. 

91 is the smallest pseudoprime to base 3. That is, 390 - I is divisible 
by 91 although 91 is not a prime but 7 x 13. 

94 
The smallest even number apart from 2 and 4 that is not the sum of two 
of the sequence of twin primes: 3 5 7 II 13 17 19 29 31 
41 43 ... 

96 and 98 are also not the sum of 2 twin primes. The next numbers to 
fail are 514, 516 and 518. 

96 
The second smallest number with 6 prime factors: 96 = 

3 x 2 x 2 x 2 x 2 x 2. 

97 
The period of its decimal reciprocal is a maximum, of length 96. Alex­
ander Aitken, a lightning calculator who was also a professor of mathe­
matics at Edinburgh University, knew it off by heart. 

He will hardly have been helped significantly by the fact that it starts 
with the powers of 3 (because 97 = 100 - 3): 

1/97 = 0·010309278350515463917525773195876288659793814432 
989690721649484536082474226804 123711 340206 185567 ... 

98 
The period of its decimal reciprocal starts with the powers of 2: 
1/98 = 0·010204081632653061224489795918367346938775510204 ... 

99 
1/99 = 0·010101010101 ... 

9 and II have very simple reciprocals as decimals, because 
9 x II = 99. 

Similarly, 27 x 37 = 999. 
99 is a Kaprekar number, as is any string of 9s. 992 = 9801 and 

98 + 01 = 99. 
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100 
The square of 10, the base of the decimal system, but also the square of 
the base in any other base. 

The boiling point of water on the Celsius (Centigrade) scale of tem­
perature. 

Denoted by C by the Romans, from centum meaning hundred. 
In the metric system, the prefix 'centi' means one-hundredth, as in 

centimetre, one-hundredth of a metre. 
Because 10 is the 4th triangular number, 100 = 102 is the sum of the 

first 4 cubes: 100 = J3 + 23 + 33 + 43 • 

It is a very old puzzle to join the digits I to 9, in that order, using only 
the usual signs of operations, and brackets, to make a total of 100. 

Dudeney gives many solutions, including this one, which he describes 
as the usual answer: 
1+2+3+4+5+6+7+~x~=IOO 

His own preferred solution, because it requires the use of only 3 signs, 
is: 

123 - 45 - 67 + 89 = 100 

101 
It is not known if there is an infinite number of palindromic primes. 101 
is the smallest, apart from the I-digit primes, 2, 3, 5 and 7, and II. 

The other palindromic primes below 1000 are 131, 151, 181,313,373, 
383, 727, 757, 787, 797,919,929. 

102 
1027 = 127 + 357 + 537 + 587 + 647 + 837 + 857 + 907 

102 is the smallest 7th power to be the sum of only 8 other 7th powers. 

103 
103 is the smallest prime the period of whose reciprocal is one-third of 
the maximum length. 

1/103 has period of length 34. One-third of all the fractions n/103 
where n is less than 103 have periods that are cyclic permutations of this. 
The other two-thirds share 2 different 34 digit periods. 

104 
104 is semi-perfect, because it is the sum of some of its own divisors: 
104 = 52 + 26 + 13 + 8 + 4 + I. 

It is irreducibly semi-perfect because no factor of 104 is itself semi­
perfect. 
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lOS 
105 less any power of 2 from 2 to 64 is also prime. 

The only other known numbers with this property are 7, 15, 21,45 
and 75. Erdos has conjectured that there are no more, and this has been 
verified up to 244. 

\05 is the smallest number such that I can be represented as a sum 
of odd reciprocals, none of them less than 1/\05: I = 1/3 + 1/5 
+ 1j7 + 1/9 + 1/11 + 1/33 + 1/35 + 1/45 + 1/55 + 1j77 + 1/\05. 

There are 4 ways of representing I as the sum of odd reciprocals, using 
only 9 of them, but in each case the smallest is less than 1/\05. The 
solution with the largest least term is: I = 1/3 + 1/5 + 1/7 + 1/9 
+ 1/11 + 1/15 + 1/35 + 1/45 + 1/235. 
F. H. Kierstead and H. Nelson, Journal of Recreational Mathematics, vol. 10. 

108 
There are \08 heptominoes, one of which surrounds a hole. It is in the 
form of a 3 by 3 square with one corner and the central square missing. 
This is the smallest polyomino to contain a hole. 

III 
The magic constant for the smallest magic square composed only of 
prime numbers, counting I as a prime. 

The second repunit, composed only of the digit I. 

112 
There are 112 = 4 x 28 pounds in a hundredweight. 

The length of the side of the smallest possible dissection of a square 
into 21 other distinct squares. 

113 
The smallest 3-digit prime such that all other arrangements of its digits 
are also prime numbers. 

The other such prime numbers are 337 and 199, and their rearrange­
ments. 

The 2-digit primes with this property are I I, \3, 17,37 and 79. 

116 
116! + I is prime. 

118 
118 is the smallest number which can be written as the sum of four 
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triples, whose products are all equal: 118 = 14 + 50 + 54 = 15 + 40 + 
63 = 18 + 30 + 70 = 21 + 25 + 72. 

The product of each triple is 37800. [Guy] 
If n is greater than or equal to 118, then the interval n to 4n/3 inclusive 

contains a prime number of each of the forms 4n + I, 4n - I, 6n + I 
and 6n - I. 

120 
120 = 1 x 2 x 3 x 4 x 5 = 5! 

120 is also the 15th triangular number and the 8th tetrahedral number, 
formed by summing the triangular numbers: 120 = I + 3 + 6 + 10 + 
... + 28 + 36. 

120 is the smallest number to appear 6 times in Pascal's triangle. 
It is the smallest multiple of 6, such that 6n + 1 and 6n - 1 are both 

composite. 
120 is the smallest number having 16 = 24 divisors. The smallest 

number having 2" divisors is found by multiplying together the first n 
numbers in this sequence: 2 3 4 5 7 9 11 13 16 17 19 
23 25 29 ... which includes all the primes and the powers of 
primes. 

Multiply-per/ect numbers 
The ubiquitous Marin Mersenne discovered that the factors of 120 sum 
to 2 x 120 = 240, and proposed to his friend Descartes the problem of 
finding further numbers whose factors sum to a multiple of the original 
number. 

120 = 23 x 3 x 5 and its factors, 1,2,3,4,5,6,8, 10, 12, 15,20,24, 
30,40 and 60 sum to 240 = 2 x 120. 

If 120 is counted among its own factors, then the sum is 360 = 3 x 120 
and for this reason 120 is sometimes called tri-perfect, or multiply perfect 
of order 3, in which case ordinary perfect numbers are of order 2. 
Confusing! 

Descartes replied to Mersenne's suggestion with a list of 9 multiply­
perfect numbers. 

Only 6 tri-perfect numbers are known: 120,672, 523776,459818240, 
1,476304896 and 31,001180160. 

These are all even, just as all known perfect numbers are even. If an 
odd tri-perfect number exists, then it exceeds 1050, is a square, and has 
at least 9 distinct prime factors. If it is not even or divisible by 3, then it 
is even larger, greater than 10108 with at least 32 distinct prime factors. 

Over 500 multiply-perfect numbers are known, of order up to 8. The 
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smallest of order 8, discovered by Alan L. Brown, an American 'human 
computer', is: 2 x 323 X 59 X 712 X I J3 X \33 X 172 X 192 x 23 X 

292 x 31 2 x 37 x 41 x 53 x 61 x 672 x 712 x 73 x 83 x 89 x 103 
x 127 x 131 x 149 x 211 x 307 x 331 x 463 x 521 x 683 x 709 
x 1279 x 2141 x 2557 x 5113 x 6481 x 10429 x 20857 x 110563 x 
599479 x 16148168401. [Guy] 

See Beck and Najar, Mathematics o/Computation, 1982, no. 157. 

121 
A palindromic square of a palindrome, and a perfect square in any base 
from 3 upwards. 

I J3 = \331 and 1\4 = 14641 are also palindromic. 
Brocard's conjecture: 121 = 5! + I = 112. 
Fermat conjectured correctly that 121 and 4 are the only squares that 

become cubes when increased by 4. 
121 is the only square that is the sum of consecutive powers from I: 

121 = I + 3 + 9 + 27 + 81. 
Every number greater than 121 is the sum of distinct primes of the 

form 4n + I. 

125 
A cube, 53, which is the sum of two squares in two ways: 
125 = 102 + 52 = I J2 + 22. 

125 is the decimal part of 1/8. Because 8 = 10 - 2, it can be written 
as a sum, similar to the sums that are related to periodic decimals: 

I 248 
6 
3 2 

64 
128 

256 
5 I 2 

12499999999 ... 

127 
In 1848 de Polignac conjectured that every odd number could be 
expressed as the sum of a power of 2 and a prime. He claimed verification 
up to 3 million, but 127 fails, for starters. 

Nigel Boston, Quarch, no. 6. 
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Mersenne numbers 
127 = 27 - I is the 7th Mersenne number, denoted by M7, and the 4th 
Mersenne prime, and therefore the source of the 4th perfect number. 

Father Marin Mersenne was a natural philosopher, theologian, 
mathematician, and musical theorist, and the moving spirit of one of the 
most important French scientific groups of the early seventeenth cen­
tury. 

He was a friend of Descartes, with whom he studied at Jesuit college, 
Desargues, Fermat, Frenicle and the Pascals, father and son, and other 
mathematicians, to whom he proposed problems concerning perfect 
numbers and related ideas. 

In 1644, in the Preface to Cogitata Physico-Mathematica he asserted 
that the only values of p not greater than 257 for which 2P - 1 is prime 
are 1,2,3,5,7,13,17,19,31,67, 127 and 257. Mersenne counted I as 
prime. Nowadays the list starts with M2. 

The first four of these, which are 3, 7, 31 and 127, are obviously prime. 
M IJ was known to be prime in medieval times and MI7 and MI9 

were also known to be prime. So Mersenne was stating that between 
31 and 257 inclusive there are only four prime Mp: MJh M67 , M127 
and M ZS7 ' 

Mersenne knew that Mp must be composite if p is composite, but the 
converse is not true. 

(All the Mersenne numbers are coprime, incidentally, which proves 
that the number of primes is infinite, since there must be at least one new 
prime for every Mersenne number.) 

Mersenne was effectively making a statement about alI the prime 
powers of 2 up to and including 2257. 

A most remarkable claim bearing in mind his complete lack of modern 
computers, and the size of the larger numbers. Fermat already knew 
(1640) that any factor of the Mersenne number Mp must be of the form 
2np + I, but this fails to eliminate an enormous number of possible 
large factors. Perhaps he was relying on Fermat for some theorem or . 
idea that is now lost. 

Anyway, the list contains mistakes, though these were all discovered 
long after Mersenne's death. In fact two out of four of Mersenne's 
additions to the list are actually composite, and he missed three primes. 

M61 is prime, proved by Pervusm in 1883, and M67 is composite (67 
as printed might possibly have been an error for 61); M89 and M I07 ' 
which Mersenne omitted, are both prime, and M257 is composite. 

On the other hand, MJI is indeed prime, and so is the gigantic M127. 
Mersenne's list, despite or perhaps because it was so ambitious and 
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erroneous, has provided a stimulus to mathematicians to invent better 
and better methods of solving one of the very simplest problems in 
mathematics, so simple indeed that any child who has learned to do long 
multiplication can understand it but which mathematicians can still only 
partially solve. 

The problem is to reverse the result of multiplication, that is, to take a 
large number and decide whether it is the product of at least two other 
numbers, and if so to find them. So simple to state, so difficult to do! 

Mersenne numbers are ideal candidates for even relatively elementary 
methods, because they are constructed in such a simple manner, just like 
the Fermat numbers 22" + 1. Both sets of numbers are strikingly non­
random and their structure provides the basis for their factorization. 

With the advent of modern computers, many far larger Mersenne 
primes have been discovered, starting with 2521 - 1 in 1952, each leading 
to an even perfect number. 

All the Mersenne primes known to date are listed under 28: Perfect 
numbers. 

See Gardner, 1971. 

128 
27 and therefore in binary 10,000,000. 

The smallest number to be the product of 7 prime factors. 
128 is a power of2, all of whose digits are powers of2.1t is not known 

if it is the only one. 
128 is the largest number that is not the sum of distinct squares. [Le 

Lionnais] 

132 
132 is the sum of all the 2-digit numbers made from its digits: 
132 = 13 + 32 + 21 + 31 + 23 + 12. 

It is the smallest such number. 

133·335 
The Dewey Decimal classification for 'numerology'. Martin Gardner, in 
The Numerology of Dr Matrix, points out that if you reverse it, and add: 
133·335 + 533·331 = 666·666, you discover the Number of the Beast, 
repeated! Deeply significant! 

135 
135 = 11 + 32 + 53 
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Other examples of the same pattern are: 175 = 11 + 72 + 53; 
518 = 51 + P + 83 and 598 = 51 + 92 + 83. 

136 
Sum the cubes of its digits: 13 + 33 + 63 = 244. Repeat and the original 
number returns: 23 + 43 + 43 = 136. 

137 
All sufficiently large numbers are the sum of at most 137 seventh 
powers. 

139 
139 and 149 are the first consecutive primes differing by 10. 

141 
Cullen numbers are of the form n x 2" + I. 

The only prime Cullen number for n between 2 and 1000, is 
141 X 2141 + I. 

On the other hand, numbers of the form n x 2" - I are prime 6 
times below 100, for n = 2, 3, 6, 30, 75 and 81. [Guy] 

144 
122 , a gross or a dozen dozen, and therefore '100' in the duodecimal 
system of counting. 

144 is the only square Fibonacci number, apart from l. Moreover it is 
the 12th Fibonacci number. 

A divisor of a Fibonacci number is called proper if it does not divide 
any smaller Fibonacci number. The only Fibonacci numbers that do not 
possess a proper divisor are I, 8 and 144. 

144 ends in a repeated '44'. A square can end in a repeated digit only if 
it is a multiple of 100, or if the root ends in 12, 38, 62 or 88, when the 
square ends in '44'. 

Reversing 12 and 144 gives 441 = 2P. 
The smallest magic square composed of consecutive primes comprises 

the 144 odd primes from 3 upwards. The magic constant is 4515. 
Euler conjectured that no nth power can be the sum of fewer than n 

nth powers. For example, a cube cannot be the sum of only two cubes, 
which is true. (It is the smallest case of Fermat's Last Theorem.) 

In 1966 L. J. Lander and T. R. Parkin were searching on computer for 
5th powers that were the sum of 5 other 5th powers. To their great 
surprise they not only found 4 solutions to their original problem - but 
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in one solution, one of the numbers was 05 , so they had in fact discovered 
a counter-example to Euler's conjecture: 1445 = 27 5 + 845 + 
1105 + 1335 • 

No other 5th power up to 765 5 can be expressed as the sum of only 4 
5th powers, apart of course from the multiples of 144: 288,432, 576 and 
720. 

145 
145 = I! + 4! + 5! 

The only other numbers that are the sum of the factorials of their 
digits are I, 2 and 40585. 

The 4th number to be the sum of 2 squares in two different ways: 
145 = 122 + J2 = 82 + 92. 

153 
153 = I! + 2! + 3! + 4! + 5! 

When the cubes of the digits of any 3-digit number that is a multiple 
of 3 are added, and then this process is repeated, the final result is 153, 
where the process ends, because 153 = P + 53 + 33. 

The other 3-digit numbers that equal the sum of the cubes of their 
own digits are 370, 371 and 407. 

These pairs switch from one to the other in a 2-cycle: 136 and 244; 919 
and 1459. 

There are two cycles of length 3: 55-250-133 and 160-217-352. 
When G. H. Hardy wished, in his book A Mathematician's Apology, to 

give examples of mathematical theorems that were not 'serious', he chose 
two examples, 'almost at random, from Rouse Ball's Mathematical 
Recreations' . 

The first was the fact that 8712 and 9801 are the only 4-digit numbers 
that are multiples of their reversals. 

The second was the fact that, apart from I, there are just 4 numbers 
that are the sums of the cubes of their digits, those mentioned above. 

Hardy commented, 

These are odd facts, very suitable for puzzle columns and likely to amuse amateurs, 
but there is nothing in them that appeals to the mathematician. The proofs are 
neither difficult nor interesting - merely a little tiresome. The theorems are not 
serious; and it is plam that one reason ... is the extreme speciahty of both the 
enunciations and the proofs, which are not capable of any sigmficant general­
ization. 

As any critic might have remarked of Euler's solution of the Bridges 
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of Konigsberg problem, or of Euler's dabbling in Magic Squares. The 
existence or non-existence of significant generalizations would appear to 
be a contingent fact, not susceptible to proof by G. H. Hardy. 

As an almost certainly less interesting fact I would suggest, 'The 
10,000,000 digit of 1[ is a 7,' mentioned by Keith Devlin, though the 
supposed lack of interest in this fact is still a matter of contingent fact, 
and no more. 

In the New Testament the net that Simon Peter drew from the sea of 
Tiberias held 153 fishes. This was inevitably interpreted numerologically 
by the early Church fathers, especially St Augustine. 

153 is the 17th triangular number and therefore already significant. 
But what is special about 17 itself? It is the sum of 10 for the Ten 
Commandments of the Old Testament to 7, for the Gifts of the Spirit in 
the New Testament. 

This was a common means of combining two influences, just as the 
Pythagoreans associated 5 with marriage because 5 = 2 + 3 and those 
numbers are female and male respectively. 

W. E. Bowman, a modern writer with more humour and less reverence, 
introduces the number 153 on numerous occasions into his novel The 
Ascent of Rum Doodle. It appears as the height of the ship above sea 
level, the speed of a train chugging through the foothills of the Hima­
layas, the number of porters to be hired for the ascent, and the depth of 
a crevasse, among other things. 

154 
154! + I is prime. 

159 
159 cannot be represented as the sum of fewer than 19 4th powers. 

161 
Every number greater than 161 is the sum of distinct primes of the form 
6n - l. 

163 
Aitken competed successfully with Wim Klein, a Dutch prodigy who had 
memorized the multiplication table up to 100 x 100 but lacked the mathematical 
knowledge to employ clever short cuts. Aitken often made subconscious calcu­
lations. He told of results that 'came up from the murk', and would say of a 
particular number that it 'feels prime' as indeed it was. He was one of the few to 
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whom integers were personal friends. He noticed, for instance, an amusing prop­
erty of 163: that eK.j16J differs from an integer by less than 10-12 • As he himself 
once put it, 'Familiarity with numbers, acquired by innate faculty sharpened by 
assiduous practice, does give insight into the pro founder theorems of algebra and 
analysis.' 

Ball and Coxeter, 1974. 

169 
169 = 132 and 961 = 3]2 

175 
175 = I' + 72 + 53 

180 
The number of degrees in a half-circle, and the number of degrees 
Fahrenheit between the freezing point of water, 32, and its boiling point, 
212. 

The sum of the angles of a triangle. 
1803 is the sum of consecutive cubes: 1803 = 63 + 73 + 83 + ... 

+ 683 + 693. [Beiler] 

187 
The smallest of a group of 3-digit numbers that require 23 reversals to 
fonn a palindrome. 

196 
196 = 142 has the same digits as 169 = 132. 

Palindromes by reversal 
If 87 is reversed and added to itself, and the process is repeated, then 
after only four steps it produces a palindrome, 4884: 87 + 78 = 165: 
165 + 561 = 726: 726 + 627 = 1353: 1353 + 3531 = 4884. 

This is effectively a statement about the size of the digits at the pre­
vious step. To obtain a palindrome it is sufficient that at the previous 
addition there should be no carries and therefore that the digits of the 
previous stage, taken in pairs from either end, should sum to 9 or 
less. 

Do all numbers become palindromes eventually? The answer to this 
problem is not known. 196 is the only number less than 10,000 that by 
this process has not yet produced a palindrome. P. C. Leyland has 
perfonned 50,000 reversals, producing a number of more than 26,000 
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digits with no palindrome appearing, and P. Anderton has taken this up 
to 70,928 digits, also without success. 

Of the 900 3-digit numbers, 90 are themselves palindromic, 735 require 
from I to 5 reversals only. 

The remaimng 75 numbers can be classed mto Just a few groups, the members of 
which after one or two reversals each produce the same number and are therefore 
essentially the same. One of these groups conSISts of the numbers 187,286,385, 
583,682,781. 869, 880 and 968. each of which when reversed once or twice forms 
1837 and eventually forms the pahndromlc number 8813200023188 after 23 
reversals. [Richard Hamilton) 

Among the first 100,000 numbers there are 5,996 that have been found 
not to create a palindrome. Since the probability that a randomly chosen 
number will have digits that when paired from the ends always sum to 9 
or less clearly decreases with the length of the number, it is plausible to 
suppose that the larger the number, the smaller the chance that a 
palindrome will ever appear. 

In base 2, it is certainly not true that every number eventually generates 
a palindrome. Roland Sprague shows that 10 II 0 never does so. 

199 

199 + 2 IOn for n = 0, I, 2, 3, 4, 5, 6, 7, 8, 9 provides the smallest 8, 9 
and 10 primes in arithmetical progression. 

204 
2042 is the sum of consecutive cubes: 2042 = 233 + 243 + 253 • 

205 
Every number greater than 205 is the sum of distinct primes of the form 
6n + I. 

210 
primorial 7 = 2 x 3 x 5 x 7 

210 is triangular and pentagonal. The smallest such number is, as 
usual, I, and the next smallest is 40,755. 

212 
The boiling point of water in degrees Fahrenheit. 
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216 
216 = 63 is the smallest cube that is also the sum of 3 cubes: 
216 = 33 + 43 + 53. The next smallest is 93 = 13 + 63 + 83 • 

This dissection can be demonstrated physically by dissecting a cube, 
using only 8 pieces. 

216 is the magic constant in the smallest possible multiplicative magic 
square, discovered by Oudeney. 

Plato's number 
The famous and notorious number of Plato occurs in an obscure passage 
in The Republic, viii, 546 8-0, which starts, 

But the number of a human creature is the first number in which root and square 
increases, having received three distances and four limits, of elements that make 
both like and unlike and wax and wane, render all things conversable and rational 
with one another. 

This is merely the beginning of the passage. It illustrates perfectly 
both the intimate relationship that Plato, as a Pythagorean, perceived 
between numbers and the real world, and the difficulty that he had in 
using the then available language to express himself. Mathematical 
language was not well developed in Plato's time, and so he often appar­
ently called upon the resources of everyday language. I say 'apparently' 
because some words in the passage are hardly known in other preserved 
writings and therefore their meaning is especially difficult to interpret. 
(The obscurity is not entirely due to our distance from Plato in time. 
Early Greek commentators also found the passage difficult.) 

The whole passage has been analysed in the minutest detail by in­
numerable commentators. Two numbers are actually involved and the 
smaller it is agreed is 216, though this is variously derived. (The larger is 
12,960,000.) 

The well-known 3-4-5 Pythagorean triangle has area 6. The expression 
'three distances and four limits' is supposed to refer to cubing. Adams 
eventually reaches the conclusion that the number intended in the quoted 
passage is 216 as the sum of the cubes of the sides of the triangle. 
However, it has also been deduced as the cube of 2 x 3. 

2 and 3 were associated with female and male respectively, and 5 with 
marriage. 6 also was associated with marriage, being 2 x 3 rather than 
2 + 3. Given the Pythagoreans' basic belief in the efficacy of numbers in 
interpreting the world, it can hardly be denied that such number-theoretic 
relationships as this support their approach. 
J. Adams, The Republic of Plato, Cambridge University Press, Cambridge, 1929. 
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217 
The second smallest pseudoprime to base 4 (15 is the smallest). 

4216 - I is divisible by 217 although 217 is not prime but 7 x 31. 

219 
There are 219 space groups in 3 dimensions. They are the analogues of 
the 17 basic wallpaper patterns in 2 dimensions, and determine the 
possible shapes of mineral crystals. 

II of them however come in 2 forms, with a left-hand screw or a right­
hand screw. This difference is important in the structure and optical 
properties of crystals, so from this point of view there are 230 space 
groups. 

220 

Amicable numbers 
220 and 284 form the first and smallest amicable pair. Each is the sum of 
the proper divisors of the other: 220 = 22 x 5 x II and its proper 
divisors are I, 2, 4, 5, 10, II, 20, 22, 44, 55 and 110: total 284. 

284 = 22 x 71 and its proper divisors are I, 2, 4, 71 and 142, totalling 
220. 

According to Iamblichus, Pythagoras knew of this pair. However, 
Pythagoras may possibly not be the only ancient wise man to know of 
amicable numbers. Bible commentators point to Jacob's gift of 220 
goats to Esau on their reunion - a friendly gift? 

The brilliant Muslim mathematician, astronomer and physician 
Thabit ibn Qurra described in his Book on the Determination of Amicable 
Numbers Euclid's rule for perfect numbers, means of constructing 
abundant and deficient numbers, and the first rule for constructing 
amicable numbers, from which he deduced Pythagoras' pair, or per­
haps more probably, the factors of 220 and 284 suggested the form of 
his rule: 

Find a number, n, greater than I, that makes these three expressions 
all prime: 

a = 3 x 2" - I b = 3 x 2"-1 - I c = 9 X 22"-1 - I 
Then the pair 2" x a x band 2" x c will be amicable. 

The smaller of any Thabit pair is a tetrahedral number. 220 is the 10th 
tetrahedral. Lee and Madachy suggest that it may be significant that the 
first perfect number, 6, equals I x 2 x 3; the smallest multiply perfect, 
120, is 4 x 5 x 6 and the sum of 220 and 284 is 504 = 7 x 8 x 9. They 
comment that the Babylonians are known to have constructed tables 
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of the products of 3 consecutive numbers, which are just 6 times the 
tetrahedral numbers. 

There is an obvious similarity to Euclid's rule for even perfect numbers. 
However, Thabit's rule does not give all amicable pairs. Indeed, it is 
one of a number of similar pattcrns that generate amicable pairs. It is 
also very difficult to usc, because it involves making 3 expressions 
prime simultaneously. Thabit ibn Qurra himself found no new pair. In 
fact his rule works for n = 2, 4 and 7, but for no other values below 
20,000. 

The second pair, 17,296 and 18,416, was discovered by another Arab, 
Ibn al-Banna. It is Thabit's rule for n = 4. This pair was then re­
discovered in 1636 by Fermat who also rediscovered Thabies rule, as did 
Descartes who produced a third pair, 9,363,584 and 9,437,056, two years 
later. This is the Thabit formula for n = 7. 

Euler was the first mathematician successfully to explore amicable 
numbers and find many examples, more than 60. His methods are still 
the basis for present-day exploration. 

Well over a thousand pairs of amicable numbers are now known, 
including all possible pairs in which the smaller number is less than a 
million. 

The largest, discovered by te Riele, is the pair: 34 x 5 x II X 5281 19 

x 29 x 89(2 x 1291 x 5281 19 - I) and 34 x 5 x II X 5281 19(23 x 
33 X 52 x 1291 X 5281 19 - I), each of 152 digits. 

The methods of te Riele also allow him to generate new amicable pairs 
from old. Applied to a sample of amicable pairs, he obtained more than 
one 'daughter pair' per 'mother pair', which suggests that perhaps the 
number of amicable pairs is infinite. 

Clearly the greater member of an amicable pair is deficient. Also, 
neither member of an even-even pair is divisible by 3. 

In every case the numbers in a pair are either both even or both odd, 
though no reason is known why an even-odd pair should not exist. 

Every pair also has a common factor. It is not known if a pair of 
coprime amicable numbers exists. If it does, then even in the most 
favourable case, in which their product is divisible by 15, that product 
itself must exceed \067. If they do, they will not of course be constructed 
on Thabit's pattern, or any similar pattern. 

The numbers in every known odd-odd pair are also multiples of 3, 
so numerous mathematicians have naturally conjectured that this is a 
general rule. 

In 1968 Martin Gardner noticed that the sum of every even pair was 
divisible by 9 and naturally conjectured that this too was always so. It 
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isn't, but counter-examples are rather rare; Elvin Lee gave the example 
666030256, 696630544, originally discovered by Poulet. 

Most amicable numbers have many different factors. Is it possible for 
a power of a prime, p. to be one of an amicable pair? If it is, then p";s 
greater than 101500 and n is greater than 1400. 

A generalization of amicable pairs is amicable triplets, in which the 
proper divisors of anyone number sum to the sum of the other two. 
Beiler gives this example: 25 x 3 x 13 x 293 x 337; 25 x 3 x 5 x 13 
x 16561; 25 x 3 x 13 x 99371. 

E. J. Lee and J. Madachy, 'The History and Discovery of Amicable Numbers', 
parts I and 2, Journal of Recreational Mathematics, vol. 5. 

232 
232, 233 and 234 is the smallest triple of consecutive numbers each of 
which is the sum of 2 squares, and therefore the hypotenuse of a 
Pythagorean triangle: 

232 = 62 + 142 233 = 82 + 132 234 = 32 + 152 
It is not possible to have 4 sueh consecutive numbers. 

239 
239 = 2 x 43 + 4 X 33 + 3 X 13 

Together with 23, the only numbers that cannot be represented in fewer 
than 9 cubes. It also needs 19 4th powers to represent it. 

240 
No number below 1,000,000 can have more than 240 divisors. 5 numbers 
have this many: 

242 

720720 = 24 x 32 X 5 x 7 x 11 x 13 
831600 = 24 x 33 X 52 X 7 x II 
942480 = 24 x 32 X 5 x 7 x II x 17 
982800 = 24 x 33 X 52 X 7 x 13 
997920 = 25 x 34 X 5 x J x II 

The numbers 242, 243, 244 and 245 each have 6 divisors. 

243 
243 = 35 , and is therefore 100,000 in base 3. 
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251 
The smallest number that is the sum of 3 different cubes in two ways: 
251 = 13 + 53 + 53 = 23 + 33 + 63. 

256 
256 = 28 or 1,000,000 in binary and 100 in hexadecimal. 

257 
257 = 44 + I and is prime. The only known primes of the form n" + I 
are when n = I, 2 and 4. It has been shown that if there are other primes 
of this form, they must have more than 300,000 digits. [Madachy] 

Fermat numbers 
257 is the 3rd Fermat number, equal to 22' + I. 

Fermat in 1640, writing to Frenicle, stated that 2" + I is composite if 
n is divisible by an odd number, and then asserted that every number 
F" = 22" + 1 is prime, although he could not prove this. 

He later sent the problem to Pascal, commenting, 'I wouldn't ask you 
to work at it if I had been successful.' Pascal did not take it up and it was 
Euler who first showed that Fermat was wrong. 

The first 4 values, starting with Fo, are prime: Fo = 21 + 1 = 3; 
F 1 = 22 + I = 5; F 2 = 24 + I = 17; F 3 = 28 + I = 257, and it is not 
difficult to show that F4 = 216 + I = 65,537 is prime, but the problem 
from then on is far more difficult, because the numbers increase in size 
so rapidly, more rapidly than any sequence that mathematicians had 
previously studied. 

Fermat turned out to be mistaken, the only occasion on which he is 
known to have been wrong in his conjectures, though it is just possible 
that his Last Theorem may eventually turn out to be false. 

Euler, in 1732, showed that Fs = 232 + I = 4,294,967,297 = 
641 x 6700417. In 1747 he showed that any factor ofa Fermat number 
F" is of the form k x 2n + I + I, which leads very quickly to the 
same factorization of F s. He also found the same factor by using binary 
notation, one of the first uses of binary numbers in a mathematical 
proof. 

Over a century later, in 1880, F. Landry, who factorized many numbers 
of the forms 2" + 1 and 2" - I, showed that F6 = 264 + I is the 
product of 2 primes: 274177 and 67280421310721. 

However, Pervusin had already discovered that F 12 is divisible by 
7 x 214 + I = 114689. The Fermat numbers, like the Mersenne 
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numbers, had become an ideal testing ground for primality tests and 
methods of factorization. 

It is worth commenting that the problem of factorizing a number 
almost certainly has the unique distinction of being the easiest to state 
very very hard problem in all of mathematics. A child can multiply small 
numbers together, or large numbers given patience and care, and the 
reverse problem is perfectly obvious in principle, yet extraordinarily 
difficult in practice. 

John Brillhart, who has himself made a distinguished contribution to 
the subject, quotes Gauss, in Disquisitiones Arithmeticae: 

The problem of distinguishing prime numbers from composite numbers and of 
resolving the latter into their prime factors is known to be one of the most 
important and useful in arithmetic. It has engaged the industry and wisdom of 
ancient and modern geometers to such an extent ... The dignity of the science 
itself seems to require that every possible means be explored for the solution of a 
problem so elegant and so celebrated. 

To return to Fermat, it already appeared plausible that he was, un­
fortunately, totally wrong, that there are no prime Fermat numbers 
beyond F 4' Ideally, mathematicians sought for a complete factorization 
into primes, but often had to be satisfied, at least initially, with finding 
one factor, or proving that a particular F. was composite, without 
actually producing any factor at all. 

Thus, in 1909, Moorhead and Western proved that F7 and Fs are 
composite, without producing any factors. Such tests are easily per­
formed today on computers using this criterion, which is similar to 
Lucas's test for the primality of Mersenne numbers: 

F. is prime if and only if it divides 3HF.- I) + I. 
The problem of F7, which has 39 digits, illustrates very well the differ­

ence between using such a test and actually finding a factor. Not until 
1970 did Morrison and Brillhart find its two prime factors: 
F7 = (29 x 116503103764643 + 1)(29 x 11141971095088142685 + I). 

In contrast, a factor of the giant F 1945 is known, and more recently, in 
1980, it was announced that 19 x 29450 + I is a factor of F944S ' As 
Coxeter remarks, F I945 could never actually be written down because 
the number of digits far exceeds Eddington's estimate of the number of 
particles in the entire universe! How large then is F944S? Yet it can be 
defined - it just has been - using only 5 symbols. 

Fermat numbers are now known to be composite for all n from 5 to 19 
inclusive and for many larger values of n, though only F 5, F 6, F 7 and F s 
have been completely factored. 
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F 8 was finally conquered in 1981 when Brent and Pollard found the 
prime factor, 1,238,926,361,552,897, for which they suggested the 
mnemonic: 'I am now entirely persuaded to employ the method, a 
handy trick, on gigantic composite numbers.' The handy trick refers 
to their use of a Monte Carlo method, which as the name suggests 
uses a sophisticated version of throwing dice to discover the missing 
factor. How charming when chance is used to find a very definite 
number! 

Only one factor of the next, F9 , is known, the one that was found in 
1903 by Western, and for very many values no factor at all has been 
discovered. 

Fermat numbers have other properties, apart from being apparently 
almost all composite. 

F'+ I = FoFIF2 ... F._I + 2, from which it follows that 2 Fermat 
numbers can have only a common factor of 2, which is impossible. 
Therefore they are all coprime, which proves incidentally that there is an 
infinite number of primes. 

No F. is triangular, except Fo = 3, and no Fermat number is a 
square or a cube. 

Gauss proved that a regular polygon with a prime number of sides can 
be constructed only if that number is a Fermat prime. Paucker gave the 
equations for constructing a regular 257-gon in 1822. 

265 
Subfactorial 6 

276 

Aliquot sequences 
In a sociable chain the sum of the divisors of each number, excluding 
itself, leads to the next number and so on, eventually returning to the 
starting number. 

What happens if an arbitrary number is taken, and its sum of divisors 
calculated, and then the sum-of-divisors of the result, and so on? 

Such a sequence is called an aliquot sequence. Some aliquot sequences 
may increase, on average, for ever. Some will enter a sociable chain and 
revolve for ever. Indeed, every known sociable chain is the end of some 
aliquot sequence. Curiously, many aliquot sequences end up in 
Paganini's amicable pair 1184, 1210. 

Catalan and then Dickson conjectured that all such sequences are 
bounded, though, according to Guy, heuristic arguments and experi-
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mental evidence suggest that some sequences, perhaps almost all those 
starting with an even number, go to infinity. 

te Riele has produced a sequence of this type that increases for more 
than the first 5000 terms. 

276 is a test case for the conjecture. It is the smallest number whose 
final destination is unknown since D. N. Lehmer showed that 138, after 
rising to 17,99318,95322 after 117 steps, reached I after 177 steps. [Guy] 

Lehmer and others have shown that 276 after 469 steps has produced 
the 45-digit number, 149,384,846,598,254,844,243,905,695,992,651,412, 
919,855,640. 

What happens 'in the end'? No one knows. 

284 
With 220, the first pair of amicable numbers. 

297 

Kaprekar numbers 
The 5th Kaprekar number. When an n-digit Kaprekar number is squared 
and the right-hand n digits are added to the left-hand II or n - I digits, 
the result is the original number: 2972 = 88209 and 88 + 209 = 297. 

The first few Kaprekar numbers are I, 9, 45, 55, 99, 297, 703, 999, 
2223, 2728, 7272, 7777 ... 

Note that I + 9 = 10, 45 + 55 = 100 and so on. 
142857 is Kaprekar. So is I, III, III, III, the smallest Kaprekar 

number of 10 digits whose square is 12345678900987654321. 
If a cyclic permutation of a Kaprekar number is squared and the 

'halves' added, the result is a cyclic permutation of the original number. 
For example, 972 is a cyclic permutation of 297. 9722 = 944784 and 
784 + 944 = 1728. 

The 'adding halves' process must now be completed by adding I to 
728. The result, 729, is another, different, cyclic permutation of 297. 

Similarly, 7272 is Kaprekar; its only distinct cyclic permutation is 
2727: 27272 = 7436529 and 743 + 6529 = 7272. 

297 is also a Kaprekar 'triple', because 2973 = 026,198,073 and 
026 + 198 + 073 also equals 297. 

Kaprekar numbers are related to repunits. If the n-digit number X is 
Kaprekar, then X2 - X is a multiple of the n-digit repunit 10" - I. 

306 
R. William Gosper, wishing to choose a number more or less at random 
as a test for a new method of calculating roots based on continued 
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fractions, picked on 306 and calculated its 7th root to 2,800 digits. It 
starts, 2·26518 ... 

F. Gruenberger, 'Computer Recreations', Scientific American, April 1984. 

319 
319 cannot be represented as the sum of fewer than 19 4th powers. 

325 
325 = 5 x 5 x 13 is the smallest number to be the sum of two squares 
in 3 different ways: J2 + 182, 62 + 172 and 102 + 152 • 

331 
Given any number M, there is a power of two, say 2", such that M - 2" 
or M + 2" has only prime factors greater than or equal to 331. 

F. Cohen and J. L. Selfridge, 'Not Every Number is the Sum or Difference of 
Two Prime Powers', Mathematics oj Computation, vol. 29. 

341 
341 = II x 31 is the smallest pseudoprime to base 2. 

That is, 2340 - I is divisible by 341, although 341 is composite not 
prime. 

The ancient Chinese believed that if n divides 2"-1 - I, then n is 
prime. So did Leibniz, but this is not so, as Pierre Sarrus first pointed 
out. 

Pseudoprimes are quite rare. There are 882,206,716 primes less than 
20,000,000,000. In the same range Selfridge and Wagstaff calculate that 
there are only 19,865 pseudoprimes to base 2. 

C. Pomerance, 'The Search for Prime Numbers', Scientific American, December 
1982. 

353 
3534 is the smallest 4th power that is the sum of 4 other 4th powers, 
discovered by Norrie in 1911: 3534 = 304 + 1204 + 2724 + 3154. 

360 
The number of degrees in a full circle. The Zodiac was first divided into 
360, no doubt by the division of each of the 12 signs into 30 equal parts. 

The Greek astronomer Hipparchus first divided a general circle into 
360 degrees. 

Approximately the number of days in one year, divided roughly into 
12 months of 30 days each. 
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365·2422 

The calendar 
The approximate number of days in a year, equal to 365 days 5 hours 48 
minutes and 46·08 seconds. 

This is the time taken for the earth to make one revolution of the sun. 
Every civilization has related it to the period of the moon's phases, for 
example the time between two new moons, which is approximately 
29·530588 days, or 29 days 12 hours 44 minutes and 2·8 seconds. 

Unfortunately, the relation cannot be a very simple one. It is coinci­
dental that the length of the year in days is so close to the very round 
number, 360, which happens to be very close to 12 times the period of 
the moon. 

Such coincidences are helpful, but not enough, and immense ingenuity 
has been devoted to accounting for the differences. 

In the Julian calendar the ordinary years have 365 days but every year 
whose number is divisible by 4 has an extra day, the 29th February, 
making a total of 366 days. The average Julian year has therefore 365·25 
days and is one day out approximately every 128 years. 

The Gregorian calendar, which is used today in most parts of the 
world, is a small but significant improvement on the Julian. All years 
divisible by 100 are ordinary years, not leap years, with the exception of 
years divisible by 400, which remain leap years. The Gregorian calendar 
contains one too many days every 3333 years, and so will not require 
adjustment until long after we are all dead. 

In the Soviet Union, however, they use an even more accurate 
calendar, introduced in October 1923. All years are ordinary years except 
those which when divided by 9 leave either 2 or 6 as remainder. This 
calendar contains one day too many after 45,000 years. 

The Julian and Gregorian calendars are based on the length of the 
year and therefore on the sun. Given any day of the year, we can tell 
fairly accurately the position of the sun in the sky, but not the position 
of the moon. 

The Muslim calendar in contrast gives the moon precedence. It has 12 
months of alternately 30 and 29 days. In a leap year the last month has 
an extra day. The ordinary year has only 354 days and a leap year 355 
days, so the start of the Muslim year moves steadily through the Gre­
gorian year, and conversely. 

The Jewish year is a combination of solar and lunar years. The basic 
year is a lunar year of 12 months that are alternately of 30 and 29 days, 
but when the error amounts to a full month, a 13th month is inserted 
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into that year. This makes it the most complicated by far of all calen­
dars. 

The complications that are introduced when the solar year and the 
lunar month are considered together are well illustrated by the manner 
in which the date of Easter, which depends on the position of the 
moon, jumps around in the Christian year. The great Karl Friedrich 
Gauss demonstrated his insight into numbers by constructing simple 
formulae for calculating the date of the Christian Easter festival, and 
also, which is even more difficult, the date of the Jewish festival of the 
Passover. 
W. A. Schocken, The Calculated Confusion of Calendars, Vantage Press, New 
York, 1976. 

370 
Like 371 and 153, equal to the sum of the cubes of its digits. 

371 
371 equals the sum of the cubes of its digits. 

399 
399 needs 19 4th powers to represent it. 

400 
400 = 202 = I + 7 + 72 + 73 

In other words, the sum of the divisors of 73 is a square. The sum of 
the divisors of 400 is also a square: 961 = 3 J2. 

400 is also the product of all the proper divisors of 20. 

407 
407 = 43 + 03 + 73 

462 
The second smallest number whose square ends in the digits 444: 
4622 = 213444. 

484 
484 = 222 
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45 is the palindromic square of a palindromic square root. 

492 
492 is the sum of 3 cubes, one or two of which may be negative, in no 
fewer than 10 ways. [Madachy] 

495 
Take any 3-digit number whose digits are not all the same. Arrange its 
digits in ascending and descending order and subtract. Repeat. This is 
called Kaprekar's process. 

All 3-digit numbers eventually end up with 495, and stick there, since 
954 - 459 = 495. 

496 
The 3rd perfect number. 496 = 16 x 31 = 24 (25 - I) is equal to the 
sum of all its proper divisors, I + 2 + 4 + 8 + 16 + 31 + 62 + 
124 + 248 = 496. 

Thomas Greenwood noticed that I more than an even or 2 less than 
an odd triangular number whose index is prime is often a prime number. 
T31 = 496, the 31st triangular number, is the first counter-example. 31 
is prime, but 497 is divisible by 7. 

499 
499 = 497 + 2 and 497 x 2 = 994, its reversal. 

500 
Denoted by the letter D in Roman numerals. 

504 
504 is equal to both 12 x 42 and 21 x 24. 

There are thirteen such 2-digit pairs, the largest being 
36 x 84 = 63 x 48 = 3024. 

512 
512 = 29 

It is therefore, 1,000,000,000 in binary and 1,000 in octal. 
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512'73 

512'73 

Numerology 
512·73 is the Dewey Decimal classification, under the general class '510 
mathematics' for 'number theory: analytic'. 

When Martin Gardner wrote The Numerology of Dr Matrix, the 
Dewey classification for 'number theory' was, as he pointed out, 512'81, 
whose two halves are respectively 29 and 92 . 

No doubt because this trivial piece of numerology has been found out, 
the authorities have since changed 'number theory' to 512·7 and given 
this new number, 512'73, to analytic number theory, whose first clas­
sification is, significantly, transcendental numbers. I shall now illuminate 
the profound significance of 512·73 for the benefit of the uninitiated. 

First, I subtract it from 666, the Number of the Beast in the Book of 
Revelation: 666 - 512·73 = 153·27. 

Behold! The same digits appear, but rearranged, symbolizing the effect 
of removing evil from the world. The first number is now 153, the 
number of fishes hauled from the sea by Peter, which was so eloquently 
interpreted by St Augustine. The second number is now the sacred 
number 3, raised to its own power. 153 is also associated with the sacred 
3. Not only is its sum of digits equal to 9, which is 3 times itself, but it is 
the sum of the 3rd power of its own digits. The significance of 3 appears 
in the Dewey Decimal System. Divide the Number of the Beast by 3, and 
you obtain 222, the classification of the Old Testament. Add 3, and you 
obtain 225, the New Testament. Add 3 again, and you obtain 228, which 
is the Book of Revelation. 

And so on, and on, and on, and on, and on ... 
I trust this illustrates how an hour's worth of jiggery-pokery with a 

selection of numbers (choose the ones you want, ignore the rest) will 
produce out of the hat any number you desire ... 

527 
For any number n, it is possible to choose at most 6 numbers less than n 
such that the product of their factorials is a square. 

527 is the smallest number that actually requires the maximum 6 
numbers to be chosen. [Le Lionnais] 

559 
This is the largest number less than 4100 that requires 19 4th powers for 
its representation. 
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561 
561 = 3 x II x 17 is the smallest Carmichael number, otherwise called 
an absolute pseudoprime, meaning that it is a pseudoprime to any base 
at all. 

In other words, aS60 - I is divisible by 561, whatever the value of a. 
R. D. Carmichael proved in 1912 that every Carmichael number is the 

product of at least 3 odd primes. It is now known that n is a Carmichael 
number if and only if it is the product of at least 3 different odd primes, 
P.,P2,PJ ... and for everyone of these factors n - I is divisible by 
Pi - I. 

It is widely believed, but not proven, that there are an infinite number 
of Carmichael numbers, though they are rare. 

The sequence of Carmichael numbers continues, 1105 1729 2465 
2821 6601 8911 10585 ... 

563 
According to Wilson's theorem, (p - I)! + I is divisible by P ifand only 
if P is prime. Very occasionally, it is also divisible by p2. The only such 
values below 200183 are 5, 13 and 563. [Beiler] 

567 
5672 = 321489 

This equation uses each of the digits I to 9, once each. 
The only other number with this property is 854. 

587 
The start of a sequence of 11 primes, formed by trebling each number in 
turn and adding 16. * 

587 1777 5347 16057 48187 144577 433747 1301257 3903787 
11711377 35134147 

593 
Wilhelm Fliess, a friend and correspondent of Sigmund Freud, believed 
that just about any phenomenon in the world could be explained by 
combinations of the numbers 23 and 28. 

If he had been a better mathematician, he would have realized that all 
but a finite set of numbers can be represented in the form 23n + 28m, n 
and m both positive. 593 = 23 x 28 - 23 - 28 happens to be the largest 
number that cannot be so represented. 

• Journal oJ Reaeational Mathematics, vol. 13. 

157 



625 

There is nothing special about the choice of 23 and 28. Any two 
numbers that have no common factor may be chosen. 

625 
625 = 54 

Because 6252 ends in the same digits, 390625, any power of 625 ends 
in the same digits. 

54 = 24 + 24 + 34 + 44 + 44 is the smallest 4th power to be the sum 
of 5 other 4th powers. 

641 
Euler found the first counter-example to Fermat's conjecture that 
22' + I is always prime, when he discovered in 1742 that 22 ' + 1 is 
divisible by 641. 

All factors of 22' + 1 are of the form k x 2" + I + I. In this case, 
641 = 10 x 26 + I. 

645 
The second smallest pseudoprime to base 2: 2644 - I is divisible by 645 
although 645 = 3 x 5 x 43 is composite. 

651 
651 4 = 2404 + 3404 + 4304 + 5994 is the second smallest solution, 
following 3534, for a 4th power as the sum of 4 other 4th powers. 

651 has the unusual property that 651 x 156 is equal to another 
product of the same pattern, 372 x 273. 
A. A. K. Iyangar, Scripta Mathematica, 1939. 

666 
The 36th triangular number (666 = t x 36 x 37) and the Number of 
the Beast in the Book of Revelation: 'Here is wisdom. Let him that hath 
understanding count the number of the beast; for it is the number of a 
man, and his number is six hundred, three score and six.' 

A number beloved of occultists, who throughout the ages have used 
gematria to find the Number of the Beast in the names of their enemies, 
political or theological. 

The fact that some ancient authorities give the number as 616 has not 
deterred them. With a little ingenuity, both numbers can be found instead 
of just one. 

Peter Bungus made Luther equal to 666, by using the old system, 
which counts A-I as 1-9, K-S as 10-90, and T-Z as 100-500. Bungus 
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read Luther's name as Martin Luthera, half German and half Latin, a 
typical bit of skulduggery, but Bungus was an expert. He wrote a dic­
tionary of numerological symbolism. 

666 in Roman numerals is DeL X V I, which has led to the suggestion 
that this is the origin of 666. It could merely be a way of expressing some 
large, or vague, number. 

672 
The second triperfect number, after 120: 672 = 25 x 3 x 7 and the sum 
of its divisors is 3 x 672 = 2016. 

676 

The smallest palindromic square whose square root is not palindromic: 
676 = 262 • 

679 
The smallest number with multiplicative persistence equal to 5. 

The product of its digits is 378, the product of whose digits is 168, 
which generates 48, which generates 32, which generates 6, a total of 5 
steps. 

680 
680 is the smallest tetrahedral number to be the sum of two tetrahedral 
numbers: 680 = 120 + 560. 

714 
On April 8, 1974, in Atlanta, Georgia, Henry Aaron hit his 715th major league 
homerun, thus eclipsing the previous mark of 714 long held by Babe Ruth. This 
event received so much advance publicity that the numbers 714 and 715 were on 
millions of lips. Questions like, 'When do you think he'll get 715?' were perfectly 
understood, even with no mention made of Aaron, Ruth or homerun. In all the 
hubbub it appears certain interesting properties of 714 and 715 were overlooked 

wrote C. Nelson, D. E. Penney and C. Pomerance in The Journal of 
Recreational Mathematics, 1974. 

The authors note some very unusual properties indeed. First, 
714 x 715 = 510510 = 2 x 3 x 5 x 7 x II x 13 x 17, which is pri­
morial 17, the product of all the primes up to and including 17. They 
discovered on computer that only primorial I, 2, 3, 4 and 7 can be 
represented as the product of consecutive numbers, up to primorial 
3049. 

They further notice that (J (714), which is defined as the sum of the 
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divisors of 714 including itself, is a perfect cube, and that the ratio 
a(714)/cp(714) is a perfect square. Finally they notice that 
714 + 715 = 1429 which has the property that 6 arrangements of its 
digits are prime numbers. 

719 
719 = 6! - I, and is prime. 

n! - I is prime for n = 3,4,6, 7, 12, 14, 30, 32, 33, 38, 94, 166,324, 
379, 469, and no other number bclow 546. 

720 
720 = 6! and is also the product of consecutive integers in 2 ways: 
720 = 10 x 9 x 8 = 6 x 5 x 4 x 3 x 2 

729 
93 and the second smallest cube to be the sum of 3 cubes: 
93 = J3 + 63 + 83. 

Since 63 = 33 + 43 + 53, 93 is also the sum of 5 cubes. 
729 = 36 and therefore is 1,000,000 in base 3. 
729 is another mysterious number in Plato's Republic: 

... if one were to express the extent of the interval between the king and the 
tyrant in respect of true pleasure he will find on completion of the multiplication 
that he lives 729 times as happily and that the tyrant's life is more painful by the 
same distance. 

729 was of great significance to the Pythagoreans, being 272 • Plato 
combined the two sequences of powers of 2 and 3 as far as the cubes to 
form the sequence I 2 3 4 8 9 27. In this series 27 is the sum of 
all the preceding members. 

C. A. Browne interprets the number in terms of a magic square 27 by 
27, whose central cell is occupied by 365, the number of days in the year 
(729 = 364 + 365).· 

1/729 has a decimal period of 81 digits, which can be arranged in 
groups of 9 digits, reading across each row, in this pattern: t 

• w. S. Andrews. Magic Squares and Cubes, Dover, New York. 1960. 
tV. Thebault, Scripta Mathematica, vol. 19. 
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780 

001 371 742 
112482 853 
223 593 964 
334 705 075 
445 816 186 
556 927 297 
668 638 408 
779 149 519 
890 260 631 

945 

780 and 990 are the second smallest pair of triangular numbers whose 
sum and difference (1770 and 210) are also triangular. 

818 
818 to 831 is the largest gap between two semi-primes less than 1000. 

836 
Almost all numbers with palindromic squares seem to have an even 
number of digits. 836 is the first with an odd number: 8362 = 698896. It 
is also the largest number below 1000 whose square is palindromic. 

840 
840 = 23 x 3 x 5 x 7 

It is the number below 1000 with the largest number of divisors: 
25 = 32. 

854 
8542 = 729316, a sum that uses all the digits 1-9 once each. 

873 
873 = I! + 2! + 3! + 4! + 5! + 6! 

880 
There are exactly 880 magic squares of order 4, provided that all rotations 
and reflections of the same square are counted as one. 

945 
The first odd abundant number, discovered by Bachet. It is also semi­
perfect. 

945 = 33 x 5 x 7 and its divisors sum to 975. 
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981 

Odd abundant numbers are quite rare. There are only 23 of them 
below 10,000. 

981 
The only known example of 5 triplets of numbers such that the sums of 
each triplet are equal and their products also are equal, is: 6, 480, 495; 
II, 160,810; 12, 144,825; 20, 81, 880; 33,48,900. 

The sum of each triplet is 981, and their common product 1425600. 
[Guy] 

999 
The minimum sum of pandigital 3-digit primes, 149 + 263 + 587 
= 999. 

9992 = 998001 and 998 + 001 = 999, so 999, like all numbers whose 
digits are all 9s, is Kaprekar. 

In fact, any multiple at all of 999 can be separated into groups of 3 
digits from the unit position, which when added will total 999. 

The same principle applies to multiples of 9 99 9999 and so on. 
999 = 27 x 37 and so 1/27 = 0·037037 ... and 1/37 = 0·027027 ... 

1000 
1000 = 103 in any base at all. 

1001 
1001 = 7 x II x 13 

This is the basis for a test of divisibility that will test for all three 
divisors simultaneously. 

Mark off the number to be tested in groups of 3 digits from the unit 
position. Large numbers are more often than not already written in this 
manner, for example, 68,925,857. 

Add the first, third, fifth groups and take away the total of the second, 
fourth ... groups. The number will be divisible by 7, or I I or 13, if the 
result is divisible by 7, II or 13 respectively: 68 + 857 - 925 = O. 

1024 
1024 = 210 and therefore the smallest number with 10 prime factors. 

Although kilo- in the metric system usually means a thousand, as in 
kilogramme, I K of memory in a computer means 1024. It is a neat 
coincidence that 210 is so close to 103 • 

162 



1127 

1089 
1089 x 9 = 9801 

The same property is true of 10989, 109989 and so on. 
1/1089 = 0·0009182736455463728191 00091 ... [N. Goddwin] 
If a 3-digit number is reversed and the result subtracted, and that 

answer added to its reversal, the answer is always 1089: 623 - 326 = 297 
and 297 + 792 = 1089. 

Note the middle digit, 9, and the fact that 1089 = 999 + 90. 
The only other number of 4 or fewer digits whose reversal is a multiple 

of itself is 2178 = 2 x 1089. This number and 1089 were cited by G. H. 
Hardy as examples of non-serious mathematics. 

1089 = 332 = 652 - 562 
This is the only 2-digit example of this pattern. 

1093 
21092 - I is divisible by 10932. 

Only one other number is known below 6 x 109 with this property, 
3511. 

In 1909 Wieferich created a sensation by proving that if Fermat's 
equation, xP + yP = zP, has a solution in which p is an odd prime 
that does not divide any of x, y or z, then 2P- 1 - I is divisible by 
p2. 

As facts about Fermat's Last Theorem go, this is remarkably simple. 
That 1093 and 3511 are the only solutions below 6 x 109 means that 
only these two cases of Fermat's theorem need to be considered, below 
that limit, if p does not divide xyz. 

II OS 
1105 = 5 x 13 x 17 is the product of the first 3 primes of the form 
4n + I, and is the sum of 2 squares in 4 different ways. 

1111 
1111 = 562 - 452 following II = 62 - 52. The pattern continues, 
5562 - 4452 = 111,111 and so on. 

Similarly, 72 - 42 = 33, 672 - 342 = 3333 and so on and 
82 - 32 = 55, 782 - 232 = 5555 and so on ... 

1127 
Thebault gives 11272 = 01270129 as an example ofa square that consists 
of two consecutive odd or even numbers juxtaposed. 
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1141 

He quotes the 'matching' number 88742 = 78747876, noting that 
1127 + 8874 = 10001, and other pairs with the same property. 
V. Thebault, Scripta Mathematica, vol. 13. 

1141 
1141 6 = 746 + 2346 + 4026 + 4746 + 7026 + 8946 + 10776 

This is the smallest known solution for a 6th power as the sum of 7 
other 6th powers. 

1184 
With 1210, the second smallest pair of amicable numbers, discovered in 
1866 by Nicolo Paganini when he was a 16-year-old schoolboy, having 
been previously missed by Descartes, Fermat, Euler and many others. 

1201 
'The number 1201 seems to be the smallest prime which can be expressed 
in the form x 2 + ny2 for all values of n from I to 10.' 
lekuthiel Ginsberg, Scripta Mathematica, vol. 8. 

1210 
With 1184, Paganini's pair of amicable numbers. 

1225 
1225 = 352 = t x 49 x 50 

It is the second number to be simultaneously square and triangular. 
The next two are 2042 and 11892. 

1233 
1233 = 122 + 332 

B. S. Rao finds such numbers by expressing a number of the form 
n2 + I as the sum of 2 squares in another way. 

Another example is 8833 = 882 + 332. 
Mathematics Magazine, vol. 57. 

1375 
1375, 1376 and 1377 is the smallest triple of consecutive integers, each of 
which is divisible by a cube, apart from I. 
Eureka, 1982. 
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1444 
1444 = 382 

It is the smallest square ending in the repeated digits -444. 
The next is 4622 = 213444. 
The general formula is (500n ± 38)2 = ... 444. [Beiler] 

1729 

1444 is also the 4th square whose digits form two other squares jux­
taposed, 1444 = 144:4. 

1540 
One of only 5 numbers that are simultaneously triangular and tetra­
hedral. 

It is the 55th triangular number and the 20th tetrahedral. 

1549 
1549 is the only odd number below 10,000 that is not the sum of a prime 
and a power. 

1634 
1634 = 14 + 64 + 34 + 44 

1675 
Reversed and added, starting with 1675 + 5761 = 7436, a total of 4850 
times, it produces a 2000-digit number without producing a palindrome. 

1681 
1681 = 4)2 

The only 4-digit square whose 2-digit 'halves' are also squares, apart 
from the obvious set, 1600, 2500 ... 8100. 

1728 
1728 = 123 and therefore equal to 1000 in the duodecimal system, and 
the number of cubic inches in a cubic foot. 

1729 
Among the most famous of all numbers, due to an incident described by 
G. H. Hardy. Ramanujan, Hardy writes, 

could remember the idiosyncrasies of numbers in an almost uncanny way. It 
was Littlewood who said that every positive integer was one of Ramanujan's 
personal friends. I remember going to see him once when he was lying ill in 
Putney. I had ridden in a taxi-cab No. 1729, and remarked that the number 
seemed to me a rather dull one, and that I hoped it was not an unfavourable 
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1760 

omen. 'No,' he reflected, 'it is a very interesting number; it is the smallest number 
expressible as the sum of two cubes in two different ways.'-

1729 = 123 + P = 103 + 93 

Hardy then asked Ramanujan whether he knew the answer to the 
same problem for 4th powers, Ramanujan thought for a moment, and 
replied that he did not, but it must be very large. 

This property of 1729 was found by Frenicle, a brilliant calculator, 
who in reply to a challenge from Euler gave five solutions: 93 + 103 = 

123 + P; 93 + 153 = 23 + 163 ; 15 3 + 33 3 = 23 + 343 ; 163 + 333 = 
93 + 343 and 193 + 243 = 103 + 273 • 

1729 is also Harshad, that is, it is divisible by the sum of its own digits: 
1729 = 19 x 91. 

It is also the 3rd Carmichael number. 

1760 
I statute mile = 1760 yards = 320 rods, poles or perches = 8 furlongs. 

1782 
1782 is equal to 3 times the sum of all the 2-digit numbers that can be 
made from its digits, I, 7, 8 and 2. 

1854 
1854 is subfactorial 7, or !7. 

1980 
1980 - 0891 = 1089 

This is one of only 5 patterns in which subtracting a 4-digit number 
from its reversal leaves the digits rearranged. 

The others are 5823 - 3285 = 2538; 3870 - 0783 = 3087; 2961 -
1692 = 1269 and 9108 - 8019 = 1089. 

2025 
2025 = 452 and 20 + 25 = 45, which is therefore a Kaprekar number. 

When each of its digits is increased by I, 2025 becomes 3136, which is 
also a square, 562 • 

A matching pair of 2-digit squares are 25 and 36. 

• G. H. Hardy, Ramanujan, Cambridge University Press, Cambridge, 1940. 
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2520 

2047 
2047 = 211 - I, and is therefore the 11th Mersenne number. It is the 
first Mersenne number with a prime exponent, which is composite: 
2047 = 23 x 89. 

2178 
2178 x 4 = 8712, its own reversal. 

The same pattern works for 21978, 219978, and so on. 
2178 is a 4th-order digital invariant, switching to 6514 and back: 

24 + 14 + 74 + 84 = 6514 and 64 + 54 + 14 + 44 = 2178. 

2187 
2 I 87 = J1 or 10,000,000 in base 3. 

2201 
This is the smallest non-palindromic root of a palindromic cube: 
220P = 10,662,526,601. 

2240 
The number of pounds in an English ton. In America, the number of 
pounds in a long ton, the short ton being of 2000 Ibs. 

I ton = 2240 Ibs = 160 stone = 80 quarters = 20 hundredweight 

2310 
Primorial I I = 2 x 3 x 5 x 7 x I I and therefore the smallest number 
with 5 different prime factors. 

2333 
23332 = 5442889, following the pattern 32 = 9, 23 2 = 529, 
2332 = 54289 and so on. 

2520 
2520 = 23 x 32 X 5 x 7 is the sum of 4 of its own divisors in 6 ways, 
the maximum possible. 

The six combinations of factors are: 1260,630,504, 126; 1260,630, 
420,210; 1260,840, 360, 60; 1260,840, 315, 105; 1260,840, 280, 140; 
1260,840,252, 168. 

2520 is the smallest such number. The problem is equivalent to express­
ing unity as the sum of 4 reciprocals. 

Journal of Recreational Mathematics, vol. 14. 
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2592 

2592 
2592 = 25 X 92, the only pattern of its kind. [Dudeney] 

2615 
2615 x II = 28765 and 5162 x II = 56782, its reversal. 

The choice of 2615 for this property is highly arbitrary, because this 
pattern works whenever the adjacent digits of a number do not sum to 
more than 9, for any pair. So it works for 2363511509 but not for 45173, 
for example. 

2620 
The first member of the third pair of amicable numbers. Its partner is 
2924. 

2821 
2821 = 7 x 13 x 31 and 6, 12 and 30 each divide 2820. 

2821 is therefore a Carmichael number, in fact the 4th. 

3003 
3003 is the smallest number to appear 8 times in Pascal's triangle. 

There is no other number appearing so often, less than 223 . 
David Singmaster, American Mathematical Monthly, April 1971. 

3333 
The Gregorian calendar is approximately one day ahead every 3333 
years. 

672 - 342 = 3333 

3334 
33342 = 11115556, following the pattern 42 = 16, 342 = 1156, 
3342 = 111556 and so on. 

When cubed, 33343 = 0370,5926,3704 and the sum of the 3 4-digit 
numbers is 0370 + 5926 + 3704 = 10,000. 
Journal of Recreational Mathematics, vol. 14. 

3367 
This number can be multiplied by a 2-digit multiplier xy by dividing the 
number xyxyxy by 3. 

This trick works because 3367 = 10101/3. 
Gardner, 1975. 
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3435 
3435 = 33 + 44 + 33 + 55. [Madachy] 

3511 
One of only two known numbers that make 2P- 1 - I divisible by p2. 

The other is 1093. 

3600 
3600 = 602 

The number of seconds in an hour, or seconds in a degree, or minutes 
in a full circle. 

4096 
4096 = 212 = 84 = 163 

It is therefore equal to 1,000,000,000,000 in binary; 10,000 in octal, 
and 1000 in hexadecimal. 

4181 
The 19th Fibonacci number, but although 19 is prime, this is not: 
4181 = 37 x 113. 

This is the first composite Fibonacci number with a prime root. 

4356 
4356 multiplied by l! is 6534, its reversal. Note that 4356 = 1089 x 4. 

4840 
4840 = 22 x 220 is the number of square yards in an acre. 

4900 
The only square pyramidal number that is also a square. 

4900 = 702 = 12 + 22 + 32 + 42 + ... + 242 

4913 
4913 = 173 and also the sum of its digits is 17. 

S020 
The first member of the 4th amicable pair. Its friend is 5564. 

5040 
Factorial 7. 5040 = 7! = 1 x 2 x 3 x 4 x 5 x 6 x 7 

In bell ringing, a complete sequence of Stedman Triples contains 
7! = 5040 changes, and takes three or four hours to ring. 
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5186 

Plato, in the Laws, suggested that a suitable number of men for an 
ideal city would be that number which contained the most numerous 
and most consecutive subdivisions. He decides on 5040, indicating that 
this number has 59 divisors (apart from itself) and can be divided for 
purposes of war 'and in peace for all purposes connected with con­
tributions and distributions' by any number from I to 10. 

Moreover, by merely subtracting two hearths from the total, it is then 
divisible exactly by II also. 

5186 
cp(5186) = cp(5187) = cp(5188) 

This is the only known triple of successive integers with the same cp 
values. 

5777 
The conjecture that every odd number can be represented in the form 
p + 2a2 , where p is a prime, is false, but there are only two counter­
examples below 121,000. 

5777 is one, and 5993 is the other. 

5913 
5913 = I! + 2! + 3! + ... + 6! + 7! 

6174 

Kaprekar's process 
6174 is Kaprekar's constant, the result of Kaprekar's process applied to 
any 4-digit number, apart from the exceptional numbers whose digits 
are all equal. 

Take any other 4-digit number, and arrange the digits in ascending 
and descending order, so that, for example, 4527 leads to 2457 and 7542. 
Subtract, and repeat. The eventual result is the number 6174: 

170 

7542 - 2457 = 5085 
8550 - 0558 = 7992 
9972 - 2799 = 7173 
7731 - 1377 = 6354 
6543 - 3456 = 3087 
8730 - 0378 = 8352 
8532 - 2358 = 6174 
7641 - 1467 = 6174 and the calculation repeats. 



6999 

6174 is also a Harshad number, because it is divisible by the sum of its 
digits. 

6578 
6578 = 14 + 24 + 94 = 34 + 74 + 84 

This is the smallest representation of a number as the sum of 34th 
powers in 2 ways. 

6666 
66662 = 44435556 and the two halves 4443 and 5556 sum to 9999. 

The pattern is the same for any string of 6s. Compare 33332 = 

11108889 and 1110 + 8889 = 9999, and 77772 = 60481729 where 6048 
+ 1729 = 7777, making 7777 Kaprekar. 

More generally, if a number is multiplied by a number whose digits 
are all the same, for example, let 894 be multiplied by 22222, then in this 
case the right-hand 5 digits, added to the left-hand portion, form another 
number with equal digits: 894 x 22222 = 19866468 and 198 + 
66468 = 666666. 

6667 
66672 = 44448889 and 44448889 x 3 = 133346667, which ends in the 
same four digits, 6667. 

Hence 6667 is called tri-automorphic. 
For any given number of digits, there are 3 tri-automorphic numbers. 

The others for 4 digits are 9792 and 6875. 
The 3 IO-digit tri-automorphic numbers are 6666666667, 7262369792 

and 9404296875.· 
The patterns appearing in 66672 , and similarly in 33342 and so on, are 

examples of a general rule. Any number, of however many digits, will 
form a pattern when a sufficiently large number of either 3s, 6s or 9s are 
prefixed to it. 

Thus,722 = 5184; 6722 = 451584 and 66722 = 44515584 and so on. 

6729 
Double 6729 is 13458, the 2 numbers containing the digits I to 9 between 
them. 

6999 
When 6999 is reversed and added to itself, 6999 + 9996 = 16995, and 
this process repeated, it takes 20 steps to become a palindrome, and 

• J. A. H. Hunter, Journal of Recreational Mathematics, YO\. 5. 
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7140 

the resulting palindrome is the longest for any number up to 10,000. 
7998 also leads after the first step to 16995. 

7140 
The largest number that is both triangular and tetrahedral. 7140 is the 
119th triangular number and the 34th tetrahedral number. 

7560 
7560 = 23 x 33 X 5 x 7 has 64 factors, more than any other number 
below 10,000 except for 9240 = 23 x 3 x 5 x 7 x ll, which also has 
64 factors. 

7744 
7744 = 882 is the only square with this digit pattern. 

8000 
8000 = 203 is the sum of 4 consecutive cubes: 1]3 + 123 + ]33 + 143. 

8042 
This is probably the largest integer that cannot be represented as the 
sum of fewer than 8 cubes. 

8128 
8128 = 26(27 - I) is the 4th perfect number. 

8191 
8191 = I + 90 + 902 = 1 + 2 + 22 + 23 + ... + 212 

8191 = 213 - 1 is a Mersenne prime. Note that the index ]3 is also 
prime. It had been conjectured that although most Mersenne numbers 
appear to be composite, a Mersenne number whose index was prime 
would itself be prime. This would have provided a formula for an infinite 
sequence of primes, albeit a sequence that becomes incalculably large 
very quickly. 

The conjecture however is false. 28191 - 1 is composite. 

8208 
8208 = 84 + 24 + 04 + 84 

8281 
8281 = 91 2 is a square whose digits form two successive integers. This is 
the only 4-digit square with this property. 
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12,285 

8712 
The subject of one of G. H. Hardy's unserious mathematical properties. 
It is a multiple of its reversal, 2178. (See 153.) 

9240 
It has 64 divisors. 

9642 
When multiplied by 87531 it forms the largest product of 2 numbers 
using the digits I to 9 once each. 

9801 
9801 = 992 and 98 + 01 = 99, so 9801 is a Kaprekar number. 

9999 
99992 = 99980001 and the two Kaprekar halves, 9998 and 0001, sum to 
9999. 

Compare 99993 = 999700029999, whose 3 'thirds' sum to 2 x 9999. 

10,001 
10001 = 73 x 137 

Compare 101, which is prime, 1001 = 7 x II x 13 and 100001 
= II x 9091. 

10,989 
10989 x 9 = 98901 

11,593 
This number is the first in a sequence of 9 consecutive primes all of the 
form 4n + I. [Guy] 

11,826 
11,8262 is the smallest pandigital square. It was first noted by John Hill 
in 1727, who thought it was the only pandigital square. 

12,285 
Together with 14,595 the smallest pair of odd amicable numbers, dis­
covered by B. H. Brown in 1939. 
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12,496 

12,496 

Sociable numbers 
12496 is the first of a chain of five sociable numbers, discovered by 
Poulet in 1918. 

The sum of the divisors, excluding itself, of each number is the next 
number in the chain, the last number preceding the first: 12496; 14288; 
15472; 14536; 14264; (12496). 

This chain and the 28-link chain starting 14316 were the only known 
sociable chains until 1969 when, using computers of course, Henri Cohen 
checked all possible values for the smaller of the pair below 60 million, 
and discovered 7 new chains, each of 4 links. 

Recently more chains have been found. 
Curiously no chains with just three links have been found, despite 

diligent searching. There are certainly none with smallest member less 
than 50 million. Someone named these hypothetical chains 'crowds', so 
mathematically speaking a crowd is a very elusive phenomenon, and 
may not exist at all. 

12,758 
This is the largest number that cannot be represented as the sum of 
distinct cubes. 

R. E. Dressler and T. Parker, Mathematics of Computation, 28: 125 (1974). 

14,316 
The start of a remarkable sociable chain of no fewer than 28 numbers, 
discovered by Poulet in 1918. [Beiler] 

Starting at the top of the left column, and reading down, the sum of 
the proper divisors of each number is equal to the next number, 17716 
finally leading back to 14316: 

14316 629072 275444 97946 
19116 589786 243760 48976 
31704 294896 376736 45946 
47616 358336 381028 22976 
83328 418904 285778 22744 

177792 366556 152990 19916 
295488 274924 122410 17716 

(14316) 

No other sociable chain is known as large, or larger than, this one, 
despite its venerable age. 
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26,861 

16,830 
16,8303 is the sum of all the consecutive cubes from 11343 to 21333 • 

[Beiler] 

16,843 

Charles Babbage conjectured that 
if and only if p is prime. 

( 2P - I) _ I 
p-I 

is divisible by p2 

The conjecture is false, and the smallest counter-example is 168432 • 

Any higher power of 16843 is also a counter-example. n2 is not a 
counter-example for any other n less than 150,000. [David Singmaster] 

17,163 
This is the largest number that is not the sum of the squares of distinct 
primes. 

H. Gupta, Selected Topics in Number Theory, Abacus Press, Tunbridge Wells, 
1980. 

17,296 
With 18,416 the second pair of amicable numbers to be discovered. 

19,600 
Only two numbers are simultaneously square and tetrahedral. 

One is the uninteresting 4 = 22 = I + 3 and the other is 
19600 = 1402 = I + 3 + 6 + 10 + 15 + ... + 1176. 

20,161 
Every number greater than 20,161 is the sum of 2 abundant numbers. 

20,736 
124 and therefore 10,000 in base 12 or duodecimal. 

21,000 
The first number to use three words in its normal English description: 
'twenty-one thousand'. [Sloane] 

26,861 

Primes 4n + 1 and 4n + 3 
There are exactly as many primes of the form 4n + I below 26861 as 
there are primes of the form 4n + 3. Since 26861 is prime of the 4n + I 
type, it puts the 4n + I primes in the majority, for the first time. 
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27,594 

All prime numbers beyond 2 are either of the form 4n + I or 4n + 3. 
Which form is most common? The sequence of primes starts like this, 
where the italic type shows primes of the form 4n + 3: 3 5 7 JJ 13 
17 /9 23 29 3/ 37 41 43 47 53 59 61 67 7J 73 ... 

Of the first 20 primes, II, a bare majority, are of the form 4n + 3. 
This majority continues however all the way up to 26849, at which point 
they are equal in number, and then 26861 tips the balance, though only 
momentarily. The next two primes, 26863 and 26979 are both '4n + 3' 
types. 

Although the 4n + I primes seem to be usually in a minority, Little­
wood proved the lead switches from one to the other an infinite number 
of times. 
Carter Bays and Richard H. Hudson, 'On the Fluctuations of Littlewood for 
Primes of the form 4n ± 1', Mathematics of Computation, vol. 32. 

27,594 
This number can be written in two curiously related ways as a product: 
27,594 = 73 x 9 x 42 = 7 x 3942. [Madachy] 

30,739 
For what numbers are the decimal parts of the square and cube roots 
most nearly equal? 

Up to 50,000 the smallest difference is found in the square root and 
cube root of 30,739 whose decimal parts differ by about 0·0000151. 

The first integer thereafter to produce a smaller difference is 62,324. 
The decimal parts of its square and cube roots differ by about 
0·000011576. 

J. H. Baumwell and F. Rubin, Journal of Recreational Mathematics, vol. 9. 

40,311 
The start of the longest known sequence of consecutive integers with the 
same number of divisors: 40311, 40312, 40313, 40314 and 40315 each 
has 8 divisors. [Le Lionnais] 

40,320 
Factorial 8, or 8! 

40,585 
Equal to the sum of the factorials of its digits: 40,585 = 4! + 
O! + 5! + 8! + 5!. This was discovered as late as 1964 by Leigh Janes. 
[Madachy] 
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65,537 

40,755 
The first number, apart from the trivial I, that is simultaneously tri­
angular, pentagonal and hexagonal. 

45,045 
Equal to 5 x 7 X 32 x 11 x 13, and the first odd abundant number to 
be discovered, by Carolus Bovillus. 

47,619 
047619 is period of 1/21, the smallest number with two prime factors 
that do not divide 10. 

The two 'halves', 047 and 619, sum to 666: it is a multiple of 333 but 
not of 999: 47619 = 143 x 333. 

The three 'thirds', 04, 76 and 19, sum to 99, so it is a multiple of 99; in 
fact it is 99 x 481. 

047619 2 = 2,267,569,161 
Adding the two 6-figure 'halves': 569161 + 2267 = 571428, which is 

the period of 4/7. 

50,625 
Equal to 154 = 44 + 64 + 84 + 94 + 144. 

This is the smallest example of a 4th power equal to the sum of only 5 
other 4th powers. 

54,748 
Equal to the sum of the 5th powers of its digits: 54,748 = 55 + 
45 + 75 + 45 + 85. 

65,536 
216 

A 64K computer memory actually contains 65,536 bytes. 

65,537 
Equal to 224 + I. The 4th Fermat number, and the largest known 
Fermat prime. It is therefore possible to construct a regular polygon of 
65,537 sides by classical methods using a straight edge and compasses 
only. 

The 384 quadratics required for an actual construction of the 65,537-
gon were calculated by J. G. Hermes in 1894. 
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69,696 

69,696 
Equal to 2642 and therefore a palindromic square whose root is not 
palindromic. 

076,923 
The initial zero is included because this is the decimal expansion of 
1/13 = 0·076923076923 ... 

Multiplied by 3, 4, 9, 10 or 12 the result is a cyclic permutation of the 
same digits. Multiplied by 2, 5, 6, 7, 8 or II, the result is a cyclic 
permutation of 153846. 

78,557 
Prime numbers of the form k x 2" + I have been much studied, not 
least because factors of Fermat numbers are always of this form. 

The sequence of numbers 78557 x 2" + I is unusual because it is not 
prime for any positive value of n. Every member of the sequence is 
divisible by one of the primes 3, 5, 7, 13, 19, 37 or 73. 

78557 is quite possibly the smallest value of k, such that k x 2" + I is 
always composite. 
R. Baillie, G. Cormack and H. C. Williams, 'The Problem ofSierpinski concerning 
k x 2" + I', Mathematics o/Computation, vol. 37. 

90,625 
The only 5-digit automorphic number not beginning with a zero. Its 
square ends in the same digits, ... 90625 

94,249 
Equal to 3072 and therefore a palindromic square whose root is not itself 
palindromic. 

99,954 
Kaprekar's process for all 5-digit numbers whose digits are not all equal 
leads to one of three separate cycles. The smallest cycle is 99954-95553. 
The other two cycles are 98532-97443-96642-97731 and 98622-97533-
96543-97641. [Kordemsky] 

100,001 
Equal to II x 9091. 
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142,857 

125,000 
The second case of Fermat's Last Theorem, where the exponent p in 
x" + y" = zP divides one of the numbers x, y or z, has been proved 
impossible for all values of p up to 125,000. 

142,857 

Cyclic numbers 
A number beloved of all recreational mathematicians. It is the decimal 
period of 1/7: 1/7 = 0·142857142857142 ... 

1/7 is the first decimal reciprocal to have maximum period, that is, the 
length of its period is only I less than the number itself. 

Multiplication by any number from I to 6 produces a cyclic permu­
tation of the same numbers: 

142857 x I = 142857 
142857 x 2 = 285714 
142857 x 3 = 428571 
142857 x 4 = 571428 
142857 x 5 = 714285 
142857 x 6 = 857142 

The sequence of digits also makes a striking pattern when the digits are 
arranged round a circle. 

8 

7 

9 
• 

5 

o 
• 

4 

2 
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142,857 

Multiplication by higher numbers produces the same pattern again, 
with a slight difference. 

For example, 12 x 142857 = 1714284, which becomes 714285 when 
the extra I is taken from the front and added to the 4 in the units place. 

Another example: multiply 142857 by itself. 
1428572 = 20,408,122,449. Separate this number into groups of 6 

digits, from the right, and add them: 122,449 + 20,408 = 142,857. 
This makes 142857 a Kaprekar number. 
There is one exception to this pattern: multiplication by 7, or a multiple 

of 7: 142857 x 7 = 999999. This is a property of all the periods of 
repeating decimals. If the period of n is multiplied by n, the result is as 
many 9s as there are digits in n. 

Notice that this relationship is symmetrical. Because 142857 
x 7 = 999999, the decimal period of 1/7 is 142857 and the deci­
mal period of 1/142857 is 7. In fact 1/142857 = 0·000007 000007 
000007 ... 

142857 has another connection with 9. Split 142857 itself into two 
'halves', and add them: 142 + 857 = 999. 

Now any number whose digits when grouped in 3s from the units end 
add up to 999 is a multiple of 999, and conversely, so 142857 must be a 
multiple of 999. Is it? Yes, because 999 divides 999,999 = 7 x 142857 
without having any factor in common with 7. In fact 142857 = 

999 x 143. 
It follows that 999999, which is 7 x 142857, is also 7 x 999 x 143, 

and therefore 7 x 143 = 1001 and 142857143 x 7 = 1,000,000,001. 
This is the basis of a beautiful trick of 'lightning calculation' described 
by Martin Gardner: to multiply any 9-digit number by 142857143, you 
mentally write the number down twice, so that you would mentally see, 
for example, 577831345 as 577831345577831345 and then you simply 
divide this number by 7. Hey presto! 

The answer is doubly impressive because you can write it down, 
starting from the left, as soon as the first few digits of the second number 
are given to you. 

The two 'halves' of 1/7 have another nice property. If 857 is divided 
by 142 the quotient is 6 (= 7 - I) and the remainder is 5 (= 7 - 2): 
857 = 142 x 6 + 5. 

If we group the digits in pairs, then for the same reason they will sum 
to 99: 14 + 28 + 57 = 99. We can group the digits in 3 and 2, because 
the period length is 6. Whatever the length of the period, we can 'group' 
the digits individually. In this case we confirm that 142857 is divisible by 
9: I + 4 + 2 + 8 + 5 + 7 = 27 and 2 + 7 = 9. 
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142,857 

The pattern is actually stronger than that. It is the opposite digits in 
the circle, as it were, that add to 9. I is opposite 8, 4 opposite 5 and 2 
opposite 7. 

The natural arrangement of the digits on a calculator has a similar 
symmetry. 

It is not unlike the pattern of a magic square, and the numbers have 
similar properties. 8 x I, 7 x 2 and 4 x 5 are in arithmetic progres­
sion, and so are 42 + 52, 22 + 72 and 82 + 12. [Kaprekar and 
Khatri] 

The pattern of adding 'halves' or 'thirds' works for any multiple of 
142857 (with the exception of multiplication by 0), provided the pro­
cess, as usual, is repeated until 3 digits or 2 digits, respectively, are 
reached. 

142857 x 361 = 51571377: 51 + 571 + 377 = 999 and 51 + 57 + 
13 + 77 = 198, which becomes 99. 

142857 x 74 = 10571418: 10 + 571 + 418 = 999 and 10 + 57 + 
14 + 18 = 99. 

All repeating decimals are effectively geometric series with ratio 
1/10, so it is not surprising that the repeated period of 1/7 can also be 
obtained in many ways as a 'diagonal sum', which is equivalent to 
adding up a geometrical progression. For example, starting from the 
front: 

181 



142,857 

I 
3 
9 

27 
81 
243 

729 

142857 ... 

or from the back: 
35 

175 
875 

4375 
21875 

109375 

... 857142857142857 

Does it seem curious that 142857 is very nearly 14-28-56 ... doubling 
each time? This is also no accident: 

14 
28 

56 
112 

224 
448 

896 
1792 

142857142857142 ... 

All of these properties of 142857 are shared by the periods of any 
reciprocal whose period is of maximum length, with small adjustments 
such as the choice of multipliers in the last example. 

Numbers of maximum period must be prime but, surprisingly, there is 
no known method of predicting which primes have maximum period. 

17 does; its period is oflength 16, and its properties match those of 1/7 
very closely. So does 1/19 with period 18, but 1/13 has a period of only 6, 
so its properties are somewhat more complex. 

If the period of lin is not n - I, it is at least a factor of n - I. The 
period of liB is 6, one-half of 12. 

The first few values of n that produce maximum periods for lin are 7, 
17,19,23,29,47,59,61, and then no more until 97, followed by 109,113 
and 131. 

This is not many. What proportion of reciprocals of primes have 
maximum period? About 3/8 according to Shanks, or, if a conjecture of 
Artin's is correct, 0·37396 ... 

To answer a related question, Shanks has also shown that primes with 
even decimal periods are exactly twice as numerous on average as primes 
with odd period length. 

182 



196,560 

What 6-digit number is multiplied by 5 when its unit digit is removed 
to the front of the number? The answer, of course, is 142857. This is 
sometimes called transmultiplication. The problem may just as well ask 
for the first digit to be placed at the end, or for several digits to be moved 
in a block. The solution is always the period of some decimal reciprocal. 

The reciprocals of composite numbers, such as 21, have more compli­
cated properties. The simplest is that their period is the lowest common 
multiple of the lengths of the periods of their separate prime factors, if 
those factors occur singly. 21 = 3,7, whose reciprocals have periods I 
and 6, so 1/21 has period 6 also. Note that 6 is not a factor of 20. 

142857 is divisible by the repunits II and Ill. 

147,852 
Equal to 333 x 444. 

The digits 147852 in various orders that are not permutations of the 
period of 1j7 occur in several other products also. 

For example, 666 x 777 = 517482 and 333 x 777 = 258741. 

148,349 
The only number that is equal to the sum of the subfactorials of its 
digits:· 148,349 = !I + !4 + !8 + !3 + !4 + !9. 

161,038 
161,038 = 2 x 73 x 1103 

The smallest even pseudoprime to base 2, discovered by D. N. Lehmer 
in 1950. 

Even pseudoprimes are relatively rare, though there are an infinite 
number of them. The next is 215326. 

183,184 
Equal to 4282 and therefore a square whose digits form 2 consecutive 
numbers. 

There are 3 other 6-digit numbers with the same property: 328329 = 

5732,528529 = 7272 and 715716 = 8462• 

196,560 
The number of spheres touching anyone sphere in a 24-dimensional 
Leech lattice. 

• R. S. Dougherty, in Madachy, 1966. 
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208,335 

208,335 
The largest number known that is simultaneously triangular and square 
pyramidal. It is the 645th triangular number, and the 85th square pyra­
midal number. 

It is not known whether there are any larger numbers with this prop­
erty, let alone whether their number is infinite. 

248,832 
Equal to 125 = 45 + 5s + 65 + 75 + 95 + 115. 

The smallest representation of a 5th power as the sum of only 65th 
powers. 

278,886 
Its square starts with a sequence of 5 7s: 278,8862 = 77777400996. 

333,667 
333667 x 296 = 98765432, in which the digits 9 to 2 appear in reverse 
order. 

This is the start of a pattern: 33336667 x 2996 = 99876654332; 
3333366667 x 29996 = 99987666543332, and so on. 

The same author shows other patterns involving the same number: 

333667 x 1113 = 371371371 
333336667 x 11133 x 371137113711 

33333366667 x 1111333 = 371113711137111 and so on. 

or 333667 x 2223 = 741741741 and so on. 

H. Grunbaum, Scripta Mathematica, vols. 18 and 21. 

351,120 
Its cube can be represented as the sum of 3 cubes, or 4 cubes, or 5 cubes, 
or 6 cubes, or 7 cubes, or 8 cubes. 

362,880 
Equal to 9! = 7!3!3!2!. 

369,119 
The sum of the primes less than 369,119 is 5,537,154,119, which is divis­
ible by 369,119. 

396,733 
Together with 396,833, the first pair of consecutive primes that differ by 
100. 
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1,048,576 

510,510 
Equal to the product of the first 7 prime numbers, 2 x 3 x 5 x 7 x 
II x 13 x 17 and also equal to the product of 4 consecutive Fibonacci 
numbers, 13 x 21 x 34 x 55. 

Monte Zerger, Journal of Recreational Mathematics, vol. 12. 

523,776 
523,776 = 29 x 3 x 11 x 31 

The 3rd tri-perfect number. The sum of its divisors, including itself, is 
3 x 523,776 = 1,571,328. 

548,834 
Equal to 56 + 46 + 86 + 86 + 36 + 46. 

666,666 
To the delight of numerologists, the pnmitive Pythagorean triangle 
whose sides are 693, 1924 and 2045 has area 666,666. 

698,896 
Equal to 8362 • A palindromic square with, a rare event, an even number 
of digits. 

739,397 
The largest 2-sided prime. However digits are removed from either end, 
the result is another prime number. 

798,644 
The second smallest number whose square is palindromic with an even 
number of digits: 798,6442 = 637,832,238,736. 

828,828 
The only triangular palindrome, apart from 55, 66 and 666. 

1,000,000 
1,000,000 = 106 

1,048,576 
1,048,576 = 165 = 220 

100,000 in hexadecimal. 
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1,122,659 

1,122,659 
A Cunningham chain of prime numbers is a sequence in which each 
prime is 1 more than twice the previous member. D. N. Lehmer deter­
mined that there were only 3 such chains of 7 primes each with the first 
member less than 107. 

The smallest chain is: 
1,122,659 2,243,319 4,490,639 8,981,279 17,962,559 35,925,119 

71,850,239 [Guy] 

1,175,265 
Together with 1,438,983, the first pair of odd amicable numbers to be 
discovered, by G. W. Kraft in the seventeenth century. 

1,234,321 
Equal to 11112. Consequently the third line in this pattern: 

121 x (1 + 2 + I) = 222 
12321 x (I + 2 + 3 + 2 + 1) = 3332 

1234321 x (I + 2 + 3 + 4 + 3 + 2 + I) = 44442 

and so on. 

1,741,725 
Equal to l' + 77 + 47 + l' + 77 + 27 + 57. 

1,747,515 
Together with 2,185,095 the third pair of triangular numbers whose sum 
and difference are also triangular. 

2,300,000 
The earliest inscription in Europe containing a very large number is on 
the Columna Rostrata, a monument erected in the Roman Forum to 
commemorate the victory of260 BC over the Carthaginians. The symbol 
for 100,000 was repeated 23 times, a total of 2,300,000. 

3,628,800 
Equal to IO! and the only factorial that is the product of other consecutive 
factorials apart from the trivial I! = O! x I!, 2! = O! x I! x 2! and 
I! x 2! = 2!. 

IO! = 6! x 7! 
10! also equals 3! x 5! x 7!. 
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4,937,775 

4,478,976 
The smallest known non-trivial solution of the equation pP x ff = r' is 
p = 126 = 2,985,984; q = 68 = 1,679,616 and r = 211 x 37 = 
4,478,976. [Le Lionnais] 

4,729,494 

The cattle problem 
4,729,494 occurs as a coefficient in the famous cattle problem attributed 
to Archimedes. The problem concerns the number of the cattle of the 
Sun, which were divided into 4 herds of different colours, milk white, 
glossy black, yellow and dappled. 8 conditions then describe the numbers 
of bulls and cows in each herd. The text is actually ambiguous; it is 
unclear whether a certain number is to be made square, or merely 
rectangular. 

If it has to be a square, then this equation appears: 
t2 - 4729494u2 = I 
Such equations are called Pellian, after John Pell, who was thought by 

Euler to have studied them. There is some evidence that he actually did 
so, though Euler may well have been mistaking Pell for Lord Brouncker. 

Amthor calculated that the least solutions to this equation are: 
t = 109,931,986,732,829,734,979,866,232,821,433,543,90 I ,088,049 
u = 50,549,485,234,315,033,074,477,819,735,540,408,986,340 

and that in this case the total number of cattle is a number of 206,545 
digits, starting 7766 ... This number has recently been churned out by 
computer, of course, taking a mere 46 and a bit pages of printout. 

It is unlikely that Archimedes could have found such a solution, 
though he may well have known how to solve this type of equation in 
principle, and he was interested in very large numbers. 

4,937,775 

Smith numbers 
A Smith number, defined by A. Wilansky to be a composite number 
the sum of whose digits is equal to the sum of the digits of its prime 
factorization, excluding 1. 

4937775 = 3 x 5 x 5 x 65837 and the digits in each expression sum 
to 42. 

Smith numbers can be constructed from prime repunits. Denote the 
number whose digits are n units by R •. If R. is prime, then 3304 x R. 
is a Smith number. 3304 is not the only effective multiplier in this con­
struction, merely the smallest. It is not known whether there are an 
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9,999,999 

infinite number of such multipliers, but their use is limited anyway, since 
prime repunits seem to be very rare indeed! 

It is not known if the number of Smith numbers is finite or infinite. It 
would definitely be infinite if there existed an infinite number of primes 
whose digits are all zeros and units, another challenging problem. 

S. Oltikar and K. Wayland, 'Construction of Smith Numbers', Mathematics 
Magazine, vol. 56. 

9,999,999 
Napier's original logarithms were not 'natural', to base e, nor were they 
based explicitly on exponents. Napier assigned the number 10,000,000 
the logarithm 0, and 9,999,999 the logarithm I. By multiplying repeatedly 
by 9,999,999/10,000,000 he constructed a sequence of numbers with 
logarithms 2, 3 ... and so on. 

In the appendix to the 1618 English translation of Napier's original 
work there is a table of natural logarithms, probably due to William 
Oughtred who invented the straight and the circular slide rules. 

John Wallis in 1685 and Johann Bernoulli in 1694 realized that log­
arithms could be thought of as exponents. 

12,345,679 
12,345,679 x I 12,345,679 (digit 8 missing) 
12,345,679 x 2 = 24,691,358 (digit 7 missing) 
12,345,679 x 3 = 37,037,037 
12,345,679 x 4 = 49,382,716 (digit 5 missing) 
12,345,679 x 5 = 61,728,395 (digit 4 missing) 
12,345,679 x 6 = 74,074,074 
12,345,679 x 7 = 86,419,753 (digit 2 missing) 
12,345,679 x 8 = 98,765,432 (digit I missing) 
12,345,679 x 9 = 111,111,111 

Note that in each product the sequence I to 9, with one digit missing, 
can be read by cycling through the number, with a suitable repeated 
jump. For example, 61,728,395 can be read as, 

123 5 
and going round again, 6 7 8 9 

12,960,000 
This is the second Geometric Number of Plato, associated with 216, 
according to many commentators. It has been derived in various ways, 
for example as 604 or as 4800 x 2700. 
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160,426,514 

There was a tradition of a Great Year of Plato, though Plato never 
mentions it, of 36000 years. At 360 days per year, 36000 years occupies 
12,960,000 days. 

24,678,050 
Equal to 28 + 48 + 68 + 78 + 88 + 08 + 58 + 08. 

33,550,336 
Equal to 212(213 - 1). 

The 5th perfect number, recorded for the first time anonymously in a 
medieval manuscript. 

60,996,100 
Equal to 78102 and a square composed of two adjacent consecutive 
numbers, 6099 and 6100. 

The only other 8-digit solutions are 90792 = 82,428,241 and 
9901 2 = 98,029,801. [Kraitchik] 

87,539,319 
The smallest number that can be represented as the sum of 2 cubes in 3 
different ways: 
87,539,319 = 1673 + 4363 = 2283 + 4233 = 2553 + 4143 

123,456,789 
When multiplied by 8, it becomes 987,654,312, neatly reversing the last 
two digits. 

It also remains pandigital when multiplied by 2, 4, 5 and 7. 
There are several numbers that are pandigital, including zero, and 

remain so when multiplied by several factors. For example, 1,098,765,432 
when multiplied by 2, 4, 5 or 7. 

139,854,276 
Equal to 11,8262 • 

The smallest pandigital square. 

160,426,514 
The smallest number that can be represented in 2 ways as the sum of 3 
6th powers: 160,426,514 = 36 + 196 + 226 = 106 + 156 + 236 • 

It is known that an infinite number of other solutions exist. 

189 



253,747,889 

253,747,889 
The first case of Fermat's Last Theorem, in which the exponent p does 
not divide x, y or z, has been solved for all p less than 253,747,889. 

272,400,600 
The sum of the harmonic series, I + 1/2 + 1/3 + 1/4 + 1/5 + ... does 
tend to infinity, but extremely slowly. 

It takes 272,400,600 terms to pass 20. In fact the sum of the first 
272,400,599 terms is approximately 19·99999 99979 and adding 
1/272,400,600 the total is approximately 20·0000000016. 

It takes approximately 1·5 x 1043 terms to exceed 100. 

R. P. Boas and J. W. Wrench, American Mathematics Monthly, vol. 78, 1971. 

275,305,224 
The number of magic squares of order 5, finally calculated in 1973 on 
computer by Richard Schroeppel. 

This total excludes rotations and reflections. 
Martin Gardner, Scientific American, January 1976. 

0,429,315,678 
This pandigital number is equal to 3 pandigital products: 
04,926 x 87,153; 07,923 x 54,186 and 15,846 x 27,093. 

A. Gou/Te, Journal of Recreational Mathematics, vol. 6. 

438,579,088 
Equal to 44 + 33 + 88 + 55 + 77 + 99 + 00 + 88 + 88 • 

The only other number with this property is 3435. 

455,052,511 
The number of primes less than 1010, calculated by D. N. Lehmer. 

The complete table for the number of primes less than powers of 10 is: 

10 4 
102 25 
103 168 
104 1,229 
105 9,592 
106 78,498 
107 664,579 
108 5,761,455 
109 50,847,534 
1010 455,052,511 
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1,787,109,376 

635,318,657 
The smallest known number, discovered by Euler, that can be rep­
resented as the sum of 24th powers in 2 ways: it is equal to 594 + 1584 
and 1334 + 1344. 

739,391,133 
The largest prime number in base 10 that can be 'tailed' again and again 
by removing its last digit to produce only primes, ending with 739, 73, 7. 

923,187,456 
The largest pandigital square, if zero is not used. Equal to 30,3842 • 

987,654,321 
When multiplied by I, 2,4, 5, 7 or 8, the result is pandigital, including 
the zero. 

Note also: 987,654,321 - 123,456,789 = 864,197,532. 

1,111,111,111 
The smallest IO-digit Kaprekar number. Its square is: 
1234567900987654321. 

1,234,567,891 
One of 3 known primes whose digits are in ascending order, beginning 
with I and returning from 9 to I or zero where necessary. The other two 
are: 12345678901234567891 and 1234567891234567891234567891. 

Joseph Madachy, Journal of Recreational Mathematics, vol. 10. 

1,375,298,099 
Equal to the sum of 35th powers in two ways: 245 + 28 5 + 675 = 
35 + 545 + 625 • [R. Alter] 

It is not known if a number can be the sum of only 25th powers in 
more than one way. 

1,533,776,801 
The third number to be simultaneously triangular, pentagonal and 
hexagonal. 

1,787,109,376 
One of only 2 IO-dlgit automorphic numbers, that is, its square ends in 
the digits ... 1,787,109,376. 

It follows that any number formed by chopping ofT digits from the 
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1,857,437,604 

front will also be automorphic. For example, 109,3762 ends in the digits 
... 109,376. 

The other IO-digit automorph is 8,212,890,625. 

1,857,437,604 
A square, 43098 2 , the sum of whose divisors is a cube, 17293 • [Bieler] 

1,979,339,339 
The largest prime, such that chopping off digits from the right-hand end 
always leaves a prime, counting I as a prime. 

Only slightly smaller, with the same property, is 1,979,339,333. 

2,236,133,941 
The first prime in a sequence of 16 primes in arithmetical progression. 
The common difference is 223,092,870. 

2,438,195,760 
This is pandigital and also divisible by every number from 2 to 18. 
Kordemsky gives 3 other numbers with this property: 4,753,869,120; 
3,785,942,160 and 4,867,391,520. 

3,430,751,869 
The second longest known sequence of primes in arithmetical progression 
starts with this number and has 17 members, with common difference 
87,297,210. The last prime in the sequence is 4,827,507,229. [Guy] 

4,294,967,297 
The 5th Fermat number, equal to 22 ' + I, which Euler showed to be 
composite, thereby destroying Fermat's conjecture that all numbers of 
this form are prime. It is equal to 641 x 6,700,417. 

4,679,307,774 
The only known IO-digit number equal to the sum of the 10th powers of 
its digits, discovered by Harry L. Nelson. [Madachy] 

8,212,890,625 
One of two IO-digit automorphic numbers, the other being 
1,787,109,376. 

9,814,072,356 
The largest square, 990662 , that is pandigital, including the zero. 
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100,895,598,169 

9,876,543,210 
Subtract 0,123,456,789 and the answer is 9,753,086,421. All 3 numbers 
are pandigital with zero. 

10,662,526,601 
The only known palindromic cube, 220P, whose root is not palin­
dromic. 

All known palindromic 4th powers have palindromic roots. No 
palindromic 5th powers are known. 

15,527,402,881 
The only known 4th power that is the sum of only 44th powers: it equals 
3534 = 304 + 1204 + 2724 + 3154 • 

18,465,126,293 
Counting upwards steadily, the number of primes of the form 4n + 3 
exceeds the number of primes of the form 4n + I for most of the first 
few billion numbers. 

The sixth and largest known region for which this is not so stretches 
from 18,465,126,293 to 19,033,524,538. 

36,363,636,364 
The square of this number, 1,322,314,049,613,223,140,496, consists of 
two identical 'halves'. 

Journal of Recreational Mathematics, vol. 14. 

61,917,364,224 
Equal to 1445, and the sum of 45th powers. (See 144.) 

100,895,598,169 
Mersenne in a letter to Fermat in 1643 asked for the ratio of236 x 38 X 

55 x 11 X 132 x 19 X 31 2 x 43 x 61 x 83 x 223 x 331 x 379 x 
601 x 757 x 1201 x 7019 x 823543 x 616318177 x 100895598169to 
the sum of its proper divisors. 

Fermat replied that the divisors sum to 6 times the original number 
and that the prime factors of the last number, 100,895,598,169, are 112303 
and 898423, both of these being prime. 

This is a remarkable feat of factorization. Indeed, even Mersenne's 
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107,928,278,317 

request is remarkable given the complete lack of modern calculating 
aids. 

Several theories have been put forward to explain how Fermat did 
it, and subsequent mathematicians have displayed various methods 
of finding the two factors, without reaching any convincing conclu­
sion. 

107,928,278,317 

Primes in arithmetical progression 
This prime is the first of 18 primes in arithmetical progression, 'breaking 
the previous record of 17 due to Weintraub' as its discoverer Paul 
Pritchard puts it. Mathematicians may seem to work in ivory towers, 
but they can be as competitive as athletes. 

The numbers 107,928,278,317 + k x 9,922,782,870 are all prime for 
k = 0, I ... 17. 

An arithmetical progression of k primes has a common difference that 
is divisible by the product of all the primes less than or equal to k, unless 
the first prime in the progression is itself the kth prime. 

In the present example, 9922782870 = 2 x 32 X 5 x 7 X 112 X 

13 x 17 x 19 x 31. 

P. A. Pritchard, 'Eighteen Primes in Arithmetic Progression', Mathematics of 
Computation, vol. 41. 

ISS,753,389,900 
This is the probability that you will be dealt a complete suit at Bridge. 

608,981,813,029 
For all small numbers N, primes of the form 3n + 2 that are less than 
N are more numerous than primes of the form 3n + I, less than N. 

It is known that for an infinity of values of N, the primes 3n + I are 
in the majority. 

How large does N have to be for this to happen? 
This is the answer, discovered by Carter Bays and Richard H. 

Hudson on Christmas Day 1976. Was that the only spare computer 
time they could grab? 

The region extends from 608,981,813,029 to 610,968,213,796. 

'Details of the First Region of Integers x with ltJ.2(X) less than ltJ.,(x)', Math­
ematics of Computation, vol. 32. 
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052,631,578,947,368,421 

619,737,131,179 
The largest number such that any pair of consecutive digits is a prime, 
and all these primes are different. 

Eureka, no. 40. 

637,832,238,736 
The second largest palindromic square with an even number of digits. 

1,000,000,000,061 [13 digits] 
Together with 1,000,000,000,063 an easy to remember pair of twin 
primes, though by no means the largest known. 

1,002,000,000,000 [13 digits] 
According to Plutarch, Xenocrates made this the number of syllables 
that could be formed from the letters of the Greek alphabet. 

If this story is true, then this is the first recorded attempt to solve a 
difficult problem in combinations. 

22,222,222,222,222 
A Kaprekar number. 

555,555,555,555,5S6 
A Kaprekar number. 

[14 digits] 

[15 digits] 

0,588,235,294,117,647 [15 digits] 
The decimal period of 1/17. Being of maximum length (16 digits in­
cluding the zero), its properties match those of 1/7. For example, the 
period of 2/17 starts 117647 ... 

11,000,001,446,613,353 [17 digits] 
The 653 numbers following this prime are all composite. The next prime 
is 11,000,001,446,614,007. 

The previous record gap between primes was the spread of 651 
composite numbers between the primes 2,614,941.710.559 and 
2,614,941,711,211. 
s. Weintraub, Mathematics of Computation, vol. 36. 

052,631,578,947,368,421 [17 digits] 
The decimal period of 1/19. 

It can also be constructed by adding up the powers of2, 'backwards': 
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052,631,578,947,368,421 

16 
32 

64 
128 

256 

4 
8 

I 
2 

....... 947368421 

Whenever a decimal period is of maximum length, as here, then the 
periods of the fractions lip, 21 p ... up to (p - 1)1 P can be listed to make 

lf19 ·0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 

'V19 ·1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 

0/19 ·1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 

0/19 ·2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 

5/19 ·2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 

0/19 ·3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 

7/19 ·3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 

0/19 ·4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 

9/19 ·4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 

10/19 ·5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 

Ilf19 ·5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 

1'V19 ·6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 

10/19 ·6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 

10/19 ·7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 

15/19 ·7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 

10/19 ·8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 

17/19 ·8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 

10/19 ·9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 
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1,111,111,111,111,111,111 

a square with equal sums of rows and columns. 
1/19 has the curious feature of summing to the same constant, 81, 

along both diagonals as well, and therefore is truly magic. 

w. A. Andrews, Magic Squares and Cubes, Dover, New York, 1960. 

258 + 1 [18 digits] 
This number was factorized by Landry in 1869. He commented, 

No one of our numerous factorizations of the numbers 2" :!:: I gave us as much 
trouble and labour as that of 258 + 1. This number is divisible by 5 and if we 
remove this factor we obtain a number of 17 digits whose factors have 9 digits 
each. If we lose this result we shall miss patience and courage to repeat all 
calculations we have made and it is possible that many years will pass before 
someone else will discover the factorization of 258 + 1. 

Less than ten years later, Aurifeuille pointed out that 258 + 1 can be 
factorized algebraically as (229 - 215 + 1) (229 + 215 + I). 

Lucas generalized this result to, 24 "+2 + 1 = (220+1 - 20+1 + 1) 
(220+1 + 20+1 + I). 

Such factorizations are now called Aurifeuillian. 

Scripta Mathematica, vol. 128. 

1,111,111,111,111,111,111 [19 digits] 

Repunits 
A number whose digits are all units was named a 'repunit', short for 
repeated unit, by Albert Beiler. The name is further abbreviated to Ro 
where n is the number of units. 

Thus RI = I, and R2 = II, the smallest prime repunit. The second 
smallest prime repunit is R19, which is the number of this entry, as a 
careful count of the I s will confirm. It was discovered in 1918 by one of 
the readers of H. E. Dudeney's newspaper puzzle column. 

The only other known primes R23 and R317 and (almost certainly) 
R I031 . R317 was found by H. C. Williams in 1978, after John Brillhart 
had mistakenly announced that it was composite. 

Williams is currently working on the proof that R I031 is prime, after 
probabilistic tests have shown that it was 'almost certainly' prime, with­
out providing the complete certainty that mathematicians desire. 

Repunits have a simple relationship to powers of 10: 
Ro = (100 - 1)/9. For this reason the problem of discovering which 
repunits are prime and if possible factorizing the others is similar to the 
problem of Mersenne numbers of the form 20 - I. 

The first such table was published by William Shanks, the calculator 
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1,111,111,111,111,111,111 

of 7[, in 1874 as an aid to finding a prime from the length of the period of 
its decimal reciprocal. 

All the repunits from R\ to R66 have been completely factored into 
primes. R67 and R7\ and R79 are the first repunits whose factorization is 
still undecided. R67 is divisible by 493121; R71 has no known factor and 
R79 has factors 317 x 6163 x 10271 x 307627. 

Some curiously patterned primes appear as factors. 
R38 = II x 909090909090909091 x 1111111111111111111 
This pattern arises very simply. 38 = 2 x 19, so: 

10000000000000000001 x 11111111111111I1111 = R38 
and since 19 is an odd number, 
10000000000000000001 = II x 909090909090909091 

This pattern, or patterns like it, can be used to break down all even­
indexed repunits. The question is, are these giant factors themselves 
prime? 

It depends on the number of digits. The midgit 9091 is a factor of RIO 
and 909091 divides R\4 and 909090909090909090909090909091 divides 

R62 · 
For a variation, 9901 divides R 12, and both 9901 and 99990001 divide 

R24, while R39 is divided by 900900900900990990990991. 
The connection with decimal reciprocals lies in the fact that since, to 

take an example, the period of 1/7 is 142857, so therefore, 
142857 x 7 = 999999 = 9 x 111111 = 9 x R6 • 

Working backwards from the table, 7 is a factor of R6; its period is 
therefore 9 times the product of the other factors = 9 x 3 x II 
x 13 x 37 = 142857. 

There are many surprisingly large primes whose reciprocals have rela­
tively very short periods. The period of 4649, without the initial zeros, is 
only 3 x 3 x 239 = 2151. Since 4649 divides R7, 1/4649 is actually 
0·00021510002151 ... 

Repunits have many other properties. Repunits are never squares. It is 
not known if any repunits are cubes, or for that matter if there exists an 
infinite number of rep unit primes. 

Rp and R, are coprime if and only if p and q are coprime. 
In base 9, every repunit is also triangular. [G. W. Wishard] 
The squares of repunits make a pretty pattern: 

For example: 11112 = 1234321 
and 11111111111112 = 12345678900987654321 

J. A. H. Hunter mentions that the next square to end in the same ten 
digits is: 

2380642361 2 = 5667458050987654321 
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18,446,744,073,709,551,615 [20 digits] 
Equal to 264 - I. 

According to an old legend, Sissa ben Dahir was offered a reward by 
the Indian King Shirham for inventing the game of chess. Sissa cunningly 
replied, as recounted by Kasner and Newman:· 

'Majesty, give me a grain of wheat to place on the first square, and two grains of 
wheat to place on the second square, and four grains of wheat to place on the 
third, and eight grains of wheat to place on the fourth, and so, 0 King, let me 
cover each of the 64 squares of the board.' 

'And is that all you wish, Sissa, you fool1' exclaimed the astonished King. 
'Oh, Sire,' Sissa replied, 'I have asked for more wheat than you have in your 

entire kingdom, nay, for more wheat than there is in the whole world, verily, for 
enough to cover the whole surface of the earth to the depth of the twentieth part 
ofa cubit.' 

One twentieth part of a cubit is about an inch. Sissa asked for a total 
of 264 - 1 grains of wheat. It just so happens that this is the same 
number of moves required by the priests of the temple at Benares to 
transfer the 64 golden discs in the thoroughly spurious legend created 
round the Tower of Hanoi puzzle. 

43,252,003,274,489,856,000 

Equal to 
8! x 12! x 38 x 212 

2 x 3 x 2 

[20 digits] 

This is the total number of positions that can be reached on the 
original 3 by 3 by 3 Rubik's Cube. 

109,418,989,131,512,359,209 [21 digits] 
Equal to 921 • This is the largest n-digit number that is also an nth power. 
[Friedlander] 

267 - 1 [21 digits] 
The 67th Mersenne number, which Mersenne claimed was prime. F. N. 
Cole proved in 1903 that it is composite. 

As E. T. Bell t recalls: 
At the October, 1903, meeting in New York of the American Mathematical 
Society, Cole had a paper on the programme with the modest title, 'On the 
Factorization of Large Numbers'. When the chairman called on him for his 
paper, Cole - who was always a man of very few words - walked to the board 

• Mathematics and the Imagination. Bell. 1959. 
t Mathematics: Queen and Servant of Science, London. 1952. 
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0,434,782,608,695,652,173,913 

and, saying nothing, proceeded to chalk up the arithmetic for raising 2 to its 67th 
power. Then he carefully subtracted I. Without a word he moved over to a clear 
space on the board and multiplied out, by longhand: 

193,707,721 x 761,838,257,287 
The two calculations agreed ... For the first and only time on record, an audience 
of the American Mathematical Society vigorously applauded the author of a 
paper delivered before it. Cole took his seat without uttering a word. Nobody 
asked him a question. 

Bell later asked him how long it had taken him to find this factoriza­
tion. Cole replied, 'Three years of Sundays.' 

0,434,782,608,695,652,173,913 [21 digits] 
The period of 1/23, of maximum length. 

11,111,111,111,111,111,111,111 [23 digits] 
The 23rd repunit, and only the third prime repunit. 

357,686,312,646,216,567,629,137 [24 digits] 
The largest prime number in base \0 such that if you behead it again and 
again the resulting numbers are all prime, ending with the sequence 
9137, 137, 37, 7. 

(0 is excluded as a leading digit, because there are almost certainly 
indefinitely large primes of the form 10· + 3, for example.) 
I. O. Angell and H. J. Godwin, 'On Truncatable Primes', Mathematics o/Com­
putation, vol. 31. 

2,235,197,406,895,366,368,301,560,000 [28 digits] 
The probability that all 4 players at Bridge will be dealt a complete suit. 
As Martin Gardner points out forcefully, claims that all 4 players have 
received a complete suit are far more commonly heard than claims that 2 
players have done so, although the latter is far, far more probable. 

1,786,772,701,928,802,632,268,715,130,455,793 [34 digits] 
Together with 1,059,683,225,053,915,111,058,165,141,686,995, the start 
of a generalized Fibonacci sequence in which every member is com­
posite although the first 2 terms have no common factor. 

In other words, form a sequence by taking these two numbers to be U I 

and Uz respectively and form Ul = U I + Uz; U4 = Ul + Uz; 

Us = U4 + Ul .•• and so on. 
This is the smallest generalized Fibonacci sequence with this property. 

[Guy] 
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115,132,219,018,763,992,565,095,597,973,971,522,401 [39 digits] 
The largest known pluperfect digital invariant in base 10. It is equal to 
the sum of the 39th powers of its digits. 

2127 - I [39 digits] 
The 127th Mersenne number. 

Lucas, using new methods, announced in 1876 that 
M127 = 170,141,183,460,469,231,731,687,303,715,884,105,727 is prime. 
He later expressed some doubt about this result but it was confirmed in 
1914 by Fauquembergue. 

This number held the record as the largest known prime of any kind 
longer than any other, from 1876 to 1951. It was also the largest prime 
to be discovered without the help of modern calculating aids. 

180 X (2127 - I) + I [41 digits] 
The largest known prime in July 1951, discovered by J. C. P. Miller and 
D. J. Wheeler of Cambridge University on their EDSAC. They had a 
test for numbers of the form k x MI27 + I where MI27 is the 127th 
Mersenne number. This was the largest prime found. 

In the same month A. Ferrier, using a desk calculator only, showed 
the primality of (2143 + 1)/17. 

802,359,150,003,121,605,557,551,380,867,519,560,344,356,971 
[45 digits] 

The first number in the largest known sequence of primes of the form p, 
p + 2, p + 6, p + 8. 

Journal of Recreational Mathematics, vol. 14, 3. 

1051 [52 digits] 

The Sandreckoner 
Archimedes in his book The Sandreckoner, which he addressed to Gelon, 
King of Syracuse, describes his own system of counting immense 
numbers. He starts with the myriad, which was 10,000, and counts up to 
a myriad myriads describing these as numbers of the first order. 

He then takes 1 myriad myriad, or 100,000,000 in our notation, to be 
the unit of the numbers of the second order ... and he continues until he 
reaches the myriad-myriadth order of numbers. 

Archimedes is by no means finished! All the numbers constructed so 
far are only the numbers of the first period! He continues on his gigantic 
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construction until he reaches 'a myriad-myriad units of the myriad­
myriadth order of the myriad-myriadth period'. 

The highest number in his notation would now be expressed as 
1080.000.000.000.000.000. 

He next proposed to count not merely the number of grains of sand 
on a seashore, or in the whole earth, but the number of grains of sand 
required to fill the entire universe. 

Assuming that one poppy-head would contain not more than 10,000 
grains of sand, and that its diameter is not less than 1/40 of a finger's 
breadth, and assuming that the sphere of the fixed stars, which was to 
Archimedes the boundary of the universe, was less than 107 times the 
sphere exactly containing the orbit of the sun as a great circle ... the 
number of grains of sand required to fill the universe turns out to be, in 
our notation, less than IOSl. 

By comparison, Edward Kasner and James Newman in discussing a 
googol, 10100, estimate the number of grains of sand on Coney Island at 
1020 • 

This extraordinary achievement by Archimedes is unique within Greek 
mathematics. The Greeks generally had no interest in numbers outside 
of some geometrical context. However, to the east, Indian Buddhist 
mathematicians did construct immense 'towers' of numbers, rising in 
multiples of 10 or 100, in order to count the atoms 'even in the 3 
thousand thousand worlds contained in the universe'. Perhaps Archi­
medes was inspired by these Indian achievements to construct his own 
system. 
See T. L. Heath, Works of Archimedes, Dover, New York, n.d. 

1063 [64 digits] 
A vigintillion in American-English words (vigilJion according to one 
author) and, according to several authors, the largest number considered 
by Archimedes in The Sandreckoner. 

The extra '3' arises because a million is 106 but a billion is only 109 
and vigintillion is therefore 10 to the power (3 x 20) + 3. 

Similarly, centillion is 10303, and by suitable combinations of Latin­
sounding words, even larger powers of 10 can be expressed. 10366, for 
example, is primo-vigesimo-centillions and - wait for it! - milli-millillion 
is 103000003! 

Milli-millillion may well be one of the least frequently used words in 
the English language. As the author of the article I am quoting forlornly 
comments, 'Names for these larger numbers have been so little needed 
that one can find few places where they have been written.' 

202 



In Jaina works c. 100 BC koti was hundred-hundred-thousand, one 
hundred-hundred-thousand koti was called pakoti and so on up to 03-

ankhyeya, which we would represent as 1014°. 

2229 - 1 [69 digits] 
Euler proved that 231 - I is prime. The Mersenne numbers from M32 to 
M257 , the highest value claimed to be prime by Mersenne were not 
finally checked until 1947, when H. S. Uhler, using a desk calculator, 
finally proved that all of M I57, M I67 , M I93, M I99, M227 and this 
number, M220 , were composite. 

In fact the next Mersenne prime does not appear until 2521 - I. As 
Uhler remarked, he had no idea when he began his labour that the next 
Mersenne prime would be so far away! 

2257 - 1 [78 digits] 
Mersenne had conjectured that this number is prime. M. Kraitchik 
showed in 1922 that it is composite, without finding any actual 
factor. 

[100 digits] 

Factorizing large random numbers 
How large a number can be chosen at random and factorized within a 
reasonable time, say a matter of hours, or at the most, days? 

In 1659 Johann Rahn published a table of factors of numbers up to 
24,000. 

J. P. Kulik (1773-1863) spent 20 years of his life compiling a table of 
factors up to 100,000,000, a mere 8 digits. 

Every extra digit means roughly 10 times as many numbers to consider. 
With every extra digit the time and effort needed to find the factor of a 
number without some special pattern multiplies. Only numbers of special 
forms, such as Mersenne numbers, 2ft - I, or Fermat numbers 22" + I, 
can be tested to much higher limits. 

As late as 1943 an author wrote, ' ... in the case of numbers with 
fifteen digits or more the test of a number's primeness would require 
years even if we employ all the known methods which facilitate such an 
examination.' 

The known methods included desk calculators, and Lehmer's electro­
mechanical sieve, but no electronic computers. 

By 1974 powerful computers were readily available. and more 
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powerful tests, and it was possible easily to test numbers of 20 to 25 
digits. 

In 1980 Adleman and Rumely developed a test that would decide if a 
randomly chosen number of up to 100 digits was prime in 4-12 hours 
with a large computer. 

This has been improved by Cohen and Lenstra to run about 1000 
times faster. It can now test a 100-digit number in about 40 seconds on 
a supercomputer, such as the Control Data Cyber 170-750 or the 
CRAY. 

The problem of factoring very large numbers became a matter of 
public interest and military concern when, in 1975, Whitfield Diffie and 
Martin Hellman invented the trapdoor function, and shortly afterwards 
Rivest, Shamir and Adleman showed how to make it a practical pro­
position. 

This is a mathematical function that will change any number A into 
its code number B. The function also has an inverse, which can be used 
to calculate A from B. The beauty of their idea lies in the relationship 
between these functions. The inverse function could not, in practice, be 
calculated from the original function. 

Has Mata Hari lost her cipher book? Has an enemy agent obtained 
it? Has he been intercepting all her transmissions? Is he about to discover 
what she has been saying? No, he is not! The cipher instructions will be 
of no use to him at all. 

The heart of the simplest of these functions is a number that is the 
product of 2 large primes. Rivest's example is two 63-digit primes. These 
are multiplied together to create a number of 125 or 126 digits. All the 
enemy agent has to do in order to read Mata Hari's private cor­
respondence is to take the 125/6-digit number and turn it back into the 
product of the 63-digit numbers. Rivest estimated in 1977 that this would 
take on a powerful computer about 4 x 1016 years. 

The problem of factorizing very large numbers is only one of many 
techniques based on what are called NP-problems, which share a 
common feature. They each come in different sizes, depending on the 
number of digits to be factored, or the size of the knapsack to be filled 
exactly, and the time taken to solve them by computer increases rapidly 
as the size of the problem increases. 

As a result of work such as Cohen's and Lenstra's, the prime numbers 
in future will have to be a little longer. 
Martin Gardner, 'Mathematical Games', Scientific American, August 1977; and 
Martin E. Hellman, 'The Mathematics of Public-key Cryptography', Scientific 
American, August 1979. 
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22281 - I 

10100 [101 digits] 

The googol 
As Edward Kasner and James Newman describe it, in Mathematics and 
the Imagination:· 

A googol is this number which one of the children in the kindergarten wrote 
on the blackboard: 
10000000000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000 

The definition of a googol is: I followed by a hundred zeros. It was decided, 
after careful mathematical researches in the kindergarten, that the number of 
raindrops falling on New York in 24 hours, or even in a year or in a century, is 
much less than a googol. 

The child, Dr Kasner's 9-year-old nephew, suggested the name googol 
for this number and googolplex for a still larger number, which it was 
agreed would be I followed by a googol of zeros, or IOgoogol. 

The authors write with foresight, from a quarter of a century ago, that 
such a number might be of real use in combinatorial problems. 

In contrast, the total number of particles in the universe has been 
variously estimated at numbers from 1072 up to 1087 . 

2521 -I [157 digits] 
The 13th Mersenne prime, leading to the 13th perfect number. 

In a few hours on the night of 30 January 1952, using the SW AC 
computer, Lehmer proved that 2521 - I and the 183-digit number 
2607 - I are both Mersenne primes. 

Lehmer used a theorem based on one of Lucas's ideas. Construct the 
sequence: 

4, 14, 194, 37634 ... in which s(l) = 4 and sen + I) = s(n)2 - 2 
Then the pth Mersenne number is prime if and only if it divides 

s(p - I). 

11,111,111, •.• 111,111 [317 unit digits] 
The 4th and largest known prime repunit. 

22281 - I [687 digits] 
The 12th Mersenne prime, 2127 - I, discovered by Lucas, was the largest 
known prime from 1876 until 1951 when the non-Mersenne 
(2148 + 1)/17 was proved prime by M. Ferrier. 

oBeIl, 1959. 
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1159142985 X 22304 ± 1 

Then in 1952 five greater Mersenne primes were discovered, of which 
this was the largest. 

1159142985 X 22304 ± 1 [703 digits] 
The largest pair of twin primes given by Guy. It, or should it be they, 
was, or were, discovered by Atkin and Rickert in 1979. At the same time 
they found the pair: 694513810 x 22304 ± 1. 

24253 - 1 [1281 digits] 
The 19th Mersenne prime, and the first known prime to have more than 
1000 digits. It was discovered by Hurwitz in 1961 using an IBM 7090. 

28191 - 1 [2466 digits] 
M819h the 8191st Mersenne number. 

Catalan conjectured that if p is a Mersenne prime, then Mp will be 
prime. M3, M7, M31 and M127 are indeed prime, but although 
8191 = MI3, M8191 is composite. This was proved by Wheeler in 1953 
on the ILLIAC, in one hundred hours. 

Conjectures of this kind seem among the easiest to make in 
mathematics, and the least likely to be successful. 

211213 - 1 

2" 213_1 
fS PRlME 

[3376 digits] 

The 23rd Mersenne prime, discovered by Gillies at the University of 
Illinois in 1963. The University celebrated by franking its letters with a 
special postmark. 

219937 - 1 [6002 digits] 
The 24th Mersenne prime, discovered by Bryant Tuckerman in 1971. 

221701 - 1 [6533 digits] 
The 25th Mersenne prime, discovered to the delight and amazement of 
the American public by two 18-year-old school students, Laura Nickel 
and Curt Noll, in 1978. 
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286243 - 1 

223209 - 1 [6987 digits] 
The 26th Mersenne prime, discovered by Curt Noll in 1979 using the 
same CDC-CYBER-174 computer on which he and Laura Nickel had 
found the previous record prime. 

It took Noll more than 8 hours to check this number on the CDC. 
Two weeks later David Slowinski used a CRA Y-I supercomputer to 
check Noll's result, and the calculation was all over in 7 minutes! 
Keith Devlin, Microchip Mathematics, Shiva Publications, 1984. 

244497 - 1 [13395 digits] 

The 27th Mersenne prime, discovered by Harry Nelson and David 
Slowinski using the CRA Y-I supercomputer in April 1979. 

Equal to 22' 

, , 
[19729 digits] 

Several functions have occurred quite naturally in recent years in 
combinatorial problems, which grow astonishingly quickly. 

Ackermann's function is defined by f(a,b) = f«a - I), f(a,b - I» 
wheref(l,b) = 2b and f(a, I) = a for a greater than I. 

f(3,4) = 265536, which has more than 19,000 digits. Try to imagine 
the size of f( 10, 10) let alone f( 100, 100)! 

As R. L. Graham says of another exploding function, 'It is hard to 
grasp how fast it grows. It grows so quickly that the numbers somehow 
begin to lose their meaning.' 
Gina Kolata, 'Does Godel's Theorem Matter to Mathematics?', Science, 218. 

286243 - 1 [25962 digits] 
Probably, but not certainly, the 28th Mersenne prime, hunted down by 
David Slowinski on his trusty CRA Y-I in 1983. 

It has a modest 25,962 decimal digits and took the C RAY super­
computer I hour, 3 minutes and 22 seconds to check, after months of 
preliminary work to establish that this number was indeed likely to be 
prime. 

To give some idea of the calculation involved, an Apple I I performs 
more than 250,000 instructions per second. 

The C RAY series of supercomputers deals with rather more complex 
instructions than the Apple, because its operations are all floating point. 
'Floating point' represents each number in the computer in the binary 
equivalent of standard scientific notation in which, for example, the 
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2132049 - 1 

speed oflight, 299796 kilometres per second, is written as lOS x 2·99796 
kilometres per second. 

The C RAY uses 64 bits to represent a number, of which 15 bits may 
represent the exponent. 

One operation of either addition, subtraction, multiplication or 
division counts as an instruction. One megaflop is I million floating­
point instructions per second. 

The original CRA Y-I performed at 150 megaflops. More recent 
models go up to more than 250, 500 or even 1000 megaflops. When 
Seymour Cray brings out his CRA Y-3 series, he will be aiming for 10 
gigaflop performance, equal to 10,000 megaflops, or 10,000,000,000 
instructions in one second. Think about it! 
Mathematical Intelligencer, vol. 5. 

2132049 - 1 [39751 digits] 
The second-largest known prime, and probably the 29th Mersenne prime, 
discovered by David Slowinski using two CRA Y-I computers linked 
together, on 19 September 1983. 

2216091 - 1 [65050 digits] 
The largest known prime number, discovered by researchers at Chevron 
Geosciences of Houston, Texas, while running in their new CRA Y 
X-M P supercomputer, which will eventually be used to search for oil. 

The news that the record had been broken was broadcast to the 
British people at 7.30 on the morning of 18 September 1985 by BBC 
Radio. 

At 400,000,000 calculations per second, the X-M P took 3 hours to 
test that this number is indeed prime, following months of work to 
determine that it was a plausible candidate. 

99 ' [369693100 digits] 
The largest number in decimal notation that can be represented without 
using more than 3 digits, with no additional symbols. 

C. A. Laisant showed in 1906 that this number has 369,693,100 digits. 
In 1947 H. S. Uhler calculated and published the value of log 99 ' to 250 
decimal places. 

Horace Scuder Uhler, Professor of Physics at Yale University, devoted 
much of his spare time to calculating an extraordinary variety of math­
ematical numbers, such as logarithms, reciprocals, roots, to immense 
numbers of decimal places. He found it relaxing. He found the calcu-
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3li!3 etc., etc. 

lation of log 99 " doubly relaxing - he did it in between testing for factors 
of Mersenne numbers such as Ml 57, which he showed to be composite. 

Mathematics Teacher, April 1953. 

3. 

1010 " 

Skewes' number 
The number of primes less than or equal to n is approximately 

J:~. For small values of n, into the tens of millions, this ap­

proximation is an overestimate, but this is not always so. J. E. Littlewood 
proved in 1914 his famous theorem that it switches from being an over­
estimate to an underestimate and back again an infinite number of 
times, if, of course, you go high enough. 

How high? Skewes proved in 1933 that the first switch occurs before n 
reaches 101010", though he had to assume the truth of the famous 
Riemann hypothesis. 

At the time this was an extraordinarily large number. Hardy thought 
it 'the largest number which has ever served any definite purpose in 
mathematics', and suggested that if a game of chess was played with all 
the particles in the universe as pieces, one move being the interchange of 
a pair of particles, and the game terminating when the same position 
recurred for the third time, the number of possible games would be 
about Skewes' number. 

By way of comparison, the number of particles in the universe has 
been estimated in recent years as a trifling 1080 to 1087 • 

Skewes' number is dwarfed by many numbers now appearing in prob­
lems in combinatorics. 

J. E. Littlewood, A Mathematician's Miscellany, Methuen, London, 1963; and 
R. P. Boas, 'The Skewes Number', in R. Honsberger, Mathematical Plums, Math­
ematical Association of America, 1979. 

3lif3 etc., etc. 

Graham's number 
The World Champion largest number, listed in the latest Guinness Book 
of Records, is an upper bound, derived by R. L. Graham, from a problem 
in a part of combinatorics called Ramsey theory. 

Graham's number cannot be expressed using the conventional 
notation of powers, and powers of powers. If all the material in the 
universe were turned into pen and ink it would not be enough to write 

209 



3iii3 etc., etc. 

the number down. Consequently, this special notation, devised by 
Donald Knuth, is necessary. 

3j3 means '3 cubcd', as it often does in computer printouts. 
3jj3 means 3j(3j3), or 3j27, which is already quite large: 

3j27 = 7,625,597,484,987, but is still easily written, especially as a 
tower of 3 numbers: 33 '. 

3jii3 = 3ii(3ij3), however, is 3ii7,625,597,484,987 = 
3j(7,625,597,484,987j7,625,597,484,987). 

3iiti3 = 3tii(3iii3), of course. Even the tower of ex­
ponents is now unimaginably large in our usual notation, but Graham's 
number only starts here. 

Consider the number 3iii ... tij3 In which there are 
3iiii3 arrows. A largish number! 

Next construct the number 3iii ... tiP where the number of 
arrows is the previous 3iii ... iiP number. 

An incredible, ungraspable number! Yet we are only two steps away 
from the original ginormous 3tiij3. Now continue this process, 
making the number of arrows in 3iii ... iiP equal to the 
number at the previous step, until you are 63 steps, yes, sixty-three, steps 
from 3jjjj3. That is Graham's number. 

There is a twist in the tail of this true fairy story. Remember that 
Graham's number is an upper bound, just like Skewes' number. What is 
likely to be the actual answer to Graham's problem? Gardner quotes 
the opinions of the experts in Ramsey theory, who suspect that the 
answer is: 6 !! 
'Mathematical Games', Scientific American, November 1977. 
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TABLES 

1 The First 100 Triangular Numbers, Squares and 
Cubes 

triangular square cube 

1 1 1 
2 3 4 8 
3 6 9 27 
4 10 16 64 
5 15 25 125 
6 21 36 216 
7 28 49 343 
8 36 64 512 
9 45 81 729 

10 55 100 1000 
11 66 121 1331 
12 78 144 1728 
13 91 169 2197 
14 105 196 2744 
15 120 225 3375 
16 136 256 4096 
17 153 289 4913 
18 171 324 5832 
19 190 361 6859 
20 210 400 8000 
21 231 441 9261 
22 253 484 10648 
23 276 529 12167 
24 300 576 13824 
25 325 625 15625 
26 351 676 17576 
27 378 729 19683 
28 406 784 21952 
29 435 841 24389 
30 465 900 27000 
31 496 961 29791 
32 528 1024 32768 
33 561 1089 35937 
34 595 1156 39304 
35 630 1225 42875 
36 666 1296 46656 
37 703 1369 50653 
38 741 1444 54872 
39 780 1521 59319 
40 820 1600 64000 
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triangular square cube 

41 861 1681 68921 
42 903 1764 74088 
43 946 1849 79507 
44 990 1936 85184 
45 1035 2025 91125 
46 1081 2116 97336 
47 1128 2209 103823 
48 1176 2304 110592 
49 1225 2401 117649 
50 1275 2500 125000 
51 1326 2601 132651 
52 1378 2704 140608 
53 1431 2809 148877 
54 1485 2916 157464 
55 1540 3025 166375 
56 1596 3136 175616 
57 1653 3249 185193 
58 1711 3364 195112 
59 1770 3481 205379 
60 1830 3600 216000 
61 1891 3721 226981 
62 1953 3844 238328 
63 2016 3969 250047 
64 2080 4096 262144 
65 2145 4225 274625 
66 2211 4356 287496 
67 2278 4489 300763 
68 2346 4624 314432 
69 2415 4761 328509 
70 2485 4900 343000 
71 2556 5041 357911 
72 2628 5184 373248 
73 2701 5329 389017 
74 2775 5476 405224 
75 2850 5625 421875 
76 2926 5776 438976 
77 3003 5929 456533 
78 3081 6084 474552 
79 3160 6241 493039 
80 3240 6400 512000 
81 3321 6561 531441 
82 3403 6724 551368 
83 3486 6889 571787 
84 3570 7056 592704 
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triangular square cube 

85 3655 7225 614125 
86 3741 7396 636056 
87 3828 7569 658503 
88 3916 7744 681472 
89 4005 7921 704969 
90 4095 8100 729000 
91 4186 8281 753571 
92 4278 8464 778688 
93 4371 8649 804357 
94 4465 8836 830584 
95 4560 9025 857375 
96 4656 9216 884736 
97 4753 9409 912673 
98 4851 9604 941192 
99 4950 9801 970299 

100 5050 10000 1000000 

2 The First 20 Pentagonal, Hexagonal, Heptagonal and 
Octagonal Numbers 

pentagonal hexagonal heptagonal octagonal 

I I I I 
2 5 6 7 8 
3 12 15 18 21 
4 22 28 34 40 
5 35 45 55 65 
6 51 66 81 96 
7 70 91 112 133 
8 92 120 148 176 
9 117 153 189 225 

10 145 190 235 280 
II 176 231 286 341 
12 210 276 342 408 
13 247 325 403 481 
14 287 378 469 560 
15 330 435 540 645 
16 376 496 616 736 
17 425 561 697 833 
18 477 630 783 936 
19 532 703 874 1045 
20 590 780 970 1160 
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3 The First 40 Fibonacci Numbers 

Fibonacci 

I 
2 I 
3 2 
4 3 
5 5 
6 8 
7 13 
8 21 
9 34 

10 55 
II 89 
12 144 
13 233 
14 377 
15 610 
16 987 
17 1597 
18 2584 
19 4181 
20 6765 
21 10946 
22 17711 
23 28657 
24 46368 
25 75025 
26 121393 
27 196418 
28 317811 
29 514229 
30 832040 
31 1346269 
32 2178309 
33 3524578 
34 5702887 
35 9227465 
36 14930352 
37 24157817 
38 39088169 
39 63245986 
40 102334155 
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4 The Prime Numbers less than 1000 

2 3 5 7 II 13 17 19 23 29 31 37 
41 43 47 53 59 61 67 71 73 79 83 89 
97 101 103 107 109 113 127 131 137 139 149 151 

157 163 167 173 179 181 191 193 197 199 211 223 
227 229 233 239 241 251 257 263 269 271 277 281 
283 293 307 311 313 317 331 337 347 349 353 359 
367 373 379 383 389 397 401 409 419 421 431 433 
439 443 449 457 461 463 467 479 487 491 499 503 
509 521 523 541 547 557 563 569 571 577 587 593 
599 601 607 613 617 619 631 641 643 647 653 659 
661 673 677 683 691 701 709 719 727 733 739 743 
751 757 761 769 773 787 797 809 811 821 823 827 
829 839 853 857 859 863 877 881 883 887 907 911 
919 929 937 941 947 953 967 971 977 983 991 997 

5 The Factorials of the Numbers 1 to 20 

O! 
I! I 
2! 2 
3! 6 
4! 24 
5! 120 
6! 720 
7! 5,040 
8! 40,320 
9! 362,880 

IO! 3,628,800 
II! 39,916,800 
12! 479,001,600 
13! 6,227,020,800 
14! 87,178,291,200 
IS! 1,307,674,368,000 
16! 20,922,789,888,000 
17! 355,687,428,096,000 
18! 6,402,373,705,728,000 
19! 121,645, 100,408,832,000 
20! 2,432,902,008,176,640,000 
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6 The Decimal Reciprocals of the Primes from 7 to 97 

1/1 = ·14285~ 
1/11 =·M 
1/13 = ·07692~ 
1/17 = '058823529411764~ 
1/19 = '052631578947368421 
1/23 = ·043478260869565217391~ 
1/29 = '0344827586206896551724137931 
1/31 = ·032258064516129 
1/37 = ·02~ 
1/41 = ·02439 
1/43 = '02325581395348837209~ 
1/47 = ·021276595744680851063829787234042553191489361~ 
1/53 = ·OI8867924528~ 
1/59 = ·0169491525423728813559322033898305084745762711864406779661 
1/61 = ·016393442622950819672131147540983606557377049180327868852459 
1/67 = ·0149253731343283582089552238805970149253731343283582089552238 

8059~ 
1/71 = ·01408450704225352112676056338028169 
I f73 = ·0 136986~ 
1/19 = ·0126582278481 
1/83 = 'OI20481927710843373493975903614457831325~ 
1/89 = '01123595505617977528089887640449438202247191 
1/97 = ·0103092783505154639175257731958762886597938144329896907216494 

8453608247422680412371134020618556~ 
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7 The Factors of the Repunits from 11 to R40 

2 II 
3 3.37 
4 11.101 
5 41.271 
6 3.7.11.13.37 
7 239.4649 
8 11.73.101.137 
9 3.3.37.333667 

10 11.41.271.9091 
11 21649.513239 
12 3.7.11.13.37.101.9901 
13 53.79.265371653 
14 11.239.4649.909091 
15 3.31.37.41.271.2906161 
16 11.17.73.101.137.5882353 
17 2071723.5363222357 
18 3.3.7.11.13.19.37.52579.333667 
19 1111111111111111111 
20 11.41.101.271.3541.9091.27961 
21 3.37.43.239.1933.4649.10838689 
22 11.11.23.4093.8779.21649.513239 
23 11111111111111111111111 
24 3.7.11.13.37.73.101.137.9901.99990001 
25 41.271.21401.25601.182521213001 
26 11.53.79.859.265371653.1058313049 
27 3.3.3.37.757.333667.440334654777631 
28 11.29.101.239.281.4649.909091.121499449 
29 3191.16763.43037.62003.77843839397 
30 3.7.11.13.31.37.41.211.241.271.2161.9091.2906161 
31 2791.6943319.57336415063790604359 
32 11.17.73.101.137.353.449.641.1409.69857.5882353 
33 3.37.67.21649.513239.1344628210313298373 
34 11.103.4013.2071723.5363222357.21993833369 
35 41. 71.239.271.4649 .123551.1 02598800232111471 
36 3.3.7.11.13.19.37.101.9901.52579.333667.999999000001 
37 2028119.247629013.2212394296770203368013 
38 11.909090909090909091.1111111111111111111 
39 3.37.53.79.265371653.900900900900990990990991 
40 11.41.73.101.137.271.3541.9091.27961.1676321.5964848081 

Reprinted from Contemporary Mathematics, 1983, vol. 12, 'Factorizations ofb" ± I b = 2,3, 
5,6,7,10, II, 12 up to High Powers', John Brillhart, D. H. Lehmer, John L. Selfridge, Bryant 
Tuckerman, and S. S. Wagstaff, Jr, by permission of the American Mathematical Society. 
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8 The Proper Factors, where Composite, 
and the Values of the Functions qJ(n), d(n) and (J(n) 

n Factors cp(n) d(n) u(n) 

I I I I 
2 I 2 3 
3 2 2 4 
4 22 2 3 7 
5 4 2 6 
6 2.3 2 4 12 
7 6 2 8 
8 23 4 4 IS 
9 32 6 3 13 

10 2.5 4 4 18 
II 10 2 12 
12 22.3 4 6 28 
13 12 2 14 
14 2.7 6 4 24 
IS 3.5 8 4 24 
16 24 8 5 31 
17 16 2 18 
18 2.32 6 6 39 
19 18 2 20 
20 22.5 8 6 42 
21 3.7 12 4 32 
22 2.11 10 4 36 
23 22 2 24 
24 23.3 8 8 60 
25 52 20 3 31 
26 2.13 12 4 42 
27 33 18 4 40 
28 22.7 12 6 56 
29 28 2 30 
30 2.3.5 8 8 72 
31 30 2 32 
32 25 16 6 63 
33 3.11 20 4 48 
34 2.17 16 4 54 
35 5.7 24 4 48 
36 22.32 12 9 91 
37 36 2 38 
38 2.19 18 4 60 
39 3.13 24 4 56 
40 23.5 16 8 90 
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n Factors cp(n) d(n) u(n) 

41 40 2 42 
42 2.3.7 12 8 96 
43 42 2 44 
44 22.11 20 6 84 
45 32.5 24 6 78 
46 2.23 22 4 72 
47 46 2 48 
48 24.3 16 10 124 
49 72 42 3 57 
50 2.52 20 6 93 
51 3.17 32 4 72 
52 22.13 24 6 98 
53 52 2 54 
54 2.32 18 8 120 
55 5.11 40 4 72 
56 23.7 24 8 120 
57 3.19 36 4 80 
58 2.29 28 4 90 
59 58 2 60 
60 22.3.5 16 12 168 
61 60 2 62 
62 2.31 30 4 96 
63 32.7 36 6 104 
64 26 32 7 127 
65 5.13 48 4 84 
66 2.3.11 20 8 144 
67 66 2 68 
68 22.17 32 6 126 
69 3.23 44 4 96 
70 2.5.7 24 8 144 
71 70 2 72 
72 23.32 24 12 195 
73 72 2 74 
74 2.37 36 4 114 
75 3.52 40 6 124 
76 22.19 36 6 140 
77 7.11 60 4 96 
78 2.3.13 24 8 168 
79 78 2 80 
80 24.5 32 10 186 
81 34 54 5 121 
82 2.41 40 4 126 
83 82 2 84 
84 22.3.7 24 12 224 
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n Factors qJ(n) d(n) a(n) 

85 5.17 64 4 108 
86 2.43 42 4 132 
87 3.29 56 4 120 
88 23.11 40 8 180 
89 88 2 90 
90 2.32.5 24 12 234 
91 7.13 72 4 112 
92 22.23 44 6 168 
93 3.31 60 4 128 
94 2.47 46 4 144 
95 5.19 72 4 120 
96 25.3 32 12 252 
97 96 2 98 
98 2.72 42 6 171 
99 32.11 60 6 156 

100 22.52 40 9 217 
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Only 3 decimal places are gIven in this index. Bold type indicates that the index 
term is defined under that entry. 

GREEK 

l' 0·577 
It 0·123;0·318;0·607;0'740;0·906; 1·082; 1·202; 1·644; 1·772; 1·901;2·506; 

2·665; 3'141; 9; 9·869; 22·459; 23·140; 24; see also Euler's relationship 
cp see Divine Proportion 
cp(n) 14;30;72;714;5186 
u(n) 12; 14; 714 

ENGLISH 

absolute pseudoprimes see Carmichael numbers 
abundant 12;20;945;20161;45045 
Ackennann's function 20SS 30 

aliquot sequences 276 
almost perfect 16 
amicable 220; 284; 1184; 2620; 5020; 12285; 17296; 1175265 
Archimedean polyhedra 13; see also Platonic solids; polyhedra: polytopes 
area 0·906; 6; 16; 17; 30 
automorphic 5; 25; 76; 625; 90625; 1,787,109,376; 8,212,890,625; see also 

tri-automorphic; trimorphic 

bell ringing 5040 
binary 2;3·141;31; 196;257;4096 
binomial coefficients 35; 42; 16483; see also Pascal's triangle 
brick, integral dimensIOns 44 
Brocard's problem 4; 7; 71; 121 
Brun's constant 1·901 

calendar 7; 12; 13; 14; 20; 24; 28; 52; 91; 360; 365·242; 3333 
Carmichael numbers 561; 1729; 2821 
Catalan numbers 5; 42 
cattle problem 4,729,494 
centred hexagonal numbers see hexagonal numbers, centred 
circles 0'906; 3·141; 6; 6·283; 9; 360 
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combinations and permutations 24; 35; 1,002,000,000,000; see also factorials; 
Pascal's triangle 

common factors see factors, common 
composite 4; 6; 49; 120; 2047; 4181; 8191; 78557; 110 ... [17 digits]; 

178 ... [34 digits]; see also pseudopnmes 
crowds 12496 
cube, geometrical 1·060; 4; 5; 6; 8; 12 
cubes 8; 1375; 2201; 3334; 1,857,437,604 
cubes, sums of 6; 9; 15; 28; 36; 100; 180; 204; 216; 251; 492; 729; 1729; 

8000; 12758; 16830; 351120; 87,539,319; see also Waring's problem 
Cullen numbers 141 
Cunningham chains 1,122,659 
cyclic numbers 142857; see also reciprocals, decimal periods of 

decimal system 10; 60 
deficient numbers 2; 12; 220 
deltahedron 8 
digital invariants 55; 136; 153; 370; 371; 407; 1634; 2178; 8208; 54748; 548834; 

1,741,725; 24,678,050; 4,679,307,774; 115 ... [39 digits] 
digital root 9; 28 
digits 0·301; 3·321; 28; 128; 1681; 2025; 109 ... [21 digits] 
digits, cyclic permutations of 27; 37; 41; 49; see also reciprocals, decimal 

periods of 
digits, frequency of 0·123; see also pandigital 
digits, patterns in 21; 71; 1127; 1233; 2592; 7744; 8281; 27594; 183184; 

333667; 1,234,321; 60,996,100; 36,363,636,364; III ... [19 digits] 
digits, product of II; 12; 24; 36; see also multiplicative persistence 
digits, rearrangements of 113; 132; 714; 1782; 1980; 147852; see also 

Kaprekar's process 
digits, repeated 21; 61; 88; 144; 462; 1444; 3334; 6666; 6667; 9999; 278886; 

333667; see also repunits 
digits, reversal of 12; 18; 47; 144; 169; 499; 504; 651; 1089; 1675; 1980; 2178; 

2615; 4356; 6999; 8712; 10989; 123,456.789 
digits, sums of 6; 12; 17; 18; 24; 26; 27; 81; 4913; see also Harshad 

numbers 
digits, sums of powers of 4; 89; 135; 175; 3435; 438,579,088; see also digital 

invariants 
digits, sums and products of 12; 36 
dissections 5; 7; 9; 21; 112; 216 
Divme Proportion 1'618; 2·618; 5; 12 
divisibility 2; 4; 5; 7; 8; 9; 10; II; 19; 1001 
divisors see factors 
dodecahedron 1·618; 4; 5; 12; 13; 20; 30 
duodecimal 10; 12; 60; 144; 1728; 20736 
duplication of the cube 1'259; 3 
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e 0·123; 0·367; 0·434; 1·444; 2·506; 2·665; 2'718; 22·459; 23·140; 24; 163; see 
also Euler's relationship 

Egyptian fractions 2/3; 6 
Euclidean algorithm 5 
Euler's constant O· 577 
Euler's relationship - 1 and i; 0·207; 2·718 

factorials 0·110; 1·772; 2·506; 4; 5; 6; 7; 9; 13; 24; 25; 71; 120; 720; 5040; 
40320 

factorials, numbers of digits 22; 23 
factorials, n! ± I is prime 116; 154; 719 
factorials, products of 10; 527; 362880; 3,628,800 
factorials, sums, differences of 3; 19; 33; 145; 153; 873; 5913; 40585 
factorization 127; 257; 258 + I [18 digits]; ' ......... .' [100 digits) 
factors, common 0·607; 0·831; 17; 257 
factors, number of 28; 30; 60; 64; 96; 120; 240; 242; 840; 1024; 2310; 7560; 

9240;40311 
factors, products of 12; 24; 28; 48; 400 
factors, special forms 257; 641 
factors, sums of 6; 14; 28; 66; 70; 81; 120; 400; 2520; 1,857,437,604; see also 

abundant; deficient; multiply perfect; perfect; sociable; tri·perfect 
Fermat numbers 3; 5; 17; 257; 641; 65537; 4,294,967,297 
Fermat quotient 7 
Fermat's Last Theorem 2; 2·665; 3; 144; 1093; 125000; 253,747,889 
Feuerbach circle 9 
Fibonacci numbers 1·618; 5; 8; 13; 24; 35; 41; 55; 89; 144; 4181; 510510; 

178 ... [34 digits] 
fourth dimension 4; II; 56; see also polytopes 
fractions 16/64; 0·5; see also reciprocals 
fractions, Egyptian 2/3; 6 

Goldbach's conjecture 2 
golden ratio see Divine Proportion 
googol 30; 10100 

googolplex lO"lO 

Graham's number last entry in the dictionary 

harmonic series 0·577; 35; 272,400,600 
Harshad numbers 1729; 6174 
heptagonal numbers 81; see also polygonal numbers 
heptominoes 108 
Heronian triangles 14 
hexadecimal 8; 16; 4096; 1,048,576 
hexagonal numbers 45; 40755; 1,533.776,80 I; see also polygonal numbers 
hexagonal numbers, centred 19; 37; 64; 91 
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hexominoes 35 
highly composite numbers 60 

icosahedron 1'618; 4; 5; 8; 12; 20; 30 
imperial system of measures 2; II; 12; 14; 20; 24; 28; 301; 40; 112; 1728; 

1760;2240;4840 
irrational numbers 0'577; 1·202; 1·259; 1·414; 1'732; 2'665; 2'718; 3'141; 4·123; 

5; 17; 22·459 

Kaprekar numbers 9; 45; 55; 99; 297; 999; 2025; 6174; 9801; 9999; 142857; 
1,111,111,111; 222 ... [14 digits]; 555 ... [IS digits] 

Kaprekar's process 63; 495; 6174; 99954 

Latin squares 10 
letters, misaddressed 0·367; 44 
Liouville's number 0-110; 0·123 
logarithms 0·301; 0'434; 0'577; 0·693; 2·302; 2'718; 3-321; 10; 9,999,999 
Lucas numbers II 
lucky numbers 9; 13; 33 

magic cubes 8; 42 
magic hexagon 19; 38 
magic squares 3; 9; IS; 16; 34; 65; Ill; 144; 216; 729; 880; 142857; 

275,305,224; 052 ... [17 digits] 
map colouring 4; 6; 7 
Mascheroni's constant 0·577 
Mersenne numbers 7; 28; 31; 127; 257; 2047; 8191; 267 - I; 2127 - 1; 

180(2127 - 1) + 1; 2220 - 1; 2257 - I; 2'21 - I; 22281 - I; 24253 - 1; 
28101 - 1; 2" 213 - I; 210037 - I; 221701 - I; 223200 - I; 244407 - I; 
286243 - 1; 2132040 - I; 2216001 - 1 

metric system 10; 100; 1024 
mUltiplicative persistence 10; 679 
multiply-perfect 120; 220 
music 4; 8; 10; 12 

normal numbers 0·123 
number patterns 25; 81; 1111; 2333; 3333; 3334; 6666; 6667; 147852; 

1,234,321; III ... [19 digits] 
numerology 46; 133·335; 153; 512'73; 666; 666666 

octahedron 4;5;6;8; 12 

palindromes, by reversal and addition 89; 187; 196; 1675; 6999 
palindromes, triangular IS; 55; 66; 666; 828828 
palindromic cubes 220 I; 10,662,526,601 
palindromic primes II; 101 
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palindromic squares 22; 26; 121; 484; 676; 836; 69696; 94249; 698896; 798644; 
637,832,238,736 

pancake, sliced 22 
pandigital fractions 0·5 
pandigital numbers 69; 2,438,195,760; 9,876,543,210 
pandigital powers, greater than 2 18 
pandigital primes 999 
pandigital products 6729; 9642; 333667; 12.345.679; 123.456.789; 

0429.315.678; 987.654.321 
pandigital squares 567; 854; 11826; 139,854.276; 923.187,456; 9.814.072.356 
partitions 22 
Pascal's triangle 15; 24; 35; 120; 3003 
pegs. square. in holes, round 9 
Pell's equation 1·414; 1·732; 15; 4.729,494 
pentagon 1·618; 5; 12 
pentagonal numbers 15; 22; 45; 210; 40755; 1.533.776,801 
pentominoes 12 
perfect numbers 5; 6; 7; 12; 28; 31; 496; 33.550.336 
Platonic solids 1·618; 5; 6; 9; 13 
Plato's number 216; 12,960.000 
polygons. regular 7; 17; 257; 65537 
polygonal numbers 15; 45; see also triangular; square; pentagonal; hexagonal 
polyhedra 2; 9; see also Platonic solids; Archimedean polyhedra; polytopes 
polytopes 5; 6 
powers 23; 109 ... [21 digits] 
powers. differences of 9; 25; 121 
powers. sums of reciprocals of see sums. infinite. of reciprocals of powers 
powers. sums of consecutive 31; 121 
powers, sums of 4th 17; 29; 59; 353; 625; 651; 6578; 50625; 635.318.657; 

15.527,402,881 
powers, sums of 5th 72; 144; 248832; 1,375,298.099; 61.917,364.224 
powers, sums of 6th 1141; 160,426,514 
powers. sums of higher 1.741,725; 4,679,307,774 
powers see also squares, sums of; cubes. sums of; Waring's problem; digits, 

sums of powers of 
prime pairs see twin primes 
primes 2; 4; 15; 36; 101; 113; 127; 210; 496; 999; 1549; 1,234.567.891; 

619.737,131,179; see also Fermat numbers; Mersenne numbers 
primes, beheaded, tailed 739,397; 739,391,133; 1.979.339,339; 357 ... [24 

digits] 
primes, consecutive 7; 23; 89; 139; 11593; 396733 
primes. distribution of 0·5; 48; 118; 455,052.511 
primes, formulae for 17; 29; 41 
primes, in arithmetical progression 3; 5; 7; 199; 2,236,133,941; 3,430,751.869; 

107,928,278,317 

227 



Index 

primes, of special form 5; 6; 7; 55; 257; 1201; 11593; 26861; 78557; 
18,465,126,293; 608 ... [12 digits]; see also Mersenne numbers; Fermat 
numbers 

primes, other sequences of 89; 587; 802 ... [45 digits]; see also Cunningham 
chain 

primes, powers of 2; 6; 9; 12 
primes, sums of 27; 45; 55; 71; 121; 161; 205; 369119 
primorial 29; 30; 31; 210; 714; 2310; 510510 
Prince Rupert's problem 1·060 
probability 0·367; 0'607; 0'831; 23; 24; 35; 158 ... [12 digits]; 223 ... [28 digits] 
pseudoperfect see semi-perfect 
pseudoprime 91; 217; 341; 561; 645; 161038 
pyramidal square numbers see square pyramidal numbers 
Pythagorean triangles 2; 5; 6; 7; 13; 14; 30; 232; 666666 
Pythagoreans 0; 1'414; 1'618; 2; 3; 4; 5; 6; 10; 13; 16; 17; 22; 216 

quasi-perfect 16 

rational numbers see fractions 
reciprocals 2/3; 2; 35; 2520; see also, fractions, Egyptian; harmonic series 
reciprocals, decimal periods of 5; 7; 13; 17; 19; 23; 27; 31; 49; 53; 81; 89; 97; 

98; 99; 103; 729; 999; 1089; 47619; 076923; 142857; 0588 ... [15 digits]; 
0526 ... [17 digits]; 111 ... [19 digits]; 0434 .. 1. [21 digits] 

reciprocals, sums of 23·103; 77; 105; 272,400,600 
rectangles, dissected 7; 21 
repunits II; 111; 297; 4,937,775; III ... [19 digits]; 111 ... [23 digits]; 

III ... [317 digits] 
Rhind papyrus 2/3; 1'618; 2; 3'141; 7 

Riemann hypothesis 0'5; 2.665; 1010 ,,34 

rigid framework 23 
Roman numerals 0; 5; 10; 12; 50; 100; 500; 666; 2,300,000 
Rubik's Cube 432 ... [20 digits] 
Russian peasant multiplication 2 

StIves 7 
Sandreckoner, The lOS! 
semi-perfect numbers 12; 20; 104; 945 
semi-primes 33; 818 
Sieve of Erastosthenes 33 .. 
Skewes' number 1010'. 

Smith numbers 4,937,775 
sociable numbers 28; 276; 12496; 14316 
space group 219 
spheres, packing of 0'740; 12; 24; 196560 

228 



spheres, volume of 5; 5·256 
square-free 0·607 
square pyramidal numbers 14; 24; 55; 91; 4900; 208335 
square roots 0·123; 1·414; 1·732; 10; 30739; see also squares 

Index 

squares 4; 9; 12; 15; 16; 25; 45; 81; 121; 1127; 1225; 1444; 1681; 2025; 7744; 
8281; 19600; 183184; 60,996,100; 1,857,437,604; 36,363,636,364; III ... [19 
digits] 

squares, differences of 10 
squares, geometrical 4; 112 
squares, sums of 3; 4; 5; 7; 9; 10; 24; 25; 27; 50; 55; 65; 85; 125; 128; 145; 

232; 325; 1105; 17163 
Steiner's problem 1·444 
Stirling's formula 2·506; 24 
straight edge and compasses 1·259; 3; 17; 65537 
subfactorial 9; 44; 265; 1854; 148349 
sufficiently large numbers 3; 7; 9; 16; 137 
sums, infinite 0·577; 0·693; 1·901; 2·718; 3·141; 15; 23·103; 24; 142857; 

272,400,600 
sums, infinite, reciprocals of powers 0·831; 1·082; 1·202; 1·644 
superabundant 12 
Syracuse algorithm 27 

tetrahedral numbers 10; 20; 35; 56; 120; 220; 680; 1540; 7140; 19600 
tetrahedron 4; 5; 6 
tetraktys 4; 10 
Tower of Hanoi 31; 184 ... [20 digits] 
transcendental numbers 0·110; 0·123; 0·577; 1·202; 2·665; 2·718; 3·141; 23-140 
triangular numbers 3; 6; 8; 9; 10; 15; 16; 20; 21; 22; 25; 27; 28; 33; 35; 36; 

37;45;55;56;91; 100; 120; 153;210;257;496;666;780; 1225; 1540;7140; 
40755; 208335; 828828; 1,747,515; 1,533,776,801; III ... [19 digits] 

tri-automorphic numbers 6667 
trimorphic 49 
tli-perfect 120; 672; 523776 
triples, equal sums and products 118; 981 
twin primes 1·90 I; 3; 5; 94; 1,000,000,000,061 

untouchable numbers 5; 51 

vigintillion 1063 

wallpaper patterns 17; 219 
Waring's problem 9; 19; 23; 37; 73; 79; 102; 137; 159; 239; 319; 399; 559; 

8042 
weird numbers 70 
Wieferich's criteria 1093; 3511 
Wilson's theorem 24; S63 


