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SYMBOL MANIPULATION LANGUAGES

1. What Is Symbol Manipulation ?

Symbol manipulation is a branch of computing

concerned with the manipulation of unpredictably structured

data. Most scientific and business data processing is

characterized by the manipulation of data of known length

and format. Thus, in the numerical solution of a partial

differential equation the representations of the input and

output parameters and intermediate results (fixed, floating,

double-precision, etc.) are fixed at the time the program

for solving the equation is written,* the dimensions of the

arrays involved are usually also known in advance or at

least do not vary during the running of the program.

Similarly, in the preparation of a payroll the exact size

and layout of the input and output records and intennediate

working storage is given and fixed, and in fact may be

stated explicitly in forms such as the Data Division of

COBOL. A little more generally, the length of a payroll

may not be known in advance but may be supplied in the

course of the problem; or the size of the array of grid

points for the differential equation may be changed in

accordance with intermediate results of the problem itself.

In all these cases, however, the general format of data

is fixed and at most some parameters related to size are

varied from time to time during the computation.

In contrast, the size and format of the data involved

in symbol manipulation are not known in advance and vary
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greatly during the running of a program. These data are

In the forai of variable-length lists . A list is a sequence

of elements, each of which is a data item. A multi-level

list is one in which the data items may themselves be

lists; the latter are called sublists of the multi-level

list. For instance^ a verbal text might be represented

as a list of the characters in it. An algebraic expression,

after suitable insertion of parentheses, might be represented

as a multi-level list; the representation would consist of

a list whose elements are the main operator and the list

representations of the subexpressions to which this

operator is to be applied. Thus the elements of one of

these lists would consist of a mixture of sublists and

elementary items such as operators, variables and constants.

The number of levels of sublists, i.e., of lists within

lists, would correspond to the number of levels of nesting

of parentheses.

Symbol manipulation languages vary in regard to

the generality of the lists upon which they operate.

List processing languages such as LISP, SLIP, IPL, and l6

process lists in their most general form. String processing

languages use one-level lists only; these lists are called

strings , and their items are called constituents . The

constituents are usually single characters, as in SNOBOL;

but they also may be groups of several characters, as in

COMIT [4l]. The distinguishing feature of such languages
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is that a list cannot itself be an item on a list.

Algebraic manipulation languages operate on algebraic

expressions^ though these expressions are multi-level

rather than single-level lists^ they are nevertheless a

very specialized form. Examples of algebraic manipulation

languages are FORMAC [56] and Formula ALGOL [29,30]; since

this subject is treated by Sammet [^6], it will not be

further discussed here. Both string processing languages

and list processing languages have been used for algebraic

manipulation. In general, the more specialized languages

take advantage of the specialization by utilizing

linguistic features and implementation techniques that

do not work in the more general cases.

A general exposition of symbol manipulation

languages, using LISP as an example, was written by this

author in I965 [2]. An overview of the state of the art

in symbol manipulation about a year later can be gotten

by reading the August, I966 issue of the Communications

of the ACM, which contains selected papers from the ACM

Symposium on Symbolic and Algebraic Manipulation that

was held in Washington, D. C, in March, 1966. Several

papers from that symposium are cited in this article.

Any programming language for symbol manipulation

must meet two major requirements. First, there must be

appropriate ways of representing lists both on paper
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(the external representation) and in the memory of a

computer (the internal representation). Second, there

must be appropriate functions, statement types, subroutines,

and other linguistic devices for specifying operations

on lists.

1,1. Representation of Lists

We first consider the external representation of

lists. For specialized lists such as character strings

and algebraic expressions, there are natural written

representations. Thus a character string may be written

by writing down the characters one after another, enclosing

the entire group in quote marks to show where it begins

and ends. An algebraic expression may be written, for

example, in one of the forms used for arithmetic expressions

in scientific programming languages.

For more general lists, the most frequently used

written representation of a list consists of the elements

of the list written in sequence, delimited by blanks, and

enclosed in parentheses. Thus:

(CAT 4 DOG)

represents the list whose three elements are the character

string GAT, the number 4, and the character string DOG.

((GAT 4) (GENTIPEDE 100))

represents a list whose elements are two sublists. Each
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of these subllsts in turn has two elements.

In representing a list within the memory of a

computer, we must indicate hoth what items are on the

list and in what sequence they occur. First, consider

the sequencing problem. The simplest way to indicate

the sequence of items in a list would be to allocate

a block of storage words, store one item per word, and

then use a special item to indicate the end of the list.

But what size block should we use? Since the length of

the list is not known in advance, we might allow the

maximum length — but to do so for every variable would

quickly exhaust storage on almost any computer. Even

worse, the number of lists needed cannot be predicted in

advance, for lists can appear as members of lists, and

in addition, in systems such as SNOBOL and LISP, new

variables can be created at run time. So clearly some

form of dynamic storage allocation is needed. We will

return to this point shortly.

We also have to be able to represent the items on

a list. If all of the items are of the same kind —
single characters or floating-point numbers, say —
that isn't much of a problem. But if the contents of

a list can be heterogeneous, then a problem can arise

with "data puns", i.e., different items that happen to

be represented by the same configuration of bits. So we

-5-



must either associate a tag with each item on a list

that says what kind of an item it is, or represent items

in such a way that data puns cannot occur.

By dynamic storage allocation, we mean that the

amount of space allotted to storing the values of variables

varies at run time. Thus we need to have a way of

obtaining more space when it is needed; and since we will

surely run out of space sooner or later, we need to have

a way of recovering space that is no longer needed.

Usually, the value of a list variable is stored

as a pointer to, i.e., the address of, the machine location

where the list actually starts. Some of the possible ways

of representing a list in a computer memory are illustrated

in Figure 1. In Figure la we see a list represented as

an array, with the first cell of the array giving its

dimension and the succeeding cells containing the representa-

tions of the successive items of the list. A list variable

whose value was this particular list would contain in its

assigned storage location the address of the first cell

of the array. This address would thus be a token of the

list. (For lists of characters, the array might pack

several to a word and give the number of characters rather

than the number of words in the header. ) In Figure lb we

see the representation of the same list as a sequence of

linked cells. Each cell contains an item and a pointer to

-6-



3
It r
m o Q

O
T

<

T
DQ



the next cell, i.e., the location of that cell. A token

of the list would he the address of the top cell. The

last cell has a special indicator for end-of-list, as

shown. In Figure Ic we see the list represented in a

doubly-linked form with a header cell. Each element of

this list occupies two words. The header contains pointers

to the first and last elements of the list, and each element

of the list contains a pointer to its predecessor and a

pointer to its successor. The header is the predecessor

of the first element and the successor of the last one.

A type code distinguishes the list elements from the header,

and also distinguishes different kinds of elements from

each other. A token of this list would be the location

of the first word of its header.

The array representation is convenient in situations

where a list, once generated, is never modified directly.

In this situation, a list is modified by making a new

copy of it with the wanted modifications. The linked-cell

representation is convenient when lists are subject to

direct modification.

In either representation, there is always a reservoir

of available space, often in the fonn of a list of available

space. As new lists are created or old ones are enlarged,

space is taken from this reservoir for the purpose. Of

course, the space has to be available in an appropriate

form; if we want a block of 5OO cells in a row, it does not
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suffice to have I50 disjoint blocks of 2 cells each.

The action of returning storage to the reservoir

is known as erasure; the criterion for erasing a block of

storage is that the data stored there will never be used

by the program in the future. This criterion will be

satisfied if the contents of the storage are inaccessible

to the program. For example^ suppose that a certain list

is the value of a variable and is not the value of any

other variable^ nor is it a sublist of any other list.

Then if the value of that variable is changed^ the previous

value is rendered inaccessible and thus the list can

safely be erased.

Thus the central issue in storage recovery is the

determination of whether or not a given block of storage

is inaccessible. Depending on the particular language^

this determination may be made by the programmer, by the

system, or by a combination of the two. If the determina-

tion is left to the programmer, then an erasure subroutine

is provided; this subroutine is given the address of a list

(or other storage to be erased) and returns the storage

occupied by this list to the reservoir. Sublists of the

list may or may not be erased also, depending on the system.

If the system is the determiner of inaccessibility, then a

program called the garbage collector (cf. Sec. 2.5) is

provided. When the reservoir is exhausted, the system

will invoke the garbage collector. The invocation will
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take place without any explicit action on the part of

the programmer. The garbage collector will then search

out all inaccessible lists and return them to the reservoir.

The garbage collector can usually be invoked explicitly as

wellj and in some cases garbage collection may be performed

even though the reservoir is not exhausted. Another approach

is the one taken by SLIPj where the system accounts for

references to lists as elements of other lists, while the

programmer accounts for all other references to lists.

In general, leaving the responsibility for erasure to the

programmer requires the programmer to do more work but

leads to a simpler system. A significant disadvantage of

leaving erasure to the programmer is that if a list is

erased when it is not yet inaccessible, then the resulting

program misbehavior may be extremely difficult to debug.

Furthermore, failure to erase erasable lists may lead to

the rapid exhaustion of storage and this situation also

will be difficult to debug.

Character strings are a special case of lists

because in some internal representations several characters

may be packed into a list item. There are a n\imber of

possible internal representations for character strings

which differ in the density of packing and the extent to

which pointers are used. In general, the methods that pack

information more densely also increase the cost of insertion

and deletion of characters. A useful discussion of the
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alternative internal representations of character strings

is given by Madnick [24],

Generally, speaking, symbol manipulation systems

have not had any effective methods for utilizing secondary

storage devices. Some facilities of this sort are included

in IPL [27], and most systems permit input and output to

and from named files, which may reside on secondary storage.

Some ideas on the efficient use of secondary storage have

been published by Bobrow and Murphy [4] and by Cohen [10].

1.2. Language Features .

The operations common to all symbol manipulation

languages are those involving the creation and decomposition

of lists. At a minimum, it must be possible to create a

list by combining existing elements of lists, and to extract

a portion of a list. Beyond that, the linguistic treatment

of symbol manipulation varies enormously from language to

language and is quite difficult to generalize. Further

discussion on this topic is therefore left to the discussion

of the individual symbol manipulation languages.

Increasingly, symbol manipulation languages have

tended to include more general computational facilities.

Some of them, e.g., SLIP, Formula ALGOL and the PL/l list

processing facilities, have been achieved by embedding,

that is, by adding list processing to an existing language.

For SLIP, there have been several host languages, notably
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FORTRAN and MAD. Formula ALGOL is an extension of ALGOL,

and the list processing features of PL/t were a later

addition to that language. On the other hand, LISP and

SNOBOL reached the same result via a different path; they

started out as pure symbol manipulation languages with

only the most rudimentary facilities for anything else,

but user requirements pushed them further and further into

general computation. LISP2 and SN0B0L4 are the results.

A useful, though now somewhat outdated, comparison

of several symbol manipulation languages is given by

Bobrow and Raphael [5].

2. LISP 2 .

LISP 2 is the most recent version of the list

processing language LISP (an acronym for LIS t Processing).

Its immediate predecessor, LISP I.5, is described in

Section 5« Although only one implementation of LISP 2

exists at the time of this writing, and furthermore that

implementation is on a one-of-a-kind computer, LISP 2 is

nevertheless a good starting point because of its resem-

blance to the well-known language ALGOL. LISP 2 was

developed jointly by the System Development Corporation

and Information International, Inc.j the present implementa-

tion on the Q52 time-sharing system at SDG was completed

in 1967- A general description of LISP 2 is given by

Abrahams et al. [1]; a more precise definition appears in
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a series of technical notes issued by SDG [38]. The

description here is based on those technical notes.

LISP 2 was developed in order to correct some of

the deficiencies of LISP 1.5^ most importantly its

inconvenient input language and its gross inefficiency

in numerical calculations. In order to remedy the

difficulties with the input language, LISP 2 adopted

an ALGOL-like source language (SL)^ an Intermediate

Language (IL) resembling LISP I.5 was also provided.

The difficulties with numerical calculations were

remedied through the introduction of type declarations

and an optimizing compiler.

The advantages of LISP 2 are its symbol manipulating

capabilities, its ability to treat programs as data, its

flexibility in handling many different types of data, and

the ease with which the basic system can be modified. Its

disadvantages are its excessive space consumption and the

complexity of its specificationsj these disadvantages are

probably responsible for the difficulties encountered in

implementing it.

2.1. Data .

LISP 2 data are of two kinds". elements and ntuples.

Elements, which we discuss first, consist of numbers,

boolean values, strings, symbols, and functions. Ntuples

consist of nodes (a generalized form of list), arrays, and
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additional programmer-defined data types.

There are three kinds of numbers in LISP 21

reals, integers, and binary niimbers. Integers and binary

numbers differ primarily in their external representations.

The external representations of real and integer nujnbers

are similar to those of FORTRAN; .the external representation

of a binary number consists of a sequence of octal digits

followed by the letter Q, followed by an optional scale

factor.

The boolean data consist of TRUE and FALSE .

Symbols consist of identifiers, characters, special

spellings, and mark-operators. The external representation

of an identifier consists of a sequence of letters, digits,

and periods starting with a letter. The external represen-

tation of a character consists of "(p" followed by the

desired character, e.g., "\-+" or "(j;A". The external

representation of a special spelling consists of a string

preceded by "%% e.g., "%#THIS IS AN IDENTIFIER#" . The

external representation of a mark-operator consists of a

sequence of operator characters such as "+" or "**".

A string is externally represented by a sequence

of characters enclosed by the character "#", e.g.,

"#STRING#". Within the string, any sequence "'£",

where c_ is any character, is equivalent to the character

c^ by itself. Thus it is possible to include the characters

"#" and "'" within a string.
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In LISP 2j f\inctions are a kind of datum. The

external representation of a function depends upon

whether the function is being read in or printed out.

The ejctemal representation of a function to be read in

is of the fonii "[FUNCTION name]," where name is an

identifier that names the function. The actual datum

thus denoted is a compiled subroutine. Functions as

data are one of the unusual features of LISP. For instance,

in LISP 2 it is possible to form an array whose elements

are functions 5 this is not possible in ALGOL, FORTRAN,

or PL/I without the use of elaborate artifices

.

Lists are represented externally in the notation

described in Section 1.1, and internally in the form of

one-way lists. The identifier NIL is used as the list

terminator. The cells that compose a list are called

nodes ; each node contains the location of an item and the

location of the next node in the list. For multi-level

lists, the item may itself be a node. Thus a node is

really a datum containing the location of two other data.

The LISP fimction CAR, when applied to a node, yields the

first component of the node, i.e., the list item; the

LISP function CDR, when applied to a node, yields the

second component of the node, i.e., the remainder of the

list.

1. These names originated with the early implementation
of LISP on the IBM 704, and stand for Contents of
Address Register and Contents of Decrement Register.
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Nodes can be used to represent more general

structures than lists, since the CDR component of a node

is not restricted to be another node or NIL. These

generalized lists are actually binary trees with the

restriction that only the endpoints can be labeled.

They are represented externally in a notation utilizing

dots; "(a . p)" represents the node whose CAR component

is a and whose CDR component is p. This notation can be

generalized; thus "(a-j^ a^ ... a^ . p)" represents a structure

obtained from the list (a-j^ a^ . . . a^) by replacing the

terminating NIL by p. In Figure 2 we see some examples

of these generalized lists, together with some (but not

all) of their alternative external representations. An

ordinary list can be represented externally in the dot

notation as well as in the notation introduced earlier.

It follows, then, that the external representation of a

list is not unique. When a node is printed, the external

representation used is the one with the minimum number of

dots; thus ordinary lists are printed in the usual way.

In Figure 5 we see another example of a node

structure as represented both internally and externally.

In Figure 3b there is one node that is pointed to from

two places. This node is used to represent a merge point

of the binary tree descending from the top node, and

corresponds to a repeated part of the external representa-

tion. Note that the node structure of Figure 3a has the
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same external representation as that of Figure 3b but

uses more storage.

An array is represented internally as a sequential

block of cells preceded by a header word giving the type

of the elements and the dimensionality. All of the elements

must have the same type. Externally, an array is represented

as a sequence of elements enclosed in brackets and preceded

by the array type. For multi-dimensional arrays, several

levels of bracketing are used.

The programmer may define ntuples in addition to

nodes and arrays. In general, an ntuple is an ordered

collection of data. Associated with each kind of ntuple

is a collection of coordinate functions by means of which

the individual components of a particular ntuple may be

extracted. In the case of a node, the coordinate functions

are GAR and CDR. In the case of an array, there are as

many coordinate functions as there are elements in the

array; the application of a coordinate function to an array

is expressed in the usual subscript notation. In the case

of a programmer-defined ntuple, the coordinate functions

are specified by the programmer in much the same way as a

data structure is specified in COBOL, PL/1, or JOVIAL.

Since LISP 2 was developed at SDC, which also developed

JOVIAL, the influence of JOVIAL data structure specification

on LISP 2 has been strong.

-19-



For any datum except a fiinctiorij a number, or a

boolean, the token of the datum is a location. Thus the

problem of data puns arises only for functions, nximbers,

and booleans. The solution adopted by LISP 2 is somewhat

complicated, and is based upon the use of type declarations,

both implicit and explicit. We use the case of the integer

479 as an example. There are two possible internal repre-

sentations for 479^ as shown in Figure 4. One representation

consists of the number itself j the other consists of a

pointer to a one-word array whose header indicates that

the number is in fact an integer (as distinguished from

a real, say). If we wish to add two variables whose values

are integers given in the pointer representation, then we

must trace down the pointers, locate the actual numbers,

and add them. If the resulting value is to be in the

same form, then we must create a new array and pass along

the pointer to it as the result of the addition. On the

other hand, if the variables in question had their values

represented directly, then two fetches, an add, and a

store would suffice. The advantage of the direct represen-

tation is that it leads to efficient calculation^ the

advantage of the indirect representation is that the data

is self-descriptive.

The type of a data token is a rule for interpreting

it, i.e., for determining the datiim that the token represents

•20-
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Figure 4. Two Representations of 479
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A field is a location within LISP' s storage that is

capable of representing a data token; every such field

has a type associated with it. Examples of such fields

are storage words reserved for variables, the pushdown

stack used for temporary storage, the GAR and CDR portions

of a node, and the elements of an array. If the type

associated with a field is INTEGER, say, then 479 would

be stored in that field in its direct representation --

but that field could only be used to hold integers, and

could not be used to hold nodes, arrays, functions, etc.

If the type associated with a field is GENERAL, then any

datum whatsoever can be stored there -- but any such datum

must be in the form of a pointer. Thus GENERAL is used

to describe fields where any kind of datum might be stored.

The type of a variable is determined by a type

declaration made for the variable, or by default. The

type of a part of an ntuple is determined by the definition

of that kind of ntuple. In particular, the CAR and CDR

portions of a node are always of type GENERAL (and thus

cannot be used to hold niimbers in their direct representation)

For arrays, the type of the elements is determined by the

header; the array as a whole is treated as being GENERAL.

Thus a datum declared REAL ARRAY will contain elements of

type REAL, i.e., actual numbers; an array containing those

same niimbers in the indirect repre'sentation vjould have type

GENERAL ARRAY.
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2.2. Program Structure .

A LISP program is specified as a sequence of

declarations of various kinds. The most important kind

of declaration is the function definition, which is

equivalent to a procedure declaration in ALGOL. Declara-

tions are made under tha aegis of the LISP Supervisor,

which recognizes two kinds of actions: declarations and

evaluation of expressions. In order to run a program in

the usual sense, one first defines a function that carries

out the desired operations and then invokes this function

by evaluating an expression. Since functions can themselves

call functions, one can construct hierarchies of functions

in the same way that one constructs hierarchies of proce-

dures or subroutines. Recursion is permitted and indeed

(in the LISP community) encouraged and admired.

Although LISP 2 introduces quite a number of

extensions to ALGOL in program structure as well as in

data structure, remarkably few of these extensions are

peculiar to the needs of list processing. Most of these

needs are met purely through the introduction of appropriate

types and conversion rules among data types. Therefore,

although we will at least mention most of these extensions,

we will not dwell upon them in detail.

A LISP 2 function definition consists of two parts:

the heading and the body. The heading gives the name of

the function, the names and types of the formal parameters,
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and the type of the value returned by the function. The

body is (unlike ALGOL) an expression] evaluation of this

expression gives the value of the function. A simple

example of a LISP 2 function definition (in SL) is the

recursive definition of the factorial function!

FACTORIAL FUNCTION(N) INTEGER; N INTEGER.*

IF N = THEN 1 ELSE N * FAGT0RIAL(N - l)

The corresponding definition in IL is:

(FACTORIAL FUNDEF (FUNCTION (FACTORIAL INTEGER) ( (N INTEGER))

(IF (= N 0) 1 (* N (FACTORIAL (- N l))))))

In both of these examples^ the first line is the heading

and the second line is the body. (Since SL and IL are

both written in a free-field format, this arrangement is

not required. ) This particular function happens to have

a recursive definition.

In LISP 2j evaluation of an expression yields a

valuation ; valuations are characterized by a type and a

reference mode. If the reference mode is NOVALUE^ then

the valuation consists of nonsense information and the

expression may only be evaluated for its side effects.

If the reference mode is anything else, then the valuation

has as part of it a value, which is a data token. The

reference mode then determines how the value is to be

obtained from the valuation. The UNFIELDED, DIRECT, and

INDIRECT reference modes are illustrated in Figure 5.

Evaluation of an UNFIELDED expression yields a value only]
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Figure 5. Reference Modes of an Expression
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the location containing that value is not accessible to

the program. Constants always have the UNFIELDED refer-

ence mode. Evaluation of a DIRECT expression yields a

pointer to a field containing the value. Evaluation of

an INDIRECT expression yields a pointer to a field whose

contents are in turn a pointer to a field containing the

value. The interpretation of this value is^ of course^

determined by the type of the valuation. The type and

reference mode of an expression are determined completely

by the expression itself and the context in which it appearsj

they do not vary from one evaluation of the expression to

the next. The actual value and the various pointers

involved may very well vary from one evaluation to the next.

The rationale behind this particular generalization

was to permit assignments to be made to components of list

structures and other ntuples as well as to arrays and

variables. In both ALGOL and FORTRAN, the left side of

an assignment statement must be either an ordinary variable

or an array reference. PL/I permits certain more general

forms J but does not permit functions to appear on the left

side of an assignment statement. In LISP 2, the reference

mode of the left side of an assignment must be either

DIRECT or INDIRECT. (The default reference mode of a

variable is DIRECT.) Expressions with either of these

reference modes satisfy the essential requirement for the

left side of an assignment, namely, they provide a location

-26-



where a value can be placed. An expression such as

"GAR(A)"j where A is a variable whose value is a node,

has the DIRECT reference mode and thus designates the

actual field which is the CAR part of A. The introduction

of reference modes also permits more general expressions,

e.g., conditionals, to appear on the left side of

assignments

.

A block consisting of a sequence of statements

enclosed in the statement brackets "BEGIN" and "END",

preceded by some declarations of variables local to the

block. The declarations are separated from each other

by semicolons, and the last one is followed by a colon.

If there are no declarations, "DO" without the colon is

used instead of "BEGIN*" to avoid certain syntactic

ambiguities. The following kinds of statements are

permitted!

(1) Expressions . When an expression is encountered in a

context where a statement is expected, the expression

is evaluated and the resulting valuation is simply

discarded. In particular, assignments are accomplished

through the evaluation of assignment expressions,

described below, rather than through a distinct

statement type.

(2) Block statements . These are as in ALGOL.

(5) Compound statements . These are as in ALGOL.
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(4) Go statements . These are of the form "GO a", where

a must be a label. Label variables such as those

used in PL/I are not permitted.

(5) Conditional statements . These are as in ALGOL.

(6) Case statements . These resemble the computed GO TO

of FORTRAN and the GO TO statement with a designational

expression in ALGOL.

(7) Return statements . The statement "RETURN a" has two

effects! it causes exit from the block containing it^

and it causes that block to have a valuation, namely,

the valuation of a. Under certain circumstances,

execution of a return statement may cause an exit

from surrounding blocks as well. The return statement

is one of the more pleasant features of LISP 2, and

in fact numerous modifications to ALGOL have introduced

similar facilities,

(8) Code statements . These are as in ALGOL.

(9) Try statements , A try statement has the form

"try V, s_-, , s_p" where v is a variable and s_-, and s_p

are statements. First the statement s^-, is executed.

If during the execution of this statement the function

EXIT (of one argument) is evaluated, then control

reverts through as many levels as necessary to return

to the try statement. The value of v becomes the value

of the argument of EXIT, and the statement s_ is

executed. If no EXIT is encountered during the
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execution of s_-, , then control simply proceeds to

the statement following the try statement.

(10) For statements . For statements are similar to those

in ALGOL, but include additional special forms

appropriate to list processing. For instance,

the statement!

FOR V IN ^ : s_

causes the statement s_ to be executed once for each

element in the list jT, during these successive

executions, the successive values of v are the successive

elements of ^. ,

Assignments are performed by assignment expressions,

which are of the form!

a <— P

Here a must have reference mode DIRECT or INDIRECT and

P may have any reference mode except NOVALUE. The valuation

of the entire assignment expression is simply the valuation

of p.; however, evaluating the assignment expression has

the side effect of replacing the value of a by the value

of p, i.e., changing the contents of the field that contains

the value of a. Since assignments are expressions, they

can be embedded within actual parameters of function calls,

for instance. Nested assignment expressions are permitted.

Operations on lists are accomplished primarily

through the application of appropriate functions rather

than through special syntactic devices (the for statement
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being an exception). The basic operations on lists are

performed by the functions CAR and CDR, by the infix

operations "o" (read as "cons" for construct) , and by

equality testing. The fiinctions CAR and CDR each expect

one argument, which must be a node, and return as value

respectively the CAR and CDR parts of that node. The

expression "a o p" creates a new node whose CAR part is a

and whose CDR part is p. Equality testing is accomplished

by extending the definition of the equality operator "="

to ntuples; two ntuples are equal if their external

representations are equal. (There is a different equality

test for actual identity of pointers; this other test will

distinguish different copies of the same list with different

internal representations but the same external representa-

tion.) In addition to these basic facilities, LISP

provides a library of other useful functions, e.g.,

APPEND(x,y) which expects two lists as arguments and returns

a new list whose elements consist of the elements of x

followed by the elements of y.

In order to use identifiers and nodes as constants

within a program, a quotation convention is needed.

Otherwise there would be no way to distinguish the identifier

"ABC", used as a constant, from the variable "ABC". There-

fore, any constant may be preceded by a "'", and constant

Identifiers must be preceded by a "'", Thus "127" aJ^d

"'I27" are both the same numerical constant; "ABC" is a
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variable; and "'ABC" is a constant, as is "'(A B C)".

As we mentioned earlier, functions can be used as

data. For example, consider the following sequence of

statements '.

A <- FUNCTION(X,Y); X^Y REAL: xt^+YT2-X* y;

X <- A(2,5);

A <- FUNGTION(X,Z); X,Z REAL! xt2+zt2+X* Z;

Y <- X + A(l,2);

Evaluation of the right side of the first assignment

expression yields a function. (Recall the remark earlier

that an expression can be used in any context where a

statement is expected. ) X and Y within this function

are d\immy variables, and bear no relationship to the X

and Y appearing on the left side of the assignment

expressions. After the sequence of statements is executed,

the value of the variable X is I9 and the value of the

variable Y is 26.

In Figure 6 we see a LISP 2 program that computes

the longest common segment (i.e., subsequence of elements)

of two lists. It uses a version of the for statement,

governed by "ON", in which the controlled variable assumes

as successive values the initial list, the initial list

less its first element, the initial list less its first

two elements, etc. In the block declarations, the

assignments are used to specify initial values to be used

upon entering the block. The fimction NULL yields TRUE
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°/6r lcs finds the longest common segment of two lists

%R LI AND L2

LCS FUNCTION (LI, L2)

I

BEGIN X, Y, BEST GENERAL; K, N, LX INTEGER; LX ^— LENGTH(LI);

FOR X ON LI WHILE LX > KI

BEGIN INTEGER LY; LY <— LENGTH (L2);

FOR Y ON L2 WHILE LY > K!

DO N <— gomsegl(x,y);

IF N _< K THEN GO A;

K <— n;

BEST <— gomseg(x^ y);

a: LY <— LY - i;

end;

Lx <— Lx - i;

end;

RETURN best;

end;

7oR GOMSEGL FINDS THE LENGTH OF THE LONGEST INITIAL COMMON

%-R SEGMENT OF TWO LISTS X AND Y

COMSEGL FUNCTI0N(X,Y) INTEGER: IF NULL(X) V NULL(Y) V

CAR(X) ^ CAR(Y) THEN ELSE COMSEGL( GDR(X) , CDR(Y)) + i;

%R GOMSEG FINDS THE LONGEST INITIAL COMMON SEGMENT OF TWO

%R LISTS X AND Y

coMSEG function(x,y): if null(x) V NULL(Y) V car(x) ^ car(y)

THEN NIL ELSE CAR(X) V COMSEG( GDR(X), CDR(Y));

Figure 6. A LISP 2 Program.
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as value if its argument is the empty list and FALSE

otherwise. The function LENGTH(x) has as its value

the length of the list x. The types of all formal

parameters and of all functions except COMSEGL are

assumed to be GENERAL by default. Initial values not

specified explicitly are determined by default; in

particular, the default initial values for the INTEGER

variables are all and for the GENERAL variables are

all NIL.

The basic concept in LISP 2 input-output is the

file. A file is a named data stream associated with an

input-output device such as a tape, a disc, or a printer.

Many files may exist at the same time^ of these, one is

selected to be the input file and one to be the output

file. The input file acts as a source of single characters,

and the output file acts as a sink of single characters.

Input and output are defined in terms of two basic

2
functions: READCH and PRINCH. READCH( ) has as its

value the next character that can be read from the input

file. PRINCH(x) writes the character x into the output

file, and incidentally has x as its value. The functions

READ and PRINT are defined in terms of READCH and PRINCH

respectively, and these read or write the external repre-

sentation of a single datum. (Since a datum may be a

2 The "( }" notation indicates that READCH is a
fimction of zero arguments.
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complicated list structure,, it may occupy several lines.)

There are no input or output statements as such^ all input

and output is done by means of functions.

LISP 2 does not have any formatting in the usual

sense. Because of its variable lengthy symbolic data

raises unusual problems in formatingj however, since

LISP 2 is also intended for numerical use, the lack of

formatting is a serious drawback. LISP 2 does provide

for the handling and adjustment of margins. For any file,

a left and right margin may be specified, subject to the

physical line length limitations of the device associated

with the file. The first character on any line is read

from or written into the left margin position, which

need not be the first available character position on

the line. When the character position moves past the

right margin, a user-specified margin overflow function

is invoked. Similar functions exist for page position,

and there is also a tab function for positioning within

a line. These formatting functions are independent for

different files, and may be modified dynamically during

input or output.

There are selection functions, INPUT (f) and

OUTPUT(f^), that select an input file or an output file,

deselecting the previous input or output file. The value

of each of these functions is the previously selected file.

When a file is deselected, its entire state is preserved.
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ajid again restored when the file is reselected. Thus

the appearance of simultaneous input and output on several

files can be maintained with no difficulty; the user merely

selects the file he wishes to operate upon before

performing the operation. The function OPEN associates

a file with a physical device^ the function SHUT breaks

this association.

2.5. Implementation of LISP 2 .

The LISP 2 system provides an environment in which

LISP 2 programs can be read in^ compiled, and executed.

There is no sharp division between these activities, and

the user may shift back and forth among them. The principal

components of the system are

I

(1) Supervisor - handles overall control and processes

requests for action.

(2) Syntax-directed translator - translates SL to IL.

(3) Compiler - translates IL to assembly language.

(4) Assembler - translates assembly language into

relocatable binary code.

(5) Input-output functions - handle reading, printing, and

file manipulation.

(6) Garbage collector - recovers abandoned storage.

(7) Library - provides a collection of useful functions.

Programs may be brought into the system either by typing
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them in on a terminal device or reading them in from a

file. Under user control^ programs may then be translated

successively from SL to IL by the syntax-directed translator,

from IL to assembly language by the compiler, and from

assembly language to code by the assembler. They may be

called by giving the function name and a list of arguments.

(All of the translators are themselves callable programs.)

There are two reasons for the division of the translation

process into several stages. First, the various intermediate

forms are themselves useful languages. In particular,

programs that operate on programs work much more easily

with IL than with SL. Second, the task of translating

from SL to IL is primarily one of pattern-matching in

one-level lists, while the task of translating from IL to

assembly language is primarily one of complex structure

manipulation. The tools that are appropriate for one

task are not the best for the other.

The garbage collector is perhaps one of the most

interesting features of the LISP 2 implementation. Many

of the ideas used in it are due to Ross [34,35]. Storage

areas are set aside for various kinds of data stioictures

used by LISP. Some of these are arranged in pairs, where

one member takes space from the bottom up and the other

takes space from the top down. When any area is exhausted,

or when the bo\indaries of two paired areas meet, a

garbage collection is necessary. Garbage collection
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proceeds in four phases!

(1) Marking . All active data structures are traced, and

a mark is associated with each. The mark may be

placed either directly in the structure or in a bit

table. Any data not marked are known to be

inaccessible to the program and therefore may be

safely erased.

(2) Planning . The planning phase is a preparation for the

moving phase which follows it. During the moving phase,

various data structures are relocated. In the planning

phase, the new location of each data structure is

determined and recorded.

(3) Fixup . During the fixup phase, all pointers to data

structures are updated to reflect the new location of

the data structure. These pointers will occur both in

temporary storage areas of the program itself and

within data structures. The fixup phase also includes

the modification where necessary of executable code.

This modification is directed by a bit table associated

with the code.

(4) Moving . Storage is rearranged so as to pack active

data and recovered space into solid blocks.

The garbage collector is actually initiated when

one of the basic LISP structure-creating functions cannot

obtain the storage that it needs. After the garbage

collector is finished, control returns to the function
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that called it, and this function then proceeds to

create the structure that it could not create previously.

Although the garbage collector can be invoked explicitly

by the user, it never needs to be; the LISP system itself

will invoke it when it is needed.

3. LISP 1.5 .

LISP 1.5 is, historically, the programming language

that led to LISP 2. LISP I.5 is in turn derived from the

original LISP 1 as described by McCarthy [26]. LISP 1

was characterized by great elegance, but in practice it

turned out to be an impossible language in which to write

useful programs. This situation led to many additions

to LISP 1, and the result of these additions has become

known as LISP I.5 (since it was believed to be halfway

between LISP 1 and LISP 2). The definition of LISF 1.5

is somewhat imprecise, in that there exist a number of

implementations of LISP which are considered by both

their authors and users to be LISP I.5 but which differ

in many details. The two best-docximented verions are

LISP 1.5 for the IBM 709O [25], developed at MIT, and

LISP 1.5 for the System Development Corporation time-

sharing system [39]- A collection of articles describing

a niimber of LISP I.5 applications, implementations, and

improvements has been published by Information International,

Inc. [16] and subsequently reprinted by the M.I.T. Press.
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Unlike LISP 2, LISP I.5 has been widely implemented and

widely used.

3.1. Pure LISP .

Pure LISP exists as a language for defining functions

of symbolic expressions, known as S-expressions . An

S-expression is a particular case of the node structures

of LISP 2. S-expressions are built up from atoms, which

are the same as the identifiers of LISP 2. S-expressions

are defined as follows:

(a) Every atom (i.e., identifier) is an S-expression.

(b) If a-, and ap are S-expressions, then (a-, . Qp) is

an S-expression.

In other words, if a-, and Qp are S-expressions, then the

node whose CAR-component is a-, and whose GDR-component is

Qp is an S-expression. The various alternative notations

for nodes are acceptable, e.g., (a-, a^ ... a ) is

equivalent to

( a-j^ . ( ap (a . NIL ) . . . )

)

There are five basic functions in pure LISP that

operate on symbolic expressions! CAR, CDR, CONS, EQ,

and ATOM. CAR, CDR, and CONS are as in LISP 2.

EQ(x,y) is defined if and only if at least one of its

arguments is an atom. Its value is the atom T (for "true")

if X and y are the same S-expression, and F (for "false")

otherwise. ATOM(x) has as its value T if x is an atom,
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and F otherwise. It is defined for all S-expressions

.

A LISP function is itself represented as an

S-expression, in a form quite similar to that of the

intermediate language (IL) of LISP 2. The form:

( f a-^ a2 ... a^

)

indicates the application of the function f to the arguments

a-,,ap,...,a . The application is carried out by evaluating

£, a-, , Op, ..., a in sequence and then applying the value

of f (which must be a function of n arguments) to a-.,CL^,

. . . ,a . The form!

(COND (£i
e-^) (Pj, £^) ••• (Pn^))

resmebles the conditional expression of LISP 2. It is

evaluated by evaluating the _£. in turn until one is found

whose value is T. The value of the entire form is then

obtained by evaluating the corresponding e_. . None of the

other £. ' s are evaluated, nor are any of the £. following

the first true one.

A fxinction is represented in the form!

(LAMBDA (x-L ^2 " ' ^^ "^

where the x. are atoms representing dummy variables

appearing in the expression a. Application of a function

to arg\aments is carried out by substituting the value of

each argument for the corresponding x. in a and then

evaluating the result of this substitution.
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In order to permit recursive functions to be

expressed in closed form^ an additional device is needed.

Evaluation of the form;

(LABEL f a)

yields the function a (which must be a LAMBDA-expression)

and in addition associates the function name f (which

must be an atom) with a so that during the application

of a to arguments, any occurrence of f_ evaluates to a.

Thus a function may be made recursive by naming it via

LABEL and then using this name within the definition, i.e.,

within the LAMBDA-expression. Although the LABEL device

is necessary in pure LISP, it has virtually no application

in actual programming because of much more convenient

mechanisms for defining recursive functions.

Given the apparatus Just described — the five

basic functions, application of functions to arguments,

LAMBDA, LABEL, and conditional expressions — it is

possible to write an interpreter for LISP in LISP. This

interpreter is the analog of a universal Turing machine,

in that its input is a LISP function together with

arguments, its output is the result of applying that

function to the arguments, and the interpreter itself is

written in the same language as the program that it is

interpreting. Much of the interest in LISP from the

standpoint of the theory of computation devloves from

the fact that LISP is universal in this sense.
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3.2. Features Added to Pure LISP .

While pure LISP was a thing of beauty to computational

theorists, it turned out in practice to be inadequate to the

needs of writing programs. At the same time, its simplicity,

self-interpretive properties, and symbol manipulation

capabilities made it a desirable basis on which to develop

a usable language. The main improvements that characterize

LISP 1.5 are:

(1) Definitions and Permanent Values - It is possible

to associate a value with any identifier. In the case

of an identifier whose value is a function, the association

is created through use of the LISP fimction DEFINE. Normally,

a LISP program consists of a sequence of applications of

functions to arguments. Thus, in order to create a compli-

cated function with many subfunctions, DEFINE is used

to associate the definition of each function with its name.

Any of these functions may refer to any other fimction or

to itself by name within its definition.

In addition, it is often useful to assign constant

symbolic expressions as values of certain atoms. The

f\mction GSET has two arguments : an identifier and a

value. Evaluation of GSET causes the value to be associated

with the identifier, so that during any subsequent evaluation

the value of the identifier will be the value of the second

argument of the GSET.
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More generally, an identifier has associated with

it a property list . Specific properties of an identifier

(of which its CSET-assigned value is one) are indicated

by placing the name of the property on the property list

followed by the associated value. Properties without

associated values are also permitted. As an example, in

an interpreter-based system one of the properties of a

function name will be EXPR. The identifier EXPR will

appear as an element of the property list of the function

name, and will be followed immediately by the S-expression

giving the function definition.

(2) Numbers - LISP I.5 has a full complement of arithmetic

facilities, although their use is still somewhat awkward

because of the parenthesized prefix notation, e.g.,

"(TIMES A (PLUS B 5))" for "A*(B+5)". Because of the

problem of "data puns" alluded to in Section 1.1, the

LISP 1.5 system has needed to adopt an artifice in order

to deal with niimbers. The most common artifice is the

use of indirect storage, sometimes called "boxing" j a

less common artifice is a combination of indirect storage

for large numbers and direct storage for niombers whose

magnitude is smaller than that of the lowest address usable

for list structure storage. Indirect storage is, however,

quite costly in both time and space, and one of the major

drawbacks of LISP I.5 has been its inefficiency in

arithmetic calculations.
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(5) Sequential programs . A major addition was the "program

feature" to permit programs to be defined as a sequence of

statements rather than In the purely functional form. A

program Is written In the form!

(PROG (v-^ v^ ... v^) s^ s 2 ... s^)

where the v. are local variables and the s_^ are statements.

The local variables are assigned storage when evaluation

of the PROG form commences, and this storage Is released

when evaluation Is completed. Each statement Is Interpreted

as an expression to be evaluated. The statements are

evaluated In turn, and the values are then thrown away,

so that the evaluation is always performed for the sake

of its side effects. The expression!

(SETQ, X a)

evaluates the expression a and assigns this value to the

variable x. The expression!

(RETURN a)

terminates evaluation of the PROG form and causes the value

of the PROG form to be the value of a. Labels, in the form

of identifiers, may be intermixed with statements; evalua-

tion of the expression!

(GO x)

causes execution to continue with the statement following

the label x. If a conditional expression is evaluated
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and none of the p^ are true, then control proceeds to the

next statement, and the fact that the value is undefined

does not (in this context) cause an error.

(4) Compilation - The original LISP system was interpreter-

based. However, compilers have been added to several

LISP 1.5 systems. In some cases, the compiler has been

used as a replacement for the interpreter; in others, the

compiler and the interpreter coexist. Compilation appears

to improve the running speed of LISP programs by a factor

of about 50.

In LISP, the interpreter ordinarily exists as a

function callable by the programmer. The function EVALl

is the most useful form of the interpreter; given a

symbolic expression, EVALl determines its value. Interpre-

tation is required because the functions occurring in the

expression to be evaluated must be applied to their

arguments in an appropriate manner. In systems with a

compiler only, an interesting approach has been taken to

the implementation of EVALl. Namely, the expression to

be evaluated is transfonned into a function of no arguments,

this function is then compiled, the compiled function is

applied to its null set of arguments, and the results of

this application is the desired value of the expression.

The compiled program is then thrown away.

(5) Character manipulation - It was fo\md desirable in

many cases to manipulate data in an arbitrary format.
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For this purpose, character manipulation functions were

provided in LISP. These functions permitted input or.

output of a character at a time, termination of an input

or output line, designation of any character as an atom,

formation of a sequence of characters into either an :

identifier or a number, and decomposition of either an

identifier or a number into its component characters. ,

(6) Macros - Macros are included in many (but not all)

versions of LISP 1.5. Each macro is associated with a

particular identifier, and consists of a transformation

function. Let m be the name of a macro with transformation

function f (which must be a function of one argument).

Suppose that during evaluation of an expression a

subexpression a is encountered whose first element

(i.e., the element in the fionction position) is m.

Then the entire subexpression a is replaced by the result

of applying f to a, and this new expression is then

evaluated. Since the new expression may itself contain

macro names, macro definitions may effectively be recursive,

Figure 7 gives the LISP I.5 program for LCS that

corresponds to the LISP 2 program for the same function

as given in Figure 6. The function GREATERP yields T

if its first argument is numerically greater than its

second argument, and F otherwise. The function SUBl

subtracts 1 from its argument. All the remaining functions

and operators have already been explained.
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DEFINE ((

(LCS (LAMBDA (LI L2) (PROG (X Y BEST K N LX)

(SETQ LX (LENGTH LI
)

)

(SEQT K 0)

(SETQ X LI)

Al (COND ((OR (NULL X) (NOT (GREATERP LX K) )

)

(GO A4)))

(SETQ LY (LENGTH L2))

(SETQ Y L2)

A2 (COND ((OR (NULL Y) (NOT (GREATERP LY K)
)

)

(GO A3)))

(SETQ N (GOMSEGL X Y))

(COND ((NOT (GREATERP N K)
) (GO A)))

(SETQ K N)

(SETQ BEST ( GOMSEG X Y))

(SETQ LY (SUBl LY))

(SETQ Y (GDR Y))

(GO A2)

A3 (SETQ LX (SUBl LX))

(SETQ X (CDR X))

(GO Al)

A4 (RETURN BEST) )))

(GOMSEGL (LAMBDA (X Y) (GOND

((OR (NULL X) (NULL Y) (NOT (EQUAL (CAR X) (GAR Y)))) O)

(T (ADDl (GOMSEGL (CDR X) (CDR Y)))) )))

(COMSEG (LAMBDA (X Y) ( GOND

((OR (NULL X) (NULL Y) (NOT (EQUAL (GAR X) (GAR Y)))) NIL)
(T (CONS (CAR X) (COMSEG (CDRX) (GDRY)))) )))

Figure 7. LISP I.5 Program for LCS,
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4. l6.

L6 (Laboratories Low Level Linked List Language) [I9]

is a highly machine-oriented (though moderately machine-

independent) list processing language developed by

Knowlton at Bell Telephone Laboratories in I966. In

contrast to LISP, it gives the programmer very precise

control over the allocation of storage, but at the cost

of much more detailed programming.

In L6, the representation of data is determined

entirely by the programmer. Storage is allocated in units

called blocks ; a block consists of 2- machine words.

In the 7094 implementation, n ranges from 1 to 7. Part

of an L6 program consists of the definition of fields ;

field definitions may be changed dynamically as a program

is run. A field is defined by designating its name (a

single letter or digit), a word of a block, and a group

of bits within that word. Fields may overlap or be

contained within one another, and their contents are quite

arbitrary. One possible content of a field is a pointer,

which is the address of the 0-th word of another block.

The length of such a field must be greater than or equal

to the address size of the machine.

The programmer has available to him a set of 26

base fields, called bugs . These are designated by the

letters of the alphabet, and constitute the explicit

variables of l6. These variables may be operated upon
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by field names. Thus the sequence "WQWQ^AR" refers to

a field that is obtained by taking the block which is the

value of the bug W^ then taking the block pointed to by

the 9 field within block W, then taking the block pointed

to by the W field within block W9j etc. Note that W is

used both as a bug and as a field, and that these uses are

independent. Note also that all the fields in the sequence

except for R must be pointers.

The use of blocks, fields, pointers, and bugs is

illustrated in Figure 8. A pointer from a field to a

block indicates that the field contains the location of

the 0-th word of the block. There are two 2-blocks and

a 4-block in this diagrajn, and two bugs I T and R.

T refers to the leftmost block and R refers to the right-

most block. The J field of the rightmost block may be

referred to as RJ^ TBJ, or TCBGJ (among the many possi-

bilities). Note that the two leftmost blocks have the

same division of their first two words into fields, but

that the rightmost block has a different division. Thus

the B field occupies the same space as the J and K fields.

An l6 program consists of a sequence of macro calls.

A macro call may contain elementary tests, elementary

operations, and a label that specifies where control is

to go when the operations are completed. A macro call

may itself be labeled.
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The elementary operations of l6 are concerned

with setting up storage, defining fields, obtaining

blocks of various sizes, freeing blocks that are no

longer needed, performing arithmetic and logical opera-

tions, doing input-output, pushing down and popping up

certain fixed stacks, and calling subroutines. Each

elementary operation is expressed as a parenthesized

list of elements; the first element of the list ordinarily

indicates the field affected by the operation, the second

element specifies the operation itself, and the remaining

elements are the operands.

For example, the operation

I

(5,DB,21,55)

defines field B to consist of bits 21 through 55 of word 5

of a block. The operation!

(0,DX,PE,FF)

defines field X to consist of a group of bits in word 0.

The starting bit is given by the contents of the E field

of the block pointed to by bug p; the ending bit is the

contents of the F field of the same block.

The operation:

(CG,GT,8,D)

causes the storage allocator to get an 8-word block of

storage, store its location in CG (i.e., the G field of

bug C), and store the previous contents of CG in the D
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field of the newly obtained block. The rest of this block

is 0. Had the operation been^ instead!

(GG,GT,8)

then the new block would have its initial contents entirely

0. The more elaborate form is useful in the creation of

pushdown lists. The operator FR is used in order to free

blocksj the decision as to when a block is to be freed

must be made entirely by the programmer, and it is his

responsibility to handle correctly such matters as the

erasure of blocks that are pointed to by several other

blocks.

An example of an arithmetic operation is I

which adds 5 to the contents of bug V; another example is!

(RY.M.QY)

which multiplies the contents of field RY by the contents

of field QY, leaving the result in field RY. The operation:

(CjXHjXYYZ)

replaces the contents of bug C by the exclusive or of the

old contents of C and the Hollerith literal "XYYZ".

As an illustration of the input-output operations,

the operation!

(A,IN,6)

brings 6 characters from the system input device into the
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contents of bug C. The characters are brought in via a

left shift, so that existing characters in G are shifted

off the left end. The operation!

(G,PR,4)

prints h characters taken from the right end of C. The

special character whose octal representation is 77 is

used as an end-of-line signal^ on input, no characters

are brought in after a 77 is encountered, and on output,

the transmission of a 77 causes the end of a line and

the beginning of a new one.

The system provides two pushdown stacks to the

programmer: the Field Contents Pushdown and the Field

Definition Pushdown. A third stack, not visible to the

programmer, is used for storing subroutine entries so

that subroutines can be recursive. The operation!

(S,FC,B)

saves the contents of B on the Field Contents Pushdown

(leaving the contents of B undisturbed) and the operation!

(R,FC,B)

restores these contents. Similar operations exist for

the Field Definition Pushdown.

There are two kinds of tests! numerical and

logical. The test!

(BG,G,CG)
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tests whether the contents of field BG are numerically

greater than the contents of field CG. There are also

tests for "less than" /'equal", and "not equal". The test:

(R,0,T)

tests whether the contents of R has a one-bit in every

position where the contents of T has a one-bit; the

command:

(R,Z,T)

does the same for zero-bits.

Instructions are made up from tests and operations.

For example, the instruction!

LI IFANY (GX,E,GY) (G¥,N,GY) THEN (XR,E,3) (XS,SD,5) L5

has the label LI. It is interpreted to mean that if any

of the conditions preceding the "THEN" are satisfied, the

operations following the "THEN" are to be carried out, and

control is then to go to the instruction labeled L5.

Otherwise control goes to the next instruction. An

instruction may omit any of the three parts, namely, the

tests, the operations, and the go- to. An unconditional

instruction thus starts with "THEN".

5. PL/l String and List Processing .

PL/I is a programming language whose primary design

aim was to satisfy the requirements of commercial users,

scientific users, and systems programmers simultaneously.
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Consequently^ PL/I has borrowed heavily from FORTRAN,

ALGOL, and COBOL; in addition, it includes many features

that a.re found in none of these languages. Some of these

features, such as the ability to specify parallel computa-

tions, were included in the original design^ others, such

as the list processing features, were added in subsequent

revisions. PL/I was originally specified by a joint

committee of IBM and SHARE, the IBM users' orgajiization,

and publicly released in March, 1964^ subsequent responsi-

bility for the specifications was taken over by IBM.

As of this writing, no computer manufacturer other than

IBM has made PL/I available as a standard software package.

The list processing features of PL/I were included

primarily to satisfy the needs of compiler writers,

particularly those who were interested in "writing PL/I

in PL/l". These features have in fact proved difficult

to implement, and though they are included in the full

language specification [17], they are not included in

F-level PL/T [18], which is IBM's present vession. A

description of PL/I list processing was published by Lawson

[20], The essence of the approach is to introduce pointers

as a class of data, and to provide facilities for referenc-

ing the data that they point to. No special functions

for list processing are provided, so that housekeeping

responsibilities such as erasure are entirely the

programmer's responsibility.
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5.1. String Processing .

PL/I has facilities for processing both strings of

hits and strings of characters; we shall consider here

only strings of characters. A character string (henceforth

usually referred to merely as a string ) consists of a

sequence of zero or more characters. Character string

constants are written by enclosing them In primes.

Primes within the string are indicated by two consecutive

primes; repetition of a string can be indicated by a

preceding repetition factor in parentheses. Thus:

'ABCDEP'

' IT '

' S ME

'

(3) 'CHA'

are all strings; the last of these is equivalent to

'CHACHACHA'

.

In PL/I, variables are described by means of the

DECLARE statement. Thus the statement:

DECLARE A FIXED, B(l5,100) CHARACTER ^O) , C POINTER;

declares the variable A to represent a single fixed-point

niimber, the variable B to represent a I5 by 100 array of

30-charaGter strings J and the variable C to represent a

pointer. A DECLARE statement may specify many different

attributes of a variable; those not specified are determined

either by the context in which the variable Is used or by

a default assumption.
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strings may be declared with either fixed or

variable length, e.g.:

DECLARE A GHARAGTER(25) , B CHARACTER(17) VARYING,

C GHARAGTER(*) VARYING;

In this case A is a string of exactly 25 characters, B is

a variable-length string with a maximum of I7 characters,

and G is a string whose length will be determined at the

time storage is allocated for it. (Storage might be

allocated either by using G as a formal parameter of a

procedure or by using the ALLOCATE statement, described

below.

)

PL/E provides a collection of functions for

operating on strings. The operator "| |" is used to

indicate the concatenation of two strings, i.e., the

string consisting of all the characters of the first

string followed by all the characters of the second string.

The fimction SUBSTR expects three arguments! a string s_,

an integer 1, and an integer J_. The value of SUBSTR

consists of a sequence of j_ characters extracted from s_

beginning with the n^-th one, with appropriate definitions

for exceptional cases.
J_ may be omitted, in which case

the entire string from the j^-th character onward is

obtained.

The fiinction INDEX expects two strings as arguments.

If either of the two argumetns is a null string, then INDEX

returns 0. Otherwise it searches the first argument for
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an occurrence of the second argument as a substring. If

such an occurrence is foiind, then the value of INDEX is

the starting position within the first string of this

substring. If such an occurrence is not founds INDEX

returns 0. The function LENGTH expects a string as

argument and returns as value the length of that string.

The function REPEAT takes a string s_ and an integer n

as arguments; its value is a string consisting of s^

repeated n times.

In addition to these functions , PL/I provides

various methods for converting data of other types to

and from character strings. Such conversions may be

accomplished through assignments, through the use of an

explicit conversion function, or through input-output

fiinctions that transmit external representations of data

to character strings or take external representations of

data from character strings.

Rosin [35] has proposed some interesting

modifications to the PL/1 string processing capability.

He replaces SUBSTR(S,I, j) by S(:I ... J+I-1), where

the "..." is actually part of the notation. He uses

the following related auxiliary notations:

x(:i) = x(:i . . . I)

X(: . . .J) = X(:l ... J)

X(: I ... ) = X(: I ... LENGTH(X))

X(A:I ... J) = SUBSTR(X(A), I, J-I+l)
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(Actually^ Rosin proposed the last of these as the basic

notation J and defined the others in terms of it.) In the

case where J < I^ the resulting string consists of the

characters from the I-th to the J-th in reverse order.

Rosin also defines five new operators:

X UPTO Y returns X(:i ... INDEX(X,Y)+LENGTH(Y)-1
)

returns X(: ... INDEX(X,Y)-1)

returns X(

:

INDEX(XjY)+LENGTH(Y)-1 ...)

returns X( : INDEX(X,Y) ... )

returns X(

!

INDEX(X,Y) . .

.

INDEX(X,Y)+LENGTH(y)-1
)

If, in any of these operations, Y does not occur in X,

the scan is said to fail and a pseudo-variable Is set to

indicate this. There is some ambiguity in Rosin's proposal

as to just what happens when a scan falls. He also proposes

that the various string operators be permitted to appear on

the left side of an assignment, and cause modification of

the string X when they appear in that context.

X BEFORE Y

X AFTER Y

X FROM Y

X IN Y

5.2. List Processing .

The storage class of a PL/I variable determines the

mechanism by which storage Is assigned to it. There are

four possible storage class attributes, as illustrated in

the statement:

DECLARE(A STATIC, B AUTOMATIC, C CONTROLLED,

D BASED (P)) fixed;
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The parenthetic notation used here indicates that A, B,

C and D are all fixed-point variables. Storage for A is

allocated exactly once, at the time when the program begins

execution. Storage for B is allocated upon entrance to

the block or procedure in which B is declared, and released

upon exit from that block or procedure. Storage for C is

allocated explicitly when the statement:

ALLOCATE C

is executed, and freed when the statement*

FREE C

is executed. A, B and C are nonbased variables ; D is a

based variable . P is in this case contextually declared

as a pointer^ it could, but need not, also be declared

as a pointer explicitly. D serves as a prototype for

the location that P points to. The expression!

P -> D

represents a fixed-point variable located at the address

given by P. It is the programmer's responsibility to make

sure that P actually points to a fixed-point variable.

The symbol "->" is read as "qualifying", and in this

example D is said to be qualified by the pointer P.

If Q, is another pointer, then Q -> D would be the fixed-

point variable pointed to by Q. P-> D and Q, -> D may

both exist at the same time, and may well be different.

A reference to D by itself is taken to mean P -> D, since
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P was the pointer declared with D. If the declaration:

DECLARE D BASED FIXED;

had been used instead, then all references to D would need

to be qualified explicitly.

The function ADDR, provided by PL /I, has as its

single argument a variable name; its value is a pointer

to that variable. Thus if we write

:

DECLARE (A AUTOMATIC, B BASED(P)) FIXED;

P = ADDR(A);

B = 5;

the net effect will be to set the value of A to 5, since

B really means the variable pointed to by P. Pointer

qualifications may be nested, so that if we write!

DECLARE P POINTER, Q BASED(R), A FLOAT,

B FLOAT BASED(Q);

R = ADDR(P);

P = ADDR(A);

R -> Q -> B = 5.5;

then the net effect is to set A to 5.3. The rules of

PL/E state that R -> Q -> B is to be interpreted as

(R -> Q) -> B. To understand this example, note that

R -> Q, designates the pointer that is pointed to by r;

that pointer is P. Qualifying B by R -> Q designates

the floating variable pointed to by R -> Q, i.e., by P.

Since P points to A, it is A that is set to 5.3.
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A constant pointer NULL is provided^, which can be

used as a list terminator. NULL does not point to any

data.

A structure is a hierarchical collection of

variables, arrays, and substructures. The term "structure"

as used in PL/I has no connection at all with list struc-

tures. A typical structure might be created by the

statement!

DECLARE 1 DATE, 2 YEAR FIXED (4), 2 MONTH FIXED (2),

2 DAY, 3 DAY OF MONTH FIXED(2), 3 WEEKDAY CHAR(3);

The integers appearing in this declaration identify level

numbers. A substructure of a given structure is indicated

through the use of a higher level number. Thus the total

structure (which is a variable) is DATE. A date consists

of a 4-digit year, a 2-digit month, and a day. The day

in turn consists of a two-digit day of the month and a

three-character day of the week.

Suppose now that we wish to construct a one-way,

one-level list of fixed-point numbers. Such a list can

be organized using structures declared as follows!

DECLARE 1 ELEMENT BASED(P), 2 NEXT POINTER,

2 CONTENT FIXED;

This declaration establishes the format of each list

element, which consists of a fixed-point number and a

pointer to the next element. A procedure for adding a

-62-



number to the head of a list L and returning as value

a pointer to the new list would be!

addnum: procedure (l,n);

declare l pointer^ n fixed, 1 element based(p),

2 next pointer, 2 content fixed;

allocate element set(p);

NEXT = l;

CONTENT = N;

RETURN (P);

END addnum;

Initially, the value of L would be NULL. The ALLOCATE

statement causes storage to be set aside to hold the

structure ELEMENT, i.e., to hold a pointer and a fixed-

point number. The "SET(P)" clause causes the pointer P

to point to the beginning of this newly allocated storage

area. The variable used in the SET clause need not be

the same as the pointer declared with ELEMENT, Had the

SET clause been "SET(R)" instead, then R would point to

the newly allocated element, NEXT would have to be replaced

by "R -> NEXT", and "CONTENT" would have to be replaced by

"R -> CONTENT".

A procedure to erase a list of the kind created

by ADDNUM would be:
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erase: progedure(l);

DECLARE L POINTER, 1 ELEMENT BASED (L),

2 NEXT POINTER^ 2 CONTENT FIXED, M POINTER;

DO WHILE L-, = null;

M = next;

FREE element;

L = m;

END erase;

In this example, NEXT and ELEMENT are implicitly qualified

by L. The END statement ends both the DO and the procedure.

The symbol "-i" means "not". The FREE statement has the

effect of returning to the system the storage allocated

for the element pointed to by the current value of L.

It is fairly clear how a two-way list could be

created instead of a one-way list by using a different

structure definition for ELEMENT. It is not quite so

clear how a multi-level list or a list with non-homogeneous

elements could be created. In order to create such lists,

we need to introduce yet another possible attribute of a

variable, namely, CELL. CELL is used to specify storage

equivalence between different data, and resembles the

EQUIVALENCE statement of FORTRAN. Consider the declaration:

DECLARE 1 ELEMENT BASED(P), 2 NEXT POINTER,

2 CONTENT CELL, 3 X FIXED, 3 Y FLOAT, 3 Z POINTER,

2 TYPE FIXED(l);
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By declaring CONTENT to have the attribute CELL, we

specify storage equivalence among its substructures,

namely, X, Y, and Z. In other words, the storage layout

for an ELEMENT will permit the CONTENT part to be either

a variable as described by X, a variable as described by

Y, or a variable as described by Z. Any particular

ELEMENT will have as its CONTENT Just one of these

alternatives. In this particular list organization TYPE

is intended to be a one-digit code indicating which of the

alternatives is the one actually present. Thus we can

determine the type of a particular list element by testing

the integer TYPE. Since CONTENT can be a pointer, we can

have a list as an element of a list (the pointer merely

need point to another ELEMENT); since CONTENT can also

be a number, we can terminate a list at any level with

a number.

From these examples it can be seen that PLA does

not impose any particular method of list organization

upon the programmer; in this sense it resembles l6.

It does, of course, require the programmer to specify

how his lists are to be arranged, and this task is

accomplished through the various declarations shown here.
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6. SLIP .

SLIP (for Symmetric List Processor) is a list

processing language developed by Weizenbaum in I963 [^0];

an excellent updated description has been published by

Smith [37]. SLIP is a descendant of at least four

earlier languages: Gelemter's FLPL [13], IPL-V [27],

Perils 's threaded list system [31], and Weizenbaiim'

s

earlier KLS system. SLIP actually consists of a

collection of subroutines to be used by a Fortran program^

most of these subroutines ^ being themselves written in

Fortran, are machine independent. Thus SLIP provides

to its users several advantages at the outset. Since

SLIP is embedded in Fortran, the SLIP user has the full

facilities of Fortran, and in particular its n\imerical

and array-handling facilities, available to him. If he

already knows Fortran, then the burden of learning SLIP

routines insures that SLIP programs are essentially as

transferable from one machine to another as are Fortran

programs' and from the implementer ' s viewpoint, SLIP is

quite easy to install on a new machine with a Fortran

compiler. Fortran, by the way, is not the only host

language that has been used for SLIP; a MAD version also

exists at Yale University.
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6.1. SLIP Data .

SLIP data, which are in addition to the usual

Fortran data, consist of two-way lists. SLIP lists can

be traversed either forwards (i.e., left to right) or

backwards (i.e., right to left); hence the name "symmetric

lists". The general form of a SLIP cell is shown in

Figure 9. The cell actually consists of two words in

most computers. The first word always contains three

fields, called ID, LNKL (link left) and LNKR (link right).

If the ID is not 0, the second word is also subdivided in

the same way. The name of a list is a word whose ID is

zero and whose LNKL and LNKR fields both contain pointers

to, i.e., the address of, the list. A Fortran variable

whose value is a list will normally contain the name of

that list.

The ID field of the first word of a cell determines

how the cell is to be interpreted. A cell representing a

list item will have an ID of 1 if the item is a sublist

and an ID of otherwise. For sublists, the second word

contains the name of the sublist. Every list has a header

that serves as a starting point for the list and also as

a way of referring to it; the ID of a header is 2. The

ID field of the second word of a header can be used by

the user for any purpose,* the LNKL field of that word

contains a pointer to a description list (of Sec. 6.2.5)

if one is desired, and the LNKR field contains a reference
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county discussed below. Readers, which are used for

traversing lists, have an ID of 5.

An example of a SLIP multi-level list is given

in Figure 10. For each list, the header indicates the

first and last cells of the list. The LNKL field of a

list cell points to the cell to the left of the given one;

the LNKR field of a cell points to the cell to the right

of the given one. The header is the left neighbor of the

leftmost cell and the right neighbor of the rightmost cell;

for an empty list, the header is its own left and right

neighbor, and LNKL and LNKR of the first header word both

point back to the header itself.

Unlike the languages discussed so far, SLIP does

not treat segments of lists as lists. In other words,

CDR of a SLIP list is not a SLIP list; one would need to

copy it in order to make it into a SLIP list. This

situation is a necessary consequence of SLIP'S two-way

linkages; if two lists were to share the same CDR, then

the left neighbor of the CDR could not be uniquely

defined. The main consequence of this restriction is that

part of one list cannot appear as a sublist of another list.

Readers are a device for traversing lists; their

use is discussed in Sec. 6.2.4. From the storage standpoint,

a reader is a list of cells that indicates a particular item

embedded within a list (not necessarily on the top level)

and the path that leads from the list header to this item.
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Figure 10 includes a reader of the list shown there.

The first cell of the reader points to the item. The

successive cells of the reader point to the successive

higher-level lists that contain the item. A reader cell

contains a pointer to a list item in LNKL of its first

word and a pointer to the head of the corresponding list

in LNKL of its second word. LNKR of the first word

contains a pointer to the next higher cell of the reader

(0 for the top one) and LNKR of the second word contains

the level number (0 for the outermost list^ increased by

1 for each level of nesting). It can be seen, then, that

if a reader points to an item embedded in a list, then

we can trace our way back to the outermost list and can

also tell how deep we are within that list.

One of the notable and original contributions of

SLIP lies in its approach to storage management and

recovery. SLIP divides the responsibility for erasure

between the user and the system. In general, a list can

be erased if and only if there are no references to it

either as the value of a variable that will be used later

on or as an element of a higher-level list. SLIP gives

the user responsibility for external references, i.e.,

those that occur as values of Fortran variables, and

takes upon itself the responsibility for internal refer-

ences, i.e., those that occur as parts of other (not

erased) lists.
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storage management is implemented through the use

of a reference count contained in the header of every list.

The reference count for a list is either the number of

internal references to it or the number of internal

references to it plus one, depending on how the user

created it. Whenever a list a is inserted as a sublist

of a list Pj then the reference count of a is increased

by one. Whenever a list is explicitly released by the user,

its reference count is decreased by one. When the reference

coiint of a list becomes zero, that list can be erased.

A list is erased by appending it to the list of available

space (lavs) from which new cells are obtained. References

to sublists of an erased list are dealt with by the procedure

that makes cells available from LAVS. When a cell is taken

from LAVS, a check is made to see if the ID of the cell is 1.

If the ID is not 1, the cell is simply made available. If

the ID is 1, the second word of the cell must contain the

name of a list. The reference count of this list is then

decreased by one. If as a result the reference count

becomes zero, then this list is in turn added to LAVS.

When a new list is created or cells are added to

an existing list, the cells required are taken from LAVS

according to the procedure just described. The user may,

at his option, set the initial reference count of a newly

created list to one or zero. If he sets the initial

reference count to one, then the list will never be
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returned to LAVS until he releases it explicitly (by-

decreasing its reference count by one). If he sets the

initial reference count to zero, then the list will be

erased as soon as the last internal reference to it is

erased.

This scheme has several pleasant consequences.

The user has responsibility for storage control for those

references to lists that are most visible to him, namely,

the external ones, while being freed of the responsibility

for those references that are much less visible to him,

namely, the internal ones. Since appending a list to LAVS

at the time of erasure requires examining only the two

ends of the list, the time required to erase a list is

independent of its length. Also, the bookkeeping for

erasing subslists is postponed until the last possible

moment

.

6.2. SLIP Programs .

The SLIP system exists in the fonn of a large

number of subroutines. We shall not attempt to describe

them all here, but rather shall discuss their major group-

ings and give some illustrations of the members of each

group. The grouping used here follows Smith.

-73-



6.2.1. storage Allocation .

The two routines normally used by the programmer

are INITAS (
space , n), which converts the array space of

dimension n into the initial LAVSj and IRALST(_i)j which

decreases the reference coiint of the list _^ by one. The

routine NUGELL, which obtains a new cell from LAVS, is

normally called only by the SLIP subroutines themselves

;

its main relevance for the user is that if no space is

available, it will issue an error complaint and terminate

the entire program.

6.2.2. Manipulating Data on Lists .

These routines add, delete, change, and reference

data on lists. The routine LIST(jg) creates an empty listj

if its argument is the literal "9"^ the reference coiAnt is

initially zero. Otherwise the reference count is initially

one, and the name of the created list is placed in _^. In

either case, the value of LIST is the name of the created

list. NEWTOP(d,^) inserts the datum d as the first element

of ^, and NEWBOT(d,J_) inserts d as the last element of ^.

NXTLFT(d,c_) inserts the datum d to the left of the cell c_

and INLSTL(^jg) inserts the list £_ to the left of the cell

c_. NXTRGT and INLSTR, which insert on the right, are

analogous. LSSCPy(_i) creates a new copy of the list _^,

and has as its value the name of this new copy. The value

of TOP(^) is the datum stored as the first item in the
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list £_; the value of BOT(^) is the datum stored as the

last item of _£. DELETE(c) deletes the item c from the

list containing it. Note that since a SLIP cell can be

a member of only one list, its left and right neighbors

are uniquely defined even if the header of the list is

not given.

As an example, the following program will create

a list whose elements consist of the integers from 1 to 10!

CALL LIST(ILIST)

DO 1 K - 1,10

1 CALL NEWBOT(K,ILIST) .

The value of ILIST will be the name of this list.

6.2.3. Sequencing through Lists .

In order to simplify sequential processing of the

items on a list, SLIP provides a collection of sequencing

functions. The function SEQRDR(_i) has as its value a newly

created sequencer for the list ^i the sequencer is initially

a pointer to the header of ^. The function SEQLL(sjf

)

advances the sequencer s_ to the next cell to the left of

the current one, i.e., causes the sequencer to point to

that cell. Its value is the datum stored in the new cell,

and as a side effect it sets f to +1 if the new cell is a

header, if the new cell is a list name (i.e., has an ID

of 1), and -1 if the new cell is a non-list datiim. The

75-



analogous function for sequencing to the right is SEQLR,

As an exajnple_, assume that the list LL contains a mixture

of floating point numbers and sublists. The following

program will set SUM to the sum of the floating point

numbers *

SL = SEQRDR(LL)

SUM =

1 X = SEQLL(SL,F)

IF (F) 2,1,5

2 SUM = SUM + X

GO TO 1

3 CONTINUE

6.2.4. Tracing through Lists Using Readers .

By means of readers , the user can operate on or

examine the elements of a list (and also those of its

sublists) in a more elaborate way than he can using a

simple sequencer. We define the progeny of a list to

consist of its elements plus the progency of its sublists.

A reader of a list ^ then consists of a pointer to a, one

of the progeny of _£, together with the path from a to the

header of _£. The internal representation of a reader was

discussed in Sec. 6.1. A reader of a list _^ is created by

calling LRDROV(^)* the value of this function is the name

of the newly created reader, which points to the header

of H. There are 12 functions for advancing readers.
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A reader may advance to the left or the right; it may

advance structurally (descending into sublists) or

linearly (not descending into sublists); and it may

advance to the next element^ the next name, or the next

word (where an element has an ID of 0, a name has an ID

of 1, and a word has an ID of either or l). Thus

ADVSWR(r,f), for instance, will ADVance Structurally

Word Right. Here r is the name of the reader and f is

a flag. If the present cell contains the name of a sublist,

then the advance will take the reader to the rightmost cell

of that sublist; otherwise the advance will take the reader

to the cell directly to the right of the present one. In

this case, since the advance is to the next word, any item

other than a header will be acceptable; had the advance been

by element, then any name found would be skipped (though

descent into the sublist designated by the name would still

take place). The flag f is made zero if a cell of the

given type is found, and nonzero if the search for such a

cell encounters the header of i.

As an example, assume that the terminal nodes of

the list LL (i.e., those members of the progeny of LL that

are not themselves sublists) are all floating point niambers.

Then the following program will compute the sum of the

terminal nodes of LL!
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K = LRDROV(LL)

1 X = ADVSER(K,F)

IF (F.NE.O) GO TO 2

SUM = SUM + X

GO TO 1

2 CONTINUE

6.2,5, Description Lists .

A description list is a sequence of linked cells

that can be attached to the header of a list and contains

information describing that list. The description list

is composed of pairs of cells; the first cell of a pair

contains an attribute and the second contains a value.

Description lists in SLIP are thus like property lists

in LISP, except that property lists are attached to

elementary items (i.e., identifiers) while description

lists are attached to lists.

Attribute-value pairs are added to a description

list by means of the function NEWVAL. NEWVAL(at, val , £)

searches the description list of the list £_ for the

attribute at^. If a_t is foiond, then the corresponding

value is replaced by val , and the value of NEWVAL is the

replaced value. If at^ is not found, then the (at, val )

pair is added to the bottom of the description list and

the value of NEWVAL is zero. Pairs are removed from a

description list by NOATVL(at, £) , which removes at_ and it£
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associated value from the description list of _i. The

function ITSVAL(at, i) has as its value the value paired

with at on the description list of _£. Other functions

exist for copying, removing, and performing other manipula-

tions on description lists.

6.2.6. Recursion .

Since the Fortran language as usually defined and

implemented does not allow recursion, SLIP has provided

special functions to make recursion possible. A recursive

function is normally written as a block of code beginning

with a statement label rather than as a Fortran function.

The block is entered by a Fortran ASSIGN statement and a

call to the function VISIT; it is left by a call to the

function TERM. For example, executing the statements!

ASSIGN 60 TO LOG

X = VISIT (LOG)

will cause the recursive function defined by the block of

code beginning at statement 60 to be entered; the value of

that function will be returned as the value of VISIT and

thus will become the value of the variable X. Execution

of the block will be terminated by:

GALL TERM(Z)

which will have the dual effect of returning control to

the place from which the corresponding VISIT was called,

and setting the value of VISIT to Z. It should be noted
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that the call to VISIT actually causes a transfer of

control to LOG, and that control does not return to VISIT

until TERM is called.

In order to save and restore arguments of recursive

functions, SLIP uses an array of 100 public lists, placed

in COMMON storage and designated W(l) , . . .
,W(100) . Upon

entrance to a recursive function, these lists are pushed

down; upon exit, they are popped up. Pushdown is done

by the function PARMTN(£-j^,£p, . . . ,£^) which expects a

variable number of arguments and saves these arguments on

the first n public lists. The pushdown for a particular

argument is done by placing the argument into the second

word of a cell obtained from LAVS and adding that cell to

the head of the corresponding public list. Popping up is

done by RESTOR(n), which removes the first cell from each

of the public lists, W(l) through W(n)

.

In order to simplify saving and restoring of

arguments, VISIT and TERM are both permitted to accept

a second argument. This argument will be evaluated during

the function call, but the value obtained will be discarded,

If PARMTN is called as the second argument of VISIT, then

the Fortran statement that enters a recursive function can

also save the arguments of that function^ similarly, if

RESTOR is called as the second argument of TERM, then the

Fortran statement that leaves a recursive function can

also restore the arguments of that fiinction. In these
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versions of Fortran that do not permit a variable number

of arguments in subroutine calls, the treatment of VISIT,

TERM, and PARMTN will be slightly different.

6.2.7. Input- Output .

Weizenbaum's original article on SLIP gave no

information on input-output, though Weizenbaum's system

does in fact contain functions for that purpose. Smith

describes two functions RDLSTA and PRLSTS for reading and

printing lists. RDLSTA reads lists in essentially the

same format as LISP, except that the dot notation is not

meaningful and numbers are treated as character strings.

PRLSTS prints lists in quite a different format; no

parentheses are used, one item appears on each line, and

the beginning and end of a sublist is indicated by

indentation and a special message. Thus the list

(A B (CD) E) would print as!

BEGIN LIST

A

B

BEGIN SUBLIST

C

D

END SUBLIST

E

END LIST
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7. SNOBOL .

1/
SNOBOL is a programming language designed

primarily for the manipulation of strings. Historically^

SNOBOL was inspired primarily by COMIT; the first version

of SNOBOL was described by Farber, Griswold, and Polonsky

in 1964 [11]. There have been several subsequent modifica-

tions ^ of which the best known has been SNOBOL^ [12],

completed in I966. A more recent version, SN0B0L4 [l4],

is presently being implemented and is gradually replacing

SNOBOL3. The description given here is based on SNOBOL5,

but Includes a section on the changes introduced by SN0B0L4.

It is interesting to observe that although SNOBOL

is a string processing language rather than a list process-

ing language, many of its applications are the same as

those of list processing languages. For instance, [12]

gives three examples of the use of SNOBOL. Of these, two,

namely, the Wang algorithm for the propositional calculus

and a program for the differentiation of algebraic expres-

sions, are classic examples used to illustrate LISP.

(The third example is an editor that does right justifica-

tion of printed lines.)

The structure of a SN0B0L5 program is quite different

from that of a program in any of the languages we have

discussed so far. A SN0B0L3 program consists of a sequence

T7 ;

— The meaning of the acronym "SNOBOL" has never been
explained publicly.
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of statements, of which there is only one type. Variations

are achieved through omission of components of the statement.

The statements are executed sequentially until the sequence

is altered by a go-to. In general;, execution of a

statement causes all or a portion of a string to be

replaced by a different string. However, many different

kinds of side effects can also occur as a result of the

execution.

The data of SN0B0L3 are all strings; a constant string

is represented by enclosing it in quotes. Numbers, too, are

treated as strings; they also must be enclosed in quotes,

though arithmetic is possible. The variables of SNOBOL3 are

called names , and they all have strings as values.

One of the simplest subcases of a SNOBOL3 rule is

a pure assignment such as I

GAT = "SIAMESE"

which causes the value of the name CAT to be the string

SIAMESE. Concatenation of strings is represented by writing

them successively; thus the two statements!

PREP = " OF "

SHIP = "MAN" PREP "WAR"

will cause the value of SHIP to be the string "MAN OF WAR".

Note that in this case we have concatenated a constant,

a name, and another constant. The statement.*

STRING =

will cause the name STRING to assume the null string as its
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value. Quotes cannot be written as part of a constant.

However, the name QUOTE has as its initial value a single

quote. Thus strings containing quotes can be treated and

manipulated.

The most general form of assignment causes just a

portion of a string to be replaced. Thus if the value of

STRING is "CANDY IS DANDY" and we write!

STKENG "ANDY" = "HOGOLATE"

then the new value os STRING will be I

"CHOCOLATE IS DANDY"

The first item on the left side of the assignment (ignoring

labels for the moment) is the string reference , which

specifies the string to be modified j the remaining items

(in this case only one) specify the portion of the string

reference that is to be replaced, and are called the pattern ,

If there is no pattern, as in the simple assignment given

earlier, then the entire string as specified in the string

reference is replaced. Note that only the first instance

of the pattern within the string reference is affected.

The pattern may or may not be found within the string

reference. If it is found, the statement is said to

succeed ^ if it is not found the statement is said to fail .

A statement containing all the possible components is!

LI STRING SI "OF" S2 = S2 "FOR" S3 /S(L1)F(L5)

Here LI is the statement label, which must begin in

column 1^ if the statement is unlabelled, then column 1
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will be blank. The components of the statement are

separated by blanks. A period in column 1 indicates a

continuation card. STRING is the string reference^

SI "OF" S2 is the pattern, S2 "FOR" SI is the replacement
,

and the material following the slash is the go-to.

Execution of this statement proceeds as follows:

51 and S2 are both names whose values are specific strings.

The pattern being searched for consists of SI (more

precisely, the value of SI) concatenated with "OF"

concatenated with S2. If this pattern is found within

STRING, then the first occurrence of it is replaced by

52 concatenated with "FOR" concatenated with S^. Assuming

the pattern is found, control returns to statement LI, as

specified by the F (failure) alternative of the go-to.

If a statement has no S alternative specified in the

go-to, then control will pass to the next statement if

execution succeeds,* lack of an F alternative is treated

analogously. Because the statement in this example loops

back to itself if the pattern is found, the effect of

executing it will be change every occurrence of the pattern

to the replacement and then to transfer control to L5.

Note that in this case both the pattern and the replacement

contain names.

If a statement does not contain an "=", then the

statement will still succeed or fail according as the

pattern is or is not found within the string reference.
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"but no replacement will be done. Statements of this sort

are useful for testing. Thus I

STRING "W" /S(L4)

will transfer control to statement l4 if STRING contains

a "W" and will pass control to the next statement otherwise,

The usual arithmetic operators are available in

SN0B0L3, though only integer arithmetic is permitted.

Numeric constants must be quoted (which is a nuisance),

operators must be separated from their operands by blanks,

and expressions with more than one operator must be fully

parenthesized (also a nuisance). For SN0B0L5, an integer

is defined to be a character string that represents an

integer. Parenthesized arithmetic expressions may appear

as part of a pattern. Thus I

G = A + (B * "4")

multiplies B by 4, adds A, and leaves the result in C.

If the value of N is "21", then!

STRING "W" (N - "8") = "yi2"

will replace the first occurrence of "Wl^" in STRING by

"Y12".

Strings may be searched for patterns that are not

entirely known in advance by means of string variables .

An arbitrary string variable is designated by surrounding

a name by asterisks. It will match any string whatsoever

(including the null string). Thus if we write!
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STRING = "PETER PIPER PICKED A PECK OF PICKLED PEPPERS"

STRING "PIPER " * ACTION* " A PECK"

then * ACTION* will match "PICKED". Moreover, the name

ACTION will be assigned "PICKED" as its value. A name

used this way can appear later in the statement, either

as part of the pattern or as part of the replacement or

both. Thus if we write!

STRINGl = "A ROSE IS A ROSE IS A ROSE"

STRING2 = "A HORSE IS A HOUSE IS A HOSS"

STRINGl "A " *NOUTT* " IS A " NOUN " IS A " NOUN

= "A " NOUN " IS SURELY A " NOUN

STRING2 "A " *NOUN* " IS A " NOUE " IS A " NOUN

= "A " NOUN " IS SURELY A " NOUN

then replacement will occur for STRINGl but not for STRING2.

The value of NOUN, however, will be "ROSE" rather than

"horse" as a consequence of the failure of the fourth

statement.

A pattern may contain fixed-length string variables

and balanced string variables. A fixed-length string variable

is written by following the name by a slash and a string

specifying a length in characters. In the statement:

STRING "A" *PART/'7"*

the seven characters of STRING following the first "A" will

be named PART. The "7" could be replaced by any string

expression evaluating out to an integer. A balanced string

variable is indicated by surrounding the name by parentheses

j
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the variable will only match a string that is balanced

in the usual algebraic sense. Thus if we write I

EXPR = "A+(B**C)* G"

EXPR "A" *(STR)* "C"

EXPR "A" *STR1* "G"

then the value of STR will be " + (B**G) *", while the

value of STRl will be "+(B**".

Both system-defined and user-defined functions are

available. An example of a system-defined function is

SIZE(s_), whose value is the number of characters in the

string s_. A function may, instead of returning a value,

signal failure^ the failure signal will cause the statement

containing the function call to fail. This feature is

useful for testing. For example, the function EQUALS (x, y)

returns the null string if x and y are identical character

strings, and signals failure otherwise] thus:

N = EQUALS (SX, SY) N + "1"

will increment N by 1 if and only if SX and SY are the same

character string. In interpreting an expression containing

both concatenation and arithmetic operations, the concatena-

tions are done first. In this example, if SX and SY are

identical, the null string will be concatenated with N,

which leaves N unaffected] then 1 will be added to N. If

SX and SY are not identical, EQUALS will signal failure and

no replacement will be done. Various arithmetic tests use

the same mechanism. Thus .LT(x, y) returns the null string



if X < y and signals failure otherwise. The arithmetic

test for equality is not quite the same as EQUALS, since

.EQ("0069";, "69") will succeed wile EQUAI^ ("OO69", "69")

will fail.

Often it is necessary to match a pattern at the

beginning of a string rather than at some arbitrary place

in the middle. Executing the function call

I

MODE( "ANCHOR")

will cause all subsequent pattern matches to start at the

beginning of the string being matched. Executing!

MODE("UNANGHOR")

will cause the usual mode of pattern matching to be res\imed.

The value of both of these function calls is the null string.

A user may define a function by a call to DEFINE.

The function definition consists of a block of code. Thus I

DEFINE( "REVERSE(X) "
^ "REV"

)

defines a function named REVERSE^ its formal parameter is

X, and the defining code block begins at the statement

labelled REV". The value returned by REVERSE will be the

character string X in reverse order. The defining block

might be!

REV X * CHARA* = /F{ RETURN)

REVERSE = CHAR REVERSE /(REV)

Here the second statement transfer control unconditionally

to REV. The special label RETURN is used to indicate

return from the function. When the function is entered.
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the value of the name REVERSE will tie the null string.

The value returned by the function will be the value of

the name REVERSE at the time of the return transfer. Thus

Z = REVERSE ( "ABODE"

)

sets the value of Z to "EDGBA". The second argument of

DEFINE may be omitted, in which case it is taken to be

the same as the name of the function.

The character "^" is used to indicate indirect

references. Thus if the value of the name AUTHOR is

"MELVILLE" and the value of the name MELVILLE is "MOBY DICK",

then the value of ^AUTHOR will be "MOBY DICK". More

complicated cases are possible; thus the statements I

WORD *GH/'l"*

^("LIST" GH) = WORD " " ^("LIST" GH)

will add WORD to one of LISTAj LISTB, ..., LISTZ

according to what the first character of WORD is.

Indirect references can be used in the go-to as well as

in the pattern or replacement.

Input and output are accomplished through the use

of the special names SYSPIT and SYS POT. -'^ Every time

that a value is assigned to SYSPOT, the value so assigned

is printed as a new line in the standard output file.

Every time that SYSPIT is evaluated, a new line is read

TTT—
^ These, according to the usage at Bell Laboratories in

SN0B0L5 days, stands for "System Peripheral Input Tape"
and "System Peripheral Output Tape".
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from the standard input file and that line is the

required value. Thus!

SYS POT = SYS PIT

will cause a line to be copied from the input file to the

output file.

The implementation of SN0B0L3 involves both a

compiler and an interpreter. The compiler translates the

original source program into an internal language suitable

for the interpreter; the interpreter operates on this

internal representation at run time. Storage recovery is

completely automatic.

7.1. SN0B0L4 .

SN0B0L4 is a significant improvement over SNOBOLJ.

Most of the changes have been in the direction of generaliza-

tion of existing SN0B0L3 concepts; the remaining changes

are primarily concerned with eliminating nuisances.

One nuisance that has been eliminated is the

requirement that integers be enclosed in quotes. Also^

sequences of arithmetic operators need not be fully

parenthesized, so SN0B0L4 will interpret correctly the

statement:

C = A + B * D

In SN0B0L4, more than one statement may be written on a

line; successive statements are separated by semicolons.

There are also a number of minor syntactic changes.
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The concept of a pattern is greatly generalized

in SN0B0L4 over what it is in SNOBOL3. In SN0B0L4, a

pattern is a type of datum, and a name can designate a

pattern. Patterns may be composed from simpler ones in

a number of ways. Thus!

OPER = "+"
I

"-"
I

"*"
I

"/'

creates a pattern (not a string) named OPER; this pattern

will be matched by any of the arithmetic operators.

Patterns may be concatenated, so that.'

DOPER = " .

" OPER

would associate with DOPER a pattern consisting of a period

followed by an arithmetic operator. The string variables

of SN0B0L3 are replaced by patterns. Thus ARB replaces an

arbitrary string variable, BAL replaces a balanced string

variable, and LEN(n) replaces a string variable of length n.

For instance!

"A" ARB "B"

is a pattern that will match any string that starts with

an "A" and ends with a "B". Also!

"SIN" BAL

will match any string that consists of "SIN" followed by

a parenthesis -balanced string of characters, and I

"A" LEN(4) "BG"

will match a string consisting of "A" followed by four

arbitrary characters followed by "BG".

Since in SNOBOL3 the matching of a string variable

-92-



can be used to assign a value to a name^ SNOBOL/J requires

a corresponding facility. Two operators are used for this

purpose: "." and "^". If we write:

STRINGl = "THREE BLIND MICE"

STRINGl " " ARB . ADJ " "

then ADJ will be assigned the value "BLIND" since ARB will

match "BLIND" and the period will cause the value of ARB

to be assigned to ADJ. Any component of a pattern may be

named by appending a value assignment to it in this way.

Since a component may consist of several subcomponents

enclosed in parentheses, groups of components may also

be named.

If value assignment is done by ".", then the assign-

ment will be made after the entire pattern has been matched

and not before. Consequently the "." will not work for

back referencing J i.e., for matching a component named

earlier in a pattern. Assignment made by "^", on the

other hand, takes place Immediately, whether or not any

further matching is successful. Thus!

STRING = "X+ALPHA=ALPHA"

STRING "X+" ARB ^ VAR "=" VAR

will cause VAR to match "ALPHA" and the entire pattern to

match STRING. Had STRING been "X+ALPHA=BETA", VAR would

still have received the value ALPHA even though the entire

pattern match would have failed. A "." used in place of

"^" would cause the pattern match to fail and would leave
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the previous value of ARB undisturbed.

Ordinarily, all the components of a pattern are

evaluated before any pattern matching takes place. However,

a "*
" may be used preceding a pattern component to indicate

that the component is not to be evaluated until it is needed

in a match. This means of pattern evaluation is known as

deferred pattern definition , and it permits the definition

in a simple way of recursive patterns. Thus the pattern I

p = "B"
I

"A" *P

will match any of.

B

AB

AAB

• • •

The ANCHOR and UNANCHOR modes of SN0B0L5 are replaced

by a more general method in SN0B0L4. The pattern-valued

function POS(n) matches a null string n characters from

the beginning of the string being matched. In particular,

POS(O) at the beginning of a pattern will force the rest

of that pattern to be matched against the beginning of the

target string. A similar function RPOS(n) matches a null

string n characters from the end of the target string.

Among the other useful pattern-valued functions are ARBNO(p),

which matches an arbitrary number (including zero)

occurrences of the pattern pj ANY(_s), which matches any

character in the string s_j and BREAK(s_), which will match
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a non-null sequence of characters containing no character

in £ but followed by a character in s_.

SN0B0L4 includes arrays as a type of datum. An

array is created by calling the function ARRAY (d, v),

where d specifies the dimensionality of the array and v,

which may be omitted, specifies the initial value to be

assigned to the array elements. Thus!

BOARD = ARRAY ("8, 8", "X")

causes the value of BOARD to be an 8 by 8 array, each

element of which is initially the string "X" . An array

element is referenced by enclosing the subscripts in

angle brackets, e.g.!

BOARD<3,5>

In order to permit more flexible calling sequences,

SN0B0L4 includes a name operator. If a name (which in

general is anything that denotes an object) is prefixed

by the operator ".", then the resulting object indicates

the name of the object so prefixed rather than the object

itself. With this mechanism, one can for instance write

functions that pass results back through their argioments

(a frequently-used device in Fortran programming).

All SNOBOL programs, being character strings, are

themselves in the form of SNOBOL data. In SN0B0L4, the

user can take advantage of this fact, much as he can in

LISP, by creating a program and then executing it. The

mechanism for accomplishing this is the function
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CONVERT(p, "code"), where p is a character string

representing a sequence of SN0B0L4 statements. The •

statements are separated by semicolons within the character

string. Evaluation of CONVERT with "CODE" as its second

argument causes p to be compiled, and returns as value

a data object of type CODE that represents the compiled

code. This code can then be executed either by transfer-

ring to it directly using a special kind of go-to or by

transferring to a label within it in the ordinary way.

SNOBOlA uses data types, but not in the way that

the other languages discussed here use them. The user can

ascertain the data type of any object, but he need not (and

indeed cannot) declare that a given name will always have

5/
as its value an object of a given type." The principal

use of the data type predicates is in writing functions

whose behavior depends on the type of their arguments.

There is also a facility for creating new data types and

then using them' these new data types resemble the ntuples

of LISP 2 and the structures of PL/l (sans level numbers).

Figure 11 gives a SN0B0L4 program analogous to the

LISP function LCS given previously. Since the operations

^' Compare this situation with LISP 2 and PLAj where all
variable names have fixed types associated with them
either by explicit or implicit declaration. The lack
of declarations adversely affects the efficiency of
SN0B0L4 exactly in the way that it adversely affects
the efficiency of LISP I.5 versus that of LISP 2.
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Al

A2

DEFINE ("LCS(L1,L2)")

DEFINE( "COMSEGL(X^Y) "

)

51 = TRIM (INPUT)

52 = TRIM( INPUT)

OUTPUT = LCS(S1,S2)
I (END)

* LCS COMPUTES THE LONGEST COMMON SEGMENT OF TWO STRINGS LI
* AND L2

K =

X - LI

DIFFER(X,"") GT(SIZE(X),K) :F(RETURN)
Y - L2

DIFFER(Y,"") GT(SIZE(Y),K) :f(A3)

N = COMSEGL(X,Y)

K = GT(N,K) N :f(A)

LCS = L3

Y POS(O) LEN(l) = :(A2)

X POS(O) LEN(l) = :(A1)
* COMSEGL(X^Y) RETURNS THE LENGTH OF THE LONGEST INITIAL
* COMMON SUBSEGMENT OF X AND Y AND AS A SIDE EFFECT SETS
* L3 TO THAT COMMON SUBSEGMENT

COMSEGL =

X LEN( COMSEGL) . XI :f( RETURN)

Y LEN( COMSEGL) . Yl IF (RETURN)

COMSEGL = IDENT(X1,Y1) COMSEGL + 1 :f(RETURN)

L3 = XI :(bi)

A

A3

Bl

Figure 11. Definition of LCS in SN0B0L4,
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being performed are essentially linear^ this program is

somewhat simpler than the LISP program. The program

defines the function LCS for computing the longest common

substring of two strings, and then applies LCS to two

strings on successive cards in the input data stream.

The result is then printed out. The LISP functions

COMSEG and COMSEGL are combined into a single function

COiyiSEGL(x,y) that returns a length as value and sets L3

to the initial common segment of x and y. Note that tests

are used in several of the replacements. If such a test

fails, the corresponding replacement is not done; if such

a test succeeds, it generates a null string that can be

concatenated with the replacement without changing it.

The system function TRIM removes trailing blanks from

Its argument.

8. Other Symbol Manipulation Languages .

The previous sections have discussed those symbol

manipulation languages that in my opinion are the most

significant ones at this time. In this section we shall

examine briefly a number of other languages, though even
.

the list given here is far from exhaustive and reflects to

a great extent my own biases.
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8.1. IPL-V .

IPL-V [27] is the most recent version of IPL (for

"Information Processing Language"). Historically^ IPL

is of great importance^ having pioneered the use of list

processing techniques. The original IPL was developed by

Newell, Shaw and Simon in 1957 [28] for use in connection

with their explorations of problem-solving. It was

implemented on the Johnniac computer at the Rand Corporation

and also on the IBM 65O; and to this day much of the format

of the language is due to the characteristics of the 65O

and its assembly program. Although IPL-V still has its

adherents, it appears to have been superseded by the newer

languages

.

IPL programs, like l6 programs, are heavily oriented

towards machine -language programming. An IPL program is

divided into routines, each of which consists of a set of

instructions. The routines can themselves be expressed as

lists of instructions, and the instructions in turn can be

expressed as data. Thus IPL programs are self-descriptive

in the same way that LISP and SNOBOL programs are.

Symbols are used to designate storage cells . A

storage cell is capable of holding a datum such as a list

name, a number, or an alphanumeric string; a pushdown

stack is implicitly associated with every storage cell.

The instructions make implicit use of two special storage

cells: HO, the communication cell , and H5, the test cell.
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HO is used to pass inputs to routines and to return results

from routines,—
'^^

H5 is used to indicate the results of

tests. The contents of a storage cell are considered to

be the top item on the stack rather than the whole stack.

IPL storage cells resemble the public lists of SLIP, and

in fact the SLIP public lists are derived from the IPL

storage cells.

An IPL instruction has four parts! the name, the

prefixes , the symbol , and the link. The name is simply a

label for the instruction, though in addition (as in SNOBOL)

it can be used to name a routine. Names in IPL consist of

either a letter followed by up to four digits or "9-"

7/
followed by up to four digits, e.g., "J521", "R2", "9-10".-

The prefixes, called P and Q, specify the operation to be

performed on the symbol and the degree of indirectness

involved. The symbol represents a storage cell, whose

contents may be a routine. The link, if specified, names

a symbol to which control is to be transferred. Let S

designate the storage cell named by the symbol. Then the

actions caused by the various values of P are I

—' Arguments are passed to routines by stacking them in HO,

so that IPL routines do not have formal parameters in
the usual sense.

^' These forms are quite unmnemonic, though explicit IPL
programmers seem to be able to remember them.
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Execute the routine in S.

1 Push down HO and copy S into HO.

2 Copy HO into S and pop up HO.

3 Pop up S.

4 Push down S, leaving the previous contents of S in S.

5 Copy S into HO.

6 Copy HO into S.

7 Branch to S if H5 is negative.

A copy operation causes neither pushing down nor popping up;

since the contents of a storage cell are considered to be

the top item on its stack, a copy affects only that item.

Externally, IPL data and IPL programs are written

in the same formj items in successive lines represent

successive items of a list. Sublists must be named

explicitly rather than through any parenthetic notation.

The internal representation of IPL data resembles that

of LISP, with the sjnnbol corresponding to CAR and the link

corresponding to CDR. The prefixes represent additional

information not contained in LISP cells and are used to

indicate the type of the datum designated by the symbol.

Interestingly, prefixes were used in the very earliest

(and unpublished) version of LISP, but were later dropped.

Prefixes have been revived in some recent LISP implementa-

tions .

IPL-V provides to its users a large collection of

primitive routines, called processes ; all of these have
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names starting with "j". As in l6, the user must handle

most of the bookkeeping. Erasure is entirely the responsi-

bility of the programmer^ in particular, it is his

responsibility to guarantee that an erased list is not

part of another list.

IPL does have some useful -facilities for utilizing

auxiliary storage. Lists (which of course may represent

programs) can be transferred to and from auxiliary storage

fairly easily. The programmer can arrange to have his

program trapped when storage is exhausted and then transfer

data and programs to auxiliary storage.

IPL-V is implemented by an interpreter rather

than a compiler. Consequently, the system is generally

not very efficient.

8.2. COMIT .

COMIT is a string processing language originally

developed by Yngve [4l] in 1957 for ^se in mechanical

translation. COMIT was the first major language to

introduce pattern-matching statements, and its central

ideas have had a strong influence in the whole field of

symbol manipulation. Pattern-matching statements are now

included in many different languages, several of which

are discussed in this article.

The primary data depository of COMIT is the

workspace . The contents of the workspace are a sequence
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of constituents ^ each of which is a symbol. I.e., an

arbitrary sequence of characters (unlike SNOBOL, where

each constituent is a single character). Notationally,

the constituents are separated by plus signs. Characters

other than letters, periods, commas and minus signs are

all preceded by "*", and spaces are replaced by minus signs.

An example of a sequence of constituents in a workspace is I

THE + *2^ + MEN + ARE + HERE + .

Constituents may have subscripts attached to them. A

numerical subscript is an integer. A logical subscript

is a name with up to 36 possible associated subscript values ,

which are also names ^ any subset of the values may be present,

The order of subscripts is Immaterial. An example of a

subscripted constituent is!

MAN/. 565, PART- OF-SPEECH NOUN VERB, GLASS HUMAN

Here the numerical subscript is 365 (not .365), the logical

subscripts are PART-OF-SPEECH and CLASS, the values of

PART-OF-SPEECH are NOUN and VERB, and the value of GLASS

is HUMAN.

A COMIT program consists of a set of rules , each of

which in turn consists of a set of subrules . There are two

kinds of rules : grammar rules and list rules . Grammar

rules are used primarily to detect and transform complex

patterns of constituents in the workspace, while list rules

are used to operate on a single constituent on the basis of

a dictionary lookup.
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The first subrule of a grammar rule corresponds more

or less to a SNOBOL statement. The five parts of the first

grammar suhrule are the rule name (corresponding to the

SNOBOL label), the left half (corresponding to the SNOBOL

pattern), the right half (corresponding to the SNOBOL

replacement), the routing (which produces side effects

not producible in the right half) and the go-to (like SNOBOL)

As in SNOBOL, parts of a rule may be omitted. If a rule has

more than one subrule, the second and remaining subrules

contain alternate right halves, routines, and go-to's.

A grammar rule with only one subrule is executed by matching

the left half against the workspace, replacing the matching

sequence of constituents as specified by the right half,

executing the routine, and transferring to the go-to (or

to the next rule if the match failed). If there is more

than one subrule, then each subrule must have a subrule name .

An area called the dispatcher will have space set aside

corresponding to the rule name, with a logical value

entered for each subrule. After the left half is matched,

the subrule corresponding to the only true value (if there

is only one true one) will be executed. If there is more

than one, a pseudo-random choice is made among the true

onesj if there is none, a pseudo-random choice is made among

all the possible ones. This choice may, however, be made

instead by the go-to of the previously executed rule.

Logical subscripts may be used as rule names, and there
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are ways to use the values of a logical subscript of a

constituent in order to select a rule and a sub rule.

The possible constituents of a left half are full

constituents, ^n constituents, indefinite constituents,

and integers. A full constituent is a symbol that matches

an identical symbol in the workspace. A ^n constituent

matches n arbitrary successive constituents. An indefinite

constituent , indicated by "^", represents an arbitrarily

long sequence of constituents. An integer j represents

the constituent or constituents that match the j-th

constituent of the left half, and is used for back

referencing. Constituents of a left half may be modified

by subscripts, thus specifying additional requirements

for a match. A right half may only contain full constit-

uents and integers, where the integer j represents the

j-th constituent of the left half. Again, subscripts may

be used in the right half to modify, replace, or delete

existing ones and to insert new ones. An example of a

pattern match and its result is!

old workspace: A + B + A/R +C+D+E+F+G

left half:

1 1 1-

1



A list rule consists of two or more list subruleS j

and corresponds to a dictionary and its entries. The

list subrules resemble the first grammar subrule^ except

that each left half is a single symbol. The subrules are

automatically alphabetized by their left halves to facili-

tate rapid search^ and their number is not restricted to 36.

Control can only reach a list rule from the go-to of

another rulej the selection of a subrule of the list inle

will ordinarily be determined by a constituent of the

pattern that was matched by the previously executed rule.

Since it is inconvenient to keep all the data in

the workspace, COMIT provides a nximbered set of temporary

storage locations called shelves. The contents of the

workspace may replace , be exchanged with, or be added to

the contents of a shelf. This operation is performed by

the routine of a rule.

COMIT has been almost entirely superseded by SNOBOL,

though COMIT, like IPL, still has a few adherents. It does

have two minor advantages over SNOBOL. First, for linguistic

processing the ability to have constituents of more than one

character is often convenient. Second, the dictionary

search operations of COMIT have no exact parallel in SNOBOL

and therefore cannot be done quite as efficiently in SNOBOL.
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8.3. EOL.

EOL is a low-level language for manipulating strings

of characters. It was originally designed by Lukaszewicz

in Poland, and later revised and implemented by

Lukaszewicz and Nievergelt [22,23] at the University of

Illinois in I967. Conceptually, an EOL program should be

thought of as a machine-language program running on a

hypothetical computer called the EOL machine. An EOL

program is built up from machine language through macro

definitions and subroutine calls, so that EOL programs are

quite hierarchical.

The EOL computer is equipped with inputs, outputs,

files, and stacks. An input is a source of characters

and an output is a sink of characters. In practice,

inputs and outputs correspond to such devices as card

readers, line printers, or magnetic tapes. A file is used

to provide mass storage, and may correspond to core, drum,

disc, or tape. Internal processing in the EOL computer is

done mostly on the stacks , which are linear lists of

constituents . Each constituent in a stack is a string of

characters; a special mark preceding each constituent

indicates its type: word (i.e., alphanumeric), number, or

address. A one-bit register H, similar to HO in IPL, is

used to hold the results of tests.

An EOL program consists of a sequence of macro

definitions followed by a sequence of external procedures.
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An external procedure may itself contain macro definitions.

External procedures together with their required macro

definitions may be compiled independently* macro definitions

may also be compiled independently. A procedure consists

of a sequence of statements, each of which may be a machine-

language instruction, a macro-instruction, a procedure

definition, a declaration, or a comment. A procedure is

external if it is not contained within any other procedure.

There are about 50 basic instructions in the EOL

machine, and their format is reasonably mnemonic. The

stack instructions permit, for instance:

(a) Moving a specified number of constituents from

the beginning of one stack to either end of a

different stack in either the same order or

in reverse order.

(b) Compressing several words into one word or

splitting one word into several words of

one character each.

(c) Testing whether the initial or the final

constituent of a stack is equal to a given word

or number.

Instructions may be made conditional on whether their

operands start with characters from particular character

classes. Input instructions are used for reading, and

output instructions for writing^ formatted output is

possible. Files can be broken down into records, and
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records can be labelled.

EOL appears to be a quite flexible lajnguage, but

rather difficult to program in. In particular, the fact

that all executable statements are in the format of

instructions is a significant handicap^ one would very

much like to have infix and prefix operators, and to be

able to compose expressions from them. Also, the macro

definition facility does not permit operations on the macro

parameters other than direct substitution, so that there

is no way to write macros that analyze their arguments.

8.4. A Few More .

AMBIT (Algebraic Manipulation By Mentity Transform)

[8,9] is a language developed by Christensen at Computer

Associates in 1965. The language has been applied to

symbolic manipulation problems other than algebraic

manipulation. Essentially, AMBIT is a block-structured

language in which the statements consist of replacement

rules as in COMIT. A replacement rule has two parts!

the citation , corresponding to the left half, and the

replacement , corresponding to the right half. A novel

feature is the use of pointers as place markers in matching

the workspace. Pointers may appear in both the citation

and the replacement, and matching always begins with a

pointer. This convention is used as the basis for some

interesting implementation techniques [9].

-10'9-



CONVERT [15] 5 developed by Guzman and Mcintosh

at the University of Mexico, is an augmentation of LISP

to include pattern matching facilities. Its two central

fimctions are RESEMBLE, which matches patterns, and REPLACE,

which replaces them. Matching can be carried out against

segments of lists and against sublists of lists, using

patterns similar to those of SNOBOlA. RESEMBLE creates

a dictionary associating variables with pattern components,

and REPLACE uses this dictionary in the replacement. A

similar augmentation of LISP called FLIP [6] has been

developed by Bobrow and Teitelman. FLIP was intended to

lead to pattern matching facilities in LISP 2, but these

facilities of LISP 2 were never fully specified, much

less implemented.

Lombardi [21] uses list processing as the basis

of his approach to incremental computation. His

incremental computer is a simulated computer in which

programs are specified with gaps, using incompletely

defined functions. During the evaluation of such a

function, any undefined variables or subfunctions that

appear can then be provided at the time they are needed

from, say, an on-line terminal. Lombardi' s treatment

of list processing is more formal than the one used in

this article.

PANON-IB [7] is a symbol manipulation language

developed by Caracciolo and his associates at the
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University of Pisa. It is based on a particular extension

of Markov normal forms algorithms, and consists of a

sequence of transformation. rules to be applied to an

argument string according to appropriate sequencing rules.

COGENT (compiler GENerator and Translator) [32] is

a programming system designed primarily as a compiler-

compiler, i.e., a compiler that produces other compilers.

However, it is also applicable to more general symbolic

and linguistic applications. Its basic approach is to

describe the data to be operated on in terms of syntax

equations, and then to specify transformations on this

data in terms of these syntax equations. It thus is a

pattern-matching language, where the constituents of

the match are syntax terms and the matching process may

well involve recursive computations.
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9. Concluding Remarks .

In reviewing the collection of symbol manipulation

languages given here_, two divergent approaches become

apparent. On the one hand, LISP, SNOBOL, SLIP, and PL/l

are higher-level languages that Include symbol manipulation

facilities. As we pointed out in Section 1.2, such

languages may arise either through the embedding of symbol

manipulation facilities In a general-purpose language or

through the expansion of a symbol manipulation language

to Include general computation. l6 and EOL on the other

hand, are low-level languages. Their simplicity contrasts

sharply with the complexity of the higher-level languages,

but this simplicity is obtained at the cost of making the

user do more work.

Pattern-matching is a recurrent theme in symbol

manipulation languages. Pattern-matching provides a

non-procedural method of specifying transformations on

symbolic data, and it promises to be one of the dominant

features of symbol manipulation languages in the future.

Already, pattern-matching facilities have been embedded

in LISP, a language that originally lacked these facilities

However, it is not easy to embed pattern-matching in an

arbitrary language. In PL /I, for instance, the diversity

of data types and the use of structures makes it

difficult to define a standard data form, comparable to

SNOBOL strings and LISP lists, on which matching and
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replacement could be done.

The techniques of symbol manipulation are finding

increasing application in such specialized fields as

computer graphics and compiler construction. Though the

languages discussed here have been applied in these areas

to only a limited degree^ the concepts and implementation

techniques of these languages have been applied

extensively.

Symbol manipulation is a rpaidly expanding branch

of computing^ but it is still considered somewhat exotic

by the mass of computer users. Consequently^ there has

been relatively little pressure for standardization of

syTTibol manipulation languages ^ and the "let a hundred

flowers bloom" view has prevailed. New languages continue

to appear, and old ones are constantly being revised.

It appears likely that symbol manipulation languages will

stabilize as their use becomes more widespread, in much

the same way as scientific and commercial languages have

stabilized. At present, LISP and SNOBOL dominate the field

(algebraic manipulation excepted), and LISP 1.5 has been

reasonably stable for several years. Although experimenta-

tion is sure to continue, the day when symbol manipulation

is just another way of massaging data is probably not

far off.
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