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Foreword

The field of sketch-based interfaces and modeling (SBIM) has had a long his-
tory. Since the early 1960s, which saw the birth of interactive computer graphics
through Ivan Sutherland’s Sketchpad and Jacks’ DAC-1 system at General Motors,
we have seen researchers developing methods and techniques to let users interact
with a computer through sketching, a simple, yet highly expressive medium. Ini-
tially, SBIM was not a field in and of itself, but a set of distinct areas where re-
searchers from different backgrounds worked in isolation, without a real commu-
nity to share ideas. Areas within SBIM included sketch-based modeling, where the
goal was to easily create 3D models, and sketch-based interfaces, where the goal
was to develop systems for recognizing, for example, hand-writing, command ges-
tures, 2D diagrams, and mathematics. Today, SBIM has emerged as a subfield of
computer science that blends concepts from computer graphics, human-computer
interaction, artificial intelligence, and machine learning and has brought the two ar-
eas of sketching—interface and model specification—together. This synergy was
spearheaded by Joaquim Jorge and John Hughes, who started the first SBIM confer-
ence in 2004.

Over the years, SBIM has had some great successes (e.g., hand-printing and
more recently cursive hand-writing recognition) as well as notable failures where
the problem is still intractable in the general case (e.g., 3D sketch understanding).
As with most of promising technology, it may take multiple decades for the tech-
nology to become mature enough to become viable. Speech recognition is a classic
example of this, having taken more than four decades of research and productiza-
tion before becoming commoditized, and SBIM is just starting to be mature enough
to enable us to see that it can be used mainstream. Hand-writing and mathematical
expression recognition and simple modeling tools like Google’s SketchUp are some
examples.

It is interesting to look at the history of using sketching to create graphical mod-
els and have the computer recognize hand-written text, mathematics, and diagrams.
Any 2D visual language lends itself to sketch-based input, given that it is much eas-
ier to enter such languages (e.g., musical scores, mathematics or chemical molecule
diagrams) by simply entering them with a pen or stylus than having to convert the
language into a encoded 1D form entered on the keyboard. SBIM can trace its roots
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not just to Ivan Sutherland’s seminal Sketchpad but also to his brother Bert Suther-
land’s system for sketching out logic diagrams and to Robert Anderson’s Ph.D.
research at Harvard in the late 1960s on mathematics recognition and subsequent
evaluation using the RAND tablet, the earliest predecessor to the digitizing tablets
of today. It is interesting to note that the areas pioneered by the Sutherlands and
Anderson still represent significant research problems today in both recognition and
modeling. Fontaine Richardson’s Applicon CAD modeling tool was the first com-
mercial product to feature gesture recognition for model elements and commands
using a digitizing tablet. There was relatively little research, let alone commercial
exploitation, during the 1970s, although Negroponte’s Architecture Machine Group
at MIT did do some important work on recognizing architectural diagrams. In par-
ticular, in 1976 the SIGGRAPH papers by Weinzapfel on Architecture-By-Yourself
and by Herot on the HUNCH system began to explore how computers could inter-
pret hand-drawn diagrams and what inference mechanisms and domain knowledge
were needed to do so.

In the 1980s and 1990s, we began to see a number of pen-based forerunners
to TabletPCs and PDAs, as well as pen-based PC software appear in the market
place, commercial implementations inspired by Alan Kay’s Dynabook vision of the
late sixties. These included Wang FreeStyle, Microsoft Pen Windows, Go’s Pen-
point, and Apple’s Newton. The new devices showed that the commercial sector
was starting to see the potential benefits of pen input and gesture-based interfaces.
Unfortunately, essentially all these commercial efforts failed for various reasons
such as inadequate computing speed and memory, insufficient battery life, and lack
of sophisticated recognition technology. Despite these too-early attempts, digitiz-
ing tablets continued to be routinely used by artists and designers to create digital
ink that remained uninterpreted (e.g., in painting systems) or as a substitute for the
mouse with standard WIMP GUIs—robust character, symbol and gesture recogni-
tion, let alone sketch understanding, had to wait for more powerful hardware and
recognition algorithms.

In the late 1990s we saw two seminal contributions in sketch-based interfaces for
3D modeling. The SKETCH system, developed by Zeleznik et al. in 1996, used a
gestural interface and inferencing mechanisms to create 3D objects out of standard
3D geometric primitives such as cuboids, cylinders, and cones for conceptual 3D
modeling. In 1999, the Teddy system, developed by Igarashi et al., let users make
more free-form, organic 3D models. Both of these interfaces showed that sketch-
based interfaces for this type of task is a very natural one since users could make
rough drawings of the models they are interested in and have the computer interpret
them to generate the 3D geometry. These systems led to a significant amount of new
work on sketch-based interfaces for creating and manipulating 3D models.

In the last decade, we have seen an explosion of both sketch-based interfaces
and pen-based computing devices. Better and faster hardware coupled with new
machine learning techniques for more accurate recognition and more robust depth
inferencing techniques for sketch-based modeling have enabled SBIM to enter a new
era in research and development. This is one of the main reasons why this is a timely
book: it provides us with a very useful collection of state-of-the-art technology from
leaders of the SBIM field.
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Although great strides have been made, there is still a lot to do to bring SBIM to
the mainstream. Faster CPUs, better digitization technology, better battery life are
just some of the areas that must be improved from a hardware perspective. More
robust recognition algorithms that can handle subtle variability in user hand-writing
as well as better depth inferencing in sketch-based modeling are still unsolved prob-
lems. Integration with other interaction modalities such as multi-touch and speech
recognition to create multi-modal interfaces is now an important research area. Us-
ability analysis of these interfaces is also critically important to advancing SBIM.
The current book presents a snapshot of the state of the art in the area. I look forward
to the advances that will be made in SBIM in the coming years and I hope that the
readers will find inspiration in the valuable collection of articles gathered herein to
stimulate their endeavors and advance this important field.

Andries van DamBrown University





Preface

Sketch-based interfaces date back to Ivan Sutherland’s pioneering work. Sketch-
Pad, a pen-based system, preceded the ubiquitous mouse by several years. How-
ever, SketchPad was too advanced for its day. For many years, this seminal work
has remained more of a source of inspiration and awe than a trend to be followed.

Personal computers became sufficiently powerful in the nineties to support re-
search in sketched-based interfaces in Interactive Computer Graphics and Human-
Computer Interaction (HCI). People can now interact with drawings, editing and
augmenting sketches in many different ways. Indeed, electronic drawings can be
parsed and converted to digital objects such as pictures, diagrams and 3D models.
Sketching can also be used for editing and animating these objects, a feature not
possible on paper. Advances in this area provide the possibility of giving virtual
life to simple sketches and effectively use computers to enhance creative thinking.
Yet, for all its deceptive simplicity, sketching remains a hard challenge to meet for
computer scientists. This is because sketches engage human intellect and abilities in
ways that are difficult to approach with machines.

Thus, sketch-based interfaces are the subject of much lively research in recent
years. Researchers from many disciplines have contributed to the body of knowl-
edge on sketch-based interfaces. As such, it is difficult to gather a completely inclu-
sive compilation of work done on this topic. Notably, sketching has become a recur-
ring theme at many HCI conferences such as CHI, UIST, IUI, and AVI, and the IEEE
Symposium on Visual Languages and Computing (VL/HCC). The Association for
the Advancement of Artificial Intelligence (AAAI) held symposia on diagrammatic
representations and reasoning, and sketch understanding. Additionally, the graph-
ics community has usually published papers from this area, in conferences such as
SIGGRAPH, Eurographics and the SMARTGRAPHICS symposium. Most notably,
since 2004, the Eurographics Association has held a series of annual symposia on
Sketch-Based Interfaces and Modeling (SBIM).

This book provides an overview of the topics covered in this emerging area of
Interactive Computer Graphics, in two main parts. The first part contains chapters
related to sketch-based interfaces and pen-based computing. The second part in-
cludes chapters about creation and modification of 3D models, covering the use of
sketches in graphical and geometrical modeling. We aim to present a collection of
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works representing recent developments in this area, within the scope of interfaces
and modeling, hoping that this book proves to be a valuable resource for students,
researchers and academics.

We would like to gratefully thank and acknowledge the many people who have
assisted in the preparation of this book and reviewing its chapters.

Joaquim Jorge
Faramarz Samavati
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Chapter 1
Introduction

Faramarz F. Samavati, Luke Olsen,
and Joaquim A. Jorge

1.1 Sketch-based Interfaces

Sketch-based interfaces have come a long way since Ivan Sutherland’s seminal
work. Indeed, Sketchpad [24] spearheaded many techniques in both Computer-
Science and Human-Computer Interaction, a system that not only improved on
its predecessors but was also an improvement on many of its successors, to quote
C.A.R. Hoare [10]. Each generation of sketch-based interfaces can be traced to dif-
ferent hardware devices that shaped their inception and evolution: the lightpen, the
digitizing tablet and stylus combination, later the mouse, more recently tablet PCs
and multitouch surfaces. These, in combination with the available platform comput-
ing power, largely shaped both research and commercial products.

Sketchpad featured an interactive system that allowed users to create engineering
drawings using a lightpen, as shown on Fig. 1.1. The calligraphic interface combined
sketched input with graphical constraints which were solved by the system to beau-
tify the drawing without the need for explicit commands entered by the user. The
GRAIL system, developed by RAND corporation [7] to work with the first tablet
digitizing input device, allowed engineers to enter flowcharts using a combination
of drawings, text recognition and pen gestures. GRAIL (depicted in Fig. 1.2) used
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2 F.F. Samavati et al.

Fig. 1.1 The Sketchpad
system in use. It is possible to
see the lightpen and button
pad on the left. Reproduced
from http://www.archive.org

Fig. 1.2 A screenshot of the
GRAIL system. Reproduced
from http://www.archive.org

a combination of domain knowledge and contextual information to largely do away
with the need for explicit commands, illustrating the power of Calligraphic User
Interfaces.1

While the mouse was invented by Douglas Englebart in the mid-sixties, it did not
see widespread use until the Apple Macintosh adopted it as a key component to its
desktop user interface two decades later.

The topic of Sketch-Based Interfaces was largely dormant until the early nineties
when the first pen-based computers appeared on the market. However, these early
platforms were significantly underpowered to tackle handwriting and sketch recog-
nition. By the end of the decade most tablet PC companies had gone out of business.
Pen-based interfaces survived in the commercial marketplace thanks to PDAs such
as the Apple Newton and the Palm Pilot.

More recently, the advent of multi-touch displays and tablet PCs that combine
tactile and pen input has spurred new interest in Calligraphic Interfaces. Also, there
is emerging research in three-dimensional applications of sketching in virtual im-
mersive environments, especially in combination with other modalities.

1Calligraphic Interfaces, also known as Calligraphic User Interfaces, designate a family of com-
puter applications organized around human-created drawings whether they are used to depict
shapes, prepare designs, generate ideas, or simply to enter commands or depictions into a com-
puter [14].
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1.1.1 Sketching Issues and Research Topics in HCI

Sketching appears to be a concise, powerful and fast alternative to many conven-
tional input modalities. Indeed, its strengths and weaknesses as a computer input
modality come from the very same features. Through sketching people can express,
interpret and modify shapes and relationships among drawing elements without
much regard to neatness, alignment or precise measurement. However, the ambi-
guity and imprecision characteristic of free-hand drawings are also a major impedi-
ment to developing effective recognizers. Indeed, while other modalities, such as
speech recognition and natural language, seem to be making significant strides,
sketch recognition has yet to see widespread adoption as an unconstrained input
technique. This is probably because the terseness and expressive power of sketches
come at the cost of significant human higher cognitive abilities being involved, even
more so than for other challenging recognition-based modalities. In their literature
survey of sketching in design, Johnson et al. [13] indicate four main challenges to
developing both useful and usable general-purpose sketch-based interfaces:

• Native hardware support for pen-based interaction
• Comprehensive robust toolkits for sketch-based systems
• User-friendly methods to train and model recognizable input
• Better interaction techniques for sketch-based systems

The forthcoming sections directly address many of these challenges with the
possible exception of developing hardware support for Calligraphic User Interfaces.
While hardware support is important, we have deemed it out of scope for this book,
which focuses primarily on interfaces and applications proper.

Toolkits are important, but as a software engineering construct they are largely
tied to GUI-style interfaces from the late eighties. It may be argued that novel soft-
ware engineering techniques, methods and artifacts need to emerge to support the
new generation of Calligraphic User Interfaces [14].

The third challenge is by and large being addressed by current and ongoing
work in the community. Indeed, even if successful at first, hardwired recognizers
are hardly the ultimate approach to recognizing sketch input. This is because the
endless variations, rich vocabulary and inherent imprecision to user’s input make
it very difficult to devise simple techniques that satisfactorily handle most cases.
Therefore extensible approaches are needed to augment the vocabulary and con-
structs of a recognition-based interface in powerful yet usable manners.

As for the fourth challenge, recognition-based user interfaces pose interesting
problems to HCI researchers. Because sketch input can be ambiguous, the interface
should approach it in a different way from the discrete, deterministic techniques
so successfully applied to handling mouse and keyboard input. Further, resolving
ambiguity can and should be delegated to humans, requiring good interaction design
techniques to be brought to bear on the problem. Another very interesting issue in
HCI for Calligraphic Interfaces is handling errors which cannot be ascribed to users.
Handling these in a graceful if not creative manner is still a vibrant research topic to
be addressed by the community.
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While most research has focused on the early stages of design and modeling,
there is a need for significant progress in terms of interfacing with existing CAD
systems, applications and at the final stages of design where more detailed informa-
tion is entered. Indeed, most of the current applications focus on ideation, whereas
little thought has been given to make these ideas and shapes manufacturable.

1.1.2 Recognition

Sketch Recognition is central to Calligraphic Interfaces. This is because it allows
applications to become organized around what users draw in a quasi-declarative
way, instead of focusing on commands or constructive sequences as many tradi-
tional interfaces do. Sketch Recognition is related to both handwriting and gesture
recognition, in the sense that it supersedes both. Plamondon and Srihari provide a
comprehensive survey on handwriting recognition [21].

Contrary to handwriting or textual recognition, sketches have a non-linear syntax,
in that meaning is ascribed to a drawing by looking at shapes and spatial relations
rather than sequences, which is the main organizing principle in linear languages.
Diagrammatic notations provide excellent means for expressing concepts due to the
descriptive power of graphical symbols and spatial arrangements. Graphics Recog-
nition is the subfield of Document Image Analysis and Recognition concerned with
interpreting non-textual information present in document images. This field is im-
portant because many documents use a diagrammatic notation: i.e., architectural
floor plans, mechanical drawings, electronic circuit diagrams, musical scores, flow
charts, etc. In particular sketches, which roughly express abstract concepts, are a
kind of diagram consisting of freehand line drawings. Because of their concise and
expressive nature, sketches are a very effective communication mechanism. Thus,
online recognition for sketching interfaces has elicited a growing interest among the
HCI community [18].

Gesture recognition has been a heavily researched related area. While Ivan
Sutherland’s work was mostly concerned with a simple set of primitives, Rubine’s
recognizer allowed single stroke gestures to be learned and later recognized via a
simple linear classifier [22], in one of the most cited papers in the field of ges-
ture/symbol recognition. This is because recognition is at the heart of any sys-
tem that handles sketching. In their comprehensive survey on sketching, Johnson
et al. [13] identify some key issues in sketch recognition. These include when to
recognize sketches (recognition can distract users from the task at hand); what sym-
bols to recognize; how much of a drawing needs to be recognized; how to segment
input—many drawings contain overlapping symbols or strokes. A key issue is how
to group strokes in order to recognize what the user meant to draw. Recognizers need
this information to perform adequately. Another important issue is what recognition
strategy to apply. Many have been proposed over the years with varying degrees of
success.

Training recognizers is also an important area. Most interfaces resorting to dia-
grammatic representations require a rather large vocabulary of symbols (or spatial
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arrangements of strokes) that needs to be described if we are to develop algorithms
or techniques to handle these. Instead of hard-coding these symbols as some have
done successfully [8], many systems use a trainable recognizer. However, these need
to be provided with good examples of what to recognize.

Another important issue is how to handle recognition errors. Recognition results
are often inaccurate or ambiguous; or they return unwanted symbols. This comes
both as a curse and an opportunity. Indeed, traditional interfaces assume that errors
are somehow the user’s fault and worry about how to best convey the appropriate
messages to the user. In recognition interfaces, however, it is often best to let the user
disambiguate or handle recognition errors in a constructive way to either correct the
drawing or retrain the recognizer. Much research still needs to be done in this area.

Finally, two other important areas not addressed above are context and visual lan-
guages. Indeed symbols often change meaning depending on the context (other sym-
bols surrounding them) or semantic domain. Both are related to visual languages.
Whereas many syntax-driven approaches use some form of visual languages and
parsing to extract meaning from diagrams [17] domain-specific knowledge often
needs to be specifically coded and addressed at several stages of recognition. In-
deed, providing multi-domain recognizers remains an interesting challenge.

A good example of recognition-level research that addresses many of these prob-
lems appears in Chap. 2, in which Christine Alvarado approaches multi-domain
hierarchical free-sketch recognition using graphical models. We have selected this
work because it touches many of the issues in sketch recognition discussed above.

1.1.3 Modes

According to WikiPedia2 a mode is a “distinct setting within a computer program
or any physical machine interface, in which the same user inputs will produce per-
ceived different results than it would in other settings”. Thus one important problem
in most sketching interfaces is mode switching. Sketching user interfaces interpret
input differently depending on which mode the program is in, for instance, drawing
applications have input modes such as select, edit object, or input drawing, GUI
programs often show which mode they are in by redundant means (cursor, selected
entries on a palette, etc.). For example, the cursor will change shape to a pencil to
indicate that users can draw when the pencil tool is active. Or it may change to a
ruler to indicate that users may enter the corners of a rectangle. In both cases users
can press a mouse button and drag the cursor. But the drawing program will parse
user input in terms of the active tool. In sketch-based user interfaces sometimes
users may not be aware of which mode the program is in, or may be unsure of how
to activate the desired mode. Managing modes often distracts people from the task
at hand by forcing them to focus on the syntax of the tool they are using rather
than their work. This is a significant problem in Calligraphic User Interfaces whose
functionality is not as self-disclosing as that of conventional desktop applications.

2http://en.wikipedia.org/wiki/Mode_(computer_interface), accessed October 2010.
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Fig. 1.3 Example of ambiguous input handling in GiDeS. On the left, a stroke which overlaps
the outline of a screen object is interpreted as a delete command. In the middle, a stroke totally
contained inside a screen object signifies recolor. On the right a scratch gesture totally outside a
screen object becomes ambiguous: a menu appears on screen asking the user which of the two
meanings should be assumed. Reproduced with permission from [15]

Applications resort to two different approaches to mode switching. In Sketchpad,
users changed mode by operating physical buttons with the left hand, while entering
drawings with the right hand. In contrast, GRAIL would infer the correct mode by
looking at ink drawn by users in the context in which it was drawn. For example,
a crossing gesture over a graphical entity would erase it. Text entered inside a box
would become a label and a rectangle drawn on an empty area would be recognized
as a box. This is fine as long as there are no ambiguous interpretations to a gesture.
Some Calligraphic applications such as GiDES [15] handle this by exposing the
ambiguity to users and letting them make choices, as can be seen in Fig. 1.3.

In Chap. 3, Eric Saund and Edward Lank approach the problem of minimizing
modes in sketch interfaces by using an Inferred Mode protocol. They try to auto-
matically recognize what mode the application should be in according to the user’s
input in the context of what has been drawn, to the extent that an action can be
unambiguously determined.

1.1.4 Sketch-based Applications

There are many research applications that illustrate the power of Sketch-Based In-
terfaces. Among these we have selected four which address many of the issues high-
lighted above.

Many sketch-based interfaces parse diagrams to develop simulations of physi-
cal or abstract entities. In Chap. 4 Tom Stahovich describes Pen-based user inter-
faces for engineering and educational applications, in the mechanical and electrical
engineering domains. The chapter contributes work on three fundamental sketch
understanding problems. The first is pen stroke segmentation, to decompose a pen
stroke into geometric primitives. The second, sketch parsing, clusters pen strokes
or geometric primitives into groups representing individual symbols. Last, symbol
recognition classifies symbols once they have been located by a parser. This chapter
provides excellent insights ranging from the low-level details of stroke/ink process-
ing to the high-level issues of symbol recognition and semantic analysis.

In Chap. 5, Joseph LaViola describes MathPad, a system for Mathematical
sketching. Diagrams and illustrations are often used to help explain mathematical
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concepts. Moreover, they are commonplace in math and physics textbooks and pro-
vide intuition into abstract principles. Unfortunately, static diagrams generally as-
sist only in the initial formulation of a mathematical problem, not in its analysis or
visualization. MathPad describes how to combine on-line recognition with a gestu-
ral interface to recognize mathematical formulas and associate variables and values
with a physical simulation in order to enter, solve and visualize mathematical ex-
pressions. The author describes how to address modes by an ingenuous combination
of location-aware gestures, imperative gestures and context in order to make modes
largely invisible.

In Chap. 6 Michiel van de Panne and Dana Sharon present an interesting ap-
proach to Sketch recognition using flexible parts-based spatial templates. In auto-
matic recognition of drawings for modeling, it is often difficult to describe what is to
be recognized in terms of two-dimensional depictions of three-dimensional entities,
especially if we want to afford a degree of flexibility to end-users. Their key insight
is to use a 2D template for each class of object to be modeled. Templates provide
explicit descriptions for optional parts, and thus constitute a compact and scalable
approach for modeling many classes of objects as particular layouts of a collection
of parts. This helps to avoid the combinatorial explosion that would otherwise oc-
cur, by explicitly modeling all possible combinations of parts that might constitute
an object. The template structure also provides context for recognizing the parts
themselves, making it easier to recognize those parts. Their system matches key
points on a sketch to aid in top–down reconstruction, using a branch-and-bound
search to identify the template (and corresponding three-dimensional model) that
most closely matches a two-dimensional sketch. While their technique looks at first
more limited than parsing and is constrained to the template database it provides a
seemingly scalable approach to an open-ended problem, in that new templates can
in principle easily be learnt from examples.

Finally, in Chap. 7 Manuel João Fonseca and Joaquim Jorge discuss Sketch-
based retrieval of vector drawings, describing a Calligraphic User Interface to re-
trieve clip-art media using a structural approach. Their approach uses topologi-
cal and geometric information automatically extracted from drawings to derive a
multilevel description, which affords a coarse-to-fine comparison between simple
sketches and complex vector drawings using a relational graph. Their approach
avoids graph matching by using graph spectra as features in a scalable manner. They
also show how this retrieval mechanism can be integrated into a 3D sketch-based
modeling tools (GiDeS system) applying a paradigm of implicit retrieval, whereby
sketched objects are automatically used as queries and returned results are presented
as modeling suggestions at the user interface.

1.2 Creation and Modification of 3D Models

Model creation is a major bottleneck in production pipelines, involving complex
and diverse shapes with intricate inter-relationships. User interfaces in modeling
have traditionally followed the WIMP (Windows, Icons, Menus, Pointer) paradigm.
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Though functional and very powerful, they can also be cumbersome and daunting
to a novice user, due to numerous commands hidden under layers of functional-
ity. Thus, creating complex models using computers can require considerable ex-
pertise and effort. Sketch-based interfaces have also been explored in this context,
with the goal of allowing hand-drawn sketches to be used in the modeling process,
from rough model creation through fine detail construction. However, mapping 2D
sketches to 3D modeling operations is a difficult task, rife with ambiguity. SBIM
applications for 3d modeling can be categorized according to how they interpret
a sketch, of which there are three primary methods: to create a 3D model, to add
details to an existing model, or to deform and manipulate a model.

A model creation system attempts to reconstruct a 3D model from the 2D
sketched input. The gamut of creation systems can be divided into two categories,
suggestive and constructive, based on whether or not the input strokes are mapped
directly to the output model (in a suggestive system, they are not).

This aligns with the classical distinction between reconstruction and recognition.
Suggestive systems first recognize a sketch against a set of templates, and then use
the template to reconstruct the geometry. Constructive systems forgo the recognition
step, and simply try to reconstruct the geometry. In other words, suggestive systems
are akin to visual memory, whereas constructive systems are more rule-based [11].

Because suggestive systems use template objects to interpret strokes, their ex-
pressiveness is determined by the richness of the template set. Constructive systems,
meanwhile, map input sketches directly to model features; therefore, their expres-
siveness is limited only by the robustness of the reconstruction algorithm and the
ability of the system’s interface to expose the full potential.

1.2.1 Suggestive Systems

Suggestive-stroke systems are characterized by the fact that they have some “mem-
ory” of 3D shapes built in, which guides their interpretation of input sketches. If a
system is designed for character creation, for example, the shape memory can be
chosen to identify which parts of a sketch correspond to a head, torso, and so forth.
Then the conversion to 3D is much easier, because the shapes and relative propor-
tions of each part is known a priori.

Within the suggestive-stroke category, two main approaches can be uses. In the
first approach, the system extrapolates a final 3D shape based on only a few iconic
strokes. A classical example is the SKETCH system of Zeleznik et al. [27], which
uses simple groups of strokes to define primitive 3D objects. Three linear strokes
meeting at a point, for instance, are replaced by a cuboid whose dimensions are
defined by the strokes.

In the second approach of suggestive systems, a template objects from a database
of template objects [9, 23] is retrieved. Rather than simple primitive objects, the
templates are more complete and complex objects. And from the user’s perspective,
they must provide a complete and meaningful sketch of the desired object, rather
than just a few evocative strokes.
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This approach is more extensible than extrapolation, because adding new behav-
ior to the system is as easy as adding a new object to the database. Conversely,
because the building blocks—the shape templates—are more complex, it may be
impossible to attain a specific result by combining the template objects.

The increased complexity on both the input and output sides is reflected in the un-
derlying matching algorithms. A retrieval-based system faces the problem of match-
ing 2D sketches to 3D templates. To evaluate their similarity in 3D would require
reconstruction of the sketch, which is the ultimate problem to be solved. Therefore,
comparison is typically done by extracting a 2D form the 3D template object.

1.2.2 Constructive Systems

Pure reconstruction is a more difficult task than recognize-then-reconstruct, because
the latter uses predefined knowledge to define the 3D geometry of a sketch, thereby
skirting the ambiguity problem to some extent (ambiguity still exists in the recogni-
tion stage). Constructive-stroke systems must reconstruct a 3D object from a sketch
based on rules alone. Because reconstruction is such a difficult and interdisciplinary
problem, there have been many diverse attempts at solving it. All the techniques in
the second part of this book propose constructive systems.

A common approach for constructive systems is to interactively reconstruct the
object as the user sketches. This allows the user to immediately see the result and
possibly correct or refine it, and also allows the system to employ more simple re-
construction rules. The most common approach for creating “manufactured objects”
is extrusion, a term for creating a surface by “pushing” a profile curve through space
along some vector (or curve); see Fig. 1.4 for an illustration. This technique is well-
suited to creating models with hard edges, such as cubes (extruded from a square)
and cylinders (from a circle).

Reconstructing smooth, natural objects requires a different approach. It has been
observed that our visual system prefers to interpret smooth line drawings as 3D
contours [11]. Accordingly, the majority of constructive SBIM systems choose to
interpret strokes as contour lines (see Chaps. 8 to 12).

There are still many objects that correspond to a given contour, so further as-
sumptions must be made to reconstruct a sketch. A key idea in constructive systems
is to choose a simple shape according to some internal rules, and let the user refine
the model later.

Skeleton-based approaches are a prevalent method for creating a 3D model from
a contour sketch. The skeleton is defined as the line from which the closest contour
points are equidistant.

The simplest non-trivial skeleton is a straight line. In a symmetric sketch, the
skeleton is a straight line aligned with the axis of symmetry. To generate a surface,
the sketch can be rotated around the skeleton, creating a surface of revolution (see
Chap. 10). A single stroke can also specify the contour, with either a fixed or user-
sketched rotation axis to define the surface.
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Fig. 1.4 Extrusion is a simple method for reconstructing a contour, by sweeping it along an extru-
sion vector e

Fig. 1.5 Free-form model creation from contour sketches: a rotational blending surfaces have
non-branching skeletons [5]; b Teddy inflates a sketch about its chordal axis (reproduced with
permission from [12]); c SmoothSketch infers hidden contour lines (green lines) before inflation
(reproduced from [16])

In Chap. 10, this idea is extended to a generalized surface of revolution, in which
the skeleton is given by the medial axis between two strokes (the authors refer to
this construction as rotational blending surfaces). The system also allows the user
to provide a third stroke, which defines a free-form cross-section, increasing the
expressiveness of this construction.

Unfortunately, parametric surfaces—including surfaces of revolution—suffer
from topological limitations. The resulting object can always be parameterized over
a 2D plane, and the skeletons contain no branches. For contours with branching
skeletons, a more robust method is required.

For simple (i.e. non-intersecting) closed contours, inflation is an unambiguous
way to reconstruct a plausible 3D model. The Teddy system (Chap. 8), for instance,
inflates a contour by pushing vertices away from the chordal axis according to their
distance from the contour; see Fig. 1.5b for a typical result.

The skeletal representation of a contour also integrates naturally with an implicit
surface representation. In the approach of Alexe et al. [1], spherical implicit prim-
itives are placed at each skeleton vertex; when the primitives are blended together,
the result is a smooth surface whose contour matches the input sketch. ShapeShop
(Chap. 11) instead uses variational implicit surfaces [25], which use the sketched
contour to define constraints in the implicit function.

A different way to reconstruct a contour sketch is to fit a surface that is as smooth
as possible. Surface fitting interprets input strokes as geometric constraints of the
form, ‘the surface passes through this contour.’ The outside normal of the con-
tour also constrains the surface normal. These constraints define an optimization
problem: of the infinite number of candidates, find one suitable candidate that sat-
isfies the constraints. Additional constraints such as smoothness and thin-plate en-
ergy [26] push the system toward a solution. The FiberMesh system (Chap. 9) uses a
non-linear optimization technique to generate smooth meshes while also supporting
sharp creases and darts.
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Fig. 1.6 The contour of an
object conveys a lot of shape
information. Cutout:
T -junctions and cusps imply
hidden contour lines (red)

For non-simple contours, such as ones containing self-intersections, a simple in-
flation method will fail. Recall that the contour of an object separates those parts of
the object facing toward the viewer from those facing away. In non-trivial objects,
there may be parts of the surface that are facing the viewer, yet are not visible to the
viewer because it is occluded by a part of the surface nearer to the viewer. Figure 1.6
shows an example of this: the contour of the neck is occluded by the chin. Note that
where the neck contour passes behind the chin, we see a T shape in the projected
contour (called a T -junction), and the chin contour ends abruptly (called a cusp).
T -junctions and cusps indicate the presence of a hidden contour; Williams [26] has
proposed a method for using these to infer hidden contour lines in an image.

Karpenko and Hughes in Chap. 12 use Williams’ algorithm, including support
for not only T -junctions but also cusps. They take this approach to reconstruction:
a smooth shape is attained by first creating a “topological embedding” and then
constructing a mass–spring system (with springs along each mesh edge) and finding
a smooth equilibrium state.

1.2.3 Augmentation

Creating a 3D model from 2D sketches is a difficult problem, whose only really
feasible solutions lead to simplistic reconstructions. Creating more elaborate details
on an existing model is somewhat easier, however, since the model serves as a 3D
reference for mapping strokes into 3D. Augmentations can be made in either an
surficial or additive manner.

Surficial augmentation allows users to sketch features on the surface of the
model, such as sharp creases [4, 20] (see also Chap. 8) or curve-following slice
deformations [28]. After a sketch has been projected onto a surface, features are
created by displacing the surface along the sketch. Usually the surface is displaced
along the normal direction, suitable for creating details like veins (Fig. 1.7a). The
sketched lines may also be treated as new geometric constraints in surface optimiza-
tion approaches.

Surficial augmentations can often be done without changing the underlying sur-
face representation. For example, to create a sharp feature on a triangle mesh, the
existing model edges can be used to approximate the sketched feature and displaced
along their normal direction to actually create the visible feature [19, 20].

Additive augmentation uses constructive strokes to define a new part of a model,
such as a limb or outcropping, along with additional stroke(s) that indicate where
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Fig. 1.7 Sketch-based
augmentations: a surficial
augmentation displaces
surface elements to create
features (from [20]);
b additive augmentation joins
a new part with an existing
model (reproduced with
permission from [12]). The
latter figure also includes
surficial features (the eyes)

to connect the new part to the original model (see Chaps. 8 and 9). For exam-
ple, the extrusion operator in Teddy uses a circular stroke to initiate the operation
and define the region to extrude; the user then draws a contour defining the new
part, which is inflated and attached to the original model at the connection part
(Fig. 1.7b). ShapeShop (Chap. 11) exploits the easy blending afforded by an im-
plicit surface representation to enable additive augmentation, with parameterized
control of smoothness at the connection point. The system does not require explicit
specification of the connection point, since implicit surfaces naturally blend together
when in close proximity. Additive augmentation only affects the original model near
the connection point.

The somewhat subjective difference between the two types of augmentation
is one of scale: surficial augmentations are small-scale and require only simple
changes to the underlying surface, whereas additive augmentations are on the scale
of the original model. The distinction can become fuzzy when a system allows more
pronounced surficial augmentations, such as Zelinka and Garland’s curve analogy
framework [28], which embeds 2D curve networks into arbitrary meshes and then
displaces the mesh along these curves according to a sketched curve.

1.2.4 Deformation

Besides augmentation, there have been many SBIM systems (including those that
have been described in this book) that support sketch-based editing operations, such
as cutting, bending, tunneling (creating a hole), contour oversketching, segmenta-
tion, and affine transformations. And, like augmentation, sketch-based deformations
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Fig. 1.8 Sketch-based deformations: a cutting strokes (blue) define a cutting plane along the view
direction (Chap. 13); b bending a model so that the reference stroke (red) is aligned with the target
blue stroke (Chap. 8)

have a straightforward and intuitive interpretation because the existing model or
scene anchors the sketch in 3D.

To cut a model, the user simply needs to rotate the model to an appropriate view-
point and draw a stroke where they want to divide the model. The stroke can then be
interpreted as a cutting plane, defined by sweeping the stroke along the view direc-
tion (Fig. 1.8a). Tunneling is a special case of cutting, in which the cutting stroke is
a closed contour contained within a model—everything within the projected stroke
is discarded, creating a hole.

Other deformations are based on the idea of oversketching. For example, bending
and twisting deform an object by matching a reference stroke to a target stroke, as
shown in Fig. 1.8b. Contour oversketching is also based on matching a reference to
a target stroke, but in this case, the reference is a contour extracted from the model
itself [19].

In Chap. 9, a handle-based deformation is supported, allowing object contours to
be manipulated like an elastic. When a stroke is “grabbed” and dragged, the stroke
is elastically deformed orthogonal to the view plane, thereby changing the geomet-
ric constraint(s) represented by the stroke. As the stroke is moved, their surface
optimization algorithm recomputes a new fair surface interactively.

Model assembly—typically an arduous task, as each component must be trans-
lated, rotated, and scaled correctly—is another editing task that can benefit from
a sketch-based interface. In Chap. 10, a technique is proposed for applying affine
transformations to a model with a single stroke. From a U-shaped transformation
stroke, their method determines a rotation from the stroke’s principal components,
a non-uniform scaling from the width and height, and a translation from the stroke’s
projection into 3D. By selecting components and drawing a simple stroke, the model
assembly task is greatly accelerated.

1.2.5 Modeling Applications

Knowing the nature of the model and the target application helps to infer the third
dimension better and enhances the usability of the interface and the quality of the
models in SBIM. There are many specific applications in which free-form sketch in-
put is a very useful and powerful interface paradigm. The applications can be classi-
fied in two groups. Computer-aided design applications are targeted at modeling 3D
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objects that will eventually have a physical manifestation. Therefore, input sketches
need to be complemented with constraints to address manufacturing limitations. In
Chap. 13, a SBIM system is described for industrial product design. Content cre-
ation applications, meanwhile, are intended for modeling 3D objects that will exist
usually in the digital world, for use in computer animation, interactive computer
games, film, and so on. In this domain, geometric precision is less important than
allowing the artist to create free-form surfaces from freehand input. Dressing and
hair-styling are two difficult examples in this area. In Chap. 14, several SBIM tech-
niques are presented for designing cloth and hair for a virtual character.

This book provides an overview of the areas covered by Sketch-Based Interfaces
and Modeling. We hope that through the discussions and examples provided herein
readers will be motivated to further contribute to the research motives in this rapidly
evolving and very exciting multidisciplinary area.
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Sketch-based Interfaces





Chapter 2
Multi-domain Hierarchical Free-Sketch
Recognition Using Graphical Models

Christine Alvarado

2.1 Introduction

Consider the following physics problem:

An 80-kg person is standing on the edge of a 3.6-m cliff. A 3-meter rope is attached to a
point directly above his head, and on the end of the rope is a 40-kg medicine ball. The ball
swings down and knocks the person off the cliff. Fortunately, there is a (padded) cart at the
bottom. How far away from the cliff must the cart be placed in order to catch the person?

The above problem illustrates the central role of pictures and diagrams in under-
standing. It is almost impossible to read this problem without picturing the scenario
in your head, and, for most people, the diagram is essential in solving the problem.

Because of the power of diagrams in thinking and design [8, 12, 56], people rely
heavily on hand-sketched diagrams as a quick, lightweight way to put their ideas on
paper and help them visualize solutions to their problems. Students, designers, sci-
entists and engineers use sketches in a wide variety of domains, from physical (e.g.,
mechanical and electrical engineering designs) to conceptual (e.g., organizational
charts and software diagrams).

Diagrams drawn on paper are just static pictures, but when drawn on a tablet
computer, diagrams have the potential to be interpreted by the computer, and then
made interactive. With the rise of pen-based technologies, the number of sketch-
based computer tools is increasing. Sketch recognition-based computer systems
have been developed for a variety of domains including (but not limited to) me-
chanical engineering [2, 21, 51], electrical engineering [16], user interface design
[9, 34, 42], military course of action diagrams [11, 13], mathematical equations
[33, 41], physics [39], musical notation [7, 14], software design [24, 36], note tak-
ing (Microsoft OneNote), and image editing [46]. In addition, a few multi-domain
recognition toolkits have been proposed [3, 25, 35, 40].
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Fig. 2.1 A diagram drawn by
a student in a digital design
class (stroke thickness altered
for illustration)

The problem of two-dimensional sketch recognition is to parse the user’s strokes
to determine the best set of known patterns to describe the input. This process in-
volves solving two interdependent subproblems: stroke segmentation and symbol
recognition. Stroke segmentation (or just segmentation) is the process of determin-
ing which strokes should be grouped to form a single symbol. Symbol recognition
is the process of determining what symbol a given set of strokes represents.

Despite the growing number of systems, this two-dimensional parsing problem
remains a challenging problem for a real-time system. Sketched symbols rarely
occur in their canonical form: both noise in the sketch and legal symbol varia-
tions make individual symbols difficult to recognize. Furthermore, segmentation and
symbol recognition are inherently intertwined. In the sketch in Fig. 2.1, if the system
could correctly group the three bold strokes in this sketch, it likely could identify
those strokes as an XOR gate using a standard pattern matching technique. Un-
fortunately, simple spatial and temporal grouping approaches do not work: the three
strokes that form the XOR gate are not all touching each other, but they are touching
the input and output wires. If the computer somehow can find the correct grouping, it
probably will be able to match the strokes to a shape in its library. However, naïvely
trying all combinations of stroke groups is prohibitively time-consuming.

Researchers have employed different techniques to cope with these challenges.
Some of the systems listed above perform only limited recognition by design. Scan-
Scribe, for example, uses perceptual guidelines to support image and text editing but
does not attempt to recognize the user’s drawing [46]. Similarly, the sketch-based
DENIM system supports the design of web pages but recognizes very little of the
user’s sketch [42]. Systems of this sort are powerful for their intended tasks, but they
do not support a the creative sketch-based design process in more complex domains.

Other recognition systems place restrictions on the user’s drawing style in order
to make recognition easier. We list four common drawing style restrictions that ad-
dress these challenges, ordered from most restrictive to least restrictive, and give
examples of systems that use each:

1. Users must draw each symbol using a pre-specified pattern or gesture (e.g., Palm
Graffiti®, ChemPad [54]).

2. Users must trigger recognition after each symbol (or pause notably between sym-
bols) (e.g., HHreco [28], QuickSet [11]).

3. Users must draw each symbol using temporally contiguous strokes (e.g., AC-
SPARC [16]).
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4. Some systems place few restrictions on the way users draw, but rely on user
assistance or specific domain assumptions to aid recognition. To trigger recog-
nition in MathPad2, for example, the user must circle pieces of the sketch [39].
The approach presented by Kara and Stahovich performs robust recognition of
feedback control system diagrams, but relies on the assumption that the diagram
consists of a number of shapes linked by arrows, which is not the case in many
other domains [31].

While these previous systems have proven useful for their respective tasks, we aim
to create a general sketch recognition system that does not rely on the drawing style
assumptions of any one domain. This chapter describes a general-purpose recog-
nition engine that can be applied to a number of symbolic domains by inputting
the shapes and commonly occurring combinations of shapes using a hierarchical
shape description language, described below. Based on these descriptions, we use a
constraint-based approach to recognition, evaluating potential higher-level interpre-
tations for the user’s strokes by evaluating their subcomponents and the constraints
between them. To achieve recognition robustness and efficiency, we use a com-
bined bottom–up and top–down recognition algorithm that generates the most likely
(possibly incomplete) interpretations first (bottom–up) and then actively seeks out
lower-level parts of those interpretations that are still missing (top–down).

This chapter presents a synthesis of work presented in [3] and [4], as well as
recent work that builds on this prior work. We begin by exploring the challenges
of recognizing real-world sketches. Next, we present our approach to recognition,
including how we represent knowledge in our system, how we manage uncertainty,
and our method of searching for possible interpretations of the user’s sketch. Next
we analyze our system’s performance on real data in two domains. We conclude with
a discussion of the major remaining challenge for multi-domain sketch recognition
revealed by our evaluation: the problem of efficient and reliable sketch segmenta-
tion. We present an emerging technique that attempts to solve this problem.

2.2 The Challenges of Free-Sketch Recognition

Like handwriting and speech understanding, sketch understanding is easy for hu-
mans, but difficult for computers. We begin by exploring the inherent challenges of
the task.

Figure 2.2 shows the beginning of a sketch of a family tree, with the strokes
labeled in the order in which they were drawn. The symbols in this domain are
given in Fig. 2.3. This sketch is representative of drawing patterns found in real-
world data [5], but it has been redrawn to illustrate a number of challenges using a
single example. The user started by drawing a mother and a father, then drew three
sons. He linked the mother to the sons by first drawing the shafts of each arrow and
then drawing the arrowheads. (In our family tree diagrams, each parent is linked to
each child with an arrow.) He will likely continue the drawing by linking the father
to the children with arrows and linking the two parents with a line.
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Fig. 2.2 A partial sketch of a
family tree

Fig. 2.3 The symbols in the family tree domain

Although relatively simple, this drawing presents many challenges for sketch
recognition. The first challenge illustrated in Fig. 2.2 is the incremental nature of the
sketch process. Incremental sketch recognition allows the computer to seamlessly
interpret a sketch as it is drawn and keeps the user from having to specify when the
sketch is complete. To recognize a potentially incomplete sketch, a computer system
must know when to recognize a piece of the sketch and when to wait for more
information. For example, Stroke 1 can be recognized immediately as a female, but
Stroke 6 cannot be recognized without Stroke 7.

The second challenge is that many of the shapes in Fig. 2.2 are visually messy.
For example, the center arrowhead (Stroke 11) looks more like an arc than two
lines. Next, the stroke used to draw the leftmost quadrilateral (Stroke 3) looks like
it is composed of five lines—the top of the quadrilateral has a bend and could be
reasonably divided into two lines by a stroke parser. Finally, the lines in the right-
most quadrilateral (Strokes 6 and 7) obviously do not touch in the top-left corner.

The third issue is segmentation: It is difficult to know which strokes are part of
which shapes. The shapes in this drawing are not clearly spatially segmented, and
naïvely trying different combinations of strokes is prohibitively time-consuming.
There are also some inherent ambiguities in how to segment the strokes. For ex-
ample, lines in our domain indicate marriage, but not every line is a marriage-link.
The shaft of the leftmost arrow (Stroke 8) might also have been interpreted as a
marriage-link between the female (Stroke 1) and the leftmost male (Stroke 3). In
this case, the head of that arrow (Stroke 12) could have been interpreted as a part
of the drawing that is not yet complete (e.g., the beginning of an arrow from the
leftmost quadrilateral (Stroke 3) to the top quadrilateral (Stroke 2)).
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Finally, how shapes are drawn can also present challenges to interpretation. The
head of the right-most arrow (part of Stroke 10) is actually made of three lines,
two of which are meant to overlap to form one side of the arrowhead. In order to
recognize the arrow, the system must know how to collapse those two lines into one,
even though they do not actually overlap. Another challenge arises because the same
shape may not always be drawn in the same way. For example, the arrows on the
left (Strokes 8 and 12, and Strokes 9 and 11) were drawn differently from the one
on the right (Stroke 10) in that the user first drew the shaft with one stroke and then
drew the head with another. This variation in drawing style presents a challenge for
segmentation and recognition because a system cannot know how many strokes will
be used to draw each object, nor the order in which the parts of a shape will appear.

Many of the difficulties described in the example above arise from the messy
input and visual ambiguity in the sketch. It is the context surrounding the messy or
ambiguous parts of the drawing that allows humans to interpret these parts correctly.
We found that context also can be used to help our system recover from low-level
interpretation errors and correctly identify ambiguous pieces of the sketch. Context
has been used to aid recognition in speech recognition systems; it has been the sub-
ject of recent research in computer vision [52, 55] and has been used to some extent
in previous sketch understanding systems [2, 16, 22, 42, 49, 50]. In the work pre-
sented here, we formalize the notion of context suggested by previous sketch recog-
nition systems. This formalization improves recognition of freely-drawn sketches
using a general engine that can be applied to a variety of domains.

2.3 Knowledge Representation

The goal of any recognition system is to match its input against an internal repre-
sentation of a shape or set of shapes and identify the best match or matches (if any)
for the given input. However, how each system represents the shape or shapes to be
recognized (and consequently how each system matches the input to this internal
representation) varies from system to system. For example, one system might repre-
sent each shape as a bit-mapped image template of the canonical form of that shape.
Then, to perform recognition, that system would apply a series of legal transforma-
tions to the input data (e.g., rotation, scaling) to determine whether or not the pixels
in the input can be made to line up with the pixels in the template. In contrast, a
different system might represent each shape not as an image but as a collection of
features extracted from the shapes. Examples of potential features include the ratio
between the height and width of the bounding box of the shape, the total length
of the strokes in the shape relative to the size of the bounding box, the number of
corners in the shape, etc. Recognition in this system would then extract the same
features from the input data and determine whether or not the features extracted
from the input data are close enough to the features stored for each shape.

While many different representations can be used to perform recognition, the
choice of internal shape representation affects the recognition task difficulty. In the
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example above, recognition using the feature-based approach is more straightfor-
ward than the template-matching approach as it involves only a relatively small
number of easy to calculate features rather than multiple transformations of the
whole input. However, depending on the shapes in the domain, it may be extremely
difficult to devise a set of features that reliably separates one shape from another.

Our system represents symbols to be recognized using a probabilistic, hierar-
chical description language. In choosing our representation, we considered several
desired functionalities of our recognition system. First, the system should be exten-
sible to new domains, requiring few training examples. Second, the system should
be able to distinguish between legal and illegal shape transformations when per-
forming recognition. Legal transformations include not only rotation, translation
and scaling but also some non-rigid shape transformations. For example, the angle
between a line in the head of an arrow and the shaft may range from about 10 degrees
to about 80 degrees, but an angle greater than 90 degrees is not acceptable. Third,
we would like to use this recognition system to compare various techniques for pro-
viding recognition feedback to the user, so the system should be able to recognize
the sketch as the user draws to allow the system to potentially provide recognition
feedback at any point in the drawing process. Finally, the system should be able to
cope with the noise inherent in hand-drawn diagrams (e.g., lines that are not really
straight, corners that do not actually meet, etc.).

This section describes our hierarchical description language and discusses how
this choice of representation allowed us to construct a system that meets the require-
ments above. We begin by introducing the deterministic properties of the language,
then discuss how uncertainty is incorporated into the descriptions. Finally, we dis-
cuss the advantages and disadvantages of this choice of representation.

2.3.1 Hierarchical Shape Descriptions

Each shape in the domain to be recognized is described using a hierarchical de-
scription language, called LADDER, developed by Hammond and Davis [25]. We
introduce the language through examples from the family tree and circuit domains.

We refer to any pattern recognizable in a given domain as a shape. Compound
shapes are those composed of subshapes. Compound shapes must be non-recursive.
Describing a compound shape involves specifying its subshapes and any necessary
constraints between those subshapes. As an example, the description of an arrow is
given in Fig. 2.4. The arrow has three subshapes—the line that is the shaft and the
two lines that combine to make the head. The constraints specify the relative size,
position and orientation necessary for these three lines to form an arrow shape (as
opposed to just being three arbitrary lines). Once a shape has been defined, other
shapes may use that shape in their descriptions. For example, the child-link symbol
in the family tree domain (Fig. 2.5) and the current source symbol in the circuit
domain (Fig. 2.6) both use an arrow as a subshape.

Shapes that cannot be broken down into subshapes are called primitive shapes.
The set of primitive shapes includes free-form strokes, lines, arcs and ellipses.
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Fig. 2.4 The description of
the shape “arrow.” Once
defined, this shape can be
used in descriptions of
domain-specific shapes, as in
Figs. 2.5 and 2.6

Fig. 2.5 Descriptions of
several domain shapes
(Female, Male and
Child-Link) and one domain
pattern (Mother–Son) in the
family tree domain

Although primitive shapes cannot be decomposed into subshapes, they may have
named subcomponents that can be used when describing other shapes, e.g., the end-
points of a line, p1 and p2, used in Fig. 2.4.

Domain shapes are shapes that have semantic meaning in a particular domain.
Child-link and current-source are both domain shapes, but arrow and line are not
because they are not specific to any one domain. Domain patterns are combinations
of domain shapes that are likely to occur, for example the child-link pointing from
a female to a male, indicating a relationship between mother and son in Fig. 2.5.
Compound shape descriptions with no constraints (e.g., the child-link description)
are used to rename a generic geometric shape (e.g., the arrow) as a domain shape so
that domain-specific semantics may be associated with the shape.
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Fig. 2.6 The description of a
Current Source from the
circuit domain

2.3.2 Handling Noise in the Drawing

The system’s goal in recognition is to choose the best set of domain shapes for
a given set of strokes. While this task appears to be straightforward, Sect. 2.2 il-
lustrated that ambiguity in the drawing can make recognition more difficult. Here,
we describe the language constructs that help the system cope with the inevitable
noise and ambiguities in the drawing. We discuss two different types of variation
supported by our representation: signal-level noise and description-level variation.

2.3.2.1 Signal-Level Noise: Objective vs. Subjective Measures

Shape descriptions specify the subshapes and constraints needed to form a higher-
level shape; however, people rarely draw shapes perfectly or constraints that hold
exactly. For example, although a user intends to draw two parallel lines, it is unlikely
that these lines will be exactly parallel. We call this type of variation signal-level
noise.

Because of signal-level noise, low-level shape and constraint interpretations must
be based both on the data and on the context in which that shape or constraint ap-
pears. Consider whether or not the user intended for the two bold lines in each
drawing in Fig. 2.7 to connect. In Figs. 2.7(a) and (b), the bold lines are identically
spaced, but the context surrounding them indicates that in Fig. 2.7(b) the user in-
tended for them to connect, while in Fig. 2.7(a) the user did not. On the other hand,
the stroke information should not be ignored. The thin lines in Figs. 2.7(b) and (c)
are identical, but the distance between the endpoints of the bold lines in these fig-
ures indicate that the these lines are intended to connect in Fig. 2.7(b) but not in
Fig. 2.7(c).

For each low-level shape and constraint we identify an objectively measurable
property that corresponds to that shape or constraint. For example, the property re-
lated to the constraint coincident is the distance between the two points in question
normalized by the length of the lines containing the points in question. This objec-
tively measurable property allows the system to separate the information provided
by the stroke data from the information provided by the surrounding context to de-
termine whether or not the constraint actually holds. Section 2.5 discusses precisely
how these low-level measurements and the contextual data are combined.
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Fig. 2.7 The importance of both data and context in determining whether or not the bold lines
were intended to connect

Fig. 2.8 The ground symbol
from the Circuit Diagram
domain

2.3.2.2 Description-Level Variation: Optional Components and Constraints

All of the shapes considered so far have been modeled using a fixed number of sub-
shapes and a set of required constraints between those subshapes. These descriptions
signify that, when a user draws these symbols, she should draw all of the subparts
specified.

In contrast, some shapes have subcomponents that can be omitted legally when
they are drawn. For example, consider the ground symbol described in Fig. 2.8. The
user may draw up to six horizontal lines, but three of these lines optionally may be
omitted. These three lines are flagged as optional in the shape description. We call
this type of variation description-level variation.

Constraints may also be flagged as optional, indicating that they often hold, but
are not required in the description of a symbol. For example, we could define the
domain shape wire as having the single subshape line and the optional constraint
that the line is horizontal or vertical. This constraint is not strictly required, as wires
may be drawn diagonally, but they are often drawn either horizontally or vertically.
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Fig. 2.9 Battery (left) and ground (right) symbols from the Circuit Diagram domain. Note that the
battery symbol is a subset of the ground symbol

Constraints pertaining to optional components are considered to be required if the
optional component is present unless they are explicitly flagged as optional.

Understanding the difference between signal-level noise and description-level
variation is central to understanding our representation of uncertainty. Signal-level
noise is distinguished from description-level variation by considering the user’s in-
tent when she draws a symbol. For example, in a ground symbol the base line should
be perpendicular to line l1. In a given drawing, the angle between those lines may
actually be far from 90 degrees due to signal-level noise (which might be caused
by the user’s sloppiness), but the lines are still intended to be perpendicular. On the
other hand, the ground symbol may not contain line l6, not because the user was
being sloppy, but because the user did not intend to include it when drawing the
symbol. We discuss how we model each variation in Sect. 2.5.

2.3.3 Strengths and Limitations

We chose this symbolic, hierarchical representation based on the recognition system
guidelines presented in the first part of this section. Here, we consider how this re-
presentation supports the creation of a multi-domain free-sketch recognition system.
As every representation choice has trade-offs, we also consider the limitations of this
approach and briefly discuss how these limitations can be addressed.

The first requirement was that our system must be extensible to new domains,
requiring few training examples. To extend the system to a new domain, a user must
simply describe the domain shapes and patterns for the new domain. Because the
system can use the same hierarchical recognition process, it does not need to be
trained with a large number of examples for each new shape. Furthermore, basic
geometric shapes can be defined once and reused in a number of domains.

The second requirement was that our system must accept legal non-rigid trans-
formations of sketched symbols without accepting illegal transformations. This re-
quirement is handled by the fact that constraints can be defined to accept a wide
range of relationships between shapes. For example, acuteAngle refers to any an-
gle less than 90 degrees. Furthermore, only constraints explicitly stated in the shape
definition are verified. Constraints that are not specified may vary without affecting
the system’s interpretation of the shape. For example, the definition of a quadrilat-
eral would not constrain the relative lengths of the lines or the angles between those
lines, leaving the system free to interpret any set of four correctly connected lines
as a quadrilateral.
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The third requirement was that the system be able to recognize a sketch as it is
being drawn. To support this goal, our representation in terms of a shape’s subcom-
ponents allows the system to detect when it has seen only some of the subcompo-
nents of a given shape. Using these partial interpretations, the system can decide
which interpretations are likely complete and which might still be in the process
of being drawn. This capability is particularly important when shape descriptions
overlap, as in the battery and the ground symbol in the circuit domain (Fig. 2.9).
When the user draws what could look like a battery or part of a ground symbol, the
system can detect the partial ground interpretation and wait until the user has drawn
more strokes to give its final interpretation instead of immediately interpreting the
strokes as a battery.

The final requirement was that our system must deal with the noise in hand-drawn
diagrams. Our representation allows us to handle signal-level noise by separating
low-level objective measurements from judgements about whether or not constraints
hold.

Although our representation satisfies the above requirements, it also imposes
some restrictions. First, even with a well designed language, specifying shape de-
scriptions may be difficult or time-consuming. Others have developed systems to
learn shape descriptions from few examples. In work by Vesselova and Davis [57],
as the user draws a shape, the learning system parses the user’s strokes into low level
components such as lines, arcs, and ellipses. The learner then calculates the existing
constraints between these components and uses perceptual cues to deduce which
constraints are most important the shape description. Once the system has learned a
shape (e.g., a rectangle) it can then use that shape in its description of other shapes
(e.g., a house). Hammond and Davis extended this work with an interactive system
that helps users debug shape descriptions generating and displaying “near-miss” ex-
amples (i.e. shape patterns that vary only slightly from the current description) [27].
The output of both systems is a description of a domain shape in the visual language.

Second, even if we could build a system to learn shape descriptions, some shapes
may be difficult or impossible to describe in terms of any simple low-level com-
ponents or constraints. Those domains with free-form shapes, such as architecture,
may have many shapes that cannot be easily described. Our representation is appro-
priate only for domains with highly structured symbols.

Finally, using this representation it is difficult to represent text or unrecognized
strokes. This limitation must be addressed in the recognition system itself. The sys-
tem should be capable of detecting text or unrecognized strokes and processing them
using a different recognition technique or leaving them as unrecognized. Separating
text from diagrams is a challenging problem that we do not address here, although
recent approaches have proven quite successful at this task [6, 58].

2.4 Recognition Overview

As described above, a core challenge in two-dimensional sketch recognition is the
problem of simultaneous segmentation and symbol recognition. Low-level inter-
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pretations potentially can help guide the search for possible higher-level interpre-
tations; for example, if the system detects two connected lines, it can first try to
match a quadrilateral whose corner lines up with the connection between the lines.
However, noise in the input makes it impossible for the system to recognize low-
level shapes with certainty or to be sure whether or not constraints hold. Low-level
misinterpretations cause higher-level interpretations to fail as well. Trying all possi-
ble interpretations of the user’s strokes guarantees that an interpretation will not be
missed, but it is infeasible due to the exponential number of possible interpretations.

To solve this problem we use a combined bottom–up and top–down recognition
algorithm that generates the most likely interpretations first (bottom–up) and then
actively seeks out parts of those interpretations that are still missing (top–down).
Our approach uses a novel application of dynamically constructed Bayesian net-
works to evaluate partial interpretation hypotheses and then expands the hypothesis
space by exploring the most likely interpretations first. The system does not have
to try all combinations of all interpretations, but can focus on those interpretations
that contain at least a subset of easily-recognizable subshapes and can recover any
low-level subshapes that may have been mis-recognized.

We use a two-stage generate-and-test method to explore possible interpretations
for the user’s strokes. In the first stage, the system generates a number of hypotheses,
or possible interpretations for the user’s strokes, based on the shape descriptions
described in Sect. 2.3. We refer to each shape description as a template with one
slot for each subpart. A shape hypothesis is a template with an associated mapping
between slots and strokes. Similarly, a constraint hypothesis is a proposed constraint
on one or more of the user’s strokes. A partial hypothesis is a hypothesis in which
one or more slots are not bound to strokes. Our method of exploring the space of
possible interpretations depends on our ability to assess both complete and partial
hypotheses for the user’s strokes. Section 2.5 describes our hypothesis evaluation
technique; Sect. 2.6 describes how these hypotheses are generated.

2.5 Hypothesis Evaluation

We evaluate our shape hypotheses using dynamically constructed Bayesian net-
works specifically targeted to the task of constraint-based recognition. Our frame-
work is closely related to previously proposed frameworks ([32, 37, 44]) but it was
designed to handle the specific problems presented above that arise in the recogni-
tion task. Our method offers two advantages over previous constraint-based recogni-
tion approaches (e.g., [15, 20, 26]). First, missing data can be treated as unobserved
nodes in the network when the system assesses likely hypotheses for the strokes that
have been observed thus far. This allows our system to evaluate partial hypotheses
(e.g., an arrow with no shaft) in order to interpret drawings as they develop, and to
allow the strength of partial hypotheses to guide the interpretation of new strokes as
they are processed. Second, the system’s belief in a given hypothesis can be influ-
enced both by the stroke data (through the node’s children) and the context in which
those shapes appear (through the node’s parents), allowing the system to cope with
noise in the drawing.



2 Multi-domain Hierarchical Free-Sketch Recognition Using Graphical Models 31

2.5.1 Dynamically Constructed Graphical Models

Time-based graphical models, including Hidden Markov Models (HMMs) and Dy-
namic Bayesian Networks (DBNs), have been applied successfully to time-series
data in tasks such as speech understanding. To the extent that stroke order is pre-
dictable, HMMs and DBNs may be applied to sketch understanding (see [47] for one
approach). Ultimately, however, sketch understanding is different because we must
model shapes based on two-dimensional constraints (e.g., intersects, touches) rather
than on temporal constraints (i.e., follows), and because our models cannot simply
unroll in time as data arrive (we cannot necessarily predict the order in which the
user will draw the strokes, and things drawn previously can be changed). Therefore,
our network represents spatial relationships rather than temporal relationships.

It is not difficult to use Bayesian networks to model spatial relationships. The
difficult part of using Bayesian networks for sketch understanding is that they are
traditionally used to model static domains in which the variables and relationships
between those variables are known in advance. Static networks are not suitable for
the task of sketch recognition because we cannot predict a priori the number of
strokes or symbols the user will draw in a given sketch. In fact, there are many
tasks in which the possible number of objects and relationships may not be modeled
a priori. For example, when reasoning about military activity, the number of military
units and their locations cannot be known in advance. For such tasks, models to rea-
son about specific problem instances (e.g., a particular sketch or a particular military
confrontation) must be dynamically constructed in response to a given input. This
problem is known as the task of knowledge-based model construction (KBMC).

A number of researchers have proposed models for the dynamic creation of
Bayesian networks for KBMC. Early approaches focused on generating Bayesian
networks from probabilistic knowledge bases [18, 19, 23, 45]. A recently proposed
representation, called Network Fragments, represents generic template knowledge
directly as Bayesian network fragments that can be instantiated and linked to-
gether at run-time [37]. Finally, Koller et al. have developed a number of a num-
ber of object-oriented frameworks including Object-Oriented Bayesian Networks
(OOBNs) [32, 44] and Probabilistic Relational Models (PRMs) [17]. These models
represent knowledge in terms of relationships among objects and can be instantiated
dynamically in response to the number of objects in a particular situation.

Although the above frameworks are powerful, they are not directly suitable for
sketch recognition because they are too general in some respects and too specialized
in others. First, with this type of general model, it is a challenge simply to decide
how to frame our recognition task in terms of objects, network fragments, or log-
ical statements. Second, because these models are general, they do not make any
assumptions about how the network will be instantiated. Because of the size of the
networks potentially generated for our task, it is sometimes desirable to generate
only part of a complete network, or to prune nodes from the network. In reasoning
about nodes that are in the network, we must account for the fact that the network
may not be fully generated or relevant information may have been pruned from the
network. Finally, these models are too specific in that they have been optimized for
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Fig. 2.10 A single current source hypothesis (CS1) and associated lower-level hypotheses. Shape
descriptions for the arrow and current source (with labeled subshapes) are given in Figs. 2.6 and 2.4

responding to specific queries, for example, “What is the probability that a particu-
lar battery in our military force has been hit?” In contrast, our model must provide
probabilities for a full set of possible interpretations of the user’s strokes.

2.5.2 Shape Fragments: Evaluating a Single Hypothesis

Briefly, Bayesian networks consist of two parts: a Directed Acyclic Graph that en-
codes which factors influence one another, and a set of Conditional Probability Dis-
tributions which specify how these factors influence one another.1 Each node in the
graph represents something to be measured, and a link between two nodes indicates
that the value of one node is directly dependent on the value of the other. Each
node contains a conditional probability function (CPF), represented as a conditional
probability table (CPT) for discrete variables, specifying how it is influenced by its
parents.

To introduce our Bayesian network model, we begin by considering how to evalu-
ate the strength of a single current source (CS) hypothesis for the stokes in Fig. 2.10.
The description of a current source symbol is given in Fig. 2.6. Based on the hierar-
chical nature of the shape descriptions, we use a hierarchical method of hypothesis
evaluation. Determining the strength of a particular current source hypothesis is a

1We provide enough background on Bayesian networks to give the reader a high-level understand-
ing of our model. To understand the details, those unfamiliar with Bayesian networks are referred
to [10] for an intuitive introduction and [30] for more details.
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matter of determining the strengths of its corresponding lower-level shape and con-
straint hypotheses. A particular current source hypothesis, CS1, specifies a mapping
between the subparts in the current source description and the user’s strokes via
lower-level hypotheses for the user’s strokes (Fig. 2.10). E1 is an ellipse hypothesis
for s1, A1 is an arrow hypothesis involving strokes s2, s3 and s4 (through its line hy-
potheses), and C1 is a constraint hypothesis that an ellipse fit for stroke s1 contains
strokes s2, s3, and s4. A1 is further broken down into three line hypotheses (L1, L2
and L3) and six constraint hypotheses (C2, . . . ,C7) according to the description of
the arrow (Fig. 2.4). Thus, determining the strength of hypothesis CS1 can be trans-
formed into the problem of determining the strength of a number of lower-level
shape and constraint hypotheses.

2.5.2.1 Network Structure

The Bayesian network for this recognition task is shown in Fig. 2.11. There is one
node in the network for each hypothesis described above, and each of these nodes
represents a Boolean random variable that reflects whether or not the corresponding
hypothesis is correct. The nodes labeled O1, . . . ,O11 represent measurements of
the stroke data that correspond to the constraint or shape to which they are linked.
The variables corresponding to these nodes have positive real numbered values. For
example, the variable O2 is a measurement of the squared error between the stroke
s1 and the best fit ellipse to that stroke. The value of O2 is a real number between
0 and the maximum possible error between any stroke and an ellipse fit to that
stroke. The boxes labeled s1, . . . , s4 are not part of the Bayesian network but serve
to indicate the stroke or strokes from which each measurement, Oi , is taken (e.g.,
O2 is measured from s1). P(CS1 = t | ev) (or simply P(CS1 | ev))2, where ev is
the evidence observed from the user’s strokes, represents the probability that the
hypothesis CS1 is correct.

There are three important reasons why the links are directed from higher-level
shapes to lower-level shapes instead of in the opposite direction. First, whether or
not a higher-level hypothesis is true directly influences whether or not a lower-level
hypothesis is true. For example, if the arrow hypothesis A1 is true, then it is ex-
tremely likely that all three line hypotheses, L1,L2,L3, are also true. Second, this
representation allows us to model lower-level hypotheses as conditionally indepen-
dent given their parents, which reduces the complexity of the data needed to con-
struct the network. Finally, continuous valued variables are difficult to incorporate
into a Bayesian network if they have discrete valued children. Our representation en-
sures that the measurement nodes, which have continuous values, will be leaf nodes.
These nodes can be pruned when they do not have evidence, thus simplifying the
inference process.

Each shape description constrains its subshapes only relative to one another. For
example, an arrow may be made from any three lines that satisfy the necessary con-
straints. Based on this observation, our representation models a symbol’s subshapes

2Throughout this section, t means true, and f means false.
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Fig. 2.11 A Bayesian network to verify a single current source hypothesis. Labels come from
Fig. 2.10

separately from the necessary constraints between those subshapes. For example,
node L1 represents the hypothesis that stroke s2 is a line. Its value will be true if
the user intended for s2 to be any line, regardless of its position, size or orientation.
Similarly, C2 represents the hypothesis that the line fit to s2 and the line fit to s3 are
coincident.

The conditional independence between subshapes and constraints might seem a
bit strange at first. For example, whether or not two lines are of the same length
seems to depend on the fact that they are lines. However, observation nodes for
constraints are calculated in such a way that their value is not dependent on the true
interpretation for a stroke. For example, when calculating whether or not two lines
are parallel, which involves calculating the different in angle between the two lines,
we first fit lines to the strokes (regardless of whether or not they actually look like
lines), then measure the relative orientation of those lines. How well these lines fit
the strokes is not considered in this calculation.

The fact that the shape nodes are not directly connected to the constraint nodes
has an important implication for using this model to perform recognition: There is
no guarantee in this Bayesian network that the constraints will be measured from
the correct subshapes because the model allows subshapes and constraints to be
detected independently. For example, C3 in Fig. 2.11 indicates that L2 and L3 (the
two lines in the head of an arrow) must be the same length, not simply that any
two lines must have the same length. To satisfy this requirement, The system must
ensure that O6 is measured from the same strokes that O3 and O4 were measured
from. We use a separate mechanism to ensure that only legal bindings are created
between strokes and observation nodes.

The way we model shape and constraint information has two important advan-
tages for recognition. First, this Bayesian network model can be applied to recog-
nize a shape in any size, position and orientation. CS1 represents the hypothesis that
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s1, . . . , s4 form a current source symbol, but the exact position, orientation and size
of that symbol is determined directly from the stroke data. To consider a new hy-
pothesis for the user’s strokes, the system simply creates a copy of the necessary
Bayesian network structure whose nodes represent the new hypotheses and whose
measurement nodes are linked to a different set of the user’s strokes. Second, the
system can allow competing higher-level hypotheses for a lower-level shape hypoth-
esis to influence one another by creating a network in which two or more hypotheses
point to the same lower-level shape node. For example, the system may consider an
arrow hypothesis and a quadrilateral hypothesis involving the same line hypothe-
sis for one of the user’s strokes. Because the line hypothesis does not include any
higher-level shape-specific constraint information, both an arrow-hypothesis node
and a quadrilateral hypothesis node can point to the single line hypothesis node.
These two hypotheses then become alternate, competing explanations for the line
hypothesis. We further discuss how hypotheses are combined below.

Our model is generative, in that we can use the Bayesian network for generation
of values for the nodes in the network based on the probabilities in the model. How-
ever, our model is fundamentally different from the standard generative approach
used in computer vision in which the system generates candidate shapes (for ex-
ample, a rightward facing arrow) and then compares these shapes to the data in the
image. The difference is that the lowest level of our network represents measure-
ments of the strokes, not actual stroke data. So, although our model can be used to
generate values of stroke data measurements, it cannot be used to generate shapes
which can be directly compared to the user’s strokes. However, because the system
can always take measurements from existing stroke data, our model is well suited
for hypothesis evaluation.

2.5.2.2 Conditional Probability Distributions

Next, we consider the intuition behind the CPTs for a node given its parents for
the hypotheses in Fig. 2.10. We begin by considering the distribution P(E1 | CS1).
Intuitively, we set P(E1 = t|CS1 = t) = 1 (and conversely, P(E1 = f | CS1 = t) =
0), meaning that if the user intended to draw CS1, she certainly intended to draw E1.
This reasoning follows from the fact that the ellipse is a required component of the
CS symbol (and that the user knows how to draw CS symbols). P(E1 | CS1 = f ),
on the other hand, is a little less obvious. Intuitively, it represents the probability
that the user intended to draw E1 even though she did not intend to draw CS1. This
probability will depend on the frequency of ellipses in other symbols in the domain
(i.e., higher if ellipses are common).

Because CS1 has no parents, it must be assigned a prior probability. This proba-
bility is simply how likely it is that the user will draw CS1. This probability will be
high if there are few other shapes in the domain or if CS symbols are particularly
prominent, and low if there are many symbols or if the CS symbol is rare. Exactly
how these prior probabilities are determined is beyond the scope of this chapter but
is discussed further in [1].
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The bottom layer of the network accounts for signal-level noise by modeling
the differences between the user’s intentions and the strokes that she draws. For
example, even if the user intends to draw L1, her stroke likely will not match L1
exactly, so the model must account for this variation. Consider P(O2 | E1 = t). If the
user always drew perfect ellipses, this distribution would be 1 when O2 = 0, and 0
otherwise. However, most people do not draw perfect ellipses (due to inaccurate pen
and muscle movements), and this distribution allows for this error. It should be high
when O2 is close to zero, and fall off as O2 gets larger. The wider the distribution,
the more error the system will tolerate, but the less information a perfect ellipse will
provide.

The other distribution needed is P(O2 | E1 = f ) which is the probability distri-
bution over ellipse error given that the user did not intend to draw an ellipse. This
distribution should be close to uniform, with a dip around 0, indicating that if the
user specifically does not intend to draw an ellipse, she might draw any other shape,
but probably will not draw anything that resembles an ellipse. Discussion of how
we determined the conditional probability distributions between primitive shapes
and constraints and their corresponding measurement nodes can be found in [1].

2.5.2.3 Observing Evidence from Stroke Data

Finally, we discuss how information from the user’s strokes is incorporated into the
network to influence the system’s belief in CS1. If we assume that the user is done
drawing, the values of O1, . . . ,O11 are fully observable by taking measurements of
the strokes. The system can then use those values to infer P(CS1|O1, . . . ,O11). If
we do not assume the user is done drawing, we may still evaluate P(CS1|ev) where
the set ev contains all Oi corresponding to strokes the user has drawn so far.

We may model the current source (partial) hypothesis CS1 even before the draw-
ing is complete. An observation node that does not have an observed value intu-
itively corresponds to a stroke that the user has not yet drawn. Because observation
nodes are always leaf nodes, the missing data have neither a positive nor a negative
effect on the system’s belief in a given interpretation. CS1 may be strongly believed
even if O1 is missing. As described in Sect. 2.6, the system uses the strength of
incomplete interpretations to help guide the search for missed low-level interpreta-
tions.

2.5.3 Recognizing a Complete Sketch

The Bayesian network introduced above can be used to detect a single instance of
a CS symbol in any size, position or orientation. However, a typical sketch contains
several different symbols as well as several instances of the same symbol.

To detect other shapes in our domain, we may create a Bayesian network simi-
lar to the network above for each shape. We call each of these Bayesian networks
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Fig. 2.12 Four strokes, three
of which form an arrow. The
system might try both s2 and
s3 as a line in the head of the
arrow

a shape fragment because these fragments can be combined to create a complete
Bayesian network for evaluating the whole sketch.

Above, we assumed that we were given a mapping between the user’s strokes
and the observation nodes in our network. In fact, the system must often evaluate a
number of potential mappings between strokes and observation nodes. For example,
if the user draws the four strokes in Fig. 2.12, the system might try mapping both
s2 and s3 to L2. As described above, each interpretation for a specific mapping
between strokes and observation nodes is called a hypothesis, and each hypothesis
corresponds to a single node in the Bayesian network. In this section we discuss
how multiple hypotheses are combined to evaluate a complete sketch.

Given a set of hypotheses for the user’s strokes, the system instantiates the cor-
responding shape fragments and links them together to form a complete Bayesian
network, which we call the interpretation network. To illustrate this process, we
consider a piece of a network generated in response to Strokes 6 and 7 in the ex-
ample given in Fig. 2.2, which is reproduced in Fig. 2.13. Figure 2.14 shows the
part of the Bayesian network representing the possible interpretations that the sys-
tem generated for these strokes. Each node represents a hypothesized interpretation
for some piece of the sketch. For example, Q1 represents the system’s hypothesis
that the user intended to draw a quadrilateral with strokes 6 and 7. A higher-level
hypothesis is compatible with the lower-level hypotheses it points to. For example,
if M1 (the hypothesis that the user intended to draw a male with strokes 6 and 7)
is correct, Q1 (the hypothesis that the user intended to draw a quadrilateral with
strokes 6 and 7) and L1, . . . ,L4 (the hypotheses that the user intended to draw four
lines with strokes 6 and 7) will also be correct. Two hypotheses that both point to
the same lower-level hypothesis represent competing interpretations for the lower-
level shape and are incompatible. For example, A1, Q1 are two possible higher-level
interpretations for line L1, only one of which may be true.

Each observation node is linked to a corresponding stroke or set of strokes. In
a partial hypothesis, not all measurement nodes will be linked to stroke data. For
example, A1 is a partial hypothesis—it represents the hypothesis that L1 and L2
(and, hence, Stroke 6) are part of an arrow whose other line has not yet been drawn.
Line nodes representing lines that have not been drawn (L5 and L6) are not linked
to observation nodes because there is no stroke from which to measure these obser-
vations. We refer to these nodes (and their corresponding hypotheses) as virtual.
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Fig. 2.13 The partial sketch
of a family tree from Sect. 2.1

Fig. 2.14 A portion of the interpretation network generated while recognizing the sketch in
Fig. 2.13

The probability of each interpretation is influenced both by stroke data (through
its children) and by the context in which it appears (through its parents), allowing the
system to handle noise in the drawing. For example, there is a gap between the lines
in the top-left corner in Q1 (see Fig. 2.13); stroke data only weakly support the cor-
responding constraint hypothesis (not shown individually). However, the lines that
form Q1 are fairly straight, raising probabilities of L1, . . . ,L4, which in turn raise
the probability of Q1. Q1 provides a context in which to evaluate the coincident
constraint, and because Q1 is well supported by L1, . . . ,L4 (and by the other con-
straint nodes), it raises the probability of the coincident constraint corresponding to
Q1’s top-left corner.

The fact that partial interpretations have probabilities allows the system to assess
the likelihood of incomplete interpretations based on the evidence it has seen so far.
In fact, even virtual nodes have probabilities, corresponding to the probability that
the user (eventually) intends to draw these shapes but either has not yet drawn this
part of the diagram or the correct low-level hypotheses have not yet been proposed
because of low-level recognition errors. As we describe below, a partial interpre-
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tation with a high probability cues the system to examine the sketch for possible
missed low-level interpretations.

2.5.3.1 Linking Shape Fragments

When Bayesian network fragments are linked during recognition, each node Hn

may have several parents, S1 . . . Sm, where each parent represents a possible higher-
level interpretation for Hn. We use a noisy-OR function to combine the influences
of all the parents of Hn to produce the complete CPT for P(Hn | S1, . . . , Sm). The
noisy-OR function models the assumption that each parent can independently cause
the child to be observed. For example, a single stroke might be part of a quadrilateral
or an arrow, but both interpretations would favor that interpretation of the stroke as
a line.

The intuition behind Noisy-OR is that each parent that is true will cause the
child to also be true unless something prevents it from doing so. The probability
that something will prevent a parent Si = t from causing Hn = t to be true is qi =
P(Hn = f | Si = t). Noisy-OR assumes that all the qi ’s are independent, resulting
in the following:

P(Hn = t | S1, S2, . . . , Sm) = 1 −
∏

i

qi

for each Si = t . We set qj = P(Hn = f | Sj = t) = 0 for all parents Sj in which
Hn is a required subshape or constraint, and we set qk = P(Hn = f | Sk = t) = 0.5
for all parents Sk in which Hn is an optional subshape or constraint. A consequence
of these values is that Sj = t ⇒ P(Hn | S1, . . . , Sm) = 1 for any Sj in which Hn is
required, which is exactly what we intended.

Noisy-OR requires that P(Hn | S1 = S2, . . . , Sm = f ]) = 0. The result of this
requirement is that any shape or constraint has zero probability of appearing if it
is not part of a higher-level shape or pattern. This behavior may be what is desired;
however, if it is not, we may create an additional parent, Sa , to model the probability
that the user intends to draw Hn alone, not as part of a shape or pattern.

2.5.3.2 Missing Nodes

Throughout this process, we have assumed that all of the hypothesized interpreta-
tions will exist as a node in the Bayesian network. However, for reasons discussed
in Sect. 2.6, there are two reasons a hypothesis might be missing from the network.
First, the system does not always initially generate all higher-level interpretations
for a shape. Second, the system prunes unlikely hypotheses from the network to
control the network’s size.

We would like hypotheses that have not yet been generated or that have been
pruned nevertheless to influence the strength of the hypotheses in the network. For
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example, if there are two potential interpretations for a stroke—a line and an arc—
and the system prunes the line interpretation because it is too unlikely, the probabil-
ity of the arc should go up. On the other hand, if the system has only generated an
arc interpretation, and has not yet considered a line interpretation, the probability of
the arc should remain modest because the stroke might still be a line.

We model nodes not present in the network through an additional parent, Snp , for
each node Hn in the graph. We define qnp = P(Hn = f | Snp = t) and set Snp = t .
The value of qnp takes into account which nodes have been eliminated from the
graph and which have not (yet) been instantiated, and it is calculated as follows.
Let T1, . . . , Tp be the set of shapes that have an element of type Hn as a child but
do not exist as parents of Hn in the network. We refer to T1, . . . , Tp as potential
parents of Hn. For example, for node L1 in Fig. 2.14, this set would contain the
single element ML because the marriage-link is the only shape in the family tree
domain that has a line as a subshape but is not already a parent of L1 in the graph.
Let T1, . . . , Ti be the subset of potential parents that have never appeared as a parent
for Hn, and let Ti+1, . . . , Tp be the subset with elements that were once parents
for Hn but have been pruned from the network. Then, qnp = ∏i

j=1 1 − P(Tj ). We
call P(Tj ) the simple marginal probability of Tj . It is calculated by calculating the
marginal probability based only on the priors of the parents and ancestors of Tj in a
network containing exactly one instance of each parent of Tj .

The effect of qnp is to allow only those shapes that have not yet been instantiated
as parents of Hn to contribute to the probability that Hn = t . If the simple marginal
probabilities of the missing parents are high, qnp will be low, and thus will help
raise P(Hn | S1, . . . , Sm,Snp). If all the potential parents of Hn have previously
been pruned, qnp will be 1 and thus have no effect on P(Hn | S1, . . . , Sm,Snp).

2.5.4 Implementation and Bayesian Inference

Our system updates the structure of the Bayesian network in response to each stroke
the user draws. To perform this dynamic Bayesian network construction, we use
an off-the-shelf, open source Bayesian network package for Java called BNJ [61].
Our system manages the hypotheses for the user’s strokes as they are generated and
pruned. When these hypotheses need to be evaluated (e.g., before they are pruned),
our system creates a Bayesian network in BNJ by creating the necessary nodes and
links as BNJ Java objects. Our system can then use a number of methods that are
built into BNJ for reasoning about the probability of each node.

Generating and modifying the BNJ networks can be time-consuming due to the
exponential size of the conditional probability tables (CPTs) between the nodes. We
use two techniques to improve the system’s performance. First, BNJ networks are
only generated when the system needs to evaluate the likelihood of a given hypoth-
esis. This on-demand construction is more efficient than continuously updating the
BNJ network because batch construction of the CPTs is often more efficient than
incremental construction of these tables. Second, the system modifies only the por-
tion of the BNJ network that has changed between strokes instead of creating it from



2 Multi-domain Hierarchical Free-Sketch Recognition Using Graphical Models 41

scratch every time. The process of keeping track of the added and removed hypothe-
ses adds a slight bookkeeping overhead, but this overhead is far less than the work
required to regenerate the entire network after each stroke.

To determine the likelihood of each hypothesis, our system uses the BNJ net-
work to find the marginal posterior probability for each node in the network. We
experimented with several inference methods including the junction tree algorithm
[29, 38], Gibbs sampling, and loopy belief propagation (loopy BP) [43, 59]. Both
the junction tree algorithm and loopy BP produced meaningful marginal posterior
probabilities, but after some experimentation we were unable to obtain useful results
using Gibbs Sampling. We discovered that although the junction tree algorithm gave
meaningful results, the networks produced by our system were often too complex
for the algorithm to process in a reasonable amount of time. We found that when the
junction tree algorithm produced a clique including more than 11 nodes the process-
ing took too long to be acceptable. Unfortunately, for more complicated diagrams
and domains, clique sizes greater than 11 were quite common.

Fortunately, we found loopy BP to be quite successful for our task. Although
the algorithm is not guaranteed to converge to correct values, we found that on our
data the algorithm almost always converged. There were probably only two or three
instances in hundreds of tests where the values did not converge. We initialized the
messages to 1 and ran the algorithm until node values were stable to within 0.001.

Loopy BP was significantly faster than the junction tree algorithm, but for com-
plex data it was still occasionally slower than we wished. To speed up the system’s
performance, we added two restrictions. First, we terminated the belief propagation
algorithm after 60 seconds of processing if it had not converged by this time. This
restriction was needed only about a dozen times in the 80 circuit diagrams we pro-
cessed, but it prevented the rare case where belief propagation took 20 minutes to
converge. Second, we allowed each node to have no more than eight parents (i.e.,
only eight higher-level hypotheses could be considered for a single hypothesis). This
restriction ensured a limit on the complexity of the graphs produced by the system.
For the family tree domain, this limitation had no effect on the system’s perfor-
mance because the system never generated more than eight higher-level hypotheses
for a lower-level hypothesis. However, in the circuit domain, higher-level hypothe-
ses were occasionally prevented from being considered due to this limitation. For
complex domains such as circuit diagrams, we will need to work on finding more ef-
ficient inference algorithms to allow the system to process more complex networks
in a reasonable amount of time. We will also explore other methods of simplify-
ing the network structure that do not prevent the system from considering possibly
correct hypotheses.

2.6 Hypothesis Generation

The major challenge in hypothesis generation is to generate the correct interpreta-
tion as a candidate hypothesis without generating too many to consider in real-time.
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Our method of evaluating partial interpretations allows us to use a bottom–up/top–
down generation strategy that greatly reduces the number of hypotheses considered
but still generates the correct interpretation for most shapes in the sketch.

Our hypothesis generation algorithm has three steps.

1. Bottom–up step: As the user draws, the system parses the strokes into primitive
objects using a domain-independent recognition toolkit developed in previous
work [48]. Compound interpretations are hypothesized for each compound ob-
ject that includes these low-level shapes, even if not all the subshapes of the
pattern have been found.

2. Top–down step: The system attempts to find subshapes that are missing from the
partial interpretations generated in step 1, often by reinterpreting strokes that are
temporally and spatially proximal to the proposed shape.

3. Pruning step: The system removes unlikely interpretations.

This algorithm, together with the Bayesian network representation presented
above, deals successfully with the challenges presented in Sect. 2.2. Using the ex-
ample in Fig. 2.13, we illustrate how the system generates hypotheses that allow the
Bayesian network mechanism to resolve noise and inherent ambiguity in the sketch,
how the system manages the number of potential interpretations for the sketch, how
the system recovers from low-level recognition errors, and how the system allows
for variation in drawing style. For a more detailed description of how we handle
specific challenges in hypothesis generation, see [1].

Based on low-level interpretations of a stroke, the bottom–up step generates a
set of hypotheses to be evaluated using the Bayesian network mechanism presented
in the previous section. In the sketch in Fig. 2.13, the user’s first stroke is correctly
identified as an ellipse by the low-level recognizer, and from that ellipse the sys-
tem generates the interpretation ellipse, and in turn, partial interpretations (tem-
plates) for mother-son, mother-daughter, father-daughter, marriage, partner-female,
and divorce. These proposed interpretations have empty slots into which future in-
terpretations will be filled in.

Naive bottom–up interpretation easily can generate too many hypotheses to con-
sider in real-time. We employ three strategies to control the number of hypotheses
generated in the bottom–up step. First, when an interpretation can be fit into more
than one slot in a higher-level template (e.g., in Fig. 2.14, L1 could be the shaft or
either of the lines in the head of A1), the system arbitrarily chooses one of the valid
slots rather than generating one hypothesis for each potential fit. Later, the system
can shuffle the shapes in the template when it attempts to fit more subshapes.

Second, the system does not generate higher-level interpretations for interpre-
tations that are only partially filled. The lines generated from Strokes 4 and 5
in Fig. 2.13 result in one partial hypothesis—arrow (A1)—and two complete
hypotheses—quadrilateral (Q1) and marriage-link (ML1) (Fig. 2.14).
Continuing to generate higher-level templates from partial hypotheses would yield
a large number of hypotheses (one hypothesis for each higher-level domain pattern
involving each existing partial hypothesis). To avoid this explosion, the system con-
tinues to generate templates using only the complete hypotheses (in this case, ML1
and Q1).
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Third, when the system processes polylines, it assumes that all the lines in a
single polyline will be used in one interpretation. While this assumption does not
always hold, in practice we find that it is often true and greatly reduces the number
of possible interpretations. The system recognizes Stroke 2 as a four-line polyline.
The bottom–up step generates only a quadrilateral because that is the only shape in
the domain that requires four lines.

The top–down step allows our system to recover from low-level recognition er-
rors. Stroke 3 is incorrectly, but reasonably, parsed into five lines by the low-level
recognizer. Because the system does not know about any five-line objects, but does
know about things that contain fewer than five lines, it attempts to re-segment the
stroke into two lines, three lines and four lines (with a threshold on acceptable error).
It succeeds in re-segmenting the stroke into four lines and successfully recognizes
the lines as a quadrilateral. Although the four-line fit is not perfect, the network al-
lows the context of the quadrilateral in addition to the stroke data to influence the
system’s belief in the four-line interpretation. Also note that the five lines from the
original segmentation remain in the interpretation network.

The system controls the number of interpretations in the network through prun-
ing, which occasionally causes it to prune a correct hypothesis before it is complete.
The top–down step regenerates previously pruned hypotheses, allowing the system
to correctly interpret a symbol despite variations in drawing order. The left-most
arrow in Fig. 2.2 was drawn with two non-consecutive strokes (Strokes 8 and 12).
In response to Stroke 8, the system generates both an arrow partial hypothesis and
a marriage-link hypothesis (using the line hypothesis generated for this stroke). Be-
cause the user does not immediately complete the arrow, and because the competing
marriage-link hypothesis is complete and has a high probability, the system prunes
the arrow hypothesis after Stroke 9 is drawn. Later, Stroke 12 is interpreted as a
two-line polyline and a new arrow partial hypothesis is generated. The top–down
step then completes this arrow interpretation using the line generated previously
from Stroke 8, effectively regenerating a previously pruned interpretation.

2.6.1 Selecting an Interpretation

As each stroke is drawn, the sketch system uses a greedy algorithm to select the best
interpretation for the sketch. It queries the Bayesian network for the strongest com-
plete interpretation, sets aside all the interpretations inconsistent with this choice,
chooses the next most likely remaining domain interpretation, and so forth. It leaves
strokes that are part of partial hypotheses uninterpreted. Although the system selects
the most likely interpretation at every stroke, it does not eliminate other interpreta-
tions. Partial interpretations remain and can be completed with the user’s subsequent
strokes. Additionally, the system can change its interpretation of a stroke when more
context is added.
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Fig. 2.15 Examples that illustrate the range of complexity of the sketches collected

2.7 Application and Results

Applying our complete system, called SketchREAD (Sketch Recognition Engine
for mAny Domains), to a particular domain involves two steps: specifying the struc-
tural descriptions for the shapes in the domain and specifying the prior probabilities
for the domain patterns and any top-level shapes (i.e., those not used in domain pat-
terns, which, consequently, will not have parents in the generated Bayesian network.
See [1] for details on how probabilities are assigned to other shapes). We applied
SketchREAD to two domains: family trees and circuits. For each domain, we wrote
a description for each shape and pattern in that domain and estimated the necessary
prior probabilities by hand. Through experimentation, we found the recognition per-
formance to be insensitive to the exact values of these priors.

We ran SketchREAD on a set of ten family tree diagrams and 80 circuit dia-
grams we collected from users.3 Examples of these sketches are given in Fig. 2.15.
We present qualitative results, as well as aggregate recognition and running time re-
sults for each domain. Our results illustrate the complexity our system can currently
handle, as well as the system’s current limitations. We discuss those limitations be-
low, describing how best to use the system in its current state and highlighting what
needs to be done to make the system more powerful. Note that to apply the system to
each domain, we simply loaded the domain’s shape information; we did not modify
the recognition system.

3To collect these sketches we asked users to perform synthesis tasks (i.e. not to copy pre-existing
diagrams) and performed no recognition while they were sketching.
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Fig. 2.16 Recognition
performance example.
Overall recognition results (#
correct/total) are shown in the
boxes

Figure 2.16 illustrates how our system is capable of handling noise in the sketch
and recovering from missed low-level interpretations. In the baseline case, one line
from each ground symbol was incorrectly interpreted at the low-level, causing the
ground interpretations to fail. SketchREAD was able to reinterpret those lines using
the context of the ground symbol in three of the four cases to correctly identify the
symbol. In the fourth case, one of the lines was simply too messy, and SketchREAD
preferred to (incorrectly) recognize the top two lines of the ground symbol as a
battery.

In evaluating our system’s performance, direct comparisons with previous work
are difficult, as there are few (if any) published results for this type of recogni-
tion task, and those that are published are tested on different (unavailable) datasets.
We compared SketchREAD’s recognition performance with the performance of a
strictly bottom–up approach of the sort used in previous systems [2, 42]. This strictly
bottom–up approach combined low-level shapes into higher-level patterns without
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Table 2.1 Recognition rates
for the baseline system (BL)
and SketchREAD (SR) for
each sketch for the family
tree domain. The size column
indicates the number of
strokes in each sketch

Size #Shapes % Correct

BL SR

Mean 50 34 50 77

S1 24 16 75 100

S2 28 16 75 87

S3 29 23 57 78

S4 32 22 31 81

S5 38 31 54 87

S6 48 36 58 78

S7 51 43 26 72

S8 64 43 49 74

S9 84 49 42 61

S10 102 60 57 80

top–down reinterpretation. Even though our baseline system did not reinterpret low-
level interpretations, it was not trivial. It could handle some ambiguities in the draw-
ing (e.g., whether a line should be interpreted as a marriage-link or the side of a
quadrilateral) using contextual information in the bottom–up direction. To encour-
age others to compare their results with those presented here we have made our test
set publicly available at http://rationale.csail.mit.edu/ETCHASketches.

We measured recognition performance for each system by determining the num-
ber of correctly identified objects in each sketch (Tables 2.1 and 2.2). For the fam-
ily tree diagrams SketchREAD performed consistently and notably better than our
baseline system. On average, the baseline system correctly identified 50% of the
symbols, while SketchREAD correctly identified 77%, a 54% reduction in the num-
ber of recognition errors. Due to inaccurate low-level recognition, the baseline sys-
tem performed quite poorly on some sketches. Improving low-level recognition
would improve recognition results for both systems; however, SketchREAD reduced
the error rate by approximately 50% independent of the performance of the baseline
system. Because it is impossible to build a perfect low-level recognizer, Sketch-
READ’s ability to correct low-level errors will always be important.

Circuit diagrams present SketchREAD with more of a challenge for several rea-
sons. First, there are more shapes in the circuit diagram domain and these shapes are
more complex. Second, there is a stronger degree of overlap between shapes in the
circuit diagrams. For example, it can be difficult to distinguish between a capacitor
and a battery. As another example, a ground symbol contains within it (at least one)
battery symbol. Finally, there is more variation in the way people draw circuit dia-
grams, and their sketches are messier causing the low-level recognizer to fail more
often. They tend to include more spurious lines and over-tracings.

Overall, SketchREAD correctly identified 62% of the shapes in the circuit dia-
grams, a 17% reduction in error over the baseline system. It was unable to handle
more complex shapes, such as transistors, because it often failed to generate the
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Table 2.2 Aggregate
recognition rates for the
baseline system (BL) and
SketchREAD (SR) for the
circuit diagrams by shape

Total % Correct # False Pos

BL SR BL SR

AC Source 4 100 100 35 29

Battery 96 60 89 56 71

Capacitor 39 56 69 27 14

Wire 1182 62 67 478 372

Ground 98 18 55 0 5

Resistor 330 51 53 7 8

Voltage Src. 43 2 47 1 8

Diode 77 22 17 0 0

Current Src. 44 7 16 0 0

Transistor 43 0 7 0 14

correct mapping between strokes and pieces of the template. Although the system
attempts to shuffle subshapes in a template in response to new input, for the sake
of time it cannot consider all possible mappings of strokes to templates. We discuss
below how we might extend SketchREAD to improve its performance on complex
domains such as circuit diagrams.

We measured SketchREAD’s running time to determine how it scales with the
number of strokes in the sketch. Figure 2.17 graphs the median time to process each
stroke for each domain. The vertical bars in the graph show the standard deviation
in processing time over the sketches in each domain. (One family tree diagram took
a particularly long time to process because of the complexity of its interpretation
network, discussed below. This sketch affected the median processing time only
slightly but dominated the standard deviation. It has been omitted from the graph for
clarity.) Three things about these graphs are important. First, although SketchREAD
does not yet run in real-time, the time to process each stroke in general increased
only slightly as the sketch got larger. Second, not every stroke was processed by
the system in the same amount of time. Finally, the processing time for the circuit
diagrams is longer than the processing time for the family trees.

By instrumenting the system, we determined that the processing time is domi-
nated by the inference in the Bayesian network, and all of the above phenomena can
be explained by examining the size and complexity of the interpretation network.
The number of nodes in the interpretation network grows approximately linearly as
the number of strokes increases. This result is encouraging, as the network would
grow exponentially using a naïve approach to hypothesis generation. The increase
in graph size accounts for the slight increase in processing time in both graphs.
The spikes in the graphs can be explained by the fact that some strokes not only
increased the size of the network, but had more higher-level interpretations, creat-
ing more fully connected graph structures, which causes an exponential increase
in inference time. After being evaluated, most of these high-level hypotheses were
immediately pruned, accounting for the sharp drop in processing time on the next
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Fig. 2.17 The median
incremental time it took the
system to process each stroke
in the family tree and circuit
diagrams. Vertical bars show
the standard deviation across
the sketches in each domain

stroke. Finally, the fact that circuits take longer to process than family trees is related
to the relative complexity of the shapes in the domain. There are more shapes in the
circuit diagram domain and they are more complex, so the system must consider
more interpretations for the user’s strokes, resulting in larger and more connected
Bayesian networks.

2.8 Remaining Challenges and Extensions

SketchREAD significantly improves the recognition performance of unconstrained
sketches. However, its accuracy, especially for complicated sketches and domains,
is still too low to be practical in most cases. Here we consider how to improve the
system’s performance, and in particular, describe a promising method for aiding
with segmentation, without placing constraints on the users’ drawing style.
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First, while SketchREAD always corrected some low-level interpretation errors,
its overall performance still depended on the quality of the low-level recognition.
Our low-level recognizer was highly variable and could not cope with some users’
drawing styles. In particular, it often missed corners of polylines, particularly for
symbols such as resistors. Recently proposed, more accurate corner-finding tech-
niques [60] will help address these problems.

Second, although in general SketchREAD’s processing time scaled well as the
number of strokes increased, it occasionally ran for a long period. The system had
particular trouble with areas of the sketch that involved many strokes drawn close
together in time and space and with domains that involve more complicated or over-
lapping symbols. This increase in processing time was due almost entirely to in
increase in Bayesian network complexity.

We suggest two possible solutions. First, part of the complexity arises because the
system tries to combine new strokes with low-level interpretations to form correct
high-level interpretations (e.g., the four lines that make a quadrilateral). These new
interpretations were pruned immediately, but they increased the size and complex-
ity of the network temporarily, causing the bottlenecks noted above. In response,
we are testing methods for “confirming” older interpretations and removing their
subparts from consideration other higher-level interpretations as well as confirming
their values in the Bayesian network so that their posterior probabilities do not have
to be constantly re-computed. Second, we can modify the belief propagation algo-
rithm we are using. We currently use Loopy Belief Propagation, which repeatedly
sends messages between the nodes until each node has reached a stable value. Each
time the system evaluates the graph, it resets the initial messages to one, essentially
erasing the work that was done the last time inference was performed, even though
most of the graph remains largely unchanged. Instead, this algorithm should begin
by passing the messages it passed at the end of the previous inference step.

Third, because our recognition algorithm is stroke-based, spurious lines and over-
tracing hindered the system’s performance in both accuracy and running time. A pre-
processing step to merge strokes into single lines would likely greatly improve the
system’s performance. Also, in the circuit diagram domain, users often drew more
than one object with a single stroke. A preprocessing step could help the system
segment strokes into individual objects.

2.8.1 Using Single-Stroke Classification to Improve Grouping

Many of the above problems were caused by the difficulty of performing simultane-
ous segmentation and recognition. In SketchREAD, recognition and segmentation
are inherently intertwined: the various hypotheses dictate different stroke segmenta-
tions. Using our template-based recognition approach to dictate segmentation means
that our system cannot rely on segmentation to limit the number of possible inter-
pretations, nor can it apply vision-based algorithms efficiently to sets of strokes
known to comprise a single object. However, as discussed in Sect. 2.2, there is no
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Fig. 2.18 Single-stroke recognition and grouping

reliable purely spatial or temporal method to segment strokes into individual objects
in freely-drawn sketches.

Recently, researchers have developed a technique to roughly classify single
strokes, and this classification be used to inform the process of sketch segmenta-
tion. The technique relies on the fact that strokes can be roughly grouped into cat-
egories individually by looking at their local properties and their relationships to
other strokes in the diagram. For example, in the circuit diagram in Fig. 2.18 the
strokes that make up the gates tend to be shorter and have a higher curvature than
the strokes that make up the wires. The wire strokes and gate strokes also have a
well-defined relationship to one another. Then, once strokes individually are clas-
sified as either wires or gates (Fig. 2.18(a)) they are sufficiently separated in both
time and space that simple clustering algorithms can successfully group strokes into
individual objects (Fig. 2.18(b)), which can then be recognized by any number of
sketch recognition algorithms, including the Bayesian network approach presented
in this chapter.

Szummer and Qi [53] developed a method for classifying individual strokes
based on local and contextual information based using conditional random fields.
They illustrate its success on organizational chart diagrams. We have applied their
approach to the more complex domain of circuit diagrams and find that it performs
quite well.

Briefly, a CRF is an undirected graphical model that represents the conditional
probability distribution P(y | x) where x is a set of input data and y is a set of labels
for these data. The actual CRF consists of a graph G = (V ,E) and an associated
set of potential functions that together define P(y | x). Each node in V corresponds
to an element to label (i.e. the members of y), and each edge in E quantifies a
probabilistic dependence between these elements. For more details, see [53].

In our application, the vector x represents the stroke data while the vector y re-
presents the labels for each stroke. P(y | x), then, is simply the probability of a given
labeling for each stroke, given properties of the stroke data.
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We automatically create the graph by creating a node for each stroke and linking
nodes for strokes that are spatially or temporally proximal. We find that for some do-
mains, including the digital circuit domain, fragmenting strokes at their corners be-
fore creating the graph, as in [53], degrades performance. We consider two types of
potential functions: site potentials that measure the compatibility between a stroke
and its associated label, and pairwise interaction potentials that measure the compat-
ibility between neighboring labels. Both types of potentials measure compatibility
by linearly combining parameters with a set of feature functions and passing the
result through a non-linearity (we use the exponential).

After labeling each stroke, we group strokes into individual objects. Even with
perfect labels, stroke grouping is not trivial. For example, different wires may over-
lap in space and the same wire may be separated in time. We use a graph theoretic
method for stroke grouping that treats each labeled stroke as a node in a graph, with
edges between adjacent strokes. The algorithm then finds the connected components
in the graph.

Two strokes are adjacent if their minimum distance is lower than a given thresh-
old. We designed specific distance metrics for the digital circuit domain. Given two
strokes, if neither stroke is a wire, then the minimum distance between the strokes
is the minimum distance between any two points in the strokes. If either stroke is
a wire, the minimum distance between the strokes is the distance from an endpoint
to any other point on the other stroke. We use this modified distance because wires
frequently overlap even when they are not meant to represent the same component.
In both cases, the minimum distance is normalized by the sum of the diagonals of
the smallest bounding box around each of the strokes. This normalization provides
a unitless measure that is invariant under uniform scaling.

Although this work is still in progress, our initial results in this area are promis-
ing. We tested our CRF for single-stroke classification on digital circuit diagrams,
classifying strokes as text, wires or gates, and achieve 93% overall accuracy and
77% accuracy in stroke segmentation. Figure 2.18 shows one example result.

2.9 Conclusion

This chapter has presented an approach to multi-domain sketch recognition using
dynamically constructed Bayesian networks. We have shown how to use context to
improve online sketch interpretation and demonstrated its performance in Sketch-
READ, an implemented sketch recognition system that can be applied to multiple
domains. We have shown that SketchREAD is more robust and powerful than previ-
ous systems at recognizing unconstrained sketch input in a domain. The capabilities
of this system have applications both in human computer interaction and artificial
intelligence. Using and building on this approach, we will be able to explore further
the nature of usable intelligent computer-based sketch systems and gain a better
understanding of what people would like from a drawing system that is capable
of understanding their freely-drawn sketches as more than just strokes. This work
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provides a necessary step in uniting artificial intelligence technology with novel in-
teraction technology to make interacting with computers more like interacting with
humans.
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Chapter 3
Minimizing Modes for Smart Selection
in Sketching/Drawing Interfaces

Eric Saund and Edward Lank

3.1 Introduction

User interface modes are ubiquitous in both mouse–keyboard and pen-based user
interfaces for creating graphical material through sketching and drawing. Whether
choosing the straight-line or oval tool in Photoshop or PowerPoint, or tapping a
toolbar prior to lassoing a word in order to select it in OneNote, users know that,
before they can perform the content-relevant action they want, they need to tell the
computer the intent of what they are about to do by setting a mode. This chapter
reviews our research exploring whether prior setting of modes is always necessary,
and whether the future of user interface designs may promise more fluid and direct
ways of creating and then selecting and editing words and pictures on a screen.

The purpose of modes is to allow actions performed with a single input device
to mean more than one thing. Physical paper permits two fundamental operations,
creation of marks, and erasure. For these, the user employs two basic tools, each
physically suited to its purpose: a marking tool (pencil, pen, typewriter keys and
ribbon) and an erasure tool (eraser, white-out). Computers are more powerful than
this. They permit not only creation and deletion, but all manner of modification such
as moving, resizing, duplicating, changing colors, changing line quality, changing
fonts, controlling depth order, etc.

To effect modification of content, computer authoring and editing tools provide
two dominant modes: a creation mode, and a selection mode. Modification of con-
tent is performed by first entering selection mode, then selecting graphical content
on the screen, and finally performing operations manipulating the selected content.
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Fig. 3.1 Increasingly sophisticated methods for inferring user intent build on one another. This
chapter offers examples highlighting techniques at several levels

Is it possible to design user interfaces that improve the fluidity and precision
of the Selection step? Our research indicates that the answer can be yes. The key
is to more fully exploit available information about user actions in the context of
canvas content, to infer the user’s intent. If the user’s click, tap, or stroke gesture
makes sense only in terms of one particular mode, then the program should allow
the user to perform that operation without first explicitly setting the mode, and then
post-facto interpret the action in terms of the correct mode.

This may require sophisticated analysis of user’s gestures, the visual and seman-
tic structure of canvas content, and even user desires and goals, as shown in Fig. 3.1.
Such a project entails risk, for if the program guesses wrong the user interaction can
go seriously awry. But when done carefully, the principle can be extended to not
only inferring mode but other aspects of user intent, to create new levels of intelli-
gent user interfaces.

This chapter focuses on mode minimization in interfaces via smarter selection
techniques. We address three challenges associated with selection:

• How best to incorporate multiple selection techniques into a sketch interface.
• The drawback of requiring mode switching between content creation and selec-

tion.
• The challenge of selecting and interacting with salient groups of content.

We address these challenges through the creation of novel interaction techniques
contained within a series of experimental graphical creation and editing programs
that we have built. The ScanScribe document image editing program eliminates the
mode tool palette in a mouse/keyboard image editor by overloading mouse functions
for multiple selection methods. The InkScribe draw/edit program for pen comput-
ers eliminates prior Draw/Select mode selection through an Inferred Mode interface
protocol. A technique we call Sloppy Selection illustrates intelligent object selec-
tion by analysis of gesture dynamics coupled with visual segmentation of canvas
content. And the ConceptSketch program for creation and editing of Node-Link
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diagrams shows how recognition of diagrammatic structure supports intelligent ob-
ject selection by cycling Click/Tap operations. These points in the gesture/canvas-
content analysis pyramid are discussed in the subsequent sections of this chapter.

3.2 The Cost of Modes

To motivate minimizing modes in interfaces, it is useful to examine the cost of
having a large set of modes. The salient research question is whether some benefit,
either in efficiency or accuracy, exists for reducing the set of modes in an interface.
To examine this question, we describe our recent work in the cost of mode switching.
We first examine the temporal cost of large mode sets, and then explore the effect a
large set of modes has on mode switching errors within sketch interfaces.

3.2.1 The Temporal Cost of Modes

Many researchers have studied variations in interaction techniques for stylus in-
put systems that seek to fluidly allow both command and input [2, 5, 9, 17]. This
research can be broadly separated into research that seeks to improve the acces-
sibility of software modes versus research that seeks alternatives to modes. While
our work primarily falls into the latter category, i.e. in reducing the need for modes
within interfaces, improving the accessibility of modes in interfaces is an alternative
for improving the fluidity of sketch or graphical applications that contain multiple
modes.

One open question is whether or not there exists an “optimal” mode switching
technique, and if so, what the performance of that mode switching technique might
be. To partially address this question, Li et al. [9] studied five different existing
mode switching techniques. These include typical mode switching techniques that
have been extensively used, i.e. use of the eraser end of a dual ended stylus, use of
the barrel button on an electronic stylus, a press and hold technique similar to the
Apple Newton, and use of the non-preferred hand. They also examined a pressure
based technique based on work by Ramos et al. on pressure widgets [13]. In this list
of mode switching techniques, we note the absence of software widgets to control
modes, a result of general recognition of the fact that improvements are needed over
software-based modes [10]. Based on experimental data, Li et al. concluded that, of
the five techniques, non-preferred hand performed best based upon the metrics of
speed (fastest), error rate (second lowest), and user preference (most preferred).

Given the apparent benefit of non-preferred hand mode switching, we explored in
detail the specific temporal costs associated with non-preferred hand mode switch-
ing [8, 15, 16]. In this work, we looked at the time taken to initiate modes with the
non-preferred hand, and the total time taken to perform a simple drawing task, given
the need to switch modes. We found that, as the number of modes increased, the total
time taken to perform the drawing task increased, and that this increase was a result
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of an increase in the time required to initiate modes with the non-preferred hand. We
discovered [16], using an interface with between two and eight modes, that the cost
of manipulating modes in an interface could be modeled using the Hick–Hyman
Law [4, 6]. This law predicts a linear relationship between response time and the
information entropy, H , associated with n different responses, i.e.

RT = a + bH (1)

where the information entropy, as defined by Shannon, is

H =
n∑

i=1

pi log2

(
1

pi

)
(2)

where n is the number of alternatives (in our study, the number of modes) and pi is
the probability of the ith alternative.

Figure 3.2, reproduced from [16], depicts the linear relationship between infor-
mation entropy, H , and time to select a mode, as described in the previous para-
graph. To generate this data, we performed an experiment where we presented sub-
jects with a simple line bisecting task, and asked the subjects to draw a line of a
specific color, indicated by a mode. We measured the time taken to activate the
mode with the non-preferred hand, the time between mode activation and the pen
tip touching the surface of the display, and the time taken to perform the drawing
task on a tablet computer. Analysis of variance shows that there is a significant main
effect of the number of modes on total time (F3,5 = 12.593,p < 0.001) for the task.
Analysis of variance for the time to activate modes, i.e. the time to press the ap-
propriate button with the non-preferred hand, shows a significant effect of condition
(F3,5 = 22.826,p < 0.001). However, the time interval between mode switch and
pen down and the time to perform the drawing task did not vary significantly with
number of modes (F3,5 = 1.460,p = 0.269 and F3,5 = 2.360, p = 0.101, respec-
tively).

This work on the cost of mode switching provides evidence that, regardless of
the efficiency of any mode switching technique, as you add modes to an interface
the cost, measured as the time, to select any individual mode within the interface
increases. By reducing the number of modes within an interface, we increase the
efficiency of the interface.

3.2.2 Mode Errors: The Mode Problem

In addition to temporal efficiency, the accuracy with which users can manipulate
an interface is an important consideration. It seems logical that larger numbers of
modes in interfaces increases the likelihood of mode errors. The web site Usability
First [20] defines as mode error as:

“A type of slip where a user performs an action appropriate to one situation in an-
other situation, common in software with multiple modes. Examples include draw-
ing software, where a user tries to use one drawing tool as if it were another (e.g.
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Fig. 3.2 By studying interfaces with two, four, six, eight modes, we show a linear relationship
between information entropy, H , and the time taken to select a mode. a The case where all modes
are equally probable. b Varies the probabilities for different modes in the interface

brushing with the Fill tool), or text editors with both a command mode and an insert
mode where a user accidentally types commands and ends up inserting text.”

Two of the most common mode errors include use of the CAPS-lock and Insert
keys on keyboards, both of which alter the effect of keyboard input.

Systems normally mitigate against mode errors by providing some indicator for
modes. However, Sellen et al. [19] studied the use of visual feedback and kinesthetic
feedback to indicate modes. Visual feedback was provided by changing the shape of
the cursor, and kinesthetic feedback by use of a footpedal. In their first study, they
used a non-locking piano footpedal, and users were forced to maintain modes. In this
experiment, they found that kinesthetic feedback was more effective at preventing
mode errors than was visual feedback. They followed this study with a second study
that contrasted a locking and non-locking footpedal, and found fewer errors with the
non-locking footpedal. Based on Sellen’s work, Jef Raskin, in his book The Humane
Interface [14], advocates a mode switching technique he terms “quasimodes”. With
quasimodes, as with Sellen et al.’s non-locking footpedal, a user holds down a key
to indicate modes.

The non-preferred hand mode switching technique used by Li et al. [9] and
by us in our work on the temporal cost of modes [16] is a quasimode, based on
Raskin’s definition. In Li et al.’s work in two-mode interfaces, non-preferred hand
mode switching resulted in an error rate of approximately 1.1%, slightly worse than
the using the eraser end of the electronic stylus. One question unanswered by Li et
al. is whether a relationship exists between the number of modes and the frequency
of mode errors. It seems likely that increasing the number of modes increases the
frequency of mode errors: Users are forced to choose one from a larger number of
alternatives, giving rise to a higher probability of selecting the incorrect mode from
among the set of available modes. However, whether the increase in mode errors as
number of modes increases is a logarithmic, linear, or other function of number of
modes provides an understanding of the expected cost, in accuracy, of adding addi-
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Fig. 3.3 Error rate as a
function of number of modes
in an interface

tional modes to an interface, and the corresponding benefit associated with reducing
the mode set within an interface. To address this question, we examined mode errors
as a function of number of modes in a sketch interface in our work modeling the cost
of mode switching [16]. We observed error rates of between 3.3% in the two-mode
condition and 7.5% in the eight mode condition [16]. Figure 3.3 depicts the mode
error rate against number of modes in the interface. In this graph, we see a linear
correlation (R2 = 0.94) between number of modes and frequency of mode errors in
our experimental task.

Given our results on the relative efficiency and accuracy of interfaces as a func-
tion of the number of modes within the interface, we claim that reducing the number
of modes is a worthwhile goal. In the following sections, we examine user interface
techniques and recognition techniques that we have developed to accomplish this.

3.3 Overloaded Loop Selection: UI Design to Infer Selection
Mode

Many graphical editing programs support multiple means for selecting image mate-
rial through the use of tool palettes. For example, Photoshop offers both a rectangle
selection tool and a lasso tool, among others. Selection of one of these tools puts
the interface into a distinct Selection mode. The rectangle is faster for selecting iso-
lated objects, but the lasso is capable of “threading the needle” and selecting objects
among clutter, and generally of creating oddly shaped selection regions.

We propose that the most straightforward means for amplifying the selection op-
tions available to users without requiring attention to a tool palette is to mix them
together in a single Select Mode, and infer the user’s intent from the gesture they
actually produce. We invoke this idea in a technique called Overloaded Loop Se-
lection. The user is free to drag a selection gesture that may take form as either a
rectangle or a lasso. Both are displayed simultaneously. If the user proceeds to draw
a nearly-closed loop, the rectangle disappears and the lasso region is chosen. But if
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Fig. 3.4 Overloaded loop
selection initiated by
dragging the mouse with the
left button held. Both a
selection rectangle and lasso
path are active. Closing the
path causes the rectangle to
disappear, leaving lasso
selection. If the button is
released while the rectangle is
visible, rectangle selection is
used instead

the user releases the mouse while the rectangle is displayed, the rectangle selection
region is used. See Fig. 3.4.

Overloaded Loop Selection is employed by the ScanScribe document image ed-
itor program first introduced at UIST 2003 [18]. ScanScribe takes this idea two
steps further. First, in addition to overloading rectangle and lasso selection, Selec-
tion Mode supports Cycle Click Selection, which extends the capability to select by
clicking the mouse on an object. This is described in Sect. 3.6. Second, ScanScribe
supports Polygon selection, by which users are able to select image material by plac-
ing and adjusting the vertices of an enclosing polygon. Polygon selection is invoked
as a mode, but conveniently so by double-clicking the mouse over a background
region, without the need for a separate toolbar.

Overloaded Loop Selection is an example of UI design minimizing prior selec-
tion of modes through analysis of the user action alone, without regard to the un-
derlying canvas content. Other examples exist as interface techniques that analyze
user action to determine effect in sketch interfaces. Hinckley et al. [5] proposed
using a post-gesture delimiter technique, called a “pig-tail”, for determining ges-
ture interpretation, and they compared the post-gesture delimiter to using a handle,
a timeout, or a button to alter a gesture’s “mode”. Grossman et al. [3] proposed
“hover widgets”, where the tracking state of a Tablet PC is used to access modes,
and they compared it to using a software button to switch interface modes. Finally,
Ramos and Balakrishnan [12] describe a “pressure mark” technique, where the dif-
ferent pressure associated with a mark maps to different interpretations. However,
in each of these cases, the need exists to select from among the possible alterna-
tive interpretations, either during or after the action. As noted in Sect. 3.2, there is
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a cost associated with selecting amongst alternatives. By minimizing modes within
an interface, we reduce the cost of selecting any mode within the interface.

While the UI design of the ScanScribe document image editor is modeled after
and builds on PowerPoint, ScanScribe is designed primarily to be an editing tool
for mouse/keyboard platforms and does not offer many options for entering new
material. Freeform entry of sketch strokes is possible, but only by explicitly enter-
ing a separate Freeform Draw mode. The pen/stylus platform, on the other hand,
demands more seamless interplay of drawing/sketching entry and select/command
manipulation of canvas content.

3.4 The Inferred Mode Protocol for Stylus Drawing and
Selection with a Pen

The prototypical application for pen/stylus computing platforms is the Electronic
Whiteboard, which generally supports freeform drawing and handwriting, then se-
lection of digital ink for cut, copy, move, resize, color change, etc. Unconstrained
electronic notetaking applications fall within this definition. One of the first elec-
tronic whiteboard programs to gain significant contemplation was the Tivoli [11]
program for the Xerox Liveboard.

The fundamental problem with pen electronic whiteboard programs is how to
support drawing, selection, and commands on selected material through a single
pen/stylus channel. The designers of Tivoli experimented with pen barrel buttons,
tap-tap gestures, and post-lasso pigtail gestures, among other things, but eventually
settled on explicit setting of Draw/Select mode through a side toolbar. Later, the
Microsoft Journal program for the TabletPC settled on prior setting of Select mode
through either tapping on a toolbar icon or else stationary holding of the pen for a
predetermined length of time. All of these methods for mode setting fail to deliver
seamless fluid user action. Barrel buttons are awkward to use. Toolbars require redi-
rection of user focus away from the canvas. And stationary hover requires waiting
for the hover threshold timeout and also leads to inadvertent entry of Select mode
when the user may intending to draw but momentarily simply pausing to think with
the pen down. The problem, we believe, is not how the user is supposed to set Draw
versus Select mode, but that they have to do it at all.

3.4.1 The Mode Problem in Electronic Whiteboard Programs

We illustrate the mode problem through two simple tasks which could be part of
a larger document creation/editing session. The purpose of these tasks is not to
achieve the final result as efficiently as possible, but rather to simulate the process a
user might go through, including changing their mind in midstream and rearranging
material they have already placed on the canvas. In Task I (Fig. 3.5a) the user draws
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Fig. 3.5 Two simple tasks for a pen drawing/editing platform. a Task I involves only draw a series
of shapes. b Task II involves drawing, then selecting and moving some of the drawn objects (as if
the user changed their mind about where to place them), then subsequent additional drawing

a triangle, some overlapping squares, and a diagonal line. In Task II (Fig. 3.5b), they
draw these same objects, but midway through, they decide to change the location of
the overlapping squares. To do this, they would need to use the drawing tool’s edit
capabilities to select the squares and drag them to their new desired position on the
canvas. This is where the trouble lies. Under a conventional mode-based interface
design, the user would enter a selection mode and draw a lasso around the squares
to select them. Then, they would have to exit selection mode to return to drawing.
If, in the creative moment, these extra UI steps are not completed correctly, the task
is thrown off track.
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3.4.2 Analytical Tool: The Interaction Flow Diagram

In order to gain insight into how and why the requirement for mode setting can
become a serious problem for pen-based drawing and editing systems, we intro-
duce an analytical tool for graphically tracing the steps of interaction between user
actions and program interfaces. The Interaction Flow Diagram is a form of state
diagram, but one that emphasizes the modal state of the program and the operations
available to users within each mode. In a conventional user interface state machine
diagram, nodes denote internal states of the program and arcs denote possible tran-
sitions between them. In the Interaction Flow diagram, nodes are differentiated into
three primary types: (1) those that depict internal machine state and information
available to the user through the machine’s display (rectangles); (2) those that in-
dicate intentional user actions (rounded rectangles); (3) those that indicate a choice
or decision point for the user (circles). The Interaction Flow diagram is particularly
useful in dissecting user interaction bugs and aspects of user interface design that
enable them.

The difference is illustrated in Fig. 3.6, which presents the State Machine dia-
gram and Interaction Flow diagram representing the simple interaction afforded by
paper, pencil, and eraser (or equivalently, whiteboard, marker, and eraser). There
is no computer program here, the only action object in this diagram is the user’s
writing/drawing activities, which include two functions, creating marks, and eras-
ing them.

The State Machine diagram represents the use of pencil, eraser and paper as
transition among four states: Pencil Poised, Marking, Eraser Poised, and Erasing.
The transition arcs reflect the logic of the system, for example the fact that before
one can create a mark, one must first hold the pencil, then place its tip to the paper.

The Interaction Flow diagram portrays the interaction in a manner more closely
resembling the user’s experience. State display nodes, represented by rectangular
boxes, indicate information visually (or through other senses) available to the user.
In particular, in the quiescent state between actions, the user can see the markings
on the page, and they can sense whether the pencil or eraser is poised above the
page. Circles indicate deliberative choices, such as between either making a mark
or switching to the eraser. The Interaction Flow diagram thus re-configures selected
arcs exiting from nodes in the formal State Machine diagram to make explicit certain
decisions the user can make at the level of significant functional operations of the
tool. Finally, actual user actions are shown as rounded boxes. Often Interaction Flow
diagrams package up tedious details of the State Machine diagram. For example, the
state transition subgraph of touching, dragging, and lifting the pencil are wrapped
into the functional action (rounded box) labeled “draw”.

The Interaction Flow diagram in Fig. 3.6b reflects the simplicity of the interaction
model for pencil and paper. The current draw/erase mode is always indicated by
visual and/or tactile display. The choice to switch modes is always available. To
execute a mode switch the user carries out the physical act that brings the desired
tool end into position for use. Once in Draw or Erase mode, the system stays in
that mode by default. The acts of continuously writing or continuously erasing are
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Fig. 3.6 a State Machine and b Interaction Flow diagram for pencil and eraser. Rectangles repre-
sent a quiescent state of the interface. Rounded rectangles represent user actions. Circles represent
user choices among available actions, given the presentation state

tight loops through states in Fig. 3.6b. When writing fluidly the user may effectively
ignore the choice to switch into erase mode. And significantly, for the purpose of
managing their interaction with the pencil, the user has no requirement to attend to
the information display (i.e. the markings on the surface and the pencil tip in view).
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Fig. 3.7 Simplified Interaction Flow Diagram for the PowerPoint structured graphics editor

Rather, they are free to write or draw “open loop,” paying attention to the content of
their writing instead of the user interface features of the tool.

With the greater functionality of computer programs for creating and editing
graphical material comes greater complexity of the user interface. Perhaps the most
successful of these is PowerPoint. A simplified User Interaction Flow Diagram for
the PowerPoint-style interface is shown in Fig. 3.7.

The fundamental operations here are creation of new text or graphic objects,
selection of objects, and modifying selected objects. These are reflected in three
state display nodes (rectangular boxes), in Fig. 3.7. When nothing is selected (Node
PPT-IF-2), the interface is in Select mode. From here the user has the option of
performing a selection operation (PPT-IF-8) or else entering Create/Entry mode by
choosing an object type to create by clicking a menu or toolbar icon (PPT-IF-5).
Either of these choices results in an internal change of machine state, and also in an
augmentation of the display, such as highlighting of selected material (PPT-IF-3),
or change from an arrow to crosshair cursor (PPT-IF-1). Once something is selected
(PPT-IF-3), the interface enters Command Mode, in which selected material is high-
lighted. From here the user has a choice to deselect it, modify it, select additional
objects, or switch to a create mode.

The default Mode of PowerPoint is Select Mode. PowerPoint permits users to
select graphical material by either of two means, by tapping on an object, or by
dragging a rectangle which results in selection of all objects entirely enclosed.

3.4.3 Interaction Flow Analysis of Mode-Based Selection and
Drawing

The Interaction Flow Diagram provides insight into exactly what can go wrong with
prior selection of mode in an electronic whiteboard program. Let us consider in de-
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Fig. 3.8 Representative Interaction Flow Diagram for an Electronic Whiteboard program for
Pen/Stylus platforms

tail Task I and Task II of Fig. 3.5 in terms of the Interaction Flow for a conventional
mode-based Electronic Whiteboard program, such as Tivoli or Microsoft Journal.
See Fig. 3.8. This protocol bears strong resemblance to the mouse-based interac-
tion protocol design of PowerPoint and other structured graphics editors. The main
difference is that Create/Entry Mode (also known as Draw Mode for a pen/stylus
program) and Command Mode are persistent. When in Draw Mode (the leftmost
Display/User Action column of the diagram) the act of making repeated marks with
the stylus is fluid and unconstrained, just as with a physical pen or pencil. From
Draw Mode, the user may switch to Select Mode by an explicit action such as tap-
ping a toolbar item or releasing the stylus barrel button. In Select Mode the user
may select objects by tapping or lasso.

Although Draw and Select modes are independent nodes in the Interaction Pro-
tocol (CS-IF-1 and CS-IF-2), an Electronic Whiteboard program may or may not
actually provide a visible indicator of the current mode. In tablets and electronic
whiteboards whose hardware provides pen hover detection, alternative Draw and
Select cursors can do this. In purely touch-based stylus systems any visual mode
indicator must be placed peripherally if at all. In either case, users are famous for
ignoring mode indications rendered via cursor shape.

The mode problem arises when users perform as if the system were in one mode
when in fact it is in another. Our sample draw/edit tasks illustrate where the inter-
action protocol can lead users to make errors. Task I is not a problem. This involves
simply adding strokes one after another, in draw mode, as shown in Fig. 3.9.

The interaction flow for correct performance of Task II is shown in Fig. 3.10.
Note that in order to move the pair of squares the user must first switch to Select
mode, then draw a lasso around the squares in order to select them, then drag the
selected objects to another position, and finally switch back to Draw mode.

The common interaction bug in this protocol is failure to switch modes before
executing the next pen gesture or stroke. Figure 3.11 shows the interaction flow
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Fig. 3.9 Steps of the interaction flow for Task I under the Interaction Flow protocol of a conven-
tional Electronic Whiteboard program. Numbers indicate nodes of the Interaction Flow Diagram
of Fig. 3.8

Fig. 3.10 Steps of the interaction flow for correct performance of Task II under the Interaction
Flow protocol of a conventional Electronic Whiteboard program. Numbers indicate nodes of the
Interaction Flow Diagram of Fig. 3.8

that results from failing to enter Select mode, CS-IF-4. The user behaves as if they
are proceeding from Node CS-IF-2, performing what is intended to be a selection
gesture. But the program interprets this as a drawn stroke, and renders it as such.
Seeing a drawn circle instead of a visual indication of strokes selected, the user is
alerted to the problem. He or she must then execute a repair protocol of at least three
additional actions, plus devote attention to the display to verify that he or she is back
on track, before proceeding with the intended task.

In a similar fashion, by failing to return to Draw mode after performing an edit
operation, users are alerted to the problem and must interrupt their flow of inter-
action in order to recover and re-synchronize their mental model of the interaction
with the machine state of the program.
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Fig. 3.11 Steps of the interaction flow for disrupted performance of Task II due to a common
mode error, under the Interaction Flow protocol of a conventional Electronic Whiteboard program.
Numbers indicate nodes of the Interaction Flow Diagram of Fig. 3.8

3.4.4 Inferred Mode Protocol: Inferring Draw/Select Mode

To address the Draw/Select Mode problem for pen/stylus interfaces, we introduced
a technique called the Inferred Mode Protocol [17], used in the InkScribe pen-based
sketch tool. This protocol allows the user to perform either a draw/entry or lasso
selection gesture without a priori specification of mode. The intent of the stroke is
inferred from the stroke’s shape and its relation to existing canvas content. If the
stroke is not closed, or if it is closed but does not enclose any existing material,
then it cannot be a lasso selection gesture so is interpreted as new ink. If however
it is approximately closed and does enclose markings on the canvas (which can be
any combination of digital ink and bitmap image), the gesture is ambiguous. In this
case, the interface presents a pop-up menu labeled, “Select?”, in a nearby but out-
of-the-way location. The user may then elect either to tap the menu item to select
the enclosed material, or else simply ignore it and keep writing or drawing.

The Inferred Mode Protocol also supports Cycle Tap Select, described in
Sect. 3.6. In doing so, the protocol prohibits the user from drawing dots, or short
tap strokes, on top of or very near to existing markings.

The Interaction Flow Diagram for the Inferred Mode Protocol is shown in
Fig. 3.12. Note that there are no user action nodes by which the user explicitly
switches to a Draw or Command mode. Instead, the logic of mode switching is
embedded in the inference of user intent based on the user’s actions in context.

At quiescence the user can be faced with one of four visually distinguished situ-
ations: nothing is selected (IM-IF-1); nothing is selected but the pop-up menu item
saying “Select?” is displayed (IM-IF-2); one or more strokes are selected (IM-IF-3);
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Fig. 3.12 Interaction Flow diagram for the Inferred Mode Protocol. The diamond represents the
program inferring the user’s intended mode. If the intent is ambiguous, a pop-up mediator choice
(b) is presented which the user may either tap to select encircled material, or ignore and continue
writing or drawing

one or more strokes are selected and a command menu is visible (IM-IF-4). From
these four possibilities the flow of control converges onto one unified set of choices
that are always available regardless of the selection state. Namely, the user can at any
time draw more material (IM-IF-7), they can at any time perform a selection gesture
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(IM-IF-8), and they can at any time reset the selection status to nothing selected
by tapping in the background (IM-IF-9). The final options, to perform a gesture
to move or modify selected material (IM-IF-10 and IM-IF-11), are operative only
when something is actually selected.

The Inferred Mode Protocol introduces a new type of node to the Interaction
Flow notation. This is the Intent Inference node, shown as a diamond (IM-IF-12),
which represents a decision process that the system performs on the input gesture
drawn at user action nodes IM-IF-7 or IM-IF-8. Note that IM-IF-7 or IM-IF-8 reflect
only user intent, not any overtly distinguishable action or state. The purpose of this
decision is to determine whether an input pen trajectory is clearly a drawn stroke,
clearly a selection operation, or else ambiguous. The decision is made on the basis
of certain rules which make use of the machine’s prior state, plus the stroke’s loca-
tion, shape, and proximity to other strokes on the canvas. For example, a trajectory
creating a closed path is interpreted in the following way:

• If the path encloses no other strokes then it is clearly a drawn stroke.
• If the path encloses at least one other stroke AND some other strokes are selected,

then the path is interpreted as a selection gesture that adds the enclosed strokes to
the set of selected strokes.

• If nothing is selected and the path encloses at least one other stroke, then the
intent is ambiguous. The user could be intending to select the enclosed strokes,
or they could simply want to draw a circle around them.

Critically, this gesture interpretation is made after the stroke, and the burden is
lifted from the user to specify the correct Draw or Command mode prior to per-
forming the motion. Only if the stroke is ambiguous is the user presented with the
“Select?” mediator, at which time they have the choice of tapping the pen to select
the enclosed material, or else ignoring it and proceeding to draw either additional
digital ink strokes or else an entirely different enclosing gesture to select something
else (IM-IF-6).

Figure 3.13 details the interaction flow for Sample Tasks I and II under the In-
ferred Mode interaction protocol. Tasks I and II are performed identically through
the first four actions, where the user executes a circular pen trajectory enclosing the
squares. At this point the program cannot know whether the user intends to draw
a circle or select the squares it encloses. The system displays the pop-up “Select?”
menu item. Here the two tasks diverge. Under Task I, the user ignores the menu
item and continues drawing, completing the task with the entry of the final diagonal
line. Under Task II, where the user intends to move the squares, they tap on the “Se-
lect?” button and the squares become highlighted as selected objects. The user then
drags them to the target location, and, without explicitly switching modes, proceeds
to complete the task by drawing a circle around the squares, then the final diagonal
line.

The Inferred Mode Protocol for pen/stylus interfaces makes minimal use of struc-
ture analysis of canvas content, limited simply to determining whether a stroke is
approximately closed and if so, whether it encloses existing markings. Further de-
velopment of intelligent user interfaces involves more sophisticated analysis of the
visible canvas in conjunction with the dynamics of the user’s stroke.
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Fig. 3.13 Interaction flow for Task I (a) and Task II (b) under the Inferred Mode Protocol. Num-
bers indicate nodes in Fig. 3.12. Note that the user’s actions are identical until the point at which
they either ignore or tap the pop-up “Select?” button at step IM-IF-3 (3 in the figure)

3.5 Sloppy Selection: Inferring Intended Content of an
Ambiguous Selection

Let us assume that the digital ink and bitmap images on a canvas are not arbitrary,
random strokes and images, but are meaningful, structured objects. Most instances
in which a user intends to cut, copy, move, or otherwise modify material, they do
so with respect to this structure. It makes sense to bias interpretation of the user’s
actions in terms of the coherent objects and groupings present on the canvas. The
most commonplace application of this principle applies to the characters, words,
lines, and paragraphs comprising text. While always permitting exceptions, selec-
tion operations should tend toward selection of these units.

In accordance with this principle, we have suggested a user interface technique
for lasso selection called Sloppy Selection [7]. Sloppy Selection observes that users’
lasso gestures may at times only approximately encircle the object(s) they intend to
select. To the extent that the user perceives objects on the canvas as being organized
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into salient chunks, a quick, approximate selection gesture may be “good enough”.
Conversely, we assume that if users intend to select arbitrary, non-salient regions of
the canvas, they will do so slowly and deliberately. The Sloppy Selection technique
thus analyzes the dynamics of the user’s lasso gesture to ascertain whether and in
what portions of the gesture the user is performing a rough, quick-and-dirty stroke,
versus a careful, deliberate partitioning of selected versus excluded material.

In order to implement Sloppy Selection, we must employ a model of user ges-
tures under casual and deliberate intent. We assume that casual, “sloppy” strokes are
performed balistically, with a single motor planning event involving minimal mid-
course correction. This type of motion is known to follow the minimum jerk prin-
ciple, from the biological motor control literature. Figure 3.14a illustrates the speed
profile of a fast, single-motion lasso gesture. Slowing occurs at locations of highest
curvature according to a 2/3 power law. Conversely, careful, deliberate strokes oc-
cur at a much slower speed more closely obeying a “tunnel law” of motion [1], as
seen in Fig. 3.14b.

We exploit the difference between fast casual gestures and slow, deliberate ges-
tures by inverting the local speed profile along a gesture to infer what we interpret
as an effective selection tolerance width. Where a gesture’s speed is less than would
be predicted by a minimum jerk motion, we assume that the user is deliberately
slowing down to more carefully adjust the gesture path, and therefore the effective
tolerance narrows.

To combine the tolerance width with image structure analysis, we first construct
candidate salient objects by performing visual segmentation and grouping on the
existing canvas digital ink. Then, at the conclusion of a potential selection stroke we
analyze the user’s inferred selection tolerances. Where a lasso’s selection tolerance
permits, we divide included from excluded material according to the segmented
units. But where the selection tolerance narrows, we split words or stokes literally
along the lasso path, as shown in Fig. 3.15.

3.6 Cycle Tap Selection: Exploiting Structure Recognition

The simplest and most direct method of selecting material with a mouse or pen is,
respectively, mouse click (typically using the left mouse button) or pen tap. The
problem is that this action is ambiguous with respect to the meaningful structure of
canvas objects, because any given section of digital ink or fragment of bitmap image
may belong to multiple coherent objects. The dominant PowerPoint UI design for
graphics interfaces addresses this ambiguity through the use of groups. Primitive ob-
jects can be grouped hierarchically into groups that collectively form tree structures.
See Fig. 3.16b. Clicking on any primitive object automatically causes selection of
the collection of primitive objects descending from the root node of any grouping
tree the clicked object belongs to.

In PowerPoint-type UIs, groups are both a blessing and a curse. Once the user has
grouped an object, in order to select that object and modify its location or properties,
they must first un-group it. At this point, the group structure is lost and to get it
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Fig. 3.14 a Speed profile for a “sloppy” selection gesture. b Speed profile for a “careful” selection
gesture. Note the relatively slower speed for the straight section where the gesture is threading
between two lines of text

back the user has to reconstruct it manually, which can become quite tedious. Thus,
ambiguity and actionable membership in multiple groups as such are not actually
supported.

We extend the notion of grouping primitive elements into meaningful larger
structures in two stages, each of which carries design for intelligent UIs a step fur-
ther. These steps are first, lattice groups, and second, automatic group formation
through structure recognition.

To permit primitive strokes and bitmap objects to belong to more than one group
simultaneously, we reformulate group structure from a hierarchical tree to a lattice.
In a lattice, a child node may have more than one parent, and thus may participate in
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Fig. 3.15 Steps in the sloppy selection gesture interpretation technique. a, b Detection of word
objects. c, d, Inference of gesture carefulness vs. sloppiness. e, f Decision whether to select based
on word groups or precise gesture path

Fig. 3.16 a Items arranged in tabular layout. b Hierarchical groupings as rows then table. c Lattice
structure permitting elements to belong to both row and column groups as well as the entire table

more than one group. This idea is taken to an extreme in the ScanScribe document
image editor and the InkScribe digital ink sketch creation and editing tool. In these
programs, the lattice is flat, consisting of only primitives and a layer representing
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groups of primitives. Figure 3.16c illustrates that, for example, a lattice representa-
tion is sensible for maintaining the meaningful groupings of a tabular arrangement
of cells. Any given cell simultaneously belongs to a row, a column, and the entire
table.

The user interface design problem posed by lattice groupings is how to give the
user control over selection in terms of the multiple available options. A straight-
forward approach is called Cycle Click/Tap Select. Clicking (a mouse) or tapping
(a pen) once on a stroke or bitmap object causes the primitive object itself to be
selected. Tapping again selects one of the groups that object belongs to. Tapping re-
peatedly then cycles through the available groups. Our experience with ScanScribe
and InkScribe suggest that the Cycle Click/Tap Selection technique is effective when
the groups are all sensible and limited to about five in number. Each tap requires vi-
sual inspection of the selection (indicated for example by a highlight halo).

In basic ScanScribe and InkScribe, groups are formed in either of two ways. Any
combination of primitives can be selected manually by clicking with the shift key
(in ScanScribe for the mouse platform) or tapping individual objects (in InkScribe
for the pen/stylus platform). Then, an explicit menu item permits explicit creation of
a group. Or, groups may be formed automatically when the user manually selects a
collection of primitives, and then performs any operation such as moving, copying,
changing color, etc.

This approach to multiple, overlapping group structure forms the basis for a
second, more advanced form of meaningful group-based selection of by direct
Click/Tap. That is for groups to be formed automatically through automatic struc-
ture recognition.

Automatic structure recognition is exemplified in a program we have developed
for creating and editing node-link diagrams, called ConceptSketch. Node-link dia-
grams are the basis for a popular graphical notation, called variously Concept Maps,
or Mind Maps, for brainstorming and organizing information through labeled nodes
representing cognitive concepts, and (optionally labeled) links depicting relations
among concepts. The popularity of concept maps is evidenced by a multitude of
free and commercial programs available for creating and editing these diagrams. At
this writing, however, none of the available programs offers a truly fluid user inter-
face permitting users to simply draw a concept map in freeform fashion and then
select nodes, links, and labels as meaningful objects to rearrange, form and delete
new nodes and links. and label or annotate. By design, ConceptSketch is an ex-
tension of a basic Electronic Whiteboard that knows about node-link diagrams and
automatically recognizes the constructs of this notation automatically as the user
creates it.

The key to a powerful concept mapping program is automatic recognition algo-
rithms that can identify and organize the elements of a concept map, including text
representing node labels, graphical node indicators, links, arrows, link labels, and
arbitrary annotative text and graphics. The recognition strategies we have developed
lie beyond the scope of this article. Here, of interest are the user interface techniques
for accessing the meaningful diagrammatic objects once they have been recognized.

The Cycle Click/Tap select technique serves this purpose. See Figs. 3.17
and 3.18. In prototypical use, we presume that the user’s overall goal is to evolve a
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Fig. 3.17 a Example sketch. Strokes are labeled in order of input by a pen. b Hierarchical graph
representing the objects and relations of the sketch in terms of the elements of a Node-Link diagram

rough and malleable sketch into a formalized diagram. The meaningful objects here
are: (1) the graphical object representing the concept nodes; (2) the textual labels
of these nodes; (3) entire nodes consisting of both node graphics and their textual
labels; (4) the curvilinear lines linking concepts; (5) arrows or other terminating
graphics of link graphics; (6) textual labels associated with graphical links; (7) en-
tire links consisting of the link lines, their terminator graphics, and their labels; (8)
ancillary text; (9) ancillary graphics. To support Cycle Click/Tap select, recognition
algorithms need to build structured representations of the canvas that reflect these
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Fig. 3.18 Cycle tap select of salient objects in a node-link diagram. a Diagram partially formal-
ized. b At the first pen tap on the enclosing graphic, the entire node is selected (the enclosing
graphic plus text label). c At the next pen tap the enclosing graphic alone is selected. d At the next
pen tap just the side of the graphic rectangle is selected

groupings of primitive digital ink and text objects. Any given primitive may belong
to more than one group. Figure 3.18 illustrates that in the ConceptSketch program,
the user may select different levels of structure by repeated tapping. Tapping once
on the side of a rectangle forming the enclosing graphic of a node causes that node
to be selected, including its text label; tapping again at the same place cycles to
selection of just the rectangle; tapping again cycles to selection of just the side of
the rectangle.

For creation and editing of Concept Maps using a pen/stylus in ConceptSketch,
the Cycle Tap Select protocol is embedded within the Inferred Mode Protocol of
Fig. 3.12 in particular, within the Tap selection Node IM-IF-8.

This principle of course applies to all types of graphical structure, across all do-
mains for which effective recognition algorithms can be devised, including circuit
diagrams, mathematical notation, physical simulations, engineering and architec-
tural drawings, chemical diagrams, UML diagrams, etc.
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3.7 Conclusion

The goal of creating computer tools that anticipate and understand user actions in
terms of their purpose and intent is an ambitious one that will not be realized for
quite some time. We can however realize some of the lower levels of the pyramid of
sophistication that will be required. Our emphasis in this chapter has been on mini-
mizing the requirement that the user pre-specify modes in order to communicate to
the program how their subsequent action should be interpreted. We have shown how
at the most basic UI level, Overloaded Loop Selection enables multiple methods for
selection without the use of a toolbar. We have introduced conservative forms of
recognition of a user’s gestural intent by considering gestures’ paths and dynamics
in context of canvas content; these are the Inferred Mode Protocol and the Sloppy
Selection technique. And we have shown how recognition of canvas content enables
easy selection of meaningful objects through the simple tap/click command, under
the Cycle Tap Selection protocol.

We believe that many more techniques will fill in these levels of the pyramid. In-
deed, we have taken note of several very interesting contributions by our co-workers
in this field. And we look forward to future developments in cognitive modeling of
user tasks and goals that will lead to truly intelligent user interfaces.
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Chapter 4
Mathematical Sketching: An Approach
to Making Dynamic Illustrations

Joseph J. LaViola Jr.

4.1 Introduction

Diagrams and illustrations are often used to help explain mathematical concepts.
They are commonplace in math and physics textbooks and provide a form of phys-
ical intuition about abstract principles. Similarly, students often draw pencil-and-
paper diagrams for mathematics problems to help in visualizing relationships among
variables, constants, and functions, and use the drawing as a guide to writing the ap-
propriate mathematics for the problem.

Unfortunately, static diagrams generally assist only in the initial formulation of
a mathematical problem, not in its “debugging”, analysis or complete visualization.
Consider the diagrams in Fig. 4.1. In both cases, a student has a particular problem
to solve and draws a quick diagram with pencil and paper to get some intuition
about how to set it up. In the diagram on the left of Fig. 4.1, the student wants
to explore the difference between the motion of two vehicles, one with constant
velocity and one with constant acceleration. In the diagram on the right, the student
wants to understand how far an object pushed off a table will fall before it hits the
ground and how long it will take to do so. The student can use these diagrams to
help formulate the required mathematics to answer various possible questions about
these physical concepts.

However, once the solutions have been found, the diagrams become relatively
useless. The student cannot use them to check her answers or see if they make visual
sense; she cannot see any time-varying information associated with the diagram and
cannot infer how parameter changes affect her solutions. The student could use one
of many educational or mathematical software packages available today to create a
dynamic illustration of her problem, but this would take her away from the pencil
and paper she is comfortable with and create a barrier between the mathematics
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Fig. 4.1 The diagram on the left shows the initial formulation for analyzing the differences be-
tween constant velocity and constant acceleration of two vehicles and the diagram on the right
shows the initial formulation for exploring how an object falls off a table with some initial velocity
(adapted from [4])

she had written and the visualization created on the computer. Because of these
drawbacks, statically drawn diagrams have a lack of expressive power that can be
a severe limitation, even in simple problems with natural mappings to the temporal
dimension or in problems with complex spatial relationships.

4.1.1 Mathematical Sketching

With the advent of pen-based computers, it seems logical that the computer’s com-
putational power and the expressivity of pencil and paper could be combined to
resolve many of the drawbacks of static diagrams discussed above. Mathemati-
cal sketching addresses these problems by combining the benefits of the familiar
pencil-and-paper medium and the power of a computer. More specifically, mathe-
matical sketching is the process of making and exploring dynamic illustrations by
associating 2D handwritten mathematics with free-form drawings [12, 13]. Animat-
ing these diagrams by making changes in the associated mathematical expressions
lets users evaluate formulations by their physical intuitions about motion. By sens-
ing mismatches between the animated and expected behaviors, users can often both
see that a formulation is incorrect and analyze why it is incorrect. Alternatively, cor-
rect formulations can be explored from an intuitive perspective, perhaps to home in
on some aspect of the problem to study more precisely with conventional numerical
or graphing techniques.

Mathematical sketching incorporates a gestural user interface that lets users
modelessly create handwritten mathematical expressions using familiar mathemati-
cal notation and free-form diagrams, as well as associations between the two, using
only a stylus. Since users must write down both the mathematics and the diagrams
themselves, mathematical sketching is not only general enough to apply to a variety
of problems, but also supports a deeper mathematical understanding than alternative
approaches including, perhaps, professionally authored dynamic illustrations. The
ability to rapidly create mathematical sketches can unlock a range of insight, even,
for example, in such simple problems as the ballistic motion of a spinning football
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in a 2D plane, where correlations among position, rotation and their derivatives can
be challenging to comprehend.

In this chapter, we will explore the mathematical sketching concept by first dis-
cussing some philosophical ideas behind the interaction paradigm. Next, we will ex-
amine MathPad2 [14], an implementation of mathematical sketching, by discussing
some important components of the prototype. Finally, we will present a discussion
on where mathematical sketching needs to go in the future to make it fully usable in
creating dynamic illustrations across a variety of scientific disciplines.

4.2 Philosophical Considerations

Mathematical sketching is the process of making and exploring dynamic illustra-
tions by combining 2D handwritten mathematics and free-form drawings through
associations between the two. The first question is: what is a dynamic illustration?
For our purposes, a dynamic illustration is a collection of moving pictorial elements
used to help explain a concept. These pictorial elements can be pictures, drawings,
3D graphics primitives, and the like. The movement of these pictorial elements can
be passive (i.e., someone just watches the animation) or active (i.e., someone inter-
acts with and steers the animation). The concepts that dynamic illustrations help to
explain are essentially limitless. They can be used to illustrate how to change the oil
in a car, how blood flows through an artery, how to execute a football play, or how to
put together a bicycle. They can be used to explain planetary motion, chemical re-
actions, or the motion of objects though time. Almost any concept can be illustrated
dynamically in some way.

In theory, mathematical sketching could be used to make any kind of dynamic
illustration. However, devising a general framework to support any type of dynamic
illustration is a difficult problem. Thus, we decided to focus on a particular subset of
dynamic illustrations to explore the mathematical sketching paradigm. In its current
form, mathematical sketching can create dynamic illustrations where objects ani-
mate through or as a result of affine transformations. In other words, a mathematical
sketch can create a dynamic illustration where objects can translate and rotate or
stretch on the basis of other moving objects. These affine transformations are de-
fined using functions of time with known domains or through numerical simulation.
Given our current focus, mathematical sketching lets users create dynamic illustra-
tions using simple Newtonian physics for exploring concepts such as harmonic and
projectile motion, linear and rotational kinematics, and collisions.

The next part of defining mathematical sketching is writing 2D mathemat-
ics. We use the term “2D handwritten mathematics” because the mathematics is
written, not typed, and uses common notation that exploits spatial relationships
among symbols. For example, the integral of x2 cos(x) from 0 to 2 can be writ-
ten as “int(x^2*cos(x),x,0,2)”. This one-dimensional representation is
used in Matlab, a mathematical software package. A 2D representation such as∫ 2

0 x2 cos(x) dx, however, is more elegant, natural, and commonplace. The natural-
ness of a 2D representation also means that people making mathematical sketches
need not learn any new notation when writing the mathematics.
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Using 2D handwritten mathematics in mathematical sketching implies that those
handwritten symbols must, at some point, be transformed into a representation that
the computer can understand. This transformation must take the user’s digital ink
and recognize it as mathematical expressions and equations. The recognition pro-
cess must determine what the individual symbols are and how they relate to other
symbols spatially. In addition, these recognized expressions and equations must be
stored in such a way that they can drive dynamic illustrations using a given program-
ming language. Although the complex process of recognizing mathematical expres-
sions is part of the mathematical sketching process, it touches on the definition of
mathematical sketching only indirectly. What is important in terms of mathematical
sketching is how users tell the computer to recognize these expressions, and how
much user intervention is needed to do so.

The next part of the mathematical sketching definition is making free-form draw-
ings. Free-form drawings in this context are both a blessing and a curse. They are a
blessing because they provide the greatest flexibility in what can be drawn: a mathe-
matical sketch can contain simple doodles or articulate line drawings. In addition, if
the essence of mathematical sketching is to interact with the computer as if writing
with pencil and paper, then free-form drawings are ideal.

With such drawing flexibility, however, come certain disadvantages, arising
largely from the nature of mathematical sketching itself. If a mathematical sketch is
to contain a precise mathematical specification, then how can such a specification
interact fluidly with imprecise free-form drawings to create a cohesive algorithm for
deploying a dynamic illustration? What is required is an intermediary between the
two, a methodology that transforms the drawings appropriately, so they fit within the
scope of the mathematics. The drawings need to be transformed, but we also want to
extract some geometrical properties from them to keep them close to their original
representations. Thus, a delicate balance is needed between retaining the essence
of the drawings and transforming them into something coincident with the math-
ematics. This transformation methodology, which we call “drawing rectification”,
is important in achieving plausible dynamic illustrations [2]. From the definition
of mathematical sketching, drawing rectification is critical but must be somewhat
transparent to the user. In other words, rectification should involve little cognitive
effort on the user’s part.

The final part of the definition of mathematical sketching is the process of asso-
ciating mathematics to the drawings. Associations are the key component of math-
ematical sketching because they are the mechanism for determining which math-
ematical expressions belong to a particular drawing. Associations do not just de-
termine how drawings should move though time; they are also important in deter-
mining other geometric properties such as overall size, length, or width of drawing
elements. Without these associations, it is difficult to know precisely how the math-
ematical specification animates a drawing in terms of what is actually displayed on
the screen. For example, even if an object has a certain width and height on the
screen, it is difficult to know its dimensions from the mathematical point of view
without having users specify them explicitly. In addition, these associations are im-
portant in defining internal coordinate systems needed by the mathematical sketch
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to perform the animation correctly. Default values for a drawing’s geometric prop-
erties can work in some cases, but not always. The same is true of default coordinate
systems.

Associations also have an inherent complication. According to the mathematical
sketching definition, an association should associate a set of mathematical expres-
sions with a particular drawing or drawing element. The drawings can then behave
accordingly. However, these associations are insufficient without some mathemat-
ical semantics. For example, although a set of arbitrary mathematical expressions
could be associated perfectly validly to a particular drawing, it would be extremely
difficult to determine how the drawing is supposed to behave unless the mathemat-
ics has some structure. Once again, we must maintain a delicate balance. On the one
hand, we want the associations to infer as much as possible about the mathematical
semantics so that the mathematics can be written without artificial restrictions. On
the other, we know that associations cannot infer everything, so the mathematics in
a mathematical sketch must have some semantic structure. The key is to use a se-
mantic structure that is as close as possible to how people write the mathematics in
a pencil-and-paper setting.

4.2.1 Generalizing Mathematical Sketching as a Paradigm

Visualization can be characterized as a process of representing data as images and
animations to provide insight into a particular phenomenon. Mathematical sketching
is therefore a form of visualization, consisting, as it does, of a subset of the many
visualization algorithms, tools, and systems [7]. Mathematical sketching takes data
(handwritten mathematics, drawings, and associations) and transforms them into
a representation (a dynamic illustration) that can provide insight into a particular
phenomenon (the mathematical specification).

More specifically, mathematical sketching can be thought of a method of sketch-
ing visualizations. In other words, a pen-based description of a certain concept or
phenomenon is transformed into a visualization. This pen-based description can
be given as mathematics, drawings, diagrams, gestures, numbers, or even words.
Sketching a visualization need not result in a dynamic illustration: the visualization
could be static. For example, other work in Brown University’s Computer Graph-
ics Lab lets chemists create 3D visualizations of molecules by sketching chemical
element symbol names and drawing bonds between them [22] (see Fig. 4.2). In an-
other example, users can sketch numbers in tabular form and then visualize them
using a simple graph (see Fig. 4.3). MathPad2 can also make static sketch-based
visualizations. For example, users can write a function (the sketch) and graph it
(the visualization). Thus the mathematical sketching paradigm is a tool for creating
both static and dynamic visualizations of handwritten mathematical specifications.
Perhaps as the ideas of mathematical sketching are extended and developed, it will
prove to be a general model for mathematical visualization.
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Fig. 4.2 The ChemPad
application creates
visualizations of molecules
by writing chemical element
symbol names and drawing
bonds between them. Users
sketch the molecule on the
right (under “Sketch”) and
view a 3D representation of
the molecule on the left
(under “View”)

Fig. 4.3 A sketch-based
visualization in which
numbers in tabular form are
visualized with a graph

4.2.2 Observations on Mathematical Sketching

2D mathematical expression recognition is indirectly part of the definition of mathe-
matical sketching. If mathematical sketches are to use 2D handwritten mathematics
that must be recognized, then we require a way to tell the computer that recognition
needs to occur. Ideally, of course, the system should recognize and parse the expres-
sions online while users are writing. However, people whom we observed writing
mathematical expressions in online systems usually paused after writing each sym-
bol to make sure the recognition was correct, a cognitive distraction that took away
from what they were doing. More importantly, as early as the 1960s, researchers
discovered that users dislike systems that attempt to infer what they are trying to do
in the middle of specifying it, since this made the interface very distracting. On the
basis of these observations, we chose not to perform online recognition but rather
trigger the recognition with an explicit command, so that users could concentrate on
the mathematics until the recognition was needed.

Another important issue with mathematical sketching involves free-form draw-
ings. We chose free-form drawings because they are the types of drawings made
with pencil and paper. However, with a computer underneath this pencil and paper,
it might be reasonable to use standard geometric primitives. The problem with geo-
metric primitives, however, is their limited scope compared to free-form drawings.
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Free-form drawings increase the power of a mathematical sketch from an aes-
thetic point of view. In addition, although geometric primitives could assist in draw-
ing rectification, they do not solve the rectification problem completely, and in order
to keep a pencil-and-paper style, these primitives would have to be drawn and rec-
ognized, making the internals of mathematical sketching more complex.

Making a mathematical sketch requires associations between mathematics and
drawings. There are, of course, many different ways to make these associations.
Since illustrations in textbooks and notebooks from mathematics and science classes
are usually labeled with variable names and numbers, one logical way to make as-
sociations is to use these labels as part of the interaction. Doing this means that
associations can be made with little extra cognitive effort, since the labels are al-
ready part of the drawing.

Finally, we believe that mathematical sketching makes sense as an approach
to making dynamic illustrations. People would rather write mathematics on pa-
per than type it in on a keyboard. Additionally, drawing with pencil and paper is
much easier than with a computer. Mathematical sketching thus makes sense be-
cause it takes what users can already do with a notebook—write mathematics and
make drawings—and extends it to create dynamic illustrations. These illustrations
help users not only visualize behaviors but also validate the mathematics they write.
Users need only do minimal work beyond what they would normally do, making
mathematical sketching a value-added approach.

4.3 The MathPad2 Prototype

To gain an understanding of how the concept of mathematical sketching can be
utilized to make dynamic illustrations, we developed MathPad2, a prototype Tablet
PC application (see Fig. 4.4). In this part of the chapter, we present an overview of
the MathPad2 architecture as well as highlight important software components.

4.3.1 MathPad2 Architecture

MathPad2 was developed on a Tablet PC using C# and the Microsoft Tablet PC
SDK [10]. This SDK provided a number of useful features for dealing with and
maintaining ink strokes: nearest-point and stroke-enclosure tests, transformation
routines, and bounding-box functions. As a computational and symbolic back end,
we used Matlab via its API for communicating with the Matlab engine from external
programs.

The software has the distinct components shown in Fig. 4.5. The main soft-
ware component is the user interface, which is the major link to other parts of the
MathPad2 system. The user interface component contains the data entry objects for
dealing with inking and storage of ink strokes and recognized mathematical expres-
sions. As users make ink strokes on the screen, the gesture analyzer continuously
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Fig. 4.4 The MathPad2 prototype. The mathematical sketch shows two cars moving down a road,
one with constant velocity and one with constant acceleration. The user writes down the mathemat-
ics, draws a road and two cars, and associates the mathematics to the drawing using labels. Running
the sketch animates the two cars, illuminating how a car moving with constant acceleration will
overtake the car with constant velocity. The sketch also shows a graph of the two equations of
motion

Fig. 4.5 A diagram of the MathPad2 software architecture

examines them to determine whether they are gestural commands or simply digital
ink. If the ink strokes are commands, then the gestural analyzer communicates with
other components so that the appropriate actions are performed. The last part of the
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user interface component is the correction user interface, which lets users make cor-
rections to incorrectly recognized mathematical expressions on a symbol level and
on a parsing level.

When users make a mathematical expression recognition gesture, the gestural an-
alyzer sends the ink strokes to the mathematical expression recognizer, which con-
tains the mathematical symbol recognizer and the expression parsing system. The
mathematical symbol recognizer is in charge of taking a collection of ink strokes,
segmenting them into symbols, and classifying the symbols as particular characters.
The expression parser takes the collection of recognized symbols and does a struc-
tural analysis pass on them to create mathematical expressions that are sent back to
the user interface component.

When users issue a command for a computational or symbolic function, the user
interface component sends the appropriate recognized mathematical expressions to
the computational and symbolic toolset. This component converts the recognized
expressions into a command that is then sent to Matlab for processing. The Matlab
engine processes the command and sends the data back to the computational and
symbolic toolset, which then sends the results to the animation and output compo-
nent for display.

When mathematical sketches are created, the user interface component sends ink
strokes to the mathematical expression recognizer for processing and, using those
results and associated drawing elements, creates a behavior list that is sent to the
sketch preparation component. The user interface component also communicates
with the association inferencing part of the sketch preparation component in real
time whenever implicit associations are made. The sketch preparation component
does drawing dimension analysis and drawing rectification, using the data in the
behavior list, and also sends the list to the Matlab code generation component. The
Matlab code generation component is in charge of using the mathematical speci-
fication as well as information from the sketch preparation component to generate
Matlab executable code that is sent to the Matlab engine. Once the Matlab engine
executes the mathematical sketch code, the data are extracted and sent to the ani-
mation system where the animation engine moves any animatable drawing elements
based on their mathematical specifications.

4.3.2 The Gestural UI

An important goal of mathematical sketching (see Fig. 4.4) is to facilitate math-
ematical problem solving without imposing any interaction burden beyond those
of traditional media. Since pencil-and-paper users switch fluidly between writing
equations and drawing supporting diagrams, a modeless interface is highly desir-
able. Although a simple freehand drawing pen would suffice to mimic pencil and
paper, we want to support computational activities including formula manipulation
and animation. This functionality requires extending the notion of a freehand pen,
either implicitly by parsing the user’s 2D input on the fly or explicitly by letting
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the user perform gestural operations. We chose an interface that combines both, in
an effort to reduce the complexity and ambiguities that arise in many hand-drawn
mathematical sketches—we use parsing to recognize mathematical expressions and
make associations, and use gestures to segment expressions and perform various
symbolic and computational operations.

The challenge then for mathematical sketching’s gestural user interface is that
its gestures not interfere with the entry of drawings or equations and still be direct
and natural enough to feel fluid. We utilize a threefold strategy to accomplish this
task. First, we use context sensitivity to determine what operations to perform with
a single gesture. Second, we use location-aware gestures so that a single gesture
can invoke different commands based on its location and size. Third, we use the
notion of punctuated gestures [23], compound gestures with one or more strokes
and terminal punctuation, to help resolve ambiguities among gestures, mathematics
and drawings. Combining these techniques lets the entire interface be completely
modeless and also lets us reduce the gesture set while maintaining a high level of
functionality.

One of the important issues is whether the gestures actually make sense, since a
completely modeless user interface with a poor gesture set may not work well. Our
gesture set was chosen (see Fig. 4.6 for a summary) using two important criteria.
First, we wanted our gestures to be easy to perform and learn. Second, we wanted
gestures that work and seem logical for multiple commands to be used for all those
commands. For example, if a particular gesture makes sense for two or three dif-
ferent operations, then we want that gesture to invoke all those operations. This
approach eases learning as well, since users need not remember additional gestures.
In the remaining sections, we discuss the design issues the mathematical sketch-
ing gestural interfaces; details on the how the gestures are recognized can be found
in [10].

4.3.2.1 Writing, Recognizing, and Correcting Mathematics

Writing mathematical expressions in mathematical sketching is straightforward:
users draw with a stylus as they would with pencil and paper. The only complica-
tion in writing expressions is how errant strokes are corrected. Although the stylus
can be flipped over to use its eraser, we found that a gestural action not requiring
flipping was both more accurate (because of hardware characteristics of the stylus)
and more convenient. We therefore first designed a scribble erase gesture in which
the user scribbles with the pen back and forth over the ink strokes to be deleted.
However, this first implementation created too many false positives: it recognized
scribble erase gestures when in fact the user had intended to draw ink and not erase
anything. To alleviate this problem we settled on a punctuated gesture because of
its relative simplicity and ease of execution. Thus our current definition of scrib-
ble erase is the scribble stroke followed directly by a tap. In practice, users found
this compound gesture easy to learn, effective in eliminating false positives, and not
significantly more difficult or slower than the simple scribble gesture.
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Fig. 4.6 Mathematical sketching gestures. Gesture strokes in the first column are shown here in
red. In the second column, cyan-highlighted strokes provide association feedback (the highlighting
color changes each time a new association is made), and magenta strokes show nail and angle
association/rectification feedback

Once mathematical expressions are drawn, they must be recognized by the sys-
tem. Our initial attempt, clicking on a Recognize button that attempted to recognize
all mathematics on the page, was problematic because it was hard to algorithmically
determine “lines of math” accurately, especially when the expressions were closely
spaced, at unusual scales or in unusual 2D arrangements. We therefore chose a man-
ual segmentation alternative by which users explicitly select a set of strokes com-
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prising a single mathematical expression by drawing a lasso. Since in a modeless
interface a lasso cannot be distinguished from a closed curve, we needed to disam-
biguate these two actions. Our solution was to use punctuated gestures—this time
drawing a lasso around a line of mathematics followed by a tap inside the lasso.
We chose to make the tap inside the lasso so we could perform other lasso-and-tap
operations described in Sects. 4.3.2.2 and 4.3.2.5.

We can correct symbol recognition errors in two ways. First, users can tap on a
recognized symbol to bring up a n-best list of alternatives for that symbol; when
users click the correct symbol, the mathematical expression is updated both exter-
nally (in the user’s handwriting) and internally. Second, users can simply scribble
erase the offending symbols, rewrite them, and rerecognize the expression. Since we
store each recognized mathematical expression internally, the erasure of an offend-
ing symbol is noted in the recognized expression’s data record. When the expression
is rerecognized, only the rewritten symbols are examined, making the operation fast
and reliable.

In addition to correcting symbol recognition errors, users also need to correct
parsing errors arising when the mathematical expression recognizer has incorrectly
determined the relationship between symbols. Users can correct parsing mistakes by
moving mathematical symbols to new positions relative to the other symbols in the
expression; when the user finishes moving these symbols, the system automatically
rerecognizes the expression. To move a symbol or group of symbols, we use a lasso
and drag gesture. Users first make a lasso around the symbols of interest and then,
starting inside the lasso, use the stylus to drag the symbols to the desired location.
This approach is very easy and makes intuitive sense because a lasso says users want
to operate on the selected symbols and dragging them around is the most direct
method for moving them. In addition, users find it convenient not only to correct
parsing errors but also to manipulate terms.

4.3.2.2 Making Drawings

Diagrams are sketched in the same way as mathematical expressions except that
the diagrams need not be recognized. In considering the value of a primitives-based
drawing system against the added interaction overhead of specifying primitives, we
decided that our only primitive would be unrecognized ink strokes. We believe that
a primitives-based approach would not only require a more elaborate user interface,
but would also take away from the pencil-and-paper aesthetic we want to achieve
with mathematical sketching.

4.3.2.3 Nailing Diagram Components

In reviewing a broad range of mathematical illustrations, we found that the single
low-level behavior of stretching a diagram element can be very powerful. Thus, we
support the concept of “nails” to pin a diagram element to the background or pin a
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point on a diagram element to another diagram element. If either diagram element
is moved, the other element either moves rigidly to stay attached at the nail (if it has
only one nail) or stretches so that all its nails maintain their points of attachment.

The user creates a nail by drawing a lasso around the appropriate location in the
drawing and making a tap gesture inside it (the tap disambiguates the nail gesture
from a circle that is part of a drawing). This lasso-and-tap gesture is the same as that
used to recognize mathematical expressions. Although we could have used other
gestures, such as making a lasso and writing the letter “N” (for nail) to create nails,
lasso and tap seemed an attractively more logical gesture since it is analogous to
drawing the head of a nail and then hammering it in with the tap.

4.3.2.4 Grouping Diagram Components

Since many drawings involve creating one logical object from a set of strokes (draw-
ing elements), we need to be able to group strokes into composite drawing elements.
We can use the same lasso gesture for a grouping operation by drawing a lasso
around diagram strokes. We can distinguish the grouping gesture on the basis of
tap location. If a stroke is a tap, we check whether the previous stroke completely
contains any drawn strokes. If the tap falls within a few pixels of the lasso, then we
perform a grouping operation. After the operation, a green box is drawn around the
strokes to show that a grouping has been made and to distinguish it from a recog-
nized expression.

Although we could easily define a different gesture for grouping, we believe that
maintaining a simple contextually overloaded gesture set is easier for users than the
alternative larger gesture set. We explored overloading the mathematical expression
recognition gesture and determining whether to make a composite grouping or rec-
ognize mathematics by classifying the strokes within a lasso as drawings or text.
If the strokes are drawings, they would be grouped; otherwise they would be con-
sidered an expression and mathematical recognition would be done. However, this
classification is complex and this approach is not yet reliable; more robust algo-
rithms need to be devised for semantic diagram/illustration segmentation.

4.3.2.5 Associations

The most important part of a mathematical sketch is the associations between math-
ematical expressions and diagrams. Associations are made between scalar mathe-
matical expressions and angle arcs or one of the three special values of a diagram
element, its x, y, or rotation coordinate(s).

Implicit Associations Implicit associations are based on the familiar variable and
constant names found in mathematics and physics texts. These variable and constant
labels appear so regularly in these illustrations that they can clearly be used not for
just labeling but for making associations as well. Mathematical sketching supports
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point and angle associations implicitly and uses the recognized label and linked
drawing element to infer associations with other expressions on the page.

To create an implicit point association, users draw a variable name or constant
value near the intended drawing element and then use the mathematical expression
recognition gesture to recognize the label. The tap location can have two meanings
in completing the point association. If the recognition gesture’s tap falls within its
lasso, then the label is linked to the closest drawing element within some global dis-
tance threshold (we use a global distance threshold so that mathematical expressions
a significant distance away from a drawing element are not inadvertently associated
to that element). If the tap location is outside the lasso, it specifies both the drawing
element to be linked to the label and the drawing element’s center of rotation (this
point is used only for rotational labels). Note that the tap must be located on the
drawing element or in the bounding box of a composite drawing element. We have
found that users prefer tapping on the drawing element rather than inside the lasso
to make a point association, probably because they prefer choosing the drawing el-
ement to which mathematics is associated rather than letting the computer choose
for them.

To create an implicit angle association, users write a label, then draw an angle
arc such that the label is enclosed within the arc and the two ink strokes the arc
connects. Then users make a tap whose location on the arc determines the active
line—the line attached to the arc that will move when the angle changes. The apex
of the angle is then marked with a green dot, and the active line is indicated with an
arrowhead on the angle arc. Note that we do not detect or support cyclical associa-
tion relationships, such as the specification of each angle in a triangle.

Explicit Associations For slightly more control over associations and to reduce
the density of information in a diagram, associations can also be created explicitly
without using variable name labels. The user makes an explicit association by draw-
ing a line through a set of related mathematical expressions and then tapping on
a drawing element. After this line is drawn, drawing elements change color as the
stylus hovers over them to indicate the potential for an association. This technique
provides greater flexibility than the implicit association techniques in two ways.
First, explicit associations can specify the precise point of rotation: instead of just
tapping on the drawing element (which sets the point of rotation at the center of
the drawing element), users can press down on the element to select it, move the
stylus, and then lift the stylus to the desired center of rotation, even if it is not on
the drawing element. Second, explicit associations are somewhat faster than their
implicit counterparts because they do not require users to write down a label first. In
addition, users can make an association to a composite drawing element as a whole
(e.g., a car) by taping on empty space within the composite’s bounding box, or to a
part of the composite (e.g., a wheel) by tapping directly on an ink stroke.

4.3.2.6 Supporting Mathematical Toolset

Mathematical sketching also supports mathematical tools for graphing, solving,
simplifying, and evaluating recognized functions and equations. The utility of this
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toolset is twofold. First, it provides traditional tools found in other software pack-
ages, so that mathematical sketching becomes a more complete problem-solving
and visualization approach. Second, these tools can help in creating mathematical
sketches, for example, solving a differential equation to obtain the equations of mo-
tion for a sketch or integrating F = ma to find velocity as a function of time.

Graphing Equations Users can graph recognized functions with a simple line
gesture that begins on the function and ends at the graph’s intended location. The
graphing gesture is essentially the same as that used for creating explicit associa-
tions, except that it must have a minimum length and its end point must fall outside
any of recognized expressions’ bounding boxes. The graphing gesture must have
a minimum length (about 160 pixels) so that it is not interpreted as a mathematical
symbol such as a fraction line. A nice feature of this gesture is that it lets users graph
more than one function at a time by making sure that any part of the gesture line (ex-
cept the end point) intersects an expression’s bounding box. The graphing gesture
produces a movable, resizable graph widget displaying a plot of the function.

Solving Equations Mathematical sketching also lets users solve equations (see
Fig. 4.7. The solver is invoked by a squiggle gesture that resembles the graphing
gesture in that its start point must be inside a recognized expression’s bounding box,
its end point must be outside all expression bounding boxes, and it can intersect
multiple recognized expressions along the way. Its distinguishing characteristic is
that it must have two self-intersections whereas the graphing gesture must have
none. We could have overloaded the graphing gesture and then examined the context
of the intersected recognized expressions to determine whether a graphing or solving
operation was intended, but it makes more sense to have two distinct gestures for
these tasks since graphing and solving are two distinct operations. The squiggle
gesture is somewhat arbitrary but users have found it easy to remember and perform.
Once a squiggle gesture is recognized, the system presents the solution to users at
the end of the gesture.

MathPad2, can solve single equations, simultaneous equations, and ordinary dif-
ferential equations (with and without initial conditions) using the same squiggle
gesture. When a squiggle gesture is made, the recognized equations intersected by
that gesture are examined to determine what type of solving routine to perform.
If there is only one recognized equation and it has no derivatives, then we call a
single equation solver. If the equation contains derivatives, we call an ordinary dif-
ferential equation solver. If more than one recognized equation are intersected, we
check whether any derivatives are present. If so, the other equations are examined
to see if they give valid initial conditions for the differential equation. If so, we call
an ordinary differential equation solver. If none of the recognized equations have
derivatives, then we call a simultaneous equation solver (we also support simulta-
neous ordinary differential equations). With this approach users need to remember
only one gesture, making the interface much simpler, while making mathematical
sketching more powerful.
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Fig. 4.7 Solutions for a simple equation, an ordinary differential equation, and a set of simultane-
ous equations all invoked with the same gesture

Evaluating Expressions A variety of different mathematical expressions can be
evaluated using the supporting toolset. To evaluate a recognized expression, users
make an equal sign and then a tap inside the equal sign’s bounding box on the right
side of the expression. Choosing an equal sign as part of our evaluation gesture is
logical for these types of operations, since users are looking for equivalent math-
ematical expression representations. In addition, the equal sign is one of the most
common mathematical symbols and has an understood meaning.

MathPad2 supports evaluation of integrals, derivatives, summations, and simpli-
fication (see Fig. 4.8 for some examples). The recognized mathematical expression
to the left of the equal tap gesture is examined to determine what kind of evaluation
to perform. Combinations of summations, derivatives and integrals as well as nth-
order operations (e.g., double integrals, triple sums) are also possible. If the recog-
nized expression contains an integral, derivative, or summation then the appropriate
evaluation is performed. If none of these are found, then the evaluation defaults to a
simplification operation. The benefits of this approach are similar to those of equa-
tion solving: users need to remember only one gesture in order to perform different
evaluations while the addition improves mathematical sketching’s flexibility.

4.3.3 Mathematical Expression Recognition

Users write down mathematical expressions as part of the mathematical sketching
process and these expressions must be recognized so they can be used later in spec-
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Fig. 4.8 A variety of expressions evaluated using the equal tap gesture

ifying behaviors in a dynamic illustration or in a computational or symbolic op-
eration. Mathematical expression recognition involves two distinct, yet interrelated
activities; mathematical symbol recognition and mathematical expression parsing.
To present all of the details on our mathematical expression recognizer is beyond
scope of this chapter, thus we will only discuss it briefly. A thorough discussion
of the general issues involved with mathematical expression recognition and our
recognizer, in particular, can be found in [10].

4.3.3.1 Mathematical Symbol Recognition

To recognize mathematical symbols, we chose a writer-dependent approach where
each user provides a set of handwriting samples (10 to 20 samples per symbol) for
the recognizer to train on. A writer-dependent approach has the advantage that they
allow personalized recognizers tailored toward a particular user.

In our earlier implementation of MathPad2, we used a hybrid approach that com-
bined Li and Yeung’s recognition algorithm using dominant points in strokes [17].
”Dominant points in strokes” are defined as the key points in a stroke, including
local extrema of curvature, the starting and ending points of a stroke, and the mid-
points between these points. The algorithm uses dominant points to extract direction
codes for each symbol by looking at the writing direction from one dominant point
to another. The direction codes are broken up into 45-degree increments such that
each symbol is represented as a sequence of numbers from 0 to 7, with the length of
the sequence defined by the number of dominant points in the stroke. Using these
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direction codes, we can classify a symbol as one of an alphabet of symbols by us-
ing band-limited time warping, a technique designed to find the correspondence
between two sequences that may be distorted. This algorithm works well for many
symbols but has difficulty with symbols that have similar direction codes, such as “(”
and “1”. To deal with this problem, we combined a feature-based approach using a
linear classifier, similar to those in Smithies [21] or Rubine [19], with the dominant
point classifier. We ran an experiment to quantify the accuracy of this recognizer
(using 48 distinct symbols) using 11 subjects with over 14,000 symbols tested. Al-
though the recognition accuracy was good for some subjects (as high as 98%), the
overall accuracy of 87.1% was inadequate.

To improve recognition accuracy, we developed a novel mathematical symbol
recognizer [15] that performs much better than the recognizer used in [14]. We
chose to recognize symbols by examining them pairwise instead of using a multi-
class approach. In other words, our hypothesis was that, with a robust feature set, a
recognition algorithm should have a better chance of deciding if a candidate symbol
is either symbol A or B than deciding if it is any one of the symbols A–Z. Thus,
if every unique pair is examined, the candidate symbol should be the one selected
by the most classifiers. This pairwise approach then allows comparisons without the
intrusion of another symbol’s data outside the pair, which could skew the feature
variances in the wrong direction.

One of the issues with this pairwise approach is that the number of comparisons
would be m(m−1)

2 , so m of reasonable size would slow the recognizer down consid-
erably. We had observed through some empirical analysis the Microsoft handwriting
recognizer has the correct classification in its n-best list over 99% of the time. There-
fore, we incorporated it into our symbol recognizer as a first pass to prune down the
number of pairs, making the algorithm much faster.

The key to this approach is to have a robust feature set and a set of associated
weights on those features for pairwise discrimination. The weights on these features
can be found using a variety of algorithms assuming conditions on the distributions
of the features. If the features we use are normally distributed, then approaches
found in [19, 21] could be used; however, our features are not necessarily normally
distributed. We therefore decided to use AdaBoost [20] to find feature weights be-
cause of its invariance to distribution assumptions, its ability to deal with simple
classifiers, and its simplicity. AdaBoost takes a series of simple or base classifiers
and calls them repeatedly in a series of rounds on training data. Each weak learner’s
importance or weight is updated after each round on the basis of its performance
on the training set. With this recognizer, we obtained an overall accuracy of 95.1%,
which is significantly better than our previous approach.

4.3.3.2 Mathematical Expression Parsing

Once the mathematical symbol recognizer classifies a set of ink strokes as a set of
particular symbols, these symbols must be structurally analyzed to determine their
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relationships with one other and parsed to create a coherent mathematical expres-
sion. As with mathematical symbol recognition, the parsing system can be writer-
independent or -dependent. We chose to make our parser mostly writer-independent
since we do utilize ascender and descender information (e.g., an ascender would be
“b” while a descender would be “p”) from the user’s writing samples to help deal
with implicit operators (e.g., subscripts, superscripts). With this approach, a key
issue is making the spatial relationship rules broad enough to capture how differ-
ent users write mathematical expressions without making them too broad to main-
tain accuracy. Unfortunately, there is no set rule of thumb for making these rules.
Therefore, we chose the spatial rules based on neatness and consistency criteria. Of
course, not all users fit within these criteria, but we felt many of them would and
those who did not could adapt to the rules over time.

Our approach to parsing mathematical expressions is based on two methods, a
coordinate grammar [3] and procedurally coded syntax rules [16]. We chose a coor-
dinate grammar for ease of implementation and coded syntax rules to help resolve
ambiguities and to allow more complex methods for dealing with and reducing pars-
ing decisions. Our coordinate grammar is similar to that in [18] in that we have a
set of spatial relationship rules defined separately from our context-free grammar.
The spatial relationship rules are used to convert the two-dimensional mathematical
expressions into a one-dimensional representation as the expression is parsed with
the context-free grammar.

The mathematical expression parsing system takes as input a list of symbols
sorted from left to right by location. The algorithm utilizes two types of proce-
dures: parse functions and process functions. The parse functions parse the symbols
according to the context-free grammar. The process functions determine how sym-
bols relate to each other based on their relative locations and contain the spatial
relationship rules that determine how symbols interact mathematically. The results
from these functions are stored as extra symbol information so the parse functions
know exactly what symbols represent and how they relate to one another. The pro-
cess functions are intermixed with the parse functions and act as helpers, giving
them any information they need to parse expressions using the grammar. The parse
functions translate the list of symbols into a 1D string representation built upon the
context-free grammar. Once the parsing system creates a 1D string, it is sent to the
procedurally coded syntax rules for further processing. An example of such a rule
is if 5in(x) is recognized, we assume from the similarity of 5 and “s” that a user is
trying to write a sine function, and we replace the 5 with an “s”.

In addition to constructs such as integrals, derivative and summations, MathPad2

also supports conditional statements. Conditionals are used as branching instruc-
tions in mathematical sketching and are written using a discontinuous function rep-
resentation. Figure 4.9 shows a conditional expression used in mathematical sketch-
ing. The key to parsing conditionals is to break up the lines of mathematics so that
each one can be parsed individually and incorporated back into the conditional ex-
pression. We tested our parsing algorithm on several hundred mathematical expres-
sions over 11 different subjects. Although some of subjects had their expressions
parsed correctly over 98% of the time, the overall average was 90.8%, indicating
that we need more work on improving the parsing step.
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Fig. 4.9 A conditional expression

4.4 Preparing Mathematical Sketches

Mathematical sketches need to be analyzed so that information from the free-form
drawings, any associated labels, and the data generated from the mathematics can
work together to make dynamic illustrations. This analysis is performed in real time
and during a pre-simulation step. The main type of preparation done in real time
is association inferencing. When users make an association, mathematical expres-
sions must be attached to a particular drawing element. The pre-simulation step of
mathematical sketch preparation, performed just before the sketch animates, gath-
ers important information from the sketch so it can run properly. For a sketch to run
properly, dimensional analysis and drawing rectification are required.

4.4.1 Association Inferencing

When users make implicit associations they label drawing elements; we use these
labels to determine which written mathematical expressions to associate with a par-
ticular drawing element. An expression should be associated with a drawing element
if it takes any part in the behavioral specification of that element. Two types of labels
can be associated to drawing elements. The first type of labels are constants. As an
example, a user might want to associate the number 100 to a horizontal line indicat-
ing its length or associate the constant l = 50 indicating a building’s height. With
these types of associations, inferencing is trivial: if a label is a number or equal to a
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number, the label is the only mathematical expression collected and the association
is complete. The second type of labels are variable names which are slightly more
complicated since they generally refer to other mathematical expressions. We utilize
the label families to infer which mathematical expressions should be associated to
the labeled drawing element.

A label family is defined by its name, a root string. Members of the label family
are variables that include that root string and a component subscript (e.g., x for
its x-axis component) or a function specification. For example, if the user labels a
drawing element φo, the inferencing system determines the label family to be φ and
finds all mathematical expressions having members of the φ label family on the left-
hand side of the equal sign: φ, φo, φ(t), φx(t), and so on. The inferencing system
then finds all the variable names appearing on the right-hand side, determines their
label families, and then continues the search. This process terminates when there are
no more variable names to search for. Once all the related mathematical expressions
have been found, they are sorted to represent a logical flow of operations that can be
executed by a computational engine, and the implicit association is completed.

4.4.2 Drawing Dimension Analysis

Mathematical sketching assumes a global Cartesian coordinate system with the +x-
axis pointing to the right and the +y-axis pointing up. However, the overall scale of
the coordinate system—how much screen space is equal to one coordinate unit along
either axis—must be defined. Note that individual drawing elements have their own
local coordinate systems with the origin at the center of the element. However, these
local coordinate systems are all scaled based on the global coordinate dimensions.
Mathematical sketch dimensioning is important since the animation system needs
to know how to transform data from simulation to animation space. With many
mathematical sketch diagrams, enough information is in place to infer the sketch’s
dimensions, either by using the initial locations of diagram elements or by labeling
linear dimensions within a diagram.

When two different drawing elements are associated with expressions so that
each drawing element has a different value for one of its coordinates (x or y), then
implicit dimensioning can be defined. The distance along the coordinate shared be-
tween the two drawing elements establishes a dimension for the coordinate system,
and the location of the drawing elements implies the location of the coordinate sys-
tem origin. For example, for the sketch on the right of Fig. 4.10, at time 0, the value
of hx(t) is 0 and the value of sx(t) is 10. Thus, we can dimension the x-axis using
the distance between the two cars defined by their locations at time 0. The factor
used in transforming drawing elements from simulation to animation space is then
the distance between the two cars in pixels divided by 10.

Alternatively, if only one drawing element is associated with mathematics or if
more than one drawing element is associated with mathematics but they all have
the same values at time 0, then the dimension of the coordinate system can still be
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Fig. 4.10 Two methods for inferring coordinate dimensions: the mathematical sketch on the left
uses labeling of the ground line, while the one on the right uses the calculated distance between h

and s at time t = 0

inferred if another drawing element is associated with a numerical label. Whenever
a numerical label is applied to a drawing element, it is analyzed: if it is a horizontal
or vertical line, the corresponding x- or y-axis dimension is established; otherwise,
we apply the label to the best-fit line to the drawing element and then establish
the dimensions of both coordinate axes. For example, with the sketch on the left of
Fig. 4.10, at time 0 both hx(t) and sx(t) are 0, offering no help with defining coordi-
nate dimensions. However, the horizontal line below it is labeled with 10. Therefore,
we can dimension the x-axis with 10 and define the simulation-to-animation-space
transformation factor to be the width of the line in pixels divided by 10.

Two important issues in drawing dimension analysis must be addressed. First,
more than one drawing element may have a line label, so that there are multiple
possibilities for a x or y dimension. One approach to this issue is simply to choose
the first or last drawing element that defines an x or y dimension. This approach
works but is not necessarily ideal; we are currently looking at ways for users to
choose drawing elements to use for dimensioning. Second, if not enough informa-
tion has been specified to define coordinate system dimensions implicitly, then de-
fault dimensions are used. This default works for many mathematical sketches but
is sometimes insufficient, resulting in drawing elements that hardly move at all or
move quickly off the screen. One approach to this problem is to examine the mini-
mum and maximum values that a drawing element obtains during simulation and use
it to dimension the coordinate system so that drawings always move appropriately.

4.4.3 Drawing Rectification

Mathematical sketches often have inherent discrepancies between what the mathe-
matics specifies and what the user draws. In other words, because users write precise
mathematical specifications and make imprecise free-form drawings, the correspon-
dence mismatch between the two often yields a dynamic illustration that looks in-
correct. Rectification is the process of fixing the correspondence between drawings
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and mathematics so that something meaningful is displayed. MathPad2 supports an-
gle, location, and size rectification which are critical in many of the mathematical
sketches created with open-form solutions (see Sect. 4.4.4).

4.4.3.1 Angle Rectification

Mismatches between numerical descriptions of angles and their diagram counter-
parts are readily discernible. When an angle is associated with mathematics, we
rectify the drawing in one of two ways. First, the angle between the two lines con-
nected by the angle arc is computed. Next, the system determines if a mathematical
expression corresponding to the angle label already exists. If so, it rotates the active
line as determined by the difference between the drawn angle and numerical label,
to the correct place based on the mathematical specification. If not, it uses the an-
gle computed from the drawing as the numerical specification of the angle’s value.
Currently, this angle is represented internally and used during simulation.

Our angle rectification strategy works well when angles are defined by two iso-
lated drawing elements. However, it fails in certain situations. For example, an angle
must be defined by two separate drawing elements. If users draw the initial and ter-
minal sides of an angle with one stroke (e.g, the first two sides of a triangle), the
angle rectification algorithm cannot handle it. We could deal with this issue by de-
tecting vertices and breaking the stroke into parts. However, the problem gets more
difficult when dealing with drawings such as triangles. More details on angle recti-
fication can be found in [10].

4.4.3.2 Location Rectification

User drawings often contain drawing elements placed in relation to other elements.
If a drawing element is placed incorrectly with respect to other drawing elements
and their mathematical specifications, the dynamic illustration does not look correct
and may not present the right visualization. Consider the sketch in Fig. 4.11. The
user draws the ball but positions it a bit to the right on the horizontal line. However,
to see whether the ball will travel over the fence (a distance of 100 units), the ball
should be placed so that it starts at distance zero, which is at the start of the horizon-
tal line. Since this is a 2D sketch, the ball should also be placed at a certain height
from the ground. In both cases, we want to place the ball using the initial conditions
of the mathematical specification in relation to any labeled drawing elements. In
our example, the ball should be at location (0,3) with respect to the horizontal line,
since the initial conditions for its position are defined by px(0) and py(0). Now
the system must rectify the ball’s position in order to make a valid correspondence
among the ball, the labeled lines, and the mathematics.

To perform location rectification, we begin by looking at all drawing elements
associated with functions of time. Each of these elements is checked for explicitly
written initial conditions specified by mathematical expressions, found by using the
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Fig. 4.11 A mathematical sketch created to illustrate projectile motion with air drag (using an
open-form solution). If the ball labeled “p” is not positioned correctly with respect to the horizontal
line, it is difficult to verify whether the mathematics drives the ball over the fence

drawing element’s core label. The mathematical expressions associated to the draw-
ing element are examined: if they contain the core label on the left-hand side of
the equal sign as a function evaluation, such as the px(0) and py(0), the right-hand
sides of these expressions are taken as the initial condition values. If there is no core
label (because an explicit association is used) or no explicitly written initial condi-
tions, we can still find initial conditions for the drawing element by looking at the
simulation data’s initial values. Once the initial conditions for a drawing element
are found, the remaining drawing elements are examined and the information from
drawing dimension analysis is used to relocate the drawing element. Drawing ele-
ments are relocated based not only on the dimensioning of an axis, but also on the
location of the drawing element from which that dimension came, since we want
to maintain the relationship between the two. Therefore, we examine each drawing
element not associated with a function of time to see if it has a line label and a di-
mension for the x- or y-axis. If it has a dimension for the x-axis, we look at its start
and end x coordinates and choose the smallest. The smallest x coordinate is cho-
sen since we assume the origin along the x-axis is always defined as the leftmost x

coordinate of the drawing element. With the x coordinates for the origin ox , initial
condition px0, and the center of the drawing element dx we want to relocate, we
then calculate a translation factor

tx = −(dx − ox) + px0 · sax, (1)

where sax is the dimensioning factor for the x-axis defined in Sect. 4.4.2. tx is then
used to translate the drawing element to its rectified location in the x direction. If
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the drawing element with the associated line label has a dimension for the y-axis,
we use the procedure for x translation to translate the drawing element we want to
rectify in the y direction, the only difference being that we choose the bottommost y

coordinate of the drawing element with the line label as the origin along the y-axis.
Choosing the origin point in this way facilitates an origin with the +x-axis pointing
to the right and the +y-axis pointing up.

Two important issues arise in our location rectification procedure. It is possi-
ble that in a 2D mathematical sketch, only one drawing element has a line label,
meaning that only the x- or y-axis is dimensioned. Our drawing dimension proce-
dure handles this by simply dimensioning the other axis with the same dimensional
information. Since location rectification uses the information from drawing dimen-
sion analysis, the relocation of a drawing element will reflect this information. The
other important issue is determining what happens when there is more than one
x- or y-axis line label, resulting in more than one x or y origin coordinate. In these
cases, we assume that when users make drawings they intend to put these elements
in approximately the right place. We can thus choose the origin point closest to the
drawing element we want to relocate. However, if we make this choice, the x and
y dimensions may be taken from another drawing element or elements with line
labels. In this situation, the dimensions could be overridden, but this could cause
problems if another time-varying drawing element uses those dimensions. If this
happens, then separate x and y dimensions are needed for each time-varying draw-
ing element.

4.4.3.3 Size Rectification

The size of a drawing element in relation to other drawing elements or to the written
mathematics plays a role in the plausibility of many dynamic illustrations developed
with mathematical sketching. The mathematical sketch in Fig. 4.12 illustrates a ball
bouncing off a wall in 1D. The mathematics associated with the ball uses the size of
the ball to determine when the ball collides with the wall and to update its velocity
and location with respect to the wall. The mathematics also precisely specifies the
diameter of the ball (xu = 1.2) and specifies how long the horizontal line below
the ball should be (which is also used for dimensioning x). Therefore, the ball’s
behavior is precisely defined. However, the user may or may not draw the ball with
diameter 1.2 relative to the horizontal line. If the ball is not drawn at the correct size,
the dynamic illustration will not look correct, since the ball either goes through the
wall before changing direction or stops and changes direction before it hits the wall.
To remedy this situation, the ball must be resized according to the mathematics
and its relationship to the x-axis dimension. In this example, since we know the
diameter of the ball in simulation space from the variable xu = 1.6, its size in pixels,
and its relationship to the horizontal line, we can rectify its size appropriately, as in
Fig. 4.12. In this example, location rectification is also important since the ball’s
location also affects the plausibility of the dynamic illustration.

Resizing drawing elements is slightly more complex than angle or location rec-
tification because drawing elements can be scaled in many different ways. Without
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Fig. 4.12 A mathematical sketch showing a ball traveling in 1D, making collisions with two walls
(using an open-form solution with a conditional). If the ball (labeled “x”) is not the correct size in
relation to the x dimension and the mathematics, the illustration will not look correct since the ball
will not appear to hit and bounce off the wall

some user intervention, the problem is underconstrained, since a drawing element
could be scaled about any point and in any direction (e.g., uniformly, along its x-
or y-axis, etc.). To constrain the problem, we first assume that scaling is done about
the single or grouped drawing element’s center. Second, we assume that a drawing
element can be scaled uniformly, along its width, or along its height. These assump-
tions are somewhat restrictive but work well for most mathematical sketches that
require size rectification. The size of a drawing element is specified using its core
label subscripted with “u”, “w”, or “h”, respectively. For example, to specify the
width of a drawing element we write xw = 〈width〉. Using this notation works when
mathematics is associated to a drawing element implicitly or explicitly and does not
place any extra burden on users.

To perform size rectification, we first examine all time-varying drawing elements,
checking to see if any size information is associated to them. Size information is
found by looking at the drawing element’s core label and determining if any vari-
able names with the core label have subscripts with “u”, “h”, or “w”. If so, the
values assigned to the size variables are extracted from the right-hand side of these
equations. Using the information from drawing dimension analysis that gives us the
simulation-to-animation-space transformation factors, we then create scaling factors
for each drawing element and resize them appropriately. Note that if no core label is
present, the algorithm looks for variables starting with “u”, “w”, or “h”, and extracts
the values from those equations.
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As with location rectification, the complexity of size rectification increases when
more than one drawing element has a line label, resulting in more than one choice
in dimensioning the x- and/or y-axis. We can deal with this problem, much as in
location rectification, by either updating the x- or y-axis dimensions based on which
line-labeled drawing element is closer to the drawing element we want to rectify or
simply keeping multiple dimensions for each axis and applying them accordingly
during animation. Another important concern with our size rectification approach
is what happens when the associated mathematics lacks size information. In these
cases, it is still possible to infer scale by examining the size of the drawing element
in pixels and using the drawing dimensions to create the correct size of the drawing
element in simulation space. However, figuring out the type of size rectification to
perform (e.g., uniformly, across width or height) would be difficult without some
user intervention.

The last concern in our size rectification procedure (and with size rectification in
general) is that even with drawing element resizing, a dynamic illustration may not
always look precisely correct. The reason for these imperfections is that we let users
make free-form drawings.1 Free-form drawings have an inherent impreciseness on a
geometric level that is difficult to take into account when preparing a mathematical
sketch for animation. Referring again to Fig. 4.12, we see that the mathematical
specification assumes the ball is a perfect circle. Therefore, if users draw the ball as
an approximate circle, the ball can still stop slightly before the wall or go past it by
a small amount, depending on how the ball is actually drawn. We have found that,
in most cases, users do not find these minor imperfections significant and feel the
animations are plausible, given that illustrations are based on a sketch.

4.4.4 Translating and Visualizing Mathematical Sketches

In MathPad2, the mathematical specifications that users write as part of mathemat-
ical sketches are essentially small programs that must be translated into the proper
format to be executed in a computational engine. The data these programs generate,
along with information from the sketch preparation routines, allow the animation
engine to animate drawing elements and create a dynamic illustration. However, we
want users writing mathematical specifications to perceive them not as a program
that requires an ordered list of instructions, but rather as a collection of mathemat-
ical statements that they might write in their notebooks to solve a problem. This
collection of mathematical statements should be order-independent from the user’s
perspective and not have the rigid structure required by conventional programming
languages. To facilitate a more notational style, the mathematical specifications used
in mathematical sketching do not require variable declarations: users simply write
variables and constants without any regard to whether they are integers or reals. The

1Angle and location rectification suffer from this permissiveness to a lesser extent.
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Fig. 4.13 Using an open-form solution, the mathematical sketch shows an illustration of orbital
motion

mathematical specifications also need not be written linearly: users can write their
specifications anywhere on the page, as they might in a notebook.

MathPad2 supports mathematical sketches that use both closed-form (see Fig. 4.4
and open-form solutions. With closed-form solutions, the movement of a drawing
element can be defined with functions whose output is known for any point in time.
Thus, a closed-form function of time can be evaluated for any time t and the result
easily returned. Unfortunately, not all types of mathematical and physical phenom-
ena can be modeled with closed-form solutions. With open-form solutions, move-
ment of a drawing element is not known in advance and needs to be simulated
using a numerical technique. Thus, the movement data for a particular drawing ele-
ment are determined incrementally. Examples of mathematical sketches that employ
open-form solutions are shown in Figs. 4.11, 4.12, and 4.13 and create dynamic il-
lustrations for 2D projectile motion subject to air resistance, a ball colliding with
two walls, and orbital motion, respectively. Translating mathematical sketches that
use closed-form solutions is fairly straightforward and is discussed in [10]. Thus,
here we focus on how sketches using open-form solutions are translated.

There are many different notations for writing open-form solutions (e.g., using
subscripts or index variables). Our initial approach was to use subscript notation.
However, after consulting several elementary physics textbooks, we chose a notation
(see Fig. 4.13) that we felt was more appropriate for our intended user base, high
school and first year college students.

Before any processing can be done on an open-form solution, it must first be
recognized as one. Using our notation, a function’s current value is determined,
in part, from its previous values. Thus, the left-hand sides of expressions that fit
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Fig. 4.14 Code generated
from the mathematical
specification in Fig. 4.12.
Note that since indexing into
arrays in Matlab start at 1, the
initial condition x(0) = 5
written in the sketch is
translated to x(1) = 5

this criteria have as input parameter t + 〈variable〉 where the “variable” is a time
increment: for example, px(t + h) = px(t) + a2. The mathematical expressions
associated with a given drawing element are examined; if any of them have t +
〈variable〉 on the left-hand side of the equal sign and the time increments (i.e., the
symbol to the right of the “t+”) are all the same variable, we assume an open-form
solution.

Open-form solutions have a preprocessing and computation step. In the prepro-
cessing step, user-defined function names and their parameters are extracted from
the mathematical expressions associated to drawing elements. We need to know
these names to translate the expressions to Matlab-compatible strings and to convert
them into proper functions with appropriate indexing. Once the function names and
parameters are extracted, the preprocessing step looks for iteration constructs, ex-
tracting information from them used in the computation step, and converting mathe-
matical expressions to Matlab-compatible strings. The last part of the preprocessing
routine deals with the initial conditions. If a user-defined function has a number as
a parameter (i.e., px(0)), we assume it defines an initial condition for that function.

For each animatable drawing element, the computation step first determines
which user-defined functions should be included within an iteration construct by ex-
amining their parameters. Using the time increment variable found when the math-
ematical sketch was examined to see if it was an open-form solution, the number of
iterations is calculated using � (Tfinal−Tinitial)

�t
�, where �t is the time increment vari-

able. With this information the Matlab code is constructed (see Fig. 4.14) and exe-
cuted and the data are stored in arrays named after the user-defined functions in the
mathematical specification. Once the data are generated, the animation engine uses
them to animate the dynamic illustration.
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4.5 Moving Forward with Mathematical Sketching

Because mathematical sketching is a relatively large-scale interaction paradigm, a
significant amount of future work can be explored. This section presents a research
agenda for mathematical sketching in the context if improving the MathPad2 proto-
type.

4.5.1 The Computational and Symbolic Toolset

Graphing mathematical expressions is currently restricted to two-dimensional line
plots. Extending graphing functionality to support other types of graphs such as his-
tograms, 3D line plots, and contour and surface plots in 2D and 3D would increase
mathematical sketching’s flexibility. Adding these new types of graphs would not
add much complexity to the interface. Using the graphing gesture, the system could
analyze the mathematical expressions to determine what type of graph to create. In
some cases, several types of graphs could be made for a given mathematical expres-
sion: adding a simple marking [9] or flow menu [6] to the graph gesture would let
users choose which type of plot they wanted if multiple plot styles were available.
Mathematical sketching also needs to support plotting function families. For exam-
ple, a solution to an ordinary differential equation is a family of functions based on
the constants in the solution. If initial conditions are provided, the solution is simply
one function (assuming no other constants are present). Having the system choose
a reasonable range for these constants so the general solution to an ordinary dif-
ferential equation can be visualized would greatly improve mathematical sketching.
Users could also specify these ranges for more interactive control. Another limi-
tation of mathematical sketching’s current graphing approach is that a function’s
domain is predefined in the graph. Users can adjust a function’s domain in the graph
widget by writing in the values, but an automatic way to choose an appropriate do-
main might be more useful. One approach to finding an appropriate domain would
be use the zeros of the function as a guide, but this approach would work well only
in some cases.

More flexibility in expression evaluation and equation solving will also increase
the power of mathematical sketching. Currently, users make an equal and tap gesture
next to a recognized mathematical expression and the expression’s context deter-
mines whether integration, summation, differentiation, or simplification should be
performed. Extending expression evaluation to support additional numerical calcu-
lations as well as other symbolic manipulation such as factoring, Fourier transforms,
and Taylor series expansions would make it difficult simply to rely on the expres-
sion’s context for its evaluation. Using either marking or flow menu techniques as
part of the equal and tap gesture would help to distinguish among the multitude of
different evaluation options while still maintaining the user interface’s fluidity. In
equation solving, mathematical sketching assumes it will solve for x, y, z, and w

if these variables are present in the equations. However, users may want to define
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Fig. 4.15 How a user might
specify a user-defined
function. The def and end
keywords signify the start and
end of the function
respectively

a set of equations with unknown constants and solve in terms of them. Improving
the interface for invoking equation-solving operations would let users choose what
variables to solve and thus provide more flexibility. A way to support this additional
functionality would be to turn the equation-solving gesture into a compound ges-
ture by which users could explicitly write in the variables to solve for, resorting to a
default scenario if no variables are written.

4.5.2 Functions and Macros

Letting users define their own functions and macros would make mathematical
sketching more powerful because users could build libraries of specific reusable
functions. For example, a user could create a Runge–Kutta function for use in
sketches requiring open-form solutions, or define a function to encapsulate a ro-
tation or scaling operation. Users can already define simple functions when making
mathematical sketches to a certain extent, but they cannot store them and reuse them
at will.

The key issue in user-defined functions and macros is how and at what level
they are specified in mathematical sketching. In general, users should be able to
specify the function name, its input parameters, the statements that make up the
function, and its output parameters. These user-defined functions and macros could
also become relatively sophisticated in terms of whether function parameters can be
passed by value or by reference.

One approach to defining functions and macros is to use a keyword to indicate
that a function is going to be defined and a keyword to indicate where the func-
tion ends, as in Fig. 4.15. Important information about the function could then be
extracted. In Fig. 4.15, users write the def keyword to indicate that they want to
define a new function. The x on that line indicates the return variable and the name
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of the function is foo, taking two parameters, y and α. The end keyword signifies
the end of the function. Functions of this type could be stored and used in any other
mathematical sketch (just like sine and cosine).

This approach does make some assumptions. Defining functions and macros in
this way assumes that type information is not needed; this assumption is valid be-
cause we do not want users to define functions as in a conventional programming
language. Another assumption is that the mathematical symbol recognizer can re-
liably recognize commas, challenging to recognize accurately because of their size
and similarity to “1” and “)”. This assumption could be relaxed since other the input
parameters could be specified in other ways (e.g., using “:” or a parameter widget).
A final assumption in this approach is that we can safely determine whether input
parameters and return values are arrays of numbers or simply scalars without having
to make that specification explicitly. We should be able to determine this informa-
tion from the surrounding mathematics; if not, other keywords could be introduced.
Adding user-defined storable functions and macros like the one shown in Fig. 4.15
would require a moderate software development effort, although there will be some
challenging design decisions to make in dealing with more complicated function
specifications.

User-defined functions and macros could be used on the mathematical sketch
level as well. Users could encapsulate small sketches for use in building up more
complex ones. The problem with this functionality is that many complex physical
and mathematical problems cannot be easily broken down into simpler pieces. This
key issue makes encapsulating small sketches to make more complex ones a very
difficult research problem, and more work is needed to determine the utility of using
simple mathematical sketches as building blocks for more complicated ones.

4.5.3 Moving to 3D

Mathematical sketching currently supports two-dimensional dynamic illustrations:
drawing elements can rotate and translate in the x or y directions. Mathemat-
ical sketching could be made more powerful by extending it to support three-
dimensional dynamic illustrations. Supporting three-dimensional dynamic illustra-
tions has some interesting implications. First, because we are adding another dimen-
sion, mathematical specifications will become more complex, and support for partial
derivatives will be needed. Second, users’ drawings become more complex because
they will be done in perspective. Third and most importantly, drawing dimension
analysis and drawing rectification must be extended to deal with three dimensions.
In addition, many people have difficulty making 3D drawings which can make math-
ematical sketch preparation even more difficult to perform. The last two implica-
tions assume that three-dimensional dynamic illustration support would be a direct
extension of two-dimensional mathematical sketching. Users would write mathe-
matics, make 3D drawings and make associations between the two. Since making
3D drawings can be difficult, one way to simplify creating 3D dynamic illustrations
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is to used 3D geometric primitives created using simple pen gestures, possibly using
techniques from Sketch [24] or Teddy [8]. This approach goes against our free-form
drawing aesthetic in mathematical sketching, but from a usability standpoint 3D ge-
ometric primitives seem very helpful and make drawing rectification much easier
to deal with. If we use 3D geometric primitives, supporting 3D dynamic illustra-
tions will be a fairly straightforward but significant software development effort.
However, if users can draw 3D diagrams as part of a mathematical sketch, then
the problem gets more difficult because of the issues involved with rectifying and
understanding a 3D diagram, resulting in a significantly challenging research area.

4.5.4 Interactivity

Mathematical sketching is a highly interactive activity. However, when users create
mathematical sketches, all they can do is run the sketch and watch the animation. An
interesting area of further research is to provide higher levels of interactivity during
a dynamic illustration. Letting users interact with the dynamic illustration while
it is running would make possible a more extensive exploration into mathematical
and physical concepts in a variety of different situations. For example, users could
explore collisions by grabbing one object and moving it into another object, or could
move a cylinder through a flow field to observe how its movement affects flow.

This increased interactivity would require additional constructs such as meth-
ods for labeling drawing elements as interactively movable. Internally, some of the
mathematical sketching components would have to be modified. Currently, mathe-
matical sketching acts like a compiled program: data are generated from the mathe-
matical specifications using Matlab and are then used to animate drawing elements.
Letting users interact with dynamic illustrations as they run would require a more
interpretive approach: the data would need to be generated one frame at a time be-
cause users would influence drawing element behavior in real time. This type of
interactivity would work only with open-form solutions because drawing elements’
positions and orientations would not be known in advance. Converting to an inter-
pretive scheme would require a moderate software development effort, and creating
the additional user interface constructs required to specify interactivity and actually
interact with the dynamic illustration is a moderately difficult research problem,
given that there are many different ways to construct a more interactive dynamic
illustration. For example, we could use special gestures to indicate what drawing el-
ements should be interactive or make it part of the mathematical specification with
a predefined function combined with our association mechanism.

4.5.5 Generating Mathematics from Drawings

Users have often commented that they would like their drawings to generate mathe-
matics. Specifically, many users have wanted to draw a function and have MathPad2
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create a mathematical representation for the drawing. This functionality would be
useful in many different circumstances, especially when users have a good idea
of what a function looks like but have no way to represent it mathematically. At
a minimum, it would be trivial to find a polynomial that approximates the func-
tion based on the drawing points. In fact, if a function has n points we can find a
(n − 1)st-order polynomial that fits the function exactly (assuming continuity). We
could also do various forms of curve fitting using splines, piecewise polynomials,
or least squares. These techniques would not necessarily provide an exact mathe-
matical representation for the drawing, but they might be sufficient in some cases.
Users could provide guidance to the system on what types of functions to look for
(e.g., exponential, sine wave, etc.). Using a curve fitting technique would require
a moderate software development effort because there are many known techniques
for doing this type of task. Finding more exact functions for a given drawing is a
difficult research problem, but is certainly an interesting area for future work.

Another way to generate mathematics from drawings is to use a vector gesture to
define vectors and attach them to drawing elements describing the element’s initial
trajectory. For example, in a 2D projectile motion example, a user could make a vec-
tor gesture and attach it to a ball: the length of the gesture would indicated the ball’s
speed and the angle between the vector and the horizontal would indicate the ball’s
initial angle. These values could then be presented to users as mathematical expres-
sions. The ball’s speed and initial angle would be modified by moving the vector
and would be reflected in the generated mathematical expressions. This approach
would give users an alternative way to make parts of a mathematical specification
associated with a drawing element.

When users want to change a parameter in a mathematical specification, they
erase the value, write in a new one, and recognize the whole expression again. We
could make this task easier for users by providing a mechanism for changing pa-
rameters quickly, say by invoking a slider widget that attaches itself to a parameter
expression so users could interactively update the parameter value. To create these
sliders, users could draw a line of sufficient length and put a large dot somewhere
on it. Next users would tap in the bounding box of the mathematical expression
they want to modify. Users could then move the large dot back and forth to change
the parameter value accordingly. This technique is another example of a plausible
approach to generating mathematics (i.e., constants) from drawings.

4.5.6 Adding Specific Underlying Mathematical Engines

One of the major principles of mathematical sketching is that users should specify
all of the necessary mathematics to make a dynamic illustration. This principle is
in direct contrast with Alvarado’s ASSIST system [1], which needs no mathematics
specifications (only the drawings) to make a dynamic illustration. The ASSIST sys-
tem does not need any mathematical specifications because it has an underlying 2D
motion simulator. This approach has significant merit but we feel that specifying at
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least some of the mathematics is important in understanding and exploring various
mathematical and physical concepts. The interaction between users’ mathematical
specifications and specific underlying mathematical engines is thus an interesting
area for future work.

Consider the effect on a ball moving along a plane of a series of objects each
with different attracting and repelling forces. To make this dynamic illustration, an
open-form solution is needed. However, a user could start with F = ma and de-
rive a differential equation for the motion of the ball and then employ a numerical
technique to make the dynamic illustration. In some cases, going as far as the differ-
ential equation suffices for the user, who could make the associations as usual and
run the mathematical sketch. The difference in this situation is that a physics engine
uses the information in the sketch to construct the data required to run the dynamic
illustration. With this hybrid approach, users must still derive mathematical specifi-
cations for given drawing elements but can let an underlying mathematics engine do
the work that the users might not be interested in. Given the possibly complex inter-
actions between the underlying mathematics engine and user-derived mathematical
specifications, this hybrid approach is a challenging research problem.

4.5.7 Alternate Forms of Dynamic Illustration

Mathematical sketching currently lets users create dynamic illustrations by animat-
ing drawing elements with rigid body transforms and simple stretching. It would be
interesting to explore other types of dynamic illustrations with different aesthetics.
For example, dynamics can be visualized through changing colors. Consider heat
dissipation across a rectangular plate. We can approximate the solution in closed
form with the mathematics shown in Fig. 4.16.

One approach to visualizing the heat dissipating through the metal plate is based
on color-coding, as in Fig. 4.17. The idea behind this illustration is to let users define
their own types of visualizations that are not necessarily movement based. Users
could define the grid points and the domain as shown in the two figures and supply
a rule for how the values of u should change at each point in time. In this example, a
user specifies that when u = 0 the dots should be red and when u = 1 the dots should
be blue. Using this rule, mathematical sketching would interpolate between the two
extreme cases depending on the value of u at any time t in locations (x, y) for
some domain. Having the illustration change colors is just one way to define these
types of illustrations; we could also define glyphs that would change size during the
simulation. This type of dynamic illustration is an interesting area for future work
because it moves out of the traditional translation- and rotation-style animations that
mathematical sketching currently supports. Providing a mechanism for user-defined
visualizations would be a significantly challenging research problem from a user
interface point of view, since a pen-based visualization language would need to be
defined.
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Fig. 4.16 An approximate solution to the heat equation on a rectangular metal plate

Fig. 4.17 Two snapshots of a dynamic illustration showing heat dissipating across a metal plate
given the mathematics in Fig. 4.16. As the illustration runs, the dots change color to show temper-
ature changes

4.5.8 Evaluation

Understanding how mathematical sketching affects users is an important area that
must be explored at the usability and pedagogical levels. We have already conducted
initial usability evaluations of MathPad2 by examining the user interface’s intuitive-
ness and the application’s perceived usefulness [11]. We asked seven subjects to
perform tasks such as making mathematical sketches, graphing functions, evaluat-
ing expressions, and solving equations. The usability study’s results suggest that the
MathPad2 user interface is generally intuitive, with subjects picking up the interface
with relative ease. With only minimal training, most gestures are easy to remember
and use. One exception was the equation-solving gesture. Some subjects had trou-
ble remembering this gesture and performing it accurately. This indicates that this
gesture is not as intuitive as the others. Although most subjects performed the tasks
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with little trouble, a few had some difficulty, stemming primarily from problems
with mathematical expression recognition, indicating that we need better recogni-
tion accuracy. However, these subjects also said they were willing to accept these
recognition problems, given MathPad2’s functionality. Finally, subjects thought the
application was a powerful tool that beginning physics and mathematics students
could use to help solve problems and better understand scientific concepts. For de-
tails on this evaluation see [12].

Other usability evaluations on mathematical sketching usability should be con-
ducted. For example, it has been shown for handwriting recognition that the rela-
tionship between recognition rates and user acceptance depends on the perceived
cost-to-benefit ratio in a specific task [5]. Thus, an interesting research question
would be see whether these results extend to mathematical sketching. From a ped-
agogical perspective, understanding whether a tool like MathPad2 can change stu-
dents’ perceptions about calculus and physics and whether it helps students better
understand mathematics and physics concepts is an important research goal. Rig-
orous classroom assessments are needed to prove that mathematical sketching is a
viable approach to learning.

4.6 Conclusion

In this chapter, we have presented mathematical sketching, an interaction paradigm
for creating and exploring dynamic illustrations. By combining handwritten math-
ematics with free-form drawings, users can make personalized visualizations of a
variety of mathematical and physical phenomena. These dynamic illustrations over-
come many of the limitations of static drawings and diagrams found in textbooks
and student notebooks by allowing verification of the mathematics in users’ so-
lutions. In addition, the animations generated from the mathematical specifications
give intuition about the behavioral aspects of a given problem. Mathematical sketch-
ing is unique among the approaches to making dynamic illustrations with computers
because it requires users to write down mathematics to drive their illustrations, thus
becoming a powerful extension to pencil and paper.

Acknowledgement Thanks to Robert Zeleznik, Andries van Dam, John Hughes, and David
Laidlaw for valuable discussions on mathematical sketching.
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Chapter 5
Pen-based Interfaces for Engineering
and Education

Thomas F. Stahovich

5.1 Introduction

“In many disciplines, sketches have great utility as a problem-solving tool, as they
provide a suitable medium for recording elusive thoughts, visualizing and testing
emerging ideas, and for compactly and efficiently representing various types of in-
formation such as spatial, temporal and causal relationships” [18].1 Sketches are
particularly useful in the early stages of design, where their fluidity and ease of
construction enable creativity and the rapid exploration of ideas [37]. In a seminal
study of the importance of drawing in mechanical design, Ullman et al. [40] demon-
strated that sketches are a particularly useful form of graphical representation and
that “CAD systems must allow for sketching input.”

Despite the evidence suggesting that sketching is an essential part of engineering
design, most contemporary engineering software still cannot work effectively from
sketch input [18]. With recent advances in machine-interpretation techniques, it is
now becoming possible to create practical interpretation-based interfaces for engi-
neering software. In this chapter, we report on our efforts to create interpretation
techniques to enable pen-based engineering applications. We describe work on two
fundamental sketch understanding problems. The first is sketch parsing, the task of
clustering pen strokes or geometric primitives into individual symbols. The second
is symbol recognition, the task of classifying symbols once they have been located
by a parser.

We have used the techniques that we have developed to construct several pen-
based engineering analysis tools. These are used here as examples to illustrate our
methods. We have also begun to use our techniques to create pen-based tutoring

1This chapter is a compilation of material from a variety of previously published articles and con-
tains extensive quotes from those sources. Footnotes are used to indicate the sources of the material
in each section.
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Fig. 5.1 Left: Sim-U-Sketch, Right: Simulink model derived from the sketch. (From [14]; used
with permission)

systems that scaffold students in solving problems in the same way they would
ordinarily solve them with paper and pencil. The chapter concludes with a brief
discussion of these systems.

5.2 Sketch Parsing

Sketch parsing is the task of grouping a user’s pen strokes into the intended sym-
bols without requiring the user to indicate when one symbol ends and the next one
begins.2 (In the literature, the terms “sketch parsing” and “sketch segmentation”
are used synonymously. We prefer the former to prevent confusion with the term
“pen stroke segmentation.”) Figure 5.1 shows a parsing example in which the iden-
tified stoke groups are enclosed in rectangles. Parsing, which is a prerequisite step
to recognition, is a difficult problem, in part, because the number of stroke groups
to consider increases exponentially with the number of strokes. Furthermore, even
when a sketch contains only a small number of strokes, brute force enumeration of
stroke groups often results in groups that resemble domain shapes but which were
not intended as such by the drawer. To avoid these difficulties, many current systems
require the user to explicitly indicate the intended partitioning of the ink by pressing
a button on the stylus or by pausing between symbols [8, 27]. Alternatively, some
systems require each object to be drawn in a single pen stroke [20]. However, these
sorts of constraints typically result in a less than natural drawing experience.

Researchers have explored a wide variety of techniques for parsing sketches and
other graphical images. For example, Saund et al. [33] present a system that uses
Gestalt principles to determine the salient objects represented in a line drawing.
Their work concerns only the grouping of the strokes and does not employ recogni-
tion to determine if the identified groups are the intended ones. Notowidigdo and
Miller [28] describe a system for interpreting structured diagrams such as flow
charts, but their techniques are intended for off-line computation. Jacobs [13] de-
scribes a system to recognize objects with straight-line perimeter representations.

2The material in this section is derived from [18].
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The system uses a number of heuristic rules to group edges that likely come from
a single object, and then uses simple recognizers to identify the objects represented
by the edges. However, because the technique requires straight line segments and
sharp corners, it may not be well-suited to informal, hand-drawn sketches.

There has been recent progress on techniques specifically intended for on-line
parsing of hand-drawn ink. For example, Shilman et al. [36] present an approach to
ink parsing that relies on a manually-coded visual grammar. The grammar defines
composite objects hierarchically in terms of lower-level objects. The lowest-level
objects—individual pen strokes—must be recognizable in isolation (with Rubine’s
method [31]), although ambiguity can be tolerated. In more recent work, Shilman
and Viola [35] have improved upon this approach by first generating a multitude
of candidate stroke groups, and then evaluating each candidate using a fast bitmap-
based recognizer. Alvarado and Davis [1] describe a parsing approach based on dy-
namically constructed Bayesian networks. The approach is general purpose in that
it can be applied to a wide variety of sketches and diagrams, but processing time
can be long. Inspired by the advances in speech recognition, some approaches re-
quire visual objects to be drawn with a predefined sequence of pen strokes [34, 42].
While useful at reducing computational complexity, the strong temporal dependency
of these methods forces the user to remember the correct order in which to draw the
pen strokes.

In this section, we present two parsing methods that we have developed in our
work. The first relies on a mark–group–recognize architecture in which easily-
recognizable “marker symbols” are used to help locate the remaining symbols. The
second uses geometric information, especially “ink density,” and domain knowledge
to locate symbols.

5.2.1 Mark–Group–Recognize

Our mark–group–recognize parsing technique is based on the existence, in many do-
mains, of “marker symbols”—symbols that can be easily extracted from a continu-
ous stream of pen strokes and that help separate the remaining pen strokes into clus-
ters representing individual symbols.3 We have used this technique to implement
two different sketch-based engineering applications. The first application, called
Vibrosketch [18], is a tool for analyzing vibratory systems comprised of masses,
springs, and dampers (Fig. 5.2). For this problem, masses and ground symbols serve

3The material in this section and its subsections is derived from Kara, L.B., Stahovich, T.F.: Hi-
erarchical parsing and recognition of hand-sketched diagrams. In: UIST ’04: Proceedings of the
17th annual ACM Symposium on User Interface Software and Technology, pp. 13–22. ACM, New
York (2004). doi:10.1145/1029632.1029636 [14]. A preliminary version of this work appeared in
Kara, L.B., Stahovich, T.F.: Sim-U-Sketch: a sketch-based interface for SimuLink. In: AVI ’04:
Proceedings of the Working Conference on Advanced Visual Interfaces, pp. 354–357. ACM, New
York (2004). doi:10.1145/989863.989923 [16].
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Fig. 5.2 Vibrosketch
interface

Fig. 5.3 Sim-U-Sketch architecture

as markers. The second application, which we will use here as a detailed illustra-
tion of the approach, is called Sim-U-Sketch (Fig. 5.1) [14, 16]. This system is a
sketch-based front-end to Matlab’s Simulink package, a tool for analyzing feedback
control systems and other similar dynamic systems. For this problem, arrows serve
as markers.

Sim-U-Sketch’s architecture is shown in Fig. 5.3. The first processing step is to
identify the arrows, which have geometric and kinematic characteristics that enable
them to be easily extracted from a continuous stream of strokes. The arrows are then
used to efficiently cluster the remaining pen strokes into distinct groups correspond-
ing to individual symbols. Next, informed by the results of the clustering algorithm,
the system employs contextual knowledge to generate a set of candidate interpreta-
tions for each of the clusters. Finally, the image-based symbol recognizer described
in Sect. 5.3.3 is used to classify each cluster. The remainder of this section describes
these steps in more detail (for complete details see [14]).

It is important that the marker symbols be recognized with high accuracy because
the overall parsing accuracy depends on this. Also, the marker symbol recognizer
must be computationally efficient, as it is used to process every stroke in a sketch.
For these reasons, we use special-purpose recognizers for identifying marker sym-
bols. By contrast, general purpose recognizers are used to classify the clusters once
they are located.

The design of our arrow recognizer is based on observations suggesting that ar-
rows are often drawn with one or two pen strokes and are frequently drawn from tail
to head. Our arrow recognizer4 handles two-stroke arrows by joining the last point
of the first stroke to the first point of the second stroke so that both kinds of arrows
effectively become single pen strokes. The (equivalent) single pen stroke is resam-
pled to produce 36 evenly spaced points. The cosine of the angle between adjacent

4The version of Sim-U-Sketch described in [14] used a heuristic arrow recognizer. Here we de-
scribe an improved arrow recognizer. This description is derived from [24].
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Fig. 5.4 Left: Resampled arrow. Inverse curvature at point A is cos(θ). Right: Inverse curvature
of the arrow. (Adapted from [24]; used with permission)

segments is then computed, as shown in Fig. 5.4. The cosine is inversely related
to the curvature. For example, if two consecutive segments are nearly collinear, the
cosine is close to 1.0. If there is a large discontinuity, such as a 90° bend, the cosine
is close to 0.0. For this reason, the cosine of the angle between adjacent segments is
called “inverse curvature.”

Figure 5.4 shows the inverse-curvature representation of a typical arrow. Notice
that the inverse curvature is approximately 1.0 for most points on the arrow, but is
much smaller (in this case, less than 0.0) for the three discontinuities at the head of
the arrow. It is these discontinuities that enable the technique to identify arrows.

The inverse-curvature values are provided as inputs to a neural network. To make
the approach insensitive to the shape of the arrow shaft, the first 18 inverse-curvature
values are actually discarded. The neural network thus has 18 inputs describing the
head portion of the arrow. The output of the neural network is the classification of
the (equivalent) pen stroke as either an arrow or a non-arrow.

Once the arrows have been identified, the next step is to group the remaining
strokes into different clusters, representing different symbols. The key idea behind
stroke clustering is that strokes are deemed to belong to the same symbol only when
they are spatially proximate. The challenge is reliably determining when two pen
strokes should be considered close together. Here, we rely on the arrows to help
make this determination. In network diagrams, each arrow typically connects a
source object at its tail to a target object at its head. Hence, different clusters can
be identified by grouping together all the strokes that are near the same end of a
given arrow. In effect, two strokes are considered spatially proximate if the nearest
arrow is the same for each.

Figure 5.5 shows an example of the stroke clustering process. The process be-
gins by assigning each non-arrow stroke to the nearest arrow. Here distance is mea-
sured between the median point of the stroke and either the tip or tail of the arrow,
whichever is closer. Strokes assigned to the same arrow end are grouped to form
a stroke cluster. Clusters with partially or fully overlapping bounding boxes are
merged. Finally, each arrow tip or tail that is not assigned to a cluster is linked to the
nearest cluster.
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Fig. 5.5 The stroke clustering process. a Each stroke is assigned to the nearest arrowhead or tail. b
Strokes assigned to the same arrow are grouped into clusters. c Clusters with overlapping bounding
boxes are merged. d Arrows that received no strokes are attached to the nearest cluster. (From [14];
used with permission)

Once the clusters have been located, they are sent to our image-based symbol
recognizer (Sect. 5.3.3) for classification. However, to reduce recognition cost and
chances for confusion, the system first uses contextual knowledge to reduce the
number of possible interpretations for each cluster. More specifically, the program
considers only those interpretations that are consistent with the number of arrows
going in and out of a cluster. For example, while the sum and clock symbols look
quite similar (the two circular symbols in Fig. 5.5), a sum must have at least two
incoming arrows while a clock must have none. With this additional knowledge,
our symbol recognizer will never consider the sum and clock as two competing
interpretations.

5.2.2 Enumerate–Recognize–Prune

Our second parsing technique is intended for network-like diagrams consisting of
symbols linked together by connectors.5 This technique uses geometric information
to efficiently enumerate candidate symbols, which are sent to a recognizer for clas-
sification. Domain knowledge is then used to prune the list of candidate symbols,
resulting in the final interpretation of the sketch.

We have used this parsing technique to implement AC-SPARC [9], a sketch-
based circuit analysis tool, and thus our discussion here is focused on the interpre-
tation of circuit sketches. AC-SPARC, which is shown in Fig. 5.6, can interpret a
free-hand sketch of an analog circuit, and from this generate an input file for the
SPICE circuit analysis tool [41].

AC-SPARC’s interpretation process is described in Fig. 5.7. The first step is ink
segmentation, the task of decomposing each pen stroke into its constituent geometric
primitives. Our segmentation technique uses pen speed and curvature information

5The material in this section and its subsections is derived from [9].



5 Pen-based Interfaces for Engineering and Education 125

Fig. 5.6 AC-SPARC:
a sketch-based interfaces to
the SPICE electric circuit
analysis program. (From [9];
used with permission)

Fig. 5.7 Architecture of AC-SPARC

to identify segment points (“corners”). (See [38] for details of the segmenter.) It is
common for a single pen stroke to contain multiple symbols; performing segmenta-
tion enables the system to find each of the symbols contained within a stroke. Once
the ink has been segmented, geometric tests are used to locate candidate symbols,
which are then classified using the feature-based recognizer described in Sect. 5.3.2.
Knowledge about circuits is then used to prune the list of candidate symbols to pro-
duce an interpretation of the circuit. In a final processing step, additional domain
knowledge about circuits is used to automatically correct errors made in the previ-
ous processing steps.

5.2.2.1 Parsing Step 1: Enumerating Candidate Symbols

The first parsing step is to enumerate the candidate symbols. To do this efficiently,
our technique assumes that the user finishes drawing one symbol (circuit compo-
nent) before drawing a connector (wire) or another symbol. Our observations of
people drawing electrical circuits suggest this assumption is reasonable. Therefore,
when locating candidate symbols, we consider only consecutively drawn segments.
As an additional means of reducing computation, we have found that it is possible
to establish limits for the number of segments that a symbol may contain. The lower
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Fig. 5.8 Density decreases
when a segment is added to
the end of the voltage source
symbol. Hidden ink is shown
by dotted lines. Bounding
boxes are shown by dashed
rectangles. (From [9]; used
with permission)

limit is two, since it is uncommon that a symbol is represented by a single line or arc
segment. The upper limit depends on the particular user’s drawing style, but for ana-
log circuits is typically between 6 and 12. Candidate symbols are, therefore, groups
of sequentially-drawn segments containing between two and some user-dependent
maximum number of segments.

Candidate symbols are enumerated using two types of geometric tests to identify
possible starts and ends of symbols. The first test looks for regions in which there is
a high concentration of ink. The second looks for changes in the characteristics of
the segments, such as when a long segment is followed by a much shorter segment.
These tests are described in detail below.

Ink Density Locator: Symbols usually consist of a high concentration of ink,
while the ink of connectors is often more spread out. Our ink density approach iden-
tifies candidate symbols by searching for regions of high ink density. More specifi-
cally, we search for sequences of segments having the property that the addition of
another segment to either end of the sequence causes a decrease in density, as this
is an indication of adding a connector segment. We define ink density as the ratio of
the square of the ink length to the area of the oriented bounding box of the ink:

density = ink_length2

bounding_box_area
. (1)

Here, in addition to the actual ink shown on the screen, the ink length also in-
cludes the hidden ink, which we define as the ink that would occur if the user did
lift the stylus while drawing. For example, the hidden ink of a voltage source is
shown by the dotted lines in Fig. 5.8. Including the hidden ink accentuates the den-
sity of symbols drawn with multiple strokes, thus making them easier to identify.
We square the ink length so that it scales the same way as bounding box area, thus
making the density parameter insensitive to uniform scaling.

Ink density analysis uses a forward-backward algorithm to find the start and
end segments of candidate symbols. In the forward step, the approach starts with
a given segment and considers increasingly long sequences of consecutively drawn
segments. Each time a segment is added to the sequence, the density is computed.
If there is a decrease in density of 20% or more, it is quite possible that a connector
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Fig. 5.9 A hand-drawn resistor (left) and the segmented ink (right). (From [9]; used with permis-
sion)

segment was added to the sequence. In this case, the previous segment is deemed a
possible end of a symbol. This may not be the best end, however, and thus additional
segments continue to be added to the sequence until the user-dependent maximum
number of segments is reached. Each time there is a decrease in density of 20%,
another candidate end segment is identified.

In the backward step, ink density analysis is once again applied. For each pos-
sible end segment, prior segments are added one at a time until the user-dependent
maximum number of segments is reached. The changes in density are monitored
with each addition. The segment drawn after the segment whose addition causes the
largest decrease in density is selected as the start segment for the given end seg-
ment. The sequence is now considered a candidate symbol. If there is no segment
whose addition to the beginning of the sequence causes a decrease in density, then
the sequence is discarded as it likely consists only of connector segments.

All sequences that survive this analysis are considered candidate symbols. It is
possible to find additional candidates by repeating the analysis by, in essence, re-
versing time. A backward step is performed first, and candidate start segments are
located by searching for decreases in density greater than 20%. A forward step is
then applied to find the best end segment for each start segment.

Consider applying this approach to the resistor shown in Fig. 5.9. For sake of
example, we assume that the forward step begins from Segment 5. The initial se-
quence consists of Segments 5 and 6. Adding Segments 7, 8, 9, and 10 results in
density changes of +87.4%, −5.1%, −35.5%, and +10.1% respectively. Only the
addition of Segment 9 produces a density decrease greater than 20%, and thus only
Segment 8 is a possible end segment. In the backward step, the sequence initially
consists of Segments 8 and 7. Segments are then added to the start of this sequence
until Segment 2 is reached. This results in density changes of +42.9%, +20.7%,
+13.0%, −2.1%, and −23.0%. The addition of Segment 2 causes the biggest de-
crease in density, and thus Segment 3 is considered the best start segment for the
sequence that ends with Segment 8. The result is a candidate symbol consisting of
Segments 3–8, which in fact corresponds to the intended resistor. Note that the ap-
proach was able to successfully locate the resistor despite the fact the forward step
began in the middle of the symbol.

Segment Difference Locator: There are usually large differences between a con-
nector and the first segment of a symbol, and between the last segment of a sym-
bol and the subsequent connector. Our segment difference locator finds symbols by
identifying those differences. For each segment in the sketch, the locator computes
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Fig. 5.10 Example of
segment difference analysis.
Possible transitions between
symbols and connectors are
show as dots. (From [9]; used
with permission)

four characteristics and compares them to those of the segment before it. These char-
acteristics include: (1) Segment type: line vs. arc; (2) Segment length: the lengths
of two segments are considered different if one is more than 40% longer than the
other; (3) Segment orientation: if the acute angle between two segments differs by
65° or more, they are considered different in this characteristic; (4) Intersection
type: classified as none, endpoint-to-endpoint (“L”), endpoint-to-midpoint (“T”), or
midpoint-to-midpoint (“X”). We define a good candidate symbol to be a group of
segments that are similar in these four characteristics but which differ from the other
segments touching the group. For example, the inductor in Fig. 5.10 is easily distin-
guishable as a series of short arc segments, with longer line segments, representing
wires, on either side.

We consider any pair of consecutively drawn segments that differs in two or more
characteristics to be a possible transition between a symbol and a connector. The
point between such a pair of segments is referred to as a “segment difference point.”
Figure 5.10 shows all such points for a typical circuit sketch. Candidate symbols are
defined to be sequences of segments, bounded by two segment difference points,
containing between two and the user-dependent maximum number of segments.
Note that the points bounding candidate symbols need not be consecutive, and thus
candidates can overlap. For instance, candidate symbols for Fig. 5.10 include the
sequences of segments between points A and C, A and D, B and C, B and D, and
so on. While this approach finds many valid symbols, it also locates many non-
symbols, as described in the next section.

5.2.2.2 Parsing Step 2: Pruning Using Domain Knowledge

Not all of the symbols enumerated by our symbol locators are valid symbols. The
final parsing step is to use domain-specific information to prune out the candidates
that are unlikely to be symbols. This is done using several heuristics. However,
before the pruning begins, each candidate symbol must first be classified with a
symbol recognizer (we use the one in Sect. 5.3.2), as the results of classification are
used in the heuristics. The basic approach is to collect information supporting and
refuting the fact that a group of segments is a symbol. The following is a summary
of the heuristics we use for the electric circuit domain.
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Some of the indications that a group of segments may be an electrical component
include: (1) The ink density of the candidate component is high. (2) The probability
of a match between the candidate component and the class identified by the rec-
ognizer is high. (3) Two segments touching the candidate component are collinear.
This is a good indication of a component because many components are drawn with
collinear wires connected on each side. Some of the indications that a group of
segments may not be an electrical component include: (1) The candidate compo-
nent has the wrong number of connections for the component it has been classified
as. For example, a ground symbol should have only one connection and a resistor
should have two. (2) The bounding box of the candidate component is thin. (3) The
average length of the segments in a candidate component is long. This characteristic
is useful because components often contain many short segments, while wires are
frequently long segments.

Each candidate is assigned a heuristic score, which is initially zero. Points are
added for positive indications, and are subtracted for negative indications. For a
candidate to be considered a component, its heuristic score must be above a thresh-
old. Additionally, because two symbols cannot share segments, any candidate over-
lapping another candidate with higher heuristic score is pruned. Any segments not
identified as part of a symbol are considered to be connectors.

5.2.2.3 Automated Error Correction

Once the parsing and recognition steps are complete, the system knows the locations
of the symbols, and the connections between them. At this point, the system can
use domain-specific knowledge to correct parsing and recognition errors. Here we
summarize our approach for circuits.

One indication that there may be a parsing problem in an electric circuit is that
a large number of consecutively drawn segments have been identified as wires. It is
uncommon for a user to draw wires this way, thus suggesting that a component has
been missed. In such situations, the system first tries to find the missed component
by lowering the threshold for heuristic pruning. If a component is still not found,
a miss-classification may have caused the parser to err. In this case, the system
considers lower ranked classifications for any candidate components that contain
the wire segments in question. If the score of one of those candidates is now above
the heuristic threshold, the system keeps that candidate and its new classification.

Another indication of a problem is that a component has the wrong number of
connections. For example, if a ground symbol has two connections, there may be
an interpretation error. This is often a result of an incorrect classification by the
recognizer. The problem is sometimes fixed by selecting the second choice of the
recognizer. Otherwise, we assume that the problem is due to the sketchiness of the
drawing—two segments that were intended to intersect did not, or two segments
that were not supposed to intersect did. To fix this, the component’s segments, and
the nearby wire segments, are extended or shortened until the correct number of
connections is found.
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5.3 Recognition

Researchers have developed a wide range of techniques for recognizing hand-drawn
shapes and symbols. Existing techniques vary in the type of representation used.6

For example, some techniques use a feature-based description of shape, while others
use a structural description capturing both the geometry and topology of a shape.
Existing techniques also vary in a number of important performance characteristics
such as insensitivity to scaling and rotation, accuracy, speed, and tolerance for over-
stroking. Additionally, some techniques are limited to single-stroke shapes, while
others can handle multi-stroke shapes.

Many existing approaches to symbol recognition rely on feature-based represen-
tations. For example, Fonseca et al. [8] use features such as the smallest convex
hull that can be circumscribed around the shape, the largest triangle that can be in-
scribed in the hull, and the largest quadrilateral that can be inscribed. Because their
classification relies on aggregate features of the pen strokes, it might be difficult
to differentiate between similar shapes. Rubine [31] describes a trainable gesture
recognizer designed for gesture-based interfaces. The recognizer is applicable only
to single-stroke symbols, and is sensitive to the drawing direction and orientation.
Pereira et al. [30] have extended Rubine’s method to multi-stroke symbols. How-
ever, such symbols must be drawn with a consistent set of strokes. Additionally, they
have developed a graph-based symbol recognizer, but it is not trainable. Matsakis
[25] describes a system for converting handwritten mathematical expressions into a
machine-interpretable typesetting command language. Each symbol requires a mul-
titude of training examples, where each example must be preprocessed to eliminate
variations in drawing directions and stroke orderings. However, the preprocessing
makes their approach sensitive to rotations.

In addition to feature-based methods, researchers have also explored a variety of
other representations and approaches. For example, Sezgin and Davis [34] present
a technique based on hidden Markov models. The approach requires shapes to be
drawn with a consistent pen stroke ordering. Hammond and Davis [11] developed a
recognizer that relies on hand-coded shape descriptions. Shilman et al. [36] present
a sketch recognition approach that requires a manually encoded visual grammar.
A large corpus of training examples is used to learn the statistical distributions of
the geometric parameters used in the grammar, resulting in a statistical model. Com-
posite objects are defined hierarchically in terms of lower-level, single-stroke sym-
bols, which are recognized using Rubine’s method [31]. Gross’ [10] approach relies
on a 3 × 3 grid inscribed in the symbol’s bounding box. The sequence of grid cells
visited by the pen distinguishes each symbol. Because of the coarse resolution of
a 3 × 3 grid, this approach may not be able to handle symbols with small features.
Hse and Newton [12] developed a recognizer based on Zernike moments. However,
a preprocessing step in which the image size is normalized may make the approach
sensitive to orientation.

6The material in this section is derived from [22].
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In this section, we present three recognition techniques we have developed. Our
graph-based recognizer uses an attributed relational graph representation to describe
both the geometry and topology of a symbol. With this approach, symbol recog-
nition is a graph-matching problem. Our graph-based recognizer is insensitive to
orientation, non-uniform scaling, and drawing order. Our feature-based recognizer
distills the geometry and topology of a symbol to a set of features and thus avoids
the cost of graph matching. As a result, our feature-based recognizer is faster than
our graph-based recognizer, although some accuracy is sacrificed to achieve this.
Our image-based recognizer represents symbols as down-sampled bitmaps. Symbol
recognition relies on template matching techniques. Our image-based recognizer
can learn from single training examples and is particularly useful for “sketchy” sym-
bols such as those with substantial over-stroking.

5.3.1 Graph-based Recognizer

Our graph-based recognizer [21, 22] is a trainable, multi-stroke symbol recognizer
for pen-based user interfaces.7 The approach is insensitive to orientation, non-
uniform scaling, and drawing order. Symbols are represented internally as attributed
relational graphs describing both the geometry and topology of the symbols. Sym-
bol definitions are statistical models, which makes the approach robust to variations
common in hand-drawn shapes. Symbol recognition requires finding the definition
symbol whose attributed relational graph best matches that of the unknown symbol.
Much of the power of the approach derives from the particular set of attributes used,
and our metrics for measuring similarity between graphs. One challenge addressed
in this work is how to perform the graph matching efficiently. We developed five ap-
proximate matching techniques: stochastic matching, which is based on stochastic
search; error-driven matching, which uses local matching errors to drive the solution
to an optimal match; greedy matching, which uses greedy search; hybrid matching,
which uses exhaustive search for small problems and stochastic matching for larger
ones; and sort matching, which relies on geometric information to accelerate the
matching.

5.3.1.1 Representation

The nodes in our attributed relational graph (ARG) representation describe the ge-
ometric primitives comprising a shape. Each node is characterized by the type of
the primitive—line or arc—and its relative length. The primitives are obtained from
the raw pen strokes via the speed-based pen stroke segmenter described in [38]. The

7The material in this section and its subsections is derived from [22]. An earlier version of this
material also appeared in [21], which is “©Eurographics Association 2006; Reproduced by kind
permission of the Eurographics Association.”
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Fig. 5.11 Left: An ideal square drawn with a single, counter-clockwise pen stroke. Arrows show
the direction of drawing. Right: The corresponding ARG. I = number of intersections, A = in-
tersection angle, L = intersection location, R = relative length. (Adapted from [22]; used with
permission)

relative length of a primitive is defined as the ratio of its length to the total length of
the primitives comprising the symbol. For example, each of the four line segments
in a perfect square would have a relative length of 0.25. Defining length on a relative
basis results in a scale-independent recognizer.

The edges in an ARG represent the geometric relationships between the prim-
itives. Each pair of primitives is characterized by the number of intersections be-
tween them, the relative locations of the intersections, and for lines, the angle of
intersection. When extracting intersections from a sketch, a tolerance of 10% of
the length of the primitives is used to allow for cases in which an intersection was
intended but one of the primitives was a little too short. Intersection locations are
measured relative to the lengths of the two primitives. For example, if the beginning
of one line segment intersects the midpoint of another, the location is described by
the coordinates (0%, 50%). The intersection angle is defined as the acute angle be-
tween two line segments. It is defined for both intersecting and non-intersecting line
segments. Defining an intersection angle for non-intersecting segments allows the
program to represent the topology of symbols with disconnected parts. Intersection
angle is undefined for an intersection between an arc and another primitive.

Figure 5.11 shows an example of an ARG for an ideal square. Each side of the
square has a relative length of 0.25 and intersects two other sides with an intersection
angle of 90°. Because of the drawing directions used in this example, all intersec-
tions are located at the end of one line segment and the beginning of another.

A definition for a symbol is created by constructing an “average” ARG from a
set of training examples. (Additional details of the training process are described in
Sect. 5.3.1.4.) The number of nodes in a definition is taken to be the most frequently
occurring number of nodes in the training examples. Each node in the definition is
assigned the primitive type that occurred most frequently for that node in the train-
ing data. The number of intersections assigned to a pair of primitives is determined
in an analogous fashion. A pair of primitives is assigned two intersections if at least
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Table 5.1 Error metrics and
corresponding weights. (From
[22]; used with permission)

Error Metrics (Ei) Weight (wi)

E1: Primitive count error 20%

E2: Primitive type error 20%

E3: Relative length error 20%

E4: Number of intersections error 15%

E5: Intersection angle error 15%

E6: Intersection location error 10%

70% of the examples had two. If less than 70% had two intersections, but there was
at least one intersection 70% of the time, the pair is assigned one. Otherwise, the
pair is assigned zero intersections. The remaining properties of the ARG—relative
length, intersection angle, and intersection location—are continuous valued prop-
erties. These are characterized by the means and standard deviations of the values
from the training examples.

5.3.1.2 Measuring Similarity

During recognition, it is necessary to compare the ARG of the unknown symbol to
that of each definition symbol to find the best match, and hence the classification
of the unknown. The match between an unknown and a definition is quantified in
terms of a weighted sum of the error metrics listed in Table 5.1. The weights, which
are based on empirical studies, reflect the relative importance of the various error
metrics for discriminating between symbols. For the purposes of recognition, the
dissimilarity score is converted to a Similarity Score in the obvious way:

Similarity Score = 1 −
6∑

i=1

wiEi (2)

where the Ei are the error metrics and the wi are the weights listed in Table 5.1.
The error metrics for relative length, intersection angle, and intersection location

involve comparing properties of the unknown symbol to distributions of those prop-
erties encoded in a definition. For example, it is necessary to compare the relative
length of each primitive in the unknown to the mean and standard deviation of the
relative length of the corresponding primitive in the definition. Ordinarily, this is
done with a Gaussian probability density function. As an alternative, we have de-
veloped a modified probability density function (MPDF) that is better suited to our
recognition task:

P(x) = exp

[
− 1

50.0
· (x − μ)4

σ 4

]
. (3)

Here, μ and σ are the mean and standard deviation of the features from the training
examples. This function was designed empirically such that its top is flatter than the
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Fig. 5.12 Gaussian
probability density function
and modified probability
density function for μ = 0
and σ = 1. (From [22]; used
with permission)

Gaussian probability density function for the same μ and σ . This makes it easier to
detect matches that are in the “vicinity” of the definition. For comparison, Fig. 5.12
shows both the Gaussian probability density function and our modified probability
density function for μ = 0 and σ = 1.

The six error metrics used for computing the similarity score are described in the
following sections. Here we use the term “unknown” to refer to the symbol to be
recognized, or equivalently, the ARG of that symbol. Likewise, the term “definition”
refers to the ARG of a definition symbol. Note also that each metric is normalized
to the range [0, 1] so that the weights in Table 5.1 have predictable influences.

Primitive Count Error: The primitive count error is the difference between the
number of nodes in the unknown and definition ARGs, normalized by the minimum
number of nodes:

E1 = min

(
1.0,

|NU − ND|
Nmin

)
(4)

Here, NU and ND are the numbers of nodes in the unknown and definition ARGs,
respectively, and Nmin = min(NU,ND). We normalize by Nmin to quantify the sig-
nificance of the mismatch in the primitive count. The fewer primitives there are, the
more significant a given mismatch is. The error saturates at one so that all errors
have the same range of [0, 1].

Primitive Type Error: The primitive type error is the number of node pairs with
mismatched types, normalized by the minimum number of nodes:

E2 =
∑Nmin

i=1 [1 − δ(Type(Ui),Type(Di))]
Nmin

. (5)

Here, Ui is a node from the unknown, Di is the corresponding node from the defi-
nition, Type(X) is a function that returns the primitive type (arc or line) of node X,
and δ(p, q) is one when p = q , and zero otherwise.
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Relative Length Error: Each primitive from the unknown should have a relative
length similar to that of the corresponding primitive from the definition. If not, an
error is assigned. Here, similarity is measured using the MPDF defined in (3). The
error is computed as

E3 =
∑Nmin

i=1 [1 − P(R(Ui))]
Nmin

(6)

where R(Ui) is the relative length encoded in node Ui of the unknown ARG, and
P(x) is evaluated using the mean and standard deviation from the corresponding
node in the definition. Note that whereas P(x) is the probability of match, 1 −P(x)

is the probability of mismatch.

Number of Intersections Error: A pair of primitives in the unknown should have
the same number of intersections as the corresponding pair in the definition. If not,
an error is assigned. The total error is computed as

E′
4 =

∑Nmin−1
i=1

∑Nmin
j=i+1 |I (Ui,Uj ) − I (Di,Dj )|

min(MU,MD)
(7)

where I (X,Y ) is the number of intersections between the primitives in nodes X and
Y , and MU and MD are the numbers of edges in the unknown and definition ARGs,
respectively. This error is normalized by the number of potentially intersecting pairs
of primitives. However, because a pair of primitives can intersect as many as two
times, E′

4 has a range of [0, 2]. So that all error metrics have the same range of
[0, 1], the value of E′

4 is “squashed” with:

S(x) = 1

1 + exp[6(1 − x)] (8)

This squash function, was chosen such that small differences are attenuated while
larger ones are preserved. Using the squash function, the “Number of Intersections
Error” is defined as

E4 = S
(
E′

4

)
(9)

Intersection Angle Error: The intersection angle of a pair of lines in the un-
known should be similar to that of the corresponding pair of lines in the definition.
(Intersection angle is defined only for pairs of lines.) If not, an error is assigned.
Here, similarity is again measured using the MPDF defined in (3). The error is com-
puted as the sum of the intersection angle errors normalized by the number of line
pairs the unknown and definition have in common:

E5 =
∑Nmin−1

i=1

∑Nmin
j=i+1[1 − P(Aij )]

∑Nmin−1
i=1

∑Nmin
j=i+1 Lines(Ui,Uj ,Di,Dj )

(10)

Here, Aij is the angle at which the primitive from node i of the unknown inter-
sects the primitive from node j of the unknown. P(Aij ) is evaluated using the mean
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and standard deviation from the corresponding pair of primitives from the defini-
tion. Note that if the two primitives are not lines, Aij is undefined and P(Aij ) is
taken to be one. Lines(Ui,Uj ,Di,Dj ) is one when all of the arguments are nodes
representing lines, and zero otherwise.

Intersection Location Error: The locations of the intersections between a pair of
primitives from the unknown should be similar to those of the corresponding pair of
primitives from the definition. If not, an error is assigned. Here, similarity is again
measured using the MPDF defined in (3). Because intersection location is defined
by two coordinates, the MPDF is applied twice for each intersection. The total error
is computed as

E6 =
∑Nmin−1

i=1

∑Nmin
j=i+1

∑I (Di ,Dj )

k=1 ([1 − P(Lk
i )] + [1 − P(Lk

j )])
∑Nmin−1

i=1

∑Nmin
j=i+1 2 · I (Di,Dj )

(11)

where (Lk
i , Lk

j ) is the coordinates of the kth intersection between the primitives from
nodes i and j of the unknown. I (Di,Dj ) is the number of intersections between the
primitives from nodes i and j of the definition. In cases where a pair of primitives
intersect in the unknown but not in the definition, or vice versa, both P(Lk

i ) and
P(Lk

j ) are set to zero. This error is normalized by twice the number of intersections,
as two coordinates can contribute error to each intersection.

5.3.1.3 Graph Matching

The previous section described how to compute the similarity between two graphs.
This assumed that each node in the unknown ARG was assigned to a specific node
in the definition. This is a graph-matching, or graph-isomorphism problem. If the
user always draws each symbol with a consistent number of primitives and a con-
sistent drawing order, the graph-matching problem is trivial. In this case, drawing
order would directly provide the correct node-pair assignments. In practice, how-
ever, users do not always maintain a consistent drawing order. Furthermore, the
problem is made more difficult because of noise, such as extra or missing nodes in
the unknown (i.e., extra or missing geometric primitives).

We have developed several efficient, approximate matching techniques to find
the best match between two ARGs. Here we describe three of them. For complete
details, please see [22]. Most of our techniques rely on search-based methods that
begin with an initial node-pair assignments based on drawing order. Assignments
are then swapped until the best match is obtained. The quality of the match at each
iteration is determined using the similarity score in (2). Our various methods differ
in the way they select the assignments to swap at each iteration.

If the two graphs being matched do not have the same number of nodes, the
smaller one is “padded” with empty nodes. This ensures that every node in one
graph has a match with a unique node in the other, and hence that every node is
considered by the swapping process. When evaluating the error metrics, a pairing
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Fig. 5.13 Graph matching: assignments b-2 and c-3 are correct, while a-1 and d-4 are not.
(Adapted from [22]; used with permission)

with an empty node produces the maximum possible local error. For example, the
addition of empty nodes does not reduce the primitive count error, E1.

Figure 5.13 illustrates the typical search process. For ease of explanation, the
figure shows hypothetical symbols rather than ARGs. Finding the correct node-pair
assignments is equivalent to finding the correct assignment of the primitives of the
unknown to the primitives of the definition. Here, the primitives of the definition
symbol are numbered according to a typical drawing order. Likewise, the primitives
of the unknown are labeled with letters indicating the order in which they were
actually drawn. Based on drawing order, primitive a of the unknown is initially
assigned to primitive 1 of the definition, b is assigned to 2, and so on. It is clear that
assignments b-2 and c-3 are correct, while a-1 and d-4 are not. Swapping the latter
to produce the assignments d-1 and a-4 is what is needed. The success of this swap
can be measured by the resulting increase in the similarity score.

Stochastic Matching This approach to graph matching is based on stochastic
search. To begin, the initial node-pair assignments are saved as the current best.
Then, three node-pair assignments, which we will call A, B , and C, are randomly se-
lected. A and B are swapped producing assignments A′ and B ′. B ′ is then swapped
with C. If the new similarity score is better than the current best score, the new as-
signments are saved as the new current best. This process is repeated a fixed number
of times, and the current best node-pair assignments are returned as the best match.

Greedy Matching This approach uses greedy search to find good node-pair as-
signments. The program first considers the best assignment for the first node of the
unknown. If there are n nodes, the program considers all n − 1 cases in which the
first node pair is swapped with another. Whichever assignment produces the best
similarity score is selected for the first node, and this node pair is removed from
further consideration. This is repeated for the second node pair and so on. In all,
O(n2) sets of node-pair assignments are considered. The entire search process can
be repeated for increased accuracy. We have found that one repetition produces a
significant improvement in accuracy, but additional repetitions achieve diminishing
returns.
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Hybrid Matching For symbols with a small number of primitives, it is practical
to use exhaustive search to find the optimal node-pair assignments. Our hybrid ap-
proach uses exhaustive search when there are six node pairs or less. Otherwise it
uses stochastic matching with a limit of 720 iterations. Thus, regardless of the size
of the problem, a maximum of 720 search states is explored.

5.3.1.4 Training

The recognizer is trained by providing a set of training examples for each symbol
class. As described in Sect. 5.3.1.1, the program constructs an “average” ARG for
each class. This entails another graph-matching problem. To learn a definition, the
program must match the ARGs of the various training examples to one another.
This task is different from the previous matching problem because a similarity score
cannot be computed until after a definition has been learned.

We have explored two solutions to this problem. The first is to require the training
examples to be drawn with a consistent drawing order. In this case, the matching
problem is avoided as the drawing order uniquely identifies the nodes in the ARG.
The second approach requires the user to draw symbols with a consistent orientation.
With this approach, all examples of a given symbol are scaled to a unit square and
translated to the origin. One of the examples is selected as a reference. The nodes
of the other examples are matched with the nodes of the reference example using
geometric proximity. Specifically, each primitive in an example is matched with the
nearest primitive in the reference example.

5.3.2 Feature-based Recognizer

The previous section described our graph-based recognizer, which uses an attributed
relational graph to represent both the geometry and topology of a symbol. With that
recognizer, symbol recognition involves solving a graph-matching problem. Our
feature-based recognizer avoids the cost of graph matching by reducing the topol-
ogy and geometry of a symbol to a set of features. Our feature-based recognizer is
thus much faster than the graph-based recognizer, although it does sacrifice some
accuracy to achieve this.8

With our feature-based recognizer, a symbol is described by nine features. These
include the number of: pen strokes, line segments, arc segments, endpoint (“L”) in-
tersections, endpoint-to-midpoint (“T”) intersections, midpoint (“X”) intersections,
pairs of parallel lines, and pairs of perpendicular lines. The final feature is the av-
erage distance between the endpoints of the segments, normalized by the maximum
distance between any two endpoints. This feature helps differentiate between objects
containing non-uniformly scaled versions of the same segments. For example, the

8The material in this section is derived from [9].
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average distance between the endpoints of a square is larger than that of a rectangle.
We assume that each feature value is normally distributed. The mean and standard
deviation for each feature is learned from a set of training examples.

An unknown symbol is classified by comparing its features to the observed dis-
tributions of the features for each of the learned definitions, Di . The unknown is
classified by the definition that best matches it. Mathematically, the goal is to find
the definition D∗ that has the highest probability of matching S:

D∗ = arg maxPi(Di | S) (12)

We assume that all definitions are equally likely to occur, and hence we set the
prior probabilities of the definitions to be equal. We also assume that the nine geo-
metric features xj are independent of one another. Otherwise, a much larger number
of training examples would be required for classification. According to Bayes’ Rule,
the definition that best classifies the symbol is therefore the one that maximizes the
likelihood of observing the symbol’s individual features:

D∗ = arg max
i

ΠjP (xj | Di) (13)

As stated above, we assume each statistical definition model P(xj | Di ) to be a
Gaussian distribution with mean μi,j and standard deviation σi,j :

P(xj | Di) = 1

σi,j

√
2π

exp

[−(xj − μi,j )
2

2σ 2
i,j

]
(14)

Since we are assuming that the features are independent, this is referred to as a
naïve Bayesian classifier. This type of classifier is commonly thought to produce
optimal results only when all features are truly independent. This is not a proper
assumption for our problem, since some of the features we use are interrelated.
For example, the number of intersections in a symbol frequently increases with the
number of lines and arcs. However, Domingos and Pazzani [5] showed that the naïve
Bayesian classifier does not require independence of the features to be optimal.
While the actual probabilities of match may not be accurate, the rankings of the
definitions will most likely be so.

Because of our assumption of a Gaussian distribution, definitions in which the
training examples show no variation in one or more features cause difficulty during
recognition. This situation is a common occurrence because a small number of train-
ing examples are often used, and because eight of the features used for classification
can assume only discrete values. To prevent definitions from becoming overly rigid
in this way, we require that all features, with the exception of the continuously val-
ued average distance between endpoints, have a standard deviation of at least 0.3.
This significantly increases recognition rates, especially when only a few training
examples have been used.
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Fig. 5.14 Architecture of Image-based Recognizer

5.3.3 Image-based Recognizer

For our image-based recognizer [15, 17], symbols are internally represented as bi-
nary bitmaps, called “templates.”9 This representation has a number of desirable
characteristics. For example, it avoids the need for stroke segmentation and thus
avoids issues with segmentation errors. Similarly, the approach is well suitable for
recognizing “sketchy” symbols such as those with substantial over-stroking.

The classification of an unknown symbol is determined by comparing it to defi-
nition symbols using an ensemble of four different classifiers (template matchers).
The scores of the individual classifiers are aggregated to produce a combined score
for each definition. The definition with the best combined score is assigned to the
unknown symbol.

Template matching techniques are sensitive to orientation. Thus, when two tem-
plates are compared, it is necessary that they have the same orientation. In many sys-
tems, this is achieved by incrementally rotating one pattern relative to the other until
the best correspondence is obtained. This approach, however, is too expensive for
real-time applications. We have developed a much more efficient technique based on
a polar coordinate representation. The technique is based on the fact that rotations
in screen coordinates become translations in polar coordinates. Hence, finding the
optimal rotational alignment in screen coordinates reduces to determining the shift
between patterns in polar coordinates.

The recognition architecture consists of four sequential layers as shown in
Fig. 5.14. The first step is preprocessing, where the input symbols are cropped,
size-normalized and quantized into templates. If the system is in training mode, the
template becomes a definition and is added to the database of existing definitions. If
the system is in recognition mode, the template is passed to the next stage where it
is matched against the definitions.

In the first step of recognition, the unknown symbol is transformed into a polar
coordinate representation, which allows the program to efficiently determine which
orientation of the unknown best matches a given definition. During this process,
definitions that are found to be markedly dissimilar to the unknown are pruned out
and the remaining ones are kept for further analysis. In the second step, recognition

9The material in this section and its subsections is derived from [17].
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Fig. 5.15 Examples of symbol templates. Left: a mechanical pivot, Middle: ‘a’, Right: ‘8’. The
templates are shown on 24 × 24 grids to better illustrate the quantization. (From [17]; used with
permission)

switches to screen coordinates where the surviving definitions are analyzed in more
detail using an ensemble of four different classifiers. Each classifier outputs a list of
definitions ranked according to their similarity to the unknown. In the final step of
recognition, results of the individual classifiers are pooled together to produce the
recognizer’s final decision.

As shown in Fig. 5.14, the analysis in the polar coordinates precedes the analysis
in the screen coordinates. However, for clarity of presentation, we begin the discus-
sion with our template representation and the four template matching techniques,
since some of those concepts are necessary to set the context for the analysis in the
polar coordinates.

5.3.3.1 Representation

Symbols are internally represented as binary bitmap images, which we call “tem-
plates.” When constructing a template, it is first necessary to frame the image. To
do this, a coordinate-aligned bounding box is constructed. The shortest dimension
of the bounding box is then expanded, without changing the location of the box’s
center, to produce a square. The result is that the shape is centered in a square frame,
without necessarily filling it. This preserves the original aspect ratio so that one can
distinguish between, say, a circle and an ellipse. The frame is then sampled to pro-
duce 48 × 48 binary bitmap. This quantization significantly reduces the amount of
data to consider while preserving the pattern’s distinguishing characteristics. This
resolution has proven to be a good compromise between accuracy and efficiency.
Figure 5.15 shows examples of typical templates.

5.3.3.2 Template Matching with Multiple Classifiers

Template matching, in its simplest form, is the process of superimposing two digital
images and applying a measure of similarity. While most template-based recogni-
tion systems are designed around a single similarity measure, we use four different
methods to enhance recognition accuracy. The first two are based on the Hausdorff
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distance, which measures the dissimilarity between two point sets. Hausdorff-based
methods have been widely used for detection and recognition of “rigid” objects,
such as those in photographic images or machine generated text [32]. A few re-
searchers have recently considered the use of the Hausdorff distance for hand-drawn
pattern recognition [3, 26]. Our work is unique in that our approach is rotation in-
variant.

Our other two recognition methods are based on the Tanimoto and Yule coeffi-
cients. Unlike the Hausdorff methods, these methods measure the similarity between
patterns and output their results in the form of correlation coefficients. The Tanimoto
coefficient is extensively used in chemical informatics [7]. The Yule coefficient has
been proposed as a robust measure for binary template matching [39]. To the best of
our knowledge, the Tanimoto and Yule measures have not previously been applied
to handwritten pattern recognition.

In the following paragraphs we detail these four classification methods and ex-
plain the modifications we used to better suit them to hand-drawn symbol recogni-
tion.

Hausdorff Distance: The Hausdorff distance between two point sets A and B is
defined as

H(A,B) = max
(
h(A,B),h(B,A)

)
(15)

where

h(A,B) = max
a∈A

(
min
b∈B

‖a − b‖
)
. (16)

‖a − b‖ represents a measure of distance (e.g., the Euclidean distance) between two
points a and b. h(A,B) is referred to as the directed Hausdorff distance from A to
B and corresponds to the maximum of all the distances one can measure from each
point in A to the closest point in B . If h(A,B) = d , then every point in set A is at
most distance d away from some point in B . h(B,A) is the directed distance from
B to A and is computed in a similar way. Note that in general h(A,B) �= h(B,A).
The Hausdorff distance is defined as the maximum of the two directed distances.

In its original form, the Hausdorff distance is overly sensitive to outliers. The
Partial Hausdorff distance proposed by Rucklidge [32] eliminates this problem by
ranking the points in A according to their distances to points in B in descending
order, and assigning the distance of the kth ranked point as h(A,B). The partial
Hausdorff distance from A to B is thus given by:

hk(A,B) = kth
a∈A

min
b∈B

‖a − b‖. (17)

The partial Hausdorff distance softens the distance measure by discarding points
that are maximally far away from the other point set. In our implementation, we
discard the most distant 6% of the points.

Whether it is based on the maximum or the kth ranked directed distance, calcula-
tion of h(A,B) involves computing, for each point in A, the distance to the nearest
point in B . We use a distance transform to do this efficiently. A distance transform
is a morphological operation that converts a binary bitmap image into an image in
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which each pixel encodes its distance (we use the Euclidean distance) to the near-
est black pixel in the same image. The resulting image is called a distance map and
serves as look-up table for the closest distances. Note that the distances maps for the
definition symbols can be computed off-line and saved. Also, we use the distance
maps to accelerate the computation of the other classifiers.

Modified Hausdorff Distance: The Modified Hausdorff Distance (MHD) [6] re-
places the max operator in the directed distance calculation by the average of the
distances:

hmod(A,B) = 1

Na

∑

a∈A

min
b∈B

‖a − b‖ (18)

where Na is the number of points in A. The modified Hausdorff distance is then
defined as the maximum of the two directed average distances:

MHD(A,B) = max
(
hmod(A,B),hmod(B,A)

)
(19)

Although hmod(A,B) may appear similar to hk(A,B) with k = 50%, the differ-
ence is that the former corresponds to the mean directed distance while the latter
corresponds to the median. Dubuisson and Jain argue that for object matching pur-
poses, the average directed distance is more reliable than the partial directed distance
mainly because as the noise level increases, the former degrades gracefully whereas
the latter exhibits a pass/no-pass behavior.

Tanimoto Coefficient: The Tanimoto coefficient between two binary images A

and B is defined as

T (A,B) = nab

na + nb − nab

(20)

where na is the total number of black pixels in A, nb is the total number of black
pixels in B , and nab is the number of overlapping black pixels.

Intuitively, T (A,B) specifies the number of matching pixels in A and B , nor-
malized by the union of the two point sets. By definition, T (A,B) yields values
between 1.0 (maximum similarity) and 0.0 (minimum similarity). In the form given
above, the similarity between two images is based solely on the matching black pix-
els. However, for images that contain mostly black pixels, the discrimination power
of T (A,B) may vanish. In such situations, coincidence of white pixels can be used
as a measure of similarity:

T C(A,B) = n00

na + nb − 2nab + n00
(21)

where n00 is the number of matching white pixels. The denominator is the number of
pixels that are white in at least one of the images. T C(A,B) is called the Tanimoto
coefficient complement. It represents the number of matching white pixels normal-
ized by the union of the white pixels from the two images. The two expressions can
be combined to form the Tanimoto similarity coefficient [7]:

Tsc(A,B) = α · T (A,B) + (1 − α) · T C(A,B) (22)
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where α is a weighting factor between 0.0 and 1.0. Ideally, if the number of black
pixels in an image is small compared to the number of white pixels, the similarity
decision should be based on matching black pixels. In this case, T (A,B) should be
emphasized by means of a large α. In the converse case, similarity should be based
on matching white pixels, which means T C(A,B) should be emphasized by means
of a small α.

This effect can be achieved by linking α to the relative number of black pixels as
follows:

α = 0.75 − 0.25 ·
(

na + nb

2 · n
)

(23)

where n is the image size in pixels. The term in parentheses is the total number of
black pixels divided by the total number of pixels in the two images. The form of
this relationship is adapted from [7] such that α is small when the number of black
pixels is high and vice versa. We selected the two constants in the equation so that
α is generally high, in the range [0.5,0.75] to be precise. This bias favors T (A,B)

over T C(A,B). The choice is justified by the fact that hand-drawn symbols usually
consist of thin lines (unless excessive over-tracing is done) producing rasterized
images that contain fewer black pixels than white. Hence, for our applications, the
Tanimoto coefficient should be controlled more by T (A,B) than by T C(A,B).

Similarity measures that are based exclusively on the number of overlapping pix-
els, such as the Tanimoto coefficient, often suffer from slight misalignments of the
rasterized images. We have found this problem to be particularly severe for hand-
drawn patterns where rasterized images of ostensibly similar shapes are almost al-
ways disparate, either due to differences in shape, or more subtly, due to differences
in drawing dynamics. To make the Tanimoto coefficient insensitive to typical varia-
tions in hand-drawn shapes, we use a thresholded matching criterion that considers
two pixels to be overlapping if they are separated by a distance less than 1/15th of
the image’s diagonal length. For a 48 ×48 image grid, this translates into 4.5 pixels,
i.e., two points are considered to be overlapping if the distance between them is less
than 4.5 pixels.

Yule Coefficient: The Yule coefficient, also known as the coefficient of colliga-
tion, is defined as

Y(A,B) = nab · n00 − (na − nab) · (nb − nab)

nab · n00 + (na − nab) · (nb − nab)
(24)

where the term (na − nab) corresponds to the number of black pixels in A that do
not have a match in B . Similarly, (nb − nab) is the number of black pixels in B that
do not have a match in A.

Y(A,B) produces values between 1.0 (maximum similarity) and −1.0 (mini-
mum similarity). Unlike the original form of the Tanimoto coefficient, the Yule co-
efficient simultaneously accounts for the matching black and white pixels via the
terms nab and n00. However, like the Tanimoto coefficient, it is sensitive to slight
misalignments between patterns. We therefore employ a thresholded matching cri-
terion similar to the one we use with the Tanimoto method.
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Tubbs [39] originally employed this measure for generic, noise-free binary tem-
plate matching problems. By using a threshold, we have made the technique useful
when there is considerable noise, as is the case with hand drawn shapes.

Combining Classifiers: Our recognizer compares the unknown symbol to each
of the definitions using the four classifiers explained above. The next step in recog-
nition is to identify the true class of the unknown by synthesizing the results of the
component classifiers. However, the outputs of the classifiers are not compatible
in their original forms because: (1) The first two classifiers are measures of dis-
similarity while the last two are measures of similarity, and (2) the classifiers have
dissimilar ranges.

To establish a congruent ranking scheme, we first transform the Tanimoto and
Yule similarity coefficients into distance measures by reversing (negating) their val-
ues. This process brings the Tanimoto and Yule coefficients in parallel with the
Hausdorff measures in the sense that the numerical scores of all classifiers now in-
crease with increasing dissimilarity. Next, to eliminate the range differences among
classifiers, we normalize the values of all four classifiers to the range 0 to 1 using
a linear transformation function. For each classifier, the transformation maps the
distance scores to the range [0,1] while preserving the relative order established by
that classifier. Finally, having standardized the outputs of the four classifiers, we
combine the results using a method similar to the sum rule introduced by Kittler
et al. [19]. For each definition symbol, we compute a combined normalized distance
by summing the normalized distances obtained from the constituent classifiers. The
unknown pattern is then assigned to the class having the minimum combined nor-
malized distance.

5.3.3.3 Handling Rotations

Before an unknown template can be compared to a definition template, the two
must be brought into the same orientation. We use a techniques based on a polar
coordinate representation to do this efficiently. The polar coordinates of a point in
the x–y plane are given by the point’s radial distance, r , from the origin and the
angle, θ , between that radius and the x axis. The well known relations are:

r =
√

(x − xo)2 + (y − yo)2 (25)

and

θ = tan−1
(

y − yo

x − xo

)
(26)

where (xo, yo) is the origin.
A symbol originally drawn in the screen coordinates (x–y plane) is transformed

into polar coordinates by applying these formulas to each of the data points. To
make this representation scale-independent, we normalize the r values using the
“ink length” of the symbol, which is defined at the total distance the pen tip travels
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Fig. 5.16 a Left: Letter ‘P’ in screen coordinates. Right: in polar coordinates. b When the letter
is rotated in the x–y plane, the corresponding polar transform shifts parallel to the θ axis. (From
[17]; used with permission)

on the writing surface. Figure 5.16a illustrates a typical transformation. As shown
in Fig. 5.16b, when a pattern is rotated in the x–y plane, the corresponding polar
image slides parallel to the θ axis by the same angular displacement.

To find the angular offset between two polar images, we use a slide-and-compare
algorithm in which one image is incrementally displaced along the θ axis. At each
displacement, the two images are compared to determine how well they match. The
displacement that results in the best match indicates how much rotation is needed
to best align the original images. Because the polar images are 48 × 48 quantized
templates, we can use the template matching techniques described earlier to match
the polar images. We use the modified Hausdorff distance (MHD) as it is slightly
more efficient than the regular Hausdorff distance, and it performs slightly better
than the Tanimoto and Yule coefficients in polar coordinates.

One difficulty with the polar transform is that data points near the centroid of the
original screen image are sensitive to the precise location of the centroid. To remedy
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this, we introduce a weighting function w(r) that attenuates the influence of pixels
near the centroid. Using this function, the directed MHD becomes

hmod_weighted(A,B) = 1

Na

∑

a∈A

w(ar) · min
b∈B

‖a − b‖ (27)

where ar represents the radial coordinate of point a in the quantized polar image A.
The directed distance from B to A, hmod_weighted(B,A), is calculated similarly, and
the maximum of the two directed distances is the MHD between A and B . Our
weighting function has the form:

w(r) = r0.10. (28)

This function asymptotes near 1 for large values of r , and falls off rapidly for small
values of r .

Once the angular difference between two patterns is determined with the polar
coordinate analysis, the patterns can then be aligned in the x–y plane by a single
rotation. The aligned templates can then be compared using the template matching
techniques described earlier.

The degree of match between two polar images provides a reasonable estimate of
the match of the original screen images. In fact, if it were not for the imprecision of
the polar transform for small r values, the recognition process could be performed
exclusively in the polar plane. Despite this, we have found that the correct definition
for an unknown is typically among the definitions ranked in the top 10% by the
polar coordinate matching. Thus, we typically discard 90% of the definitions before
considering the match in screen coordinates.

5.4 Educational Applications

Our Sim-U-Sketch (Fig. 5.1), Vibrosketch (Fig. 5.2), and AC-SPARC (Fig. 5.6) sys-
tems were originally intended as experimental platforms for developing easy-to-use
engineering analysis tools. However, these systems also have value as educational
tools. In engineering education, it is common for students to use sophisticated soft-
ware tools like SPICE [41]. But the complexity of the interfaces often limits the
usefulness of the tools, as students often spend more time learning to use the soft-
ware than thinking about the essential concepts. Our systems, by contrast, enable
students to operate analysis tools by simply drawing the same kinds of sketches and
diagrams they see in lecture. This allows students to focus on problem solving rather
than how to use the software.

While our pen-based analysis tools are useful for education, they do not have
tutoring functionality. In our more recent work, we have explicitly focused on the
use of pen-based technology for creating intelligent tutoring systems. “In particular,
our goal is to create computational techniques to enable natural, pen-based tutor-
ing systems that scaffold students in solving problems in the same way they would
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Fig. 5.17 Kirchhoff’s Pen used for mesh analysis. The system informs the student of a sign error

ordinarily solve them with paper and pencil” [4]. This goal is consistent with re-
cent research comparing student performance across different user interfaces show-
ing that “as the interfaces departed more from familiar work practice. . . , students
would experience greater cognitive load such that performance would deteriorate in
speed, attentional focus, meta-cognitive control, correctness of problem solutions,
and memory” [29].

“As one step toward our goal, we have developed Kirchhoff’s Pen [4], a pen-
based tutoring system that teaches students to apply Kirchhoff’s voltage and current
laws. Kirchhoff’s voltage law (KVL) states that the sum of the voltages around any
closed loop, or “mesh,” is zero. Kirchhoff’s current law (KCL) states that the sum
of the currents into an electrical node is zero. Kirchhoff’s Pen is built on top of our
AC-SPARC system.” [4]

To use Kirchhoff’s Pen, the student begins by either sketching a circuit schematic
or loading a predrawn circuit. The student then “annotates the circuit to indicate the
component labels, mesh currents, and nodal voltages, . . . and writes the appropriate
equations in a window at the bottom of the screen. The system interprets the equa-
tions, compares them to the correct equations (which are automatically derived from
the circuit), and provides feedback about errors. Figure 5.17 shows an example of
the system being used for mesh analysis. The equation at the bottom of the screen
is intended to describe the mesh on the left side of the circuit. However, the student
has made a sign error: the R2I2 term should be negative, but was written as positive.
The system identifies the error” and guides the student in fixing it [4].
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As another step toward our goal, we have built Newton’s Pen [24], a pen-based
statics tutor designed for the LeapFrog FLY pentop computer.10 Statics is the sub-
discipline of engineering mechanics concerned with the equilibrium of objects sub-
jected to forces. The FLY is based on Anoto [2] digital paper technology and has
an embedded 96 MHz ARC processor. The FLY is used in conjunction with pa-
per preprinted with a specially designed dot pattern. Newton’s pen runs entirely on
the FLY’s embedded processor, which created significant challenges because of the
limited memory and computational power available (there is only about 4k bytes of
RAM available). The platform also presented substantial user interface design chal-
lenges because audio is the only form of dynamic output: The system has a speech
synthesizer and can play recorded sound clips.

“Newton’s Pen scaffolds students in the construction of free body diagrams and
equilibrium equations. Problems are solved on digital paper preprinted with user in-
terface objects, such as “HELP” and “DONE” buttons. Figure 5.18a shows a work-
sheet for drawing a free body diagram. To begin, the student taps the pen on the
“START FBD” button, and the system prompts the student to draw the free body
diagram in the space provided. After each graphical element is drawn, the system
provides interpretive audio feedback. If the student makes a problem-solving error,
or the input is not recognized, the system informs the student via synthesized speech.
The student can tap “HELP” at any time for audio hints about what to do next, or
for guidance after an error. When the student completes the free body diagram, he
or she hits the “DONE” button, and is directed to write the equilibrium equations on
the worksheet in Fig. 5.18b” [23]. The system interprets the equations and provides
audio feedback if there are errors.

User studies with Kirchoff’s Pen and Newton’s Pen have shown that these sys-
tems are effective educational tools. The studies involved novice undergraduates
who had been exposed to the relevant lecture material (Kirchoff’s laws or statics)
but had not yet attempted homework problems. Prior to using our system, the stu-
dents were given pretests which indicated they had little understanding of the mate-
rial. After about one hour with our systems, most students were able to comfortably
solve problems. Attitudinal surveys of the students suggested that they were quite
pleased with the systems and would use them in their courses if they were available.

5.5 Conclusion

This chapter has described our techniques for sketch parsing and symbol recogni-
tion. We have used these techniques to implement practical pen-based engineering
analysis tools and effective pen-based tutoring systems. Despite the usefulness and
usability of these systems, there are many significant problems left to be solved. For

10This paragraph is derived from [24]. An earlier version of this material also appeared in Lee,
W., de Silva, R., Peterson, E.J., Calfee, R.C., Stahovich, T.F.: Newton’s Pen: a pen-based tutoring
system for statics. In: SBIM ’07: Proceedings of the 4th Eurographics Workshop on Sketch-Based
Interfaces and Modeling, pp. 59–66. ACM, New York (2007). doi:10.1145/1384429.1384445 [23].
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Fig. 5.18 a Worksheet for drawing free body diagrams. b Worksheet for writing equilibrium equa-
tions. (From [24]; used with permission)

example, our techniques often rely on domain knowledge to achieve high accuracy.
This is particularly true of AC-SPARC, which uses knowledge of circuits both for
parsing and for automatic error correction. Our ongoing work is focused on gener-
alizing our techniques, making them more domain independent and applicable to an
even wider range of problems. However, it is likely that some amount of domain
knowledge will always be necessary to achieve high performance. For instance, it
would be challenging even for a human to understand a crudely-drawn sketch with-
out some contextual knowledge. For the same reasons, sketch interpretation systems
will always rely on domain knowledge, and possibly domain-specific techniques.

Our goal is to create user interfaces that are substantially more natural to use than
traditional mouse-and-windows-based interfaces. Pen-based interfaces are clearly
a step in the right direction. However, human communication is frequently mul-
timodal and often includes sketching, gesturing, and speaking. Another important
research direction is the creation of user interfaces that can understand these modal-
ities and use them simultaneously. This will not only result in more natural inter-
faces, but will also result in more robust systems, as the various modalities will
enable mutual disambiguation.

In recent years, pen-based computing hardware has become ubiquitous—now
even inexpensive mobile phones have pen or touch interfaces. However, most pen-
based devices use the pen (or finger) simply for pointing. Achieving the real value of
such devices requires recognition-based interfaces. We have begun to explore such
interfaces for engineering and education, but there is a vast range of domains yet to
be explored. Our initial successes give us confidence that much can be accomplished
in these other domains.
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Chapter 6
Flexible Parts-based Sketch Recognition

Michiel van de Panne and Dana Sharon

6.1 Introduction

The automatic recognition of drawings or sketches is an important problem to solve.
Computers and interfaces which could see such diagrams as being more than raw
lists of pixels or stroke coordinates would open up many new possibilities for more
intelligent interfaces and document processing. The recognition problem is perhaps
easiest when the elements to be recognized have a fully predetermined structure,
such as consistently drawn versions of the letter ‘A’ or an arrowhead. At the other
end of the spectrum, humans are able to do quite well at recognizing objects that
have extreme variability in their depictions. For example, we can recognize drawn
people or trees despite the many potential variations in shape, pose, choice of drawn
features, and drawing style. In this chapter we present two sketch-recognition tech-
niques that aim at the middle of this spectrum by seeking to recognize drawings that
exhibit structured, parts-based variation. Figure 6.1 shows examples of the types
of drawings that can be recognized using these techniques. The objects can exhibit
significant variation in how they are drawn. They can also have optional parts, such
as the pupils, eyebrow strokes, and beards for the faces of row a, and the presence
or absence of handles and engines-on-the-wings for the object drawings of row b.

The type of recognition discussed in this chapter is distinct from diagram recog-
nition, another common type of sketch recognition problem, e.g., [7], in several
ways. Diagrams are often modeled using a fixed vocabulary of symbols, each with
a fixed or restricted drawn representation, e.g., boxes and arrows, or electrical com-
ponents and wires. In the class of objects we are interested in, objects can have a
highly variable drawn representation, and the relative spatial location of parts plays
a key role in the recognition process. The recognition problem we tackle is also sig-
nificantly different from the problem of interpreting 3D structure from 2D drawings.
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Fig. 6.1 Examples of parts-based sketch recognition. a Face drawings that can be successfully
recognized, as illustrated by the color-coding of the drawn lines. b Drawings of cups and airplanes
that can be successfully recognized, as illustrated by the resulting 3D models

A key to the recognition algorithms we present is the use of a 2D template for
each class of objects to be modeled. The templates provide explicit support for op-
tional parts, and therefore offer a compact and scalable approach for modeling many
classes of objects. Recognizing a whole object in terms of being a particular layout
of a collection of parts helps avoid the combinatorial explosion that would other-
wise be required if explicitly modeling all possible combinations of parts that might
constitute an object. The template structure also provides context for the recognition
of the parts themselves, which might not otherwise be sufficiently unique in order to
be recognized in isolation. As a trivial example, the arm of a stick-figure drawing of
a human cannot be distinguished from a leg without knowing some of the contextual
information provided by the surrounding lines.

We present two recognition algorithms in this chapter, each of which has its own
specific form of template model. The first is a hierarchy of parts (HOP) model,
which assumes that each drawn object has a single ‘body’ part with an attached hi-
erarchy of optional parts. Recognition for this case proceeds by treating the drawn
strokes as a graph and looking for pieces of the graph that are similar in both struc-
ture and shape. The second is a constellation of parts (COP) model, which assumes
that there are a core set of possibly-disconnected parts, and the recognition is based
in large part on identifying parts by their relative location with respect to each other.

6.1.1 Algorithm Design Issues

Recognition algorithms can be developed around many possible assumptions and
approaches. Together, these form the design space for the sketch-recognition algo-
rithm. In what follows, we provide various means by which sketch-recognition al-
gorithms can be classified, and where our two proposed techniques are placed with
respect to these.
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6.1.2 Image-based vs. Stroke-based

Drawings can be treated as images, which offers the potential advantage of being
able to adapt computer vision methodology and algorithms. However, extracted
edges and connectivity information play an important role in many vision-based
recognition algorithms, and this is even more the case for drawings where there is
little in the way of color, texture, or other image-patch information to exploit. As
a result, our proposed techniques directly work with the given strokes as sets of
connected, ordered points.

6.1.3 Use of Timing Information

Given a decision to work with strokes, we need to decide which stroke attributes to
work with. If the strokes are captured when drawn, i.e., with a pen-based interface,
timing information is available, which can then be exploited in support of recogni-
tion. For example, the strokes used to draw a particular symbol by a particular user
might usually drawn in a given order. The timing information within a stroke can
be used to help identify corner points at which a stroke could be segmented. How-
ever, there can always be valid exceptions to a model based on usual stroke ordering
and timing. This information may also be specific to individual users or particular
object variations. Human observers can also readily recognize objects in drawings
without having observed the timing and ordering of the drawing process. By rely-
ing on timing information, the source of some recognition failures may be highly
opaque to the user given that this information is not directly visible in a drawing.
The recognition algorithms proposed in this chapter do not use timing or ordering
information.

6.1.4 Top–Down vs. Bottom–Up

Two basic approaches for recognition are to: (i) search for models that are compat-
ible with given evidence, i.e., bottom–up, or (ii) search for evidence that would be
compatible with a given model, i.e., top–down. Given the large space of possible
assignments of strokes or stroke-segments to possible parts of possible objects, it is
important to find methods that quickly constrain the search. Our proposed methods
generally use a top–down approach. We make some assumptions regarding stroke
segmentation and connectivity, which can be thought of as a type of bottom–up in-
terpretation. This greatly simplifies the recognition process, but we note that it can
also be the source of unrecoverable errors because it may commit to one particular
segmentation or grouping of strokes, where the best interpretation may require an
alternate segmentation or grouping.
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6.1.5 Object Template Representation

Recognition requires prior knowledge of some form of the expected class of shapes
or the expected arrangement of drawn features that constitute a drawn object. This is
most commonly represented in terms of a template. Templates can encode the mean
shapes of objects or object parts, or they can encode a likelihood distribution over
possible shapes. Template information can be user-defined or learned from example.
The two recognition algorithms described in this chapter each have their own unique
template representation. The hierarchical parts model uses the mean shapes of parts
and implements hard constraints on the relative location of parts with respect to
each other. In contrast, the constellation parts model uses a probabilistic approach
for modeling both the shapes of parts and the locations of parts.

6.1.6 Degree of Supported Variation

Recognition algorithms can often be simplified if it is assumed that the drawing
contains no extraneous strokes and the required parts are fixed and known in ad-
vance, i.e., there is no notion of optional parts. Making these assumptions allows
the recognition problem to search for a solution in the space of all possible one-to-
one mappings between drawn features or strokes and template features or strokes.
If these assumptions cannot be made, the space of possible solutions is often sig-
nificantly enlarged because it is now possible that any given stroke may simply be
noise or not be part of a good interpretation. Similarly, a top–down search can also
no longer rely on every template part actually being instanced in a drawing. Both
algorithms that follow support spurious strokes and optional parts.

6.1.7 Search Algorithm

Recognition algorithms can vary in many ways. Some algorithms can provide ‘any-
time results’, i.e., they can return the current best match at any time, which is a useful
feature in settings where fast, non-optimal recognition is more important than slow,
optimal recognition. The recognition results may consist of fine scale point-to-point
correspondences or, alternatively, at a coarser scale such as part labels assigned to
strokes of the input drawing. Algorithms can vary significantly in their scalability.
The algorithms presented in the remainder of this chapter have been demonstrated
on drawn objects that have from 5–50 strokes, and up to 10 labels.

6.1.8 Recognition as Search

Recognition can be treated as a search process, where the goal is to find the best
interpretation of the strokes in a drawing, in the set of all possible interpretations.
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The recognition methods proposed in this chapter are no different. As a prelude to
describing them in detail, we first consider the operation of simple search algorithms
on a well-posed recognition problem. For this, we define a drawing as consisting of
n strokes and having a corresponding set of n labels that need to be assigned in a
one-to-one mapping to the strokes. Each drawn stroke has a number of local known
attributes, such as its total arc length, bounding-box perimeter, mean orientation,
centroid, etc. Let us assume that, for each label, there is a known likelihood distri-
bution for each attribute, the simplest version of which is to assume an independent
Gaussian distribution for each attribute.

A first algorithm to consider is to find, for each stroke, the most likely label ac-
cording to the attributes of the stroke. This is the simplest form of bottom–up search,
and treats each stroke in an independent fashion. Alternatively, one could perform a
type of top–down search, namely finding, for each label, the stroke that most likely
corresponds to that label. The obvious pitfall of both of these algorithms is that they
fail to enforce the one-to-one mapping we require between the strokes and labels.
Enforcing this constraint requires considering the set of all possible label-to-stroke
assignments, of which there are n! combinations, and considering each of these
with respect to the overall objective, such as maximizing the product of the indi-
vidual label-to-stroke likelihoods (equivalently, maximizing the sum of the log like-
lihoods). Fortunately, branch-and-bound techniques can be applied to significantly
reduce the search space.

The parts-based recognition problems we tackle have additional features which
further complicate the problem as depicted thus far. First, the assignment of labels
to strokes will depend not only on the stroke attributes, but also on the location of
the stroke relative to other labeled strokes. For example, a good indication that a
stroke represents the nose is that it lies below the eyes and above the mouth. The
challenge here is that the assignments of labels to strokes become further interde-
pendent. Second, the one-to-one mapping of labels to strokes is too restrictive. We
wish to support having multiple strokes for some labels, e.g., a sketched eyebrow or
beard, having parts be optional, e.g., eyelashes, and being able to support drawings
that can contain spurious strokes, i.e., which do not participate in the final recogni-
tion. The two methods presented in this chapter are developed specifically to cope
with these extra constraints.

6.2 Related Work

Recognizing single strokes in isolation is perhaps the simplest version of sketch
understanding and can be used to support interfaces that use pen gestures as com-
mands [12]. Recognizing multi-stroke visual structure is significantly more com-
plex, given that the interpretation of strokes is dependant on its local context. One
approach is to treat it as a graph isomorphism problem [9], where it is applied to the
recognition of human stick figures using a known model of connectivity.

Diagram recognition has been a significant focus for many methods. The search
is often anchored by first finding well-defined symbols, such as drawn characters or
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electrical component symbols [7]. The search can then be further constrained by ex-
ploiting the known structure of the given application domain or object classes. Algo-
rithms often include a mix of top–down and bottom–up procedures that are informed
by some domain knowledge, or are statistically informed based on the observed
stroke order [14] or the interpretation assigned to neighboring strokes [11]. Dia-
gram recognition and their comparative evaluation [10] still leave many unresolved
issues in terms of building robust-yet-flexible systems. The sketch-recognition com-
ponent of our problem can also be thought of as being “diagrammatic”. However,
our 2D templates have features that are specifically tailored to our problem domain,
such as the notion of part hierarchies, optional parts, and one-of-N part selection.
We consider handwriting recognition as a distantly-related problem.

A probabilistic approach to sketch stroke interpretation is proposed in [1]. This
uses domain-specific libraries of ‘Bayesian network fragments’ that describe shapes
and domain patterns. Several mechanisms to control the size of the space of hypothe-
ses are presented, and the technique is applied to the domain of electrical circuit
diagram recognition. Qi et al. [11] proposes the use of conditional random fields
for labeling box-and-line diagrams for particularly difficult ambiguous examples
where constraints must propagate in order to find the most likely interpretation. Per-
ceptually based shape descriptions are used to help infer the recognition of image
structure in [13]. Our work looks at recognition problems that do not require con-
nectivity between parts and considers object sketches that can exhibit considerable
variability.

Image-based techniques can also be used to help identify sketches or parts of
sketches. Shape contexts [2] can be used to match sketch images to a fixed set of
prototype template images. Image-based classifiers are applied in [15] in order to de-
termine likely interpretations for subsets of strokes. An A* search procedure is used
to search among the space of possible subset of strokes in order to find a maximum-
likelihood interpretation for the image. This is applied to a graphic symbol set of 13
symbols.

Constellation models, also known as pictorial structure models, are composed of
a set of local parts, each of which has an appearance model, and a geometry model
that defines preferred relative locations or distances of the parts [5]. They are well
suited to applications such as face recognition, where features such as the nose,
eyes, and mouth have particular local features and also have relatively well-defined
distances to each other. The model is further developed in [4], where it is applied to
identify both faces and body configurations from images. The model continues to
be extended, with an emphasis on learning pictorial structure models automatically
from example images of object classes. More generally, this can be viewed as an
example of statistical relational learning.

An agent-based approach is presented in [8], although this relies on a predefined
grammar for the description of the components. The work of [6] is similar to ours
in that it uses a constellation-type model and a probabilistic framework. Our work
differs in a number of respects, including application to a different domain, using
different and larger individual and pairwise feature sets, supporting flexible object
classes with optional parts, and a staged search strategy.
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Fig. 6.2 Hierarchy-of-parts
method overview

6.3 Hierarchy-of-Parts Models

Many drawings of objects can be modeled as a hierarchy of parts. For example, an
airplane drawing may consist of a fuselage (airplane body) with attached wings, and
possibly engines attached to the wings. Such a hierarchy also suggests a recognition
strategy that begins by locating the root part, e.g., the airplane fuselage in our exam-
ple, and then proceeds by searching for child parts. Conveniently, knowledge about
the spatial relationships between parent-and-child can be exploited to help restrict
the search. For example, finding the fuselage of an airplane provides significant
clues about where to look for the wings. Optional parts can be supported as long as
they are leaf nodes in the part hierarchy.

In the method to be presented, both the templates and the input drawing are repre-
sented as graph structures. Strokes are treated as graph edges and stroke end-points
are treated as nodes. The nodes can have multiple incident edges from nearby stroke
end-points. Finding a part then consists of searching for a well-matched instance of
a given part in the graph structure that represents the drawing. In particular, given
a tentative correspondence between a template graph and the larger drawing graph,
the shapes of the edges which comprise a part should be similar to the shapes of
their corresponding counterparts in the drawing.

The end application of our hierarchy-of-parts model is the creation of 3D models
from the correctly labeled drawing. As will be elaborated shortly, this assumes the
existence of a procedure that constructs a 3D model from sets of measurements
taken from a labeled 2D drawing.

A more detailed overview of the method is given in Fig. 6.2 and a specific ex-
ample of the recognition process is given in Fig. 6.3. The input pen strokes are first
preprocessed in order to produce a graph structure. The preprocessing steps consist
of (1) adding nodes at the start and end of each stroke; (2) adding nodes at corners
and points of local curvature maxima; and (3) merging all nodes that are within a
threshold distance of each other. The segmented strokes become the edges of the
graph. The resulting sketch graph will not necessarily be fully connected because
some parts such as windows and eyes can be drawn in isolation. We also choose not
to segment strokes at T-junctions; these typically occur when sub-parts are attached
to main object parts and our sketch recognition does not require graph connectivity
for the recognition of such sub-parts. Figures 6.3a and b show the strokes of an input
sketch and the resulting sketch graph.
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Fig. 6.3 The recognition process. a Original sketch, consisting of five strokes; b graph computed
from sketch strokes; c cup-body template graph; d computed best-fit correspondences

Given a sketch graph, the next step fits a series of 2D templates to the sketch
graph. This happens at two levels: at the higher level, multiple object templates
are fitted to the sketch graph and scored for their fit. At a lower level, each object
template consists of multiple part templates. The object template supports flexible
instantiation of the part templates. Parts may be deemed as mandatory or optional.
A choose-one-of-N option may also be specified. For example, a cup template can
specify that it may have an optional right handle, which can be either rounded or
square, as modeled by two separate templates. The ability to support this type of in-
formation distinguishes our approach from other shape recognition approaches that
support only a flat hierarchy, i.e., given N fixed templates, find the best-fit template.

Both object and part templates are represented as graphs with pre-specified node
locations. Just as in a sketch graph, template graph edges are sketched curves. The
actual process of matching part templates is thus accomplished using a search over
node correspondences, which are then scored using a curve-matching metric on the
best-fit curve correspondences that the node correspondences induce. Figure 6.3c
shows a cup-body template and Fig. 6.3(d) lists the best-fit correspondences that
were computed for it. These correspondences thus define the labeling of the sketch
graph.

Given a best-fit object template and all the instanced part templates that partic-
ipated in the fit, the last step constructs a 3D model from the labeled 2D sketch.
This is done by extracting measurements from the 2D sketch, such as wing length
or cup height, as well as by fitting spline curves to particular stroke segments. For
example, we use a multi-segment spline curve to smoothly approximate the sides of
the airplane fuselage and the shape of the rounded cup handle. Given a priori knowl-
edge of the object class and the extracted measurements that describe this particular
desired instance, a 3D model can be constructed. Adding a new object class to the
system requires designing a 2D object template, consisting of multiple part tem-
plates, as well as developing a procedural means of constructing the 3D shape from
the labeled sketch.
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Fig. 6.4 Construction of the cup template. a Sketched strokes; b strokes grouped by part c the
cup-body template and its four key-points five curves, drawn with its child parts separated for
clarity. The left-side handles, right-side handles, and saucer are parented by the cup-body curves
3, 4, and 5, respectively

6.3.1 Recognition Algorithm

In describing the algorithm, we first describe the 2D templates and their construc-
tion. We then describe how template graphs are matched to the sketch graph using
a search over possible correspondences. We define curve feature vectors which are
used to evaluate the correspondences. Lastly, we give further details about the hier-
archical structure of the templates.

6.3.2 Template Construction

Like the sketch graph, an object template is a graph, consisting of nodes which
represent key points on the object, and edges, which represent curves of particular
shapes that are expected to be found in a sketch. An example of an object template
for a cup is shown in Fig. 6.4. An object template is itself constructed using a sketch,
where each stroke becomes an edge in the resulting template graph.1 Nodes are
added at the start and end of each stroke and then merged with nearby neighbors.
Figure 6.4a shows the initial sketch for the template. The resulting template graph
is shown in Fig. 6.4b. The coloring of this figure also illustrates the next step, which
consists of creating multiple part templates from the global template.

Individual part templates are subgraphs of the global template graph. A simple
graphical user interface supports their construction. Using a mouse, the user selects
a set of edges that constitute a desired part template. The nodes and edges of this
subgraph are then saved as the part template definition. Lastly, a hierarchy is estab-
lished among the parts by designating an edge of an existing part template to serve
as the parent edge of the new part template. This serves the dual purpose of intro-
ducing a hierarchical order for search and instantiating the model parts, as well as a
means to encode knowledge about the relative location of parts.

1Stroke segmentation is turned off when drawing the template graph.
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Fig. 6.5 Transformation of the bounding polygon for the right-cup handle. The template is shown
on the left, and a sketch on the right. The right-hand edge of the cup-body template serves as the
parent edge for this part

Creating a 2D template for a new class of objects requires careful thought, al-
though its actual construction can be done in about 15–20 minutes using the GUI.
The template should represent a stereotypical example of the desired class of ob-
jects. The template parts also need to provide the information necessary for the
appropriate 3D reconstruction of the various parts.

Also associated with the parent edge is a bounding polygon (BP), which serves
to represent the area in which to search for a part template during the sketch recog-
nition. We use a convex quadrilateral to represent the BP. The BP is specified during
the design of a part template by dragging its vertices to the desired locations in the
template sketch window. The polygon lives in a coordinate system that is defined
by the parent edge. One of the two nodes associated with the edge becomes the ori-
gin of this coordinate system, and the other node locates the point (1,0). As shown
in Fig. 6.5, this allows the BP to be transformed to the sketch coordinate system
once the parent edge has been labeled in the sketch. If the parent edge is not la-
beled in the sketch, i.e., the parent part was not instantiated, then there will be no
attempts to fit the part templates which use that parent edge. The BP provides the
sketch-recognition algorithm with necessary information about the expected relative
location of parts and thus serves to greatly constrain the search space of possible
correspondences.

The part templates that are at the root of the part hierarchy, such as the plane or
cup body, do not have a parent edge. For these parts, the part template explicitly
stores an expected location for the graph nodes that comprise the part. By using
a normalized coordinate system that is defined by the axis-aligned bounding box
of the template sketch, normalized coordinates are computed for each node. The
bounding box of a drawn sketch serves to instantiate this normalized coordinate
system for the sketch and thereby provides a set of expected locations for the nodes.
As shown in Fig. 6.6, the sketch-recognition algorithm will only search for corre-
spondences for a template graph node within a given radius of the expected location.
This radius is defined in normalized coordinates (we use r = 0.3) and thus typically
maps to an elliptical region in the sketch.
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Fig. 6.6 Expected locations
in the sketch graph are
computed for the template
graph nodes of the cup body
using a normalized coordinate
system based on the bounding
box

6.3.3 Template Matching

Given a sketch graph and a set of object templates, the recognition system must
determine the template that best fits the given sketch. An object template is in turn
made up of multiple part templates, and thus the core of the recognition algorithm is
built around a procedure for matching (finding) a given part template to the sketch.
A best-fit solution consists of (1) corresponding sketch graph nodes for each tem-
plate graph node; (2) corresponding paths through the object sketch graph for each
template edge; and (3) a score that denotes the quality of the fit.

The matching process is summarized in Algorithm 1. As a whole, it consists of it-
eratively generating and scoring different sets of correspondences between template
graph nodes and sketch graph nodes. A total of Niter of such generate-and-score are
attempted and the best-scoring configuration is retained. For a given generated set
of node correspondences (lines 4–6), a best-fit correspondence is computed for each
template edge (lines 8–12). Each template edge, such as the left-hand side of the
cup body, should correspond to a path in the sketch graph that may traverse multi-
ple connected sketch-graph edges. The sketch strokes may be over-segmented when
constructing the sketch graph, or because a particular feature may have been drawn
using multiple strokes. Both of these cases can be observed in the example shown
in Fig. 6.3.

There may be multiple paths between a given pair of nodes in the sketch graph.
It then needs to be determined which of these paths best corresponds to the given
template edge. The pathset(na, nb) function determines a set of possible paths, P,
between nodes na and nb in the sketch graph using a depth-first graph traversal. In
order to limit the number of possible paths, which can become large for a highly
connected sketch graph, we bound the search to paths whose ratio of arclength to
straight-line distance is less than twice this same ratio as computed for the template
edge that we are seeking to match.

Each path p ∈ P is tested for similarity with the given template edge that we
seek to match (line 10). This is accomplished by computing a curve feature vec-
tor, F, for the template curve et and for each path p, and computing a match
score M(F(et),F(p)) based upon these feature vectors. The details of how F and
M(F1,F2) are computed are given in the following section.

Several methods could be used to arrive at appropriate choices of node correspon-
dences to be evaluated (lines 4–6). One choice would be to systematically evaluate
all permutations of assignments of the Nt template nodes to the Ns sketch nodes.
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Algorithm 1: Part Matching
1: input S(Ns,Es) {Sketch Graph}
2: input T(Nt,Et) {Template Graph}
3: for i = 1 to Niter do
4: for all nt ∈ Nt do
5: C[nt] ← select(Ns)
6: end for
7: score ← 0
8: for all et ∈ Et do
9: P ← pathset(C[n1(et)],C[n2(et)])

10: p ← bestMatchPath(et,P)
11: score ← score + M(et,p)

12: end for
13: if score > bestScore then
14: update bestScore and best correspondences
15: end if
16: end for

While this approach is guaranteed to find globally-optimal correspondences, it suf-
fers from a combinatorial explosion. Our system currently employs a stochastic lo-
cal search method, beginning a search by using a uniform random assignment of
sketch nodes to template nodes. Randomized local changes to the current set of cor-
respondences are then evaluated and accepted or rejected in a greedy fashion. If a
local maxima is reached, the current best solution is updated if necessary, and the
search is restarted at another randomized point in the space of all possible corre-
spondences. We limit the total number of iterations to Niter = 2000.

6.3.4 Curve Matching

In order to determine if a given path through the sketch graph is similar in shape to
a desired edge of the template that we seek to locate in the sketch, we first define
a curve feature vector F over paths or edges. This is defined as F = [f1 f2 f3]T,
where f1 = θ , f2 = a/d , f3 = A/d2, θ is the angle of the straight line between the
curve end-points with respect to the horizontal, a is the arclength of the curve, d is
the straight-line distance between the end-points, and A is the signed area between
the curve and the straight line. The key parameters are illustrated in Fig. 6.7. Feature
f1 encodes preferences for desired angles, as our sketch-recognition scheme is not
rotation-invariant. Features f2 and f3 encode information about the type of curve
that connects the end-points and provide useful distinctions between a curve that
passes above or below the straight line, as well as how much the curve meanders.

We note that a limitation of the curve feature vector is that two curves that are
symmetric with respect to the perpendicular bisector of the end-points will have the
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Fig. 6.7 Key parameters
used to compute the curve
feature vector: arclength a,
straight-line distance d , angle
θ , and area A

same curve feature vector. Also, the curve-feature vector is potentially problematic
for closed curves. For this reason, closed curves are automatically segmented into
open curves. An axis-aligned box is computed for the stroke. If w > h, the curve
is segmented at the points where xmin and xmax occur. Otherwise, the curve is seg-
mented where ymin and ymax occur.

The matching function that compares two curve feature vectors is defined
as M(Fa,Fb) = k

∑
i wig(σi, fia − fib ), where g(σ, x) = e−0.5(x/σ )2

and k =
1/

∑
i wi . The wi values provide a relative weighting of the feature vector com-

ponents.2 The matching function provides a maximum score of 1 for curves that are
highly similar, and a score of zero for those that are very dissimilar. σi provides a
means of scaling the feature vector elements (or rather their differences) to provide
a meaningful level of sensitivity.3 As described in Algorithm 1, the match scores of
all curves that make up a part template are summed in order to yield a total match
score for the part template.

6.3.5 Template Hierarchy

Object templates are specified in a simple script file and consist of an ordered list
of part templates Tj to be matched to the sketch graph, S, as well as an instancing
threshold, αj . The thresholds provide a means to allow parts that have a low best-
match score to not be instanced as part of the model. This provides control to the
template designer as to whether or not a scribble drawn to the right of the cup should
be interpreted as a cup-handle anyhow (low threshold), or as a scribble that is to be
ignored (high threshold).

Part templates also provide support for one-of-N matching. For example, it may
be possible to interpret a cup-handle as either a rounded handle or a square han-
dle, each of which has its own part template and its own associated 3D-model-
construction method. A comma-separated list of part-template names in the object
template has a one-of-N semantics, meaning that all the templates in the list should
be considered, but only the best-fitting template should be retained.

The scores of part templates can be combined to compute an overall object tem-
plate score. Currently, we compute a score based on the mean scores of the instan-
tiated part templates. The object template scores allow a sketch to be fitted with all

2We use w1 = 2,w2 = 1,w3 = 1.
3We use σ1 = 22°, σ2 = 0.25, σ3 = 0.1.
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the possible object templates, with only the best-fit object template being used to
instantiate the 3D model.

6.3.6 Application to 3D Model Construction

Once the sketch recognition is complete, a 3D model is constructed in a procedural
fashion. This procedural construction is hard-coded for each object class. We have
found that this is generally the most time-consuming aspect of adding a new object
class. We now discuss the construction rules used for each object class.

The cup construction proceeds as follows. A centerline is estimated from the
axis-aligned bounding box for the cup-body strokes. A spline is fitted to the sketched
curves segments that make up the right side. A surface of revolution is then con-
structed from the centerline and the fitted spline. The saucer is similarly constructed
as a surface of revolution from a spline that is fitted to the appropriate sketched
curves. The 3D handle is constructed by sweeping a predefined 3D cross-section
along a spline that is fitted to the sketched handle. Adjustments are made to the po-
sitions of the saucer and the handle(s) so that these parts are contacting the body
even if there are gaps that exists in the sketch. Unrecognized strokes that are drawn
over the region of the cup body are projected onto the cup body as annotations, as
shown in Fig. 6.1b.

Our airplane model assumes the existence of two recognized sketches of tradi-
tional orthographic views: a side view and a top view. These each have their own
separate template. The information from both labeled sketches is then combined in
the model building process. The system can also accept a top view alone, in which
case default assumptions are made about the fuselage and the tail.

The airplane fuselage has a default cross-sectional shape that is uniformly scaled
as it is swept along the spline curves defined by the fuselage side, top, and bottom
curves. The wings and horizontal stabilizers are constructed using a swept-airfoil
cross-section. The tail fin has a similar swept construction. Engines are instanced
as copies of a single 3D engine model, scaled and translated to match the top-view
sketch. Left–right symmetry is enforced in the final model. The model building
process must also resolve any conflicts between the top view and the side view, such
as the length of the fuselage. This is handled by scaling one of the views so that the
fuselage lengths matches the other view.

The 3D fish model consists of a body, dorsal fin, anal fin, a pair of pectoral fins,
and a pair of pelvic fins. Top and bottom splines are fitted to the top and bottom
of the body, starting at the front tip of the fish and ending at the top and bottom of
the caudal fin, respectively. A default elliptical cross-sectional shape is then swept
from front-to-back along these splines, undergoing uniform scaling as necessary.
This swept surface is tapered to end with zero-width at the beginning of the caudal
fin, which is identified as the narrowest part of the right-half of the fish. All the fins,
including the caudal fin, are modeled as polygons. The pectoral and pelvic fins are
tilted at predefined angles away from the body.
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Table 6.1 List of template
parts used to build the cup,
plane, and fish templates. n

and e denote the number of
nodes and edges in the part
template graphs, respectively

plane n e cup n e fish n e

body 2 2 body 4 5 body 3 3

Lwing 4 3 saucer 2 1 topfin 2 1

Rwing 4 3 RHr1 2 1 midfin 2 1

Ltail 4 3 RHr2 2 1 eye 2 2

Rtail 4 3 LHr1 2 1 botfin1 2 1

Leng 2 1 LHr2 2 1 botfin2 2 1

Reng 2 1 RHs 4 3

Leng2 2 1 LHs 4 3

Reng2 2 1

6.3.7 Results and Discussion

The current recognition process requires on the order of one second to match an
object template hierarchy against a sketch, as measured on an 800 MHz TabletPC.
The current sketching interface consists of a sketch area, an area for displaying
the resulting 3D model, and a button panel. The user draws their desired sketch in
the sketch area and hits a ‘Recognize’ button. The interface supports a progressive
workflow if this is desired. The recognition and model building can thus be invoked
at any time for whatever parts that have currently been drawn. One caveat is that
parts such as the handles of the cup cannot be recognized in isolation. The parent
part must first be successfully instantiated.

We have tested the system using three classes of objects: cups, planes, and fish.
Table 6.1 gives the list of part templates used for each object template. While many
of the examples we show illustrate some kind of symmetry, we note that this is not
a requirement of the system.

The most effective mode of use for our system is one in which the user can tell the
system which class of objects is being drawn, and thus the system knows in advance
which object template hierarchy to match against the drawn sketch. Another mode
that we support is to have the system do a linear search through each of the available
object templates in turn and then instantiate the 3D object corresponding to the best-
fit object template.

Images can be loaded into the background to use as a reference for tracing a
particular airplane, cup, or fish. At the same time, the model building can extract a
texture map from the background image if this is desired. This thus supports quick-
and-dirty construction of models from photographs.

The cup template represents the prototypical view that is commonly used to draw
or photograph a cup. A variety of cups and mugs modeled using our system are
shown in Fig. 6.8. The template supports left and right rounded handles and square
handles. A second left and right rounded handle can also be recognized, which can
serve to either define inside and outside edges for the handle, or as a second rounded
handle. In our implementation, it is the model building process that distinguishes
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Fig. 6.8 The cup template graph, and sketches of cups and wine glasses shown together with the
synthesized 3D models

Fig. 6.9 The airplane side-view and top-view templates, and five examples of input-sketches
shown together with the resulting 3D models

between these two cases. For single-curve handles, a default handle width and cross-
section is assumed. For double-curve handles, a rounded-rectangular cross-section
is assumed that has fixed depth but varies in width according to the drawn curves.

Figure 6.9 show a number of sketches and the resulting 3D airplane models. The
current implementation assumes that the side-view sketch is drawn and recognized
first. The 3D model is then instanced when the top-view sketch is drawn and recog-
nized.

Figure 6.10 shows two examples of fish that have been constructed by tracing
over photographs of fish. The texture is then lifted from the images and applied to
the 3D models.
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Fig. 6.10 The fish template and two fish models that were created by tracing over photographs

6.3.8 Failure Modes

Our system has a number of failure modes. First, the curve feature vector and the
distance metric associated with it does not always function as desired. For example,
element f1, which represents the angle of the straight line between the curve’s end-
points, is a very meaningful feature for the fuselage lines of an airplane, which are
expected to be horizontal, but is a weak feature for the identification of the fish fins,
which can occur at various points on the body. Second, the bounding box attached to
the parent part edge can be a fairly weak indicator of expected part location because
of its binary nature. A more smoothly-varying model of expected location, as found
in some pictorial structure models, would perhaps provide better performance.

Some sketches are also not recognized because of sloppiness in sketches that re-
sults in disconnected strokes. Increasing the threshold distance within which sketch-
graph nodes are merged allows for more of such gaps to be bridges, but this comes
at the expense of losing further detail in the drawn parts because strokes which
were intended to be distinct may be merged together. The key points in the curves
that become the nodes of the sketch graph are not always extracted as desired. The
curve feature vector currently has no notion of the smoothness of the curve, and thus
smooth template curves may be matched to jagged paths through the sketch graph
without penalty, assuming that the remaining curve features match well.

6.3.9 Comparison with Template Editing

For any given 3D model generated by our system, the same result could also in
principle be achieved by directly editing the original template curves. We suggest
drawing is often easier than template manipulation. Consider the case of the cup
template, which has four handles and a saucer, as shown in Fig. 6.4. A great many
control points would need to be repositioned to create the mugs and vases shown in
Fig. 6.8, whereas it can be drawn in a matter of seconds. The user also has to under-
stand what control points are, why there are two left handles and two right handles,
has to delete three of these, and then move the control points on the remaining han-
dle in order to achieve the squarish right handle that is finally desired. Second, a
recognition-based approach minimizes what the user needs to know and hides the
underlying representation and assumptions used to construct the 3D model.
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6.3.10 Scalability

Our solution is scalable with the addition of more templates. To be efficient with
a large number of templates would require a separate object-classification step in
order to identify a small set of candidate object classes to which the full template
match could then be applied. While our system still has robustness issues, it can
support large within-class variations. For example, our cup template can model a
large variety of cup or mug types and shapes (Figs. 6.1b and 6.8). Similarly, our
airplane template supports a significant variety of shapes (Figs. 6.1b and 6.9). With
respect to the use of templates, it is clear that some form of prior knowledge is
essential for sketch or line-drawing recognition, and we choose to embody this prior
knowledge in our 2D templates.

The recognition success improves if users have some familiarity with the tem-
plate. At the start of the project, we collected sketch data on a TabletPC with
purposely-vague instructions by asking users with no knowledge of the templates
to “draw a cup,” or “draw a plane.” Many of the resulting cup sketches can be cor-
rectly used by our system to build the expected 3D models. However, many of the
original airplane drawings can not be processed without some errors.

6.4 Constellation of Parts Models

As its name would imply, the constellation of parts model places some emphasis
on the overall picture formed by the spatial location of parts with respect to each
other. Thus, even in situations where the parts themselves may be nondescript, e.g.,
a nose drawn as a single point, a constellation model can label the parts by using
knowledge of the expected spatial relations between the parts. For example, in a
drawing of a face, the nose can be expected to lie between the eyes and mouth. An
example constellation model of a face object is shown in Fig. 6.11.

The information required to assign a label to a part may lie partly with its shape
and partly with its spatial location relative to other parts. Statistical models provide a
principled way to combine these different types of clues. Recognition is modeled as
finding the maximum-likelihood interpretation of the data (the drawing) with respect
to the model (the relevant statistical parameters as derived from training data). We
use statistical models for part shapes and for pairwise relations between parts.

The constellation of parts (COP) model is different in several respects from
the hierarchy-of-parts (HOP) model. Unlike the graph-based representation used
in HOP, there is no reliance on connectivity information. Parts in a COP model can
be fully disconnected. The COP model supports optional parts by defining them in
relation to all the mandatory parts. A limitation is that the label assigned to one op-
tional part cannot serve as a clue to help label another optional part; optional parts
cannot ‘see’ each other. A particular limitation of the COP model is that we cur-
rently assume each drawn stroke to be a part. Later we describe possible ways of
removing this limiting assumption.
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Fig. 6.11 Example constellation model for a sketched face, showing the pairwise interactions.
In this example, the left eye, right eye, mouth, and nose are mandatory and thus have complete
pairwise interactions. The left ear and right ear are optional and thus have pairwise interactions
with all mandatory parts but not with each other

We define a four-element feature vector for individual object parts: F = [x y d β]
where (x, y) are the location of the center of the axis-aligned bounding-box (AABB)
of a stroke, as measured in image coordinates normalized to x, y ∈ [0,1]; d is the
normalized coordinate length of the AABB diagonal; and β = cos(φ), with φ being
the angle of the AABB diagonal with respect to the x-axis.

Similarly, we choose a four-element feature vector for part pairs defined by Gab =
[�xab �yab Dab Dba], where �x = xa − xb and �y = ya − yb define the relative
positions of the AABB centers of strokes a and b in normalized coordinates, Dab is
the minimum distance between the end-points of stroke a and any point on stroke b,
and Dba is the minimum distance between the end-points of stroke b and any point
on stroke a. In general, Gab �= Gba .

Full constellation models do not scale well with the number of parts, n, since they
result in O(n2) pairwise features. We choose to alleviate this by characterizing each
label as mandatory or optional. Individual features are computed for both mandatory
and optional parts. However, pairwise features are only computed if one or both of
the labels in the pair corresponds to a mandatory part. In general it is possible to
further reduce the number of pairwise features by searching for subsets that yield
good recognition performance [3].

The sketch-recognition process has two phases, the first of which searches the
space of possible mandatory label assignments, and the second, which searches for
optional labels for the remaining unlabeled strokes. In this way the mandatory labels
provide contextual location information necessary for assigning appropriate labels
to the potentially large number of optional parts. We describe the search algorithm
in the following section.

6.4.1 Learning the Model

An object class model is represented using a probability distribution over the fea-
tures, e.g., object parts and object part pairs, as learned from a set of example la-
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beled sketches. A straightforward choice is to model the probability distributions us-
ing multi-variate Gaussians. However, in order to support recognition from a small
number of training examples, we opt for a diagonal covariance matrix. Thus we in-
dependently compute the mean and covariance of each element of the feature vectors
F and G for the set of labeled sketches that serve as training data. More explicitly,
the probabilistic model for the f th element in the feature vector of a label � is de-
fined by the parameters θ

f

� , consisting of the mean value for the feature element,

μ
f

� , as well as the standard deviation, σ
f

� . Similarly, the pair feature parameters,

θ
f

�j , are given by 〈μf

�j , σ
f

�j 〉.

6.4.2 Labeling Likelihood

The best match is determined by finding the most likely stroke labeling, as measured
according to the model parameters learned from the example drawings. The proba-
bility of a given labeling L is given by the product of the individual stroke labeling
likelihoods, further multiplied by the product of all labeled stroke pair likelihoods.
This can be expressed as:

P(L | θ) =
N∏

i=1

M∏

�=1

P(Fi | θ�)
δi�

m∏

j=1

N∏

k=1

P(Gik | θ�j )
δkj (1)

In the above expression, the assignment of strokes to labels is modeled as a label-
assignment matrix δ, with δi� = 1 if stroke i is assigned label �, and δi� = 0 oth-
erwise. The exponentiation using the δ values is thus a notational convenience for
compactly representing stroke-label assignments. All terms having an exponent of
δ = 0 evaluate to 1 and thus effectively drop out of the likelihood computation. The
label-assignment matrix has imposed upon it the appropriate restriction that each
stroke can be assigned only one label, and that mandatory labels should map to a
unique stroke. N is the number of strokes, M is the number of labels, and m is the
number of mandatory labels. P(Fi | θ�) models the likelihood of stroke i having
label �. Similarly, P(Gik | θ�j ) models the likelihood of the stroke pair (i, k) hav-
ing the labeling (�, j). The above omits the normalizing constant P(θ), which does
not affect the ML solution. We assume a uniform prior on the likelihood of parts
appearing in a sketch.

The interior of the first term, P(Fi | θ�)
δi� , represents the probability of stroke i

having label �. This is computed for all strokes, as given by the outside product. The
interior of the second term, P(Gik | θ�j )

δkj , represents the probability of stroke i in
relation to all the mandatory parts, as measured by the pairwise feature vectors. Thus
if a stroke is labeled as a right ear but it is located below the mouth, then it is this
term that will give that labeling a low likelihood. Pairwise relations are computed
with respect to all mandatory parts, as given by the outside product. The inside
product is a notational convenience for expressing the stroke-label assignment for
the mandatory strokes.



6 Flexible Parts-based Sketch Recognition 173

6.4.3 Recognition Algorithm

A maximum-likelihood (ML) search procedure finds the most plausible labeling
for all strokes that appear in the image. For a simple application of a constellation
model having n strokes and m independent object part labels, there are mn possible
assignments that could in principle be explored, and each assignment configura-
tion requires evaluating O(n2) pairwise interactions. Further complications arise
because some strokes may not have plausible labels, and some object parts (i.e., la-
bels) may not be found in a given sketch, or may have multiple instances. In order
to allow for these complications, and to alleviate the computational cost associated
with the exponential number of matches, the search over possible label assignments
has two phases.

The first search phase involves labeling strokes that correspond only to the
mandatory object parts and then committing to those labels. This is followed by
a linear search through the optional labels for the recognition of the remaining un-
labeled strokes. Both search phases use the same objective function, namely the
likelihood as described in the previous section.

The search over possible label assignments is carried out using a branch-and-
bound search tree. Each node in the search tree represents a partial labeling of the
sketch. A node at depth i in the tree has found corresponding strokes for labels
1 through i. Each node in the tree has a current assigned likelihood which is de-
termined from the product of individual stroke-label likelihoods for the i assigned
labels, as well as all the pairwise interaction likelihoods among all labeled parts.

To advance the search, a node is extended by evaluating all possible assignments
of mandatory label i+1 to unlabeled strokes. During the search, the algorithm tracks
the cost of the best (most likely) known complete assignment of mandatory labels.
The cost is used to bound branches of the search. Each completed search branch can
potentially result in a better bound to restrict the remaining search.

Branches of the search tree can only be bounded once a complete assignment
of mandatory labels is found. If the number of strokes or mandatory labels is high,
finding complete assignments is prohibitively slow. We employ two approaches to
further constrain the search: multipass thresholding and hard constraints.

With multipass thresholding, we bound branches of the search before encounter-
ing a full labeling. If a node’s likelihood, as computed by its current partial set of
label assignments, is lower than a specified threshold α, that search branch is ter-
minated. We use multiple passes, beginning with an optimistic threshold. That is, at
first, we assume all feature likelihoods in a match will be very high. This can result
in an overly restrictive search that may lead to no complete labellings being found.
However, this is quick to compute in comparison to a full search, or a search with a
more pessimistic bound.

Upon failure to find a successful complete label assignment, each successive pass
of the branch-and-bound search uses a progressively more pessimistic assumption
until complete solutions are found. The first complete solutions found are then used
as a good bound for a final search pass wherein the threshold can be as pessimistic
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as is desired. We begin with a threshold corresponding to P(μ+1.3σ) for each fea-
ture element likelihood, and on each successive pass we scale this by 2/3. Multipass
thresholding makes the search feasible for a large number of strokes and mandatory
labels and also results in fast labeling for ‘good’ sketches while supporting more
extensive searches through the hypothesis space for assigning labels to more am-
biguous sketches.

In lieu of a threshold based on the likelihood-to-date for the partial assignments,
an alternative that we have found to be equally successful is to threshold based on
individual part and pair likelihoods. Thus, a branch is terminated when it involves
any individual likelihood that falls below a threshold β . For the examples shown in
the paper, this is the type of multipass thresholding that we apply.

Hard constraints can be seen as a variant on the type of thresholding just de-
scribed. For a particular object class, it may be the case that one feature label should
always satisfy a particular relation with respect to another. For example, the nose
could be required to always be located above the mouth in a face sketch. For our im-
plementation, we infer above, below, left, and right relationships from the example
sketches wherever they can be found. Thus, if the nose AABB center appears above
the mouth AABB center in all the example sketches, this will be added as a hard
constraint. An object class may have many such constraints between labeled parts.

6.4.4 Results and Discussion

We have tested the method on the five classes of objects listed in Table 6.2. These
have 7–15 labels and have been tested on drawings having 3–200 strokes. We use on
the order of 20–60 training examples for each class. Figures 6.1a, 6.12, 6.13, 6.14,
and 6.15 show training sketches and successful test sketches. The recognition time
is typically 0.01–2.5 s for the shown examples, with most of this time being spent on
initialization. During initialization, a feature vector F is pre-computed for all strokes
and another feature vector G for all stroke pairs of the input sketch. For an example
face sketch containing 171 strokes, the recognition takes a total of 1.97 seconds,
with 80% of the computation time spent on initialization, 18% on searching for
mandatory labels, and 2% on finding labels for the optional parts. Spurious strokes
can be rejected by placing a threshold on the fit of optional stroke labels.

Hard constraints, as described previously, may significantly reduce recognition
times. However, when they are automatically inferred from training data, the system
may falsely register the existence of a hard constraint. For example, few training
sketches may result in the system falsely believing that the left eye is always below
a right eyelash. However, such a situation could easily occur in a cartoon-style face
sketch or a somewhat asymmetric sketch. This could be viewed as an indication that
more training data are required.

Figure 6.16 shows a set of failure examples, meaning that one or more strokes
are mislabeled. Recognition can go wrong in several ways: (1) inability to find suit-
able mandatory strokes because of the hard constraints; (2) mislabeling of a manda-
tory stroke, leading to havoc with the remaining strokes; (3) mislabeling of optional
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Table 6.2 Object classes
Class Mandatory

labels
Optional
labels

faces 5 10

flowers 2 5

sailboats 3 5

airplanes 3 4

characters 7 8

Fig. 6.12 a Flower sketch training examples. The mandatory labels are pot, stem, stigma; the
optional labels are saucer, petal, leaf, and sepal. b Flower sketches recognized using our system

Fig. 6.13 a Sailboat sketch training examples. The mandatory labels are hull, main-sail, mast; the
optional labels are jib, boom, keel, rudder, tiller. b Sailboat sketches recognized using our system

strokes. In practice, errors of type (1) are rare and imply a lack of training data.
Errors of type (2) can occur if unusual strokes occur that affect the overall bounding
box and therefore result in atypical normalized coordinates. This might occur for
adding overly long or bushy hair in face sketches, or certain atypical stems in flower
sketches. Errors of type (3) most commonly occur when there are few mandatory
strokes, such as for the sailboats or flowers. The model does not currently give any
consideration to relationships between optional parts. Lastly, other mislabelings can
be attributed to impoverished probability distribution models and inadequate feature
vectors.

In order to evaluate the utility of the multipass thresholding technique, we test the
recognition of sketches with and without thresholding. Table 6.3 shows the results
of this experiment. In all cases, the multipass thresholding results in significantly
lower computation times. Most notable is a 103-stroke face sketch which took only
1.242 seconds to recognize with thresholding, yet without thresholding, failed to
find a labeling within 9 hours.
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Table 6.3 Computation
times for recognition
algorithm with and without
the multipass technique

Class Num
strokes

With
multipass (s)

Without
multipass (s)

face 103 1.242 >9 hours

flower 54 0.46 0.98

sailboat 8 0.02 0.03

airplane 21 0.08 0.1

character 18 0.12 126.69

Our system assumes a uniform prior for the a priori likelihood of optional parts.
This decision stems in part from our expectation that a small number of training
sketches will not necessarily reflect the probability of parts appearing in future
sketches. Thus, the identity of parts depends solely on their shape and fit as modeled
by the constellation model.

We define the recognition of a sketch to be the labeling of the individual parts of
a sketch that is of a known object class. If the class of the input sketch is unknown,
the maximum-likelihood fit could be determined for each of a list of object classes
in order to provide information about the object class. The ML log-likelihoods that
come from each class are not directly comparable, however, because object classes
differ in their number of mandatory parts. Mandatory parts have fully connected
pairwise likelihoods while optional parts only have pairwise likelihoods in relation
with mandatory parts. An appropriate normalization can be constructed to deal with
this, although we have yet to investigate this. We believe that there are likely bet-
ter discriminative object-classification methods that do not rely on complete part
labeling.

It may be possible to further improve on the mean search time for the branch-and-
bound algorithm by using variants of the A* algorithm. This involves expanding
non-terminal nodes in the search in an order sorted by their cost-to-date. However,
much of the leverage of A* comes from the ability to generate a suitable always-
optimistic cost-to-go function. Unfortunately this provides little leverage given that
it is possible that the remaining unlabeled strokes could perfectly match the mean
features.

We have presented a system that adapts constellation or pictorial structure mod-
els from the computer vision literature for flexible sketch recognition. Adaptations
include support for optional parts, the use of an efficient multipass branch-and-
bound search for exploring the space of possible interpretations, and the construc-
tion of individual and pairwise features suitable for sketch recognition.

In the current system we have only experimented with a limited number of in-
dividual and pairwise features. It is likely that features other than those we have
proposed will be useful in producing a more robust system. Given a large set of
possible features and appropriate data sets, it should be possible to run an offline
process that determines the k most informative features (individual and pairwise).
How to best represent the probability distributions for a given set of features is a fur-
ther open problem. Our model of independent, normally-distributed features is well
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Fig. 6.14 a Character sketch training examples. The mandatory labels are head, torso, thigh, shin,
foot, upper-arm, lower-arm; the optional labels are hat, neck, hand, nose, eye, pupil, mouth, ear.
b Character sketches recognized using our system

Fig. 6.15 a Airplane sketch examples. The mandatory labels are fuselage, left-wing, right-wing;
the optional labels are left-stabilizer, right-stabilizer, left-engine, right-engine, propeller, window,
tail-fin. b Airplane sketches recognized using our system

suited for systems relying on only a small set of example labeled sketches. However,
multi-variate Gaussian models or mixtures of Gaussians may provide better results
for larger data sets, at the expense of requiring a larger number of labeled examples.
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Fig. 6.16 Failure modes of
our system. Mislabeling can
be caused by lack of training
sketches and inadequate
features

6.5 Conclusions

Parts-based models allow for significant flexibility in recognizing sketches which
are neither ‘diagrammatic’ (in the sense of circuit diagrams or box-and-arrow dia-
grams) nor necessarily representative of 3D models. Recognition for these models
needs to rely on strong prior information about the expected object classes. Object
and parts-of-object recognition can naturally be described as a search problem, with
the goal of finding assigned labels for parts that are mutually compatible, as defined
by the template model.

There remains significant work to be done in this area. Robustness, efficiency,
model flexibility, and scalability can all likely be improved upon. Parts and part hy-
potheses should ideally share the same representations as objects. This is not the
case for the algorithms we have presented. Currently, working with a large number
of strokes (>50) remains problematic when seeking to maintain interactive recogni-
tion. Gestalt principles may provide a promising approach for grouping strokes into
parts or objects, which would greatly help the flexibility and speed of the recognition
approaches. The described recognition processes are largely top–down: HOP uses
a fixed-order traversal of the template part hierarchy, while COP searches through
the space of mandatory label assignments in a fixed order to construct the search
tree. In both cases this ignores bottom–up information that could be used to reorder
the search to begin with the strokes which have likely bindings to particular labels,
thereby strongly constraining the search early on.

It is intriguing to speculate that there may eventually be a convergence among
techniques for diagram recognition, parts-based drawing recognition, 3D recon-
struction from 2D drawings, and the broad range of computer vision problems.
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Chapter 7
Sketch-based Retrieval of Vector Drawings

Manuel J. Fonseca, Alfredo Ferreira,
and Joaquim A. Jorge

7.1 Introduction

Ready made components or previously created objects are often re-used when cre-
ating new documents. Typically, users find these elements manually by browsing
a set of directories or categories, or more recently resorting to some kind of infor-
mation retrieval system. Although there are different types of retrieval systems the
most useful ones rely on information automatically extracted from content rather
than those that require manual insertion of meta-data to support further searching.

Content-based retrieval of pictorial data, such as digital images, drawings or
graphics, rely mainly on their content. Raster (bitmap) images are typically de-
scribed using primitive features such as color, shape and texture, which can be au-
tomatically extracted using simple processing techniques [24].

Vector drawings, on the other hand, have a richer description, a more complex
structure and a natural hierarchy requiring different techniques from those devel-
oped for raster images.

Currently there are several solutions to retrieve vector drawings. Some rely only
on contours [1]; others only deal with simple figures [13, 16, 19]; and those that
support more complexity perform queries using existing examples rather than using
sketch-based interaction [14, 20, 23].

A solution for searching and retrieving drawings should offer a simple and effi-
cient query mechanism based on sketches. Users should be able to easily convey the
idea of what they want to find taking advantage of their visual memory and sketch-
ing abilities. To that end, a solution must be based on algorithms and techniques
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Fig. 7.1 Block decomposition to describe drawing content, using topology and geometry

developed for sketch-based interfaces using shape and/or pattern recognition. The
solution described here for sketch-based retrieval of vector drawings relies on a
recognition library called CALI [9], which was developed to identify hand-drawn
sketches and to support creation of calligraphic interfaces. It was later adapted to
produce descriptors, which identify the geometry of drawings and sketched queries
by using internal geometric features in the form of a vector.

In this chapter, we describe a solution for sketch-based retrieval of complex vec-
tor drawings that describe content with topology and geometry. In Sect. 7.2 we start
by describing the mechanism used to extract information from content and the mul-
tilevel description scheme to support partial matching. Section 7.3 describes two ap-
plications. One for retrieving technical 2D drawings and another for clip art figures.
In Sect. 7.4 we describe the new paradigm of implicit retrieval, which combines
sketch-based modeling techniques with retrieval methods to enrich the modeling
process. Finally, Sect. 7.5 presents some conclusions.

7.2 Feature Extraction from Sketches and Drawings

As we mentioned before, vector drawings require different approaches from raster
images, which rely mainly on color and texture information. Simple vector draw-
ings are usually described using only shape contour information. However, com-
plex drawings, such as, technical 2D and 3D CAD drawings or clip arts contain
several entities, which would be ignored by just using their contour. Moreover, the
way these visual elements are spatially arranged convey relevant information that
must be used to describe a drawing’s content. Additionally, query-by-example and
sketch-based queries require different techniques for interpretation and comparison
with stored drawings. Thus, to describe the content of sketched queries and complex
vector drawings we developed an approach that uses Topology—a global feature
that describes the spatial arrangement of drawings, and Geometry—a local feature,
which describes the shape of the visual entities present in the drawing (see Fig. 7.1).

In this section we describe the topological information extracted from drawings
and the mechanism used to convert it into feature vectors. Afterward, we present the
approach used to code the geometry of the visual elements in the drawing.
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7.2.1 Topology

Content-Based Retrieval systems use information extracted from objects and spatial
relationships. Thus spatial information should be preserved during the classifica-
tion process so that users can easily retrieve those drawings from the database. The
approach presented here not only preserves topological information, but uses it to
index drawings in a database. We choose to index by topology because it is a global
feature of drawings providing us with a good characteristic to distinguish figures
from each other. This way the searching process starts by selecting drawings with
a similar topology to the sketched query (reducing the number of candidate results)
and then computes the geometric similarity between them.

Extracted topological information is combined in a Topology Graph. This graph
describes the global topology among all elements in a drawing. On the one hand,
using graphs to describe topology is a good solution, but on the other, comparing
graphs is a complex task. Since graph isomorphism is a Nondeterministic Polyno-
mial time complete (NP-complete) problem [30], we try to avoid its computation,
by reducing the problem to the calculation of distances between descriptors. To that
end, we map topology graphs into multidimensional vectors and perform compar-
isons between these to find similar graphs.

Additionally, to make the comparison of simple sketches and complex drawings
possible, we create several topological descriptors from the same topology graph of
a figure. Each descriptor represents a subpart or level of detail of the drawing. In this
way, we end up with several descriptors for a single figure. This allows comparison
of different complexity queries with various representations of the same drawing
and facilitates partial matching.

In the remainder of this section, we identify the more relevant topological rela-
tionships and show how they are combined to create a topology graph. Next, we
demonstrate how topology graphs are mapped into multidimensional vectors and
present the multilevel description scheme to describe complex drawings hierarchi-
cally by level of detail. Finally, we introduce an improvement to the topology graph
in order to code spatial proximity between visual elements of drawings.

Topological Relationships Spatial relationships may be classified into directional
and topological relations. The most frequently used directional relationships are
North, South, East, West, NorthEast, NorthWest, South East and
SouthWest. For topological relationships Egenhofer [3, 4] presented a set of eight
relations between two planar regions, namely Disjoint, Meet, Overlap, Con-
tain, Inside, Cover, Covered-By and Equal as illustrated in Fig. 7.2.

We decided to restrict spatial relationships to those that are independent of trans-
lation and rotation of drawings. We only consider topological relationships as using
directional does not guarantee independence of transformation. Moreover, to both
make our approach less restrictive and the topology graph simpler we simplified
the topological relationships defined by Egenhofer. For this we used his neighbor-
hood graph for topological relationships, depicted in Fig. 7.3 (left) [4], to create our
simplification shown in Fig. 7.3 (right). Our set of topological relationships groups
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Fig. 7.2 Topological relationships defined by Egenhofer

Fig. 7.3 Topological relationships originally defined by Egenhofer (left) and our simplified ver-
sion (right)

neighbor relations yielding only three topological relationships between two poly-
gons: Disjoint , Include and Adjacent.

Two polygons are Disjoint if all intersections among all faces are empty. If poly-
gon P1 contains completely polygon P2 or P1 equals P2 then P1 Includes P2. And
finally, if two polygons meet or if they intersect then they are considered Adjacent.

By reducing the number of relationships, we made our approach less restrictive
and, more importantly, the topology graph will be simpler, as we shall see below.
Furthermore, by using only these three relationships, we guarantee the stability of
graphs when drawings are changed. Therefore, similar drawings will be described
by similar topology graphs.

Leung developed an approach [15] where he further reduced the number of re-
lations using only inclusion. We think this simplification is excessive because in-
clusion alone is not enough to correctly describe topological relationships between
objects and increases the number of collisions among graphs, i.e. similar graphs for
different drawings.

Topology Graph One of the best ways to describe the spatial arrangement be-
tween visual elements is through the use of graphs, where nodes represent the visual
entities and edges code their relationships. In our approach, topological relationships
extracted from drawings are compiled in a Topology Graph, where “vertical” edges
mean Inclusion and “horizontal” connections mean Adjacency, as illustrated
in Fig. 7.4.
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Fig. 7.4 Vector Drawing
(left) and correspondent
topology graph (right)
describing the spatial
arrangement

The topology graph has a well defined structure, being very similar to a rooted
tree with side connections. It always has a root node representing the whole drawing.
Children from the root represent the dominant blocks (polygons) from the drawing,
i.e. blocks that are not contained in any other block. The next level of the graph
describes polygons contained by the blocks identified before. This process is applied
recursively until we get the complete hierarchy of blocks. As a conclusion, we can
say that each graph level adds more drawing details. So, by going down in the depth
of the graph, we are “zooming in” to drawing details. This feature of the topology
graph will be explored later on by the multilevel description mechanism.

From Topology Graphs to Descriptors As mentioned above the graph matching
problem is reduced to the computation of distances between descriptors. To achieve
this we use graph spectra [2] to map graphs into vector descriptors. The spectrum
of a graph G (which consist of n eigenvalues, where n is the number of nodes) is
computed from the eigenvalues of its adjacency matrix, A. We choose to use the
spectrum of the graph, because it is one of its most discriminating properties.

Since the spectrum of a graph is a graph invariant, it is natural to think that it
would provide a polynomial algorithm to decide whether two graphs are isomorphic
and thereby solve the graph isomorphism problem. However, graph spectrum is not
a complete invariant. A graph invariant φ is said to be complete if, for any graphs
G, H , the equality φ(G) = φ(H) implies that G is isomorphic to H . Although,
isomorphic graphs have the same spectrum, two graphs with the same spectrum
need not be isomorphic.

According to Cvetković [2] and Shokoufandeh [27] the use of graph spectrum
as an indexing method is valid since: (1) it captures local topology, (2) is invariant
to subgraph re-order and (3) is stable as small changes in the graph produce little
changes in its spectrum. Resulting descriptors however are not unique. More than
one graph can have the same spectrum giving rise to collisions similar to those in
hashing schemes. Shokoufandeh et al. [27] argue that these collisions occur rather
infrequently, a claim verified by our experiments [5]. Using 100,000 randomly gen-
erated graphs versus a set of 10 candidate similar graphs we have observed that
collisions with descriptors of very different graphs still allow us to reliably retrieve
the most likely graphs.

Figure 7.5 presents the block diagram for computing a topology descriptor. First,
we compute the adjacency matrix of the graph, second we compute its eigenvalues
and finally we sort the absolute values to obtain the topology descriptor. Resulting
descriptors are multidimensional points, where dimension depends on graph (and
drawing) complexity. Very complex drawings will produce descriptors with high
dimensions, while simple drawings will produce descriptors with low dimensions.



186 M.J. Fonseca et al.

Fig. 7.5 Block diagram for topology descriptor computation

We assume that topology graphs are undirected graphs thus yielding symmetric
adjacency matrices and assuring that eigenvalues are always real. Furthermore, by
computing the absolute value and sorting it decreasingly we exploit the fact that the
largest eigenvalues are more informative about the graph structure. Additionally,
the largest eigenvalues are stable under minor perturbation of the graph structure,
making topological descriptors also stable.

Multilevel Description As we have seen previously, the topological organization
of a drawing is described using a topology graph that is mapped to a multidimen-
sional descriptor. This way we get a descriptor for each graph (drawing) and we
can compute the similarity between graphs by calculating a distance between the
correspondent descriptors. However, including complex drawings in the database
implies the requirement for making a query based on a simplification. Users may
not remember or want to sketch the complete drawing or object. Thus, we need a
mechanism to make the task of sketching queries for complex drawings easier.

One possible solution is to describe drawings considering just their contour, as
some approaches do [1]. However, these techniques discard all the details inside
the contour ignoring a lot of information relevant to describe drawing content. The
solution presented here describes drawings not only as a whole but also as small
pieces suitable for users to search using simple sketches.

To that end, the topology graph is divided in several parts (corresponding each
to a subpart of the drawing) and a topological descriptor is computed for each. This
way we can search complex drawings by just sketching subparts of it.

Although this solves the problem of finding subparts of drawings, another still
exist. Complex drawings have lots of details that users sometimes forget to draw
when sketching a query. To overcome this we developed a multilevel description
scheme to describe drawings hierarchically by levels of detail allowing the use of
rough approximations of drawings as queries [5, 11]. To that end we compute several
topological descriptors for each drawing one for each level of detail. At the end, we
have one descriptor per level allowing the matching between a query and several
representations of the same drawing.

To compute descriptors for subparts of drawings and for different levels of detail
we resort to the topology graph (see Fig. 7.4). For subparts, we recursively divide the
graph into various subgraphs and then we compute descriptors for each. To describe
different levels of detail we exploit the “tree-like” structure of our topology graph
and compute a descriptor for each level of the graph. Looking at Fig. 7.6 we can
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Fig. 7.6 Different levels of detail and the correspondent graph of topology

Fig. 7.7 Subpart of the
drawing with two levels of
detail and the correspondent
graph of topology

see that by going down in the structure of our topology graph, we are adding more
detail to the drawing. In this figure we can identify three different graphs one for
each degree of detail. So if we now compute a descriptor for each of these levels we
end up with three ways to search for the current drawing, using more or less detail.

This approach also has the merit of allowing classification of subparts of draw-
ings by computing descriptors for subgraphs. Figure 7.7 illustrates the subgraphs
extracted and their corresponding part of the drawing. We recursively apply the de-
scription by levels of detail to these subgraphs. The result of this process is a set
of graphs and subgraphs that describe both the topology at different levels of detail
and the different subparts of a drawing. After this multilevel description we have
descriptors for the parts of the drawing shown in Fig. 7.8, and consequently we can
search for the (complete) drawing by sketching any of these representations.

Spatial Proximity While this solution produces good results, in some cases they
could be improved if we take into account the distance between the visual elements
in a drawing. Recently we devised a new mechanism to include proximity into the
topology graph [28]. The goal is to be able to differentiate between a drawing with
two polygons which are close together and a drawing with two polygons that are far
apart, as illustrated in Fig. 7.9.

To code proximity in the topology graph, we associate weights to the adjacency
links of the graph. While in the initial solution we only have an adjacency link when
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Fig. 7.8 Several representations for a given drawing (on top), using our multilevel description
technique

Fig. 7.9 Using the adjacency weight to differentiate between far and near objects

two primitives are connected, now we compute the (normalized) distance between
two elements and use this value as the weight of the link. This distance is normalized
by using the diagonal of the bounding box of the parent object that contains the two
elements.

Figure 7.10 shows the representation of the proximity information in the graph
and in the adjacency matrix, through the use of weights.

This change in the weights of the topology graph does not affect the stability and
robustness of eigenvalues, as ascertained by Sarkar and Boyer in their study [26].
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Fig. 7.10 Graphical
representation of the
adjacency weights in the
graph and in the matrix

Fig. 7.11 Block diagram for
computing the geometric
descriptor

7.2.2 Geometry

While topology conveys global information about the drawing, the shape of an ob-
ject represents local characteristics which can be used to narrow down the search.

To describe the geometry of entities from vector drawings and from sketched
queries, we use a general, simple, fast and robust recognition approach called CALI
[7, 9]. This was initially devised for recognition in calligraphic interfaces. However,
since CALI performed well in recognizing hand-drawn input, we generalized that
approach by using it to classify any shape for retrieval. Thus, instead of using CALI
to identify specific shapes or gestures from sketches (e.g., rectangles, circles, lines,
etc.) we compute a set of geometric attributes from which we derive features such
as area and perimeter ratios from special polygons and store them in a multidimen-
sional vector (geometric descriptor), as illustrated in Fig. 7.11.

Indeed, our approach can be thought of as a two-stage process. First we evaluate
the geometric characteristics of a shape. Then we convert these into affine-invariant
geometric features by simple arithmetic operations which combine these attributes
with known commensurable values for simple convex primitives, such as quadrilat-
erals and triangles. More importantly, using geometric features instead of polygon
classification allows us to index and store potentially unlimited families of shapes
in a scalable manner.

To obtain a complete description of geometry in a drawing, we apply this method
to each geometric entity from the drawing, yielding a set of geometric descriptors.

Our geometric description method uses a set of global geometric properties ex-
tracted from drawing entities. We start the calculation of geometric features by com-
puting the Convex Hull of the provided element. Then we compute three special
polygons from the convex hull: the Largest Area Triangle and the Largest Area
Quadrilateral inscribed in the convex hull, and finally, the Smallest Area Enclosing
Rectangle, as illustrated in Fig. 7.12.

Finally, we compute the ratios between area and perimeter from each special
polygon. We experimentally evaluated all these ratios, as described in detail in
[7, 8] before we reach the set of features listed in Table 7.1. This set of features
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Fig. 7.12 Special polygons of a geometric entity

Table 7.1 List of relevant
geometric features extracted
from polygons and sketches

Feature Description

Ach Area of the convex hull

Aer Area of the (non-aligned) enclosing rectangle

Alq Area of the largest quadrilateral

Alt Area of the largest triangle

Her Height of the (non-aligned) enclosing rectangle

Pch Perimeter of the convex hull

Per Perimeter of the enclosing rectangle

Plq Perimeter of the largest quadrilateral

Plt Perimeter of the largest triangle

Tl Total length, i.e. perimeter of original polygon

Wer Width of the (non-aligned) enclosing rectangle

allows the description of shapes independently of their size, rotation, translation or
line type. Such features can be used to classify drawings or hand-sketched queries.

Then, we combine these geometric features to produce a feature vector that de-
scribes the shape of visual entities (geometric descriptor). Figure 7.13 shows the
geometric features that compose the feature vector. To decide whether two shapes
are similar we just compare their feature vectors. Experiments have shown that our
approach works well if individual features are stable and robust [8].
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Fig. 7.13 Geometric feature vector created by the CALI library, using the geometric features
described in Table 7.1

Experimental evaluation [12], using a database of general fish contours, revealed
that this method outperforms well know algorithms, such as Zernike moments [18],
Fourier descriptors [22] or grid-based methods [17], amongst others.

7.3 Application Examples for 2D Drawings

This section describes three prototypes developed using this approach based on
topological and geometric information. One application is for retrieving 2D tech-
nical drawings of molds, SIBR [11], the other two help users in retrieving clip art
figures, BajaVista [6] and Indagare [28, 29]. We selected these two types of me-
dia objects to search for because both are well structured figures and are complex
enough to represent a good testbed for this approach. Technical drawings are char-
acterized by very rich topological information and their visual elements are mostly
basic geometric shapes. Clip art drawings however present more generic visual en-
tities and a poorer spatial organization. Indeed, during user evaluation we observed
that users, while searching for clip art drawings, typically draw a small number of
shapes and consequently do not specify topology but mainly geometry [28].

Figure 7.14 depicts a screen-shot of the calligraphic interface of the SIBR ap-
plication used to retrieve 2D technical drawings [11]. On the left we can see the
sketch and on the right the results returned by the implied query. These results are
ordered from top to bottom with the most similar on top. As we can see, although
the sketched query is very simple the system was able to identify similar complex
drawings. This is due mainly to the use of our hierarchical and multilevel description
structure for topological information.

The BajaVista prototype [6] can index and retrieve clip art drawings by content,
either using sketches or querying by example. Figure 7.15 depicts a screen-shot of
this application. On the top left we can see the sketch of a candle and on the bottom
results returned by the implied query. These results are ordered from left to right,
with the most similar on the left. The system also allows users to select one of the
results to submit as a query (query by example), since our classification scheme
handles graphics and sketches in the same manner.

These two prototypes were evaluated using medium-size databases. The SIBR
prototype was tested on a database containing one hundred elements, while the
database used to test BajaVista indexed 968 drawings. Tests with both prototypes
showed effective results when searching for both technical or clip art drawings in
a short time (less than a second). Furthermore users were satisfied that returned re-
sults matched their expectations. Indeed, while in the first instance we presented the
five top drawings in each case, feedback from tests convinced us to increase the dis-
played set to ten or twenty. Surprisingly, users assigned greater importance to being
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Fig. 7.14 Sketch-based retrieval prototype for technical drawings (SBIR). Users specify queries
using sketches and candidate results are presented on the right, with the most similar on top

Fig. 7.15 First clip art finder prototype (BajaVista). Similar results to the sketch are presented at
the bottom, the best candidate being the first on the left

able to retrieve the desired result among the top 10 or 20 elements than finding the
two “best” candidates. Indeed, we were told by users that they preferred recall over
precision (at least in this limited sense). Additionally, users liked very much the in-
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Fig. 7.16 Second clip art finder prototype (Indagare), using proximity information and a new
algorithm to compare geometry

teraction paradigm (sketches as queries) in contrast to more traditional approaches
based on query by example.

Recently, we carried out a study with a new prototype to retrieve clip art draw-
ings called Indagare [28, 29]. It is based on the approach described here but with
two differences from the previous two prototypes. Indagare uses the topology graph
with proximity information and includes a new geometry matching algorithm that
takes advantage of the way users sketch queries to search for clip art drawings i.e.
geometry rather than topology.

This new prototype (see Fig. 7.16) is a web search engine where users can search
for drawings using sketches, query by example and keywords. Results are presented
with the most similar in the top-left quadrant. Experimental evaluation of this pro-
totype revealed increases of around 30% in the precision [29], in comparison to the
original approach used in BajaVista that uses first topology and then geometry to
compare drawings.

7.4 Toward 3D Modeling Using Implicit Retrieval

Since 3D objects have a well defined structure the retrieval approach described
for 2D drawings can be applied with some minor adaptations. However, instead
of developing a system to simply retrieve 3D objects, we integrated the retrieval
mechanism in the sketch-based modeling workflow, creating a new modeling
paradigm [10]. In this new modeling paradigm queries are automatically created
while users sketch their 3D models. Instead of users explicitly defining and submit-
ting queries, the system permanently collects users’ sketches and uses them as (im-
plicit) queries to the retrieval module suggesting the use of similar 3D objects from
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databases of components or other objects. Implicit retrieval describes the process
of using the editing tool to create and execute queries automatically without user
intervention. In this way, the modeling system is always “looking” at users’ actions
and whenever it detects changes to an object it searches the database and proposes
similar drawings.

We applied this paradigm in two modeling prototypes. One for the creation of 3D
technical objects where existing objects are suggested to the user when he creates
something similar to objects in a database. The other is for the creation of Lego
models and returns Lego parts while users are sketching their dimensions.

7.4.1 Modeling 3D Technical Objects

In this section we briefly describe the modeling tool where we integrated the re-
trieval module. We present its interaction paradigms the expectation lists and the
method of creating 3D objects. Then, we describe a seamless way of integrating
the retrieval component, queries and returned results into the modeling tool through
expectation lists and implicit retrieval.

Overview of the Modeling Tool The 3D sketch-based modeling tool GIDeS is
a system for creating geometric models through Calligraphic Interaction [21]. Its
main goal is to improve on the usability of CAD systems at the early stages of
product design. To this end it combines different paradigms: First, a calligraphic
sketching metaphor provides for a paper-like interaction. Second, dynamic menus—
expectation lists—try to expose the state of the application without interfering with
the task. Third, an incremental drawing paradigm allows precise drawings to be
progressively constructed from sketches through simple constraint satisfaction. Fi-
nally, reducing instruction set and command usage allow for a simple and learnable
approach in contrast with the complexity of present-day interactive systems.

To deal with ambiguous input the GIDeS system uses expectation lists, a kind of
non-intrusive context-based dynamic menus that free users from memorizing mod-
eling gestures and constructs. Whenever users’ strokes are ambiguous, the applica-
tion displays a menu with icons that correspond to two or more possible different
interpretations of the input. Figure 7.17 illustrates how expectation lists deal with
ambiguity and exploit it to the user’s benefit. In this case the designer sketched a
stroke that resembles an ellipse. The resulting expectation list suggests an accurate
ellipse as its default option as well as other possible interpretations. Users can then
select one of the proposals or continue drawing, in which case the default option is
selected.

3D Object Description GIDeS allows construction of 3D objects from 2D inter-
action. In order to integrate our retrieval mechanism into the modeling tool, we must
have a logical database with the description of all existing 3D objects that can be
searched and included during a modeling task. Thus, for each 3D object we must
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Fig. 7.17 Sketched figure
and the Expectation list.
Users can select one of the
possible interpretations or
continue to sketch

Fig. 7.18 3D object (left) and correspondent faces graph, used to compute the signature of the
object

compute a signature that describes it. While for 2D drawings we used topological
and geometric information to compute descriptors for 3D objects we are using the
spatial relationship between faces and edges in a boundary representation.

Thus, for each 3D object we create a graph describing face organization and an-
other graph describing the connections between edges. Then, from these two graphs
we compute descriptors using graph eigenvalues [2], as we did for topology graphs
of 2D drawings. However, since face and edge graphs (see Fig. 7.18) do not have
the same structure of the topology graphs described before (see Fig. 7.4), we are not
able to apply our multilevel method, which allows describing subparts of objects.
Thus, as we did for 2D drawings 3D objects are described using multidimensional
feature vectors and the similarity between them is converted into the computation
of a distance between descriptors.

Finally, to match the query with existing objects in the database we compute
descriptors for the query and search both sets of signatures separately (one with
information about face graphs and the other with information about edge graphs).
To compute the final similarity between the query and objects in the database we
combine both similarity measures one from the face graph and another from the
edge graph.

Query Formulation and Execution Figure 7.19 shows a modeling sequence in
the GIDeS tool, where the user is sketching an object and the system is suggesting
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Fig. 7.19 Modeling sequence using the suggestions mechanism and implicit retrieval

results through the expectation list. This figure illustrates the two types of hints pro-
vided by the GIDeS system, modeling and editing suggestions and implied elements
from the retrieval component. On Fig. 7.19(a) we have the suggestion of simple ge-
ometric 2D lines, while Fig. 7.19(b) we have the new type of cues provided by the
implicit retrieval module. Figure 7.19(c) shows the retrieved object being modified
using the normal GIDeS modeling operations, while Fig. 7.19(d) presents the fi-
nal 3D object. Through this interaction paradigm users can freely create 3D models
using sketches or select one of the suggested (retrieved) objects and continue to
model on top of it. The main advantage of this scheme is that it is less intrusive
than other approaches and users do not have to switch context to search for the de-
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Fig. 7.20 General overview of the LSketchIt application, showing the suggestion list on right, the
color palette on the bottom and the Lego model on the center

sired element to include. Moreover, this exploits the familiar interaction paradigm
to provide queries as an extension of drawing in a natural manner.

7.4.2 Modeling Lego Scenes

Here we describe a sketch-based solution to create Lego models LSketchIt [25],
which also uses the implicit retrieval paradigm (see Fig. 7.20). Users can easily add
parts to Lego scenes using simple sketches that are converted into implicit queries
to the database of Lego parts. Contrary to other sketch-based retrieval methods de-
scribed before, this system uses a simple retrieval approach based mainly on the
3D dimensions of the Lego parts and on its category. To include a part into a scene
users specify one or more dimensions of it using sketches and the system automati-
cally creates the query, submits it and suggests (retrieves) a list of possible parts that
matches the specifications.

In the remainder of this section we describe how this retrieval mechanism works
and how we created the parts database.

Part Library Existing LEGO parts belong to the LEGO Company and are not
freely available. To overcome this, we used the open-source LeoCAD library. Each
part in the library has: name, dimensions and category associated to it. These are
very useful for our retrieval mechanism, since it relies mainly on this informa-
tion. For organization purposes we divided the parts into nine main groups (Plates,
Bricks, Tile, Slope Brick, Technic, Space, Train, Other Bricks and Accessories).
These groups can be used to filter out returned results or to help users browsing the
entire collection of parts.
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Fig. 7.21 Inserting a part by sketching its width and length. Here, the system suggests a brick that
satisfies these dimensions. Other possibilities are presented in the suggestion list

Fig. 7.22 Refinement of the
part to insert by sketching (a
triangle) over an existing part

Retrieval Mechanism The search mechanism relies mainly on the information
about dimensions and categories of parts that are stored in the library. When users
want to use a part they can sketch one dimension (e.g., width, length or height) or
more than one dimension (e.g., width and length), while modeling (see Fig. 7.21).
Then, the retrieval system compares dimensions defined using sketches with the
parts stored in the database and returns a set of results that are displayed in the
suggestion list organized by categories.

To enrich the modeling process we allow over sketching of gestures on parts to
refine the selection and find specific types of parts. For instance, if we draw a triangle
inside the retrieved or selected brick, the system will refine the query, showing only
bricks with slopes (see Fig. 7.22). Table 7.2 shows the different combinations of
gestures and the produced result.

Results Presentation All existing applications for LEGO creation typically
present the search results in an exhaustive text list. This way of presenting informa-
tion is very uncomfortable and has a low usability as it forces users to recall rather
than recognize. Users must preview several items in the text list before selecting
one. To overcome this, we use a suggestion list to present returned results, allowing



7 Sketch-based Retrieval of Vector Drawings 199

Table 7.2 List of gestures
available to refine the part to
insert. Users can sketch over
the part or outside the
selected part, producing
different results

Gesture Outside part Inside part

Line Pin

Circle Tyre, Wheel, Round Side, Hole

Rectangle Baseplate, Plate, Brick

Triangle Slope Brick

users to quickly recognize the desired part. Users can also reduce the number of
suggested results, by selecting the desired type of part (Plates, Bricks, Tile, etc.),
clicking on the small icons listed vertically on the right of the screen in Fig. 7.20.

7.5 Conclusions

Content based retrieval of vector drawings is a research area with some activity
but it is not too widely explored. In recent years researchers have dedicated more
effort to content based retrieval of (raster) images. Although, there has been a lot of
work developed for images these approaches can not be applied to vector drawings
because they have a more complex structure and hierarchy.

In this chapter we described an approach for sketch-based retrieval of vector
drawings that describes their contents using Topology (information about the spa-
tial organization of drawings entities) and Geometry (information about shape). This
mechanism also includes a new multilevel description scheme for describing draw-
ings and subparts of drawings with different levels of detail. This technique allows
partial matching and the comparison between simple sketched queries and complex
drawings stored in a database.

We also described applications to retrieve complex drawings (technical and clip
art drawings), which were subject to user evaluation. Users provided good feedback
about the systems very often highlighting the positive aspect of using sketches to
specify what they want to find.

Finally, we presented the paradigm of implicit retrieval that integrates the re-
trieval mechanism into the workflow of the modeling process. It allows users to
freely model objects using sketches, while the system takes the responsibility to au-
tomatically generate queries (implicitly) from the created models and also to present
the returned results as modeling suggestions.
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Chapter 8
A Sketching Interface for Freeform 3D Modeling

Takeo Igarashi

8.1 Introduction

Although much progress has been made over the years on 3D modeling systems,
they are still difficult and tedious to use when creating freeform surfaces. Their em-
phasis has been the precise modeling of objects motivated by CAD and similar do-
mains. An important contribution in the field was the SKETCH system [34], which
introduced a gesture-based interface for the rapid modeling of CSG-like models
consisting of simple primitives.

We extended these ideas to create a sketching interface for designing 3D freeform
objects and developed a prototype system called Teddy [15]. The essential idea is
the use of freeform strokes as an expressive design tool. The user draws 2D freeform
strokes interactively specifying the silhouette of an object, and the system automat-
ically constructs a 3D polygonal surface model based on the strokes (Fig. 8.1). The
user does not have to manipulate control points or combine complicated editing op-
erations. Using our technique, even first-time users can create simple, yet expressive
3D models within minutes. In addition, the resulting models have a hand-crafted feel
(such as sculptures and stuffed animals) which is difficult to accomplish with most
conventional modelers. Examples are shown in Fig. 8.2.

This chapter describes the sketching interface and the algorithms for constructing
3D shapes from 2D strokes in Teddy. The geometric representation we used is a
standard polygonal mesh to allow the use of numerous software resources for post-
manipulation and rendering. However, the interface itself can be used to create other
representations such as volumes [30] or implicit surfaces [21].

Like SKETCH [34], Teddy was designed for the rapid construction of approxi-
mate models, not for the careful editing of precise models. To emphasize this design
goal and encourage creative exploration, we used the real-time pen-and-ink render-
ing described in [18], as shown in Fig. 8.1. This also allowed real-time interactive
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Fig. 8.1 Teddy in use on a
display-integrated tablet

Fig. 8.2 Painted models
created using Teddy and
painted using a commercial
texture-map editor

rendering using Java on mid-range PCs without dedicated 3D rendering hardware at
that time.

An immediate application of Teddy is as a plug-in for existing modeling pack-
ages. However, Teddy’s ease of use has the potential to open up new application
areas for 3D modeling beyond standard usage model. Possibilities include rapid
prototyping in the early stages of design, educational/recreational use for non-
professionals and children [20], and real-time communication assistance on pen-
based systems. We report on a case study where a high school teacher used our
system to teach 3D concepts in geography.

Teddy is available as a Java applet at the following web site http://www-ui.is.s.u-
tokyo.ac.jp/~takeo/teddy/teddy.htm.
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8.2 Related Work

A typical procedure for geometric modeling is to start with a simple primitive such
as a cube or a sphere, and gradually construct a more complex model through suc-
cessive transformations or a combination of multiple primitives. Various deforma-
tion techniques [17, 27] and other shape-manipulation tools [9] are examples of
transformation techniques that let the user create a wide variety of precise, smooth
shapes by interactively manipulating control points or 3D widgets.

Another approach to geometric modeling is the use of implicit surfaces [4, 19].
The user specifies the skeleton of the intended model and the system constructs
smooth, natural-looking surfaces around it. The surface inflation technique [29] ex-
trudes the polygonal mesh from the skeleton outward. In contrast, our approach lets
the user specify the silhouette of the intended shape directly instead of by specifying
its skeleton.

Some modeling systems achieve intuitive, efficient operation using 3D in-
put/output devices [7]. 3D devices can simplify the operations that require multiple
operations when using 2D devices.

Our sketching interface is inspired by previous sketch-based modeling systems
[8, 34] that interpret the user’s freeform strokes and interactively construct 3D rec-
tilinear models. Our goal is to develop a similar interface for designing rounded
freeform models.

Williams published a method for constructing a 3D shape by inflating the inside
of a given 2D silhouette [32, 33]. He used it to add shading effect to 2D drawings as
well as to generate a 3D polygonal model. Our work is built on his seminal contri-
bution and extended it to a more complete modeling system based on sketching.

The use of freeform strokes for 2D applications has recently become popular.
Some systems [10, 16] use strokes to specify gestural commands and others [3] use
freeform strokes for specifying 2D curves. These systems find the best matching
arcs or splines automatically, freeing the users from explicit control of underlying
parameters.

Since the first introduction of our system, many different variants have been ex-
plored in the research community. They mainly experimented with different repre-
sentations for a 3D model, such as voxels to support topology changes [22], subdi-
vision surfaces to create smoother surface [14], implicit surfaces to achieve smooth
connection between components [1, 25], hierarchical representations to support sub-
sequent editing [25] and animation [14], and mesh optimizations to support editing
by the constraints on the surface [20]. Some of these are described in the following
chapters of this book.

8.3 User Interface

Teddy’s physical user interface is based upon traditional 2D input devices such as a
standard mouse or tablet. We use a two-button mouse with no modifier keys. Unlike
traditional modeling systems, Teddy does not use WIMP-style direct manipulation
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techniques or standard interface widgets such as buttons and menus for modeling
operations. Instead, the user specifies his or her desired operation using freeform
strokes on the screen, and the system infers the user’s intent and executes the ap-
propriate editing operations. Our videotape shows how a small number of simple
operations let the users create very rich models.

In addition to gestures, Teddy supports direct camera manipulation using the
secondary mouse button based on a virtual trackball model [13]. We also use a few
button widgets for auxiliary operations, such as save and load, and for initiating
bending operations.

8.4 Modeling Operations

This section describes Teddy’s modeling operations from the user’s point of view;
details of the algorithms are left to the next section. Some operations are executed
immediately after the user completes a stroke, while some require multiple strokes.
The current system supports neither the creation of multiple objects at once, nor
operations to combine single objects. Additionally, models must have a spherical
topology; e.g., the user cannot create a torus. An overview of the model construction
process is given first, and then each operation is described in detail.

The modeling operations are carefully designed to allow incremental learning by
novice users. Users can create a variety of models by learning only the first oper-
ation (creation), and can incrementally expand their vocabulary by learning other
operations as necessary. We have found it helpful to restrict first-time users to the
first three basic operations (creation, painting, and extrusion), and then to introduce
other advanced operations after these basic operations are mastered.

8.4.1 Overview

Figure 8.3 introduces Teddy’s general model construction process. The user be-
gins by drawing a single freeform stroke on a blank canvas (Figs. 8.3(a, b)). As
soon as the user finishes drawing the stroke, the system automatically constructs
a corresponding 3D shape (c). The user can now view the model from a different
direction (d). Once a model is created, it may be modified using various operations.
The user can draw a line on the surface (e–g) by drawing a stroke within the model
silhouette. If the stroke is closed, the resulting surface line turns red and the system
enters “extrusion mode” (h–i). Then the user rotates the model (j) and draws the
second stroke specifying the silhouette of the extruded surface (k–m). A stroke that
crosses the silhouette cuts the model (n–o) and turns the cut section red (p). The
user either clicks to complete the operation (q) or draws a silhouette to extrude the
section (r–t). Scribbling on the surface erases the line segments on the surface (u–
w). If the user scribbles during the extrusion mode (x–y), the system smoothes the
area surrounded by the closed red line (z–z′).
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Fig. 8.3 Overview of the modeling operations
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Fig. 8.4 Summary of the gestural operations

Figure 8.4 summarizes the modeling operations available on the current imple-
mentation. Note that the appropriate action is chosen based on the stroke’s position
and shape, as well as the current mode of the system.

8.4.2 Creating a New Object

Starting with a blank canvas, the user creates a new object by drawing its silhou-
ette as a closed freeform stroke. The system automatically constructs a 3D shape
based on the 2D silhouette. Figure 8.5 shows examples of input strokes and the cor-
responding 3D models. The start point and end point of the stroke are automatically
connected, and the operation fails if the stroke is self-intersecting. The algorithm
to calculate the 3D shape is described in detail in Sect. 8.5. Briefly, the system in-
flates the closed region in both directions with the amount depending on the width
of the region: that is, wide areas become fat, and narrow areas become thin. Our
experience so far shows that this algorithm generates a reasonable-looking freeform
shape. In addition to the creation operation, the user can begin model construction
by loading a simple primitive. The current implementation provides a cube and a
sphere, but adding more shapes is straightforward.
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Fig. 8.5 Examples of
creation operation (top: input
stroke, middle: result of
creation, bottom: rotated
view)

8.4.3 Painting and Erasing on the Surface

The object surface is painted by drawing a freeform stroke within the object’s
silhouette on the canvas (the stroke must not cross the silhouette) [11]. The 2D
stroke is projected onto the object surface as 3D line segments, called surface lines
(Fig. 8.3(e–g)). The user can erase these surface lines by drawing a scribbling
stroke1 (Fig. 8.3(u–w)). This painting operation does not modify the 3D geometry
of the model, but lets the user express ideas quickly and conveniently when using
Teddy as a communication medium or design tool.

8.4.4 Extrusion

Extrusion is a two-stroke operation: a closed stroke on the surface and a stroke
depicting the silhouette of the extruded surface. When the user draws a closed stroke
on the object surface, the system highlights the corresponding surface line in red,
indicating the initiation of “extrusion mode” (Fig. 8.3(i)). The user then rotates the
model to bring the red surface line sideways (Fig. 8.3(j)) and draws a silhouette
line to extrude the surface (Fig. 8.3(k)). This is basically a sweep operation that
constructs the 3D shape by moving the closed surface line along the skeleton of
the silhouette (Fig. 8.3(l)). The direction of extrusion is always perpendicular to the
object surface, not parallel to the screen. Users can create a wide variety of shapes
using this operation, as shown in Fig. 8.6. They can also make a cavity on the surface

1A stroke is recognized as scribbling when sl/pl > 1.5, where sl is the length of the stroke and pl
is the perimeter of its convex hull.
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Fig. 8.6 Examples of
extrusion (top: extruding
stroke, bottom: result of
extrusion)

Fig. 8.7 More extrusion
operations: digging a cavity
(a–c) and turning the closed
stroke into a surface drawing
(d–e)

Fig. 8.8 Cutting operation

by drawing an inward silhouette (Fig. 8.7(a–c)). The current implementation does
not support holes that completely extend to the other side of the object. If the user
decides not to extrude, a single click turns the red stroke into an ordinary painted
stroke (Fig. 8.7(d–e)).

8.4.5 Cutting

A cutting operation starts when the user draws a stroke that runs across the object,
starting and terminating outside its silhouette (Fig. 8.3(o)). The stroke divides the
object into two pieces at the plane defined by the camera position and the stroke.
What is on the screen to the left of the stroke is then removed entirely (Fig. 8.3(p))
(as when a carpenter saws off a piece of wood). The cutting operation finishes with
a click of the mouse (Fig. 8.3(q)). The user can also ‘bite’ the object using the same
operation (Fig. 8.8).

The cutting stroke turns the section edges red, indicating that the system is in
“extrusion mode”. The user can draw a stroke to extrude the section instead of a
click (Figs. 8.3(r–t), 8.9). This “extrusion after cutting” operation is useful to modify
the shape without causing creases at the root of the extrusion.
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Fig. 8.9 Extrusion after
cutting

Fig. 8.10 Smoothing
operation

8.4.6 Smoothing

One often smoothes the surface of clay models to eliminate bumps and creases.
Teddy lets the user smooth the surface by drawing a scribble during “extrusion
mode.” Unlike erasing, this operation modifies the actual geometry: it first removes
all the polygons surrounded by the closed red surface line and then creates an en-
tirely new surface that covers the region smoothly. This operation is useful to remove
unwanted bumps and cavities (Figs. 8.3(x–z′), 8.10(a)), or to smooth the creases
caused by earlier extrusion operations (Fig. 8.10(b)).

8.4.7 Transformation

We are currently experimenting with an additional “transformation” editing opera-
tion that distorts the model while preserving the polygonal mesh topology. Although
it functions properly, the interface itself is not fully gestural because the modal tran-
sition into the bending mode requires a button push. This operation starts when the
user presses the “bend” button and uses two freeform strokes called the reference
stroke and the target stroke to modify the model. The system moves vertices of the
polygonal model so that the spatial relation between the original position and the
target stroke is identical to the relation between the resulting position and the refer-
ence stroke. This movement is parallel to the screen, and the vertices do not move
perpendicular to the screen. This operation is described in [6] as warp; we do not
discuss the algorithm further.

Transformation can be used to bend, elongate, and distort the shape (Fig. 8.11).
We plan to make the system infer the reference stroke automatically from the ob-
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Fig. 8.11 Examples of
transformation (top: bending,
bottom: distortion)

Fig. 8.12 Internal
representation

ject’s structure in order to simplify the operation, in a manner similar to the mark-
based interaction technique of [3].

8.5 Algorithm

We next describe how the system constructs a 3D polygonal mesh from the user’s
freeform strokes. Internally, a model is represented as a polygonal mesh [31]. Each
editing operation modifies the mesh to conform to the shape specified by the user’s
input strokes (Fig. 8.12). The resulting model is always topologically equivalent to
a sphere. We developed the current implementation as a prototype for designing the
interface; the algorithms are subject to further refinement and they fail for some ille-
gal strokes (in that case, the system indicates the problem and requests an alternative
stroke). However, these exceptional cases are fairly rare, and the algorithm works
well for a wide variety of shapes.

Our algorithms for creation and extrusion are closely related to those for freeform
surface construction based on skeletons [4, 19], which create a surface around user-
defined skeletons using implicit surface techniques. While our current implementa-
tion does not use implicit surfaces, they could be used in an alternative implemen-
tation.

In order to remove noise in the handwriting input stroke and to construct a regular
polygonal mesh, every input stroke is re-sampled to form a smooth polyline with
uniform edge length before further processing [5].
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Fig. 8.13 Finding the spine

8.5.1 Creating a New Object

Our algorithm creates a new closed polygonal mesh model from the initial stroke.
The overall procedure is this: we first create a closed planar polygon by connecting
the start point and end point of the stroke, and determine the spine or axes of the
polygon using the chordal axis introduced in [24]. We then elevate the vertices of
the spine by an amount proportional to their distance from the polygon. Finally, we
construct a polygonal mesh wrapping the spine and the polygon in such a way that
sections form ovals.

When constructing the initial closed planar polygon, the system makes all edges
a predefined unit length (see Fig. 8.13(a)). If the polygon is self-intersecting, the al-
gorithm stops and the system requests an alternative stroke. The edges of this initial
polygon are called external edges, while edges added in the following triangulation
are called internal edges.

The system then performs a constrained Delaunay triangulation of the polygon
(Fig. 8.13(b)). We then divide the triangles into three categories: triangles with two
external edges (terminal triangle), triangles with one external edge (sleeve triangle),
and triangles without external edges (junction triangle). The chordal axis is obtained
by connecting the midpoints of the internal edges (Fig. 8.13(c)), but our inflation
algorithm first requires the pruning of insignificant branches and the re-triangulation
of the mesh. This pruning algorithm is also introduced in [24].

To prune insignificant branches, we examine each terminal triangle in turn, ex-
panding it into progressively larger regions by merging it with adjacent triangles
(Fig. 8.14(a–b)). Let X be a terminal triangle; then X has two exterior edges and
one interior edge. We erect a semicircle whose diameter is the interior edge, and
which lies on the same side of that edge as does X. If all three vertices of X lie on
or within this semicircle, we remove the interior edge and merge X with the triangle
that lies on the other side of the edge.

If the newly merged triangle is a sleeve triangle, then X now has three exterior
edges and a new interior edge. Again, we erect a semicircle on the interior edge and
check that all vertices are within it. We continue until some vertex lies outside the
semicircle (Fig. 8.14(c)), or until the newly merged triangle is a junction triangle. In
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Fig. 8.14 Pruning

Fig. 8.15 Polygonal mesh
construction

the first case, we triangulate X with a “fan” of triangles radiating from the midpoint
of the interior edge (Fig. 8.14(d)). In the second case, we triangulate with a fan from
the midpoint of the junction triangle (Fig. 8.14(e–f)). The resulting fan triangles are
shown in Fig. 8.13(d). The pruned spine is obtained by connecting the midpoints of
remaining sleeve and junction triangles’ internal edges (Fig. 8.13(e)).

The next step is to subdivide the sleeve triangles and junction triangles to make
them ready for elevation. These triangles are divided at the spine and the result-
ing polygons are triangulated, so that we now have a complete 2D triangular mesh
between the spine and the perimeter of the initial polygon (Fig. 8.13(f)).

Next, each vertex of the spine is elevated proportionally to the average distance
between the vertex and the external vertices that are directly connected to the vertex
(Fig. 8.15(a, b)). Each internal edge of each fan triangle, excluding spine edges, is
converted to a quarter oval (Fig. 8.15(c)), and the system constructs an appropriate
polygonal mesh by sewing together the neighboring elevated edges, as shown in
Fig. 8.15(d). The elevated mesh is copied to the other side to make the mesh closed
and symmetric. Finally, the system applies mesh refinement algorithms to remove
short edges and small triangles [12].

8.5.2 Painting on the Surface

The system creates surface lines by sequentially projecting each line segment of the
input stroke onto the object’s surface polygons. For each line segment, the system
first calculates a bounded plane consisting of all rays shot from the camera through
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Fig. 8.16 Construction of
surface lines

Fig. 8.17 Extrusion
algorithm

the segment on the screen. Then the system finds all intersections between the plane
and each polygon of the object, and splices the resulting 3D line segments together
(Fig. 8.16). The actual implementation searches for the intersections efficiently us-
ing polygon connectivity information. If a ray from the camera crosses multiple
polygons, only the polygon nearest to the camera position is used. If the resulting
3D segments cannot be spliced together (e.g., if the stroke crosses a “fold” of the
object), the algorithm fails.

8.5.3 Extrusion

The extrusion algorithm creates new polygonal meshes based on a closed base sur-
face line (called the base ring) and an extruding stroke. Briefly, the 2D extruding
stroke is projected onto a plane perpendicular to the object surface (Fig. 8.17(a)),
and the base ring is swept along the projected extruding stroke (Fig. 8.17(b)). The
base ring is defined as a closed 3D polyline that lies on the surface of the polygonal
mesh, and the normal of the ring is defined as that of the best matching plane of the
ring.

First, the system finds the plane for projection: the plane passing through the
base ring’s center of gravity and lying parallel to the normal of the base ring.2 Un-
der the above constraints, the plane faces toward the camera as much as possible
(Fig. 8.17(a)).

2The normal of the ring is calculated as follows: Project the points of the ring to the original XY-

plane. Then compute the enclosed “signed area” by the formula: Axy = 0.5 × ∑n−1
i=0 (x[i] × y[i +

1]−x[i +1]×y[i]) (indices are wrapped around so that x[n] means x[0]). Calculate Ayx and Azx

similarly, and the vector v = (Ayz,Azx,Axy) is defined as the normal of the ring.
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Fig. 8.18 Sweeping the base
ring

Fig. 8.19 Counterintuitive
extrusions

Then the algorithm projects the 2D extruding stroke onto the plane, producing a
3D extruding stroke. Copies of the base ring are created along the extruding stroke
in such a way as to be almost perpendicular to the direction of the extrusion, and
are resized to fit within the stroke. This is done by advancing two pointers (left and
right) along the extruding stroke starting from both ends. In each step, the system
chooses the best of the following three possibilities: advance the left pointer, the
right pointer, or both. The goodness value increases when the angle between the
line connecting the pointers and the direction of the stroke at each pointer is close
to 90 degrees (Fig. 8.18(a)). This process completes when the two pointers meet.

Finally, the original polygons surrounded by the base ring are deleted, and new
polygons are created by sewing the neighboring copies of the base ring together [2]
(Fig. 8.18(b)). The system uses the same algorithm to dig a cavity on the surface.

This simple algorithm works well for a wide variety of extrusions but creates
counterintuitive shapes when the user draws unexpected extruding strokes or when
the base surface is not sufficiently planar (Fig. 8.19).

8.5.4 Cutting

The cutting algorithm is based on the painting algorithm. Each line segment of the
cutting stroke is projected onto the front and back facing polygons. The system
connects the corresponding end points of the projected edges to construct a planar
polygon (Fig. 8.20). This operation is performed for every line segment, and the
system constructs the complete section by splicing these planar polygons together.

Finally, the system triangulates each planar polygon [26], and removes all poly-
gons to the left of the cutting stroke.

8.5.5 Smoothing

The smoothing operation deletes the polygons surrounded by the closed surface
line (called a ring) and creates new polygons to cover the hole smoothly. First, the
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Fig. 8.20 Cutting

Fig. 8.21 Smoothing
algorithm

system translates the objects into a coordinate system whose Z-axis is parallel to
the normal of the ring. Next, the system creates a 2D polygon by projecting the
ring onto the XY -plane in the newly created coordinate system, and triangulates the
polygon (Fig. 8.21(b)). (The current implementation fails if the area surrounded by
the ring contains creases and is folded when projected on the XY -plane.) The trian-
gulation is designed to create a good triangular mesh based on [26]: it first creates a
constrained Delaunay triangulation and gradually refines the mesh by edge splitting
and flipping; then each vertex is elevated along the Z-axis to create a smooth 3D
surface (Fig. 8.21(d)).

The algorithm for determining the Z-value of a vertex is as follows: For each
edge of the ring, consider a plane that passes through the vertex and the midpoint
of the edge and is parallel to the Z-axis. Then calculate the z-value of the vertex so
that it lies on the 2D Bézier curve that smoothly interpolates both ends of the ring
on the plane (Fig. 8.21(c)). The final z-value of the vertex is the average of these
z-values.

Finally, we apply a surface-fairing algorithm [28] to the newly created polygons
to enhance smoothness.

8.6 Implementation

Our prototype is implemented as a 13,000 line Java program. We tested a display-
integrated tablet (Mutoh MVT-14, see Fig. 8.1) and an electric whiteboard (Xerox
Liveboard) in addition to a standard mouse. The mesh construction process is com-
pletely real-time, but causes a short pause (a few seconds) when the model becomes
complicated. Teddy can export models in OBJ file format. Figure 8.2 shows some
3D models created with Teddy by an expert user and painted using a commercial
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texture-map editor. Note that these models look quite different from 3D models cre-
ated in other modeling systems, reflecting the hand-drawn nature of the shape.

8.7 User Experience

The applet version of Teddy has been publicly available since 1999. Feedback from
the users indicates that Teddy is quite intuitive and encourages them to explore var-
ious 3D designs. In addition, we have started close observation of how first-time
users (mainly graduate students in computer science) learn Teddy. We start with a
detailed tutorial and then show some stuffed animals, asking the users to create them
using Teddy. Generally, the users begin to create their own models fluently within
10 minutes: five minutes of tutorial and five minutes of guided practice. After that,
it takes a few minutes for them to create a stuffed animal such as those in Fig. 8.2
(excluding the texture).

Our technique has been used in several commercial products including video
games (Nintendo Gamecube and Sony Playstation 2) and 3D modeling packages. In
the games, the users create their own characters using our techniques and use them
in the following battles and adventures. The modeling packages used our technique
in two ways, one is for expert users to create initial model to be modified later using
standard mesh editing tools and one is for novice users (mainly children) to create
simple 3D models.

We also run a case study in a geography class in a high school (Fig. 8.22).
A teacher needs to teach various 3D concepts such as mountains and valleys in
geography, but it is often difficult to explain these concepts using 2D medium such
as blackboards. One can also use videos and physical props, but these tools lacks
the informal style seen in sketching in backboards, which is very important in edu-
cational purposes. Our technique can naturally extend sketching activities into three
dimensions.

In the class, the teacher described various concepts in geography one by one
using our tool. He first showed a mountain model and carved multiple U-shaped
valleys, eventually revealing a characteristic shape called a horn (Fig. 8.22(a)). He
next showed a simple flat terrain model and carved flat valleys successively to create
a river terrace (Fig. 8.22(b)). He also explained the concept of ocean trench using
our system (Fig. 8.22(c)). The teacher usually explains it using 2D illustration on
a blackboard, but many students wrongly misunderstand that the ocean trench is
just a hole, not a trench when seeing the 2D cross section. One of the most con-
vincing examples was teaching the concept of contour lines using our technique
(Fig. 8.22(d)). The teacher first shows a 3D model of a mountain and draws sev-
eral horizontal lines in the side view, saying that these lines indicate equal heights.
The teacher then changes the viewpoint to see the mountain and the lines from the
top. This way, the students understand the relationship between the closed lines on
the map (contour lines) and the 3D geometry. Students answered that 3D sketching
helped understanding complicated 3D concepts in a follow-up questionnaire.
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Fig. 8.22 Teaching
geography using three
dimensional sketching

8.8 Conclusions

This chapter introduced a sketching interface for designing freeform 3D models.
The user interactively sketches the silhouette of the desired 3D model and the system
automatically constructs a reasonable, rotund 3D model. The user can also cut the
model or add part on top of the model using sketching operation. The proposed
system use simple mesh representation and achieve inflation via skeleton extraction
based on constrained Delaunay triangulation.
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Chapter 9
The Creation and Modification of 3D Models
Using Sketches and Curves

Andrew Nealen and Marc Alexa

9.1 Introduction

This chapter describes interfaces and algorithms that support a potentially untrained
user’s intent to communicate a mental model of 2D/3D shape to a digital computer;
FiberMesh for the creation, and SilSketch for the modification of 3D shapes. Fiber-
Mesh is a system for designing freeform surfaces with a collection of 3D curves. The
user first creates a rough 3D model by using a sketching interface. The user-drawn
strokes stay on the model surface and serve as handles for controlling the geome-
try. For a given set of curves, the system automatically constructs a smooth surface
embedding by applying functional optimization. SilSketch is an over-sketching in-
terface for feature-preserving surface mesh editing. The user sketches a stroke that
is the suggested position of part of a silhouette of the displayed surface. The over-
all algorithm has been designed to enable interactive modification of the surface—
yielding a surface editing system that comes close to the experience of sketching 3D
models on paper.

While machines are equipped with clearly defined interfaces for video input
(cameras, scanners) and output (monitors, projectors), human beings are not. In fact
there is quite an imbalance at work here; while one could argue that the human
visual system is currently superior to the video-in of a machine, we lack a clear def-
inition of the human video-out. The most common ways of communicating and/or
creating 2D/3D shapes are either using hand-drawn 2D sketches, or modeling 3D
shapes with malleable materials such as clay. Unfortunately, these means of com-
munication and creation are generally limited to a small subset of artistically trained
individuals. In the following we describe our interfaces and algorithms, which are
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designed to assist the user with meaningful and intuitive operations and thereby
alleviate the described shortcomings.

9.2 FiberMesh: Designing Freeform Surfaces with 3D Curves

Current tools for freeform design, and the resulting design process, can be roughly
categorized into two groups. The group of professional modeling packages makes
use of parametric patches or subdivision surfaces [1, 31], where the user has to lay
out the coarsest level patches in an initial modeling stage, and then modify control
points to generate details. Because it is difficult for inexperienced users to gener-
ate the control structure for an intended shape from scratch, a group of research
tools [19, 20, 23, 24, 36] as well as character editors in entertainment media such as
videogames [15, 30] are built around intuitive modeling metaphors such as sketch-
ing, trying to hide the mathematical subtleties of surface description from the user.
However, some of these tools lack a high-level control structure, making it difficult
to iteratively refine the design, or re-use existing designs.

We try to bridge the gap by using curves, a universally accepted modeling
metaphor, as an interface for designing a surface. Notice that curves appear in both
tools mentioned above: they appear as parameter lines, or seams where locally pa-
rameterized patches meet; they are sketched to generate or modify shape, or they
are extracted from the current shape and used as handles. Also note that traditional
design is mostly based on drawing characteristic curves.

Yet, design is a process. We cannot expect a user to draw the control (or char-
acteristic) curves of a shape into free space. Our first fundamental idea is to let the
user define control curves by drawing them onto the shape in its current design stage.
These curves can be used as handles for deformation right after their definition, as
in other tools, or at any other time in the design process. Of course, the effect of
control curves can be modified (i.e. smooth vs. sharp edge), they can be removed
from the current design, and there are no restrictions on their placement and topo-
logical structure. Specifically, they may be connected to or intersect other curves, or
not.

The second fundamental principle is that the shape is defined by the control
curves at any stage of the design process. While we found it important to serve
the process of construction—indeed, the curves themselves define the topology of
the surface—the result should be independent of when a control curve was mod-
ified. We achieve this by defining the surface to minimize certain functions of its
differentials [32, 45], while constraining it by the control curves.

The system allows the user to design practical models such as 3D characters
(Fig. 9.1), by introducing a high-level user interface for curve control.

It is crucial that both the modification of curves as well as the computation of sur-
face geometry allow for an interactive and smoothly responding system. For this we
build on the recent advances in discrete Laplacian [4, 5, 40, 46] and other higher-
order or non-linear functionals for surface processing [6, 18, 44]. One of the key
driving forces is the use of highly efficient sparse linear solvers [9, 42]. They can
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Fig. 9.1 Modeling results
using FIBERMESH. The user
interactively defines the
control curves, combining
sketching and direct
manipulation, and the system
continuously presents fair
interpolative surfaces defined
by these curves
(dark = smooth curve,
light = sharp curve)

Fig. 9.2 An example
modeling sequence

efficiently solve matrix systems of tens of thousands of entries, which makes it pos-
sible to process interesting 3D meshes in real-time.

9.2.1 User Interface

From the user’s point of view, the system can be seen as an extension to a freeform
modeling system based on silhouette sketching, such as Teddy [20]. The user inter-
actively draws the silhouette of the desired geometry and the system automatically
constructs a (rotund) surface via functional optimization, such that its silhouette
matches the user’s sketch. However, the user’s original stroke stays on the model
surface and serves as a handle for further geometry control. The user can manip-
ulate these curves interactively and the surface geometry changes accordingly. In
addition, the user can freely add and remove control curves on the surface. These
extensions enable the design of far more elaborate shapes than those possible with
sketching alone. Figure 9.2 shows an overview of the process.

In a sense, the modeling process is similar to traditional modeling methods, such
as parametric patches and subdivision surfaces: the user also defines nets of curves
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Fig. 9.3 Sketching
operations (from top to
bottom): creation, cut,
extrusion and tunnel

Fig. 9.4 Adding control
curves: open stroke (top),
closed stroke (middle) and
cutting stroke (bottom). The
user needs to click after
drawing a stroke to make it a
control curve in the cases of
closed stroke and cutting
stroke

and the system automatically generates a smooth surface based on these. An ad-
vantage of this interface is that the user does not need to worry about the topology
of the curves. Traditional methods require the user to cover the entire surface with
triangle or quad regions. This method is much more flexible: curves need not be
connected to other curves and much fewer curves can represent simple geometry.
It is also important that, instead of providing individual points as an interface, our
interface treats curves as continuous entities. We believe this can help smooth the
“skill transfer” from 2D drawing to 3D modeling.

9.2.1.1 Sketching Tool

The system provides five kinds of sketching operations: creation, cut, extrusion, tun-
nel (Fig. 9.3), and add-control curve (Fig. 9.4). When the user draws a closed stroke
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Fig. 9.5 Pulling a curve. The
deformed curve segment is
determined by how much of it
the user peels off

on a blank canvas, the system automatically inflates the closed area and presents an
initial 3D model. The user draws a stroke crossing the model to cut it. Drawing a
closed stroke on the object surface followed by a silhouette stroke creates an extru-
sion. If the user draws another closed loop on the opposite side of the surface, the
system generates a tunnel. These operations are borrowed from the original Teddy
system, but the difference is that the user’s original strokes stay on the model surface
as control curves. These control curves literally define the surface shape (as posi-
tional constraints in the surface optimization), and the user can modify the shape
by deforming these control curves. New control curves can be added by drawing an
open stroke on the object surface, drawing a closed stroke followed by clicking, and
by drawing a cutting stroke followed by clicking (Fig. 9.4). The last method is very
useful during the early stages of model creation, since it allows the user to quickly
generate a convenient handle to adjust the amount of inflation (or fatness).

The control curves are divided into two types: smooth curves (dark) and sharp
curves (light). A smooth curve constrains the surface to be smooth across it, while
a sharp curve only places positional constraints with C0 continuity.

9.2.1.2 Deformation Tool

The deformation tool lets the user grab a curve at any point and pull it to the desired
location. The curve deforms accordingly, preserving local details as much as pos-
sible (see Fig. 9.5 and Sect. 9.2.2.1). Editing operations are always applied to the
control curves, not directly to the surface. If the user wants more control, new con-
trol curves must be added on the surface. Explicit addition of control curves exposes
the surface structure in a clear way, and the curves serve as a convenient handle for
further editing.

We use a peeling interface for the determination of the deformed curve segment
(region of interest, ROI) [21]. The size of the curve segment to be deformed is
proportional to the amount of pulling.

9.2.1.3 Rubbing Tool

The rubbing tool is used for smoothing a curve. As the user drags the mouse back
and forth (rubs) near the target curve, the curve gradually becomes smooth. The
more the user rubs, the smoother the curve becomes (Fig. 9.6). This tool is very im-
portant because the curves resulting from sketching can contain noise, and localized
deformation might introduce jaggy parts.
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Fig. 9.6 Rubbing
(smoothing) a curve

Fig. 9.7 Erasing a control
curve (left: before erasing,
middle: immediately after
erasing, right: after surface
optimization)

Fig. 9.8 Changing the curve
type (left: before the change,
middle: immediately after the
change, right: after surface
optimization)

9.2.1.4 Erasing Tool and Type Change Tool

The erasing tool works as a standard curve segment eraser: the user drags the cursor
along a control curve to erase it. This is equivalent to removing constraints that de-
fine the surface. The system optimizes the surface when the user finishes an erasing
operation (releases the mouse button, Fig. 9.7). The type change tool is for changing
the type of a control curve. Like the erasing tool, the user drags the cursor along a
curve to change the property. If the curve is a sharp curve, it converts it to a smooth
curve (or curve segment), and vice versa (see Fig. 9.8).

9.2.2 Algorithm

To implement the described interface we propose an algorithm that consists of two
main steps: curve deformation and surface optimization. The additional steps, mesh
construction and remeshing (Sect. 9.2.2.3), only occur at the end of the modeling
operations creation, extrusion, cut, and deformation.

Instead of solving for both curve positions and fair surface simultaneously, we
have found that decoupling the curve deformation from the surface optimization step
is fast, intuitive, produces aesthetically pleasing results, and supports our fundamen-
tal principle of defining shape by control curves. The user first deforms (pulls) the
curve(s) using the deformation tool (Sect. 9.2.2.1), after which the new curve posi-
tions are fed to the surface optimization step as positional constraints (Sect. 9.2.2.2).
During curve pulling, these two operations are performed sequentially to achieve in-
teractive updates of both the curves and the surface they define.
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9.2.2.1 Curve Deformation

The user interface for curve deformation is a usual direct manipulation method: the
user grabs and drags a point on a curve, and the curve deforms smoothly within
the peeled region of interest (ROI). The current implementation always moves the
grabbed point parallel to the screen.

The algorithm we use is a variant of detail-preserving deformation methods us-
ing differential coordinates [38], combined with co-rotational methods [13]. Geom-
etry is represented using differential coordinates, and the final result is obtained by
solving a sequence of linear least-square problems, subject to boundary (positional)
constraints. The main challenge in this framework is the computation of appropri-
ate rotations for the differential coordinates. One approach is to explicitly compute
rotations beforehand, typically by smoothly interpolating the prescribed orientation
constraints defined by the user [29, 46–48]. These methods are not applicable in our
setting because the user should only need to drag a vertex without specifying rota-
tions. Another approach is to implicitly compute rotations as a linear combination
of target vertex positions [14, 40]. Our technique is similar to these methods, but we
explicitly represent rotation matrices as separate free variables. This is due to the
fact that neighboring vertices along a curve are nearly collinear and inappropriate
for deriving rotations from them.

Conceptually, what we want to solve is the following error minimization prob-
lem:

arg min
v,R

{
∑

i

∥∥L(vi ) − Riδi

∥∥2 +
∑

i∈C1

∥∥vi − v′
i

∥∥2 +
∑

i,j∈E

‖Ri − Rj‖2
F

+
∑

i∈C2

∥∥Ri − R′
i

∥∥2
F

}
, (1)

where L(·) is the differential operator, vi represents the vertex coordinates, Ri rep-
resents rotations associated with these vertices in the deformed curve, ‖ · ‖F is the
Frobenius norm, E is the set of curve edges, C1 and C2 are the sets of constrained
vertices, and primed values are given constraints. The first term minimizes the dif-
ference between the resulting differential coordinates and the rotated original dif-
ferential coordinates δi . The second term represents positional constraints (we use
three constrains: two at the boundary of the ROI and one at the handle). The third
term ensures that the rotations are smoothly varying along the curve [2, 14, 41], and
the last term represents rotational constraints (we use two constraints at the bound-
ary of the ROI). These four terms also need to be appropriately weighted to obtain
visually pleasing results. We have omitted these weights in the above equation for
simplicity.

A problem with this approach is that R is not linear. Unconstrained transforma-
tion includes shearing, stretching, and scaling, which is undesirable for our applica-
tion. Similar to Laplacian Surface Editing [40], we therefore use a linearized rotation
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Fig. 9.9 Rotated local
coordinate frames (light grey)
after curve deformation by
pulling a single vertex

matrix to represent small rotations. In order to accommodate large rotations, we it-
eratively compute the gross rotation by concatenating small delta rotations obtained
by solving a linear system at each step.

In summary, what we solve in each step is the following minimization problem:

arg min
v,r

{∑

i

∥∥L(vi ) − riRiδi

∥∥2 +
∑

i∈C1

∥∥vi − v′
i

∥∥2 +
∑

i,j∈E

‖riRi − rj Rj‖2
F

+
∑

i∈C2

∥∥riRi − R′
i

∥∥2
F

}
, (2)

where Ri is the gross rotation obtained from the previous iteration step and fixed in
each minimization step. ri is a linearized incremental rotation represented as a skew
symmetric matrix with three unknowns,

ri =
⎡

⎣
1 −riz riy
riz 1 −rix

−riy rix 1

⎤

⎦ .

As a whole, this minimization problem amounts to the solution of a sparse lin-
ear system and it returns optimal vertex positions and delta rotations ri . We update
target gross rotations as Ri ← riRi , and also orthonormalize them using polar de-
composition [14]. Figure 9.9 shows the resulting gross rotations obtained using three
iterations of this algorithm.

One remaining issue is the choice of differential coordinates L. We have tested
two options: first-order differentials (L0) and second-order differentials (L1)

L0 = vi − vi−1, L1 = vi − 1

|Ni |
∑

j∈Ni

vj .

L1 seems to be the popular choice for surface deformation. However in our case,
we found that L1 is not appropriate for the estimation of rotations because it almost
always degenerates (i.e. is close to zero) in a smooth curve. On the other hand, L0

always has certain length in an appropriately sampled curve and serves as a reliable
guide for estimating rotations. One problem with L0-based geometry computation
is that it causes C1 discontinuities on the boundaries of the ROI. Therefore, we first
use L0 for the iterative process of rotation estimation, and then switch to L1 for
computing the final vertex positions using the estimated rotations.
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Fig. 9.10 The results of
least-square meshes (left) and
our non-linear solution (right)
for a planar curve

Fig. 9.11 Least-square mesh
(= linearized thin-plate
surface �2x = 0, left) and the
results of our non-linear
solution (right)

9.2.2.2 Surface Optimization

It is important to provide real-time visual feedback to the user during control-curve
deformation. This constraint necessitates the use of a fast surface optimization algo-
rithm. An intuitive choice appears to be some discrete surface defined as the solu-
tion of a sparse linear system [5, 38]. If we kept the system matrix constant during
interaction, updating the positions would only require back-substitution, which is
very fast. Unfortunately, in our setting we have encountered a shortcoming inher-
ent to these algorithms, which is due to the absence of normal constraints along the
curves. Specifically, if the positional constraints lie in a subspace, the solution will
also be constrained to lie in this subspace. In our tool, the initially sketched curve
is planar, so the resulting mesh geometry is also planar, see Fig. 9.10 [33]. Even in
the presence of non-planar positional constraints, surfaces from Sorkine et al. [39]
or the linearized thin-plate surfaces of Botsch and Kobbelt [4] seem to concentrate
curvature near the curves, see Fig. 9.11 (left column).

Therefore, we have chosen to implement a solution which generates a fair surface
S that interpolates the control curves by means of non-linear functional optimiza-
tion, also known as (non-linear) variational surface design. There are a variety of
possible objective functions to choose from. Welch and Witkin [45] compute sur-
faces that minimize the integral of squared principle curvatures κ1 and κ2

Ep =
∫

S

(
κ2

1 + κ2
2

)
dA, (3)

which is also known as thin-plate energy, while Bobenko and Schröder’s [3] surfaces
minimize the closely related Willmore energy

Ew =
∫

S

(κ1 − κ2)
2 dA, (4)
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implemented as a flow. They use this flow for smoothing and hole filling. Moreton
and Séquin’s [32] surfaces minimize variation of curvature

Ec =
∫

S

(
dκn

dê1

)2

+
(

dκn

dê2

)2

dA, (5)

which is the integral of squared partial derivatives of normal curvature κn with re-
spect to the directions ê1, ê2 of principal curvatures.

Each objective function has its own strengths and weaknesses, which also heav-
ily depend on how it is implemented. Based on these previous results and our own
experiences, we chose to compute a surface, which results from a sequence of op-
timization problems. This is inspired by a surface construction method presented
by Schneider and Kobbelt [37]. The partial differential equation (PDE) governing
fairness in their work is defined as �BH = 0, where �B is the discrete Laplace–
Beltrami operator, and H = (κ1 +κ2)/2 is the mean curvature. Their basic idea is to
factorize this fourth-order problem into two second-order problems and solve them
sequentially. First they compute target mean curvatures (scalars) that smoothly in-
terpolate the curvatures specified at the boundary, and then move the vertices, one
vertex at a time, to satisfy the target curvatures.

However, the second stage of their technique is not fast enough to provide inter-
active updates of the geometry when the user pulls the curve. In addition, we are
lacking curvature information at the boundaries. Our idea for a faster computation
is to cast both second-order problems as sparse linear systems that use a constant
system matrix. This allows factoring the matrices once and then performing only
back-substitution during the iterations.

In particular, in the first second-order system we replace the geometry dependent
Laplace–Beltrami operator by the uniformly discretized Laplace operator and solve
the following least-square minimization problem:

arg min
c

{
∑

i

∥∥L(ci)
∥∥2 +

∑

i

∥∥ci − c′
i

∥∥2

}
, (6)

where L(·) denotes the discrete graph Laplacian, to obtain a set of smoothly varying
Laplacian magnitudes (LMs) {ci}, which approximate scalar mean curvature values.
The first term requires that the neighboring LMs vary smoothly and the second term
requires the LMs at all vertices to be near the current LM c′

i . In the first iteration
we set target LMs only for the constrained curves using the scalar curvatures along
these curves. Unlike the work of Schneider and Kobbelt [37], where the curvature
is fixed at the boundary, these initial target LMs are likely to change in subsequent
iterations.

To obtain a geometry that satisfies these target LMs we use the uniformly dis-
cretized Laplacian as an estimator of the integrated mean curvature normal [44].
The integrated target Laplacian δi = Ai · ci · ni per vertex is given as the product
of an area estimate Ai for vertex i, the target LM ci and an estimate of the normal
ni from the current face normals. Then new positions could then be computed by
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solving the following global least-square system:

arg min
v

{
∑

i

∥∥L(vi ) − δi

∥∥2 +
∑

i∈C

∥∥vi − v′
i

∥∥2

}
, (7)

where the first term requires that the vertex Laplacians are close to the integrated
target Laplacians, and the second term places positional constraints on all vertices
in the control-curve set C.

However, our assumption that the uniformly discretized Laplacian is a reasonable
estimate for the integrated mean curvature normal does not hold when the edges
around a vertex are not of equal length. Rather than using a geometry dependent
discretization, which would require recomputation of the system matrix in each it-
eration, we try to achieve equal edge lengths by prescribing target edge vectors.
For this, we first compute desired scalar edge lengths, similar to the computation of
desired target LMs, by solving

arg min
e

{
∑

i

∥∥L(ei)
∥∥2 +

∑

i

∥∥ei − e′
i

∥∥2

}
, (8)

for a smooth set {ei} of target average edge lengths, from the current set of the
average lengths e′

i of edges incident on vertex i. Again, we start the iterations by
using only the edge lengths along the given boundary curve. Note that the matrix
for this linear system is identical to the system for computing target LMs, so that we
can re-use the factored matrix.

From these target average edge lengths, we derive target edge 3-vectors ηij for a
subset B of the edges in the mesh

ηij = (ei + ej )/2 · (vi − vj )/‖vi − vj‖. (9)

Using this set of target edge vectors, we modify the linear system in (7) to derive
the updated vertex positions as follows:

arg min
v

{
∑

i

∥∥L(vi ) − δi

∥∥2 +
∑

i∈C

∥∥vi − v′
i

∥∥2 +
∑

(i,j)∈B

‖vi − vj − ηij‖2

}
. (10)

We have found that it is sufficient to only constrain edges incident to the constrained
curves, because setting the uniformly discretized Laplacian equal to vectors in nor-
mal direction automatically improves inner fairness at all free vertices [35].

The two-step process, consisting of solving for target LMs and edge lengths and
then updating the positions, is repeated until convergence. In practice, we observed
that the computation converges rather quickly, in approximately five to ten itera-
tions. The system needs to repeatedly solve a few sparse linear systems, but the
expensive matrix factorizations are required only once at the beginning (because
left-hand side matrices remain unchanged during iteration). The system only needs
to run back-substitutions during the iterations, which is very fast. See Fig. 9.12 for
an overview of one iteration.
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Fig. 9.12 A single iteration
of our surface optimization
algorithm

While the algorithm described above is stable and robust, it is not entirely inde-
pendent of tesselation, since we use the uniformly weighted graph Laplacian as an
approximation of the integrated mean curvature normal to avoid matrix factorization
in every iteration. To overcome this, we could compute a minimal energy surface as
Schneider and Kobbelt [37] propose. As an experiment with a non-linear solution
that is independent of surface tesselation, we have implemented the inexact New-
ton method for Willmore flow described in [44]. We have found that our algorithm
tends to generate very similar results if the discretization is near-regular and that,
as expected, there are situations where unequal edge lengths along the fixed bound-
aries would benefit from the discretization-independent solution. However, not only
are these techniques significantly slower to an extent that makes them unsuitable
for most interactive editing situations, we have also encountered that the solution
can become unstable when using insufficient boundary constraints, that is, curves
without normals (this is expected and mentioned in [44]).

9.2.2.3 Meshing Implementations

The system generates a new mesh after the creation, cut, and extrusion operations.
In the case of cut, the system flattens the intersection (it is always developable)
and generates a 2D mesh inside of it. In the cases of creation and extrusion, the
system generates a 2D mesh on the image plane within the region surrounded by
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Fig. 9.13 Initial mesh
generation. The sketch curve
(left) is resampled, smoothed
(2nd from left) and intersected
with a regular triangular grid
(3rd from left), resulting in
the mesh topology used for
surface optimization (right)

Fig. 9.14 Open sharp curve
(left) and point-sharp curve
(right)

the input stroke. The system first resamples the input stroke and then smoothes it by
moving each vertex to the mid point of adjacent vertices. It is possible to skip this
process, but the resulting mesh is nicer for our purpose because it ends up generating
more triangles in high curvature areas. The resampled stroke is intersected with a
regular triangular grid mesh, and each point of the resampled stroke is connected
to the nearest grid vertex. Both front and back sides are created from the same
2D mesh and stitched together at the common boundary (Fig. 9.13). Note that this
merely defines the mesh connectivity, not the actual geometry, which is computed
subsequently as described in the previous section.

9.2.3 Results

Figure 9.14 shows shapes that are difficult to model with implicit representa-
tions [25, 36, 43]. CSG operations allow the user to represent closed sharp curves
along a boundary [36], but it is problematic to represent an open sharp curve starting
in the middle of a smooth surface. It is also difficult to represent point sharp (e.g.,
the tip of a cone) using the standard implicit representation. Both can be modeled
with our system (Fig. 9.14).

Figures 9.15 and 9.16 show some more complex results obtained with our model-
ing tool. While the models shown in Fig. 9.1 each took a trained user approximately
5–10 minutes to create, those depicted in Figs. 9.15 and 9.16 took between 10 min-
utes (arm) and 1 hour (torso).

We have conducted an informal user study to test FIBERMESH. We trained first-
time novice users for approximately 10–15 minutes, and then let them create some
models (Fig. 9.17). We also asked a professional 2D animation artist to evaluate our
system (Fig. 9.18). To quote the artist:

“One great thing about this system is that one can start doodling without having a specific
goal in mind, as if doodling on paper. One can just create something by drawing a stroke,
and then gradually deform it guided by serendipity, which is very important for creative
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Fig. 9.15 Some results
obtained using FIBERMESH

Fig. 9.16 Some fishy results
obtained with the
FIBERMESH tool

Fig. 9.17 Results obtained
from first-time novice users.
Model creation took 10, 10
and 20 minutes, respectively

work. Traditional modeling systems (parametric patches and subdivision surfaces) require
a specific goal and careful planning before starting to work on the model, which can hinder
the creative process.”

Furthermore, we have learned that (a) FIBERMESH indeed supports the skill transfer
from traditional 2D sketching to 3D modeling, (b) while the system does require
some practice, the amount is reasonable and acceptable and (c) creating separate
models first and then merging, as well as animation tools would be very useful.

Our implementation is written in Java running on the Windows platform. Mesh
processing routines are written in Java, but sparse matrix solvers are written in na-
tive code (linked via JNI). On an Intel Pentium M 1 GHz machine, factorization
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Fig. 9.18 Creations from a
professional 2D animation
artist. Modeling took 10, 20
and 20 minutes, respectively

takes less than a second, and interactive curve deformation (including surface op-
timization) works in 10–15 fps in most of our examples (600–2000 vertices). We
currently process the entire mesh as a single system throughout the deformation,
which causes some slowdown when the model becomes complicated. Note though,
that it is straightforward to handle larger meshes by editing only a subset of the
mesh, while fixing the rest.

9.2.4 Discussion

Our current implementation uses a curve only as a series of positional constraints.
However, we can expect that curves have more information. For example, when an
artist defines a shape with curves, it is often the case that these curves indicate the
principal curvature direction of the surface. It is also natural to expect that the char-
acter lines form curvature extrema. It might be possible to obtain better (more intu-
itive and aesthetically pleasing) surfaces by taking these issues into account during
optimization. One interesting direction to explore would be to create a quad mesh
that follows the direction of the curves. Quad meshes naturally represent principal
curvature directions and would make it possible to handle minimum and maximum
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principal curvatures separately. Quad meshes are also desirable when the user wants
to export the resulting model from our system and continue editing it in a standard
modeling package.

A multi-resolution (hierarchical) structure would be necessary to construct more
complicated models than those shown in this chapter. Our current implementation
can successfully handle individual body parts such as torso, finger, and face, but
the construction of an entire body consisting of these parts would require some
mechanism to handle the part hierarchy. One interesting approach would be to allow
the user to add a “detailed mesh” on top of a “base mesh” as in multi-resolution
approaches. Traditional multi-resolution meshes require fixed mesh topology, but
our optimization framework might be able to introduce a topologically more flexible
structure.

In a similar vein, we exclusively focused on surface-based control (curves on the
surface) in this work. However, in practical modeling purposes, a skeleton-based
approach might be better in some cases, such as a modeling of simple tube-like
arms and legs. Welch and Witkin [45] actually combined surface-based control and
skeleton-based control. It might be interesting to explore further into this direction,
especially in the context of character animation.

9.3 SilSketch: Automated Sketch-based Editing of Surface
Meshes

The process of generating 3D shapes in engineering or content creation typically
goes through several design reviews: renderings of the shapes are viewed on paper
or a screen, and designers indicate necessary changes. Oftentimes designers sketch
replacements of feature lines onto the rendering. This information is then taken as
the basis of the next cycle of modifications to the shape.

We have designed a surface mesh editing system motivated by design reviews:
given nothing but the over-sketch of a feature line, it automatically deforms the
mesh geometry to accommodate the indicated modification. Building on existing
mesh deformation tools [34, 40], the main feature of this chapter is the automatic
derivation of all necessary parameters that these systems require as input in real-
time.

In particular, Laplacian Surface Editing [40], but also most other recent mesh
deformation techniques [6, 46] require the selection of: handle vertices, the dis-
placement for these handle vertices and a region of interest (ROI), representing the
part of the mesh to be modified to accommodate the displaced handle vertices. For
our system, we need to compute this information from the over-sketched feature line
alone; and we do this in fractions of a second. The steps described below comprise
our system (see also Fig. 9.19):

1. Based on the screen projection of the shape, a subset of pixels lying on poten-
tial feature lines is identified. These pixels are then segmented and converted to
image-space polylines as the set of candidate feature lines.
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Fig. 9.19 Algorithm pipeline. Top row, from left to right: a user sketch, b image-space silhouettes,
c retained silhouettes after proximity culling, d handle estimation; Bottom row, left to right: e cor-
respondences and ROI estimation by bounding volumes, f setup for Laplacian Surface Editing,
g and h deformation result. Note that the user only sees a, g and h

2. The user sketch is matched against all polylines to find the corresponding part on
a feature line.

3. Based on the correspondence in image-space, a set of handle vertices in the sur-
face mesh is selected. The image-space projection of these vertices covers the
detected part of the feature line.

4. New positions for the handle vertices are derived from the displacements in
image-space between the projection of the handle vertices and the user’s sketch;
these are the necessary displacements.

5. A part of the surface mesh around the handle vertices, computed by region grow-
ing, is defined as the ROI.

Note that in steps 3, 4, and 5 we compute the necessary input for shape deforma-
tion, while steps 1 and 2 are required to identify the input, based only on the user
sketch.

Deriving the parameters for mesh deformation from sketches only is not new:
Kho and Garland [27] derive ROI and handle vertices from sketching onto the pro-
jected shape, essentially implying a skeleton for a cylindrical part. A second stroke
then suggests a modification of the skeleton, and the shape is deformed according to
the deformed skeleton. However, according to Hoffman and Singh [17], we recog-
nize objects mainly by a few feature lines, namely silhouettes and concave creases.
Since the process of paper-based sketching relies exactly on these features, we feel
it is more natural to use them as the basis for our over-sketching mesh deformation
tool. In particular, this requires positional constraints defined on mesh edges and
finding the correspondence between a pre-selected silhouette of the mesh and the
over-sketched silhouette. In our earlier work [34] the user manually selects the ROI
and a part of one of the silhouettes as a pre-process. In the work presented here, all
these manual selections are now automated; the user only provides a single stroke,
from which handle and ROI are estimated (Figs. 9.19 and 9.20).
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Fig. 9.20 Required user interaction (from left to right): Nealen et al. [34], Kho and Garland [27],
and our approach

Fig. 9.21 Depth map
discontinuities (left), normal
map discontinuities (2nd left),
combined discontinuities
(3rd left), flat shaded scene
(right)

Fig. 9.22 Handle estimation
due to the similarity of handle
candidate (light grey partial
object silhouette) and targeted
deformation (dark grey
sketch)

We have also observed that computing silhouettes from the mesh representa-
tion (i.e. in object-space) has problems: the silhouette path on the mesh might fold
onto itself when projected to image-space—specifically, a point of the silhouette in
image-space could map to several pieces of the silhouette on the mesh. As a result,
the mapping from the sketch to handle vertices could be ill-defined. More generally,
the complexity of the silhouette path on the surface is not necessarily reflected in its
image-space projection, making a reasonable mapping from the sketch to vertices
on the mesh difficult.

Because of these problems we detect silhouettes in image-space, and then try
to identify vertices in the mesh that would map onto the detected region in image-
space. Image-space silhouettes are usually obtained using edge detection filters on
the depth map and/or normal map of the shape [16]. Typically, the conversion from
raster-based edge pixels to vector-based polylines is then achieved by applying some
morphological operations (e.g. thinning) and finally tracing (e.g. chain codes). We
have decided to restrict the set of feature lines to discontinuities in the depth map.
This approach shows a feasible trade-off between quantity of feature lines vs. their
significance (see Fig. 9.21).

Matching a segment of a silhouette in image-space to the user sketch requires a
metric, defining the distance between polylines. This metric should resemble human
perception of similarity. We have found that the important features are proximity to
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the candidate feature lines and intrinsic shape (see Fig. 9.22). By intrinsic shape we
mean similarity regardless of position and orientation in space. To maximize this
intrinsic shape similarity we use a method by Cohen and Guibas [8].

We determine the handle mesh vertices corresponding to the silhouette segment
by selecting vertices that are close to the handle in image-space. The displacements
for these vertices are derived from displacements in image-space.

We consider defining the ROI as a form of mesh segmentation, for which various
geometry-based methods are described (see [22, 26]). These methods are only re-
stricted by the requirement for interactive response times. Generally, topologically
growing the ROI from the handle vertices is a feasible method.

Once we have defined handle vertices, their transformed target positions and the
region of interest, the application of Laplacian surface editing is straightforward.
Note that the user only provides 2D input and we have found that preserving the
scale in depth leads to more intuitive results than scaling isotropically in 3D. In-
terestingly, several of the refinements of Laplacian Surface Editing (such as [40])
favor isotropic scaling. For this reason, here we use an approach in the spirit of [28],
where local transformations of each frame are estimated a priori.

9.3.1 Interface

Our user interface consists of a single rendering window with an orthogonal pro-
jection, embedded controls for navigation, and the capability of drawing viewport-
aligned strokes (enabled by default). Holding some meta key activates the embedded
navigation controls, with which the user can drag the mesh along the horizontal and
vertical axis, rotate it by tapping beside it and dragging the mouse, and scale the cur-
rent projection by clicking and dragging two invisible sliders on the left and right
screen boundaries.

If the user has determined an appropriate view, placing a sketch near the silhou-
ette implies a deformation. The system identifies the appropriate parameters (see
following sections) and then displays the result. The user has the option to approve
this deformation or to apply refinements by over-sketching the new silhouette path.

The user sketches the desired deformation result as a view-dependent polyline.
This polyline simply consists of tracked mouse events, and we apply the Douglas-
Peucker algorithm [11] to obtain a simplified version.

9.3.2 Image-Space Silhouettes

In this section, we describe how to retrieve image-space 2D polylines that describe
discontinuities in the depth map (and therefore silhouettes) of the scene using two
steps of detection and extraction. We developed a method that exploits the properties
of a synthetic scene (= absence of noise) to speed up our algorithm, rather than rely-
ing on well established methods like the Canny edge detector [7] or morphological
operations.
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Fig. 9.23 Depth map with
binary overlay from (11)
(left), degenerated silhouette
feature (top, right), silhouette
caused by a surface crease
(bottom, right)

9.3.2.1 Silhouette Detection

We determine discontinuities in the depth map by applying a 4-neighborhood Lapla-
cian edge detection filter on each pixel p, along with some threshold θp :

sil(p) := D2
xy

[
depth(p)

]
> θp. (11)

We retrieve only edge pixels that describe the foreground of a discontinuity, since
we map the depth range of the scene to (near, far) [0, 1] and use θp as a threshold for
the signed filter response. Depending on the choice of θp (we recommend 0.005),
the binary images retrieved consist of continuous silhouette paths (Fig. 9.23, left).
Note though, that these paths can be more than a single pixel wide, especially in
areas of high curvature.

9.3.2.2 Silhouette Extraction

For the subsequent handle estimation (Sect. 9.3.3), we need to convert the silhouette
pixel paths into a set of image-space polylines. Aiming for simplicity and speed,
we developed a greedy segmentation algorithm that relies only on local criteria for
silhouette tracing.

The basic idea of tracing connected components of the silhouettes is that silhou-
ette pixels in the image are neighbors on a silhouette segment if they have similar
depth. In other words, two neighboring silhouette pixels a and b are depth continu-
ous if

cont(a, b) := ∥∥depth(a) − depth(b)
∥∥ < θn. (12)

Remember that the silhouette pixels form a path that could be wider than a sin-
gle pixel, making the conversion to a polyline ambiguous. Some approaches use
the morphological operation of thinning to correct this problem. However, apply-
ing morphological operations on the binary silhouette image may result in silhou-
ette paths that are continuous in 2D, but discontinuous in depth. This is illustrated
in Fig. 9.24b: the silhouette terminates on pixel fc if n7 is removed by erosion,
and ‖depth(fc) − depth(n0)‖ exceeds θn. In this case, n7 is exactly the pixel that
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Fig. 9.24 Tracing the silhouette path near a degenerate feature (from left to right): a Elephant’s
ear, b tracing step (fc → n7) with priority map, neighborhood index (bottom left) and a degenerate
feature in light grey (which is removed in a pre-processing step), c final silhouette path (dark
pixels), d extracted silhouette

Fig. 9.25 Maintaining depth map gradient orientation. Path A shows how our tracing algorithm
maintains depth map gradient orientation with respect to the tracing direction (gradients shown as
arrows per pixel). If we disregard these gradients, the tracing algorithm will track a bogus silhou-
ette, in this case path B, due to the preferred tracing direction. Note though, that the silhouette part
from path B, which is missing in path A, will be a separate silhouette segment after all silhouettes
have been traced

stitches the silhouette together. Instead of developing depth sensitive morphological
operations, we solve this issue by using a local tracing criterion.

The idea for the local tracing is to favor silhouette paths with lower curvature in
image-space—that is, straight silhouettes are favored over ones with sharp corners.
The criterion is implemented as a priority map relative to the direction from which
we entered the current silhouette pixel (see Figs. 9.24 and 9.25: a smaller number in
the mask around fc indicates higher priority). Based on the priority mask, silhouette
edge paths are formed by selecting from depth continuous silhouette pixels.

However, correctly identifying endpoints of silhouette paths requires extra atten-
tion. A silhouette path ends in surface creases; and it might appear to end in sharp
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creases of the silhouette (see Fig. 9.23). It also ends in image-space when the sil-
houette is obstructed by another part of the surface, in which case it connects to
another silhouette (see Fig. 9.25). Our basic tracing algorithm would correctly iden-
tify endpoints in surface creases, however, it might also classify sharp corners as
endpoints and could connect unconnected parts of the silhouettes if they happen to
have almost similar depth. To avoid terminating in sharp corners, we remove the
tips of silhouettes. Note that surface creases are surrounded by pixels with almost
similar depth in the depth image, while tips of the silhouette are not (see Fig. 9.23).
So we remove tips by repeatedly removing silhouette pixels if they have less than
two depth continuous 8-neighbors in the depth image (see Fig. 9.24, second image).
As an additional criterion for identifying connected silhouette pixels we use con-
sistency of the surface normals along the silhouette (see Fig. 9.25). As we are only
interested in the orientation of the normals, it is sufficient to consider the gradients
of the depth map.

In detail, our silhouette extraction algorithm creates silhouette polylines S :
{(v1, d1), . . . , (vn, dn)} described by vertices vi ∈ R

2 and depth values di ∈ R, by
scanning the binary silhouette image row by row, and extracting feature paths for
any encountered silhouette pixel fc : (vc, dc) according to the following algorithm:

1. Create S = ∅.
2. Append fc to S.
3. Determine next silhouette pixel fn, where

(a) fn is adjacent to fc

(b) fn is depth continuous to fc according to (12)
(c) fn maintains the orientation of depth map gradients with respect to the cur-

rent tracing direction (see Fig. 9.25), and
(d) the tracing direction turn caused by fn is minimal.

4. Mark fc as a non-silhouette pixel.
5. Assign fn to fc.
6. Repeat on 2. until fc = NIL.

Note that (a) and (b) are determined by (11), and (12) respectively, whereas (c)
ensures continuity of the normals along the silhouette paths (Fig. 9.25). Further-
more, (d) is the tracing criterion, navigating the tracing algorithm through silhouette
paths wider than a single pixel.

Since scanning the silhouette image row by row typically encounters a silhouette
somewhere inside its path, the tracing algorithm is applied twice for any initial pixel,
in opposite directions.

9.3.3 Handle Estimation

To derive the actual handle polyline (a subset of all silhouette polylines), we intro-
duce an estimation metric which reflects the likelihood that an arbitrary silhouette
segment is a good handle with respect to the user sketch (target polyline). As pointed
out before, this scoring function relies on both proximity and similarity.
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Fig. 9.26 Top: the short,
medium grey target polyline,
light grey silhouette, and best
match (dark grey/thick)
shown as a subset of the
silhouette polyline. Bottom:
arclength vs. cumulative
turning angle representations
of target Ψ (s), silhouette
Θ(s), and best-match
polylines (bottom)

First, we substitute the silhouette polylines by simplified delegates (polylines
as well, see [11]), and reduce the silhouettes by culling according to a proximity
criterion (see Figs. 9.19b and c).

The criterion on similarity is derived from the Polyline Shape Search Problem
(PSSP) described by Cohen and Guibas [8]. First, we compute Turning Angle Sum-
maries (TASs) {(s0, t0), . . . , (sn, tn)} from the edges {e0, . . . , en} of the target and
silhouette polylines by concatenating tuples of edge lengths si and cumulative turn-
ing angles ti , where

si =‖ ei ‖, ti =
{

�(e0,0) if i = 0,

�(ei−1, ei) + ti−1 if i > 0.
(13)

Please note that these summaries lack the representation of absolute coordinates,
but they do retain the polyline arclength. Furthermore, rotating a polyline relative to
its head results in a shift of its TAS along the turning angle axis, whereas isotropic
scaling results in stretching its TAS along the arclength axis (see Fig. 9.26).

We match the target polyline onto a single silhouette polyline, described by its
(isotropic) scale α and position (shift) β , by matching their Turning Angle Sum-
maries (Fig. 9.26). The match result MPSSP : (α,β, γ,R∗mod) is described by a pre-
scribed α and β , an optimal rotation γ , and the matching score R∗mod. Optimal rota-
tion and matching score are computed by a modified version of the scoring function
from [8]. Using finite sums of differences, I1 and I2 describe the linear and squared
differences between the piecewise constant TASs Ψ (s) of the target and Θ(s) of the
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silhouette polylines (Fig. 9.26):

I1(α,β) =
∫ β+α

s=β

(
Θ(s) − Ψ

(
s − β

α

))
ds,

I2(α,β) =
∫ β+α

s=β

(
Θ(s) − Ψ

(
s − β

α

))2

ds.

(14)

Given the arclength l of the target polyline, we compute optimal rotation

γ = γ∗(α,β) = I1

αl
, (15)

and matching score

R∗mod(α,β) = 1

αl

(
I2(α,β)

αl
−

(
I1(α,β)

αl

)2)
. (16)

Cohen and Guibas retrieve matches for all segments (α,β) by using a topo-
logical sweep algorithm [12] to match the respective Turning Angle Summaries
in scale/position space. However, since this approach needs O(m2n2) time for m

silhouette edges and n target edges, we decided to probe only a discrete number of
sample segments in (16) in O(m + n) time per segment. Specifically, we match the
target polyline to sample segments of a silhouette polyline by discretely sampling α

and β respectively.
For the proximity criterion we compute the distances of corresponding endpoints

of the two polylines, retrieving a near and far value Proxnear, Proxfar. Then we apply
a final scoring function on the obtained per-silhouette match results:

R := 1/(1 + w1Proxnear + w2Proxfar + w3R∗mod)
2. (17)

Iterating over all silhouettes, we select the segment with the highest score, and
extract the deformation handle from the respective full-res silhouette by using (α,β)

of its matching record MPSSP.

9.3.4 Finding Handle/Target Correspondences

Given the polylines of deformation handle and target, we need to determine the
corresponding mesh vertices and their transformed positions, respectively.

Using both the image-space handle pixels, as well as the corresponding depth
map, we construct an object-space bounding volume for each handle pixel (see
Fig. 9.27). A mesh vertex is classified as a handle vertex if it lies in the union of
these bounding volumes.

The transformed positions for these handle vertices are computed by mapping
their handle-relative positions onto the target polyline. Specifically, we determine
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Fig. 9.27 Mesh vertices that are classified as handle members (circles) using one bounding volume
(grey box) for each image-space handle pixel. Left: view from the editor, right: view from top
(silhouette indicated as a light grey line in both views)

Fig. 9.28 Mapping of
handle-relative arclength
position s and displacement d

(light grey) onto the target
polyline (dark grey)

the position (s, d) for each handle vertex, where the arclength position s is given by
its orthogonal projection of length d . Both handle and target polylines are parame-
terized uniformly in [0,1] and the target position (s ′, d ′) is scaled accordingly (see
Fig. 9.28).

9.3.5 ROI Estimation

To complete the deformation setup, we have to select the final ROI of the mesh
according to some context sensitive criterion. We grow the ROI from the handle
vertices. To control the expansion, we constrain the ROI to lie within a union of
bounding volumes, which consists of one volume per handle vertex.

Specifically, we create a union of spheres, where each sphere center is located
at the position of the respective handle vertex. Each sphere radius is set to the Eu-
clidean distance dh,s between handle vertex and its transformed position. We have
experimented with a variety of functions rs = f (dh,s ), but have found that using
rs = dh,s already yields satisfying results: when the user sketch is far from the han-
dle, using a larger sphere results in a larger ROI, yielding more deformable material
(Fig. 9.29), which is a reasonable heuristic. To determine the ROI, we define the
handle vertices to be the initial ROI vertex set, and grow this set by subsequently
adding vertices of the mesh that are (a) adjacent to the current ROI border, and
(b) are inside the union of spheres.
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Fig. 9.29 Automatic ROI selection (from left to right): a After the user places a sketch, the handle
is estimated and correspondences are established. b From these correspondences, the ROI is grown
within the union of spheres, starting from the handle vertices (lower lip). c Shows this for the camel
lip example. d We use the obtained vertex sets handle, transformed handle and ROI as input to the
Laplacian surface editing algorithm. See text for more details

Fig. 9.30 The MANNEQUIN modeling session

9.3.6 Results

The modeling session shown in Fig. 9.30 illustrates ease of use: after the user places
a stroke, the system responds interactively, presenting a deformation that generally
corresponds to the user’s intent. All algorithmic details, which are shown in various
figures in this chapter, are absent from the actual user interface.

Table 9.1 shows some timings obtained on a Intel Core 2 Duo 6600 processor
with 2.4 GHz and 2 GB memory. Extracting and segmenting the image-space sil-
houettes (column Sil) takes between 5–20% of the processing time. Handle esti-
mation and finding handle/target correspondence (column Handle) depends on the
density of silhouettes, as well as the number of model vertices (= 5–25% overall).
The column LSE size shows the dimensions of the sparse linear system (= number
of ROI vertices), which is factored (FacLSE) and solved (SolveLSE) every time the
user places a new stroke. This works interactively for ROIs up to a few thousand
vertices. Of course we can also re-use the factorization. Note that in all cases, our
algorithms (Sil + Handle + ROI) use less time than LSE setup, factorization and
solve (FacLSE + SolveLSE).

9.3.7 Discussion

Each of the steps in our approach presents a trade-off between fidelity and speed.
And while the requirement of real-time interaction certainly restricts the algorithmic
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Table 9.1 Some timings of our system

Model Feature Sil* Handle* ROI FacLSE SolLSE* Sum LSE size

Bunny Ear 109 297 15 1032 500 1953 49112

CamelHead Lip 110 250 15 250 140 765 15332

Mannequin Nose 188 219 15 485 156 1063 20132

Ear 94 62 16 609 156 937 36272

All timings in ms
*Unoptimized code

Fig. 9.31 Left: ambiguous
handle estimation at the
CAMEL’s tail. Right:
unnatural deformation of the
ELEPHANT’s leg due to the
limitation of Laplacian
surface editing regarding
large rotations

possibilities, it should also be clear that almost all over-sketches are potentially am-
biguous, even in the case of communication among humans—so it is unlikely that
an algorithm could consistently guess correctly according to the user’s expectation
(Fig. 9.31).

We find that the extraction and segmentation of feature lines (silhouettes) works
in almost all practical cases. It might be interesting to extend the extraction to dis-
continuities in the normals of the shape, or even to more subtle feature lines such as
suggestive contours [10]. Another set of feature lines, though invisible from the ren-
dering but known to more experienced users, are the projections of skeleton curves
used in models rigged for animation. The information deduced by our system could
then be fed into modeling systems controlled by skeletons.

Finally, as the system is almost generic with regard to the type of surface rep-
resentation and the deformation tool, it would be very interesting to also try this
approach in other settings.

9.4 Conclusion

Creating 3D shapes and characters from scratch is still an inherently difficult task.
Many previous attempts rely on the fact that the user has some domain knowledge
and/or is familiar (to a certain degree) with the intricate mathematical subtleties of
the modeling tool, thus rendering these systems unusable for inexperienced users.
The work presented in this chapter eases the use of 3D modeling tools for first-time
users, and expands the possibilities for experienced modelers. By utilizing various
abstractions, such as silhouettes and other general surface curves—and their 2D
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projections—we have strived to make our modeling interfaces feel more like tradi-
tional 2D painting, sketching, and manipulation.
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Chapter 10
Sketch-based Modeling and Assembling
with Few Strokes

Aaron Severn, Faramarz F. Samavati,
Joseph J. Cherlin, Mario Costa Sousa,
and Joaquim A. Jorge

10.1 Introduction

In traditional illustration, the depiction of 3D forms is usually achieved by a series
of drawing steps using few strokes. The artist initially draws the outline of the sub-
ject to depict its overall 3D form and shape features. This initial outline is known
as constructive curves and usually illustrates very simple geometric forms. Outline
details and internal lines are then progressively added to suggest features such as
curvatures, wrinkles, slopes, folds, etc. [6, 10, 12]. We were inspired by three meth-
ods used in traditional illustration to depict the overall basic shape of the subject: the
spiral, scribble and bending methods (Fig. 10.1, top, middle, bottom, respectively).

Using the spiral method, shape depiction is achieved by the use of quickly formed
spiral strokes connecting the constructive curves, creating a visual blend of the over-
all volume between the constructive curves. Spiral strokes are helpful when irregular
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Fig. 10.1 Traditional
hand-drawn techniques for
progressive shape depiction
[6, 10, 12] (top row) spiral,
(middle row) scribble,
(bottom row) bending
methods. Illustrated by Dia
Hadley, Animator, Liquid
Entertainment

rounded forms are involved, such as fruits, vegetables, or when modeling human and
animal bodies due to their predominantly rounded shapes.

The scribble method involves the use of continuous strokes placed between con-
structive curves. The scribbled strokes are typically used to depict specific folds,
bumps, etc., across the subject. In Fig. 10.1 (middle row), a single scribbled stroke
applied at each drawing step defines the fold pattern at the boundary end of the skirt.

The bending (or distortion) method illustrates how artists visualize adding unique
variations to an initial sketch or visual idea of the subject. These variations aid in
depicting the overall shape of subjects which naturally present a large variety of
twists, turns, and growth patterns, such as botanical and anatomical parts. Though
this method is not present during the process of creating a finished drawing, it is
useful when conceptualizing or contemplating a form.

Another common method used by artists to communicate visual form is the ren-
dering of cross sections. These cross sections allow us to get a better grasp of the
nature of the shape being portrayed. Cross sections are generally not present in fin-
ished drawings, but are used to communicate the general idea about a shape, focus-
ing on the internal features such as curvatures, folds, and discontinuities. Examples
of cross sections from an art book can be seen in Figs. 10.2 and 10.3. Inspired by
such cross-sectional illustration techniques, we have found that cross sections can
also be used to communicate a shape using a computer modeling program, and lend
themselves nicely to a sketch-based design framework and methodology.

When we model 3D forms it is usually necessary to assemble elements or to
reposition all or part of a model. Sketch-based methods using few strokes are also
applicable to the transformation of models in a 3D modeling system, not only giving
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Fig. 10.2 This figure
illustrates various shapes by
using cross sections. Though
these cross sections would not
be present in a finished work,
they are used to provide
guidelines (constructive
curves) for subsequent
drawing steps and refinement
in the illustration production
pipeline. These cross-section
guidelines are useful when
describing form to an artist,
and in our case, to a modeling
program. Illustrated by Dia
Hadley, Animator, Liquid
Entertainment

Fig. 10.3 This figure
illustrates the form of the
nose by using cross sections
as guidelines (constructive
curves). Illustrated by Dia
Hadley, Animator, Liquid
Entertainment

a better visual impact and more intuitive interface, but also approximating our regu-
lar and natural drawing metaphor and stylization [14, 32]. We have found that using
simple strokes to define transformations is a useful addition to existing methods.

In this chapter we present a sketch-based modeling system inspired by artis-
tic illustration techniques. We discuss methods that facilitate rapid modeling of a
wide variety of free-form 3D objects, constructed, edited, transformed, and assem-
bled from just a few freely sketched strokes. We present two parametric surfaces,
rotational and cross-sectional blending, constructed after two and three strokes, re-
spectively. These surfaces can be deformed by a single stroke input and modified
by cross-section over-sketching. We also present a sketch-based approach to per-
form transformations in our modeling system using a single stroke. We interpret the
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translation, rotation, and non-uniform scaling from principle component analysis of
the stroke and the idea of an active model to guide pivot-based transformations.

10.2 Related Work

Sketch-based systems are a relatively new area in modeling. Their main feature is
to allow the creation and/or manipulation of 3D models by using strokes extracted
from user input and/or existing drawing scans. Refer to [20] for a complete clas-
sification of sketch-based systems. Our model creation system fits in the sketch-
based category of gestural modeling, in which hand gestures are used as commands
for generating and editing 3D shapes from 2D segments. Next, we review selected
works within this category.

SKETCH [32] combines mouse gestures and simple geometric recognition to
create and modify 3D models. To this end SKETCH uses a gesture grammar to cre-
ate simple extrusion-like primitives in orthogonal view. It is also possible to specify
CSG operations and define quasi-free form shapes in a limited manner.

Quick-Sketch [9] is based on parametric surfaces. The system creates extrusion
primitives from sketched curves, which are segmented into line and circle prim-
itives with the help of constraints. They also consider surfaces of revolution and
ruled surfaces for creating more free-form shapes. In all cases, a combination of
line segments, arcs and B-Spline curves are used for strokes. Although this system
can be used for sketching engineering parts and some simple free-form objects, it is
hard to sketch more complicated free-form objects such as in Fig. 10.1.

Teddy [14] is a sketch-based system that allows the user to easily create free-form
3D models. The system automatically creates a surface, by inflating regions defined
by closed strokes. Strokes are inflated, using chordal axis transform, so that portions
of the mesh are elevated based on their distance from the stroke’s chordal axis.
Teddy also allows users to create extrusions, pockets, and cuts to edit the models
in quite flexible ways. Sharp features or creases cannot be inserted directly on the
models except through cuts.

Owada et al. [19] proposed a sketch-based interface similar to Teddy for mod-
eling 3D solid objects and their internal structures. Sketch-based operations simi-
lar to those in Teddy are used to define volume data. The authors take advantage
of a spatially-enumerated representation for performing volume editing operations
including extrude and sweep. Extruding connects a volumetric surface to a new
branch, or can be used to punch holes through the surface. Sweep allows creating
a second surface on top of the original. This is accomplished by drawing the cross
section of where the two surfaces are to meet, and a sweep path to define the place
of the second surface. By hiding portions of a model, and then using extrusions, the
user can specify hollow regions inside an object. While the volume representation
is used to advantage, this system is also not suitable for editing sharp features or
creases.

Karpenko et al. [16] use Variational Implicit Surfaces [29] for modeling blobs.
They organize the scene in a tree hierarchy thus allowing users to edit more than
one object at a time. Also, their system allows constrained move operations between
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tree nodes. Another interesting feature is using guidance strokes for merging shapes.
Like Teddy, this system is not clearly suited to editing sharp features or creases into
objects.

BlobMaker [5] is a system for free-form modeling using variational implicit sur-
faces. This system also uses variational implicit surfaces as a geometrical represen-
tation for free-form shapes. Shapes are created and manipulated using sketches on
a perspective or parallel view. The main operations are inflate, which creates 3D
forms from a 2D stroke, merge which creates a 3D shape from two implicit surface
primitives and oversketch which allows redefining shapes by using a single stroke
to change their boundaries or to modify a surface by an implicit extrusion. This sys-
tem improves on Igarashi et al. [14] and Karpenko et al. [16] by performing inflation
independently of screen coordinates and using a better approach to merging blobs.
Like other systems previously reviewed, BlobMaker does not provide tools to create
sharp features.

Ijiri et al. [15] present a sketch-based system for specialized editing of leaf-like
objects combining free-form modeling with bending operations. Sketch-based mod-
eling is also used, together with floral diagrams and inflorescences, to provide the
positional information for assembling individual flower components. However, the
interface is limited to modeling floral features such as leaves or petals using specific
interaction idioms.

Varley et al. [30] present a method to generate a 3D mesh based on user-input
strokes. Their method assumes that the 3D mesh the user wishes to generate is ge-
ometrically similar to a pre-defined template. The camera position and orientation
are estimated based on the spatial layout of the strokes and the template. The au-
thors discuss various methods of extracting meshes using the camera and stroke
information, including reconstruction using assumptions of mirror symmetry, and
reconstruction using planar constraints. They again use the template to determine
where each of these reconstruction methods is applicable. The mesh is ultimately
constructed as a collection of Coon’s patches or by a method of B-Rep reconstruc-
tion using similar stroke data. The authors also present a novel stroke capturing
algorithm which they use in both their B-Rep and 3D mesh methods. This algo-
rithm allows the user to draw strokes in a style similar to the one many artists and
engineers use when they sketch on paper. In this style, many shorter sub-strokes are
used to compose each stroke. They refer to the group of sub-strokes as a “bundle
of strokes”, and their algorithm interprets each ‘bundle’ as a single stroke. In their
method, only intersecting strokes are considered to be part of the same bundle.

Schmidt et al. [25] present a sketch-based modeling system, called ShapeShop,
using Hierarchical Implicit Volume Models as an underlying shape representation.
Sketched 2D contours are inflated into rounded three-dimensional implicit volumes
and these basic shapes are combined with sketch-based modeling operations, using
standard blending and CSG operators.

Several other works have explored the use of simple sketch-based stroke indi-
cators or commands for specifying linear transformations for modeling 3D objects.
Pereira et al. [22] present a calligraphic sketching metaphor for a CAD/drawing
system (GIDeS) providing a paper-like interaction for various modeling operations
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Fig. 10.4 Stroke capture:
unfiltered stroke (left), after
applying the reverse Chaikin
filter (middle) and the final
stroke showing its control
points (right)

including translation. Gomis et al. [11] use strokes for indicating 2D symmetry op-
erators in a calligraphic editor for tile and textile design. Igarashi and Hughes [13]
present a sketch-based indicator approach for placing clothes on a 3D character and
manipulating them. The user paints free-form marks on the clothes that are then
placed around the body so that corresponding marks match.

Schmidt et al. [26] present an interface for 3D object manipulation using transient
3D widgets that are invoked by sketching context-dependent strokes. Widgets are
automatically aligned to axes and planes determined by the user’s stroke, and pivot-
points can also be sketched.

The systems we have reviewed fall roughly into three categories. (1) Extrusion-
based systems such as Sketch, GIDeS, and Quick-Sketch are able to create simple
ideal solids and duct-like shapes, but are not suited for editing free-form objects.
(2) Blob editing systems allow users to create soft blobby surfaces, but are not very
good for creating blade-like shapes or patches. Finally, (3) reconstruction-based sys-
tems [18, 30] are better suited for creating 3D solids from wire-frame drawings and
thus better at creating mechanical engineering parts, but not free-form objects.

This chapter is based on an extension of Cherlin et al. [4] that includes the trans-
formation strokes of Severn et al. [27].

10.3 Stroke Capture

The first stage of a sketch-based parametric surface modeling system is to capture
and parameterize raw data created from an input device such as a pen or mouse. Our
approach is to extract a uniform B-spline curve from the data (Fig. 10.4, left).

Let P = {pi, i = 0, . . . , n} denote the data points with the same order created by
the input device. Using these points as the control points of a B-spline curve can
create a simple parametrization for the data set. However, this method causes three
problems. First, the points are very noisy due to the shaky nature of handling the
input devices. In addition, this noise is inherited by the curve as well. Second, the
points are irregularly distributed along the drawing path due to variations in drawing
speed. Third, there will be a very large number of points because the input device
sends data at a high frequency, many times per second.

Classical approaches to stroke capturing filter the noise and parameterize the
stroke in separate steps. The first pass applies point reduction and dehooking, while
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the second step uses line segment approximation [7, 21]. We choose to use a more
simple method of stroke capture that yields a smooth and compact approximation to
the input stroke.

We would like to fit a B-spline curve with a low number of control points to our
stroke data. B-splines have a guaranteed degree of continuity, which resolves the
difficulty due to noise. The problem of point distribution is easily solved with B-
splines because it is straightforward to evenly sample points along the B-spline by
stepping along the curve.

To find the B-spline curve, one may use least squares to obtain the optimal curve
[9, 24]. However, even in the best case scenario, the least squares model must be
converted to a linear system of equations which must be solved.

Multiresolution representation for B-spline curves provides a good approach for
solving this problem. In this representation, P is efficiently decomposed into a low
resolution approximation Q = {Qi, i = 0, . . . ,m} and a set of details vectors D =
{di, i = 0, . . . , n − m}. Now we can use Q as control points of a B-spline curve
which creates a smoother curve from the original approximation by P . In fact, D

captures the high-energy part of the curves which is mostly noise. In practice, we
may have to use several levels of decompositions to obtain a suitable result.

In particular, reverse subdivision approach for multiresolution [3, 23] provides a
very fast and simple multiresolution representation for common B-spline schemes.
In this approach, for finding Q from P , it is sufficient to apply a simple reverse
subdivision mask that is equivalent to a local least square approximation. Therefore,
this approach uses a pre-solved least square mask (instead of solving it recurrently).

We have particularly used reverse Chaikin subdivision (when a quadratic B-
spline is desirable) to efficiently create a denoised B-spline with evenly spaced con-
trol points. The reverse Chaikin mask (short version) is [−1

4
3
4

3
4

−1
4 ] [23]. To reduce

the number of points from p0,p1 . . . pn to q0, q1 . . . qm :

qj = −1

4
pi−1 + 3

4
pi + 3

4
pi+1 − 1

4
pi+2 (10.1)

where the step size of i is two. The cardinality of the coarse points is almost half
that of the fine points.

We re-apply the reverse Chaikin filter to the control points, to yield a coarser set
of control points. Each time the reverse subdivision is applied to the control points,
the resulting curve becomes smoother, although it deviates further from the original
stroke as shown in Fig. 10.5. We have found in our experiments that running the
subdivision three times provides sufficient denoising while the deviation from the
input stroke is not noticeable. These results were obtained on a monitor with in
1280 × 1024 pixel resolution, and using an optical mouse or Wacom drawing tablet
as the input device. Figure 10.4 shows this process.

When a cubic B-spline is desirable a reverse of cubic B-spline subdivision (see
[3]) can be used. A reason for using the reverse scheme is to have a smoother stroke,
though the downside is that the stroke deviates more from the original input. How-
ever, as mentioned before, we observed that our approach preserves the intent of the
sketched shape. This is a very important goal in SBIM: “what you sketch is what
you get” in the final model.
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Fig. 10.5 An unfiltered stroke is shown in (a). b–f show successive applications of the reverse
Chaikin subdivision. Each time the subdivision is applied, the curve is smoother but deviates from
the original, unfiltered stroke

10.4 Creation Phase

As we discussed in Sect. 10.1, our goal is to create parametric surfaces from sketch-
ing a small number of strokes. Some types of parametric surfaces are naturally good
selections for this purpose. For example, a surface of revolution can be easily con-
structed from a single 2D curve. The user only needs to sketch a curve and identify
an axis of rotation. Extruded surfaces are another good example, since only a curve
and an extrusion vector must be specified. However, surfaces of revolution or from
extrusions can only make a limited set of shapes and it is not possible to create the
artistic conventions illustrated in Fig. 10.1. B-spline surfaces (uniform, non-uniform
and NURBS) are more general than those mentioned above and are more suited to
free-form modeling. B-splines are a very effective and powerful surface modeling
technique. However, they are not traditionally defined by curves but instead via con-
trol points.

In this work, we introduce two kinds of parametric surfaces: rotational blending
and cross-sectional blending, matching and conforming to the artistic description of
objects (Fig. 10.1). Using these surfaces, we are able to model many different types
of existing and conceptual objects with very few strokes.

10.4.1 Rotational Blending Surface

This surface was inspired by the traditional spiral method for preliminary sketching
(Fig. 10.1). In this method, the artist depicts the basic 3D form of the subject by
quickly sketching spirals or any ring-shaped curves to visually blend the 3D masses
between the two constructive curves [12].

This type of surface requires the user to enter two curves (as shown in Fig. 10.6).
The curves represent the exterior contour edges of a 3D form. We approximate this
form by defining a parametric description of a rotational blending surface.
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Fig. 10.6 A rotational
blending surface created with
two strokes

Fig. 10.7 A rotational blending surface. The left and middle images show the constructive curves
(green), ql(u) and qr (u), the center curve c(u) (blue), and a circular slice of the surface, de-
noted tu(v). The right image shows a completed surface overlaid with the blending curves formed
by holding v constant

Let ql(u) and qr(u) be the coplanar 2D curves (strokes) defined by the user. Due
to our stroke capturing method, ql(u) and qr (u) are B-spline curves. We use ql(u)

and qr(u) as constructive curves of the rotational blending surface. Let ℘ denote
the plane of the curves and c(u) be the curve formed by the midpoint of ql(u) and
qr(u) at each u (Fig. 10.7). Assuming that tu(v), for fixed u, parameterizes the circle
perpendicular to ℘ with center c(u) and passing through ql(u) and qr(u) at each u

tu(0) = ql(u),

tu(π) = qr(u),

tu(2π) = ql(u).

Figure 10.7 illustrates how the curve tu(v) is generated from the constructive
curves. The desired surface S(u, v) is formed by all the circles tu(v) along c(u)

when u varies. For fixed v and variable u, a set of curves are generated, blending
ql(u) to qr(v) in a rotational fashion (Fig. 10.7, right).

In order to define S(u, v) in a more formal way, we show that S(u, v) can be
formed by a series of affine transformations on the circular cross sections of a cylin-



264 A. Severn et al.

Fig. 10.8 A unit circle from
the cylinder has been mapped
via an affine transformation to
the pear. All rotational
blending circles can be
thought of as a cylinder where
each circle in the cylinder has
undergone a transformation

der. Let Q(u,v) be the unit cylinder in the 3D space

Q(u,v) =

⎡

⎢⎢⎣

cos(v)

u

sin(v)

1

⎤

⎥⎥⎦ , 0 ≤ u ≤ 1,0 ≤ v ≤ 2π,

and let us define

pl(u) = Q(u,π), (10.2)

pr(u) = Q(u,0), (10.3)

pc(u) = 1

2
pl(u) + 1

2
pr(u). (10.4)

In our construction of S(u, v), pl(u) is mapped to ql(u), pr(u) to qr(u) and
pc(u) to c(u). For any fixed u, we have a unit circle in Q(u,v) and a general circle
in S(u, v) and we wish to map the unit circle to the general one (shown in Fig. 10.8).
This can be done by applying an affine transformation Ms(u) to Q(u,v),

S(u, v) = Ms(u)Q(u, v). (10.5)

Notice Ms(u) consists of two affine transformations,

Ms(u) = M2(u)M1(u)

where M1(u) is a scaling about pc(u) with the following parameters:

scalex = ∥∥qr (u) − ql(u)
∥∥,

scaley = 1,

scalez = ∥∥qr (u) − ql(u)
∥∥.
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Fig. 10.9 A variety of shapes can be generated using few strokes (top row) by solely using rota-
tional blending surfaces. The pear, candle and laser gun were created with respectively, four, eight
and six strokes

And M2(u) is a frame transformation [1] from (pc(u), x, y, z) to (c(u), x ′(u),
y ′(u), z) where

x′(u) = qr(u) − ql(u)

‖qr(u) − ql(u)‖ ,

and y′(u) = z × x′(u).
The rotational blending surface shows a good flexibility and can create a variety

of models, as shown in Fig. 10.9. In addition, as an important advantage, the surface
follows the input strokes. This shows that the surface is acting in a predictable way
and respects the user’s intention. Furthermore, when the constructive curves have
corner points or sharp features, the final surface will also have sharp features and
rotational creases, as shown in the candle in Fig. 10.9.

10.4.2 Cross-Sectional Blending Surfaces

Although the rotational blending surface is the default surface generator in our sys-
tem, it can not construct every type and variation of free-form surface, as it can only
create rounded objects. In order to increase the flexibility of our surface generator,
as well as keep the number of input strokes very small, we introduce our second type
of parametric surface. It is a simple modification of the rotational blending surface
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Fig. 10.10 A cross-sectional
blending surface created from
three strokes

that allows the user to change the shape of the cross section from a circle to an arbi-
trary 2D curve. Therefore, a cross-sectional blending surface is built on three given
strokes (Fig. 10.10). This surface was inspired by the artistic technique of scribble,
for drawing cross sections to describe the shape of a 3D subject [12] (see Sect. 10.1
and Figs. 10.2 and 10.3). Cross-sectional blending surfaces allow the user to add a
cross-section curve in a similar manner.

For a more formal description of a cross-sectional blending surface, we define it
in a similar way to the rotational blending surface. For rotational blending surfaces
we used a mapping from a cylinder (circular cross sections) to the surface. For cross-
sectional blending surfaces, we use a mapping from a ruled surface (created from
the arbitrary cross section t (v)) to the final surface. The cross-section curve

t (v) =
[
x(v)

z(v)

]
, 0 ≤ v ≤ 2π

is directly defined from the third stroke. The ruled surface Q(u,v) is created by
moving t (v) along the u direction:

Q(u,v) =

⎡

⎢⎢⎣

x(v)

u

z(v)

1

⎤

⎥⎥⎦ 0 ≤ v ≤ 2π,0 ≤ u ≤ 1.

We define pl(u), pr(u), and pc(u) exactly as (10.2), (10.3) and (10.4). Again, we
use Ms(u) for transforming the generic cross section t (v) to be fit to ql(u) and
qr(u) as well as to be normal to the drawing plane. Consequently, the cross-sectional
blending surface S(u, v) is created in a similar manner as the result from (10.5) for
the rotational blending surface.

Figures 10.11 and 10.12 show the model of a leaf and a sword blade, respectively,
created using cross-sectional blending surfaces.

10.5 Editing Phase

The parametric surfaces described in the previous sections are used to create basic
shapes that can then be edited. This is very similar to the artistic design process of



10 Sketch-based Modeling and Assembling with Few Strokes 267

Fig. 10.11 From left to right: sketching two constructive strokes (black), one cross-sectional
stroke (red) and the resulting leaf model in front and side views

Fig. 10.12 Modeling a sword blade using cross-sectional blending surfaces. Top row, left to right:
drawing the constructive curves only (dotted lines) results in a perfectly rounded object. Sketching
the cross-sectional outline (red line) results in a better, sharper, faceted blade. Bottom row: the
sword in a different view. Notice the final surfaces, with sharper features

progressive drawing refinement, which is prevalent in various sketching techniques
[6, 12] (Sect. 10.1, Fig. 10.1). We are free to use either parametric or mesh represen-
tations at the editing stage. Consequently, any technique for mesh editing can be also
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Fig. 10.13 The orthogonal deformation stroke in action. a the surface we wish to deform; b its
constructive curves ql(u), qr (u), the center curve c(u), and a cross section of the surface tu(v); c
the surface as viewed from the side, notice that ql(u), qr (u) and c(u) are all the same, straight line
when viewed from this angle; d the deformation stroke d(u); e the cross section and the strokes
morphing to the deformation stroke (the camera angle has been slightly altered for clarity); f the
final, deformed surface

employed here [17, 30, 33]. We prefer, however, to continue with the paradigm of
using few strokes. This allows us to define editing operations that complement our
creation phase. The following subsections describe two parametric editing methods
which are crucial for our system.

10.5.1 Orthogonal Deformation Stroke

In the creation phase, the user specifies the surface with strokes by 2D drawing
operations in the xy plane. This helps the user to have a natural drawing canvas
very similar to traditional pen-and-paper drawing. However, the drawback to this
approach is the lack of flexibility for editing our models in the third dimension, and
also that the constructive curves are 2D. In order to solve this problem, we propose
a mechanism to allow the user to deform the model in a direction orthogonal to
the drawing plane. This editing technique was inspired by the traditional bending
(or distortion) method [12] (Sect. 10.1, Fig. 10.1). In this method, the artist adds
variations to the overall 3D shape of the subject and its outline form by distorting
few strokes [6].

We begin by rotating the model so that we can see it from the side. Let ℘′ be the
new view plane. Note that all three curves ql(u) , qr (u) and c(u) form an identical
vertical line segment l(u) in this plane. The user enters the deformation stroke d(u)

in ℘ ′ as illustrated in Figs. 10.13 and 10.14. From the user perspective, this stroke
shows the skeleton (the axis) of the deformed surface.

Based on our discussion in Sect. 10.4, the original surface S(u, v) is formed by
moving the cross-section curve tu(v) along c(u) (see Figs. 10.7 and 10.13). Note
that this is true for both surfaces of the creation phase. We use the deformation
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Fig. 10.14 Left: perspective view of three deformation strokes (in white) applied to the single leaf
model of Fig. 10.11. Right: artistic composition using our system illustrating the shape and color
progression of autumn leaf. The stem was modeled as a rotational blending surface. The leaf of
Fig. 10.11 is placed at the top of the stem. The other three leaves are deformations of this top leaf
using three different orthogonal deformation strokes

stroke d(u) to transform cross sections of S(u, v) to a new set of curves that cre-
ate the deformed surface Ŝ(u, v). More specifically, for every fixed u, we transform
the cross-section curve tu(v) to a new curve t̂u(v). The appropriate transformation
is determined by the relative situation of c(u) (or l(u)) and d(u) in the new view
plane ℘ ′. For this, let (l(u), Tl(u),V ) denote the source frame formed at l(u). In this
notation, Tl(u) is the unit tangent vector of l(u) and V is the view vector. The desti-
nation frame is (d(u), Td(u),V ), where Td(u) is the unit tangent vector of d(u). Let
M(u) be the transformation that maps the source frame to the destination frame for
every u. If we assume that both t̂u(v) and tu(v) are represented in the homogeneous
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Fig. 10.15 A skirt modeled
with cross-sectional
oversketch. Top row, left to
right: starting with a simple
tube, the user selects a cross
section of the surface. Next,
the user redraws a section of
it and this edits the surface.
Bottom row: the surface is
rotated and drawn upon
further, and the results are
shown with both toon and
Gouraud shading for clarity

coordinate system, then we have

t̂u(v) = M(u)tu(v). (10.6)

Again by changing u, the resulting curves t̂u(v) construct the deformed surface
Ŝ(u, v) as illustrated in Figs. 10.13 and 10.14.

10.5.2 Cross-Sectional Oversketch

Cross sections and their strokes have significant impact on the forms of our paramet-
ric surfaces. We use an over-sketch technique to edit the cross sections, including
circles for rotational blending surfaces, in the editing phase that is related to the tra-
ditional scribble method (Sect. 10.1, Fig. 10.1). It is very simple to return back to
the original view(where the cross section was drawn) and change the cross section’s
stroke. However, there is a certain limitation due to the 2D mode of interaction. For
example, it is hard to control the behavior of the cross-section curve near to the in-
tersections. Therefore, it is better to allow the user to change the cross-section stroke
for any view. In this method, the user can rotate the object and change the view, and
then can select a cross section on the surface. This is done by setting the parameter
u (Sect. 10.4.1) proportional to the mouse position. Then we highlight the corre-
sponding cross section tu(v) on the surface that forms a visible interaction. At this
stage, we map the changes given by the user to the cross section. This is an operation
that allows the user to edit a surface by oversketching. As shown in Fig. 10.15, we
simply insert the new portion of the stroke, and delete the old one. This new stroke
(including parts of the original one and the new oversketched stroke) is re-processed
as described in Sect. 10.3.
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Fig. 10.16 Modeling a dagger handle from an existing drawing. From left to right: starting with the
existing drawing Gunner’s Dagger (Copyright 1998–2004 Rio Aucena. Used with permission), the
user sketches 11 strokes to model five specific parts of the original drawing. The blade is modeled
as a cross-sectional blending surface (3 strokes) and the other four parts are modeled as rotational
blending surfaces (2 strokes per surface). The final model is then rendered with both Gouraud and
non-photorealistic shading

10.6 Transformation Stroke

Traditional systems usually support transformations through a click and drag inter-
face (with support from 3D widgets in some cases), where translation, rotation, and
scaling are divided into three distinct operations, or by defining complicated rela-
tionships between models. A simple mouse click in 3D is not enough to provide
a reasonable three-dimensional transformation. Existing 2D interfaces for 3D envi-
ronments present difficulties that make even simple manipulations surprisingly hard
to perform [28]. Assembling two models, for instance, can involve a sophisticated
set of transformations until the alignment of the models is as desired. In this section,
we present a sketch-based approach to perform transformations in a modeling sys-
tem using a single stroke. This is a justifiable effort because a stroke provides more
information than a simple mouse click.

Our transformation stroke supports manipulation of arbitrary models, freely and
with respect to other models, in a three-dimensional environment. Strokes are pro-
vided by moving the mouse along the intended stroke path. The mouse position is
sampled at discrete intervals to create a polyline representation of the stroke. For the
transformation stroke, it is not necessary to extract control points, for the raw data
points are enough. Our goal is to find a general method that can specify the trans-
formation without any (or with a minimized amount of) specific knowledge about
the type of models we are transforming. This assumption helps us having a method
general enough to be fit in any graphics system or modeling technique. On the other
hand, it makes the problem harder and introduces several ambiguities

Our system supports an active model, which can be selected by the user if desired.
If an active model is selected, transformation strokes will use it as a visual-spatial
reference for aspects of the transformation that are difficult to interpret using two-
dimensional input, such as the desired depth of a model.
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Fig. 10.17 Interpreting of
the transformation stroke

10.6.1 Stroke Interpretation

A 2D stroke is not enough to determine all parameters and degrees of freedom of a
3D transformation. We need natural and simple interpretations for ambiguities. We
use a U-shaped stroke to represent the object and its orientation, with the height of
the U being greater than its width (Fig. 10.17). We need to determine three sets of
information from our stroke: the target position of the model; the target orientation;
and the target scale. To obtain this information we determine four measurements
from the stroke. We find a vector from the base to the top of the U-shaped stroke
(Fig. 10.17) (the major axis) and determine its magnitude, which will be used to
determine the target scale. We then find a vector perpendicular to the major axis on
the plane of the stroke, the minor axis, and determine its magnitude, also for use in
scaling transformation. We follow by using the center of the stroke to determine the
target position, and the orientation of the major axis for the target orientation.

The major and minor axes of the stroke are computed using principle component
analysis [8]. We compute the covariance matrix

M = 1

n

n−1∑

i=0

(Pi − C)(Pi − C)T

where n denotes the number of points in the input stroke, Pi denotes the points of
the stroke, and C denotes the mean of those points. Since the stroke lies in the xy-
plane, M is a 2 × 2 matrix. The principle components, which will form the axes of
the stroke, are the eigenvectors of M . These two orthogonal vectors are the axes of
maximum and minimum variance, thus indicating the orientation of the stroke. We
determine the magnitude of both axes by projecting each of the points of the stroke
onto each of the axes to determine how far the stroke extends in each direction. By
taking the midpoint of the extents along each axis, we can determine the center of
the stroke (Fig. 10.18).
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Fig. 10.18 Stroke extents are
determined by projecting
each stroke point onto the
computed axes, the stroke
center is at the midpoint
along each axis

10.6.2 Translation

We determine translation by moving the center of a model to the center of the stroke,
such that the stroke specifies the target position. We compute the center of the model
as the center of an axis-aligned bounding box around the model since this is the
fastest and easiest approach, and typically gives good results. Alternately, it could
also be computed as the center of an oriented bounding box, the center of mass, or
any other means that is appropriate.

Since the stroke is defined only on the xy-plane, this simple translation does
not deal with the depth of the model. We make use of two heuristics for resolving
this issue. The first is to simply maintain the current depth of the model. The second
involves determining the position relative to another model, which we call the active
model, and using its depth.

10.6.2.1 Active Model

The intended depth for a transformation can be determined by using an active model
as a visual-spatial reference. The depth of this active model will of course vary
across its surface. We therefore interpret the desired behavior in three different ways.

• If the start and end points of the stroke lie over the active model (Fig. 10.19) then
we determine the depth from the intersection of the stroke and the model on the
viewing plane. To do this, we cast two rays from the view point, through the start
and end points of the stroke, to determine where the rays enter and exit the active
model. We then take the average of these four points and use its resulting depth
as the new depth of the model that is being transformed. This method allows the
user to define a region of interest in the active model, to which the transformed
model should be moved.

• If the start and end points do not lie over the active model, then there is no inter-
section; we therefore approximate the desired depth using the center of a bound-
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Fig. 10.19 When the stroke starts and ends over the active model (the stem) the depth of the active
model in the vicinity of the stroke is used in the translation. Inset: the local depth (at the red point)
is computed by averaging the entry and exit points of two rays cast from the view point (eye),
through the start and end of the stroke on the screen plane, and into the model

Fig. 10.20 A transformation
stroke is used to translate the
cylinder forward in the screen
using the torus as an active
model, providing
visual-spatial reference (top).
The insets (bottom) show a
top view of how the new
depth of the cylinder is
determined from the active
model (the torus)

ing box around the active model (Fig. 10.20). Here, the active model is used as a
visual-spatial reference for establishing the depth.

• The user is allowed to select a point on the surface of the active model (the active
point), and if this point is selected, it will define the desired depth (Fig. 10.21).

After a depth reference is determined, we project the stroke center to the desired
depth, using an appropriate projection to match up with the viewing transformation,
and then compute the translation from the center of the model to the center of stroke
at that depth.
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Fig. 10.21 An active point
can be used when the center
of the model does not provide
an accurate enough depth.
Here, the active point is on
the left ear

Fig. 10.22 Stroke-based
rotation. The main axis of the
model is aligned to the main
axis of the stroke

10.6.3 Rotation

When determining the rotation, we have more degrees of freedom than what can
be expressed in a stroke, thus we must choose an appropriate interpretation for ad-
dressing ambiguities. The intention of our rotation is to align the longest axis of the
model to the stroke’s major axis. This approach gives a logical and predictable result
that in practice is easily achieved and used. In our default interpretation, we assume
that the model will be axis-aligned in some direction, so that the longest axis of an
axis-aligned bounding box will yield a meaningful orientation. This is often true for
manufactured objects such as pipes or nails, but can also be true for natural objects.
We determine the longest axis out of the x-, y-, and z-axes using an axis-aligned
bounding box which, in the case of our system, has already been computed around
each model. We use two different methods for finding the axis of rotation. In the
first, the axis of rotation is the cross product of the longest axis of the model and
the major axis of the stroke, and the angle of rotation is the angle between these two
axes (Fig. 10.22). In the second method, we can simply use the normal to the screen
as the direction of the axis. In the first method, the proportion of the source and the
target axes is important, while in the second method the orientation of the model
toward the viewer is kept unchanged.

We would like to be able to predict which direction the model will be oriented
based on the direction of its main axis and some property of the stroke. Here, we
choose the curved portion of the U-stroke to indicate which way the major axis
is pointing. Principle component analysis produces a vector in the first or fourth
quadrant (having a positive x coordinate) for the axis of maximum variance, so
there is a risk that our stroke’s major axis will be oriented in the opposite direction
to the one we want. To determine whether or not this is the case, we project the start
and a middle point of the stroke onto the major axis. If the dot product between the
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first point of the stroke and the major axis is greater than the dot product between a
middle point and the major axis, then our axis must be reversed, so we correct the
orientation by multiplying the major axis by −1.

In some cases, using a main axis that is aligned to either the x-, y-, or z-axis
will perform poorly, since many free-form models are not axis-aligned. To handle
these situations, we also allow the user to define the main axis directly. It may seem
appropriate to use the longest axis of an oriented bounding box around a model
when computing a rotation, however the axis-aligned approach performs well in
many common cases. It is also quicker and works better with our scaling method,
where it is applied only along the x-, y-, or z-axes; therefore, we prefer to use an
axis from the standard basis to define the rotation.

10.6.4 Scaling

Scaling is also difficult to fit into our framework for transformation strokes. When
combined with rotation, it creates an ambiguity: the model could either be scaled to
the dimensions suggested by the stroke (without rotation) or it could be rotated first
and then scaled. Also, since our two-dimensional strokes are intended to represent
the non-uniform scaling of a three-dimensional we are missing information along
one axis.

We have resolved the first problem by choosing to always rotate first and then
scale. This choice is appropriate since it results in a close aspect ratio between the
original model and the transformed version, which is typically what the user would
expect (less surprising result). The second problem is resolved by assuming that
the model should only be stretched or compressed along the longest axis, while the
aspect ratio between the other two axes should be maintained. We only need two
scaling factors to define such a scale, which is what we have from the stroke.

Initially, we use the magnitude of the stroke’s major axis to scale along the
longest axis of the model. This is the same axis that we used to rotate the model.
The scale factor will be the magnitude of the stroke’s major axis divided by the
magnitude of the longest model axis. This scale either stretches or compresses the
model to the same length as the stroke.

Next, we determine the aspect ratio of the two remaining axes, v0 and w0, which
is calculated as a = |v0|/|w0|. We intend to scale the diagonal of the rectangle de-
fined by v0 and w0 to the magnitude of the stroke’s minor axis (we call it magni-
tude d) (Fig. 10.23). Thus, we can solve for the scaled magnitude of v0 and w0 as
follows:

|w| =
√

d2/
(
a2 + 1

)
,

|v| = a · |w|

where v and w represent the scaled vectors. We then compute the scaling factors as
|v|/|v0| and |w|/|w0|, respectively.
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Fig. 10.23 Scaling the
shorter two sides, v0 and w0.
The diagonal of v0 and w0 is
computed and then scaled to
the width of the stroke. This
same scaling factor is then
used to scale v0 and w0

10.7 Results and Discussion

10.7.1 Gestural Modeling

We developed a prototype sketch modeling system in order to generate results using
the sketch-based techniques presented here. All the results were generated on an
AMD Athlon 2800 with a GeForce 5900 XT, 512 MB card, with quad meshes from
our parametric representation rendered in OpenGL.

We created 3D models using few strokes representing subjects of cartoon
styles (Figs. 10.9, 10.12, 10.15, 10.16, 10.24, 10.25) and botanical illustrations
(Figs. 10.11, 10.14, 10.26, 10.27). We were able to construct models with sharp
corners (e.g. candle in Fig. 10.9), facets (e.g. sword in Fig. 10.12), and bumps (e.g.
pumpkin in Fig. 10.24).

We observed that, in many cases, some models such as the pear, candle, laser
gun, sword, leafy stalk, and pumpkin were particularly fast to create (around less
than a minute) using rotational and/or cross-sectional blending surfaces. More com-
plex models took longer because they relied more upon the assembly of parts (fitting
each surface together), which eventually lead to our work on stroke-based transfor-
mations. We initially implemented standard techniques for assembling 3D parts,
in which the user directs translation and rotation by clicking and dragging with
the mouse. We found this kind of assembly interface to be the major bottleneck of
our content creation process. When creating models of the wizard, the fox, and the
caped character (Figs. 10.24 and 10.25), and for the yellow berries (Fig. 10.27), we
observed that over 60% of the time was spent on assembling the parts. The wizard
took about an hour to create, of which about 35 minutes were spent assembling the
parts. Clicking and dragging each surface so that it fit exactly right with the other
surfaces was tedious and difficult to do with the mouse or pen. The yellow berries
took around two hours to create with approximately 80 minutes spent on assembling
the leaves and berries to the stem.

We also noticed that we were able to create many of our models more quickly
than we could have hand-drawn and shaded the same subjects. For instance, the
constructive lines (contour) of a pear took the same amount of time on computer
as on paper, but the computer-generated pear is quicker to create because it can
be automatically shaded. A drawing done by hand has to be shaded manually, for
instance, by slanting the pencil and using its side or by hatching.
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Fig. 10.24 Cartoon-like shapes. From top to bottom with total number of strokes sketched by the
user in parenthesis: paprika (2) and tangerine (2) (both sketched directly, inspired by the spiral
method drawings in Fig. 10.1), pumpkin (5), caped character (19), wizard (57), and snoopy (10)
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Fig. 10.25 Cartoon-like shapes. A cartoon fox took 13 strokes for modeling it, while a cartoon
radish, took 15 strokes

10.7.2 Transformation Stroke

We have used our transformation stroke to position and resize 3D objects in a wide
variety of modeling experiments. Figure 10.28 depicts a scene where ten statues
were positioned on a landscape using only ten strokes. We made use of the active
model feature to position the models so that their bases are located on the part of the
terrain lying under the stroke end points. Since precise positioning of the statues is
unnecessary to create the desired scene (and may even be detrimental to the realistic,
given the presence of variability in the real-world) a sketch-based approach works
well.

Transformation strokes can be used to quickly place models. We have used them
to assemble larger models from their parts, for both natural objects such as the tree
structure in Fig. 10.29, created from a single simple primitive; the vine in Fig. 10.30,
made up of a leaf and stem created using our gestural modeling system; and me-
chanical parts such as the various assembled gears in Fig. 10.31. Note that the gears
were placed without using scaling, since the parts were already precisely and prop-
erly scaled.

Our method is best suited to models that have a well defined main axis, which
is true of many real world objects. This property can be seen in man-made objects,
such as nails and cars, as well as in natural objects like leaves and trees (Fig. 10.32).
The ability to specify a user-defined main axis extends the usefulness of our trans-
formation stroke to additional objects; however, those where no reasonable main
axis exists, such as spherical objects, present difficulties.
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Fig. 10.26 Rose, modeled in
23 strokes. The petals and the
three stems were generated in
2 strokes, each using
rotational blending surfaces.
Each leaf was generated with
3 strokes using
cross-sectional blending
surfaces (Fig. 10.11),
distorted (Sect. 10.14), and
interactively placed at the
stem using standard
rotation/translation modeling
tools similar to the ones
found in Maya [2]. Bottom
image: (left) the two strokes
sketched for the rose petals;
(middle and right) real
botanical illustrations were
used as templates for
sketching over the leaves (two
middle leaves [31] and a
sample from a painting)

10.8 Conclusions

We have presented a sketch-based system that allows interactive modeling of many
free-form 3D objects with few strokes. Our techniques draw on conventional draw-
ing methods and workflows to derive interaction idioms that should be familiar to
illustrators. We have developed algorithms for parametric surfaces using rotational
and cross-sectional blending. Although we were inspired by traditional pencil and
pen & ink drawing techniques, our methods allow either subtle or incremental (as
with paper) or large-scale changes to the objects.
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Fig. 10.27 Pyramidalis
Fructu Luteo (yellow berries),
modeled in 33 strokes. The
berries and the stem were
generated in 2 strokes, each
using rotational blending
surfaces. Each leaf was
generated with three strokes
using cross-sectional
blending surfaces
(Fig. 10.11). Bottom left
image: The user sketched
directly over nine specific
parts of a real botanical
illustration of yellow berries
(Copyright 2004 Siriol
Sherlock. Used with
permission.): one stem, three
leaves and five berries (right
image). In the model, all
leaves and berries are
instances of these nine
sketched-based objects. Each
of the leaf instances was
properly distorted
(Sect. 10.14) and both leaves
and berries were then placed
at the stem by the user with
standard modeling tools

Our results with cartoon-like features show that it is possible to model quite
convoluted shapes with a small number of strokes. Our stroke capture method is
efficient and leads to a B-spline curve, which is suitable for 2D or 3D design. The
stroke capturing method yields the control points that are used in most other model-
ing systems, so it is highly compatible with existing methods.

We described two flexible parametric surfaces that allow the user to model 3D ob-
jects quickly and easily. Although our surfaces are designed specifically for sketch-
based modeling, they could be used in other modeling applications, as well as be
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Fig. 10.28 A scene created in a few minutes with transformation strokes. Starting at the top left
image, the user sketches a single stroke indicating the intended position (translation) and scale of
the statue. This allows fast instantiations of 3D objects

integrated into existing modeling systems. These surfaces yielded good results, and
were efficient enough to run in real-time.

When combined with our editing operations, the parametric surfaces can be used
to design an even greater range of shapes. Our editing operations were specifically
designed to complement our parametric surfaces. Although they are tied somewhat
to our parametric definitions, similar editing operations could be devised that oper-
ate under the same principle for other types of surfaces.

Our stroke-based method for performing transformations is capable of interpret-
ing the desired translation, rotation, and non-uniform scaling in many common sit-
uations. By building a complex transformation from a single stroke, we allow for
quicker and easier manipulation of models than was previously possible with a
mouse. We have found this to be beneficial when assembling complex models made
out of many parts. Our transformation stroke is relatively easy to implement and
does not involve a high computational cost.

There are many avenues for future research. Sketch-based modeling techniques
can be combined with commercial packages, allowing the sketching process to be
further refined by observing how sketch modeling complements other types of mod-
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Fig. 10.29 A tree structure is
constructed by positioning
copies of a branch primitive
using strokes

Fig. 10.30 Many leaves can
be quickly added to a stem to
produce a vine branch. The
leaf and stem models were
created using our gestural
modeling techniques

eling. More typical modeling techniques could be modified so they would better fit
with sketch-based modeling, and vice versa.
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Fig. 10.31 The gears were
assembled using
transformation strokes in
conjunction with standard
transformation techniques

Fig. 10.32 Many real world
objects have a well defined
main axis, such as the ones
shown in this figure

Another direction of research would be to learn additional drawing rules from
artists and define new parametric surfaces or editing operations based on these rules.
This would mean adding more or better options to the creation and editing phases
of the modeling pipeline.

As with any method of human–computer interaction, a series of user studies need
to be carried out. The user base would have to be artists. It would be interesting to
know what artists, who have never used a 3D modeling program, thought of our
sketch-based modeling system, and also what artists who have used other commer-
cial packages thought of it as well. It would also be important to measure how fast
an artist could learn to use our sketch-based modeling system versus how long it
takes an artist to learn the various existing commercial modeling packages.

We have proposed two main types of parametric surfaces that were made to fit in
with our sketching operations. If new sketching operations are developed, new types
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of surfaces might also have to be developed. These surfaces could include features
not available with our current system. Another good feature would be the ability
to blend with nearby surfaces, much as an implicit surface can. Yet, another good
ability would be parametric surfaces specifically designed for efficient sketch-based
Constructive Solid Geometry (CSG) operations.

While our transformation stroke interprets many of the desired user manipula-
tions, it is not yet comprehensive. Our stroke is best suited for models with a well
defined main axis, and while this encompasses a wide variety of models, further
work is required to produce a transformation stroke that will interpret the user’s in-
tentions under more general circumstances. Although using a bounding box’s axes
and the major axis of the stroke can provide a useful default interpretation of the
user’s intension, it is not always correct, and requires additional information that
might be directly provided by the user. However, it would be better if all necessary
properties could be determined automatically by the system.

Many aspects of our system involve choosing an appropriate interpretation
among a variety of possibilities. These choices have a profound impact on the be-
havior of our transformation strokes, in particular for rotation and scaling. While we
have attempted to choose the best interpretation for all ambiguous situations, some
other interpretation may prove to be more appropriate. These alternate interpreta-
tions require further study to determine the best choice. Once again, user studies
need to be conducted to determine the best interpretations and to assess the overall
effectiveness of the method.
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Chapter 11
ShapeShop: Free-Form 3D Design with Implicit
Solid Modeling

Ryan Schmidt and Brian Wyvill

11.1 Introduction

Implicit modeling has been used since the early 1980s as an alternative to main-
stream solid-modeling techniques. Beyond Boolean composition, implicit model-
ing integrates blending and deformation operators which allow complex free-form
solid models to be more easily described. Recent advances have alleviated some
of the major technical problems, such as visualization speed and surface control.
In this chapter we describe how to combine these new techniques with a sketch-
based 3D modeling interface, resulting in a powerful tool for quickly creating solid
models. Our system, called ShapeShop, has been used as a testbed to investigate a
range of problems, from real-time visualization [36], sweep surfaces [35], surface
parameterization [38], and implicit surface deformation [41], to higher-level design
and usability issues such as structured visualization [39] and 3D manipulation [40].
Sketch-based 3D modeling is the common thread which ties all these various prob-
lems together [33, 34, 37, 46].

Much like the seminal Teddy system [18], ShapeShop is a tool for incrementally
creating a 3D model using simple 2D sketches. From this starting point, many other
sketch and pen-based interaction techniques have been adapted and integrated into
the system. ShapeShop borrows liberally from work in sketching assistance [7, 17],
gestural systems [48], crossing interfaces [2], and suggestive modeling [16]. One
long-term aspect of the ShapeShop project is to evaluate how these non-traditional
techniques can be effectively combined within a complex interface.
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Fig. 11.1 Character models designed by an expert ShapeShop user (the first author), progressing
from the earliest versions of the software (left) to the most recent releases (right)

Fig. 11.2 ShapeShop provides an expressive set of sketch-based implicit modeling techniques
which support a variety of modeling styles, from high-level conceptual design and CAD-style
solid modeling to free-form biological modeling, and even “3D doodling”

The most fundamental difference between ShapeShop and its predecessors is in
the use of procedural shape modeling techniques, particularly the hierarchical im-
plicit volume representation known as the BlobTree [45]. As with many other prob-
lems in computer science, utilizing a structured, hierarchical framework allows de-
signers to interact with complex models more effectively. In addition, the BlobTree
combines traditional CAD-style solid modeling with organic free-form blending in
a single interface, greatly enhancing the range of models which can be constructed
via sketching (Figs. 11.1 and 11.2). ShapeShop also takes a non-purist approach to
sketch-based interface design—functionality is exposed using traditional 2D wid-
gets if suitable alternatives have not yet been developed. As a result, designers can
express levels of model complexity not yet reachable using “pure” sketch-based
tools. Examples of such models are sprinkled throughout the following chapter, in
which ShapeShop’s interface techniques, modeling tools, and implementation de-
tails are described.

Another notable aspect of the ShapeShop project is that due to extensive de-
velopment carried out since 2004, the software is quite capable. Many of the re-
sults mentioned above are exposed in the current development versions, which are
(ir)regularly released on the internet at http://shapeshop3d.com.

Although still very much “research software”, ShapeShop has been extended to
the point where working artists have found a use for it in their production pipelines.
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Fig. 11.3 3D sculptures created by first modeling in ShapeShop, and then importing the surface
mesh into Modo [23] for texturing and rendering. Images ©Corien Klapwijk

Some digital sculptors have also taken an interest in ShapeShop, and a few such
works are shown in Fig. 11.3. The feedback we have received from this small but
growing community of active users is highly informative. The chapter closes with
insights gathered from this feedback, as well as issues encountered during the design
and development of ShapeShop.

11.2 The ShapeShop Interface

A screenshot of the ShapeShop user interface is shown in Fig. 11.4. The system is
implemented using a combination of Microsoft’s MFC C++ application framework
and custom OpenGL widgets. The main interface window is a single-pane model
view. Two additional windows are used to manipulate the scene—a tree view for
interacting with the current BlobTree hierarchy, and a list view for changing param-
eters of a selected tree node. Standard menus and toolbars are also used to control
functionality which has not yet been exposed in the sketch-based interface.

Various interface components are embedded in a Heads-Up Display (HUD) ren-
dered on top of the model view. The Expectation List dynamically responds to
sketches drawn by the user, offering possible model interactions. The Parameter
Toolbar offers interactive manipulation of the most commonly-used parameters of
the selected node. Similarly, the Options Toolbar provides access to frequently
changed scene parameters, and the View Toolbar provides camera control.

11.2.1 Pencil-based Interaction

ShapeShop has been designed primarily to support use on direct-input displays, such
as the touch-sensitive SmartBoard (Fig. 11.5). These devices lack any sort of modal
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Fig. 11.4 The various major interface elements in ShapeShop include the (A) Parameter Editor,
(B) BlobTree Editor, (C) Expectation List, (D) Parameter Toolbar, (E) Options Toolbar, (F) View
Toolbar, and (G) Model View

switch (buttons). Hence, we think of the interaction style in ShapeShop as pencil-
based rather than pen-based, as most pen-based systems incorporate physical mode
switches such as buttons on the pen barrel. Restricting ourselves to pencil-based
interaction does complicate the interface, as tasks commonly initiated with physical
mode switches must be converted to alternate schemes. In addition, since traditional
2D interface widgets can be difficult to use with pen or touch input, we adopt the
stroke-based widget interaction techniques of CrossY [2]. For example, a button is
“pressed” by drawing a stroke across it.

An obvious drawback is that we have heavily overloaded the meaning of such
strokes. For example, the user may intend to interact with a 2D widget, make a ges-
tural command, or specify the 2D silhouette of many possible 3D shapes. To resolve
this ambiguity, we apply three stages of interpretation. First, visible 2D and 3D wid-
gets that take continuous input are given a chance to capture the current stroke as it is
being drawn. Next, uncaptured strokes are tested against visible widgets for crossing
actions, and then against the small set of gestures that the system understands.

If no widget or gesture interactions are detected, the system assumes that a
3D construction or editing operation is desired. These actions are presented to the
user via the Expectation List, a dynamic toolbar utilized in several other sketch-
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Fig. 11.5 Our pencil-based modeling interface is designed to support non-modal input devices,
like these touch-sensitive horizontal tabletop and digital whiteboard displays

ing tools [3, 13, 16]. Context-dependent rules are used to populate the Expectation
List, by comparing the current sketch with the underlying 3D model. For example,
a closed contour generates several sweep-surface options, but hole-cutting options
are only produced if the contour intersects the current surface. Note that Expectation
Lists in previous systems have generally contained small images of what the updated
surface would look like for each expectation list icon. For complex models the user
may be required to carefully inspect each image to find the desired action. Instead,
we use color-coded iconic representations which may be more easily recognized.

11.2.2 Sketching Assistance

Two-dimensional sketches form the basis for 3D shape creation in ShapeShop. To
aid the user in the 2D drawing task, ShapeShop includes techniques that assist with
the creation of smooth 2D contours. Our approach is inspired by Baudel’s overs-
ketching techniques [7] and the interactive beautification tools found in the Pegasus
system [17]. See [27] for a recent survey of these and related techniques.

A fundamental limitation of most standard input devices is that they provide
only point samples to the operating system. These discrete data can be converted to
a polyline by connecting temporally-adjacent point samples. However, in the case
of curves the polyline is only an approximation to the smooth curve the user desires.
In our system we do not create an approximate polyline, but instead fit a smooth 2D
variational implicit curve [32, 43] to the discrete samples. Curve normals derived
from the discrete polyline are used to generate the necessary off-curve constraint
points [10]. Variational curves provide many benefits, such as automatic smoothing
and gap-closing with minimal curvature (Fig. 11.6).

While this approach is most effective for closed curves, it can also be applied to
open curves in some cases. If the fit variational curve extends beyond the sketching
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Fig. 11.6 The gap-filling and smoothing properties of variational curves simplify 2D curve sketch-
ing. In (a), multiple disjoint strokes are automatically connected by fitting a variational curve to
the input samples. In (b), smoothing parameters are used to handle intersections between multiple
strokes. Rough self-intersecting sketches can be automatically smoothed, as shown in (c)

Fig. 11.7 Examples of the eraser gesture (a) and smooth gesture (b). These gestures manipulate
the parameters used to compute the final variational curve (dashed line)

area, we assume the curve is open and clip it to lie within the endpoints of the
sampled polyline. However, as ShapeShop is a volume modeling interface, closed
contours are required to perform most of the creation and editing actions.

ShapeShop supports sketch-based editing of the set of point samples, but not
the final variational curve. To simultaneously visualize these two different compo-
nents, we render the current variational curve in black and the sketched polyline in
transparent blue (Fig. 11.7). Three gestural commands are available to assist users
when drawing 2D sketches. The first, eraser, is initiated with a “scribble”, as shown
in Fig. 11.7(a). An oriented bounding box is fit to the scribble vertices and used
to remove point samples from the current 2D sketch. The variational curve is re-
computed using the remaining samples.

The second gestural command is smooth, initiated by circling the desired smooth-
ing region a minimum of two times. Each point sample has a smoothing parameter
associated with it which is incremented if the point is contained in the circled re-
gion. The variational curve is then re-computed with the new smoothing parameters
(Fig. 11.7(b)). This gesture can be applied multiple times to the same point samples
to further smooth the 2D sketch. Finally, we include an undo gesture, input as a
quick stroke straight to the left, which removes the most recent stroke.

We have found these techniques to be very effective for creating smooth 2D
sketches. This in turn improves the efficiency of 3D modeling, since fewer correc-
tions need to be made to the 3D shape. One current limitation is that sharp creases
in the input sketch are lost, since the underlying variational curve is always C2 con-
tinuous. A useful extension to our technique would be to automatically detect sharp
edges, and re-introduce them into the smoothed variational curves.
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Fig. 11.8 Blobby inflation converts the 2D sketch shown in a into the 3D volume b such that
the 2D sketch lies on the 3D silhouette. The width of the inflated volume can be manipulated
interactively, shown in (c). Sketched 2D curves can also be used to create d linear sweeps and
e surfaces of revolution

11.2.3 Sketch-based Modeling Operations

ShapeShop supports construction of three basic types of shapes derived from
sketched 2D contours—“blobby” inflation in the style of Teddy [18], linear sweeps,
and surfaces of revolution. Based on these three shapes, sketch-based cutting and
blending operations are implemented using BlobTree composition operators.

A key benefit of utilizing the BlobTree shape representation is that the current
volume is procedurally defined by an underlying model tree which represents both
a scene graph and a full construction history. Single primitives, as well as entire
portions of the tree, can be modified or removed at any time. Exposing this flexibility
through a sketch-based interface can be quite difficult, and much research remains to
be done on intuitive techniques for editing volumetric scene graphs. In ShapeShop,
the designer can use gestural commands and 3D widgets to manipulate individual
BlobTree nodes, however more complex operations like tree re-structuring require
the use of a traditional tree-view widget (Fig. 11.4). In our experience, designers
find it difficult to understand the link between this text-based tree view and the
actual model structure. An abstraction which simplified this tree view while still
preserving the considerable power it provides would be highly desirable.

11.2.3.1 Blobby Inflation

As in many other sketch-based modeling tools [3, 18, 20, 25, 28, 42], the primary
shape-creation operation in ShapeShop is inflation, where a closed 2D contour is
then inflated into a “blobby” 3D shape. This operation can be easily accomplished
using implicit sweeps with the blobby endcap style, as described in Sect. 11.3.3.
The 2D sketch (Fig. 11.8a) is projected onto a 3D plane parallel to the current view
plane, and then inflated in both directions (Fig. 11.8b). After creation, the width
of the primitive can be manipulated interactively with a 2D widget (Fig. 11.8c).
The inflation width is functionally defined and could be manipulated to provide a
larger difference between thick and thin sections. One advantage of the implicit
representation is that holes and disjoint pieces can be handled transparently.
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Fig. 11.9 Cutting can be performed b across the object silhouette or c through the object interior.
Holes can be interactively translated and rotated. Intersection with other holes is automatically
handled, as shown in (d). Hole depth can also be modified to create cut-out regions (e)

11.2.3.2 Sweep Surfaces

The sweep-surface representation underlying our blobby inflation scheme also sup-
ports linear sweeps (Fig. 11.8d) and surfaces of revolution (Fig. 11.8e). Linear
sweeps are created in the same way as blobby shapes, with the sweep axis per-
pendicular to the view-parallel plane. The initial length of the sweep is proportional
to the screen area covered by the bounding box of the 2D curve, but can be interac-
tively manipulated with a 2D widget. Surfaces of revolution are created by revolving
the sketch around an axis lying in the view-parallel plane. As in the case of linear
sweeps, the revolution template can contain holes, and revolutions with both spher-
ical and toroidal topology can be created.

Aside from Cherlin et al.’s advanced revolution technique [11], most sketch-
based systems have not included these additional types of shapes. While blobby
inflation is highly useful for many modeling tasks, linear sweeps and revolutions
are invaluable in situations such as mechanical modeling. In particular, surfaces of
revolution are a class of shape that cannot be approximated with blobby inflation.

11.2.3.3 Cutting

Since the underlying BlobTree is a true volumetric model, cutting operations can be
easily implemented using CSG operators. Designers can either cut a hole through
the object or remove volume by cutting across the object silhouette. Since the “hole”
is internally represented as a linear sweep, no additional implementation is neces-
sary to support cutting. In addition, the designer may interactively transform this
subtracted sweep at any time, effectively dragging the hole around through the sur-
face. Interactive controls are also available to modify the depth of cutting operations.
An example is shown in Fig. 11.9. This CSG-based cutting operation is both more
precise and less restrictive than in existing systems. Note that although only sharp
edges are demonstrated in Fig. 11.9, ShapeShop includes various “soft” CSG differ-
ence operators which generate filleted edges of varying smoothness.

11.2.3.4 Blending

ShapeShop relies on the easy-to-implement implicit blending techniques supported
by the BlobTree to allow the designer to increase the volume of the current object.
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Fig. 11.10 The sketch-based blending operation a creates a new blobby inflation primitive and
b blends it to the current volume. The blending strength can be interactively manipulated, the
extreme settings are shown in (c) and (d). The blend region is re-computed automatically when the
blended primitives move, as shown in (e)

As demonstrated in Fig. 11.10, this action is initiated by sketching a contour across
the silhouette or interior of the current shape. Selecting the resulting suggestion
creates a new blobby primitive which is blended with the current model. The width
of the new primitive can be manipulated with a slider, as can the amount of blending.
Again, as the blend is a dynamic composition of two implicit volumes, either can be
transformed interactively (Fig. 11.10(e)).

Various other tools have explored implicit blending [3, 20] or discrete fairing [25]
in a sketch-based context. However, the style of dynamic implicit blending available
in ShapeShop is highly useful in practice, and one of the features that professional
3D artists find most desirable when first being introduced to the system.

One issue neglected thus far is how to fix the depth of the view-parallel 3D plane
onto which a sketched contour is projected. Unlike Teddy’s extrusions, we try to
infer the correct depth from context, rather than require the user to mark the surface.
Without any prior evidence, the plane is assumed to pass through the origin. How-
ever, if the sketched strokes overlap the 2D projection of the surface, we center the
projection plane at the average depth value along the strokes. If a part is selected,
only its surface is considered. This technique is reasonably effective in practice,
and one can learn to manipulate the viewpoint and stroke to generate a good initial
guess. However, minor errors are common and major errors sometime occur, requir-
ing 3D manipulation. We are currently exploring efficient techniques for allowing
the designer to more explicitly specify the depth of newly created primitives.

11.2.3.5 Surface Drawing

Perhaps the most straightforward type of sketch-based interaction is drawing curves
directly on an existing 3D surface. Such techniques have long been used in tra-
ditional modeling systems [4], and are a basis for operations in many sketch-
based systems [18, 24, 25]. ShapeShop supports such a “surface-drawing” tech-
nique, useful for adding detail and creating arbitrary 3D structures. The operation
is very simple—rays through the 2D strokes are intersected with the current im-
plicit volume, and a solid tube-like volume represented by a 3D implicit polyline
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Fig. 11.11 Surface drawing is specified by a 2D sketch, as shown in (a). Blended skeletal implicit
point primitives are placed along the line at intersection points with the model, shown in (b). In (c)
the radius of the points is increased and then tapered along the length of the 2D curve. Temporary
construction surfaces (d) can be used to create more complex 3D curves (e)

primitive is generated. Interactive controls are provided to manipulate both the sur-
face radius and linear scaling (tapering) along the polyline. Results are shown in
Fig. 11.11(a–c).

With Surface Drawing, any pair of implicit primitive and composition operator
can be used as a type of “brush” to add detail to the current surface. Implement-
ing these alternative tools within the BlobTree framework is very straightforward.
In addition, since each surface-drawing stroke is represented independently in the
model hierarchy, individual surface details can be modified or removed using the
existing modeling interface. Of course, as the surface is dynamically polygonized,
interactive visual fidelity must be limited at levels which often do not resolve fine
details. This does unfortunately limit the use of surface drawing in practice.

Surface drawing also readily demonstrates another extremely useful property of
utilizing the BlobTree as an underlying shape representation for sketch-based mod-
eling. As shown in Fig. 11.11(d–e), surface drawing can be applied to a temporary
construction surface, which is then erased, resulting in free-floating geometry which
does not lie on a planar space curve. The same technique can be used to fix the depth
of sketched primitives without excessive manual positioning. These temporary con-
struction surfaces are a novel property of ShapeShop which was not designed into
the system, but simply emerged out of the non-linear hierarchical editing capabil-
ities of the BlobTree. One potentially fruitful area of future research would be to
explore more explicit support for construction surfaces in sketching systems.

11.2.4 Selection and Transformation

Procedurally defined BlobTree volumes inherently support non-linear editing of in-
ternal tree nodes. However, before a primitive can be manipulated it must be se-
lected. One option is to cast a ray into the set of primitives and select the first-hit
primitive. This technique is problematic when dealing with blending surfaces, since
the designer may click on the visible surface but no primitive is hit.

Picking in ShapeShop is implemented by intersecting a ray with the current vol-
ume, and then selecting the primitive which contributes most to the total field value
at the intersection point. This algorithm selects the largest contributor in blending
situations, and selects the subtracted primitive when the user clicks on the inside
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Fig. 11.12 Internal volumes can be directly rendered using pen-and-ink stippling (a) or trans-
parency (b). Portions of the surface can also be highlighted to show the influence region of a selec-
tion (c). Visual Scaffolding techniques provide an integrated display of all the primitives making
up a model (d), but do not convey the structure of the BlobTree

of a hole surface. However, selecting the maximum contributor can result in non-
intuitive behavior in cases where a small primitive is blended with a larger one, as
the larger primitive may contribute more to the field at all points on the surface. In
this case, the user must use the BlobTree Editor tree view (Fig. 11.4) to select the
desired node. An un-implemented but sensible alternative would be to cycle through
the possible selections using multiple taps.

This selection system only allows for selection of primitives. To select composi-
tion nodes we implement a parent gesture, which selects the parent of the current
node. The parent gesture is entered as a straight line towards the top of the screen.
No similar child-selection gesture has been implemented because it is unclear how
to disambiguate which child is desired in cases where a node has multiple children.
A selected primitive or composition node can be removed using the eraser gesture
described in Sect. 11.2.2. Removing a composition node is equivalent to cutting
a branch from the model tree—all children are also removed. More complex tree
traversal and manipulation, such as re-arranging nodes, currently require the use of
the BlobTree Editor tree view.

We have experimented with several rendering modes to display the shape of se-
lected primitives, which are often completely contained within the current volume
(Fig. 11.12). These techniques effectively convey the shape of the selected volume,
but the semantics of the local BlobTree structure are completely opaque. Visualiza-
tion of structured hierarchical 3D models, in a manner suitable for intuitive direct
manipulation, is a challenging and relatively open problem. Obvious approaches
like transparency or cut-away views do not scale well to complex nested trees. One
possible approach we have recently explored involves visual scaffolding, a rendering
style which mimics the construction geometry sketched by artists to help produce
correct proportions and perspective in pencil-and-paper drawing [39]. However, this
technique only addresses visualization of the BlobTree primitives; no support for
display or interaction with composition nodes was provided (Fig. 11.12(d)). This
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is a key direction for future work, which impacts not only solid modeling, but any
dataflow-based procedural modeling interface.

ShapeShop supports 3D manipulation using standard 3D translation and rotation
widgets. Compared to the fluid gestural commands used elsewhere in ShapeShop,
these 3D widgets are rather crude, and hence recent work has been directed towards
exploring alternate 3D manipulation schemes [40]. These techniques still involve
3D widgets, but utilize context-sensitive gestural and suggestive methods which are
more compatible with sketch-based interfaces.

11.3 Technical Details

The technical details underlying the various components of the ShapeShop system
span many areas of computer graphics and human-computer interaction. In the fol-
lowing text we focus the discussion on the critical shape modeling aspects relating
to hierarchical implicit volume modeling. Even that is quite a large subject, far too
extensive to describe here in any depth. Hence, we limit ourselves to a very brief
overview of the basics, and refer the interested reader to [33] for detailed informa-
tion and discussion of open problems in this area.

11.3.1 Hierarchical Implicit Volume Modeling

Consider a function f that, when applied to a point p ∈ R
3, produces a scalar value

f (p) ∈ R. A surface S ∈ R
3 can then be defined by the equality

f (p) = v (1)

where v ∈ R is a scalar value. This surface S is an iso-contour of the scalar field
produced by f (p), and v is the iso-value that produces S . In computer graphics, S is
commonly known as an implicit surface. One example is the distance field, defined
with respect to some geometric entity T, such as a point or a curve:

dT(p) = min
q∈T

|q − p|. (2)

Intuitively, dT(p) is the shortest distance from p to T. Hence, dT(p) = 0 describes
the set of points p lying on T, while non-zero iso-values define offset surfaces. By
mapping values to grayscale, we can visualize a 2D slice of the field (Fig. 11.13(a)).

Distance fields can be used directly for 3D modeling, however they have several
limitations—they do not necessarily define closed surfaces, may be discontinuous,
and have infinite extent. As we shall soon see, these are problematic if we wish to
functionally combine implicit surfaces. Instead, we can apply a second function g

to the distance field, which is known as a falloff or potential function. We use

g(d) = (
1 − d2/r2)3

. (3)
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Fig. 11.13 The 2D distance field from a circle is shown in (a), with distance values mapped to
grayscale—brighter values indicate larger distances. Skeletal primitives are created by applying a
potential field (b) to a distance field, resulting in a bounded field such as in (c), which visualizes
the value of g ◦ d(p) when the skeleton is a single point

As shown in Fig. 11.13(b), this function smoothly decreases from 1 to 0. When
composed with a distance field, the resulting field f (p) = g ◦ dT(p) is bounded,
meaning that there is a finite region within which all non-zero values, as well as
the iso-surface, are guaranteed to be contained (Fig. 11.13(c)). This type of implicit
surface is known as a skeletal primitive, because T is the skeleton of the iso-surface.

Skeletal primitives provide other guarantees as well. Assuming T is convex, the
field is necessarily continuous, and is closed by definition. Hence, given an iso-value
v, skeletal primitives also define implicit volumes:

V = {
p : f (p) ≥ v

}
. (4)

The volumetric property is quite useful. For example, (4) provides a trivial point
containment test. Implicit volumes can also be trivially composed via Boolean op-
erations. The union of two implicit volumes f1 and f2 can be described by a new
scalar field, generated by functional composition [31]:

(f1 ∪ f2)(p) = max
(
f1(p), f2(p)

)
. (5)

The power of this operation, and similar ones for intersection and subtraction or
difference, is that they are closed under the space of all possible implicit volumes,
meaning the can be applied repeatedly, each time producing another implicit volume
(Fig. 11.14). Hence, implementing solid-modeling techniques such as Constructive
Solid Geometry (CSG) is nearly trivial with implicit volumes. The CSG Tree is rep-
resented as a hierarchy of functional compositions such as (5), with skeletal primi-
tives at the leaf nodes (see Fig. 11.19 for a simple example).

Solid modeling is not limited to CSG. Another useful class of operation is the
construction of smooth transitions between two surfaces, often known as a blend.
Functional blend operators can be defined for implicit volumes, such as Ricci’s
blend operator [31] (Fig. 11.14(c)):

(f1 � f2)(p) = (
f1(p)s + f2(p)s

) 1
s (6)

which allows the user to control blend smoothness via the parameter s (as s → ∞,
� → ∪). Like the CSG operators, this blend operator is independent of the com-
plexity of the implicit surface, and simply produces another implicit volume. We
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Fig. 11.14 An implicit
sphere is subtracted from
another using a CSG
Difference operation (a), and
blended in (c). 2D slices
through the respective 3D
scalar fields are shown in (b)
and (d)

can now see why bounded fields such as those produced by skeletal primitives are
so important—each input field to (6) can only affect the blended surface within its
bounding region. This local influence preserves a “principle of least surprise” that
greatly improves the usability of constructive implicit modeling.

The BlobTree hierarchical modeling framework is an extension of the tradi-
tional CSG Tree which encapsulates techniques for constructive solid modeling
with skeletal primitives [45]. In addition to CSG and blending, the BlobTree sys-
tem includes support for functional warping and deformation, texturing, and anima-
tion. See [15] for a thorough description of the full BlobTree system. The BlobTree
implementation used in ShapeShop is relatively non-traditional, in that only func-
tionality relating specifically to shape modeling has been implemented, largely to
reduce computational costs. For example, even basic BlobTree color support would
quadruple the memory requirements involved in the Hierarchical Spatial Caching
described in Sect. 11.3.4.

11.3.2 BlobTree Visualization

As noted in the previous section, an implicit surface is defined as an iso-contour of a
scalar field, f (p) = v. Unlike a parametric definition, this equation does not directly
provide points on the surface. Instead, visualization algorithms must search through
space to determine where the surface lies.

Perhaps the simplest technique for visualizing implicit surfaces is polygoniza-
tion. We use a continuation polygonization algorithm, which initially finds points
on the surface by marchings outwards from internal seed points defined by the
primitives. Space is then subdivided into small cubes, and the cubes intersecting
the surface are incrementally enumerated using a stack and hash table [44]. This
minimizes the number of field evaluations, and hence is more efficient for polygo-
nizing functional surfaces than the popular Marching Cubes algorithm [22], which
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Fig. 11.15 Implicit surfaces
can be visualized by
dynamically tessellating the
surface (a). However, to
ensure real-time feedback, the
mesh fidelity must be
dramatically lowered (b).
Based on this coarse mesh,
we can generate high-fidelity
pen-and-ink renderings at
little extra cost (c)

performs a brute-force enumeration of all cubes inside a fixed volume. Ideally these
algorithms produce the same mesh, although we cannot guarantee that a seed point
exists inside each disconnected component, and hence the continuation approach
can sometimes miss parts of the surface.

To interactively visualize BlobTree models in ShapeShop, the polygonization
algorithm is performed in real-time, using an optimized version of Bloomenthal’s
code [8]. Two modified versions of this polygonizer are also available. The first
simply adds the crease-finding techniques described in the Extended Marching
Cubes work [21]. The second provides support for local updates, where mesh re-
computation is limited to the regions in which the current model has changed. The
extra contextual information that must be stored to support partial re-meshing does
introduce significant overhead, however, smaller local updates are so much more
efficient that the benefits largely outweigh this cost.

Despite expending significant effort in our attempts to optimize our polygonizer,
we still must sacrifice visual fidelity to ensure interactive feedback rates, even for
moderately simple models. Hence, we have begun to explore other visualization
techniques. By combining a coarse mesh with local refinement techniques, we can
provide real-time pen-and-ink-style rendering at a higher level of visual fidelity,
but within the same computation budget as lower quality real-time polygonization
(Fig. 11.15). See [39] for technical implementation details.
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11.3.3 Sketchable Implicit Sweep Primitives

Traditionally, modeling with the BlobTree involved composition of fixed geometric
primitives—spheres, cylinders, and so on [45]. However, in a sketch-based modeling
tool, we would like to be able to create an inflated shape with a silhouette that closely
matches an arbitrary 2D contour sketched by the designer. One approach is to use
numerical optimization to find a set of simple primitives which, when blended, will
produce an appropriate shape. This is computationally impractical [9], although a
recent specialization for the inflation problem has made it more tractable [1]. In-
stead, we developed a new BlobTree primitive which supports direct manipulation
of the silhouette contour, so that it can be matched directly to a given 2D sketch.

As described in Sect. 11.2.3, ShapeShop’s creation tools allow the user to sketch
closed 2D contours on a plane in space. This contour is then inflated into some 3D
volume [18]. Essentially, these inflated shapes are a type of sweep surface or extru-
sion, where the planar contour is the template and the plane normal is the trajectory.
While sweep surfaces are ubiquitous in surface modeling [30], implicit sweep rep-
resentations have generally been limited to star-shaped templates [12] which are
procedurally defined. To create an implicit primitive whose silhouette contour could
be matched to an arbitrary 2D sketch, it was necessary to develop sweep primitives
which allowed for arbitrary template curves.

In the implicit domain, we define the desired primitive by sweeping a bounded,
continuous 2D template scalar field fC , whose iso-contour v approximates the
sketched closed contour C , along the trajectory T . As with other BlobTree prim-
itives, the general approach is to apply a falloff function to the distance field of the
curve, hence fC = g ◦ dC , where dC is the 2D distance field defined by C and g is
as in (3). Note that as the surface of other BlobTree primitives is defined at v = 0.5,
the values of dC must be shifted so that the v contour aligns with the 0-contour of
the distance field. The shifted distance d ′

C is then:

d ′
C = min

(
g−1 (v) + dC ,0

)
. (7)

The bounded template field fC is then defined as

fC = g ◦ d ′
C . (8)

This formulation produces a template with the desired iso-contour, but the dis-
tance field of a non-convex C contains C1 discontinuities (Fig. 11.16(a)). These dis-
continuities will be swept in 3D and produce undesirable artifacts when the sweep
primitive is blended with other shapes [33]. Hence, it is necessary to generate a
“smoothed” distance field, which approximates dC but remains continuous.

To create such a smooth distance field, we utilize variational interpolation, also
known as thin-plate splines approximation. Essentially, a C2 interpolating thin-plate
spline is fit to a set of constraint points placed at samples of C [47]. To ensure
that the solution passes through the sample points, inner and outer normal con-
straints are added at short distances along the normals to C at the on-curve samples
(Fig. 11.17(a)).
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Fig. 11.16 Scalar fields generated using a non-convex curve (a). The exact distance field (b) has
C1 discontinuities inside and outside the curve. Standard variational interpolation with normal
constraints provides a poor approximation in concave regions, and is difficult to bound (c). Our
approach (d) smoothly approximates the distance field away from the surface

Fig. 11.17 Normal
constraints (a) at a point ci

are added at short offset �s

from the curve C, along the
curve normal ni . Boundary
constraints (b) are placed at a
constant distance from C to
improve the distance field
approximation and ensure
that the field fC is bounded
within a known distance

Normal constraints only constrain the solution near C —the rest of the field is
unconstrained, resulting in a poor approximation to the distance field (Fig. 11.16).
This is problematic if the field is to be bounded by applying a falloff function, as a
time-consuming spatial search is required to determine the non-zero region of the
resulting field. With the true distance field, the bounding zero-contour lies along
the distance contour dC = g−1(0), the bounds of which can be reliably computed.
Hence, to predictably bound our approximate distance field, we add boundary con-
straints which force the variational field to approximate this outer contour. In ad-
dition, we add constraints along two interior contours in the distance field, one at
g−1 (0.5v), which is approximately half-way between C and the zero-contour, and
another at g−1 (1.5v), which lies inside C . The purpose of these extra constraints
is to further reduce error in the distance field approximation. To sample these con-
tours, we compute the distance transform of C on a 5122 pixel image, and trace the
discrete iso-contours in the image. As shown in Fig. 11.16, these constraints greatly
improve the distance field approximation, while maintaining global C2 continuity.

One drawback of this approach is that the evaluation of the variational field which
approximates the distance field is O(N) in the number of constraint points, so eval-
uating (8) is quite expensive. However, since we are only interested in the final
bounded field, we can pre-compute its values on a regular grid, or field image. From
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Fig. 11.18 ShapeShop’s inflation algorithm is based on linear sweeps with a “blobby” endcap (a).
Flat endcaps with filleted edges (b) or sharp creases (c) are also supported, increasing the range of
shapes which can be modeled

this field image, the value of (8) can be approximated at any point in constant time
using a C1 bi-quadratic filter [35].

This 2D template scalar field can be easily swept along a line L(t) = o + td in
space, generating an 3D scalar field. The value of this field is defined at a 3D point p
by finding the nearest point L(tnear) on the line, transforming p into 2D coordinates
u in the plane perpendicular to the line at L(tnear), and sampling the 2D field image.
However, this field is infinite. To bound it, or “cap” the sweep, we multiply the
infinite sweep values by a falloff function whose value ranges from 1 at t = 0 to 0
at tmax. Since the values of the infinite sweep vary inside the template, they reach 0
at different distances along the line, producing an endcap which is wider in regions
further from the sketched contour, giving the impression of a shape which has been
inflated. The falloff function can be modulated to vary the width of the shape, and
also to produce different effects such as completely flat endcaps with smooth or
sharp transitions (Fig. 11.18).

In a traditional surface or solid-modeling environment, limiting the available
primitives to linear sweeps and surfaces of revolution would be highly restrictive.
However, by the simple addition of implicit blending, ShapeShop is capable of ex-
pressing a wide range of complex shapes. While the description here has been nec-
essarily brief, the interested reader is referred to [35] and [33] for a more thorough
discussion, including details on creating implicit sweeps with circular and arbitrary
trajectories. The latter seems particularly useful in a sketch-based tool, although it
has yet to be integrated into ShapeShop. We also note that a variety of other ap-
proaches to implicit inflation have been explored, based on blending point primi-
tives [1], 3D variational interpolation [3, 20], and convolution surfaces [1, 42]. The
main limitation with all of these methods, including the technique described here,
is that they produce continuous fields which cannot represent any sharp corners in
the sketch. We have proposed one solution for restricted cases [35], but the general
problem remains unaddressed.
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Fig. 11.19 In (a), two
cylinder primitives are
blended, and then subtracted
from a sphere. In (b), a cache
node is inserted above the
blend node. Once filled, the
cache short-circuits
evaluation of the blend
subtree, replacing an O(m)

traversal with an O(1)

tri-linear interpolation

11.3.4 Hierarchical Spatial Caching

One of the major limitations of hierarchical implicit modeling techniques like the
BlobTree is that the complexity of the hierarchy grows with the complexity of the
model. Hence, the recursive evaluations of the tree which are required to sample
the scalar field defining the implicit volume become increasingly expensive. Un-
fortunately, implicit surface visualization methods rely on sampling the value and
gradient of this field many times for each output mesh vertex. In profiling implicit
surface polygonizers, we observed that for even moderately complex models, over
95% of the computation time is spent recursively evaluating the BlobTree. The cost
of these evaluations must be reduced to ensure that the designer is not hampered by
non-interactive visual feedback.

Inspired by promising results in [6], the Hierarchical Spatial Caching method
was introduced [36] to address the interactivity problem. The fundamental idea be-
hind this technique is to dynamically insert spatial caches into the BlobTree as cache
nodes. These nodes approximate the scalar field of their subtree using a set of regular
discrete samples which are computed as needed. This reduces the cost of evaluating
the subtree from O(m) to amortized O(1) (Fig. 11.19).

Unlike previous approaches [6, 14], the sample values at grid vertices are not pre-
computed, but rather evaluated as needed (Fig. 11.20). This lazy evaluation provides
a significant benefit, as full evaluation of high-resolution grids is computationally
intensive. In addition, if surface-tracking visualization algorithms are used, only
cache samples near the surface are required. In this case most of the samples in a
fully evaluated grid will never be used—particularly if they will be invalidated in
the next frame as the user drags a primitive across the screen.

The resolution of spatial caches is key to visual fidelity—too low a resolution,
and the subtree’s scalar field will not be adequately reconstructed, while oversam-
pling results in wasted computation. In practice, we err on the side of caution and
use a fixed grid resolution of 1283. An obvious improvement would be to utilize
adaptively-sampled grids, as in [14]. Unfortunately, adaptive methods have high
initial overhead, which is impractical when the cache is being discarded each frame,
and to date also lack even basic C0 continuity (see [33] for details).

A related issue is the positioning of cache nodes, which should be sparsely dis-
tributed throughout the tree, ideally above subtrees which define semantic “parts”.
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Fig. 11.20 In (a), the field values necessary to reconstruct the value at the incoming query point (in
blue) are unavailable. The child field must be evaluated four times, once for each cache value (b).
In (c), two cache values are missing and must be evaluated in the child field (d). Finally, in (e) all
cache values are available. The incoming value query can be directly approximated in O(1) time,
no O(m) evaluations of the child field are necessary

Fig. 11.21 Comparison of representation of a sharp edge without caching (a), with a cache reso-
lution of 1283 (b), and 2563 (c). The Extended Marching Cubes polygonizer is used, producing a
clear sharp edge in (a), but having no effect in (b) and (c) due to gradient smoothing at the crease

Since it is preferable that the designer not have to manually place cache nodes,
ShapeShop uses simple heuristics to position cache nodes near the top of the tree.
As with the sampling resolution, these ad-hoc solutions are effective in practice, but
more principled approaches would be beneficial, and remain open problems.

In test cases simulating interactive modeling actions, hierarchical Spatial
Caching results in an order-of-magnitude reduction in the computation necessary
to triangulate a BlobTree model. This is a critical enhancement, making BlobTree
modeling practical for use in interactive systems like ShapeShop. However, there are
some drawbacks [33]. In particular, spatial approximation tends to smooth out sharp
creases in the surface. This is a standard problem with surfacing implicit models, but
recent polygonizers can use the field gradient to reconstruct sharp edges [21]. Unfor-
tunately the interpolating filters to reconstruct smooth scalar fields from a sampled
grid also smooth out the gradients, preventing sharp features from being recovered
(Fig. 11.21). A solution to this problem will require the development of schemes
which are sensitive to the properties of the scalar fields they are approximating.
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Fig. 11.22 Additions to the ShapeShop modeling system have included decal texturing (left) and
mesh-based procedural surface editing layers (right)

11.4 The ShapeShop System

As with much of the research described in this book, one of our basic assumptions
is that sketch-based interfaces will ultimately lead to more efficient and expressive
3D modeling tools. However, in our experience, working artists and designers have
a hard time imagining how sketch-based tools could fit into their design pipelines.
We have found that many artists do experiment with SBM research software that is
publicly released, but these systems are regarded more as curiosities rather than real
tools, as such systems (sensibly) tend to focus on demonstrating novelty rather than
striving for production quality. Unfortunately, without user demand, the industrial
3D tool-makers with whom we have interacted remain skeptical of sketch-based
modeling techniques. Hence, one of our goals with ShapeShop was to develop the
system to the point where it could potentially be useful to real users.

ShapeShop was first made public at the SBIM Workshop in 2005, and included
most of the techniques described here, as well as a few more which have since
been removed. This was one of our early lessons—unlike systems with traditional
interfaces, where one can always “just add another menu item”, the designers of
interfaces based on gestures and context-sensitivity must be much more self-critical,
and willing to sacrifice infrequently-used tools if the system is to remain usable.

This initial version also lacked save/load capabilities, which severely limited the
utility of the software. When demonstrating the system to artists, however, their
biggest concern was texturing. Like many SBM systems, the output of ShapeShop
is an unstructured triangle mesh, and hence manually assigning meaningful UV co-
ordinates can be a time-consuming process. This lead to the development of decal
texturing [38], shown in Fig. 11.22, which was released in ShapeShop V2 at SIG-
GRAPH 2006. This version also included saving and loading, making the system
far more practical for real users.

Between the steady trickle of e-mail feedback, and posts discussing ShapeShop
on web-based community forums, we have learned that working 3D designers are
experimenting with ShapeShop in their professional workflows. Some of this explo-
ration is purely artistic, such as the 3D sculptures displayed in Fig. 11.23, which
were created by an artist who frequents the ShapeShop web forums. We have been
contacted by bespoke jewelers, children’s toy makers, elementary school teachers,
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Fig. 11.23 3D sculptures created by first modeling in ShapeShop, and then importing the surface
mesh into Modo [23] for texturing and rendering. Images ©Corien Klapwijk

and traditional-media artists who are using ShapeShop to experiment with 3D mod-
eling. Much of this experimentation is short-lived, as the initial excitement tends
to fade once the many limitations of the system become clear. Still, the comments
we receive from users who have tried the software are almost uniformly positive,
indicating a high level of interest in sketch-based modeling techniques.

There is one particular method in which 3D designers are integrating ShapeShop
into their pipeline that warrants further explanation. As brush-based displacement
painting systems like Z-Brush [29] and Modo [23] have become more capable, it is
now common practice to build a basic model in traditional software, and then import
it into these tools, where realistic levels of detail can be much more easily created.
ShapeShop and other SBM software are quite effective in the initial blocking or
massing stages, where they are more efficient than traditional control-point inter-
faces. We have attempted to encourage this workflow by adding mesh refinement
tools to ShapeShop, as initial mesh quality is a necessity for these sculpting tools.
However, it may be interesting to explore a more specific focus on this particular
workflow, as it has significant implications for sketch-based modeling systems.

11.5 Discussion

In the previous sections, we have described the fundamental components of the
ShapeShop sketch-based modeling system. From 2D drawing assistance to pen-
based interaction to hierarchical, procedural shape representation, ShapeShop in-
corporates many aspects of our own research and that of others. By continually
developing the software and releasing it “into the wild”, we have received extensive
feedback from working 3D designers. This experience has given us much insight
into the advantages and shortcomings of our work.
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The use of a structured, procedural hierarchy to represent the sequence of
sketched operations is perhaps the largest advantage of ShapeShop over its con-
temporaries. Not only does this permit greater complexity, it also allows designers
to tweak and refine indefinitely. The response of 3D artists to this capability has been
extremely positive. By utilizing implicit volumetric techniques, ShapeShop avoids
the artificial distinction between “CAD-style” and “free-form” modeling that most
tools make. The implicit approach also greatly enhances the ability to quickly ex-
plore a wide range of design variations (Fig. 11.24). Although iterative design is
extremely common, few systems provide any specific support, and hence it is often
very costly in 3D. Ultimately, we would like to reduce the burden on the designer
when they wish to pick-and-choose from multiple variations.

Construction surfaces are another powerful feature of the procedural approach
used in ShapeShop. Again, we have not designed in any specific support for con-
struction surfaces, but are in the process of exploring how to do so. The use of a
procedural hierarchy also introduces many new challenges. We have yet to find a
straightforward way to even visualize the model tree in an intuitive and understand-
able way, let alone interact with it. In our informal observation of users, this is one
of the most problematic areas of the system. Even computer graphics graduate stu-
dents schooled in CSG techniques have trouble manipulating the model tree via an
abstract tree-view widget.

Although ShapeShop simplifies many modeling tasks, the design space is ulti-
mately constrained to shapes that can be practically constructed by blending sweeps
and revolutions. Research is in progress to lift this limitation, such as the implicit
push-and-pull deformations recently introduced [41]. The Surface Tree mesh-based
procedural layered editing technique [34], has also been implemented in ShapeShop,
providing powerful but non-implicit surface manipulation tools (Fig. 11.22).

Finally, a frequent comment from academia is that sketch-based modeling sys-
tems like ShapeShop must be proven through controlled evaluation, as has become
standard practice for proposing novel interaction techniques in the field of human-
computer interaction. However, those techniques can be reasonably tested in iso-
lation, as the evaluation is largely based on human performance metrics. Such ap-
proaches are not applicable to evaluating the fitness of a complex SBM system,
which in many cases integrates a wide range of novel interactions. Furthermore, we
are not particularly interested in pure modeling speed, but rather a trade-off between
efficiency and expressiveness, which is more difficult to measure. Direct compar-
isons to professional 3D modeling systems are also not particularly useful. Novice
users must be trained for many hours to do anything productive in a complex mod-
eling tool, while professional users have personal workflows so highly-optimized
that any comparison to a new interface is hopelessly biased. And as there is so little
in common between traditional and sketch-based interfaces, the most that can be
learned from test subjects is personal preferences.

In some sense, we consider the public release of ShapeShop to be the ultimate
test of usefulness. However, like the few attempts at evaluating SBM systems that
have been performed [5, 19, 26], we have found that user response is essentially uni-
formly positive. Without variation, these data do not really tell us anything, except
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Fig. 11.24 Design iterations generated by adding detail to an initial base model (left). Volumetric
implicit techniques free the designer from having to manage issues like model structure or discrete
topology when exploring model variations. For example, the pig nose on the far right was simply
drawn on top of the original dog nose

that the subjects have no basis for comparison and are probably only responding to
the novelty of the system. We have also found that an initial positive response should
not be taken to imply usefulness of the system in practice; once the novelty wears
off, designers are apt to return to the tools they are more familiar with. Hence, we
believe that the question of how to sensibly evaluate sketch-based modeling systems
has yet to be answered, and is perhaps the most important open problem in the area.
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Chapter 12
Inferring 3D Free-Form Shapes from Complex
Contour Drawings

Olga Karpenko and John F. Hughes

12.1 Introduction

There is an emerging need for non-expert users to create 3D computer models. One
example of that is communication: if one wanted to explain a concept to a colleague
that involved a 3D shape, it would be nice if one could just sketch the shape on
the computer screen the same way one would sketch it on paper and then, once the
sketch is interactively turned into a 3D shape, rotate it to explain the idea. Other
applications include initial design of characters for computer games and animation,
rough industrial design of free-form objects, and interfaces for searching 3D mesh
repositories. Commercial modeling software tools like Maya are very powerful and
let users create fine, detailed models, but are hard to learn and not well suited for
non-expert users and hard to use even for professionals. By contrast, sketch-based
modeling interfaces are simple, easy-to-learn interfaces that rely on perceptually
significant aspects of models for input—letting a user sketch contours, for example,
to indicate shape.

When our visual system is presented with a sketch, it makes nearly-instant in-
ferences about the shape in the drawing. As one can see in Fig. 12.1, even simple
contour drawings convey shape very well. The inference mechanism is partly based
on expectation—when we see something that looks like an elephant’s trunk, for
instance, it is easy to infer that the nearby long narrow parts must be tusks. But
other aspects depend on local cues—a contour that ends, or that disappears behind
another—and a broader view that helps us integrate these local cues into a coherent
whole [8]. Dual to this recognition ability is our ability to learn to draw contours of
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Fig. 12.1 This cartoon-like
illustration shows how even
simple contour drawings
convey shape very well. It
also demonstrates that even
contours of the simplest
drawings contain junctions

objects in a way that lets us communicate their shape to others. While drawing well
can be difficult, even children can draw easily recognizable shapes. On the other
hand, while drawing outlines or contours is relatively easy, we know few people
who can reliably draw the hidden contours of even simple shapes.

The main advantage of modeling interfaces based on drawing is that they allow
a user to draw what he or she is thinking of directly. One can create the shape
interactively by applying a sequence of editing gestures like in Teddy [10], but the
more information the user can convey by a single-view sketch, the better, since the
experience is more similar to drawing on paper and thus more natural. The main
challenge is that inferring a shape from a complex contour-sketch is a hard problem
in general. Teddy’s inflation algorithm is a good step, but limited to simple closed
curve contours. SmoothSketch [14, 16], described in this chapter, makes inflation
possible for the more complex drawings that contain various junctions, although it
is by no means a final answer. Such a final answer may never be found, though—
it is easy to draw contour sets that are so complicated that different viewers make
different inferences about them. The best one can hope for is to create plausible
shapes for a fairly large class of contours on which users agree on the interpretation.
That is what SmoothSketch does.

SmoothSketch is not a system like Teddy; it is an inflation component that can
be used in a free-form-sketching interface like Teddy. We believe that a sketching
program should let the user and the computer share the work, each doing what it
does best. The computer can infer a plausible shape from a moderately complex
contour like the ones shown in this chapter. Then, to create more complex objects
or to, say, modify the thickness of the inflated models, a user would use various
gestures like the ones available in Teddy and other sketch-based systems. Currently,
SmoothSketch supports editing of the existing intermediate shape representation,
hidden contours, and it lets the user select an alternative topological interpretation
from the list of suggestions.

In finding a shape consistent with a user’s drawing, we are solving an underspec-
ified problem: if the user draws a circle, perhaps s/he is imagining a sphere behind
which is hidden Michaelangelo’s sculpture of David. While that is a possible inter-
pretation of the drawing, it is not the one our system will find; instead, we will create
a spherical blob. Thus our inference process is always making choices. When, for
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Fig. 12.2 The user draws the visible contours of a shape; our program infers the hidden contours,
including hidden cusps, and then creates a fairly smooth 3D shape matching those contours. The
3D shape can be viewed from any direction

instance, we take a user’s contour drawing and guess the locations of hidden parts
of the contour, we have already made a choice to assume that the hidden parts of
the contour are topologically as simple as possible. The reader should keep this in
mind. When we say “we want to find the location of the hidden cusp” (a cusp is a
feature of a contour) we are really saying “having assumed a topologically simple
hidden contour, we want to choose a location for the hidden cusp that is consistent
with the visible contour, and seems to be in a probable location.” This suggests a
probabilistic interpretation: we can imagine the set of all possible surfaces in space,
and assign each a probability; we are then seeking, among all surfaces consistent
with the user’s drawing, the “most probable.” While this formulation is useful to
keep in mind, we lack any real knowledge of how probably different surfaces might
be, so it is currently hopeless to try to solve the entire problem in this probabilistic
framework. But as you will see during the discussion of contour completion, we use
probabilistic approaches where possible.

12.2 Overview and Background

Our system takes a user’s contour-drawing of a smooth, compact, oriented, embed-
ded surface-without-boundary (which we will call a good surface) and determines
a 3D surface whose contours match those that the user drew. Figure 12.2 shows an
example of a typical user drawing and the shape inferred. Because this is an under-
determined problem—is a circle a contour drawing of a pancake? a sphere? a cigar
viewed end-on?—we make several assumptions. First, we assume orthographic pro-
jection. Secondly, the contours must be oriented, i.e., drawn so the surface lies on
the left. Thus to draw a torus, a user would draw a counter-clockwise outer stroke
and a clockwise inner stroke. This assumption helps us resolve some of the ambigu-
ities in the drawing.

We also assume that the projection is generic [8]: the view is not accidental and
no probability-zero events occur. The contours can be quite complex: in particular,
they can contain two types of singularities: T-points and cusps. Informally, a T-point
is where one contour disappears behind another piece of surface. A cusp is where
a contour disappears behind its own surface.1 T-points and cusps are the only types

1For a formal definition of a T-point and a cusp see Sect. 12.4.
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Fig. 12.3 a A drawing with the tee points and cusps marked. b Contour components: T-junctions
and cusps

Fig. 12.4 Steps involved in creating a 3D shape from a contour drawing of a kidney bean. The
roadmap is based on Williams’ framework. Operations highlighted in red are novel contributions
of SmoothSketch

of singularities that occur in an arbitrary generic contour of a smooth surface (see
Fig. 12.3).

Williams’ thesis [33] and subsequent work lay out a plan for finding a surface
fitting a given collection of visible contours.2

The framework consists of three stages:

1. Figural Completion: Complete the drawing by inferring the hidden contours,
and provide a Huffman labeling for it [9]. This corresponds to steps 1 and 2 in
Fig. 12.4.

2. Paneling Construction [6]: Convert the completed drawing to an abstract topo-
logical surface, and map this surface to �2 so that the “folds” of the mapping
match the contours of the drawing (steps 3 and 4 in Fig. 12.4).

3. Smooth Embedding: Lift this mapping to a smooth embedding in �3 whose pro-
jection is the mapping to �2 (steps 5 and 6 in Fig. 12.4).

2The reader interested in implementing the ideas of this chapter will need first to become ac-
quainted with Williams’ work.
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Fig. 12.5 How can we join the two tee points on the left? With an optimal completion, as shown in
the middle. Optimality is determined by choosing, among all C1 random walks from P1 to P2, the
most likely one, under a simple probabilistic model. Mumford [21] shows such curves are elastica,
which had been studied by Euler

Some steps of this framework were just theoretical for smooth closed surfaces
without boundary. In SmoothSketch, we proposed solutions to the steps highlighted
in red, turning this framework into a practical system. We now give an overview of
each of these steps and explain how SmoothSketch is built on top of previous work.

The problem of figural completion was solved by several researchers for the case
of “anterior surfaces”—roughly the front-facing parts of scenes, which generically
have no cusps. In particular, Williams and Jacobs [35], and Mumford [21], describe
an approach to completing the hidden contours, which generically join tee points in
the drawing (see Fig. 12.5). To join a pair of tees, they consider all C1 random walks
(i.e., random walks in which the tangent direction θ changes by an amount X at
each point, where X is a Gaussian random variable) starting at the first tee, headed
in the right direction, and ending at the second, and assign to each a probability
based on the product of the probabilities of each angle-change and e−λ, where λ

is the length of the curve. They posit that the maximum-likelihood random walk is
a good candidate for the completion; when multiple pairs of tees might be joined,
they choose pairings which have largest likelihoods.

We extend this approach, in Sect. 12.5, to the cases where a T-point must be
joined to a cusp, or two cusps must be joined. To determine which visible endpoints
(tees or cusps) should be joined to which, we use a greedy search similar to Nitzberg
et al. [24].

In step 2 Huffman [9] labels are assigned to the contours. Labels indicate the
number of surfaces in front of the contour (visible contours have label zero); the
surface on which the contour lies is to the left when you traverse it in the direction
shown by the arrow. After the figural completion stage is complete, the 2D drawing
is cut into flat regions along the boundaries (for the kidney bean example, see green
and yellow regions in Fig. 12.4) and Williams’ algorithm is used to create multiple
copies (panels) of these regions. Williams’ algorithm also specifies which edges of
these panels have to be glued to one another and the relative order of the panels
(steps 3 and 4 in Fig. 12.4). This representation gives a topological reconstruction
of the 3D shape.

To create smooth embedding, we take the results of the paneling construction—
an abstract manifold and a continuous mapping f of it to �2 and embed it one
dimension at a time: first assigning depth to the vertices (that generally correspond
to projections of T-s and cusps), then to the edges, and finally to the interiors of
the panels (step 5). This algorithm is described in Sect. 12.7. The result is a topo-
logical embedding (i.e., a 1-1 continuous map from the surface into �3). Finally,
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in Sect. 12.8 we talk about smoothing out the creases in this topological embed-
ding by a mass–spring system to produce the desired fairly smooth mesh in 3-space
(step 6). Karpenko’s thesis [14] presents an alternative approach to step 6 based on
minimizing the total squared mean curvature.

12.3 Related Work

Shape from Drawings. The problem of inferring 3D shape from 2D drawings has
been studied in a great many forms; if one extends it to include determining draw-
ings from images as a first step, it occupies much of the computer vision literature.
We will only describe the work most closely related to SmoothSketch.

Much early shape-from-drawing work applied to blueprint-like drawings of ma-
chined surfaces. The important features of such shapes are sharp bends, like the
edges of a cube—and their trihedral intersections. The techniques applicable in that
area are therefore rather different from those used in this paper.

Pentland and Kuo [25] presented a system that infers simple 3D curves and sur-
face patches from 2D strokes by minimizing the energy of the corresponding snakes.

A classic paper in this area is by Huffman [9], who developed two labeling
schemes—one for objects made from planar surfaces, one for smooth objects—and
proved that their complete contour drawings must have the corresponding sorts of
labeling. Williams [33, 34] did the defining work in inverting the smooth-surface
labeling scheme, as described in the previous section.

Bellettini et al. [2] proposed a variational model for reconstructing a smooth
surface from its contour containing self-occlusions.

Another direction of research explored creating 3D effects on drawings without
explicitly reconstructing a 3D shape. Williams [32] generates interesting 3D shading
effects on 2D images without reconstructing a 3D geometry by applying a variety of
complex shading techniques. Johnston [12] computes lighting on 2D drawings by
estimating surface normals from the drawing.

Contour Completion. Huffman labelings are for complete contour projections—
the projections of both the visible and invisible parts of an object’s contours. Given
a drawing of the visible parts of a contour, we must infer where the invisible parts
lie. Kanizsa’s work [13] on contour completion (and its relationship to the mech-
anisms of the human visual system) forms the basis for much of the later work in
the area. A solution proposed first by Grenander [5] was to use a stochastic process
to model the space of all possible edges. Mumford proves that elastica that arise in
the completion problem described in Sect. 12.2 could be modeled by a white noise
stochastic process. Williams [35] approximates the solution by considering a sam-
pling of the space of all random walks (with varying �θ—the direction of the walk)
starting from the first point with the first direction and coming to the second point
with the second direction, and taking the random walk with the highest probability
as the best path connecting two edges.
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Although contour completion is a well-studied research topic, many problems are
still open; in Sect. 12.5 we propose our solution, inspired by the work of Williams
and Mumford, to the problem of finding a hidden cusp for a cusp-contour comple-
tion case.

Sketching Interfaces. Several gestural interfaces for sketching 3D shapes have
been developed for different classes of models. For rectilinear objects, the Sketch
system described by Zeleznik et al. [36] lets a user create and edit models through
gestural interface, where geometric aspects of gestures determine numerical param-
eters of the objects. These ideas were extended by several research groups [26, 29].

For free-form objects, Igarashi’s Teddy [10] was the first interface for free-form
modeling via sketching. In it, a user inputs a simple closed curve and the system
creates a shape matching this contour. Then the user can add details by editing the
mesh with operations like extrusion, cutting and bending, all done gesturally. The
Smooth Teddy [11] system allowed the user to organize shapes into a hierarchy
and included algorithms for beautification and mesh refinement. Nealen et al. [23]
recently extended Teddy into FiberMesh—a system for modeling surfaces with 3D
curves.

Karpenko et al. [17] described a system for creating shapes from free-form
sketches; the primitive objects were variational implicit surfaces, which facilitated
operations like surface blending. ShapeShop [28] uses hierarchical implicit volume
models to let a user interactively edit complex models via a sketching interface.
Alexe et al. [1] extract the skeleton from the sketch and then construct a convolution
surface. None of these systems handle complex strokes containing tees and cusps.

Nealen et al. [22] presented a sketch-based interface for Laplacian mesh editing
where a user draws reference and target curves on the mesh to specify the mesh
deformation.

Recently, Cordier and Seo [3] also explored the problem of inferring free-form
shapes of drawings of occluding contours. They restricted themselves to contours
containing only tee junctions, but allowed multiple objects. They first compute the
2D skeleton of the sketch, then solve the constrained optimization problem to find
the corresponding 3D skeleton and create the 3D shape using the work of Alexe
et al. [1]. Only objects with circular cross-sections can be reconstructed with their
system.

12.4 Notation and Problem Formulation

Much of the material that follows relies on ideas from differential geometry
and combinatorial and differential topology. We refer the reader to the books of
Guillemin and Pollack [7] and Koenderink [19, 20] for clear expositions of the nec-
essary background.

Suppose that S is a smooth, closed, compact, orientable surface-without-
boundary (i.e., a good surface) embedded in the z > 0 halfspace of �3. The orthog-
onal projection of S onto the z = 0 plane will have a compact image. We assume
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Fig. 12.6 (Adapted from Williams’ [34].) The contour, in blue, of a good surface embedded gener-
ically in 3-space projects to a contour drawing, in green; the visible contour (drawn bold) projects
to the visible-contour drawing. A point where the projector is tangent to the contour projects to a
cusp in the contour drawing. The restriction of the projection to just the contour is 1-1 except at
finitely many points, where two contours cross in the drawing; these are called T-points

that the embedding and this projection are generic. If the projector through the point
s ∈ S lies in the tangent plane at s, then s is called a contour point; if the projector
first meets S at s, then s is a visible-contour point (see Fig. 12.6). The projection of
C to the z = 0 plane is the contour drawing of S; the projection of V to the z = 0
plane is the visible-contour drawing of S.

The projection from the contour to the contour drawing is an embedding at most
points; the exceptions are crossings, where two contours meet, and cusps. A cusp
is a point s ∈ S where the projector through s is tangent to C at s. The projection
of a cusp appears as a point where the contour drawing “reverses direction” (see
Fig. 12.7, left); we use the term “cusp” to refer both to the cusp and its projec-
tion. When an arc of the visible contour drawing reaches a crossing, it appears as a
T -point: one part of the contour becomes invisible there.

For a generic smooth surface and viewpoint, tees and cusps of the contour will be
isolated, as will curvature zeroes of the contour; this guarantees a unique osculating
plane at a cusp, which means the projected contour must reverse direction rather
than emanating from the cusp in any other direction (see Fig. 12.7, left).
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Fig. 12.7 (Left) The generic projection of a contour at a cusp reverses direction at the cusp. (Right)
A drawing with the tee points and cusps marked; hidden contours and hidden cusps that must be
inferred are shown in dotted lines

The “bean” example (Fig. 12.6) is something of an archetype for the method
described in this chapter, in the sense that it is the simplest shape that has a cusp.
The way that this single visible cusp is processed is the key to processing more
general drawings, hence we use the bean as an example throughout.

In Fig. 12.7 (right) we show in solid lines a typical input drawing; in dotted lines
are the projections of invisible contours. Certain hidden contour points are also cusp
points; the visible cusps are marked with a “C” while the hidden cusps are marked
with an “H”.

Note that the user input is the part of the contour drawn in solid lines. Everything
marked by a dashed line is a part of a hidden contour and needs to be inferred by
our program.

With this terminology, our goal is to take a user-provided directed visible-contour
drawing of a good surface as above and to determine a surface S whose visible
contours match the given drawing.

12.5 Figural Completion for Smooth Surfaces

Given the visible-contour drawing, in the z = 0 plane, for a good surface in �3,
we describe an approach to completing the drawing, i.e., adding hidden contours
so that the resulting drawing can be Huffman-labeled. The approach works in a
large number of cases, although not all. The existence of this algorithm raises a
question: what drawings are completable? In [14] we partially solve this problem by
exhibiting a large class of drawings that admit such extensions; the general problem
of characterizing extendable visible-contour drawings remains open, however.

We assume that visible contours are oriented, that is, a user always draws con-
tours so that the surface is to the left of the contour. We also assume that the hidden
contours do not intersect each other or visible contours except at junctions.

To complete hidden contours, we consider all visible-contour endpoints, and
estimate the likelihood of a hidden contour joining each possible pair. Following
Nitzberg et al. [24], we pair up points using their greedy algorithm, testing multiple
configurations for (a) probability, and (b) consistency (i.e., can they be Huffman-
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Fig. 12.8 The figure shows how tangent directions and Bézier completion curves are computed
when two tee points or two cusps are paired up

labeled?). The probabilistic model presented here is only meant to be suggestive,
and not a model of actual probabilities.

12.5.1 Preprocessing an Input Stroke and Guessing T-points and
Cusps

User input is gathered from an input device (a mouse in our case). A user indicates
when a stroke begins and ends by pressing or releasing a mouse button. Since during
the input of each stroke, the 2D points arrive at an arbitrary rate, we re-sample these
points so that they are not very close to each other.

We identify the visible cusps and tee points on a drawing using the following
simple algorithm:

• We can determine T-points as stroke endpoints that “touch” some other segment
(“touch” means “lie within 12 pixels”).

• All other endpoints are initially classified as cusps. Some of them are “real” vis-
ible cusps and some of them are “regular” endpoints. “Regular endpoints” are
points that are close to each other and belong to the same stroke; a user just
happened to draw the stroke in several segments. We can classify endpoints as
“regular” if the distance between them is small and the tangents are similar.

12.5.2 Pairwise Completion

First, for each pair of endpoints of the visible contour we compute an initial estimate
of the probability that they are connected by a hidden contour. Each endpoint has a
location and associated direction for the completion curve. For T-points or “regular”
points, the direction is given by the tangent ray of the visible contour; for cusps it is
the opposite (see Fig. 12.8).

To compute the likelihood of joining two tees or two cusps, we compute an en-
ergy function for the pairing, inversely proportional to the likelihood. The energy
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Fig. 12.9 The energy of the polyline approximating the Bézier spline is computed as a product of
the sum of angle changes between the consecutive segments and the exponent of the sum of the
segment lengths

Fig. 12.10 When we have a T -point and a cusp to match it to, we seek the location of a hidden
cusp such that the two hidden contour parts joining our points to the hidden cusp have the highest
probability

function of the pairing is a sum of two energy functions E = Ecurve + Eend points,
where Ecurve is the energy of the curve that would connect them were they to be
matched and Eend points is the energy corresponding to the heuristic defined by the
endpoint tangent directions. We approximate the elastica curve with a Bézier spline
connecting the endpoints given their tangent vectors (see Fig. 12.8). The Bézier
curve is defined by the two endpoints and the points displaced from the endpoints
along the tangent vectors. The distance by which the endpoints are displaced along
the tangents is 1

3 of the distance between the endpoints. The Bézier curve is then
uniformly sampled and the energy function of the resulting polyline is computed as
follows (see Fig. 12.9):

Ecurve = e
∑

i li ·
∑

i

�θi

where li is the length of the ith segment of the polyline, and �θi is the absolute value
of the angle change between two consecutive segments of the polyline. Eend points

corresponds to another heuristic similar to [24], where we use the tangents at the
endpoints to estimate the likelihood of the matches. Intuitively, if the tangent direc-
tions at the two endpoints are very similar, it is likely for them to be paired even if
the length of the curve connecting them would be long (think of a fat snake whose
tail passes behind its body). Similarly, if the tangents at the endpoints are very dif-
ferent, it should be pretty unlikely for them to be paired up. Let φ be the angle
between the tangents at the endpoints. Then,

Eend points =
⎧
⎨

⎩

0 φ ≤ 0.3,

1.0 0.3 < φ < 2.5,

Ceφ φ ≥ 2.5.
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12.5.2.1 Computing the Completion for a Tee/Cusp Pairing

To compute a hidden contour completion for the case of a tee/cusp match (shown
in Fig. 12.10), we need to estimate the location of the hidden cusp and the tangent
direction at the hidden cusp. Formally, given the point T and the tangent vector Vt

at T , the cusp point C and tangent vector Vc at C, we need to compute the position
H and the tangent vector Vh of the hidden cusp (see Fig. 12.11). Following the work
of Williams [35] (done for the case of hidden contours connecting tee junctions), we
use the probabilities of directional random walks to estimate H and Vh.

Ideally, we would like to simulate two sets of directional random walks to es-
timate H and Vh as follows. We would store a table, whose entries are sampled
x-coordinates on the plane, sampled y-coordinates on the plane and sampled angles
(defining directions); i.e., each entry is a point-direction pair, representing a small
box of points and a small range of angles.

To fill in the table, we would start a directional random walk from the point T

with the direction Vt . At each step we would vary the angle by �θ chosen from a
(0,1) Gaussian distribution. After a fixed number of steps (chosen for each random
walk from an exponential distribution with mean 60), a walk would end up at a
point on the plane with some direction. Then we would increment the table cell
corresponding to this point and direction by one. After simulating many random
walks, we would divide every value in the table by the total number of random
walks. So, each cell of the table would contain an estimate of the probability that
a directional random walk starting from T with Vt ends at the point and with the
direction defined by this cell.

The same process would be repeated for C and Vc with a new table of prob-
abilities. In the end, we would have two tables: one for T and Vt , and the other
for C and Vc . For each point and direction on the plane these tables would contain
probabilities that the corresponding random walk will end up there. To guess a loca-
tion of a hidden cusp, we could multiply the probabilities in the corresponding cells
in two tables and take the point and direction with the highest product probability.
This point/direction pair would be the estimate of the location and the direction of a
hidden cusp.

To get a reasonable estimate of the hidden-cusp location, we would need to run
each of two random walks about 106 times, which means that our system would not
be interactive. To overcome this problem, we precompute a table of probabilities as
follows (see Fig. 12.11, right):

• Fix the first point at (0,0) and the direction at angle 0.
• For (α,φ) defining the second point (on a unit circle) and its direction, store the

resulting point (which is a hidden cusp and calculated as the point where two
random walks meet with the highest probability) and the direction at this point
(x, y, θ).

Now we can rotate and translate the coordinate system formed by an arbitrary
tee/cusp pair so that the tangent vector at the point T lies at the origin and is aligned
with an x-axis. Then we scale so that the cusp C lies on a unit circle in the new
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Fig. 12.11 (Left) Given a tee
point T , a cusp C and tangent
vectors at these points, we
need to estimate the hidden
cusp H and the tangent
vector at H . (Right)
Precomputing the table of
hidden-cusp locations for a
number of sampled locations
and directions

coordinate system. We can then use the coordinates of these two points and two
corresponding directions as an input to our table. After we get the resulting location
and direction of “the best” hidden cusp for these two vectors, we rotate, translate and
scale it back to the original coordinate system. This simple pre-calculation technique
allows us to guess the locations of the hidden cusps interactively.

We connect the hidden cusp to the tee point and the visible cusp with Bézier
curves, and compute Ecurve for their union as described above.

12.5.2.2 Greedy Search for the Best Configuration

After a likelihood for each pair of endpoints is computed, we need to match up pairs
to find the best total configuration (a configuration consists of endpoint pairs, where
each endpoint appears in only one pair). For instance, if we have four endpoints
numbered 1 to 4, the possible configurations are: {(1,2), (3,4)}, {(1,3), (2,4)} and
{(1,4), (2,3)}. The likelihood of a configuration is defined as the product of like-
lihoods of its pairs. It is not practical to compute the likelihoods of all possible
configurations as the number of them grows exponentially in the number of tees and
cusps. Instead, we do a greedy search similar to [24].

In particular, we perform a standard ‘beam’-search technique [27] to reach an
approximate solution. The procedure is not guaranteed to reach the globally optimal
solution; in practice we find that it works well for a reasonable number (10–15) of
nodes.

Consider the search procedure as being analogous to searching a tree. Each node
of the tree contains a particular pair of endpoints and a set of all valid pairs avail-
able to the children of this node. Each pair has an associated energy (of the Bézier
completion curve) computed as described above. We can choose the single pair that
has the optimal energy at this point; note that the minimum energy is determined
by taking a product of the energy of that pair with the energy of the path leading
from the root of the tree to the node under consideration. If we choose to only ex-
plore the subtree corresponding to that pair we cannot know if the globally optimal
value is indeed present in that subtree. Considering all possible pairs and exploring
all possible subtrees at the node will result in exponentially many subtrees; making
the procedure computationally intractable. ‘Beam’ search presents a compromise
between the two extreme choices. At each level of the tree, there is finite budget of
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Fig. 12.12 The figure demonstrates the ‘beam’-search procedure for choosing the best valid con-
figuration on an example sketch that has six junctions. Two best configurations are shown in the
red rectangles

m children (or possible pairs) that we can explore. m is called the beam width for
the search procedure. We consider the set of all possible options at a certain level
and choose m children with the least energy. Subsequently, only subtrees rooted at
the m children will be searched for the optimal value.

Figure 12.12 demonstrates the ‘beam’-search procedure for an example sketch
that has six junctions numbered 0 to 5. First, we compute the list of all possible
available valid pairs I0. For each pair from the list, we check whether the pairing is
valid and remove invalid pairs from the set I0 (we explain validity checks in the next
section). Each node in the tree has a list of available valid pairs Ik—pairs available
to its children (shown in Fig. 12.12 in green font) and also every node except the
root stores a pair chosen at the node (shown circled). In Fig. 12.12, m = 3 children
are searched and expanded at every level (shown in blue circles). Once a particular
optimal pair, say (1,3) is chosen, its node copies an array of available valid pairs
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from its parent and updates it to remove pairs that contain one of the indices of
the pair. For example, for pair (1,3) we would remove all pairs from the array
that contain indices 1 or 3. In the end, the algorithm finds two valid configurations
outlined in red. The second configuration corresponds to two objects—a bean in
front of an oval-like blob.

12.5.2.3 Checking the Consistency of the Pairing

We perform several consistency checks for a pair of endpoints before adding it to
the configuration. The first three rules we describe come from Huffman’s labeling
scheme for contours of smooth objects in generic projections [9] (see Fig. 12.13,
top row) and should hold true for both endpoints in the pairing.

Since we assumed that we only deal with configurations in which hidden con-
tours do not intersect other visible or hidden contours except at the endpoints, we
add two other Rules (4 and 5) to eliminate configurations for which it is not true.
Please note that rules 4 and 5 will be substituted with different rules (checking the
consistency of Huffman’s depth labels) if the assumption is removed in the future
work.

1. Rule 1: Let T be the T -junction location,
−→
VT the tangent direction at the T ,

pointing away from the visible stroke, B the Bézier point lying on the hidden
contour closest to T , and

−→
VB = −−−→

(T ,B). Then, Rule 1 says that dot(
−→
VT ,

−→
VB) ≥ 0

(see Fig. 12.13a, b).
2. Rules 2 and 3: Let C be the visible cusp, B the point on the hidden contour

closest to C,
−→
VC the tangent direction at the cusp, and

−→
VB = −−−→

(C,B). Then, Rule 2
says that the cross-product of

−→
VC and

−→
VB should be equal to (0,0,−1) (assuming

the z-axis is perpendicular to the screen pointing out of the screen). Rule 3 says
that dot(

−→
VC,

−→
VB) ≤ 0. (see Fig. 12.13c, d).

3. Rule 4: A pairing is invalid if the corresponding hidden contour intersects any
visible stroke anywhere except at tee points or cusps it shares with this stroke.

4. Rule 5: Before adding any pairing to the beam search tree, check that the corre-
sponding hidden contour does not intersect any hidden strokes of the nodes on
the path to this one (except at tee points and cusps that the strokes share).

12.5.3 Gluing Segments and Assigning Huffman’s Labels

After the optimal valid configuration is computed, we glue together regular points
by filling in the Bézier curve between them. Now, these points belong to the same
stroke and are removed from the list of endpoints. Then, we split visible strokes
at tee junctions and assign orientations and Huffman’s depth labels to all strokes.
Since the optimal configuration does not have hidden contours that intersect each
other or visible strokes, assigning depth labels is straightforward. We set the labels
of all visible strokes to be 0, labels of hidden strokes connecting two tee points or a
tee point and a hidden cusp to be 2, connecting cusps (visible or hidden) to be 1.
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Fig. 12.13 Topological consistency checks near the endpoints. Top row shows four Huffman’s
labeling cases, middle row shows the surfaces corresponding to different cases of Huffman’s label-
ing, bottom row—the corresponding validity checks. a–b Consistency check at the T -point. Let T

be the T -junction location, VT the tangent direction at the T , pointing away from the visible stroke,
B the Bézier point lying on the hidden contour closest to T , and VB = (T ,B). Then, Rule 1 says
that dot(VT ,VB) ≥ 0. c–d Let C be the visible cusp, B the point on the hidden contour closest to
C, VC the tangent direction at the cusp, and VB = (C,B). Then, Rule 2 says that the cross-product
of VC and VB should be equal to (0,0,−1) (assuming the z-axis is perpendicular to the screen
pointing away from the screen). Rule 3 says that dot(VB,VB) ≤ 0

12.5.4 Results and Limitations of the Figural Completion
Algorithm

Some results of the hidden contour completion performed by SmoothSketch are
shown in Fig. 12.14. Simple drawings took less than a second to complete, while
the more complex one took about 5 seconds.

The figural completion approach that we presented has a number of limitations.
The location of a hidden cusp provided by the above method may be unsatisfac-

tory. Indeed, in the bean-like case shown in Fig. 12.15, the hidden cusp is estimated
to lie at a point that is not, in fact, hidden. Figure 12.15 (right) shows another ex-
ample where the locations of hidden cusps are estimated incorrectly because of the
simplifying assumption that the precomputed positions of hidden cusps are scale-
invariant.

We assumed that hidden contours do not intersect visible and/or hidden contours
which is a big simplification. In [14] we discuss how we might change the algorithm
to eliminate this assumption.
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Fig. 12.14 Some of the results of the figural completion algorithm. Visible contours are shown in
black, hidden contours with Huffman’s depth 1 are shown in blue and with depth 2 in red

Fig. 12.15 Problem cases: our method can produce a contour completion which places the hidden
cusps at impossible locations. This happens because our method only considers local probabilities,
and not the shape of the remainder of the visible contour

Fig. 12.16 a The back-leg drawing case; b, c, and d show possible completions; our system pro-
duces completion d

Consider a dog’s body with one leg on the left hand side, seen from the right hand
side (see Fig. 12.16). This is a case that our contour-completion algorithm cannot
handle. The “completion” of the obscured contours consists of two hidden cusps
connected by a U-shaped hidden contour, and two “straight” segments connecting
the hidden cusps to two T -points. In the two-hidden-cusp completion, the loca-
tion of the two cusps is ambiguous. The algorithm for finding a hidden cusp for a
T -point/visible-cusp pair will not work for this case, because there are no visible
cusps.

The figural completion for this case could equally well consist of just an arc
joining the two T -points—there’s no a priori reason for the system to assume that
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the shape being drawn has only one connected component. Without the context
(knowing that this is a leg), we do not know of any principled algorithm to guess the
locations of the hidden cusps.

Our contour-completion algorithm, based on the table-lookup, should probably
be improved. We would like to find a good approximation to the data in the table so
that a lookup (and the computation and storage of the table) is unnecessary; if such
a function were theoretically sound, the unprincipled “scale-invariance” assumption
could be eliminated.

Given that figural completion is an expensive search problem, it becomes slower
for a large number of tee/cusps (say, more than 15) and is more likely to make
incorrect inferences as the drawing gets more and more complicated (we only find
an approximate solution to the optimization problem to make it tractable; as a result,
the approximate minimum is not always the global minimum).

12.6 From Drawing to Williams’ Abstract Topological Manifold

Figure 12.17 shows the steps involved in going from a completed contour drawing to
Williams’ abstract topological manifold that is homeomorphic to the surface we will
eventually build. At this point we have a completed contour drawing, with a Huff-
man labeling. This drawing consists of directed arcs (which we call edges) between
vertices corresponding to T -points and cusps. A set of strokes with orientations as-
signed to them together partition the plane into planar regions (for the kidney bean
example, the inner regions are shown in green and yellow in Fig. 12.17). The out-
ermost region is ignored; each of the inner ones (we call them “2D panels”) needs
to be computed from the input as a closed loop of consecutive strokes that form a
boundary of the panel. We describe the solution to this graph problem in [15].

Each of these 2D panels is now triangulated to form a “3D panel” [30]. From
now on, we will use the term “panel” to refer to a 3D panel. Williams’ algorithm
is then used to create multiple copies of each panel. Figure 12.17 shows 3D panels
for the bean stacked up in random order along the projection direction. There are
four copies of the small region and two copies of the big region in this example;
intuitively, this has to do with how many times the view ray intersects the surface
of the kidney bean for each region. Williams’ algorithm also specifies which edges
of these panels have to be glued to one another to form a topological manifold. In
Fig. 12.17, the edges of each panel are colored; edges with identical colors will be
identified to form the topological manifold. The paneling construction algorithm is
formally described in Sect. 12.6.2.

12.6.1 Triangulating the Panels; The Issue of Two Distinct Points
Having the Same 2D Location

Consider the stroke of the big panel for the kidney bean drawing—see Fig. 12.18.
There are two distinct points at the bottom of the drawing and they should remain
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Fig. 12.17 Steps involved in creating a paneling construction from a completed and labeled con-
tour drawing of a kidney bean

Fig. 12.18 (Left) A panel for a bean shape. (Right) There are actually two distinct points corre-
sponding to the original red 2D vertex

distinct points in the mesh after the triangulation. We identify such cases at the
figural completion stage and add extra information to the panel to be able to keep
track of such points on the stroke. Then, before triangulating the panel, we move
one of the points slightly toward the average of its neighbors (at this stage all points
in the stroke are distinct), triangulate the panel, and then move the corresponding
vertex back into its original position.

12.6.2 Paneling Construction

During Williams’ paneling construction, multiple copies of each panel are created
and correspondence is established between the edges of the panels.

12.6.2.1 Creating Multiple Copies of Each Panel

As mentioned above, panels correspond to the regions that the strokes partition the
plane into (green and yellow regions in Fig. 12.19 for the kidney bean). The number
of copies of each panel (region) depends on how many times the view ray inter-
sects the surface of the object for each region. Thus this number is just the depth
complexity of each region. Let nR be the depth complexity of region R. We use the
following algorithm to compute these depths (see Fig. 12.19):

1. Assign the exterior region depth 0 (i.e., a ray hitting this region passes through 0
panels). All other regions have unassigned depths.

2. Push the exterior region on a stack, S.
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Fig. 12.19 nR and nQ are
the depths of the green and
yellow regions of the kidney
bean

3. While S is not empty:
Let R = pop(S).
For each edge q in boundary of R, let Q be the region on the other side of q

from R.

• If nQ is already assigned, then check if it differs from nR by ±2. If yes, just
move on, otherwise return ERROR.

• If nQ has not been assigned
– if Q is to the left of the oriented edge, then nQ = nR + 2
– if Q is to the right of the oriented edge, then nQ = nR − 2
– push Q onto the stack.

The algorithm has complexity O(E), where E is the number of edges of regions.
Williams’ algorithm [34] is very similar except he solves the R × R linear system
of equations (where R is the number of regions).

Note that Huffman labels (edge labels) that were computed during the figural
completion are not used for computing the depths above. They are needed in the
next step, to establish correspondences between the edges of the panels.

12.6.2.2 Establishing Correspondences Between Edges of the Panels

We consider (see Figs. 12.20, 12.21) the disjoint copies of a region R as being of the
form Ri = R × {i}, where the index i never appears more than once in all copies of
all regions. A typical identification in Williams’ scheme is then that the point (r, i)

is identified with (r, j), where r is a point on the boundary of region R, and (r, i)

and (r, j) lie in Ri and Rj respectively; another might be that (r, i) is identified with
(s, j), where R and S are adjacent regions in the plane both containing the point r =
s on their boundaries, (r, i) ∈ Ri and (s, j) ∈ Sj . The disjoint union of all the copies
of all the regions will be called U ; there’s a natural map π : U → �2 : (r, i) �→ r in
which the multiple copies of any point r are all mapped to r .

For a point P in the plane, the set π−1(P ) is a set of points of the form (P, i);
we call this the “stack over P .” Similarly, we can consider the stack of edges over
an edge in the plane, or the stack of panels over a panel in the plane. If an edge e in
the plane goes from P to Q, we write ∂e = (P,Q) to denote that the boundary of
edge e consists of the points P and Q, in that order. If ei is an edge in the stack over
e, then ∂ei = (Pi,Qi) as well.



12 Inferring 3D Free-Form Shapes from Complex Contour Drawings 333

Fig. 12.20 Schematic view
of the disjoint union of panels
that are glued to form the
topological manifold
homeomorphic to the bean.
Each copy of each panel lies
in a different layer; the union
of all these copies is called U .
The map π is “projection
back to �2 along z.” The
collection of all points that
project to A (the red dots) is
called the “stack above A”.
The magenta edges are the
stack above the edge e. Each
panel is indexed by its height
in z, so all panels have
different indices

Williams identifies certain panel edges in pairs (see Fig. 12.21), that is, for cer-
tain i and j , he declares that ei is to be identified with ej , which means that the
point (x, i) ∈ ei , is identified with the point (x, j) ∈ ej . This identification in-
duces an identification on the stacks above vertices: if ei is identified with ej , and
∂e = (P,Q), we declare Pi ∼ Pj , and Qi ∼ Qj . The transitive closure of the rela-
tion ∼ partitions stacks into equivalence classes that we call clusters; each cluster
in each stack corresponds to a vertex in Williams’ surface, which we will eventually
embed.

Ordering the Clusters. Williams’ construction gives a depth order to the panels
in each panel-stack; this order is generally unrelated to the indices above. This order
induces an order on the clusters as follows: if Pi and Pj are in two clusters, and R

is a region containing P = π(Pi) = π(Pj ) consider all the faces in the stack over R

that are adjacent to vertices in the first cluster, and all those adjacent to vertices in
the second cluster. By Williams’ construction, faces in the first group will either be
all in front of or all behind the faces in the second group; we say that the first cluster
is in front of or behind the second group accordingly. Again by construction, this
order is independent of the adjacent region R that we choose.

Extra Vertices. One important issue remains: if two edges e and e′ in the same
edge-stack have the same clusters as their endpoints but are not identified in the
topological manifold, these distinct edges would be assigned the same depth in the
constructed surface, which would result in a non-embedding. Figure 12.22 shows
two such edges in the lower portion of the leg case. In such cases, we add a new
vertex at the midpoint of each of the edges e and e′ of the contour (and to any other
edges that are identified with these). The stacks and the clusters within these stacks
are then created for these newly-inserted points in the same way we described above.
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Fig. 12.21 The panels,
re-ordered for visibility;
edges with the same colors
are identified. This identifies
clusters of vertices in each
stack; vertices with the same
color form a cluster. Note that
the near vertex in the two
large panels has been split
into two copies

Fig. 12.22 a A contour-completed drawing of a leg attached to a body, with panels colored. b The
two panels for the bottom of the leg, colored to show edge identifications and vertex clusters. Note
that the top edges e and e′ share endpoints but are not identified. c We add mid-edge vertices, sort,
and cluster them as before

12.7 Constructing a Topological Embedding

We now present a novel algorithm that constructs a topological embedding from
Williams’ abstract manifold.

Embedding Vertices. To each cluster of the vertex stack over a vertex P , we
associate a vertex whose xy-coordinates are those of P , and whose z coordinate is
yet to be determined (we call these cluster vertices). We determine the z-placements
using a mass–spring system. Suppose that the vertices corresponding to the clusters
of one stack are Xα , where α ranges over the clusters. If cluster α is behind cluster
β , we want the z-coordinate, zα of Xα to be less than that of Xβ . For each such
order-relation between two of the Xs, we attach a spring whose rest-length z0 is
one, and for which the spring force follows the rule

F(d) =
{

0 d ≥ 1,

Ce1−d d < 1

which ensures that if the z-order is inverted, there is a substantial force pushing back
toward the proper ordering.

This ordering and set of z-values could also be found by simply sorting the ver-
tices; we use the mass–spring system as a way to relate the z-depths for vertices in
separate stacks. In particular, if P and Q are distinct vertices joined by an edge e,
then each cluster over P is joined to one or more clusters over Q by edges in the
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stack over e. For each such connection, we add a spring with rest-length zero be-
tween the corresponding cluster vertices; we use a sufficiently small spring constant
that the intra-stack ordering is not disturbed. Our goal is to make each edge want to
be somewhat parallel to the z = 0 plane, rather than having vertices associated with
one stack be far in front of all others, for instance.

The mass–spring system acts on the points, which are constrained to move only
in z. Clearly if the spring constant for the inter-stack springs is small enough, each
stack will be ordered correctly. In our implementation, we use the constant 1.3,
which seems to perform well on examples like the ones shown in this chapter and
the associated video. The points of the drawings in our system lie in the bounding
box of −1.0 to 1.0 in each direction.

Embedding edges. Having embedded the cluster vertices (i.e., the vertices of the
manifold that Williams constructs), we can extend the embedding to edges by lin-
early interpolating depth along each edge. The ordering of edges in Williams’ con-
struction is generally sufficient to show that if ei and ej are distinct edges of the
manifold corresponding to contour edge e, then they do not intersect except, per-
haps, at endpoints which they share. In the event that ei and ej share both their end-
points, linear interpolation would assign them the same depths at all points, and our
mapping would not be an embedding. Fortunately, the “extra vertices” step above
inserts points exactly when necessary to prevent this; thus we have an embedding of
both the vertices and the edges of Williams’ manifold.

Embedding faces. We extend the embedding over the panel interiors using Pois-
son’s formula to find a harmonic function on the panel whose values on the boundary
are the given depth values that we’ve already assigned to the edges of the panel. Each
interior point is assigned a depth that is a weighted average of the depths of points
on the boundary edges. To prove that two panel interiors in the same stack never
intersect, suppose that P is a point of some panel R, and that X and Y are points in
the panel-stack over R, and that π(X) = π(Y ) = P . Suppose that the panel to which
X belongs, Ri , is in front of the panel to which Y belongs, Rj , so that the z-value
for X should be larger than the z-value for Y . Then points on the edges of Ri are in
front of (or equal to) the corresponding points on the edges of Rj . The z-coordinates
of corresponding points cannot all be equal unless the boundaries of Ri and Rj are
identical, in which case the union of Ri and Rj is a spherical connected component
of the manifold, and is handled as a special case. In the remaining cases, since the
z-values for Ri are greater than or equal to the corresponding values for Rj , and
the z value for X is a weighted sum of these values with all non-zero weights, and
the z-values for Y is the corresponding weighted sum of the other z-values, with the
same weights, we find that the z value for X is strictly greater than that for Y . Thus
the interiors of faces do not intersect. We have thus constructed a continuous 1-1
map from Williams’ abstract manifold into �3, i.e., a topological embedding.
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12.8 Smoothing the Embedding Using the Mass–Spring System

Now that mesh vertices corresponding to each panel have been assigned depths, we
“stitch” the meshes of individual panels into a single mesh. We start with the first
panel, and stitch panels to it one at a time. If two panels are identified along an
edge e, we alter the vertex indices on second to match those of the first. The edge
correspondences for the stitched panel (excluding the edge we stitched along) come
from the correspondence information of the two component panels. Although the
resulting stitched mesh has the proper “contour projection” (for an appropriately
modified definition of “contour”), its shape is generally unsatisfactory, as can be
seen in the accompanying video. We therefore perform several optimization steps.
During these steps, we constrain the vertices lying on the visible silhouette to remain
on the silhouette so that the contours will match the drawing. That is, these vertices
can only move in z, while others may move in x, y, and z.

First, we remesh the model using the algorithm proposed in [18] and apply ten
iterations of Taubin’s λ/μ smoothing [31] in order to create more regular triangles,
as the behavior of the mass–spring system is sensitive to the quality of the triangu-
lation. These operations are applied only to non-silhouette vertices and edges.

At this point, the mesh is smoother, but rather flat and sharp along the edges
(because the silhouette constraints have not been incorporated smoothly). The next
goal is to “inflate” the model, making it more rounded. To achieve this, we con-
struct a mass–spring system on the initial mesh, with masses at the vertices and with
two types of springs: length springs and what we call “pressure force” springs. The
length springs try to keep the length of each edge as close to zero as possible, while
the “pressure springs” simply push each triangle outward along its normal with a
force proportional to the area of the triangle. We relax this mass–spring system and
although the convergence in general is not guaranteed, in practice it converges quite
fast. A model like the ones shown in the chapter inflates in several seconds on an
AMD Athlon 64 3000+ processor.

Our mass–spring approach has several drawbacks; some of them are common to
all mass–spring systems [4], others are particular to our choice of springs. First, most
mass–spring systems approximate the physics of deformable models very crudely.
Further, in our case, even the underlying “physical” model is quite ad hoc. We intu-
itively think of the current model as inflating the initial flat shape as a balloon, but
with the restriction on the movement of silhouette points and disregard for surface
curvature, it is a very weak analogy.

Secondly, our mass–spring system has several tuning constants that have to be
chosen so that they work for most of the examples user draws.

Thirdly, there is currently no mechanism in the system to prevent self-penetra-
tions of the surfaces. In fact, although different parts of the initial mesh are in the
correct relative order, the mass–spring system could relax it into the configuration
that is more or less planar (think of a worm example). We have not observed it
in practice, but theoretically, the inflation algorithm does not prevent it from hap-
pening. Silhouette constraints prevent this issue to some degree: when we say that
something is a cusp, the silhouette has to travel straight into the Z-direction at that
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Fig. 12.23 The examples of the shapes created with our system from user drawings. The top row
shows the shapes from the sketching viewpoint, and the bottom row shows them from a different
view

point, which tends to mean that “bending back again to touch” is unlikely. This is-
sue can be addressed by doing the relaxation in a way that does not allow silhouette
vertices to move, or by inserting springs that preserve the relative order in the in-
flated mesh. Sometimes, though, we would like to allow self-penetrations: think of
a body-with-two-legs example; there, the legs being slightly pushed inside the body
is often more desirable than having them stick out far away from the body.

Having said all this, the mass–spring system we created seems to work reason-
ably well on most examples. The final results are shown in Fig. 12.23.

The smoothing process can be regarded as a kind of local search in probability
space: if we assume that surfaces with sharp corners and high curvature are unlikely,
and those that are smooth are more likely, then (returning to the probabilistic view of
the problem mentioned in the introduction) our smoothing approach can be regarded
as a local search for a more probable shape that matches the topological constraints
that we have already established.

12.9 Editing Gestures

The system may return a different shape from the one that the user had in mind
while drawing the sketch. We therefore let the user edit hidden contours or choose a
better completion from the list of suggestions offered by the system. The user draws
strokes by dragging the right mouse button; when he is finished drawing, he presses
the middle mouse button and the sketch is inflated into a 3D model. The user can
change the shape by pressing the “Contours” button at the bottom of SmoothSketch
window. Then, in the main window, the system displays both visible and hidden
contours inferred by the system. The hidden contours are shown in light blue and
can be manipulated by dragging default Bézier control points for each hidden curve.
In the second, smaller, window that shows up on top of the main one, the system
shows up to three alternative hidden contour completions (see Fig. 12.24). If the
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Fig. 12.24 For each sketch
we show the default hidden
contours inferred by the
system in the main window
and a smaller “suggestions
window” with up to three
alternative topological
interpretations of the sketch

user selects one of the suggestions, the second window closes and the selection is
shown in the main window where the user can edit it.

The list of suggestions lets the user change the topology of the model, while
contour editing tool lets him change the shape of the hidden contours. Only valid
contour completions are presented to the user, so the user can not use this tool to fix
incorrect hidden-cusp locations like the ones shown in Fig. 12.15.

12.10 Limitations and Conclusions

Based on Williams’ framework [33], we created a practical system that goes from a
contour drawing to a fairly smooth surface with that drawing as its visible contour,
one which works for a wide variety of useful cases.

As we indicated in the corresponding sections, both the hidden contour com-
pletion algorithm and the inflation algorithm for SmoothSketch have a number of
limitations. The main limitation of the contour-completion approach is that it is
local—the completed contour shape depends on the geometry of the starting and
ending points, but ignores the remainder of the input shape; it will require a much
deeper understanding of contour completion to address this.

The inflation algorithm based on relaxing the mass–spring system currently re-
quires tuning constants; the constants that produce the most satisfactory-looking
results actually produce self-intersecting surfaces, especially in locations like
“armpits” (i.e., between a limb and a body). We would like to find an algorithm
that produces embeddings instead.

We would like to extend our work to include minor surface discontinuities—
things like ridges or creases on a surface, which often are perceptually significant.
We have developed our system to be agnostic about shape, treating it purely ge-
ometrically, users are familiar with many shapes. We imagine the possibility of a
hybrid system, in which the user’s sketch is both inflated and matched against a
large database of known forms, for possible suggestions (“You seem to be drawing
a dog; would you like us to add the hidden legs for you?”).
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Chapter 13
The Creation and Modification of 3D Models
Using Sketches and Curves

Levent Burak Kara and Kenji Shimada

13.1 Introduction

While recent decades have seen significant progress in CAD software, the current
state of the art still appears insufficient when it comes to the styling design of prod-
ucts. This is evidenced by the fact that a significant portion of early design activities
such as concept development and style generation occurs almost exclusively in 2D
environments—be it the traditional pen-and-paper environment or its digital equiv-
alents. While part of this bias toward 2D tools in the early design stages comes
from the undeniable convenience and familiarity of such media, we believe the lack
of suitable software and interaction techniques to support 3D styling design has a
significant role in the current bias.

In this chapter, we present our recent studies concerning pen-based modeling of
3D geometry for industrial product design. Our system allows users to create and
edit 3D geometry through direct sketching on a pen-enabled tablet computer. A dis-
tinguishing feature of our system is that it is tailored toward the rapid and intuitive
design of styling features such as free-form curves and surfaces, which is often a
tedious, if not complicated, task using conventional software. A key commonality
among the types of products we consider is that their aesthetic appeal is a central
consideration. Additionally, given that the final aesthetic form usually evolves in
time rather than simply occurring, it is important that users of our system are able
to accurately reproduce their ideas, while having the ability to quickly explore al-
ternatives. The main advantage of our system lies precisely here in that it supports
the direct creation and editing of free-form curves and surfaces through an intuitive
interface. Our system is intended to be used by a wide variety of designers rang-
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ing from those who prefer the traditional pen-and-paper interface, to those who are
already familiar with existing CAD tools.

In Sect. 13.2 of this chapter, we describe a general purpose modeling system for
designing a wide variety of 3D geometries. Our approach facilitates the creation of
3D geometry with arbitrary topology through the use of a simple underlying surface
template. Early in the design process, this template serves as a convenient substrate
allowing designers to quickly lay out a set of curves. These curves later form the
constituent wireframe edges of the 3D object. Our curve creation and modification
techniques allow the template be only roughly defined with no particular detail.
Using this method, we illustrate the design of various consumer products.

Section 13.3 of this chapter is concerned specifically with automotive styling de-
sign. We describe a novel method based on camera calibration and elastic deforma-
tion that allows designers’ rough, conceptual sketches to be quickly turned into 3D
surface models, thereby facilitating a rapid design, evaluation and reuse of styling
ideas directly in 3D. This approach closely relates to the first part of our chapter
in that it provides a rapid and accurate means for generating an underlying surface
model specifically for automotive design. The described techniques enhance the de-
sign process by producing 3D models readily commensurate with input sketches.

The content presented in this chapter has been summarized from our previous
publications ([16–20]). We refer the reader to these references for the details not
presented herein.

For more exploration of existing work on sketch-based 3D modeling, a rich body
of literature is available. Such work can be categorized into five groups based on
each work’s characteristics:

• Gesture-based approach [4, 6, 7, 11, 39]: This approach uses designers’ strokes
primarily for geometric operations such as extrusion, bending and primitive de-
formation, rather than for directly depicting the target shape. While these methods
allow a quick construction of rectilinear geometry, or a deformation of existing
geometry, they are not targeted toward designing 3D space curves.

• Silhouette-based approach [1, 2, 12, 13, 22, 30–32]: In this approach, users’
strokes are used to form a 2D silhouette representing an outline or a cross-section,
which is then extruded, inflated or swept to give 3D form. The approach is suited
for obtaining a reasonable 3D geometry quickly, rather than modeling a precise
shape. Recently the silhouette drawing approach has been applied to the design
of organic shapes such as plants, leaves and animal parts.

• Line-labeling and optimization [5, 9, 21, 24, 33–36]: In 3D interpretation from 2D
input, the well-known issue of one-to-many mapping (thus the lack of a unique
solution) has resulted in the development of various constraint and optimization-
based methods. To date, much work has focused on interpreting line drawings
of polyhedral objects. These methods typically use some form of a line-labeling
algorithm, followed by an optimization step, to produce the most plausible inter-
pretation.

• Template-based approach [16–20, 25, 34, 38]: In this approach, the desired 3D
form is obtained by modifying an underlying 3D template. The effectiveness and
applicability of the approach depends on the variety of target shapes—if target
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shapes are akin to each other topologically and geometrically it is easy to de-
fine an effective underlying 3D template; otherwise the template may be too pro-
hibitive to unleash the creativity of the designer. Note that our work presented in
this chapter is an example of the template-based approach.

• Mesh editing [3, 23, 27]: Mesh-editing systems allow users to operate directly
on existing surfaces to deform or add feature lines using a digital pen. The key
difference of these methods compared to similar gesture-based approaches is that
users’ strokes are directly replicated on the resulting shape. Such systems let users
add smoothly blended complex artifacts to an otherwise plain original geome-
try. A typical mesh-editing operation requires a specification of the target region,
along with a specification of the desired deformation.

13.2 Sketch-based Creation and Modification of 3D Shapes

Consider the design of a computer mouse shown in Fig. 13.1. In a typical scenario,
the user begins by constructing the base wireframe model of the design object. For
this, the user first sketches the initial feature curves on a very rough and simplified
3D template model. In this particular case the template is defined as a polygonal
mesh. This template acts as a platform that helps anchor users’ initial strokes in 3D
space. Once the initial curves comprising the wireframe are constructed, the base
3D template is removed, leaving the user with a set of 3D curves. Next, through

Fig. 13.1 Modeling operations supported by our system. a Curve creation and modification illus-
trated on arbitrary curves. b Illustration of surface creation and modification on a user-designed
wireframe. c Further design is performed in a similar way. Curves of features are drawn, modified,
and finally surfaced
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Fig. 13.2 B-spline fitting to raw strokes. Top: Input strokes. Bottom: Resulting B-spline and its
control polygon

direct sketching, the user modifies the initially created curves to give them the pre-
cise desired shape. After the wireframe is obtained, the user constructs interpolating
surfaces that cover the wireframe. Finally, using two physically based deformation
tools, the user modifies the newly created surfaces to the desired shapes. Once the
basic wireframe and surfaces are created, further details can be added using the same
strategy of curve creation, curve modification, surface creation, and finally surface
modification. The following sections detail these processes.

13.2.1 Constructing the 3D Wireframe

In the first step of the design, the user constructs the wireframe by sketching its con-
stituent 3D curves directly on the template. Our system allows curves to be created
with an arbitrary number of strokes, drawn in any direction and order. The process
consists of two main steps. The first is a beautification step in which we identify
a smooth B-spline that closely approximates the input strokes in the image plane.
In the second step, the 2D curve obtained in the image plane is projected onto the
template resulting in a 3D curve.

Given the input strokes in the image plane, we first fit a B-spline to the collection
of strokes using a minimum least-squares criterion described in [28]. Figure 13.2
shows an example. By default, we use cubic B-splines with seven control points.
While these choices have been determined empirically to best suit our purposes,
they can be adjusted to obtain the desired balance between the speed of computa-
tion, the smoothness of the curve, and the approximation accuracy. Nevertheless,
details of the curve fitting process and the resulting auxiliary features, such as the
curve’s control polygon, are hidden from the user. The user is only presented with
the resulting curve.

Normally, the data points used for curve fitting would be those sampled along
the stylus’ trajectory. However, fluctuations in the drawing speed often cause con-
secutive data points to occur either too close to, or too far away from one another.
This phenomenon, as evidenced by dense point clouds near the stroke ends (where
drawing speed tends to be low) and large gaps in the middle of the stroke (where
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Fig. 13.3 Point ordering using principal component analysis. a Input strokes and extracted data
points. b The two principal component directions are computed as the eigenvectors of the covari-
ance matrix of the data points. The two direction vectors are positioned at the centroid of the data
points. c Data points are projected onto the first principal direction e1, and sorted

speed is high), often adversely affects curve fitting. Hence, before curve fitting is
applied, we resample each stroke to obtain data points equally spaced along the
stroke’s trajectory.

The main challenge in curve fitting, however, arises from the fact that a curve
can be constructed using multiple strokes, drawn in arbitrary directions and orders.
This arbitrariness often causes spatially adjacent data points to have markedly dif-
ferent indices in the vector storing the data points. An accurate organization of the
data points based on spatial proximity, however, is a strict requirement of the curve
fitting algorithm. Hence, prior to curve fitting, input points must be reorganized to
convert the cloud of unordered points into an organized set of points. Note that this
reorganization would only affect the points’ indices in the storage vector, not their
geometric locations.

To this goal, we use a principal component analysis as shown in Fig. 13.3. The
main idea is that, by identifying the direction of maximum spread of the data points,
one can obtain a straight line approximation to the points. Next, by projecting the
original points onto this line and sorting the projected points, one can obtain a suit-
able ordering of the original points.

Given a set of 2D points, the two principal directions can be determined as the
eigenvectors of the 2 × 2 covariance matrix Σ given as

Σ = 1

n

n∑

k=1

(xk − μ)(xk − μ)T

Here, xk represents the column vector containing the (x, y) coordinates of the kth
data point, and μ is the centroid of the data points.
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The principal direction we seek is the one that corresponds to maximum spread,
and is the eigenvector associated with the larger eigenvalue. After identifying the
principal direction, we form a straight line passing through the centroid of the data
points and project each of the original points onto the principal line. Next, we sort
the projected points according to their positions on the principal line. The resulting
ordering is then used as the ordering of the original points. Note that one advanta-
geous byproduct of this method is that it reveals the extremal points of the curve
(i.e., its two ends), which would otherwise be difficult to identify.

In practice, we have found this approach to work well especially because the
curves created with our system often stretch along a unique direction. Hence, the
ordering of the projections along the principal direction often matches well with
the expected ordering of the original data points. However, this method falls short
when users’ curves exhibit hooks at the ends, or contain nearly closed or fully closed
loops. This is because these artifacts will cause folding or overlapping of the pro-
jected points along the principal direction, thus preventing a reliable sorting. To
circumvent such peculiarities, we ask users to construct such curves in pieces con-
sisting of simpler curves; our program allows separate curves to be later stitched
together using a trim function.

Once the raw strokes are beautified into a B-spline, the resulting curve is pro-
jected onto the base template. This is trivially accomplished using the depth buffer
of the graphics engine. At the end, a 3D curve is obtained that lies on the template,
whose projection to the image plane matches with the user’s strokes.

13.2.2 Modifying the Wireframe

After creating the initial wireframe, the user begins to modify its constituent curves
to give them the precise desired shape. During this step, the base template can be
removed, leaving the user with a set of 3D curves. We use an energy minimization
algorithm to obtain the best modification of the curve in question.

To make matters simple, we designed our approach such that the curves of the
wireframe are modified one at a time, with freedom to return to an earlier curve. At
any point, the curve that the user intends to modify is determined automatically as
explained below, thus allowing the user to modify edges in an arbitrary order. After
each set of strokes, the user presses a button that processes accumulated strokes,
and modifies the appropriate curve. To facilitate discussion, we shall call users’
input strokes as modifiers, and the curve modified by those modifiers as the target
curve.

Modification of the wireframe is performed in three steps. In the first step, curves
of the wireframe are projected to the image plane resulting in a set of 2D curves.
The curve that the user intends to modify is computed automatically by identifying
the curve whose projection in the image plane lies closest to the modifier strokes.
The proximity between a projected curve and the modifiers is computed by sam-
pling a set of points from the curve and the modifiers, and calculating the aggregate
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Fig. 13.4 Internal energy
due to stretching and bending
is minimized approximately
by moving each snake node
to the barycenter of its
neighbors similar to
Laplacian smoothing

minimum distance between the two point sets. In the second step, the target curve
is deformed in the image plane until it matches well with the modifiers. In the third
step, the modified target curve is projected back into 3D space.

13.2.2.1 Curve Modification in the Image Plane

We deform a projected target curve in the image plane using an energy minimizing
algorithm based on active contour models [15]. Active contours (also known as
snakes) have long been used in image processing applications such as segmentation,
tracking, and registration. The principal idea is that a snake moves and conforms to
certain features in an image, such as intensity gradient, while minimizing its internal
energy due to bending and stretching. This approach allows an object to be extracted
or tracked in the form of a continuous spline.

We adopt the above idea for curve manipulation. Here, the 2D target curve is
modeled as a snake, whose nodes are sampled directly from the target curve. The
nodes of the snakes are connected to one another with line segments making the
snake geometrically equivalent to a polyline. The set of modifier strokes, on the
other hand, is modeled as an unordered set of points (point cloud) extracted from
the input strokes. As before, this allows for an arbitrary number of modifiers, drawn
in arbitrary directions and order. With this formulation, the snake deforms and con-
forms to the modifiers, but locally resists excessive bending and stretching to main-
tain smoothness. Mathematically, this can be expressed as an energy functional to
be minimized:

Esnake =
∑

i

Eint(vi ) + Eext(vi )

where vi = (xi, yi) is the ith node coordinate of the snake. Eint is the internal energy
arising from the stretching and bending of the snake. Our solution of minimizing this
term involves applying a restitutive force Frest that simply moves each snake node
toward the barycenter of its neighboring two nodes (Fig. 13.4).

External energy Eext describes the potential energy of the snake due to external
attractors, which arise in the presence of modifiers. The modifiers’ influence on the
snake consists of two components: (1) location forces, (2) pressure forces. The first
component moves the snake toward the data points sampled from the modifiers. For
each snake node vi , a force Floc(vi ) is computed corresponding to the influence of
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Fig. 13.5 Location force on
a node

the location forces on vi :

Floc(vi ) =
∑

n∈kneigh

mn − vi

‖mn − vi‖ · w(n)

where mn is one of the k closest neighbors of vi in the modifiers (Fig. 13.5). w(n)

is a weighting factor inversely proportional to the distance between mn and vi . In
other words, at any instant, a snake node vi is pulled by k nearest modifier points.
The force from each modifier point mn is inversely proportional to its distance to
vi , and points along the vector mn − vi .

The second component of Eext is related to pressure with which strokes are
drawn. The force created due to this energy pulls the snake toward sections of high
pressure. The rationale behind considering the pressure effect is based on the obser-
vation that users typically press the pen harder to emphasize critical sections while
sketching. The pressure term exploits this phenomenon by forcing the snake to fa-
vor sections drawn more emphatically. For each snake node vi , a force Fpres(vi ) is
computed as

Fpres(vi ) =
∑

n∈kneigh

mn − vi

‖mn − vi‖ · p(n)

where p(n) is a weight factor proportional to the pen pressure recorded at point mn.
During modification, the snake moves under the influence of the two external

forces while minimizing its internal energy through the restitutive force. In each
iteration, the new position of vi is determined by the vector sum of Frest, Floc and
Fpres, whose relative weights can be adjusted to emphasize different components.
For example, increasing the weight of Frest will result in smoother curves with less
bends. On the other hand, emphasizing Fpres will increase the sensitivity to pressure
differences with the resulting curve favoring high pressure regions. Default weights
are currently 30% for Frest, 40% for Floc, and 30% for Fpres. We have determined
these weights empirically such that we obtain subjectively the best outcomes in our
test cases.
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13.2.2.2 Unprojection to 3D

In this step, the newly designed 2D curve is projected back into 3D space. As men-
tioned previously, there is no unique solution because there are infinitely many 3D
curves whose projections match the 2D curve. We therefore choose the best 3D
configuration based on the following constraints:

• The 3D curve should appear right under the modifier strokes.
• If the modifier strokes appear precisely over the original target curve, i.e., the

strokes do not alter the curve’s 2D projection, the target curve should preserve its
original 3D shape.

• If the curve is to change shape, it must maintain a reasonable 3D form. By “rea-
sonable,” we mean a solution that the designer would accept in many cases, while
anticipating it in the worst case.

Based on these premises, we choose the optimal configuration as the one that
minimizes the spatial deviation from the original target curve. That is, among the
3D curves whose projections match the newly designed 2D curve, we choose the
one that lies nearest to the original target curve. This can be formulated as follows:

Let C be a curve in R
3 constrained on a surface S.1 Let Corig be the original

target curve in R
3 that the user is modifying. The new 3D configuration C∗ of the

modified curve is computed as:

C∗ = argmin
C

∑

i

∥∥Ci − Corig
i

∥∥

where Ci denotes the ith vertex of C. With this criterion, C∗ is found by computing
the minimum-distance projection points of Corig

i onto S (Fig. 13.6(b)).
The rationale behind this choice is that, by remaining proximate to the original

curve, the new curve can be thought to be “least surprising” when viewed from a dif-
ferent viewpoint. One advantage of this is that curves can be modified incrementally,
with predictable outcomes in each step. That is, as the curve desirably conforms to
the user’s strokes in the current view, it still preserves most of its shape established
in earlier steps as it deviates minimally from its previous configuration. This allows
geometrically complex curves to be obtained by only a few successive modifications
from different viewpoints.

During wireframe creation and modification, the user operates on the constituent
curves one at a time, without regard to their connectivity. Hence, the curves in the
resulting wireframe will likely be disconnected. To prepare the wireframe for sur-
facing, the user may invoke a “trim” command that merges curve ends that lie suf-
ficiently close to one another. This command applies an appropriate set of trans-
lations, rotations and scalings to the entirety of a disconnected curve such that its

1S is the surface subtended by the rays emanating from the user’s viewpoint and passing through
the newly designed 2D curve, as illustrated in Fig. 13.6b. This surface extends into 3D space and
is not visible from the original viewpoint.
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Fig. 13.6 Curve modification from a single view. a User’s strokes. b Surface S created by the rays
emanating from the user’s eyes and passing through the strokes, and the minimum-distance lines
from the original curve. c Resulting modification from three different views

ends meet with other curves. By transforming a curve as whole, rather than sim-
ply extending its ends, the shape established by the user is better preserved while
eliminating the kinks that could otherwise occur at the curve ends. At the end, a
well-connected wireframe is obtained that can be subsequently surfaced.

13.2.3 Surface Creation and Modification

In the last step, the newly designed wireframe model is surfaced to obtain a solid
model. Once the initial surfaces are obtained, the user can modify them using simple
deformation tools. The following sections detail these processes.

13.2.3.1 Initial Surface Creation

Given the wireframe model, this step creates a surface geometry for each of the face
loops in the wireframe. In this work, it is assumed that the wireframe topology is
already available with the template model and therefore all face loops are known a



13 The Creation and Modification of 3D Models Using Sketches and Curves 351

Fig. 13.7 Surface creation. a Initial boundary loop consisting of four curves. b Preliminary trian-
gulation using a vertex created at the centroid. c Edge swapping d Final result after face splitting
and mesh smoothing using V-spring method [37]

priori.2 Each face loop may consist of an arbitrary number of edge curves. For each
face loop, the surface geometry is constructed using the method proposed in [14].
In this method, each curve of the wireframe is represented as a polyline, and the
resulting surfaces are polygonal surfaces consisting of purely triangular elements.

Figure 13.7 illustrates the creation of a surface geometry on a boundary loop. In
the first step, a vertex is created at the centroid of the boundary vertices. Initial trian-
gles are then created that use the new vertex as the apex, and have their bases at the
boundary. Next, for each pair of adjacent triangular elements, edge swapping is per-
formed. For two adjacent triangles, this operation seeks to improve the mesh quality
by swapping their common edge (Fig. 13.8a). The mesh quality is based on the con-
stituent triangles’ quality. For a triangle, it is defined as the radius ratio, which is
the radius of the inscribed circle divided by the radius of the circumscribed circle.
Next, adjacent triangles are subdivided iteratively, until the longest edge length in
the mesh is less than a threshold (Fig. 13.8b). Between each iteration, edge swap-
ping and Laplacian smoothing is performed to maintain a regular vertex distribution
with high quality elements. At the end, the resulting surface is smoothed using a
physically based mesh deformation method, called the V-spring operator [37]. This
method, which will be presented in detail in Sect. 13.2.3.2, iteratively adjusts the
initial mesh so that the total variation of curvature is minimized. Once the initial
surfaces are created in this way, new feature curves can be added to the model by
direct sketching, as described in the previous section.

2If the topology is unknown, it has to be computed automatically, or it must be manually specified
by the user. Currently, we are working toward automatically computing the wireframe topology.
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Fig. 13.8 a Edge swapping. Diagonals of adjacent triangles are swapped if minimum element
quality increases. b Triangle subdivision

13.2.3.2 Surface Modification

Often times, the designer will need to modify the initial surfaces to give the model
a more aesthetic look. In this work, we adopt a simple and intuitive modification
scheme that allows users to explore different surface alternatives in a controllable
and predictable way. Unlike most existing techniques, our approach operates di-
rectly on the polygonal surface without requiring the user to define a control grid or
a lattice structure.

Our approach consists of two deformation methods. The first method uses pres-
sure to deform a surface. With this tool, resulting surfaces look rounder and inflated,
with more volume. The second method is based on the V-spring approach described
by [37]. In this method, a network of springs work together to minimize the varia-
tion of surface curvature. A discussion of the practical utility of this type of surface
can be found in [10]. In both methods, deformation is applied to the interior of
the surface while keeping the boundaries fixed. This way, the underlying wireframe
geometry is preserved, with no alterations to the designed curves.

Surface Modification Using Pressure Force This deformation tool simulates the
effect of a pressure force on a thin membrane. The tool allows surfaces to be inflated
or flattened in a predictable way. The extent of the deformation depends on the
magnitude of the pressure, which is controlled by the user through a slider bar.
Different pressure values can be specified for individual surfaces, thus giving the
user a better control on the final shape of the solid model.

The equilibrium position of a pressurized surface is found iteratively. In each
step, each vertex of the surface is moved by a small amount proportional to the pres-
sure force applied to that vertex. The neighboring vertices, however, resist this dis-
placement by pulling the vertex toward their barycenter akin to Laplacian smooth-
ing. The equilibrium position is reached when the positive displacement for each
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Fig. 13.9 A pressure force
applied to a vertex moves the
vertex along its normal
direction. The neighboring
vertices, however, pull the
vertex back toward their
barycenter. Equilibrium is
reached when displacements
due to the pressure force and
the neighbors are balanced

node is balanced by the restitutive displacement caused by the neighboring vertices.
Figure 13.9 illustrates the idea.

The algorithm can be outlined as follows. Let p be the pressure applied to the
surface. Until convergence iterate:

for each vertex vi

Compute the unit normal ni at vertex vi

Compute the pressure force on vi

Fi = p · Avoronoi
i

�vpres
i = Fi · ni

�vlaplc
i =

(
1

K

K∑

j=1

vij

)
− vi , where vij is one of the K adjacent vertices of vi

vi ← vi + (
(1 − ξ)�vpres

i + γ�vlaplc
i

)

end for

The vertex normal ni is updated in each iteration and is computed as the average of
the normals of the faces incident on vi , weighted by the area of each face. Avoronoi

i

is the Voronoi area surrounding vi . It is obtained by connecting the circumcenters
of the faces incident on vi with the midpoints of the edges incident on vi . ξ and γ

are damping coefficients that control the convergence rate. Too low values of ξ or γ

may cause instability in convergence.
The above algorithm is applied to all surface vertices while keeping the boundary

vertices fixed. Figure 13.10 shows an example on a seat model. If necessary, negative
pressure can be applied to form concavities.

Surface Modification Using V-Spring Method This method creates surfaces of
minimized curvature variation based on a discrete spring model. This scheme pro-
duces fair surfaces that vary smoothly, which is known to be an important criterion
for aesthetic design purposes [29]. Additionally, when applied to a group of adja-
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Fig. 13.10 Modification of a seat base using pressure force

Fig. 13.11 V-spring. a Displacement of vi due to vj . b Net displacement due to all neighbors

cent surfaces, it reduces sharp edges by smoothing the transition across the boundary
curves.

In this method, a spring is attached to each surface vertex. Neighboring springs
usually form a “V” shape, thus giving the name to the method. The spring length
approximately represents the local curvature. During modification, the springs work
together to keep their lengths equal, which is equal to minimizing the variation of
curvature (Fig. 13.11). Each vertex thus moves under the influence of its neighbors
until the vertices locally lie on a sphere.

Based on this model, the displacement of vi due to a neighboring vertex vj is
given as follows (see [37] for details):

�vj
i = 1

‖vj − vi‖
[
(vj − vi ) · (ni + nj )

1 + (ni · nj )

]
ni

where ni and nj are unit normal vectors at vi and vj . The total displacement of
vi is computed as the average of displacements due to neighboring vertices. How-
ever, to maintain a regular vertex distribution throughout iterations, each vertex is
also moved horizontally along its current tangent plane toward the barycenter of its
neighbors. In each iteration, the positions and normals of the vertices are updated.
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Fig. 13.12 Design of an electric shaver. a Wireframe creation. b Surfaced model rendered in white.
c Surfaced model painted. d Bottom and top faces, and a detail view of the polygonal surfaces

The iterations are continued until the net displacement of each vertex is less than a
threshold.

13.2.4 Examples

Figure 13.12 shows snapshots of our system in the design of an electric shaver. The
base template used for this model is a rectangular prism as shown in Fig. 13.12a.
The design begins by laying down several curves on this prism. Next, the initial
curves are modified to give them the appropriate 3D shape. During the construction
of the wireframe, curves are sometimes deleted if they are deemed premature at a
given time. For instance, initially the part of the curves making up the three buttons
on the top surface were drawn on the template prism, but were later removed in the
early stages of curve modification. They were then introduced toward the end of the
design process.

The last column of Fig. 13.12a shows the final wireframe designed via our sys-
tem. Figure 13.12b shows different views of the solid model obtained after surfac-
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Fig. 13.13 Various other models created using our system. The foot serves as the natural underly-
ing template for the sandal model

ing. Finally, Fig. 13.12c shows different views of the model in which individual
surfaces have been painted.

The final wireframe consists of 107 individual curves. Out of these 107 curves,
37 had symmetrical pairs. Therefore, only 70 curves were actually designed by the
user. The surfaced model consists of 50 individual surfaces, most of which have
been modified using the surface deformation tools described earlier. This model
took one of the authors about 2 hours to design, excluding the time expended on
surface painting. Figure 13.13 shows several other models created similarly.

Figure 13.14 shows example models created by subjects who participated in a
user study ([20]). The results of this study show that our modeling techniques are
effective in providing a natural and simple means to create 3D geometry. Most users
found the ability to directly manipulate 3D curves using pen stokes to be a particu-
larly powerful feature of our system. We observed that most users were comfortable
adopting the new techniques and utilizing them effectively to complete their as-
signments. Despite having no prior experience with the system, most users quickly
became adept at using the curve and surface creation techniques with little or no
difficulty following a brief introductory tutorial. Given that none of the participants
are routinely engaged in product design, we were pleased to see that many were able
to produce satisfactory models in the allotted time frame.

13.3 Creating 3D Shape Templates from Sketches for
Automotive Styling Design

In car industry, designers place huge emphasis on concept development and styling
activities as the decisions made during these stages are key to the product’s suc-
cess. Most commonly, designers produce a multitude of rough sketches early in the
design process as a way to explore different shapes and styles. While it would be
desirable to seamlessly study a developing concept in 3D, the high fidelity, complex



13 The Creation and Modification of 3D Models Using Sketches and Curves 357

Fig. 13.14 Remote controllers designed by first-time users of our system

nature of existing 3D modeling tools typically precludes the use of such media early
in the design. As a result, designers are restricted to 2D media for most of their
early creative activities. Due to the significant effort and expertise required for 3D
modeling, only a few select candidate concepts will typically pass to the next stage,
while many others are prematurely abandoned.

The goal of this work is to improve current practice by helping the designer
rapidly realize a 2D sketch in 3D and interact with the resulting geometry, without
the need for complex modeling skills. With the proposed approach, we hope to
enable 3D conceptual exploration early in the design cycle where constructing and
interacting with the 3D model is, ideally, as easy as drawing on paper.

Our approach is based on a three-stage modeling framework that facilitates a
rapid construction of a coarse 3D geometry followed by a progressive, sketch-based
refinement. In the first stage, the user marks a set of fiducial points on the sketch.
Using the fiducial points, our method first aligns an underlying template model with
the sketch using a camera calibration algorithm. Next, an optimization algorithm de-
forms the template in 3D until the projection of its fiducial nodes match the fiducial
points marked by the user. In the second stage, the user refines the template by trac-
ing the car’s key character lines. Input strokes modify the edges and surface patches
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of the template. At the end of this stage, the user obtains a smooth 3D surface model
(devoid of details) that matches the car depicted in the sketch. This surface model
is then used as a substrate for the final stage where the designer sketches further
styling curves directly onto the model.

13.3.1 Overview

Figure 13.15 illustrates the design process. At the heart of our approach is a 3D
surface template that embodies a set of fiducial nodes and a set of connecting edges
(Fig. 13.15(a)). The template model has been designed to embody the major surfaces
of a car body in the simplest, most abstract fashion. Aside from the overall shape that
characterizes the class of the car (e.g., sedan vs. hatchback), the template is devoid
of stylistic articulations that could later interfere with conceptual freedom. Note that
this template model is represented by a network of bi-cubic surface patches, unlike
the polygonal template mesh discussed in Sect. 13.2.

The designer begins by importing a digitally created or a scanned paper sketch
into the user interface (Fig. 13.15(b)). The sketch may depict an orthographic or
perspective projection, with an arbitrary vantage point. In the first step, the designer
is asked to mark a set of 2D points on the sketch. The set of requested points cor-
respond to the fiducial nodes of the template (including the four wheel centers). To
guide the designer, a separate widget in the GUI displays the point requested at the
particular instance. If visible, the designer marks the requested point in the sketch.
Otherwise, the designer skips the point. At the completion of this process, the de-
signer will have marked only a subset of the template’s fiducial nodes as several
of those points will be typically invisible in the sketch for marking. By monitor-
ing which fiducial points have been marked and which ones have been skipped, our
system establishes a one-to-one correspondence between template fiducials and the
points marked by the designer.

Using the fiducial marks as input, a camera calibration algorithm first aligns the
template with the sketch. This step adjusts the virtual camera properties such that the
projection of the template in the image plane is similar to the view depicted in the
sketch. Next, an optimization algorithm deforms the underlying template such that
the projections of its fiducial nodes match closely with the designer’s marker points
(Fig. 13.15(c)). Although the fiducial points can be matched exactly via unrestrained
deformations to the template, this will usually result in unrealistic 3D geometry. To
maintain a sound 3D shape during deformation, our optimization algorithm thus
seeks a deformation that deviates minimally from the original template.

Our data structure for the template model maintains a network of cubic curve
edges connecting the fiducial nodes, and a set of bi-cubic surface patches for each
of the associated face loops. Following fiducial point matching, the user refines the
template by tracing its edges directly on the sketch (Fig. 13.15(d)). This process
alters the template edge bodies in 3D to match the input strokes, while keeping the
end nodes fixed. If edge modification from the current viewpoint is not satisfactory,
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Fig. 13.15 Car body design from sketches

the user may modify the template edges from other viewpoints very similar to the
way described in Sect. 13.2.2. During edge modification, surface patches associated
with the edges are updated instantly and automatically to match the deformed edges.
When fine tuning is necessary, the designer can adjust individual node positions by
a simple point-and-drag method. In the current implementation, the selected node is
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Fig. 13.15 (Continued)

constrained to move in a plane parallel to the current image plane while preserving
symmetry.

The resulting surface model provides a suitable basis for further development.
Using the surface model as a substrate, the designer creates character lines and other
details according to the sketch to refine the model (Fig. 13.15(e)). Subsequent opera-
tions are similar to those described in [20]. They include curve creation and deletion,
curve modification, and curve smoothing.

13.3.2 Template Alignment

This step attempts to bring the projection of the template in close correspondence
with the sketch without deforming the template. For this, we attempt to uncover the
parameters of the perspective projection suggested in the sketch. Our approach is
closely related to our previous camera calibration method described in [19]. One
notable difference, however, is that our previous approach requires the eight corners
of a virtual bounding box as the input to the calibration algorithm. Hence, in that
approach the designer has to specify an enclosing bounding box commensurate with
the sketched shape. In our current method, the availability of the fiducial points
replaces the need for such a box.

13.3.3 Template Deformation Based on Fiducial Points

In this step, the fiducial nodes of the template are geometrically modified such that
their projections to the image plane closely match the fiducial points marked by
the designer. We model this problem as an elastic deformation problem subject to
a set of constraints. The optimal 3D configuration is computed by minimizing the
difference between the designer’s marker points and the template fiducials, while
maintaining an acceptable 3D form. We define the following optimization problem:

Let V = {v1, . . . ,vn} ∈ R
3, describe the geometric positions of the original, unde-

formed template nodes.



13 The Creation and Modification of 3D Models Using Sketches and Curves 361

Let V′ = {v′
1, . . . ,v′

n} ∈ R
3, describe the deformed positions of the same nodes.

The goal is to compute V′.
Let F = {f1, . . . , fm} ∈ R

2,m ≤ n, describe the screen coordinates of the fiducial
points marked by the designer.

Let V′
s = {v′

1, . . . ,v′
m} ⊂ V′, describe the corresponding set of template nodes that

need to be matched to F.
Let P : R

3 → R
2 be the mapping function that projects a point in world coordinates

to screen coordinates using the current projection matrix.

We establish the following cost function to minimize:

H = α

m∑

i=1

∥∥Fi − P(Vs′i )
∥∥ + β

n∑

j=1

∥∥Vj − V′
j

∥∥.

The above cost function is composed of a weighted sum of (1) the cumulative 2D
difference between user’s fiducial points and the projections of the associated tem-
plate nodes, and (2) the cumulative 3D difference between the original and deformed
node positions. The first term ensures that the template is deformed into a shape that
matches well with the fiducial points marked by the designer. The second term,
on the other hand, ensures that the template deforms as little as possible from its
original 3D configuration thus helping to maintain an acceptable geometry. The ab-
sence of the first term will fail to produce models that match the sketch since no
deformation will be performed. The absence of the second term, on the other hand,
can potentially result in unrealistic shapes as unnatural 3D deformations may be
attempted in an effort to closely match the fiducial point in the image plane. Note
that there are infinitely many deformations that would result in an exact match in
the image plane. The above cost function thus helps deform the template in a way
that closely matches the fiducial points, while maintaining a sound 3D shape.

Due to a difference of their domains, the two terms may differ by several orders of
magnitudes and thus are not readily comparable. We thus normalize the two terms
to achieve a congruent basis. Finally, the coefficients α and β control the relative
weights of the terms and can be suitably adjusted. In our implementation we have
found α = β = 0.5 to produce satisfactory results.

Further details of the optimization problem including the optimization variables,
equality and inequality constraints, and the solution technique can be found in [18].

13.3.4 Edge Representation and Manipulation

In this work, we use cubic splines as the base representation of our edges, unlike
the polyline representation used in the template described in Sect. 13.2. Each edge
is described in terms of its two end points and two corresponding tangent vectors.
To modify an edge, the designer sketches the desired shape of the curve near the
intended edge (Fig. 13.16). Using the same techniques presented in Sect. 13.2.2,
an infinite virtual surface S originating from the eye, passing through designer’s
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Fig. 13.16 Edge modification

Fig. 13.17 a Examples of connected edges that form G1 continuity. b Top: Edge modification
causes significant changes to the neighboring edge. Bottom: Attenuating the influence on the neigh-
boring edge by tangent reduction

strokes, and extending into the 3D space is constructed. This surface lies directly
under the input strokes and is thus not visible from the current viewpoint.

The new edge is expected to lie on S while maintaining the two end points fixed.
For this, we use a four-point cubic Hermite interpolation method [26]. We compute
two interior edge points at parametric coordinates u = 1/3 and 2/3 (u : [0,1]) and
project them onto S. The original end points and the two newly computed interior
points define the new shape of the edge. The resulting cubic edge minimizes the
deviation from the original edge due to the projection onto S. In most cases, this
choice offers a reasonable solution to the inherently ill-defined problem of comput-
ing a 3D curve from 2D input. If necessary, the user may modify the edge from other
viewpoints until the desired shape is achieved.

To preserve smoothness, we maintain a set of G1 continuity constraints between
edges that form the key character lines. Figure 13.17a shows example curves subject
to these constraints. As a result, when the designer modifies an edge, neighboring
edges will be automatically modified to reflect this continuity. During edge modifi-
cation, our scheme preserves the magnitudes of neighboring edges’ tangent vectors.
As shown in Fig. 13.17b, this may have a notable effect on the neighboring edges
if they have significantly large tangent vectors. While this can be desirable in many
cases, it can also be a hindrance when the designer wants to minimize such effects
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Fig. 13.18 a Coons patch surface representation. b Continuity between two surface patches

to create sharp transitions between neighboring edges. In such cases, the designer
may explicitly interfere by revealing the tangent vector handles to adjust their mag-
nitudes.

13.3.5 Surface Representation and Manipulation

The network of cubic edges gives rise to a set of face loops, which enables a natural
surface representation based on parametric patches. For each face loop, we construct
a bicubically blended Coons patch [8] using the four boundary edges. Figure 13.18
illustrates the idea. A key advantage of this representation is that, when a bound-
ary edge is modified, neighboring surface patches are seamlessly adjusted with G1

continuity to reflect the new edge shape. For further details, see [18].
The designer can use the resulting surface model as a substrate to explore specific

styling ideas in 3D. For this, the designer can simply trace over the feature lines
already in the sketch. The sketched curves are projected onto the underlying surface
model using the techniques described in Sect. 13.2.1. The designer can then smooth
or modify the newly created curves using the techniques described in Sect. 13.2.2
and those described in [20].

13.3.6 Examples

Figures 13.19 and 13.20 show example designs created using our system. In all
cases, it took less than 20 minutes to obtain the displayed 3D geometry and create
the styling curves.

Our experience has shown the accuracy of template alignment to be critical in
the final result of 3D construction. We note that camera calibration becomes in-
creasingly challenging for sketches that depict strong perspectives or exaggerated
depictions. Additionally, the sensitivity of the optimization algorithm for points far-
ther from the camera (where fiducial points pile together) typically causes corre-
sponding 3D shape to be less accurate for those regions. However, this issue is often
a consequence of insufficient information in the sketch, rather than a shortcoming
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Fig. 13.19 An example concept design

Fig. 13.20 Hatchback design

of the deformation algorithm. This can be remedied by allowing the designer to in-
corporate multiple sketches depicting different view of the concept, and judiciously
combining the results into a single 3D geometry.

13.4 Conclusions

In this chapter, we demonstrated how a pen-based modeling system can be effec-
tively applied to the styling design of 3D objects. Our template-based approach is
tailored toward the rapid and natural design of styling features such as free-form



13 The Creation and Modification of 3D Models Using Sketches and Curves 365

curves and surfaces. In a typical scenario, the user first constructs the base wire-
frame model of the design object by sketching the initial feature curves on a very
rough and simplified 3D template model. Once the initial curves comprising the
wireframe are constructed, the base 3D template is removed, leaving the user with
a set of 3D curves. Next, through direct sketching, the user modifies the initially
created curves to give them the precise desired form. After the desired wireframe is
obtained, the user constructs interpolating surfaces that cover the wireframe. Finally,
using two physically based deformation tools, the user modifies the newly created
surfaces to the desired shapes. Once the basic wireframe and surfaces are created,
further details can be added using the same strategy of curve creation, curve mod-
ification, surface creation, and finally surface modification. The results of our user
study indicate that our pen-based modeling framework is effective in providing a
natural and simple means of creating 3D geometry. Most users found the ability to
directly manipulate 3D curves using pen stokes to be a particularly powerful fea-
ture of our system. Our future goals include enhancing and expanding our current
modeling techniques to enable a richer set of design tools for the user.
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Chapter 14
Dressing and Hair-Styling Virtual Characters
from a Sketch

Jamie Wither and Marie-Paule Cani

14.1 Introduction

Sketch-based modeling and edition of free form shapes has become popular in the
past few years. The user typically sketches and refines a shape from different view-
points and zoom factors. Usually assumptions are made on the nature of the resulting
shape. For example: the surface generated should be a smooth, closed surface sur-
rounding a volume of arbitrary topological genus. Inferring 3D from 2D is generally
done by inflating the 2D contour of each shape component, guessing the depth of
the shape in the third dimension or modifying it under the user’s control.

This chapter presents a different application of sketch-based modeling: it illus-
trates the case when the nature of the object to be modeled is well known (modeling
a mountain, a flower, a tree; or, using the examples from this chapter: modeling a
garment or a hairstyle). Knowing the nature of the model the user wants to create
makes things very different: all the prior knowledge we have of the object being
modeled can be expressed, and used to infer the third dimension from 2D. This
enables the extraction of much more information from a single sketch, which re-
duces the need for specifying the desired shape from several different viewpoints.
In some cases, the technique can even be seen as designing a procedural model, and
measuring its shape parameters on the user’s sketch. 3D is then easily inferred, but
the quality of the reconstruction depends on how well the sketch fits the potential
outputs of the procedural model.

We illustrate the strength of these dedicated sketch-based interfaces by detailing
the specific examples of designing clothing and hair for a virtual character. These
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examples, for which several different sketch-based reconstruction techniques are
presented, will help us characterize the prior knowledge that can be exploited when
reconstructing a complex model from a sketch, from basic rules of thumb to more
intricate geometric or physically-based properties. This will provide the basis for a
general methodology for sketch-based interfaces for complex models.

Let us first emphasize the usefulness of sketch-based modeling for the specific
applications described in this chapter. Modeling a garment or a hairstyle for a given
character is tedious using a standard modeling system. Usually it is done in one of
two ways:

• Geometrically: asking a computer artist to design the garment or hairstyle shape
geometrically, such as manually modeling the shape of the garment mesh with all
the folds that will make it look natural, or creating and shaping the hundreds of
generalized cylinders representing the hair wisps of the character (a long process
even with the multiresolution editing and style copy/past techniques of [12]). In
these cases, the user gets no help from the system (the level of realism will only
depend on his or her skill); animating this garment or hair will be difficult, since
they are not the rest position of a physically-based model; and lastly, the same
process will need to be started from scratch if another piece of clothing or another
hairstyle needs to be modeled.

• Using physically-based modeling, which guarantees some degree of realism and
eases subsequent animation: for garments, systems such as Maya nCloth [4] are
based on the fact that a garment is a set of flat patterns sewn together, which fold
due to gravity and due to collisions with the character’s body. In this case the
user requires some skill in tailoring in order to design and position the patterns,
before a physically-based simulation is applied to compute the garment’s shape;
similarly for hair, using a physically-based model is possible [5] but then the
designer requires hair-dressing skills since the hair will need to be wetted, cut,
and shaped before obtaining the desired hairstyle.

Whichever method is used, computer artists typically spend hours designing a gar-
ment or a hairstyle. In contrast, the sketch-based interfaces presented below enable
the creation of a variety of clothing and hairstyles in minutes, using intuitive sketch-
ing and annotation techniques which leverage the existing sketching skills of the
artist.

The remainder of this chapter presents different solutions to sketch-based cloth-
ing and hairstyling, classified according to the nature of the prior knowledge they
rely on: Sect. 14.2 presents a simple method for generating a plausible 3D garment
from silhouettes and fold lines sketched over a front (and optionally back) view
of a mannequin. The method for inferring 3D then simply expresses our basic un-
derstanding when we see such a sketch. Section 14.3 compares two solutions for
incorporating some prior geometric knowledge, namely using the fact that a gar-
ment is a piecewise developable surface, made by assembling a set of 2D patterns;
the associated folds can then be generated either procedurally or using physically-
based simulation. Section 14.4 illustrates the case when a full procedural model of
the object in question is available, here a static physically-based model for hair. The
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Fig. 14.1 a A designers concept sketch. b The sketching interface. c Resulting garment

sketching interface can then be seen as a way to offer quick and intuitive control
over the parameters that indirectly shape the model. Finally, Sect. 14.5 summarizes
and discusses the general methodology used in these systems, namely combining
procedural modeling with sketch-based interfaces to quickly design complex mod-
els.

14.2 Sketching in Distance Fields: Application to Garment
Design

Clothes are as varied as the people who wear them, from a plain T-Shirt to an in-
tricate a ball gown. An ideal sketch-based system for clothing should thus be as
close as possible to the design process an artist would follow using paper and a pen-
cil. Figure 14.1a is an image of a fashion designers concept sketch. The interface
presented in this chapter [19] pictured in Fig. 14.1b closely matches this drawing
process by allowing the artist to sketch the outlines and folds of a garment from a
front (and optionally rear) view of a character model. The resulting inferred gar-
ment is shown in Fig. 14.1c. This section discusses the prior knowledge that can be
incorporated in a sketch-based system dedicated to clothing, describes the interface
and then details the method and implementation.
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14.2.1 Expressing Prior Knowledge

The key to developing a simple yet expressive sketch-based interface is to carefully
reduce the complexity of the problem by first asking: ‘What prior knowledge of
the problem domain do I possess?’ and then following with ‘How can I exploit this
knowledge when designing the system?’. In the case of garments, the approach can
be based on the simple observation they are designed relative to an underlying body.
Designers often annotate a 2D view of a mannequin (see Fig. 14.1), so the interface
can be based on the process of annotating a body model. One can easily observe
that:

• The fit of the garment (tight/loose) from the front view is indicative of the fit from
a side view.

• Garments consist of layers of cloth, and usually the cloth does not overlap itself
within a layer.

Treating these observations as assumptions about the types of garments that can
be modeled enables to reconstruct a whole garment from a single frontal sketch, at
the price of only slightly reducing the variety of clothing that can be modeled. In
particular the first assumption is the key to solving the main problem in any sketch-
based interface: how to assign a third dimension (depth) to two-dimensional points
along the sketched contours? The assumption above effectively states that once you
know the offset of the garment from the body in the frontal plane, then you have
the required offset from a side view—which is enough information to place the
garment in 3D. The offset from the body at any point in space can be precalculated
using a distance field, and then use this distance field to rapidly construct garments
according to the current sketch. The second assumption gives us a hint about the
type of data structures one can employ. If we assume a layer of cloth cannot overlap
itself, the each layer can be represented using a height field.

14.2.2 The Sketch-based Interface

To keep the experience close to that of using paper and a pencil, the interface should
be as unobtrusive as possible. This means minimizing the use of buttons, modifier
keys and UI modes. The system uses only one mouse button (corresponding to the
pen down event when using a tablet), two pen modes (drawing garment contours
(the default mode) or drawing garment folds), and an optional time-saving vertical
symmetry mode. Functionality while drawing is offered through gesture interpreta-
tion, which keeps the user focused on the design task.

14.2.2.1 Typical Garment Design Session

Let us now describe a typical user session in order to illustrate the whole process.
An hypothetical designer, Lucy will sketch a skirt on a female model.
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Fig. 14.2 a Lucy has drawn a few lines to indicate the shape of the skirt in contour mode; the
corner-detector has detected a breakpoint that she does not want. Lucy makes a deletion gesture (a
curve in the shape of an α enclosing the mistaken point) to delete it. b The breakpoint is deleted,
and the lines have been classified: the silhouettes are in red and the borders in yellow. c The surface
inferred by the system once Lucy requests a reconstruction

Fig. 14.3 a Lucy drew in contour mode the outline of the skirt without sharp corners at the bottom,
and the corner-detector failed to put breakpoints there, she therefore gestures (overdrawn in green
here) to indicate the need for new breakpoints, in the form of short strokes that cross the contour.
b The new breakpoints have been inserted. c The reconstructed skirt

Contour Mode Lucy first draws a line across the waist (see Fig. 14.2a), indicating
the top of the skirt, and then a line down the side, indicating the silhouette of the
skirt, then a line across the bottom in a vee-shape indicating that she wants the front
of the skirt to dip down, and finally the last side, forming a closed 2D boundary.
A simple corner-detection process is applied to break the sketch into parts; one
extra corner is detected by accident and Lucy can delete it with a deletion gesture.
She may also add new breakpoints if required by drawing a small stroke crossing
an existing contour (see Fig. 14.3). Breakpoints play an important role in the 3D
positioning process (detailed later), since they determine the global 3D position of
the garment with respect to the body. The two lines on the sides are classified as
silhouettes, the others are classified as border lines.

Now Lucy asks to see the garment inferred by the system by pressing a button.
A garment surface matching the drawn constraints and adapted to the shape of the
underlying model appears almost instantly (Fig. 14.2c).

Front/Back Modes By default, the user’s strokes affect both the front and back
parts of the garment. Usually, most of the lines are shared by the two views. This
is always the case for silhouettes, which by definition join the front and back parts,
and it is true for the borders in many cases. It is, however, possible to edit front and
back borders independently by toggling to the appropriate mode (with the constraint
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Fig. 14.4 Front (a, b) and
back (c, d) of the garment.
The borders of the opposite
view are shown as dashed line

that the contour remains closed), as shown in Fig. 14.4. To avoid confusion borders
belonging to the current view are rendered with a continuous stroke whereas the
others appear dashed.

Vertical Symmetry. It is common for garments to exhibit vertical (i.e. left–right)
symmetry. The system offers a mirror mode where only half the canvas is active: the
other half automatically reproduces mirrored versions of the strokes.

Gestural Interface Components. The user’s marks are interpreted as gestures; in
contour mode the default stroke interpretation is to construct silhouette and border
line segments. Other gestures add breakpoints for the classification process, delete
breakpoints, delete a segment or an entire chain of segments, and clear all segments,
as shown schematically in Fig. 14.5.

The breakpoint-deletion gesture is similar to the standard proof-reader’s deletion-
mark; the other deletion gestures require multiple intersections with existing strokes
to prevent accidental deletions.

14.2.3 Construction of the Garment Surface in 3D

Given a set of closed 2D garment boundaries (such as the boundary in Fig. 14.5f,
the technique used to generate a 3D surface consists of three main steps (described
for one layer of the garment):

First, the garment boundary is segmented by classifying sections of the boundary
as being one of two types:

• Silhouette sections exist in the same plane as the body model.
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Fig. 14.5 The gestures in contour mode. (Top row) newly drawn strokes as dotted lines with
an arrow. (Bottom row) result of stroke operation. Black dots are breakpoints in the boundary.
a Adding a segment, b deleting a segment (intersecting scribble gesture), c deleting several seg-
ments, d clearing all segments (there must be many self-intersections), e adding a breakpoint,
f deleting a breakpoint

• Border sections cross the projection of the body model.

Initially these sections are delimited by automatically detecting points of high
curvature along the boundary and these points are denoted breakpoints (the black
dots in the bottom row of Fig. 14.5), the user can add or delete them as required.

Second, these sections are placed in 3D by assigning depth information based on
the basic understanding of garments already mentioned. As silhouette sections exist
in the same plane as the body they are assigned a depth of zero along their inte-
rior (z = 0). Border sections must be assigned a depth that varies smoothly and in
relation to the body. This is achieved by calculating the distance (d) of each break-
point from the body and then interpolating this distance along the border between
breakpoints. A depth that maintains this distance from the body at each point is then
assigned along the interior of the section.

Third and finally, this depth information is propagated from the boundary to the
interior of the garment by a diffusion process. We now have all the information
required to generate a garment surface.

Many of these steps are accelerated by the use of a distance field, precalculated
from the model. Let us now explain how this field is processed and then detail each
step.

14.2.3.1 Distance Field

To accelerate the algorithm the distance field is precomputed when the model is first
loaded. This field is a regular 3D grid which stores the closest distance to the model
at each grid point (Fig. 14.6b). Distances from non-grid points can be calculated
using tri-linear interpolation. The distance field is signed so that points inside the
model have negative distances.
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Fig. 14.6 a A 2D slice through a model. b The corresponding isocontours of the 2D slice of the
3D distance field. c A garment sketch. d The corresponding garment surface calculated using the
distance field

The system uses the distance field each time it needs to find the z-coordinate to
assign to a point p(x0, y0) to position it at a given distance from the model. This is
accomplished by stepping along the ray R(z) = (x0, y0, z) and stopping when the
required distance value is reached.

14.2.3.2 Converting the 2D Contours into 3D

Once the boundary contour is complete the contour segments are classified as either
border lines or silhouettes depending on whether the segments projection crosses
the models projection in the xy-plane (border line) or not (silhouette). This is done
efficiently using a projection mask of the body (body mask) stored in a buffer.

To position the silhouette lines in 3D the depth (z) is simply set to zero, as these
lines exist in the same plane as the body, and act as seams joining the back and front
layers of the garment. The d-values for interior points of the silhouette are then set
to those stored in the distance field.

Having established the values of z and d along silhouette edges, this assignment
is extended to the border lines. This can be done by simply interpolating d linearly
along each border line, and then at each interior point search the distance field for a
point with a z value which is that distance (d) from the model. All points along the
contours are now in 3D, and have an associated distance to the model (d-value).

14.2.3.3 Surface Generation from 3D Contours

Just as with the contour lines, the main clue for inferring the 3D position of the
interior of the garment is the interpolation of distances to the body. The process
consists of propagating distance values from the boundary within the garment. A 2D
buffer sized to the bounding box of the sketch is generated. Each pixel within the
buffer is classified as in, out or border based on its position with respect to the
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Fig. 14.7 a Surface reconstruction without accounting for tension. The upper image shows the
part of the surface over the body mask in green. The lower image show the resulting z-buffer.
b Surface reconstruction that takes tension into account. The body mask from (a) is eroded and
the system uses Bézier curves to infer the z-values between the legs. c A smooth garment surface
without folds

boundary. The border pixels are then assigned the distance values taken from the
boundary. The goal is to minimize the distance variation inside the garment so that
it fits as tightly as possible given the border constraints. The problem is posed as
a Laplace equation with Dirichlet boundary conditions (see [19] for details). Let
Ω be the set of inside and boundary pixels, with the boundary δΩ . We already
know f ∗

d |δΩ , the pre-determined distance values on the boundary, and want to find
an interpolant fd without extrema over Ω . This interpolant satisfies the following
Laplace equation:

�fd = 0 over Ω, with fd |δΩ = f ∗
d |δΩ. (1)

Equation (1) can be solved simply by iterating convolutions with a 3×3 neighbor
averaging mask over Ω . We then convert the 2D grid to 3D by using the distance
field to compute the z-values corresponding to the desired distances.

Mimicking Cloth Tension. A garment should not fit too tightly in the region be-
tween two limbs because the cloth has a tension of its own. In these cases we correct
the garment surface by smoothly interpolating the limbs largest z-values, through a
process of eroding the body mask and then using Bézier curves to interpolate the
z-values (Fig. 14.7).

14.2.4 Drawing Folds

The garment models generated in Sect. 14.2.3 will appear artificially smooth, un-
like real garments which exhibit folds under the effect of gravity. Folds may be
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Fig. 14.8 The gestures in folding mode; new strokes are depicted as thin arrows. a adding a fold, by
default a valley; b modifying the profile of the fold at one extremity (the closest to the intersection).
The shape of the stroke defines both the amplitude and the width of the fold. A stroke that is convex
with respect to the end point of the fold results in a valley; c conversely, a concave stroke results in
a ridge; d changing the other extremity, making the fold a pure ridge

added automatically via physical simulation or a procedural method (discussed in
Sect. 14.3.5), but an artist may wish to control precisely where folds appear. This
motivates the addition of a sketch-based method for specifying such folds—a fold-
ing mode—described in this section. The fold strokes can be seen as being an anno-
tation of another model, the newly generated garment surface model.

Folding Mode. Once satisfied with the global shape of the skirt, Lucy decides
to add a few folds to obtain a more physically plausible 3D surface. To do this
she simply switches to folding mode and draws strokes that mark the presence of
either ridges or valleys, and can specify the width and amplitude of these folds in
an intuitive way. The default fold type is a valley fold, but by drawing “u-shaped”
gestures over either end of the stroke, the fold parameters at either end (width and
amplitude) can be quickly altered (see Fig. 14.8). Fold strokes can be deleted using
the same deletion gestures as used for other strokes. An example of the resulting
interaction is depicted on Fig. 14.9).

To recompute the surface from the new user input, the folds are expressed as de-
formations to the underlying garment surface. The depth magnitude of the deforma-
tion is at a maximum along the fold stroke, and it decreases away from the stroke.
The deformation’s magnitude corresponds to a 2D Gaussian convolved along the
stroke path. The support and the amplitude of the Gaussian at each end of the stroke
are inferred from the “u-shaped” gestures and linearly interpolated along the length
of the stroke. The deformations are applied to the garment surface depth map before
the final mesh is created. Some final results are shown in Fig. 14.10.
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Fig. 14.9 a Lucy draws a few fold lines in folding mode, like the one highlighted in thick green,
corresponding to ridges or valleys on the surface of the garment. b She may draw a “u-shaped”
gesture crossing a fold line near either end. The width of the U determines the width of the fold;
the depth determines the depth of the fold. The orientation of the U determines whether it is a ridge
or a valley fold. These are indicated for the user at all times by a pink circled Gaussian profile at
each end of the fold line, indicating both the width and the depth of the fold. c The system adds
folds to the skirt

Fig. 14.10 Final results including sketched folds, each created by fashion designer Laurence
Boissieux in less than five minutes
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14.3 Incorporating Geometric Properties: Sketch-based
Modeling of Developable Surfaces

The previous section outlined a system for quickly producing a visually plausible,
virtual garment, which could exhibit folds in the form of deformations drawn by
the artist. Although the garment mesh may look plausible, its geometric properties
differ from a real garment in an important way—the garment cannot be unfolded
flat onto a plane without distortion (surfaces which have this property are known
as developable surfaces). As real garments are made from panels of flat cloth sewn
together this geometric disparity has some implications for the virtual garment:

• Texture maps used for the garment will appear distorted.
• The behavior of the garment under a physically based simulation would appear

strange. For examples folds may not fall as expected.
• It is not possible to produce a real version of the virtual garment using real cloth.

These drawbacks motivate an extension of the previous approach. In this section
we present the work of [8, 17], which address these drawbacks by extending the
approach in the previous section so that the produced garment model consists of a
set of developable surfaces. Two different approaches are used. The first is to incre-
mentally alter the existing garment mesh until it closely approximates a piecewise
developable surface. The second is to generate a developable surface directly from
sketched 3D contours. Both approaches have wider applicability than just clothing,
for example they could be used in architectural modeling and engineering, where
developability is an important surface property. Once the garment is finished, folds
could be added in a post-process, as explained in Sect. 14.3.5.

14.3.1 Expressing Prior Knowledge

The prior knowledge in this case is that clothing is assembled from panels which
have the specific geometric property of being developable. An important property
of a developable surface is that when the surface normals are mapped onto a unit
sphere (i.e. each surface normal is rendered as a point on the sphere) then this normal
map forms a set of connected curves. This is because the normals cannot vary arbi-
trarily (Fig. 14.11). The generated garment surface should adhere to this additional
constraint, while still respecting the user supplied boundary lines.

In order to decompose the garment into panels, some additional input is needed
from the user, namely the location of seams and darts. Seams are the boundaries be-
tween the panels of cloth which assemble to form the garment. Darts are lines on the
garment where different parts of the same panel were stitched together, effectively
removing a section of material in order to improve the fit of the garment.
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Fig. 14.11 A developable
surface (left) and its normal
map (right)

14.3.2 Sketching Seams and Darts

Seams and darts are a natural extension of the existing drawing method and do not
require any additional modes. In the previous section breakpoints along the bound-
ary of a garment panel would always have two associated boundary polylines (one
incoming and one outgoing, we call this an order two breakpoint). With seams and
darts, a breakpoint should be allowed to have one, two or three associated polylines
(order one, two or three). A breakpoint with only one associated polyline can be
considered to be the termination of a dart line. That dart line would have to begin
at an order three breakpoint, somewhere on the panel boundary. Of course darts are
only valid on the interior of a garment panel boundary. If a dart is extended to re-
join the panel boundary (so that it begins and ends with order three breakpoints)
then that panel is split into two separate sub-panels, and the dart has become a seam
(Fig. 14.12).

We now outline the two methods of producing a set of developable panels which
respect the 3D boundaries, seams and darts inferred from the users sketch.

14.3.3 Creating a Developable Surface via Approximation

This method generates an initial surface using the same distance field method out-
lined in Sect. 14.2. This surface consists of a set of panels connected at the seams.
The approach is to then incrementally modify each panel to bring it closer to being
an ideal developable surface, without deviating too far from the input surface. The
approach used is inspired by moving least squares approximation [14]. The algo-
rithm follows a two-step procedure for each step of the iteration:

• For each triangle on the surface, find the best-fitting developable surface and
move the triangle onto that surface. This breaks the triangle connectivity.

• Then reconnect the triangles, while trying to preserve the new triangle normals
and positions.

Each pass of the algorithm further improves the developability of the approxima-
tion, at the price of deviating further from the original surface. With each pass the
normal map of the garment onto the unit spheres moves closer to the ideal case
of a network of curves (Fig. 14.13). Once the desired level of developability is
reached, the surface panels are unfolded onto the plane to produce the garment pat-
terns (Fig. 14.14). Unfolding is done using the angle-based flattening (ABF++, [18])
method which minimizes shearing.
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Fig. 14.12 The user extends an existing skirt outline with a dart (left). The numbers refer to the
order of the adjacent breakpoint. The dart is extended to meet the outline again (middle) forming
two panels joined by a seam (right)

14.3.4 Creating a Developable Surface Directly from the 3D
Boundary Lines

The approximation method in the previous section produces reasonable results
which suffice for non-distorted texture mapping, but the result will rarely be ana-
lytically developable, which is a problem when the results are to be used in man-
ufacturing. A more elegant solution than generating a non-developable surface and
then approximating it would be to generate the developable surface directly. The
system we will now describe [17] models general developable surfaces using the
3D boundaries directly and so requires less user input and less user expertise than
most existing techniques. The same input technique is used (annotating an existing
model), except that the user may smooth and also deform existing 3D contours if
desired by redrawing them from a different viewpoint.

The method of generating a developable surface from a 3D boundary assumes
the input boundary is a piecewise smooth curve. This curve is sampled to produce
a polyline. A boundary triangulation (a manifold triangulation with no interior ver-
tices) is then generated, using this polyline as its boundary. By construction, any
boundary triangulation is developable as the triangles can be unfolded onto the
plane with no distortion. The system requires additionally that the majority of the
boundary triangulations interior edges should be locally convex, to ensure a close
approximation to a smooth developable surface (see [17] for details). This condition
forms the basis of the method: since most edges of a desirable triangulation must
be locally convex, a natural place to identify developable regions interpolating a
boundary polyline is the convex hull of the boundary, where every edge is locally
convex.

Hence the method proceeds recursively, by taking the convex hull of the polyline,
dividing regions where the polyline lies on the convex hull into two envelope trian-
gulations (Fig. 14.15a, b, c). When the polyline does not lie on the convex hull, the
hull is subdivided into charts (sets of hull triangles having certain properties) and
the algorithm proceeds recursively on these charts (see Fig. 14.16). This leads to a
number of possible valid surfaces from which the desired result must be selected.
The search is guided automatically by testing envelope triangulations for desirability
using metrics such as smoothness and surface fairness. It can also be guided manu-
ally by the user who can choose between the visual representations of the results at
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Fig. 14.13 Developable approximation stages: a input; b normal map of the front panel; c normal
map after transformation; d mesh triangles after transformation, with a closed view showing the
discontinuities temporarily created; e glued mesh after one iteration; f mesh after three iterations.
Between one and three iterations the distortion decreases

Fig. 14.14 Resulting texture mapped developable surfaces and corresponding patterns

each stage in the recursion. Results such as the shoe in Fig. 14.17 demonstrate the
modeling complexity achievable via this approach.
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Fig. 14.15 Envelope triangulations for a polyline that lies on its convex hull: a polyline; b convex
hull with envelopes; c the two envelope triangulations, the framed (right) one is the one selected
by the algorithm

Fig. 14.16 Extracting a locally convex triangulation: a boundary; b convex hull with extracted
charts (interior triangle shown in black) c individual charts and remaining subloops after subtrac-
tion; d recursing on the subloop formed by removing the purple chart; e resulting triangulations
(the framed triangulation is the one returned by the algorithm); f two of the triangulations created
with different chart choices

Fig. 14.17 Developable helmet, shoe and garments generated from their 3D boundaries
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14.3.5 Automatic Generation of Folds

Once again the virtual clothing does not look realistic without folds. However using
the sketching method of forming folds described in Sect. 14.2.4 would destroy the
developable property of the garment surfaces. Fortunately the systems we just pre-
sented generate the 2D patterns for the garments, so automatic methods to generate
folds can be used. We briefly outline two approaches: a time-consuming but realistic
physically-based simulation, and a quicker but more limited procedural simulation
of folds.

14.3.5.1 Physically-based Simulation of Folds

The dress in Fig. 14.17 is the result of taking the developable garment generated
directly from the boundary curves and using a physical cloth simulation [3] to gen-
erate folds. Physical cloth simulations are usually based on modeling the garment
as a grid of small masses interconnected by springs. Body collisions are taken into
account as correcting forces acting on the cloth. The simulations can be time con-
suming, but with some expertise in setting the physical parameters very realistic
results are possible.

14.3.5.2 Procedural Generation of Folds

The garments in Fig. 14.18 were generated using a procedural method based on
prior knowledge [8]: the main observation is that when cloth is wrapped around a
cylindrical object (such as a torso or an arm) and compressed or twisted, it exhibits
characteristic buckling patterns, such as diamond shaped folds under compression.
These patterns can be automatically reproduced by fitting a buckling mesh to the 2D
garment patterns. This mesh embeds the diamond patterns and the diagonal folds
formed by twisting. The buckling mesh is placed in 3D using the correspondence
between the 3D garment model and its 2D patterns. When the 3D bucking mesh
is deformed via compression or twisting it is constrained to buckle along its ma-
jor directions, thus forming the desired folding patterns (Fig. 14.18). This efficient
method can be implemented in realtime, and produces realistic looking folds, al-
though it is limited to pre-determined types of fold.

14.4 Sketch-based Interface for a Physically-based System:
Hairstyle Design from a Sketch

In the previous sections prior knowledge of the object being modeled was used to
simplify the problem and guide the design of the interface. In this section some of
the prior knowledge is already expressed concisely for us in the form of a physically-
based model for a strand of hair. The problem becomes extracting the parameters
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Fig. 14.18 Procedural folding of a developable garment [8]. The buckling control mesh is shown
around the arm (bottom left)

Fig. 14.19 An overview of the whole process

required to drive this model, and then to generalize to a whole head of hair. See
Fig. 14.19.
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14.4.1 Expressing Prior Knowledge

The work of [5, 6] presents a physically-based method for modeling a strand of hu-
man hair (called Super-Helices), a method of modeling a full head of hair using this
model and a hair-styling methodology based on a simulated hair dressing process
(wetting, cutting and drying). The model determines the shape of a hair by incorpo-
rating a number of geometrical shape constraints on a series of elastic rods. A simple
way to visualize the model is to consider a strand of hair as consisting of a series
of helical shapes. The model requires a number of parameters (detailed later) and
can incorporate collisions and the effect of gravity due to being expressed in terms
of an energy minimization problem. This combination of ideas produces convincing
3D virtual hairstyles, but the styling process is time consuming (at least 30 minutes
per hairstyle, as each wisp of hair requires many parameters to be set by hand) and
requires some hairdressing expertise from the user.

The aim is to simplify the hair-dressing process using a sketch-based interface.
The problem becomes deriving the parameters needed to drive this physically-based
model from a simple sketch. This can be done using the prior knowledge that:

• Hairs clump together in wisps, which can be modeled using a guide strand.
• A guide strand can be modeled as a series of helical shapes.
• Neighboring wisps tend to exhibit similar properties.
• Hairstyles are often symmetrical, and a side view displays most of the variety.

The first observation was used in [5]. The idea of an individual hair being mod-
eled as a series of helical shapes leads to the approach of extracting helical parame-
ters from a sketch of an example guide strand from a side view. The observation that
neighboring wisps are similar leads to the use of interpolation between the parame-
ters controlling each guide strand, so that the properties of the wisps can gradually
vary across the head, and do not need to be explicitly specified for all wisps. Finally,
because hairstyles are often symmetrical (when viewed from the front), and because
a side view captures most of the detail of the style, the user can be allowed to sketch
from a side view only. This limits the complexity of the interface while still enabling
the user to draw strokes in the important regions of the head (fringe, side and back).

We now describe the interface and then detail the method and implementation.

14.4.2 The Sketch-based Interface

This work [21] represents the first sketch-based interface for physically-based hair
styling. The user is presented with two views of a model head. The left view is the
sketch input area which consists of a (zoomable) side projection of the head. The
right view is the result area within which the camera can be moved freely. An image
may be loaded as a background to be used as a guide for oversketching (Fig. 14.20).
The color used to render the hair can be selected from the pixels in the photograph.
The user progresses through three simple modeling stages:
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Fig. 14.20 a The basic stroke types. Hairline (blue), example strands (red) and volume/cut (green).
b Styles resulting from the annotation of photographs (photo ‘Flaming Hair’ ©DH Kong)

Hairline The user first defines the scalp area by drawing one stroke delimiting the
scalp extent on one side of the head. The other side is deduced via symmetry. The
user can redraw this stroke until happy with the resulting scalp shape, at which point
the shape is fixed for the remainder of the modeling process. The scalp is initially
covered with short, straight hair.

Example Strands The user may then draw example hair strands starting any-
where within the newly defined scalp area. These examples can be redrawn or
deleted. Each time an example is drawn a similar physically modeled strand is im-
mediately created or updated in the corresponding location on the head in the result
viewport. At any point the user may calculate and render a full head of hair based
on the example strands.

Volume and Cut Finally the user may draw a volume stroke, which is used to
both alter the global volume of the style and to cut the hair if desired.

14.4.3 Shaping the Hair in 3D

This section details the process of extracting from a 2D sketch the parameters re-
quired to construct a full head of hair in 3D.
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Fig. 14.21 a Single strands inferred from sketches (thin lines): the sketch is interpreted as an
example of the desired shape, and the system generates similar, physically-based 3D strands (thick
lines). b The orthogonal projection of a circular helix, and the measurements which can be made
on it. c Inferring the length of a stroke using half helical segments

14.4.3.1 Determining Helical Parameters

The system makes the assumption that when a user draws an example hair strand, he
is drawing the side view projection of a 3D strand of hair hanging from a head un-
der the influence of gravity. The user is assumed to draw the stroke along a roughly
straight axis. This idea is to generate 3D hair strands which 2D projection are simi-
lar, but not necessarily exactly the same as the sketched strand. In other words, the
user input is interpreted as examples of the sort of hair strands he would like to see
in the final model.

The strand parameters required by the physical model of [5] are length l, natural
curvature κ0, ellipticity e and stiffness k. The ellipticity stands for the shape of the
strand’s cross-section, which affects the distribution of curls along a strand hanging
under gravity: elliptical cross-sections (non-zero ellipticity) produce curls evenly
distributed along the strand (such as in African hair); circular cross-sections (zero
ellipticity) produce strands which tend to be straight at the top and curly at the
bottom. The last parameter, stiffness, controls how strongly the hair fiber tends to
recover its natural curliness, and thus how much curliness balances the effect of
gravity. Although this parameter value can be measured on natural hair, curls can be
made stiffer using styling products, so stiffness needs to be inferred from the sketch
to allow for this effect.

As shown in [5] and depicted in Fig. 14.21a, hair strands under gravity tend to
take helical shapes at rest, where the helical parameters vary along the strand. This
key observation can be used to infer parameters from a sketched 2D example of a
hair strand. The idea is to divide the stroke into segments and model each segment as
the projection of a half helix. Measurements are made on these small segments and
the equations describing a helix is used to infer the length and curvature required by
the strand model.
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The equation for a circular helix can be expressed parametrically in Cartesian
coordinates as:

x = r cos(t) y = r sin(t) z = ct

for t ∈ [0,2π), where r is the radius of the helix and 2πc is the vertical distance
between consecutive loops.

Let the central axis of the drawn strand be the principal eigenvector determined
using principal component analysis of the points defining the stroke. The zero-
crossings, maxima and minima along the stroke are then determined with respect
to this axis (Fig. 14.21c). These points delimit the half helical segments, and radius
(r) and c are measured from these segments. As the arc length of a helix is given
by s = (

√
r2 + c2) t , the 3D length of a segment is computed by letting t = π and

using the r measured from the segment. Summing the arc length from all segments
gives us an estimate for the length of the hair strand in 3D. The natural curvature
κ0 of the hairstrand is estimated as being 1/max(r) measured from the set of all
segments.

Ellipticity is set from the distribution of maxima and minima along the drawn
strand. If they are to be positioned toward the end of the drawn strand then curls
form at the end of the strand, which implies a low ellipticity. If they are more evenly
distributed then it implies a high ellipticity.

The stiffness and mass of the strand are determined by solving an optimization
problem. The span of a strand of hair is the distance between the root and the tip.
Given the previously determined length and curvature and fixing a reasonable mass,
stiffness is allowed to vary, in order to minimize the difference between the span of
the drawn example and the span of the 3D model. This allows the user to set much
higher values of stiffness than would be found in natural hair (but could be caused
if hair spray was used, for example). Figure 14.21a shows the drawn examples and
the resulting 3D models.

14.4.3.2 Generalizing to a Full Head of Hair

At least 30 wisps are required to generate a realistic looking head of hair, however
the user should not be required to draw an example strand for every wisp. Instead,
the information from the few examples the user provide is extrapolated. When only
one example is provided, the same parameters are used everywhere. If two or more
examples are provided an interpolation scheme is used. Consider a vertical plane
bisecting the head model and passing through the nose. All wisp root positions are
projected onto this plane (each wisp giving a point Pn).

If two examples are provided then a line is formed on this plane between the two
projected example root positions. For each wisp the closest point on this line to Pn

is found and used to linearly interpolate between the parameters of the two example
strands.

If three examples are provided then a Delaunay triangulation of the projected ex-
ample root positions is generated. Barycentric coordinates are then used to interpo-
late between example strand parameters. Pn outside the triangulation are projected
to the nearest point on the triangulation.
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Fig. 14.22 The effect of increasing the size of the volume stroke. Note the hairs at the back of the
head have been cut where they extend below the stroke

14.4.3.3 Setting the Volume, Adjusting the Cut

The volume of the overall hairstyle is a useful global parameter which should be
simple to specify. The global shape of the hair is also often determined by the length
of the ‘cut’. To allow control over both these aspects with one simple stroke a ‘vol-
ume stroke’ is introduced (Fig. 14.22). With this stroke the user roughly indicates
the outer boundary for the silhouette of the hairstyle. The part of the stroke above
the scalp is used to determine the volume of the hairstyle, the part of the stroke
below the scalp is used to trim hairs which intersect the stroke.

The hair volume is controlled using the multiple layer hulls model of [13]. In
this model hair strands with roots higher up the head are tested for collisions against
larger offsets of the head model. The volume is set via a hair volume scaling factor.
This factor is determined by calculating the distance from the head model (using
a precalculated distance field) of each point of the volume stroke above the lowest
point of the scalp model. The maximum of these offsets is used to determine a
suitable hair volume scaling factor.

To determine which hairs to cut, the sections of the volume stroke with normals
pointing roughly upward are projected onto the modeled wisps. Any hairs which
intersect are but back to their length at this intersection point. Some final results are
depicted in Fig. 14.23.



392 J. Wither and M.-P. Cani

Fig. 14.23 Styles from 1927, 1945, 1965 and 1971. Top: Drawings from [16]
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14.5 Discussion and Concluding Remarks

Modeling realistic cloth and hair for virtual characters is a burden with standard in-
terfaces. In contrast, the sketching systems presented in this chapter enable to do it
a very intuitive manner, through a single sketch similar to those used in fashion de-
sign. The process only takes a few minutes. Moreover, the method increases realism
thanks to the a priori knowledge is used to infer 3D. To design garments and hair that
fit a given mannequin, the systems we presented use annotation of 2D views of the
mannequin model. The user quickly sketches the silhouette of garments over front
or back views, with the options to sketch the folds as well or to generate them proce-
durally. The system results in both the 3D shape of the garment and the 2D patterns
that can be used to sew it, or be input to a physically-based system for subsequent
animation. In the case of hair modeling the user sketches a scalp contour and some
example hair strands (varying from straight to curly), from which the parameters of
the physically-based hair model are inferred; he may simply add a volume stroke to
further specify the hair cut and volume. The resulting 3D head of hair is then ready
to be animated.

More interestingly, these systems illustrate the fact that sketch-based modeling
can effectively be used in very complex cases, granted that the right amount of prior
knowledge is incorporated (similar to a human recognizing a garment or hairstyle
from a sketch and inferring the full 3D shape). Note that a similar methodology for
the rapid creation of 3D models has already been used in a number of other cases,
from architectural sketching systems [9], to systems for sketching terrain [7, 20],
trees [15, 22], plants and flowers [1, 2, 11] or human faces [10].

All these systems differ in the amount of prior knowledge they use. In the ex-
amples we discussed, several levels of knowledge were incorporated, from rules of
thumb, to mathematical properties of surfaces (the piecewise developability of gar-
ments) and physical properties (expressed through a static strand model for hair).
The associated sketching systems range between two extremes: starting from the
way people would sketch the element in real life, and trying to incorporate just the
necessary amount of knowledge to adequately infer 3D; or instead designing an
intuitive interface for a standard generic, procedural model. Note that the latter re-
quires some kind of inverse engineering to compute the parameters that indirectly
control the shape of the model. In the system we presented for hair the sketch is seen
as a rough example, and is not required to exactly match the results.

Can we identify a general methodology for creating sketch-based interfaces for
complex models where some prior knowledge is available? Certainly there are some
common themes:

Mapping to a Procedural Model Does an effective procedural model already
exist for the thing you are modeling? Perhaps the parameters for this model can be
extracted from a sketch. Which parameters have the largest effect on the resulting
model? These are the ones which are most important, some of the others could
perhaps be fixed (for example, mass per unit volume was fixed to an average natural
value in the case of hair, length and curvature were the most important parameters).



394 J. Wither and M.-P. Cani

Simplifying Assumptions Choose your assumptions carefully. You can often re-
duce the complexity of the problem by a large margin, while only slightly reducing
the variety of results possible. For example deciding that layers of clothing may not
self-overlap, or in the case of hair, limiting the drawing to a side projection only.

Non-intrusive Sketching Interface All tools which model themselves on the tra-
ditional pencil-and-paper workflow should try to hide the details of the interface,
so as not to interrupt the user while they concentrate on the task in hand. For ex-
ample minimizing the number of mode switches required, and making sure that
when they are required they occur at a natural pause in the thought process. Switch-
ing from the front to back view of the garment does not interrupt the workflow,
as the user naturally refocuses their attention at this stage—but requiring selection
of a breakpoint and pressing the deletion key would be inappropriate for breakpoint
deletion—hence the use of a gesture, which keeps the user focus on the virtual page.

Sketching vs. Annotation Finally, the sketching systems we presented not only
illustrate sketching, but also the annotation of a 3D shape serving as a support for the
sketch (here, a mannequin). Relying on the 3D information from the mannequin in
addition to the prior knowledge makes sketching from a single viewpoint sufficient
and thus makes the process much quicker, although other views can easily be added,
for example to model the back and front of a garment, or a non-symmetric hairstyle.
Further support shapes for annotation may be generated during the process. For
example the initially generated garment surface served as a further support model
for sketching folds. The method of successive ‘coatings’ of a base surface could be
useful for other situations (such as sketching vegetation or features onto terrain).
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Figural completion, 316
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Flattening, 381
Floral diagrams, 259
Fold, 217, 255, 316
Folding mode, 378
Folding patterns, 385
Frame transformation, 265
Free-form, 309
Free-form blending, 288
Free-form model creation, 10
Free-form sketch, 13
Free-sketch, 21
Free-sketch recognition, 19
Freeform design, 226
Frobenius norm, 231
Frontal sketch, 372
Functional optimization, 227

G
Garland, 12
Garment boundary, 374
Garments, 372
Gaussian, 378
Gears, 279
Generic, 315
Gestural interface, 374
Gestural modeling, 277
Gesture dynamics, 56
Gesture interactions, 290
Gesture-based interface, 205
GiDeS, 7
GRAIL, 6
Graph invariant, 185
Graph spectrum, 185
Graphical models, 5, 19, 31
Graphics recognition, 4
Greedy search, 317
Greedy segmentation, 244

H
Hairline, 388
Hairstyle design, 385
Handle estimation, 246
Handle-relative positions, 248
Hausdorff distance, 142
Height field, 372
Helix, 389
Hermite interpolation, 362
Heuristic pruning, 129
Hidden contours, 314, 316, 337
Hierarchical editing, 296
Hierarchical implicit volume, 288
Hierarchical implicit volume modeling, 298
Hierarchical shape description, 21, 24
Hierarchical spatial caching, 305

Hierarchy of parts, 154
High-energy, 261
Hole-cutting, 291
Homeomorphic, 330
Homogeneous coordinate system, 269
Huffman labeling, 316
Hybrid matching, 131, 138

I
Ill-defined, 242
Ill-defined problem, 362
Image-based recognizer, 131, 140
Image-based symbol recognizer, 122, 124
Image-space, 240
Implicit blending, 295
Implicit modeling, 287
Implicit retrieval, 194, 196
Implicit surface, 205, 214, 298
Implicit volumes, 299
Inferred mode protocol, 6, 62, 71
Inflation, 293
Inflation component, 314
Ink density, 126, 129
Ink density analysis, 127
Ink density locator, 126
Ink parsing, 121
Intelligent object selection, 56, 57
Interaction flow analysis, 66
Interaction flow diagram, 64–70
Interactive beautification, 291
Intersection, 299
Intrinsic shape, 243
Iso-contour, 298
Iso-value, 298
Ivan Sutherland, 1

J
Junction triangles, 215

K
Knowledge-based model construction, 31

L
Laplace equation, 377
Laplace–Beltrami operator, 234
Least squares, 261
Least surprising, 349
Least-square, 344
Least-square problems, 231
Linear solvers, 226
Linear sweeps, 293
Local cues, 313
Local tracing, 245
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Location-aware gestures, 7, 90
Loopy belief propagation, 41, 49
Loopy BP, 41

M
Major axis, 272
Marching cubes, 300
Mark–group–recognize, 121
Mark-based interaction, 214
Mass–spring, 318
Mass–spring system, 336
Mathematical expression parsing, 99
Mathematical expression recognition, 96
Mathematical expression recognition gesture,

89
Mathematical expression recognizer, 89, 92
Mathematical sketch, 88
Mathematical sketching, 81–87, 89, 90, 92–94,

96
Mathematical symbol recognition, 97, 99
MathPad, 6
Maximum variance, 275
Maximum-likelihood, 317
Mean curvature, 234, 318
Mechanical objects, 279
Mesh refinement, 216
Minimal curvature, 291
Minimization problem, 231
Minor axis, 272
Modal switch, 290
Modal transition, 213
Mode activation, 58
Mode error, 69
Mode errors, 58, 59
Mode minimization, 56
Mode switch, 58
Mode switching, 56, 57, 59, 60, 69
Mode switching errors, 57
Model hierarchy, 296
Model tree, 293
Modeling, 196
Modeling suggestions, 199
Modified Hausdorff distance, 143, 146
Modifier, 346
Modo, 308
Morphological operations, 242
Multi-domain, 19
Multi-domain free-sketch recognition, 28
Multi-domain sketch recognition, 21, 51
Multi-stroke shapes, 130
Multi-stroke symbol recognizer, 131
Multi-stroke symbols, 130
Multi-stroke visual structure, 157
Multilevel description, 187

Multilevel description scheme, 186
Multilevel method, 195
Multiresolution, 261

N
Natural curvature, 389
Network fragments, 31, 39, 158
Normal constraints, 302
Normal map, 242
NURBS, 262

O
OBJ file, 219
Options toolbar, 289
Oriented, 315
Oriented bounding box, 273, 292
Orthogonal deformation stroke, 268
Orthogonal projection, 319
Orthographic, 358
Osculating plane, 320
Over-sketch, 270
Over-sketched feature, 240
Overlapping, 346
Overloaded loop selection, 60, 61, 79
Oversketching, 13

P
Painting, 208
Panel, 330
Paneling construction, 316
Parameter toolbar, 289
Parametric surfaces, 257, 262
Partial differential equation, 234
Parts-based recognition, 157
Peeling interface, 229
Pen-and-ink rendering, 205
Pen-based, 290
Pencil-based, 290
Pencil-based interaction, 289
Perspective, 358
Physical mode, 290
Physical simulation, 378
Physically-based deformation, 344
Physically-based simulation, 380, 385
Pictorial structure models, 169, 176
Point sharp, 237
Polar decomposition, 232
Polygonization, 300
Polyline shape search problem, 247
Positional constraints, 233
Post-gesture delimiter, 61
Potential constraints, 229
Potential function, 298
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Primitives, 293
Principal component, 390
Principal component analysis, 345
Principal direction, 346
Principle curvatures, 233
Prior knowledge, 372
Probabilistic interpretation, 315
Procedural method, 378, 385
Procedural shape modeling, 288
Production pipelines, 288
Pruning, 215

R
RAND, 1
Rapid prototyping, 206
Re-meshing, 301
Real-time, 205
Recognition-based interfaces, 150
Recognized mathematical expressions, 87
Recognizing mathematical expressions, 84
Rectangular prism, 355
Region growing, 241
Reverse subdivision, 261
Ridge, 338, 378
ROI, 241
Rotation, 271
Rotation-invariant, 164
Rotational blending surface, 10, 262
Rubbing tool, 229
Rubine, 4
Ruled surface, 266

S
SBIM, 9, 13
Scalar field, 298
Scaling, 271, 276
Scaling factors, 276
Scene graph, 293
Scribble method, 256
Scribbling, 208
Seams, 381
Seed points, 300
Segment difference locator, 127
Selection gesture, 60, 69, 71, 74
Self-intersecting, 210
Shape fragments, 32, 37, 39
ShapeShop, 10, 12, 287
Sharp creases, 292
Sharp curves, 229
Sharp features, 265
Signal-level noise, 26, 28, 29
Signed filter, 244
Silhouette, 208, 373
Silhouette extraction algorithm, 246

Silhouette sketching, 227
SilSketch, 225, 240
Sim-U-Sketch, 122
Singularities, 315
Skeletal primitive, 299
Skeleton, 214, 299
Skeleton-based, 240
SKETCH, 8
Sketch graph, 159–161
Sketch parsing, 6, 119, 120, 149
Sketch recognition, 3–5, 7, 19, 21, 130
Sketch segmentation, 120
Sketch understanding, 21, 23, 31
Sketch understanding problems, 6
Sketch-based interfaces, 2, 6
Sketch-based retrieval, 181, 182
Sketch-based retrieval of vector drawings, 7
Sketch-based user interfaces, 5
Sketching assistance, 291
Sketching tool, 228
SketchREAD, 44–46, 48, 49, 51
Sleeve triangle, 215
Slopes, 255
Sloppy selection, 56, 72, 73, 79
Sloppy selection gesture, 75
Smart selection, 55
Smooth, 292
Smooth embedding, 316
Smoothing, 213, 218
Snakes, 318
Solid model, 287, 350
Solid-modeling, 304
Spatial relationships, 31
Spherical topology, 208
Spiral method, 255
Stiffness, 389
Stochastic local search method, 164
Stochastic matching, 131, 137, 138
Stretching, 347
Stroke capture, 260
Stroke segmentation, 20, 49, 51, 120, 140, 155,

161
Stroke-based widget, 290
Structure recognition, 73, 74, 76
Stylus trajectory, 344
Subdivision surface, 226
Subtraction, 299
Suggestive-stroke systems, 8
Surface discontinuities, 338
Surface drawing, 295
Surface generation, 376
Surface lines, 211
Surface tree, 309
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Surface-fairing, 219
Surfaces of revolution, 262, 293
Surficial augmentation, 11
Sweep-surface, 291, 294
Symbol recognition, 20, 92, 97, 119, 131

T
T -junction, 11
T -point, 315, 320
Target correspondences, 248
Target orientation, 272
Target position, 272
Target scale, 272
Teddy, 205
Tee points, 317
Template, 302, 343
Template alignment, 360
Template matchers, 140
Template matching, 131, 140–142, 146, 147,

163
Template-based recognition approach, 49
Terminal triangle, 215
Texture map, 380
Thin membrane, 352
Thin-plate energy, 233
Thin-plate splines, 302
Three-dimensional transformation, 271
Topological embedding, 334
Topologically simple, 315
Topology graph, 184
Toroidal topology, 294
Traditional illustration, 255
Trajectory, 302
Transformation, 213
Transformation stroke, 271
Translation, 271, 273
Transparency, 297
Tunnel, 228
Turning angle summaries, 247

Two-dimensional sketch recognition, 20, 29

U
Unconstrained, 303
Unfolding, 381
Usability evaluations, 116
User experience, 220
User interface modes, 55

V
V-spring, 352
Valleys, 378
Variation of curvature, 354
Variational implicit curve, 291
Variational interpolation, 302
Vertical symmetry, 374
Vertices, 330
Video-in, 225
Video-out, 225
Videogame, 226
View toolbar, 289
Virtual garment, 380
Virtual trackball, 208
Visible, 320
Visible contours, 316
Visual languages, 5
Visual scaffolding, 297
Voronoi, 353

W
Walks, 317
WIMP, 7, 207
Wireframe topology, 350
Wrinkles, 255

Z
Z-Brush, 308
Zeleznik, 8
Zelinka, 12
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