

Written by Roger Bridgman

| Penguin | Random | House

FOURTH EDITION

DK DELHI Project Editor Neha Ruth Samuel Project Art Editor Mansi Agrawal Assistant Editor Sukriti Kapoor Managing Editor Kingshuk Ghoshal Managing Art Editor Govind Mittal Senior DTP Designers Vishal Bhatia, Jagtar Singh Pre-Production Manager Balwant Singh Production Manager Pankaj Sharma Jacket Designer Tanya Mehrotra

DK LONDON Project Editor Abigail Mitchell Project Art Editor Renata Latipova Editor Ben Ffrancon Davies US Editor Jennette ElNaggar US Executive Editor Lori Cates Hand Managing Editor Christine Stroyan Managing Art Editor Anna Hall Production Editor Kavita Varma Senior Production Controller Jude Crozier Jacket Design Development Manager Sophia MTT Publisher Andrew Macintyre Associate Publishing Director Liz Wheeler Art Director Karen Self Publishing Director Jonathan Metcalf

> FIRST EDITION Senior Editor Marie Greenwood Senior Art Editor Clare Shedden Designed and Edited by Bookwork Editor Louise Pritchard Art Editor Jill Plank Assistant Editor Annabel Blackledge Designer Kate Mullins Picture Research Marie Osborn Picture Library Sally Hamilton, Rose Horridge, Sarah Mills Production Kate Oliver DTP Designer Siu Yin Chan US Editor Margaret Parrish

INTRODUCTION	4
LEARNING THE BASICS c.3,000,000 bce-500 bce	6
THE AGE OF AUTHORITY c.499 bce-1400	40
NEW WORLDS, NEW IDEAS 1401–1750	72
REVOLUTIONARY CHANGES	104
SCIENCE TAKES CONTROL 1851–1900	138

172

212

252

254

256

INVENTIONS FOR EVERYONE 1901–1950

INFORMATION & UNCERTAINTY 1951 ONWARD.....

INDEX OF INVENTIONS & DISCOVERIES

INDEX OF INVENTORS & DISCOVERERS

Picture credits & Acknowledgments This American Edition, 2020 First American Edition, 2002 Published in the United States by DK Publishing 1450 Broadway, Suite 801, New York, NY 10018

Copyright © 2002, 2006, 2014, 2018, 2020 Dorling Kindersley Limited DK, a Division of Penguin Random House LLC 20 21 22 23 24 10 9 8 7 6 5 4 3 2 1 001–316678–Jul/2020

All rights reserved. Without limiting the rights under the copyright reserved above, no part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording, or otherwise), without the prior written permission of the copyright owner. Published in Great Britain by Dorling Kindersley Limited

A catalog record of this book is available from the Library of Congress ISBN 978-1-4654-9435-1

DK books are available at special discounts when purchased in bulk for sales promotions, premiums, fund-raising, or educational use. For details, contact: DK Publishing Special Markets, 1450 Broadway, Suite 801, New York, NY 10018 SpecialSales@dk.com

Printed and bound in China

For the curious

www.dk.com

Established in 1846, the Smithsonian is the world's largest museum and research complex, dedicated to public education, national service, and scholarship in the arts, sciences, and history. It includes 19 museums and galleries and the National Zoological Park. The total number of artifacts, works of art, and specimens in the Smithsonian's collection is estimated at 156 million.

Introduction

Three million years of creativity and curiosity have produced tens of thousands of inventions and discoveries. Those that successfully met basic human needs—from the need to survive to the need to know—have played a big part in shaping our world.

> ur world is very different from the world of our ancestors. Tens of thousands of inventions and discoveries have transformed the way we do things and the way we think. An invention is something new, created by arranging things in some novel way. A discovery is a thing or

It is often difficult to tell where invention ends and discovery begins, and neither happens overnight. principle that already existed, needing only to be found. But it is often difficult to tell where invention ends and discovery begins. Whatever they are, few inventions or discoveries are made overnight. There is usually a period of preparation before they emerge. Even then, they take time to act. An invention may take years to displace existing methods. A discovery may take generations to change habits of thought.

WHEN DID IT HAPPEN?

This is not a book of "firsts." I have listed most inventions and discoveries under the date when they were first made public. But some dates relate to the beginning of something that only later became well known, or to a later stage of something that took time to influence people. It can also be difficult to say exactly who invented or discovered something. Often, when the time is right, many people come up with the same idea. And making an idea work can be more important than simply thinking of it. At the top of each invention or discovery, I have named the people who I think contributed most to it. Below, where possible, I have mentioned others who helped or attempted something similar. Some stories are too interesting to squeeze into a small space. I have given these either a separate box or two whole pages. These longer stories show how complicated inventing or discovering can be and how it can change people's lives. Other aspects of these lives appear at the foot of most pages in a timeline, which records events in the wider world.

FASTER AND FASTER

Over the centuries, inventions and discoveries followed two main trends. Ancient ideas became modern science as measurement and mathematics improved on observation and argument, and the way things were made changed radically as scientific techniques displaced traditional crafts. These trends continue at an ever greater rate today. You may notice that while the first section of the book covers nearly three million years, the last covers only fifty. Despite this rapid change, many inventions

We may soon know enough to control the machinery of life itself, making the future less certain.

> and discoveries have had a lasting effect. Some, such as windmills or the theory of continental drift, vanished for a while but were born again. Others, such as pottery, have never been replaced. Inventions and discoveries like these were used or remembered because they met basic human needs. Until recently, these needs have not changed. But we may soon know enough to control the machinery of life itself, changing our basic needs and making the future less certain. I hope that this book will help you understand how we got where we are now, and maybe even help you guess where we are going next.

Rojev Burgman

LEARNING THE BASICS

BY MAKING TOOLS that either change their environment or help them to cope with it, human beings can survive where other animals cannot. It took hundreds of thousands of years for people to make the basic inventions and discoveries that underpin what we now call technology.

Stone tools c.3,000,000BCE

The main difference between ourselves and most other animals is that we use tools. The oldest known tools, found in Africa, were made more than two million years ago. They are simply lumps of stone that have been shattered with another stone to make a sharp edge for chopping meat or wood. The people who made them would also have made tools from wood, but none have survived.

Use of fire c.1,400,000 BCE

People discovered the value of fire long before they found out how to make it. Fires can be started naturally by friction, lightning, or sunlight striking through a drop of water. The first people to use Cord attached to the ends of the

Cord attached to the ends of the crosspiece is also fixed to, and wrapped around, the shaft **DRILL** The bow drill (right) is Egyptian. The drill (left) is a recent pump drill from New Guinea, which was used to drill holes in wood.

Drill was kept upright by a piece of wood or stone held on top of it

HAND AX

The best stone for tools was flint. This flint hand ax, from about 1000–5000 BCE, was found in Saint Acheul, near Amiens, France

> If flakes are chipped off, flint naturally forms sharp edges

Hand ax 🖤 c.1,800,000BCI

Over a period of more than one million years, the first crude stone tools evolved into beautifully shaped blades. Their makers flaked away the surfaces of a large flint pebble until its sides were sharp, for cutting or scraping, and one end was pointed, for piercing. The remaining blunt end fitted snugly into the hand, which is why the blades are called hand axes. fire simply kept these natural flames going. They used fire for warmth and to cook food. Better still, fire could be used to clear away bushes and trees so that the grass grew thicker, attracting animals for people to catch and eat.

Mining :.40,000BC

arly people made full use of everything around them, including rocks, which they used to make tools and to extract minerals. After a time, the good rocks on the surface were all used up, and people had to start digging to find what they wanted. The first mines were just shallow pits, but miners were eventually forced underground. One of the minerals they wanted was red ochre, which was used as a pigment for ritual purposes and for cave paintings. The oldest known underground mine was used for collecting red ochre. It is at Bomvu Ridge in Swaziland, Africa.

c.1,600,000 BCE Earth enters its most recent ice age. Ice will eventually cover northern Europe and North America. Most of it will have gone by 10,000 BCE, leaving behind a changed landscape. Wooden / crosspiece was pumped downward to turn the shaft via the cord

Stone weight was used to apply more pressure to the bit

> Drill shaft, the end of which was equipped with a castiron bit

c.50,000 BCE A huge meteorite, the size of a building, falls on Earth in what

is now Arizona, The rock weighs about 440,000 tons and forms a huge crater 0.75 miles (1.2 km) wide and 490 ft (150 m) deep.

Drill

he earliest drills were

that people spun between

Later, sticks were spun like this

the palms of their hands.

to make fire (***** see page 11).

they could spin the drill faster

by wrapping a cord around it,

tying the ends of the cord to a

wooden bow and pushing this

back and forth. This bow drill

was used in some parts of the

world until recent times.

People also discovered that

probably pointed stones

LEARNING THE BASICS

Fishing line is made from natural plant creeper

FISH HOOK This modern fish hook from Hawaii was made in much the same way as the first fish hooks.

Barb prevents the fish from escaping, once caught

Hook made from ivory .

Engraving tool c.35,000 BCE

A s long as 40,000 years ago, people were making delicate objects and works of art using stone engraving tools called burins. Made by forming a sharp edge on a flake of flint, a burin could be used to scratch lines and cut grooves

c.35,000 BCE The first people to enter the Americas travel over a land bridge in bone or wood. This allowed people to create more precise tools, such as needles, and to engrave decoration on larger objects.

Fish hook .35,000BCE

The earliest method of catching a fish was with a piece of stone, pointed at both ends, baited, and tied to a line. This gorge, as it is called, simply jammed in the fish's throat. The first real fish hooks were developed by the earliest "modern" humans, the Cro-Magnons. They caught their fish using a barbed bone hook, one of the many small, specialized tools they made using the versatile burin that they had perfected.

Handles for tools

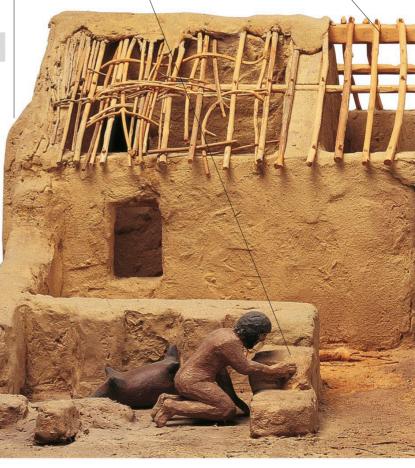
A ttaching a wooden handle to a blade may not sound like a breakthrough, but it was. People could not hit things very hard with a tool held in their hands because it hurt. Nor could they swing the tool very quickly because their arms were too short. A handle, or haft, helped them overcome both these limitations, protecting their arms from impact and

HOUSE After 20,000 years of development, houses began to be made of brick. This is a model of a house from the 6th century BCE. increasing the length of their swing. Hand axes (* *see* **page 7**) could be used to clear away bushes, but axes with hafts could be used to chop down trees.

Spear thrower c.35,000 BCE

By creeping along quietly, gearly hunters could often get close enough to an animal to throw a spear at it and kill it. But sometimes the animal would run away. What the hunters needed was a way of throwing spears from farther away. The spear thrower was a piece of wood or antler with a notch at one end to hold the spear. It enabled hunters to hurl their weapons farther and increased their chances of killing their prey.

Bricks are molded from mud and baked in the sun


Bow and arrow c .30,000 BCE

Bows and arrows were depicted in cave paintings from 30,000 BCE onward, but no actual examples survive today. By 18,000 BCE, arrows were equipped with flint points, making them deadly to animals. Later, the bow came into use as a major military weapon and became deadly to people, too.

Cave painting c.30,000 BCE

Dramatic paintings made by people living more than 30,000 years ago lay forgotten until 1879, when a little girl, Maria de Sautuola, visited the

Roof structure built from branches and reeds

between Siberia and Alaska, which is exposed by the low sea level. The bridge will later disappear as ice melts worldwide. c.27,000 BCE In what will become Germany, an unknown sculptor carves the Venus of Willendorf, one of the earliest known sculptures of a human. It has exaggerated female proportions and is painted red. caves at Altamira in Spain with her father. She noticed the huge paintings of animals high above her head. Since then, even earlier paintings have been discovered at Chauvet in France. The artists of these early paintings had to invent paint, brushes, scaffolding, and even artificial lighting before they could begin painting.

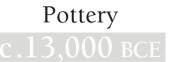
Paintbrush c.30,000 BCE

The artists who created the cave paintings at Altamira in Spain, Lascaux in France, and in other places, probably put color on to the walls in several different ways, including spitting it out. Some of the effects they produced must have needed a paintbrush. At its simplest, this could have been a twig chewed at one end to separate the fibers, but the world's first interior decorators may also have used bunches of feathers or bristles.

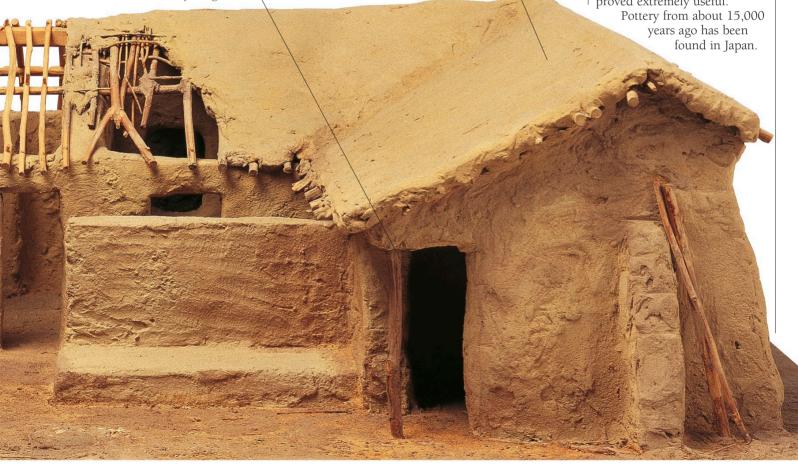
Tt is difficult to say exactly L when people first started to make rope because few early examples have survived, except in bogs, where the acid water has stopped it from rotting. But some early drawings and sculptures show it in use. It has also sometimes been preserved as an impression in clay, as in the caves of Lascaux, where archaeologists found evidence of a rope braided from three plant fibers. One early use of rope was for making nets and snares for catching food.

Doorway supported by a large branch

House .28,000 BCE


People started to build houses about 30,000 years ago, but most people lived in shelters or caves. They also built simple huts, in which they probably lived for some time before moving on to find food. At Dolnì Vestonice in the Czech Republic, archaeologists have found the remains of houses built from stone, wood, and mammoth bones, dating from about 25,000 BCE.

Boomerang c.19,000 BCE


Used by hunters in Africa, India, and Australia, the boomerang was originally just

Roof and walls plastered with mud

a heavy stick thrown at an animal to injure it and make it easier to catch. Over the centuries, the stick was reshaped so that it would fly farther and faster, and even return to its thrower. The first known boomerang was found in a cave in southern Poland, and it is probably about 21,000 years old. The Australian boomerang was in use by 8000 BCE.

Having harnessed the power of fire, people were able to make pottery. The first potters needed only to find some soft clay, shape it, and then heat it in a fire. Because an ordinary fire did not heat the clay very evenly, the resulting pots were fragile and not completely waterproof, but they still proved extremely useful. Pottery from about 15,000 years ago has been found in Japan

c.23,000 BCE Ice tightens its grip on Earth as the ice age reaches its peak. As more water is locked up in glaciers, the sea level continues to fall. By this time, it is 300 ft (90 m) below its level today. c.18,000 BCE People in Australia cover rocks with thousands of elaborate

engraved designs. They also create images in color. For red, they use a rock called red ocher, or sometimes human blood.

Cutting holes in the skull c.10,000 BCE

People once thought that disease was caused by demons getting inside a person's head or gods stealing their soul. Their answer was to cut a hole in the head to let the demons out or the soul back in. Trephining probably took place as early as 10,000 BCE, and a skull from about 5000 BCE, found at Ensisheim in France, shows clear evidence of the operation. Other skulls show that people survived it—bone around the hole has grown, proving that the patient lived.

Whistle c.10,000 BCE

The whistle could be the earliest musical instrument. Archaeologists have found

/ Skull shows four circular holes, or trephinings

examples more than 12,000 years old. People in China were using whistles with more than one note at least 9,000 years ago. We don't know exactly how the whistle was invented, but it is likely that the first step was when someone blew across the end of a natural tube, such as bamboo or bone.

Agriculture

See pages 12–13 for the story of how hunters became farmers.

Oven c.9000 BCE

he earliest method of L cooking was to put food over an open fire and turn it occasionally. But this wasted fuel and someone had to do the turning. It was more efficient to put the fire inside a stone or clay chamber—an oven. Once the oven was hot, the cook could rake out the fire, put the food in, and seal it up until the food was ready. The first known ovens were found in the city of Jericho in ancient Palestine, where people have been living for more than 10,000 years.

FLINT MINING This prehistoric pick is made from a deer's antler.

Flint mining c.8000 BCE

F or hundreds of thousands of years, people made tools from the stones they found around them. As the need for tools grew, toolmakers began to dig for suitable stones like flints. Fortunately, flints are found in soft chalk, which miners could cut away with picks made from antlers. Early flint miners in Britain and France sank complex mining shafts and galleries that went as deep as 40 ft (13 m).

Bone shows signs of healing, indicating that this individual survived the process of trephining

CUTTING HOLES IN THE SKULL This skull was trephined in 2200–2000 BCE.

c.11,000 BCE People now most of the Americas, except the northern parts covered by glaciers. Using stone-tipped spears, they hunt mastodons and mammoths (both similar to elephants) and even camels. c.8300 BCE ^{A period} known as the Middle Stone Age begins. World temperatures rise sharply and the great ice sheet covering Europe starts to shrink, opening up huge areas of land for people to occupy.

Sheep

bout 10,000 years ago, Asheep lived wild in western Asia and around the Mediterranean. They are now found in more countries than any other domestic animal. The first farmers may have favored sheep because they tended to follow a leader. which made them easy to herd. They were also small and hardy and produced valuable wool as well as meat and milk.

Wheat and barley

Theat and barley are basically just types of grasses. Modern varieties are the result of a continuous process of selection, which started when the first farmers chose to cultivate the plants with the most plentiful and largest seeds. The first crops were probably cultivated

somewhere in the Middle East, perhaps near Jericho, which had a large population to feed. Traces of wheat and barley seeds have been found buried under the modern town.

Chisel


bout 9,000 years ago, Apeople began to grind stones to form a sharp edge, instead of flaking them. This meant they could use tough stones to make longer-lasting tools. One such tool was the

chisel, a blade sharpened at the end, not the side. It gave better control for carving objects from wood or other soft materials.

Making fire

 $P^{\text{eople have used fire for}}_{\text{more than a million years}}$ but discovered how to make it only about 9,000 years ago. Two main methods were used. One was to hit a rock called pyrites with a flint, which

> to hunt and kill large animals such as the mastodon, it cannot survive since this and many

produced sparks that could be used to start a fire. The other method was to spin a stick called a fire drill against a piece of wood until sparks flew. Archaeologists have found the equipment used for both methods throughout Europe.

Flax

 \mathbf{D} y about 9,000 years ago, Depople were growing plants to make their fibers into rope

SHEEP Images of farmers with sheep and cows made 4,500 years ago in the city of Ur, Mesopotamia.

and cloth. The first plant to be cultivated for this reason was flax, a tall plant with blue flowers. Fibers extracted from its stems were spun into a thread called linen, which we still use today because it is much stronger than cotton. Archaeologists have found early flax plants and linen fishing nets and fabrics in Switzerland. The ancient Egyptians also used linen to wrap mummies.

C.8300 BCE The saber-toothed tiger, a large ferocious cat with fangs, finally becomes extinct. Well equipped

other prey die out.

c.8000 BCE After occupying many parts of the world for more than a million years, lions begin to disappear.

By this time, they have become extinct in North America. In another 8,000 years, there will be none left in Europe.

GOING FOR GROWTH

No going back as hunters become farmers

Flint blade (c.4000– 2300 BCE) in a modern handle

Ears of einkorn wheat

EARLY HARVEST

The first farmers grew einkorn, a type of wheat, and other crops. They harvested the wheat with a sickle, made by attaching a flint blade to a wooden handle. The sickle made it easy to cut down the tall, strong stems.

THRESHING AND WINNOWING Large-scale growing demanded efficient ways of processing the harvest. Wheat or barley was first threshed—beaten with flails to separate the grains from the husks. Then it was winnowed—thrown into the air so that the wind blew the husks away while the valuable grains fell to the ground. Carbonized wheat, barley, fig seeds, and grape seeds from an archaeological site in Jordan

there was no going back. Farming produced more food per person than hunting and gathering, so people were able to raise more children. And, as more children were born, more food was needed. Agriculture gave people their first experience of the power of technology to change lives.

C ome time after 10,000 BCE, people

the world they lived in, through

made the first real attempt to control

agriculture. Over thousands of years, they began to depend less on what they

more on animals they had tamed and

It is not clear why people changed their

lifestyle like this. We can only guess at what

crops they had sown. The abundant food that agriculture provided allowed

small villages to grow into great cities.

inspired them to try herding sheep or

planting wheat. Whatever the reasons,

could hunt or gather from the wild and

Some of the first people to become farmers lived in a huge, sunny, wellwatered area in the Middle East called the Fertile Crescent (now

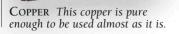
Iran, Iraq, Israel, Jordan, Syria, and Turkey), where the conditions were ideal for crops and livestock. But the story of the dawn of agriculture was repeated over and over again throughout the world. People invented agriculture independently

12

in places as far apart as China and South America. They may have started because people noticed that the grains they gathered sometimes sprouted or that sheep liked to stick together and were easy to control.

By about 6000 BCE, people had discovered that the best cereals to grow were wheat and barley and that pigs, cows, and sheep returned the effort involved in rearing them by providing meat, milk, leather, and wool. Later, they used oxen for pulling plows. People learned to work with the seasons, planting at the right time and, in dry areas, making use of annual floods to irrigate their fields. They also invented graphics where the hereet accurate

fields. They also invented granaries where the harvest could be stored. This style of farming lasted for another 8,000 years. Then, with the rise of science, changes began. New methods meant that fewer people were needed in farming. In the last century or so, these changes have accelerated. New power machinery, artificial fertilizers, and pesticides have now totally transformed a way of life that started in the Stone Age. HARVESTING TODAY Cereals are still harvested in the "Fertile Crescent" today. The principles of harvesting grain have not changed over the centuries, but in many areas the farmers now use machines like this combine harvester in Syria. This huge machine cuts, threshes, and winnows the crop.


As well as changing people's lives, agriculture gradually changed the landscape as farmers began to plow fields and channel water to their crops.

Mortise and tenon joint c.7000 BCE

Having learned how to make good tools, people could start to do precise woodwork. But first they had to solve the problem of how they could join together two pieces of wood. One method was with the mortise and tenon joint, in which one piece of wood has a tongue shape at the end, which fits into a matching hole in the other piece of wood. This joining method was also used for stone structures like Stonehenge and is still the most widely used wood joint.

Sickle c.7000 BCE

S oon after people began to grow crops, they developed special tools for harvesting them. The first was a short, straight blade known as a sickle. Dating from about 7000 BCE onward, flint sickles were one of the inventions that made agriculture possible (* see pages 12–13). A later development was a curved blade, which could cut several stems at once. The curved sickle is still in use today in some places but with a steel blade instead of a stone one.

c.6800 BCE Methods improve in villages in the Middle East. Farmers grow a wider range of crops and

TRADERS AND THEIR TRADES

SEVERAL EARLY settlements, such as Çatal Hüyük in Turkey (6500–5400 BCE) and San Lorenzo in South America (1150–900 BCE), owed their growth to trade. Çatal Hüyük's population grew to about 5,000 at its height because it had access to the valuable material obsidian. Trading was also important for island dwellers, who could rarely find everything they needed locally but were able to produce specialized crops such as spices.

Cinnamon

Peppercorns

Obsidian

A natural glass formed by volcanoes, obsidian could be used to make much sharper cutting tools than flint or other stones. People living in what is now Turkey had plenty of this material but lacked precious metals, so they traded one for the other. Obsidian from this area has been found in ancient Palestine, 550 miles (900 km) away.

SPICES

Trading in spices such as cinnamon, cloves, ginger, and pepper goes back to 2000 BCE or earlier. The spices originated in the East, and traders who knew where to get them made large profits by bringing them westward. The traders kept their sources—places like the Spice Islands (now part of the Moluccas group of islands in Indonesia)—strictly secret.

Copper

The person who discovered

copper, the first widely

used metal, must have been

thrilled. It is one of the few

metals found in metallic form.

People in Turkey were using it

6500 BCE. By 3000 BCE, with the development of ways to extract the metal from its ore, copper was in use all over the Middle East and the Mediterranean.

Lead

for small, precious objects by

in about 6500 BCE in Turkey. Unlike copper, lead is rarely found as a pure metal and has to be extracted from its ore by roasting it in a hot fire to release the metal. The earliest known objects made of lead are beads, suggesting that at first people considered lead a precious material and used it only for display.

Painted pottery

A lthough early methods of firing were not very effective, even the earliest potters tried to make their wares look beautiful. Pots found in the ancient city of Çatal Hüyük, Anatolia (now Çumra in Turkey), dating from about 6500 BCE, had been

c.6000 BCE Britain cut off from Europe as the land link between what are now England and

washed over with a thin layer of cream clay called slip and decorated with the natural pigment red ocher.

> The ends face upward, away from the water

Ginger

BOAT This boat from Lake Titicaca in the Andes mountains is made of reeds. The Egyptians were making boats from reeds by about 4000 BCE.

> France is finally broken. Melting of the great glaciers has caused the sea to rise by hundreds of feet.

use land more efficiently. They domesticate what will become one of the most important farm animals—the pig.

ead is one of the most

ancient metals. As with

copper, people started to use it

Trading c.6500 BCE

Few communities are able to produce everything they need. Trading allows people to exchange things they have too much of for things they lack, and probably make a profit at the same time. Trading became **DRUM** This Sumerian vase from the end of the 4th century BCE shows a musician playing a drum made from animal skin stretched across a wooden frame.

common when the first cities were established, and the profits from trading helped many cities to grow. As transportation improved, trading spread more widely, exposing previously isolated groups of people to each other's knowledge and customs. (* See also Traders and Their Trades.)

Ах с.6000 все

From about 6000 BCE, stone ax heads with a straight edge and heavy base began to appear, the earliest of which have been found in Sweden. Another basic tool, the adze, developed at about the same time. It was like an ax but with the blade turned around to strike across, not along, the direction of swing. It was used to shape heavy woods.

> Rope made from reeds

Sail made from reeds

> High, domed shape keeps the sailors well out of the water

Drum c.6000 BCE

The remains of drums have been found dating from 6000 BCE onward. Drums have always had religious, political, or military significance, and the urge to influence a crowd with noise and rhythm has led people to develop the drum into many forms. The first drums were skins stretched over anything hollow, but now there are hundreds of varieties, such as African talking drums, classical kettle drums, and tambourines.

Boat .6000 BCI

The first "boat" was probably just a dead tree on which someone hitched a ride downstream. But once tool makers had perfected stone axes, people used them to shape and hollow tree trunks to make real boats—dugout canoes. Boat builders also covered wooden frames with animal skins to make lighter boats like the coracle, which is still used today. Later, people in ancient Egypt made boats by lashing reeds together.

Bundles of reeds held by twine

c.6000 BCE ^{The city} of Çatal Hüyük, in what is now Turkey, becomes one of the largest settlements of the Near East, after about 500 years of occupation. Its mud-brick buildings will survive for another 500 years. c.6000 BCE ^{Chinese} painters extend their range of pigments by heating mixtures of organic and inorganic materials to create new colors. They make these into paint with gum, egg white, gelatine, or beeswax.

Basket weaving c.5500 BCE

Basket weaving and cloth making were both common by 5000 BCE. Baskets probably came first because weaving a basket was easier than weaving cloth. No loom was needed, and weavers could use whole plant stems instead of having to spin plant fibers into thread. Baskets were made using split bamboo in China, flax and straw in the Middle East, and willow in Europe. People in these areas also used the same materials to weave matting.

Leather 2.5000 BCE

arly hunters knew that animal skins would be useful if they could stop them from decomposing. By about 5000 BCE, they had figured out various ways of turning skin into leather. They started by drying the skin then applied a range of substances, including urine. By about 800 BCE, people in the ancient state of Assyria in northern Mesopotamia (Iraq) had developed a better process. They soaked the skin in a solution containing the chemical alum and vegetable extracts that were rich in the chemical tannin.

Loom c.5000 bce

To weave cloth, a thread called the weft is passed under and over alternate threads called the warp. The earliest weavers may have used a needle, but by 5000 BCE, most looms allowed the weaver to avoid going under-and-over by lifting half the warp threads for the weft to pass straight through, then lifting the other half for the weft to pass back.

Plow c.5000 bce

Seeds grow best in soil that bhas been broken up and turned over. Early farmers used sticks to prepare the soil. The plow, developed later, did the job better, although early plows did not turn the soil over. The first plows were pulled or pushed by people, but by 4000 BCE, oxen were doing the pulling and the farmer had only to steer.

Seal c.4500 BCE

The seal was the first security device used to protect goods and sign documents. In 4500 BCE, people in Mesopotamia sealed packages by tying them with string, putting clay around the knot, and squashing the clay with a stone carrying their mark. A thousand years later, when people started writing on clay tablets, they signed their documents in a similar way.

PLOW This model plow was

found in an Egyptian tomb

of 2000 BCE.

GRINDSTONE This quern was used to make flour by grinding grain between the two stones.

Grindstone c.5000 BCE

Cereal grains are difficult to digest unless they are cracked open. At first, people did this by pounding them with rocks. Then they used two stones, one on the ground and one in the hands. The flour produced was more nutritious than whole grains and could be made into bread. This type of grindstone is sometimes called a saddle quern because the lower stone gets ground into a saddle shape with use.

Irrigation

<u>c.5000 bce</u>

Irrigation is a means of getting water to plants so that they can grow, even when the land is dry. From about 5000 BCE, the ancient Egyptians practiced irrigation on a grand scale. Every year, the Nile River flooded, and the Egyptians used sluices and ponds to trap the water and its valuable nutrient, and send it to

where it was needed.

> Farmer steers the plow

Plowshare

digs into

the soil

c.5500 BCE Chinese begin to grow rice in the Huang He (Yellow River) valley in eastern China. Within five centuries, this small beginning will develop into a fully agricultural way of life. c.5000 BCE The fertile land to the north of the Persian Gulf is settled by the Ubaidians, the first of many

occupants of the area that will become Sumer. They develop a rich culture that includes pottery and sculpture.

Scales c.4000 BCE

"he simplest device for weighing things is the beam balance, a length of wood or metal hung from its center with a pan hung from each end. The object to be weighed, in one pan, is balanced against weights in the other. It was developed in about 4000 BCE in Mesopotamia.By 1500 BCE, the ancient Egyptians had improved the accuracy of these early scales by passing the cords for the pans over the ends of the beam instead of through holes in it.

Silver c.4000 BCE

S ilver is often found naturally it is more difficult to extract so it came into use rather later. Archaeologists have found silver ornaments

Oxen provide the power // Weight could be moved along to adjust the beam

> Pans suspended from cords (the chains are modern replacements)

SCALES These ancient Roman scales use the same principle as Mesopotamian scales. They are simple and very accurate. Similar ones remained in use until modern times.

buried in tombs dating from 4000 BCE. By 2500 BCE, silver mines were in full production in the area now called Turkey. From the beginning, silver was valued for its rarity and beauty. It was used as money, and this remained its main use until recent times, when it became the essential ingredient of photographic film.

Beam made

of bronze

BRICK Made in Mesopotamia in about 2500 BCE, this mud brick was partly fired.

Edges formed by the wooden mold

Brick

People made the first bricks from mud. They mixed the mud with straw to reinforce it, then shaped the bricks in wooden molds and dried them in the sun. Builders were using bricks of this kind 7,000 years ago, but they were not

very good because heavy rain could turn them back into mud. More practical bricks began to be made in the Middle East in about 3500 BCE. They were made of clay and fired by heating them in a kiln, which made them as hard and as waterproof as pottery.

c.4500 BCE Farmers southwest Asia migrate up the valley of the Danube River in Germany, mixing with people still only hunting for food. They settle here, build large wooden houses, and trade for tools. c.3900 BCE ^{The} Yangshao culture emerges in eastern China. Its people keep animals, practice simple farming, and later discover the secret of silkworms. Their other specialty is pottery painted in red, white, and black. CITY On the floor of the church of St. John in Kirbet El-Samra, in Jordan, is this somewhat fanciful image of Memphis in ancient Egypt. Memphis as imagined in the 7th century

oil and as a food by about 3500 BCE. More than 5,000 years later, olives are still Crete's most important crop, and olive growing has spread throughout the Mediterranean region and to other parts of the world with a similar climate.

Opium

O pium is a substance made from the unripe seed heads of poppies. It has been in use for more than 5,000 years to relieve pain and help people sleep. Some of the

earliest known writings—clay tablets of about 3000 BCE from Assyria—refer to its medical properties. Since then, it has been used to make several other drugs, notably morphine, discovered by German chemist F. W. A. Sertürner in 1806, which is still one of the most potent painkillers available.

Donkey

Theels are not always the best way to move things from place to place. In certain conditions, goods may travel more safely strapped to an animal. The first beast of burden was the donkey, domesticated from the African wild ass. In Sudan, in northwest Africa, people were using pack animals, as they are often called, as early as 4000 BCE, long before wheeled vehicles were invented. They probably chose the donkey because it is easy to tame, stands up well to harsh treatment, and can carry a load of up to 132 lb (60 kg).

> Bronze blade

taken

mold

from the

Stone

mold of

a sword

blade

City c.3500 bce

Because farming (* see pages 12–13) meant that fewer members of each community were needed to produce food, other members were free to develop cities. They were places where people gathered for security and to exchange goods and ideas and were the foundations of civilization. The earliest large settlement was Jericho in the Middle East, which dates from about 7000 BCE, but the first real cities, with streets and public buildings, were Thebes and Memphis in Egypt, both of which existed by 3500 BCE.

Metal casting c.3500 BCE

Casting is a way of making objects by letting molten metal solidify in a mold. It was

c.3500 BCE People in Europe begin to bury their dead in long barrows. These earth mounds are

an easy discovery to make, once people had learned to melt metals, because any metal they spilled would have been shaped by what it fell on. The first known castings are ax heads made of copper from the Balkan region of southeast Europe. They were made between 4000 BCE and 3000 BCE. Later, copper was replaced

by bronze (* see page 20), which is easier to cast and is much harder.

Olive 0.3500 BC

People on the island of Crete in the Mediterranean Sea were growing olive trees and harvesting olives for their

typically 230 ft (70 m) long and point east-west. An entire highstatus family would be buried in a chamber at the east end. Bronze melted in a furnace

METAL CASTING Metalworkers discovered that bronze was easy to melt and cast into objects.

c.3500 BCE Sculptors Mesopotamian city of Uruk make outstanding items, such as a goddess's head in white limestone inlaid with other materials. They also carve vases from alabaster, a translucent stone.

Potter's wheel c.3500 BCE

People made the first pots with their bare hands. Later, they built up pots from a "worm" of clay. Neither method produced perfectly round pots. By about 3500 BCE, potters were molding clay on a turntable, possibly made from a round stone, which helped them shape their pots more uniformly. Before long, they were using a heavy stone on an axle, which they spun with their feet. This left their hands free to work the clay on a smaller turntable above, and the potter's wheel was born.

Kiln-fired pottery c.3500 BCE

lay heated in a fire does not get hot enough to change into really strong pottery. By about 3500 BCE, potters had developed kilns, often fueled with charcoal, in which hot gases rushed up through a stack of pots. Clay placed in such a kiln produced better pottery. Because kilns were expensive to run, potters who used them needed plenty of customers and usually operated in cities.

Road

E arly roads were not surfaced like modern roads, but they could be just as long. The Persian Royal Road, built in about 3500 BCE,

c.3500 BCE ^{The} first pottery in the Americas is made in Ecuador and Colombia. The idea

stretched for 1,785 miles (2,857 km) between the Persian Gulf and the Aegean Sea. By 1050 BCE, the Chinese were traveling on the Silk Road, which remained the world's longest road for 2,000 years. Great roads were also built by the Incas in South America and by the ancient Egyptians, who needed to transport building materials for their pyramids.

Sail c .3500 BCE

Early boat users, noticing that the wind sometimes helped their progress, stretched skins or matting between poles to make the most of it. Sails made of cloth came later. They first appear in ancient Egyptian art from about 3300 BCE. Whatever they were made of, early sails worked only when the wind was behind them. Sails that could catch wind from the side, making sailors less dependent on the weather, were not invented for another 1,500 years.

Theels were first used to move things around in Mesopotamia. It seems unlikely that the idea came from logs used as rollers, because the earliest wheels don't look anything like logs. People made them from planks, even in countries with trees that were large enough to slice into wheels. The wheel is more likely to have started life as an aid to potters in their quest to make perfectly rounded pots.

Wheeled vehicle

.3500 BCE

"he first record of anything with wheels is a pictograph (picture writing) found in Sumeria, an ancient civilization in southern Mesopotamia. It dates from about 3500 BCE. The same pictograph shows that earlier vehicles had runners like a sled. Within 500 years, wheeled vehicles were almost everywhere. They have been found in tombs and bogs and appear in wall paintings and carvings. In China, vehicles have been found dating from 2600 BCE onward.

between 2500 and 1800 BCE. spreads northward as new crops, such as beans, demand better storage. Pottery making will

reach Mexico by 2300 BCE.

KILN-

FIRED POTTERY

This beaker

was made

c.3500 BCE Corn, or basic Central American crop, begins to be grown on a large scale, displacing a more established cereal, millet. Beans and hot chile peppers are already being grown in many places.

KINDS OF CALENDARS

A CALENDAR is like a clock that tells you what time of year it is, instead of what time of day. All calendars have to allow for the fact that a year does not contain a whole number of days or lunar months. Early calendars tended to run fast or slow, because

their year was shorter or longer than the actual time it takes for Earth to go around the sun

This is an Aztec calendar stone. The Aztecs ruled most of Mexico in the 15th century. The calendar was based partly on a ritual cycle of 260 days.

Writing numbers in tens c.3400 BCE

Deople were counting their possessions long before they began writing words. One way they did this was by cutting notches in a stick. Early counting methods like this gradually evolved into writing numbers. At first, people wrote 24 marks to represent the number 24. By about 3400 BCE, the Egyptians had a more efficient system, with different symbols for 1, 10, 100, and so on. Using this system, they could write 24 using just six marks: two 10s and four 1s.

Bronze c.3300 BCE

Deople began to use metal instead of stone for the production of their tools in about 3500 BCE. This happened when they discovered that copper could be extracted from certain rocks. Bronze, a harder metal, which was made by mixing copper with tin, was discovered several hundred years later. Easily shaped by casting (melting and pouring into a mold), and tougher than any stone, the discovery of bronze had a huge impact on human development.

c.3200 BCE In England, on a monument that will be known as Stonehenge. At this stage, it does not have much stone but is simply a "henge"—a sacred place surrounded by a bank and a ditch.

LUNISOLAR CALENDARS

These calendars were based on the lunar month, during which the moon goes from new to full and back. This has no connection with the solar year, the time Earth takes to go exactly once around the sun. So people using lunisolar calendars

had to throw in an extra month every now and then to keep their months in step with the years.

Sun god surrounded by the 20 days of a month

THE EGYPTIAN CALENDAR The Egyptians ignored the moon and used 12 months of exactly 30 days each, plus 5 days at the end of the year, which didn't belong to any month. It was a simple method, but because this calendar gave a year of exactly 365 days, one-quarter of a day shorter than the true solar year, it gained 25 days in every 100 years.

> CANDLE Candles were originally

formed from wax made by bees.

> Ripples in wax caused

candle was

hand-dipped

Tapered shape produced

by dipping the wick

repeatedly in

molten wax

because

Writing

See pages 22–23 for the story of how Middle Eastern traders created the first permanent records.

Candle c.3000 BCE

Cave painters were using burning torches and crude oil lamps 30,000 years ago. Candles were better than these because their fuel did not spill, making them easy to carry around, and their wick gave a controlled flame. Candlesticks

c.3200 BCE ^{New} people begin to arrive in the area to the north of the Persian Gulf. They speak

a different language from the people already there, but together they form the Sumerian civilization. dating from 3000 BCE have been found in both Crete and Egypt. The candles they once held were made by dipping thin cords into molten wax.

Lubricants

he first wheeled vehicles needed lubrication because a wooden wheel rubbing on a wooden axle created a lot of heat. Any sort of oil or fat eased the problem for a while but quickly burned away. The Egyptians, in about 1500 BCE, were perhaps the first people to mix fat with lime and other substances, making lubricants that lasted.

Boat built from planks

"he first boats built from planks are thought to have come from ancient Egypt. At Abydos, south of Cairo, archaeologists found 14 large boats, which had been made, almost 5,000 years ago, by "sewing" planks together with ropes. The buried fleet was probably intended for use in the afterlife by a pharaoh. The boats' construction shows that the Egyptians still had a lot to learn-the boats had no frame and kept out water with reeds put between the planks.

Calendar

The first calendars appeared in Babylonia, an ancient state in southern Mesopotamia. They were not very accurate because they were based on the moon as well as the sun

Cosmetics

Deople often feel the need to make themselves look more attractive or more frightening, and cosmetics have been used for these purposes since the earliest times. The oldest known cosmetics were found in ancient Egyptian tombs dating from about 3000 BCE. They include perfume, skin cream (used by men as well as women), eve shadow, and mascara. Different minerals were ground to make different colors, such as iron oxide for red and malachite for green. About 1,000 years later, Britons daubed themselves with a blue dye called woad to frighten their enemies.

Cotton fibers grow from a seed

Strong fibers consist of 94 percent cellulose

Fibers begin

fallen off

to grow after the flower has

Ripe cotton pod is called a boll

and kept getting out of line with

the seasons. The Egyptians, who

the annual flooding of the Nile,

based only on the sun. (* See

also Kinds of Calendars.)

were the first to make a calendar

had to know when to expect

Fibers must be removed from the seed before being woven into fabric

(1.6 m) high

Plants grow to about 5.25 ft

COTTON The textile fiber comes from various species of the plant Gossypium.

about 5,000 years ago by people in the valley of the Indus River, in what is now called Pakistan. They discovered that the cotton seed fibers could be woven into much finer fabrics than flax fibers could (* see page 11). News of the discovery soon spread west into Mesopotamia, where the Assyrians welcomed cotton fabric as a substitute for rough wool. It then spread eastward into China.

On a 3000BCEgroup of islands in the Aegean Sea, the Cycladic culture emerges. Although based on seafaring and metalworking, the culture will be remembered for its simplified marble sculptures of females.

otton fabric starts out as a mass of silky fibers attached to the seeds of a plant belonging to the mallow family. It was probably discovered

Cotton

The first C. SUUBCE known vet begins practicing in the state of Mesopotamia (now mainly Iraq). His

name is Urlugaledinna. He treats all kinds of animals, and in many cases he uses herbal medicines to cure them.

PUTTING IT IN WRITING

Middle Eastern traders create the first permanent records

CLAY SIGNATURE

Clay was used to carry information long before real writing began. People in Mesopotamia sealed packages with clay, then used a stone seal to impress their personal mark on it.

WRITING WITH A REED

The first "pencil and paper" was a stiff piece of reed and a soft piece of clay. The end of the reed was cut and used to make marks in the clay.

CUNEIFORM WRITING

Writing in Sumeria speeded up as curved lines gradually developed into wedges or triangles with short, straight sides. Later, signs were written from left to right, without any spaces between words.

EARLY GREEK WRITING

About 3,000 years ago, people on the island of Crete used three different kinds of writing. In the 1950s, British architect Michael Ventris discovered how to read the kind seen here, called Linear B. The other two remain a mystery.

Writing, like so many inventions, came about by accident, and this one happened on the back of an envelope. About 6,000 years

ago in Mesopotamia, a group of people known as the Sumerians invented a new way of keeping track of trade. They made clay

tokens shaped like animals, jars, and other goods and recorded deals by wrapping the tokens up in clay envelopes. Once they'd sealed an envelope, they could no longer see what was inside it. So, using a pointed stick, they marked the soft clay with signs that showed its contents.

It didn't take them long to realize that, once they'd done this, they didn't need the tokens any more: just the marked envelope would do. So by about 3100 BCE, the envelopes had turned into

simple squares of clay recording trade deals in symbols. Writing had begun.

At first, the Sumerians used marks that were simplified pictures. To speed things up, they started jabbing the clay with the end of a reed instead of drawing with a stick. The pictures stopped looking like real things and became true writing. Archaeologists call it cuneiform. It was used for 3,000 years.

There are some problems with writing in this way. Every time a new word is invented, someone has to invent a new mark. Some

Wooden slip used to keep records about 2,000 years ago

蒲可者皆

歃

words, like "in" or "at," are hard to turn into pictures. And how do people write their names? The Sumerians coped with this problem to some extent by using words they could picture to represent words they could not: "in," for example, sounded like "water" in Sumerian, so they used the mark for water to represent "in," too.

Sour frate man frate for factor

Today, people in China still use a similar system, but they developed it independently, perhaps about 3,500 years ago, and use completely different symbols. It has survived because people in different parts of China pronounce the same words very differently, so alphabetic writing, which records pronunciation, would not work as well.

Although the Sumerians never used an alphabet, they were the first people to write. Without writing, there would be no history, and those ancient traders have certainly earned their place in it. The invention of writing allowed merchants to keep track of deals by recording what was agreed upon. Cuneiform writing was later used to set down laws made by the Babylonian king Hammurabi.

> Animal bone bearing predictions

A diviner interpreted cracks made in the bone to foretell the future

CHINESE WRITING The first Chinese writing, which appeared about 3,500 years ago, was engraved on wood, bones, or shells. The old characters are different from today's characters, but Chinese people can read them without too much difficulty.

Ramp c.3000 BCE

By about 3000 BCE, people elements of machines: wheels, levers, and inclined planes, known as ramps. The inclined plane makes it easier to raise a heavy object by allowing it to be pushed or pulled gradually up a slope, instead of lifting it straight up. The 2-ton stone blocks of Egypt's Great Pyramid of Giza were put into place in about 2500 BCE by workers pulling them up ramps.

Lathe c.3000 BCE

The lathe, perhaps 5,000 years old, allows its user to form a piece of material into a circular shape by spinning it against a cutting edge. The mechanism of the earliest lathes was like that of early drills (***** see page 7). A cord was wrapped around the piece to be shaped and pulled back and forth by a bow to make it rotate. Marble vases turned on a lathe, dating from before 2000 BCE, have been found on some islands in the Aegean Sea.

Harp c.3000 BCE

The harp is one of the oldest musical instruments. It first appeared in Sumeria and Egypt about 5,000 years ago. Early harps resembled bows used to fire arrows but had several strings stretched across instead of one. These were plucked to sound notes. Although the harp has developed over the centuries into something

c.3000 BCE ^{The} Egyptians establish the first widely used unit of length, the cubit. It is the distance

almost as complicated as a piano, it is still played in its simplest form in parts of Africa and Afghanistan.

Lever

simple lever is a rod or Abar that turns over a pivot point called a fulcrum. It changes the force exerted on one end into a greater force, but with smaller movement. at the other end. People were using levers by 3000 BCE, and probably long before that. They may have discovered that a rock that was impossible to lift directly could be levered up with a tree branch resting on a smaller stone, which acted as the fulcrum. It wasn't until about 250 BCE that Archimedes came up with a full explanation of how levers worked.

Lyre

The lyre is a musical instrument that is closely related to the harp. The strings

> Decorated base strengthens

between the elbow and the end

of the middle finger, usually

about 18 in (450 mm) but

sometimes longer.

the sound

HARP A harpist

of c.2500 BCE is

shown here in a

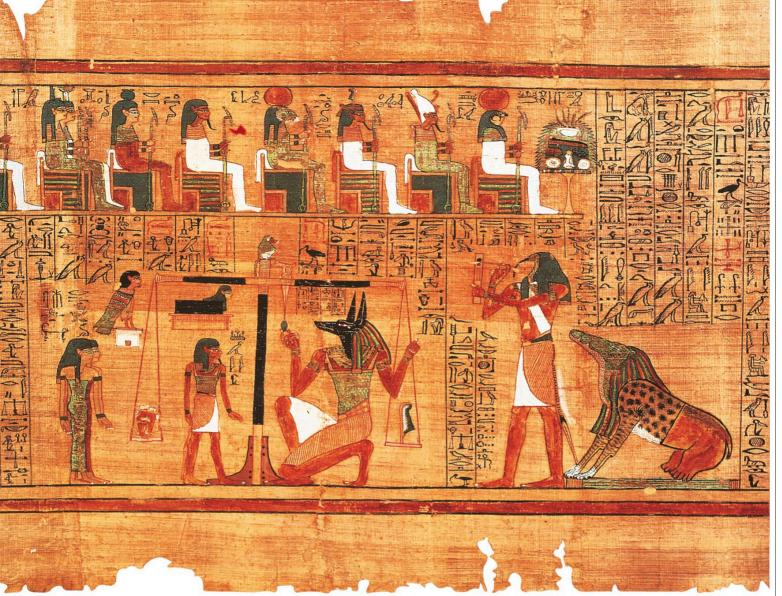
picture from Ur

in Mesopotamia.

are stretched between two arms attached to a box or bowl. People were playing lyres in Sumeria by 2800 BCE. The instrument remained a favorite with the ancient Greeks, who linked it to the god Apollo, a handsome and gifted musician. Unlike the harp, the lyre did not make it into the modern orchestra.

Papyrus c.3000 BCE

The ancient Egyptians used papyrus much like we use paper. They made it by squashing and drying a mat of reed fibers until they stuck together, then polishing them with a stone to form a smooth sheet. Papyrus was too stiff to fold, so the Egyptians joined the sheets together to make long scrolls. It was on these scrolls that they wrote and drew much of what we now know about ancient Egypt from about 2600 BCE onward.


Painting with wax

he ancient L Egyptians liked art. By about 3000 BCE, they had developed a new technique of painting on walls, using a mixture of pigments and melted beeswax. When the painting was complete, they heated it to make it melt into the surface of the wall. This method is called encaustic painting. The result was rich and colorful, and many of the paintings can still be seen today. The technique was revived by US artist Jasper Johns in the 1960s.

c.3000 BCE Merchants of Babylonia begin to use bottomry, a form of insurance. They take out a loan to equip a ship. The interest rate is steep, but if the ship sinks, they don't have to pay the money back.

Stone buildings c.3000 BCE

In 2600 BCE, the Egyptian pharaoh Djoser and his architect Imhotep created the step pyramid at Sakkara the first pyramid to be made entirely of stone. It was designed to be Djoser's tomb and rose in six steps to a height of 200 ft (60 m). At that time, nearly all buildings were made of bricks or wood. Small stone buildings did exist, but Djoser's gigantic pile of square-cut stone blocks must have seemed truly

amazing. The pyramids of Egypt are still some of the world's most impressive stone buildings. The tallest one is the Great Pyramid of Khufu at Giza. It is made from about two million huge blocks of limestone and stands 482 ft (147 m) high.

Venus 3000 BCF

Since Venus is close to the Ssun, it is never visible in the middle of the night, but it is often the brightest object in the evening or morning sky. So it is not surprising that it was one of the first heavenly bodies to be studied. It features in the ancient astronomical records of China, Egypt, Greece, and South America, and the Babylonians made records of its movements as early as 3000 BCE.

Dam c.2900 BCE

Dams are among the largest constructions that ancient people built. Probably the earliest was a 49 ft (15 m) PAPYRUS Artists working on papyrus could include fine detail. In this ancient Egyptian illustration, the heart of a dead person is being weighed to see if he is worthy of eternal life.

mound raised beside the Nile River in Egypt in about 2900 BCE. It was built to protect the city of Memphis from flooding. The remains of another dam almost as old can still be seen today at Wadi Gerrawi in Egypt. Instead of providing protection from floods, this one was built in 2500 BCE to catch the seasonal flood in a dry river bed feeding the Nile. It is 295 ft (90 m) thick.

Clay tablet book c.2800 BCE

The first books were not made of paper. Instead, their writers, working in Mesopotamia in about 2800 BCE, used rectangles of soft clay called tablets. One tablet could contain quite a lot of information, but not enough to be called a book. To write something longer, people did exactly what we do today. They used several tablets and numbered them to keep them in the right order.

c.2800 BCE People in Europe start to switch from mass burials in "houses for the dead" to graves that hold only one person. Not just anyone gets a grave to themselves. They are confined to high-ranking men. c.2800 BCE Tree-lined walks and ponds with water birds appear in ancient Egypt as the first garden designers get

started. Working for wealthy clients, they use a system of rectangular walled enclosures and include small pavilions.

LEARNING THE BASICS

ACUPUNCTURE This set of eight acupuncture needles and their protective case are from 19th-century China.

> Needles made of

Protective case made of

mahogany

steel

beneath a camellia tree in about 2700 BCE when a leaf fell in, creating the first cup of tea. The new drink, however, was not mentioned in a book until about 800 CE, and it took another 800 years for tea to reach Europe. By 1657, the first "cuppa" had been sold in London, and tea

became wildly fashionable.

Acupuncture

2700 BCE

Sticking needles into certain places in the body can relieve pain and may restore health. Acupuncture was developed in China before 2500 BCE and has changed little, except that stone needles have

Gilded bust of a woman on each side of the seat , now been replaced by stainless steel. Acupuncture is based on the idea that the life force, or *chi*, of the body flows in certain channels, which can become blocked. Twirling a needle in the right place is thought to make the *chi* start flowing smoothly again.

Chair c.2600 BCI

People were probably sitting on chairs well before 2600 BCE, but the first chairs we actually know about were found in the tombs of ancient Egyptian kings. Placed there for their owner's comfort in the afterlife, these chairs had soft, padded seats and legs carved in the shapes of animals. The Egyptians also used folding stools of a design that can still be bought today.

Leavened bread c.2600 BCE

The first bread was rather hard to chew because it wasn't made lighter, or leavened, with yeast or other agents. The ancient Egyptians were the first people to produce leavened bread. They kept a stock of

The goddess Taweret flanked by two representations of the god Bes

> Chair made of reddish wood, covered with silver and gold

CHAIR This ancient Egyptian chair is known as the chair of Sitamun, who was the daughter of the pharaoh Amenhotep III.

c.2700 BCE Egyptian dance to make the rains come and are recorded in paintings placed in Low, silver-covered supports may have been designed to lift up the elaborately carved legs, away from possible damage

tombs. Their dances are intended to bring the community not only rain but also health and plenty of children.

casting c.2800 BCE C.2800 BCE Lost-wax casting is a way of making hollow objects. A lump of clay is covered with wax, which is then modeled and covered with plaster. When the mold is heated, the wax runs out, leaving a gap between the clay and plaster. Molten metal is poured into the gap and left to cool. This process is

Lost-wax

is poured into the gap and left to cool. This process is thought to have been invented by the Sumerians. The ancient Egyptians, who probably learned the technique from them, were using it by 2200 BCE, and it is still used today.

Tea

Shen Nong

Tradition says that the Chinese emperor Shen Nong was boiling water

c.2800 BCE Cannabis, begins to be grown in China. It is valued for its oily seeds and as a source Feet take the shape of a cat's paws

of fibers for cloth and ropes, rather than as a drug. Centuries pass before it is grown in the Western world.

Mirror was shaped in a mold

"sour dough," in which fermenting organisms were at work, and mixed in some of this whenever they made fresh dough. As the organisms from the sour dough multiplied, they produced bubbles of carbon dioxide gas, making the finished bread much lighter.

Silk

Cilk is still considered to be The most desirable of fabrics. It was first made in China about 46 centuries ago, and its origin was a closely guarded secret. The silkworm and the luxurious, fibrous covering of its cocoon are said to have been discovered by a 14-year-old girl named Xilingshi, who was the wife of the emperor Huang Di. Nearly 3,000 years passed before the secret was revealed, spreading to India, Japan, and eventually Europe.

Arch

Tithout arches, the only way to hold up doorways and roofs is with straight beams. An arch can span a greater distance than a straight beam, allowing wall openings to be larger. The first arches, built in India and Mesopotamia in about 2500 BCE, were produced simply by building the top of the walls out toward each other until they met. By 100 BCE, Roman builders were using semicircular arches in almost all their buildings.

"he ancient Egyptians were weaving carpets of a sort by about 2500 BCE, but nomadic

2/00BCE A Chine

herbal medicine describes one of the

first laxatives-rhubarb. It is taken as

A Chinese

tribes in eastern countries, such as Turkestan, soon became the greatest carpet makers. One carpet found preserved by the cold in Siberia had been buried with a nomad chieftain 2,500 years previously, showing that carpets were highly prized. Carpets have often been associated with magic and romance. In 48 BCE, the Egyptian queen Cleopatra introduced herself to the Roman emperor Julius Caesar by jumping out of a rolled-up carpet.

Glass

lass had humble Jbeginnings. It was probably discovered by accident. Made by heating sand with limestone and wood ash, it first appeared in the form of small ornamental beads in about 2500 BCE. The basic formula may have been discovered in Mesopotamia, but it was the ancient Egyptians who began to develop it into the material we know today. By 1450 BCE, they were making glass bottles in molds, and over the next 1,000 years, their techniques spread to Europe and the East.

Ink

"he first ink came in the form of a solid block made from soot mixed with glue and had to be wetted before it could be used for writing. The ancient Egyptians wrote on papyrus with ink and a pen made from a reed, using a flowing style of writing called hieratic. In China, scribes wrote their characters with a brush. You can still buy blocks of Chinese ink exactly like those made 4,500 years ago.

the powdered root of the plant. Rhubarb will not be cultivated for this purpose in the West until the 18th century CE.

Hercules's lion skin

Mirror

Tumans look at themselves L in the mirror every day. This began four or five thousand years ago using discs of polished copper or bronze. A hand mirror was an essential fashion accessory in ancient Egypt, and the Romans gazed at themselves in mirrors made of silver. The first glass mirrors, requiring a reflective material on one side such as silver, were made by Venetian craftsmen in about 1300 CE.

c.2500 BCE A colossal pyramid is built in Egypt by the pharaoh Khufu. Future generations will know the Great Silver handle was made separately

MIRROR The reflecting surface of this ancient Roman mirror is polished silver. The handle is in the form of the club and lion skin of the ancient **Greek** mythical hero Hercules.

Pyramid of Giza, near Cairo, as one of the most amazing structures in the history of architecture around the world.

Potato 2.2500 BCE

Farmers in Peru, South America, were cultivating potatoes in the high Andes mountains more than 4,000 years before Spanish invaders discovered the strange new vegetable and took it back to Europe. Potatoes ceased to be important in Peru but became a major crop elsewhere. By the middle of the 19th century, Ireland was so dependent on the potato that a series of crop failures led to famine.

As people in the northern hemisphere spread north toward the Arctic, they had to

c.2500 BCE People in Peru build downward and live in stone-lined pits. They know nothing

SKIS There is plenty of snow in Scandinavia, so it was an obvious place for skis to develop. Both the Vikings and Lapps used them.

learn to cope with deep snow. Skis started out as something more like snow shoes: short, wide, wooden frames covered in leather. In time, they became the longer, more rigid devices we know today. The oldest known skis, found in the bogs of Finland and Sweden, date from about 2500 BCE, and a Norwegian rock carving from about the same date clearly shows people using skis.

Welding c.2500 BCE

Welding is the process of joining metal parts together using pressure or heat, and sometimes using a filler

of pottery but weave baskets for containers. They also grow gourds (hollow fruits) and store things in these. metal for a stronger weld. Used today for making cars and ships, it was first used with jewelry. Queen Pu-abi of Sumeria was buried about 4,500 years ago with all her finery. This included some exquisite necklaces, the pieces of which, unlike earlier jewelry, were welded together. They are still in one piece today.

Parchment c.2400 BCE

Parchment is a smooth, white leather on which people write. It is supposed to have been invented in 200 BCE, when King Ptolemy of Egypt banned exports of papyrus, forcing the ruler of a rival kingdom, Eumenes of Pergamum, to find a substitute. Although the word "parchment" is derived from "Pergamum," parchment books are known to have existed well before this alleged incident, and ancient Egyptians had been writing on something very similar since 2400 BCE.

Horse

с.2300 все

orses, more wild and willful than sheep or pigs, took time to tame. The first people to get them under control lived in eastern Europe, around the area that is now called Ukraine. We don't know exactly when horses were domesticated, but by 2000 BCE they were being used in Babylonia. Three hundred years later, they were also being used in Syria and ancient Palestine. They arrived in Egypt when a tribe of nomads, the Hyksos, used horse-drawn chariots to capture the city of Memphis and eventually most of Egypt.

c.2400 BCE On the island of Malta, a complex "cult of the dead" develops. It starts with shared tombs

cut into the rock near Xagra and Zurrieq and ends with an amazing underground burial chamber near Rahal Gdid.

Barrel vault

nce builders had discovered how to make arches, they were soon using them to hold up the most crucial and awkward part of any building—the roof. By building a row of arches one behind the other, they created a strong, tunnel-shaped structure. Because of its shape, this is called a barrel vault. It was in use soon after the arch was invented and remained a favorite feature with builders until modern times.

Bathroom

bathroom was considered Aessential by some builders as long as 4,000 years ago. Even relatively humble houses excavated at Mohenio-Daro in the Indus Valley (in what is now Pakistan), and dating from about 2000 BCE, had bathrooms with drains. Some even had toilets, of a sort, with seats to sit on. Further west, in about 1700 BCE, the wealthier Minoans of ancient Crete had more lavish bathrooms to which they could sneak off for a quiet soak.

Bell chime

locks that chime use an idea that started in China before 2000 BCE. Bells or blocks of stone tuned to musical notes were hung from a frame. They were hit with hammers to add music to religious ceremonies or simply to play tunes. The idea spread to Japan, India, and the West, where monks were playing rows of bells by about 850 CE. Five hundred years later, the idea was adapted for public timekeeping, with the monks replaced by clockwork.

Chariot

our-wheeled battle wagons were in use in Mesopotamia by 3000 BCE. They developed from lumbering oxcarts, and although clumsy, they gave the Mesopotamian armies an advantage over their enemies. With the introduction of horses. and a switch to two wheels instead of four, the chariot, with its high-speed mobility, was born in about 2000 BCE. (* See also Wheels of War.)

WHEELS OF WAR

As WITH many inventions, military commanders were pioneers in the development of wheeled transportation. Large vehicles were probably first used for royal funerals, but soldiers soon saw that wheels could deliver men and materials to the battle front more quickly than feet or pack animals. It was only later that chariots were used for fighting. Eventually, as soldiers became more skillful at riding horses, chariots went out of use.

Pole for attaching Wheel with separate rim, spokes, and hub

horses

Fast, maneuverable Roman chariots were highly developed fighting and racing vehicles. Chariots were used for sports as well as war. Here, Assyrian king Ashurnasirpal II hunts lions.

CHARIOTS AS TRANSPORTATION

The first chariots had heavy bodies made of wood and leather and four solid wooden wheels. The front axle pivoted for mobility and was attached to a long pole, to which two oxen were attached by a wooden yoke. The charioteer rode in a raised section at the front that pivoted with the axle.

THE FIGHTING CHARIOT

The introduction of horses and a lighter construction, including spoked wheels (* see page 31), made the chariot into a formidable fighting platform for one or two soldiers. It had only two wheels, allowing it to take sharp turns but could be pulled by as many as four horses. These lightweight chariots helped win many battles.

.2300 BCE ^{The} Sumerian Empire, weakened by internal strife, is taken over by an invader, Sargon I. He

founds a new city, Agade. It becomes the wealthiest in the world, and the Sumerians become the Akkadians.

2250 BCE ^{In the} ancient Mesopotamian city of Ur, the world's first recorded author and poet,

Enheduanna, writes hymns and poetry. She is also a high priestess, an extremely important political role.

LEARNING THE BASICS

7hen iron was first discovered in southeast Asia, about 4,000 years ago, it was considered more valuable than gold. As ways of extracting it and working it improved, people were able to make better use of its strength and flexibility. By about 1200 BCE, the Iron Age had begun, pushing humanity faster than ever toward the modern world. Because iron is hard to melt, early users had to invent new techniques, such as shaping it by hammering rather than casting.

dice were given their spots in about 2000 BCE, they existed in many other forms. People originally threw dice to try to predict the future, using objects such as bones or teeth. Perhaps it was inevitable that prediction soon led to gambling. Today, people still place bets on the roll of dice.

Lock .2000 bcf

Most locks today are based on an idea from about 2000 BCE. The ancient Egyptians invented a wooden lock in which a bolt was held by pins

Blades operated by a spring action

Paved road

"he first road known to have been surfaced and drained so that it was usable in all weather was built by the Minoans on the Mediterranean island of Crete in about 2000 BCE. It was paved with stone and made higher in the center so that water would drain to the edges, which had gutters in some places. One feature of this road seems odd today: the pedestrian walkway was in the middle, not at the sides.

Dice

It is thought that the ancient Egyptians were the first people to play with dice like the ones we use now. Before IRON Suitably treated iron is springy and takes a sharp edge—ideal for making shears like these from ancient Rome.

> Sailor at the bow with a plumb line to test the depth of the water

Square sail

that dropped into holes in

push all the pins out of the

Modern Yale locks and keys

work in much the same way

it. Only a key shaped to

way would free the bolt.

(* see page 144).

Men pull the rope to adjust the position of the sail. Mast and sail on the model were missing upon discovery but were replaced by replicas based on other ships of the same time

Saw

nlike an ax or knife,

through any thickness of

a saw can cut cleanly

SHIP Ancient Egyptian ships, like this model found in a tomb of c.2000 BCE, needed paddles to help the sails propel the craft through the water. It was a common custom to place models of boats in the tombs of kings and nobles, for their transportation in the afterlife.

c.2000 BCE People Celtic race build "beehive" houses in Scotland and Ireland. The houses, constructed from rough stone blocks, are circular in shape and rise to a point in the center like a straw beehive. c.2000 BCE ^{The} world's first written language, Sumerian, ceases to be spoken because the

Sumerians, now the Akkadians, switch to the language of their conquerors. Sumerian will live on in written form for 2,000 years.

30

SLING The young Israelite David

challenges the Philistine giant

Goliath with his trusty sling.

wood. Its angled teeth cut in easy stages and create a gap wide enough for the blade to pass right through. The invention of the saw was made possible by the discovery of copper and, by 1500 BCE, the ancient Egyptians were sawing planks. Western saws cut on the push stroke, but to stop them from buckling, early saws worked the other way around.

Sexagesimal number system c.2000 BCE

O ur 60-minute hour and 60-second minute come from a system devised about 4,000 years ago by the Babylonians. It was the first to use a basic feature of the decimal system we use today—the value of each digit depended on where it was placed. The Babylonians based their system on 60 instead of

Passengers seated ________ at the stern ______

10, so a 1 in the first position meant 1, but in the second position it meant 1×60 , or 60, and in the third position it meant $1 \times 60 \times 60$, or 3,600.

Male and female plants 2000 BCE

The Babylonians were expert farmers and gardeners. They found out early on that some kinds of plants can, like people, be either male or female. The female plant produces fruit but only when fertilized by pollen from a male plant. Illustrations on Babylonian seals show fertilization being done artificially, and by 1800 BCE, people were buying and selling male date-palm flowers for this purpose.

 Support for steering oar first ships well suited to the sea about 4,000 years ago. They had already discovered how to arrange their sails to cope with winds coming from the side. To deal with winds coming from in front of them, they kept paddles on board, too.

ancient Egyptians built the

Tongs c.2000 BCE

ongs were probably first made for handling hot metal. They could have appeared at any time after people started melting metals, from about 3000 BCE onward. The earliest evidence is an ancient Egyptian wall painting from about 1450 BCE. It shows a metalworker blowing through a tube to make a fire hot while he holds an object Large oar over it with an used for steering unmistakable pair of tongs. Sling

с.2000 все

A sling is a weapon made from a piece of leather with two cords attached. Its user puts a stone onto the leather,

c.2000 BCE An event to throwing the hammer starts at the Tailteann Games in Ireland, but with

whirls the sling around with the cords, then releases one cord to launch the stone. It was with a sling that David famously killed Goliath in the Old Testament Bible story. The Old Testament was written in about 1000 BCE, so the sling must date back to before then. It was used by the ancient Egyptian army in about 750 BCE and can still be seen today.

Spoked wheel c.2000 BCE

The first wheels were solid and heavy, but it didn't take vehicle builders long to figure out that the important parts were the rim and the hub. They made the rest of the wheel lighter by cutting holes in it, forming crude spokes. Stronger spokes, usually four, made from separate pieces of wood, were being used in Mesopotamia by 2000 BCE, but it was another 1,000 years before this type of wheel reached northern Europe.

a chariot wheel, not a hammer. Celtic hero Chulainn grabs the wheel by the axle and hurls it as far as he can.

The Egyptians used planks of cedar wood for the best real ships

c.2000 BCE The Aleutian Islands, off the coast of Alaska, are colonized by people from the mainland. They build villages on the seashore near fresh water, travel in skin boats, and hunt seals and bears.

Ship

Tt is hard to say when a boat

Lbecomes a ship, but a ship

needs to be large enough to

cross open water safely. The

Corset c.1900 BCE

People have never been satisfied with the shape of their bodies. Four thousand years ago, Minoan women living on the island of Crete in the Mediterranean Sea were wearing corsets to pinch in their waists. And it may not just have been the women who wanted to accentuate their curves: wall paintings from about 1500 BCE, excavated at the palace of King Minos, also show Minoan men looking suspiciously wasp-waisted.

Running water c.1700 BCE

The ancient bathrooms of Mohenjo-Daro in the Indus valley had everything but running water. This wasn't good enough for wealthy Minoans on Crete. They wanted their water on tap, and excavations show that

c.1900 BCE Interior decorators are hard at work for wealthy people in Egypt. They paint patterns on plaster,

they got it. Pipes and drains ran throughout the great palace of King Minos at Knossos, making bath time more of a pleasure than a chore.

Child's swing c.1600 BCE

N obody really knows when the swing was invented or, more probably, developed from a dangling creeper. But a swing was found in excavations of Minoan Crete dating back to 1600 BCE. The swing is just one of the ancient amusements, like jacks (fivestones) or blindman's buff, that have kept children happy for countless generations.

Brass

с.1500 все

Brass is an alloy, or mixture, of copper and zinc. Its strength, bright color, and resistance to corrosion make it a good material for many

> hang textured matting screens, add red, white, and black striped dados, and install painted wooden ceilings.

objects. Its early history is difficult to trace because it was often confused with bronze. As late as the 18th century, many people used brass that was made by a method dating back to its discovery. In this process, copper and zinc ore were heated together, producing brass. Because the zinc ore that they used was called calamine, the product was known as calamine brass.

Flag c.1500 BCE

We don't treat flags with such great respect today, but when they were invented in China, they had life-and-death significance and played a vital part in battles. If a leader's flag was captured by the enemy, it was all over. Strangely enough, the first important flag we know about, which belonged to the first ruler of the Zhou Dynasty in about 1100 BCE, was white—a color that people in the West now associate with surrender and defeat.

c.1750 BCE The bestknown ruler of the 1st dynasty of Babylon, Hammurabi, records his

Gloves c.1500 bCE

A lthough the weather does sometimes get cold in Egypt, the fine linen gloves found in the tomb of the boy king Tutankhamun were probably more ceremonial than practical. They show, however, that even in this generally hot country, some people were wearing gloves by 1350 BCE. People in colder places must have worn them, too, but we do not have any evidence of this before about 700 CE.

Secret writing c.1500 BCE

A s soon as people began to write, they started to worry that the wrong people would read what they had written. Secret writing, or encryption, has a long history. The first known example is in ancient Egyptian hieroglyphs of about 1500 BCE. It may have been

laws on tablets. The "Code of Hammurabi" is probably the first promulgation of laws in human history.

C.3,000,000 BCE-500 BCE

CORSET Elegant women appear to be wearing corsets in this wall painting of about 1800 BCE. The painting is in the Minoan palace at Knossos on the island of Crete.

Trumpet c.1500 BCF

A trumpet is any kind of tube that you sound by squeezing air into it through your lips. The Australian didgeridoo is technically a trumpet, as is the shofar, made from a ram's horn, which is still used in Jewish rituals. The earliest existing silver trumpet dates from about 1500 BCE and comes from ancient Egypt. It was probably used for ritual purposes. The Romans developed trumpets for use in battle, but it was another

is played today. Armor

1,000 years before the trumpet

really began to develop into

the musical instrument that

Body armor was worn in battle until the 17th century, when improved weapons made it useless. It developed little by little—helmets, belts, reinforced shirts—over thousands of years. In about 1100 BCE, Chinese soldiers were wearing armor made from layers of rhinoceros hide. By 800 BCE, Greek warriors were wearing substantial bronze helmets, metal shin guards, and bronze items called cuirasses, which totally covered their chest.

Marks show the

approximate

time

TRUMPET The Australian didgeridoo, made from a eucalyptus branch, produces a deep droning sound. It is usually about 5 ft (1.5 m) long.

intended to amuse rather than conceal. But some writers of books in the Old Testament in the Bible did try to hide the meaning of their text by reversing the entire alphabet.

Shoes

The earliest shoes were sandals, but by about 1500 BCE, in Mesopotamia, people were wearing shoes that completely enclosed their feet. They were similar to what we would now call moccasins single pieces of soft leather drawn up around the ankles with a rawhide thong. At about the same time, the Minoans of Crete were stepping into calflength boots for winter wear.

Clepsydra c.1500 BCE

The Egyptians usually told the time from the sun but were also using a clock called a clepsydra by about 1500 BCE. The basic model was just a pot of water with a hole near the bottom and marks down the side. As the water ran out, its level showed the time. The flow slowed as the pot emptied, so the marks had to be closer together near the bottom, making them hard to read. An improved model, invented in about 270 BCE. worked the other way around: water ran into the pot, moving a pointer to show the time.

CLEPSYDRA This is a cast of a clepsydra found at the ancient Egyptian temple at Karnak. The clepsydra dates from 1415–1380 BCE. Ankh symbol was the Egyptian sign of life

c.1600 BCE A scribe prepares a new edition of a 1,500-yearold medical manual. The papyrus scroll gives instructions for examining patients with a range of conditions and details the treatment for each case. c.1400 BCE Greek begin to write their language, using a script quite unlike the alphabet they will develop later. In 3,350 years' time, a cryptographer will decipher it, and it will be called Linear B.

Oars c.1100 BCE

O ars of various kinds are as old as boats but were probably perfected by the Phoenicians, seafarers who came from an area that is now mainly Lebanon. By 1100 BCE, they were the greatest traders in the eastern Mediterranean, and by 700 BCE, they had developed the bireme, a ship with an extra deck to allow for twice as many oars. Later, the Greeks developed this into the formidable trireme, a fighting ship with oars on three levels.

Camel

The ancient Egyptians knew about camels as early as 3000 BCE, but they do not seem to have used them to carry anything. The idea of loading this unfriendly but almost desert-proof beast with up to 1,100 lb of goods came from Mesopotamia about 2,000 years later. The people here also bred the camel into a lighter, faster animal for riding.

Ice skates

You would expect ice skates to come from somewhere with plenty of ice, and it does seem likely that skating began in Scandinavia about 3,000 years ago. Metals were a luxury there, so the first ice skates were made from bones of animals such as reindeer and horses. Developed as a practical necessity, skating eventually became a sport, with the canals of the Netherlands providing ideal ice rinks from medieval times.

Knitting c.1000 BCE

disadvantage of woven \mathbf{A} fabrics is that people need a loom to make them. Although early looms were portable, clothes that could be made using nothing but a pair of needles had obvious appeal to nomadic people. So it is likely that knitting originated among the nomads of the deserts of north Africa in about 1000 BCE. It seems to have reached Europe by way of Egypt, where archaeologists have found knitted items dating from about 450 BCE.

Hull probably made in one piece from a tree trunk Upper deck set above the heads of the inner oarsmen

Bow shaped to form a ram

c.1100 BCE The circle of stones now known as Stonehenge is still in use. It gets a face-lift in the shape of a much longer entrance avenue, stretching 1.7 miles (2.8 km) east and then southeast to the Avon River. c.1000 BCE A new Hindu calendar is adopted in India. Its year is 12 Moon months. An actual year

is longer than this, so one extra month is added in every 30. The calendar will still be in use 3,000 years later.

Magnet

Come time before 800 BCE, The Greeks discovered a curious black rock in the plains of northern Greece. Thales of Miletus may later have written about the rock's strange attraction to iron, but the Greeks do not seem to have discovered its ability to indicate

> OARS This is a model of a Phoenician bireme of c.700 BCE.

> > Square-rigged sail adds speed

ICE SKATES This skate is made from a leg bone of a horse. Dating from about 1200 CE, it was inexpensive and did not rust.

north/south. Chinese explorers discovered this some 300 years later (* *see* page 37). The place where it was first found, Magnesia, gave its

name to the mineral (magnetite) and to anything with the same property (a magnet).

C.3,000,000 BCE-500 BCE

Iron-tipped plowshare c.900 BCE

The part of a plow that lifts and turns the soil, the plowshare, wore away quickly when it was made of wood or bronze. Iron is harder than bronze but was an expensive material in ancient times. The answer was to continue to use a wooden plowshare but use iron to protect the tip. Plows of this type were probably being used in ancient Palestine by 900 BCE.

Alphabet

A n alphabet contains symbols for individual speech sounds. Early writers did not use an alphabet; their symbols stood for whole words or, later, syllables.

Stays hold up the heavy mast

> , Shields protect the oarsmen

An alphabet with symbols for consonants appeared in Syria or ancient Palestine in about 1600 BCE. By about 900 BCE, the Greeks had adapted this to their own language by adding vowels. This was the first alphabet that recorded speech accurately, and it became the ancestor of several others, including the alphabet used for English.

Socks

c.800 BCE

nce they started wearing shoes, people must have felt the need for socks. We don't know when they first started wearing them, but the earliest mention of socks was in a poem by the Greek poet Hesiod, who was working in about 700 BCE. These early socks were probably made of felt rather than knitted, so they wouldn't have been very comfortable.

Steering

oars

Oil lamp c.700 BCE

People have been making artificial light by burning oil sucked up by plant fibers for at least 30,000 years. But true oil lamps, with a reservoir that could be refilled and a fibrous wick that gave a controlled flame without burning away itself, came much later. Simple lamps, with a spike or channel to hold a wick, existed in ancient China and Egypt, but the first really practical lamps they even had handles appeared in ancient Greece in about 700 BCE. They usually ran on olive or nut oil. None of these early lamps gave out enough light for detailed work after dark. (***** See also New Lamps for Old.)

NEW LAMPS FOR OLD

TO MAKE a successful lamp, three things have to be just right: the fuel, the fuel reservoir, and the wick. Oil burns with less smoke than fat. The reservoir should be easy to fill and convenient to carry. The wick is needed to spread the oil into a thin film so that it

will vaporize and burn. A good wick will feed the flame without burning away rapidly itself.

This ornate bronze oil lamp was used by rich people in the late 900s CE in the Afghan empire of central Asia.

THE FIRST LAMPS

The first cave painters may have worked by the light of burning branches. It is possible that while they were cooking they noticed that a branch burned for longer if it was soaked in fat. From there, it would have been a short step to the first lamp—a container of moss or twigs dipped in fat or oil. Moss or twigs spread the oil, but they tended to burn away.

LATER OIL LAMPS

Improving on the fat-soaked bunch of twigs, called a lampas, the ancient Greeks developed oil lamps shaped like a teapot with a fibrous wick in the spout. No great improvements were made until 1784 when Swiss inventor Aimé Argand produced a lamp with a cylindrical wick and a glass chimney.

800 BCE The population of China reaches 14 million as the country continues to grow. Over the next 800 years, it will increase more than fourfold to 60 million, and after a further 2,000 years, it will be about one billion.

c.1000BCE A big, shaggy breed of dog known as the great Pyrenees or Pyrenean mountain dog reaches Europe from Asia. It is used to guard sheep from wolves and bears, which are common in the region. LEARNING THE BASICS

Shadow clock c.700 BCE

People knew at least 3,500 years ago that the shadow cast by a vertical pole could be used to indicate the time. By 700 BCE, at the latest, the ancient Egyptians had developed the shadow clock. It had a straight scale of hours, probably with a raised part at one end to cast a shadow on the scale, and it had to be turned to point the opposite way after half a day. Astronomers, including Berosus from Babylonia, made curved sundials several hundred years later.

Farmer uses a handle to turn the screw

Water

flows

the

out of

cylinder

Archimedean screw

c.600 BCE

The Archimedean screw is a kind of pump that is still used today for irrigating the land (* see page 16). A cylinder with a large screw inside has its bottom end dipping into water. As the screw is turned, it pushes water up the cylinder in the same way that a wood screw is pulled into wood. Archimedes did not invent the screw himself, but he wrote about it, probably after seeing one being used in Egypt in about 260 BCE. The date of the screw's actual invention is uncertain.

Rotary quern c.600 BCF

fter 3,000 years in which Agenerations of people laboriously ground corn by hand between two stones, an improvement, known as the rotary quern, was developed. It had a heavy, circular top stone that fit snugly into a hole in a stone base. Grain was fed through a hole in the center of the top stone, which was turned around and around with a wooden handle. The two stones crushed the grain between them,

Irrigation channel

Cobalt blue

The deep blue color known as cobalt blue, still widely used on pottery, seems to have been discovered by the Assyrians in about 650 BCE. The use of minerals containing cobalt to give a blue color is part of one of their glass recipes. They knew nothing, of course, about the chemical element cobalt, which was not discovered until 1742. Although cobalt blue is used to decorate Chinese porcelain today, Chinese potters did not begin to use it until 800 CE at the earliest.

c.700BCE ^{People} (now mainly northern Iraq) hunt with hawks and falcons. All kinds of hunting are popular with royalty. The Assyrian king Ashurbanipal has himself portrayed in stone with the words, "I killed the lion." Screw lifts / water up through the cylinder

Wooden cylinder (cut away) prevents water from escaping

c.650 BCE After a defeat by Argos, Sparta's new ruler, Lycurgus, rebuilds the city focusing solely on warfare. Over the next century, Sparta's warriors will conquer surrounding territory and most of southwest Greece.

C.3,000,000 BCE-500 BCE

grinding it into flour. The flour came out of the narrow gap around the edge of the top stone. This useful device was probably invented before 500 BCE, but nobody really knows where.

Metal coins c.600 BCE

Before about 600 BCE, people Often exchanged pieces of precious metal in return for goods. It was easy to cheat by handing over impure metal or too small a quantity, so traders wasted time checking the quality and weight of all the different pieces. The Lydians, from what is now western Turkey, had an idea. They standardized the quality and weight of the pieces and stamped them with the king's mark as proof of their value. They had invented coins.

Store

A ccording to the Greek historian Herodotus, who lived in about 450 BCE, the people who invented coins also invented stores. The Lydians certainly had a talent for making money. Their capital city, Sardis, was known for its magnificence, and one of their kings gave his name to the expression "rich as Croesus," which means very rich indeed.

Attraction of objects to amber c.600 BCE

Thales of Miletus

The history of electricity starts with a yellow fossil resin called amber. In about 600 BCE, the Greek philosopher

Magnetic compass c.500 BCE

compass was invented depends on what is meant by compass. The properties of the magnetic rock called lodestone (or magnetite) were used hundreds of years before a magnetized needle was pivoted in a case to make a compass. The earliest records are from China in about 500 BCE,

MAGNETIC COMPASS This Chinese sundial includes a built-in compass.

Thales observed that amber rubbed on cloth attracted small, light objects. What he saw was the result of static electricity, but it was more than 2,000 years before an English doctor, William Gilbert, investigated this thoroughly (* see page 85). He coined the term "electric," for the attracting effect, from the Greek word "elektron" meaning "amber."

Musical ratios c.520 BCE

Pythagoras

See **pages 38–39** for the story of how Pythagoras and his followers discovered the harmony of the universe. WRITING BRUSH Used in 19thcentury Japan, this writing brush is made of hair set in a bamboo shaft.

> Pythagoras's theorem

Pythagoras

Pythagoras's theorem states that in a right-angled triangle, the square of the longest side is equal to the sum of the squares of the other two sides. Pythagoras may not have thought of it himself—it could have been any member of the group he founded in Italy in about 530 BCE (* see pages 38–39). But no matter who invented it, the theorem often crops up in the mathematics of the modern world, and we couldn't get by without it. where pieces of lodestone were used to guide mineral prospectors. The first real compass did not appear until 1100 CE or later.

Writing brush c.500 BCE

Before the invention of the writing brush, in about 500 BCE, people in China wrote on bamboo with a stiff stylus. The writing brush, with its pencil-sized bamboo shaft and pointed tip, could be used on silk. A brush is well suited to the complexities of Chinese script. It came into its own two or three hundred years later, when it was used for *li-shu*, the first writing to make full use of the elegant brush strokes we now associate with Chinese calligraphy (***** see page 50).

c.500 BCE The last a type of deer similar to a moose, dies out. With it go the largest antlers ever known. The Irish elk's antlers measured up to 13 ft (4 m) across and had sharp points all around the edge.

Fixing post holds the screw in place

ARCHIMEDEAN SCREW The cylinder is cut away in this model of an Archimedean screw to show how the screw lifts water as it turns.

c.600 BCE ^{Seafarers} Phoenicia (now Lebanon) regularly make the 3,750 mile (6,000 km) journey to Britain to collect tin from Cornwall. To do so, they have to figure out ways to navigate the open ocean.

THE MUSIC OF NUMBERS

Pythagoras and his followers search for the harmony of the universe

ANCIENT JOURNEY Pythagoras was born on the island of Samos in the Aegean Sea. In about 530 BCE, he sailed westward to Crotona, in the south of what is now Italy.

Two and a half thousand years ago, a small town in Italy was home to an extraordinary group of thinkers. They discovered facts about music and mathematics that we still use today, but more important, they came to believe that the world around us is based on mathematical rules

The Greek philosopher Pythagoras was about 50 years old when he crossed the Ionian Sea to settle in Crotona (now Crotone) and gather

his students around him. Bound by vows of loyalty and secrecy, the Pythagoreans held beliefs that amounted to a mathematical religion—but they also believed in some things, like reincarnation, that had nothing to do with mathematics. Pythagoras is best known for the theorem that bears his name,

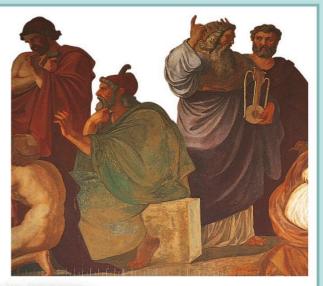
but this was just one of many relationships that his group found between numbers. The Pythagoreans were

fascinated by the fact that 1 + 2 + 3 + 4 = 10, and that these numbers can be arranged into a triangle, which they called the *tetraktys*. Their belief that the whole universe was based on a mystic order, or *kosmos*, was strengthened when they discovered what appeared to be a link between the *tetraktys* and music.

TUTUTUTUTU

Starting with a musical string that had a length of one unit, they found that dividing it into two, three, or four parts produced new notes that

> all harmonized perfectly with each other. This doesn't explain how complex music works, but for the simple instruments that the Pythagoreans used, it worked. This discovery not only laid the foundations of the science of music but also encouraged the Pythagoreans' belief that mathematics was the key to understanding the universe.


FAULTY SCIENCE

The study of music was often confused by dependence on Pythagoras's rules. This 1490 woodcut is meant to show his principles, but it wouldn't have worked! He experimented only with strings and never thought about music made with more than one instrument.

SECRETIVE PHILOSOPHER

This bust portrays Pythagoras as a great mathematician and philosopher, but neither he nor most of his followers published their work. The Pythagoreans were among the first thinkers to contemplate an Earth not at the center of everything. They speculated that the planets revolved around a "central fire"—although they probably didn't think of Earth as one of the planets. Some of Pythagoras's followers speculated on a mystical "music of the spheres" created by movements of mathematically spaced planets. But this beautiful theory was based on speculation, not facts.

We have moved on since Pythagoras's time. We have learned that mathematics is a powerful tool to describe

THE DEBATER

This detail from a frieze at the University of Athens probably shows an accurate view of how the Pythagoreans tested their theories, basing them on belief and argument, not experiment. Their mathematics was limited to what we now call geometry.

The tetraktys was a triangle figure made of 10 dots. It included the numbers 4, 3, 2, and 1, like their theory of music. The Pythagoreans tried to describe everything in the world with just a few ideas.

THE MATHEMATICIAN We don't know what Pythagoras looked like, but many artists through the ages have used their imagination to portray him as a man fascinated by his mystic symbols and books.

how the world works but that simple explanations not based on facts often lead us into mistakes. Pythagoras assumed that there was a mathematical order in the universe—a single "theory" that could explain everything. While scientists have made progress in exploring and describing the physical universe, such a philosophical understanding has not yet been reached.

THE AGE OF AUTHORITY

MANY NEW DISCOVERIES and inventions were made between 500 BCE and 1400 CE, a period that also saw the flowering of ancient Greece and Rome and of the world's great religions. But most people's thoughts remained bound by tradition, by accepted belief, and by the authority of those in power.

С.499 ВСЕ-1400

IRON IN BUILDING This is the Temple of Concord, one of about 20 temples in Agrigento dating from the 5th and 6th centuries BCE.

> Sturdy column with a flat top, or capital, known as the Doric style

Ancient Greek buildings may have been inspired by earlier buildings whose roofs were supported by tree trunks

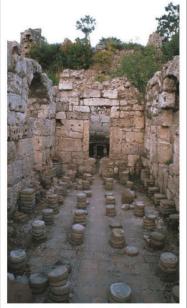
Iron in building

"he Victorians are usually L thought of as being the first people to use iron as a structural material. But 2,300 years before Queen Victoria, ancient Greek builders in Agrigentum (now Agrigento, Sicily) installed a huge iron beam 16 ft (5 m) long in one of the city's many temples. The ancient Greeks were also using other, smaller beams and all kinds of iron fixtures to hold their blocks of stone together.

Theater scenery

Aeschylus

"he word "scenery" comes from the dressing room, or "skene," once used by actors in ancient Greece. It was in a building at the back of the stage, and, by the time of the playwright Aeschylus, it was also being used to support


The first ever

BCE marathon is

run in Greece when a soldier

staggers 26 miles (42 km) from

colored panels, which formed a background for the actors. For the first performance of his trilogy of plays the Oresteia, Aeschylus created an even better background. He had the plain panels painted with colorful pictures to create what we now call scenery.

CENTRAL HEATING The Greeks may have circulated hot air around these pillars in the ruined city of Phaselis to heat the room above.

Marathon to Athens to bring news of a victory over the Persians. A race of this distance will become a sporting event 2,386 years later.

Cause of solar eclipses

Anaxagoras

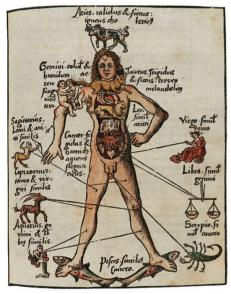
ven the sophisticated people of Athens regarded eclipses of the sun with fear, until the Greek philosopher Anaxagoras explained them. Anaxagoras came to Athens from what is now Turkey. He said that a solar eclipse was just the moon getting in the way of the sun. This was true, but he also thought that the sun was a white-hot rock less than half the size of Greece.

Central heating

ost people think the Romans were the first builders of central heating systems, but the Greeks may have built them first. The Romans called their under-floor hot air system a hypocaust, and

Responding BCE to popular demand, the Romans move toward more open government "hypocaust" is actually a Greek word meaning "burning below." The ruined Greek city of Phaselis, now in Turkey, has buildings with hollow floors, just like a Roman hypocaust. This suggests that the Greeks were using central heating as early as 450 BCE.

Earth, air, fire, and water


Empedocles

ncient Greek philosophers spent centuries wondering what the universe was made of. By about 350 BCE, most of them had accepted a theory put forward by the statesman and poet Empedocles about 100 years earlier. He said that everything was made of earth, air, fire, and water mixed in various proportions. His theory may seem funny to us, but it was the first one that suggested the existence of chemical elements, and it eventually led to modern chemistry.

by writing down and publishing their laws. Before this, the laws were known only to a select few, so justice was rarely carried out.

Signs of the zodiac c.450 BCE

I twas probably the Babylonians who devised the signs of the zodiac. These represent the 12 groupings of stars through which the sun seems to travel during the year. A cuneiform tablet dated 419 BCE carries a horoscope using the signs. It was the ancient Greeks, however, who named the band of sky that contains the Ram, the Bull, and the other constellations. They called it *"zodiakos kyklos,"* or *"circle of animals."*

SIGNS OF THE ZODIAC This 16th-century woodcut gives one of many theories that developed linking the zodiac with the body.

Flying actor c.450 BCE

Sophocles

When an ancient Greek playwright got into an impossible tangle with a plot, the usual way out was to have a god descend from heaven and fix the mess. The god was played by an actor hoisted into

c.450 BCE ^{Chinese} military expert Sunzi writes the first book on spying. It shows how the air with a crane. The same device, called a mechane, was also useful for comic effects: a character in one play by Aristophanes flies up to heaven on a dung beetle.

Planned city c.450 BCE

Hippodamus of Miletus

Many ancient cities have some kind of regular grid plan, but Hippodamus of Miletus was the first real town planner. He was a colorful and influential character who believed that buildings should be grouped according to their function. He put his thoughts

into practice when he became involved in the rebuilding of the Greek port of Piraeus and the construction of a new Greek settlement in southern Italy.

> Knitted socks

A fter enduring scratchy felt socks for centuries, feet finally got some loving care in the shape of knitted socks. Knitting is ideal for making snugly shaped garments like gloves and socks and allows them to be made in one piece instead of being stitched together from separate pieces of cloth. Some wealthy ancient Egyptians were buried in their knitted socks in about 450 BCE, and 800 years later, people in Saudi Arabia wore knitted socks with their sandals.

Mule

c.450 bce

Horses are not well suited to hot, dry climates. Donkeys are better suited but are often too small and slow. We don't know who came up with the idea of crossing

> Throwing arm has a cup at the end to hold the missile

Skein of twisted sinews provides pulling power a horse with a donkey to get the best of both, or whether it occurred naturally, but it probably happened in or around Turkey. The result was the tough, strong mule, an animal that was first recorded by the ancient Greek historian Herodotus in about 450 BCE.

42

to organize intelligence and counterintelligence systems with secret agents, including double agents who spy for both sides. $\begin{array}{c} 443_{BCE} \overset{Censorship}{_{begins in}} \\ \text{Rome with the appointment of} \\ \text{the first censor. At first, his job} \end{array}$

is just to count people, but it soon gets extended to looking after public morality and suppressing unwanted publications.

University c.450 BCE

I f we take a university to be any center of learning, then the world's first university was probably Nalanda in the north of India's Bihar state. This Buddhist monastic institution may have been in existence while Gautama the Buddha, founder of the Buddhist religion, was still alive. It survived until after 1100, when invaders from Turkey destroyed it.

Coded correspondence c.410 BCE

The first secret messages were exchanged by the Spartan army chiefs of ancient Greece, using a tapered rod called a scytale. They wound a strip of leather around the rod, then wrote on the leather. When unwrapped, the strip displayed a meaningless jumble, but

CATAPULT The catapult was still used as a weapon in the Middle Ages. It was useful if there was time to get it into place and the target was easy to hit. when wrapped around an identical scytale, it revealed what had been written. It was thanks to a scytale message that Lysander of Sparta avoided defeat by the Persians in 404 BCE.

Catapult c.400 BCE

ong before gunpowder was invented, huge wooden catapults were used to hurl missiles, such as iron-tipped darts or boulders. The first examples may have been used in 399 BCE in the war between Rome and the ancient empire of Carthage in north Africa. A pair of arms were swung back to hold the missile, twisting and tightening cords made of animal sinews. When the tension in the cords was released, the arms sprang forward, launching the missile up to 1,640 ft (500 m) away, but not very accurately.

Crossbow

A soldier could shoot an arrow farther with a crossbow than with an ordinary bow. The first crossbow was the gastrophetes—a stiff bow of ancient Greece. The "gastro" part of its name means "stomach," because the soldier had to rest one end of the bow in the pit of his stomach. He rested the other end on the ground and bent the bow into the firing position, ready to be released by a trigger. It was a deadly weapon, as long as there was time to load it.

CROSSBOW By the

had developed into a

long-range weapon that

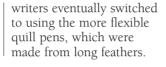
was aimed like a rifle.

15th century, the crossbow

_ Rope to winch down the arm

 Heavy base to keep the catapult on the ground Improved Babylonian calendar

he early Babylonian L calendar started a new month with every new moon (***** *see* **page 21**). To keep it in step with the seasons, extra months had to be added now and then. Confusingly, different cities added months at different times. Some might even add two months in the same year. In 541 BCE, everyone was ordered to add months at the same times, but it was not until about 380 BCE that astronomers worked out a cycle of extra months that really kept the calendar on track. Then, for a while, the Babylonian calendar became the best in the world.


c.430 BCE ^{A giant} the Greek god Zeus is completed by Phidias. Nearly 40 ft (12 m) high, it shows Zeus on a throne encrusted with gold and precious stones. It becomes one of the Seven Wonders of the World. 390 BCE ^{The Gauls,} living in what is now northern Italy and France, sweep down the valley of the Po River and overwhelm Rome. The city is ransacked, but after a payoff of gold, the invaders depart.

THE AGE OF AUTHORITY

Pen tip c.380 BCI

Scribes in ancient Egypt wrote on papyrus (* see page 24) with a pen made from a reed. This had a soft point, rather like a modern felt-tip. The first pens with a hard tip, split at the end to channel the ink, came from ancient Greece. They were still made from reeds, but scribes could produce finer writing with them. With

tiner writing with them. With the introduction of parchment (* see page 28), which was smoother than papyrus, most

milel 1 1to 1

PEN TIP

Early Greek documents were written with pens made from stiff reeds. Scribes often kept their pens in a wooden case. This one has a space for ink at one end.

Automaton c.370 BCE

Archytas of Tarentum

n automaton is An automatom ... imitates the actions of a living creature. The earliest known was a pigeon built in about 370 BCE by the Greek philosopher Archytas of Tarentum. It "flew" around on an arm driven by steam or air. Influenced by Pythagoras, much of Archytas's work involved music. But he was also interested in the

CELESTIAL SPHERES In this 16th-century view of the universe, Atlas holds up Earth surrounded by the planets on their spheres. mathematics of mechanical devices, which may explain why he designed the pigeon.

Reed cut and split at the end

to hold the ink

Celestial spheres : .360 BCE

Eudoxus of Cnidus

Dlanets and other celestial bodies seem to move irregularly against a smoothly revolving background of stars. The ancient Greek astronomer Eudoxus offered the first explanation for this. He said that everything astronomers saw was carried around Earth on 27 spheres. The outermost sphere held the stars, while the sun, the moon, and the planets had several spheres each. Their combined steady motions created the observed irregular motion. Despite numerous flaws, Eudoxus's theory was, with some refinements, the best available for 2,000 years.

c.350BCE Greek philosopher Aristotle puts forward six arguments for a spherical Earth. His reasoning is generally accepted, putting an end to centuries of speculation about the shape of the world. 330 BCE As the final act of the Persian Empire, the Macedonian king Alexander the Great burns down the palace in the city of Persepolis. From now on, Greek culture will begin to influence the Middle East.

Atomic theory c.350 BCE

Democritus

The ancient Greek philosopher Democritus held views that have influenced the whole of modern science He was probably the first person to put forward the idea that the world is made of atoms, the smallest things that can exist. He said that there were countless numbers of them, all made of the same stuff, but with different shapes. They could be arranged in different ways to produce everything in the world. This theory is close to what we now believe-not bad for someone who lived about 2,400 years ago.

Cookbook

Archestratus

Throughout history, people have tried to improve the ways of preparing food. As long ago as 350 BCE, the ancient Greek writer Archestratus

Coal c.350 BCE

rchaeologists believe that Acoal may have been burned in Wales as long as 4,000 years ago. But the first written record of coal is a mention by the ancient Greek philosopher Aristotle in a book he wrote on geology in about 350 BCE. His interest in coal came from his theories about Earth. Later people, from the Romans onward, were more interested in coal as a source of heat or for use in smelting metals. In about 1200, a monk named Reinier of Liège wrote about metalworkers using a black earth similar to charcoal.

Iced dessert c.350 BCE

The ancient Romans enjoyed their food, especially anything cold and sweet. Sugar was a rarity and refrigeration unknown, but from the 4th century onward, they used natural ice and honey. This

Mercury c.350 BCE

Mercury, the only metal that is liquid at room temperature, was used by the Chinese in attempts to achieve immortality. Probably known to the ancient Egyptians, it was definitely being mined and refined by about 350 BCE. Its seemingly magical properties made it a key ingredient in alchemy, in which people tried to make gold out of cheaper metals. It was also used in early medicine, although people knew it could be poisonous.

Formal logic c.350 BCE

Aristotle

Everyone needs to know how to argue logically. The ancient Greek philosopher Aristotle was the first to set out clear rules for argument. He pointed out, for example, that an argument like "Fish can swim; I can swim, so I am a fish" is false. (A true statement would

Euclidean geometry

Euclid of Alexandria

E uclid was possibly the greatest math teacher ever. His way of explaining geometry in about 300 BCE was still being used in the 20th century. He collected earlier texts and rearranged them with his own work so that they made more sense. His book, *The Elements*, takes readers on a journey from basic ideas to surprising outcomes. Its clarity is still hard to beat. Many of Euclid's ideas are in math books used today.

Lead pipe c .300 BCE

Plumbers get their name from "plumbum, " which was the Roman word for lead. Roman engineers brought water from the surrounding hills into their cities, then sent it to where it was needed through pipes. They sometimes made

LEAD PIPE In ancient Rome, city dwellers often had their name put on their own lead water pipes.

produced a book about the joy of food called *Pleasant Living*. About 200 years later, an enthusiast named Athenaeus produced a book containing, among other things, several recipes for cheesecake. was a problem in summer, so the emperor Nero had snow brought from the mountains and served with sweetened fruit juice. Meanwhile, people in China were eating ice cream, invented there in about 2000 BCE. This reached Europe in about 1300, when the Italian traveler Marco Polo returned with recipes from the Far East. be "Fish can swim; I am a fish, so I can swim.") He also pointed out that all knowledge depends on a set of principles that can be accepted as true without proof. His rules were so good that, for centuries, people believed he had said all there was to say on the subject. Many of his ideas are still essential to science and philosophy. these from wood but more often used lead because it lasted longer and was soft and easy to roll up into tubes. Lead pipes were still in use in the early 20th century, but most have now been replaced because, unfortunately, as the Roman engineer Vitruvius pointed out, too much lead is poisonous.

320 BCE Cities continue to grow, and with them the problem of waste disposal. In Athens, a law is passed

preventing people from throwing their garbage into the streets. The first waste collection systems are also organized. c.304 BCE ^{In Rome,} Flavius erects a permanent calendar showing the days on which legal business can be conducted. Before this, the days were just read out each month, making justice uncertain.

Mosaic

Mosaics are pictures made up using small pieces of colored stone or glass cemented to walls or floors. The first mosaics were probably made using natural pebbles. By 300 BCE, the "tessera" technique had been invented, in which tiny tiles cut from stone or glass were used to give fine detail and rich color. This beautiful, hard-wearing form of interior decoration went down well with the Romans. Many of their mosaics still exist today.

Scientific botany c.300 BCE

Theophrastus

A fter thousands of years spent using and cultivating plants, people began to wonder where the plants came from and how they worked. The scientific study of plants is called botany, and the ancient Greek philosopher Theophrastus was the first real botanist. Between about 320 and 280 BCE, he wrote more than 200 books on the subject. Only two, which deal with the origin and growth of plants, have survived. Modern botanists no longer use his work, but without him they might never have gotten started.

Saddle

с.300 все

The first horse riders rode bareback, clinging on without the help of saddle

c.300 BCE Geographer Pytheas becomes the first Greek to describe northern Europe after sailing to Land's End in England and

exploring much of Britain on foot. On the way, he enjoys the local honeybased drink, mead. MOSAIC A tessera mosaic made between 250 and 50 BCE shows how well this seemingly rigid technique could show detail and movement.

or stirrups. They sat on some kind of blanket or cloth, and this eventually evolved into the padded leather saddle used today. Chinese riders were using saddles by about 50 BCE, but it is thought that saddles were invented at least 250 years earlier than this by a group of nomads called the Scythians, who lived in what is now mostly Ukraine.

Lighthouse c.280 BCE

Sostratus of Cnidus

Ancient mariners often relied on fires to guide them into harbor. These showed smoke by day and a light to aim for at night and were simply placed on hilltops. The first real lighthouse was created in Egypt, on the island of Pharos, off Alexandria. When its Greek engineer Sostratus of Cnidus finished it in about 280 BCE, it was probably about 410 ft (125 m) high—almost as high as the pyramids (***** *see* **page 24**). It had stairs inside, and fuel for its fire was hoisted up by pulley.

Compressed air

Ctesibius of Alexandria

C tesibius of Alexandria discovered that air can be compressed and will then exert a force. He may have done this by plunging a pot into water with its mouth downward and noticing that this required some force. Seeing that the inside of the pot stayed dry, he would have realized that

Padded saddle made riding more comfortable

SADDLE This model of a horse, complete with a saddle and bridle, was made in China during the Tang Dynasty (618–907 CE).

293 BCE Hygeia, the goddess of health, reaches Rome. With her husband Asclepius, the god of

medicine, she will watch over the well-being of Roman citizens. She is depicted giving her snake a drink from a saucer. the air inside was pushing the water out. We do know that Ctesibius used his discovery in several air-powered inventions.

Bridge for boarding ships

Gaius Duilius

ilitary leaders have always been called upon to solve practical problems. World War II soldiers erected "instant" steel bridges to help them get across rivers, and the Roman commander Gaius Duilius used wooden bridges more than 2,000 years before. In 260 BCE, he found himself fighting a battle at sea with soldiers trained to fight on land. So he brought some "land" on to his ships in the form of wooden bridges that hooked on to the enemy ships. His soldiers could then rush across and fight as usual. They won the battle.

Archimedes's principle c.250 BCE

Archimedes

See **pages 48–49** for the story of how Archimedes solved a weighty problem and discovered how things float.

Size of Earth c.250 BCE

Eratosthenes of Cyrene

The astronomer Eratosthenes of Cyrene (now Shahhat in Libya) was the first person to figure out the size of Earth. He found that on midsummer's day, at noon, the sun shone straight down a well at Aswan, in Egypt, so the sun there was directly overhead. But at exactly the same time, the shadow of a vertical stick about 500 miles (800 km) north at Alexandria showed that the sun was not overhead but angled at about 7 degrees from the vertical. Eratosthenes realized that the difference was caused by the curvature of Earth. Using the idea that there were 360 degrees in a circle, and knowing the distance between Aswan and Alexandria, he was able to calculate Earth's circumference as the distance between Aswan and Alexandria \times 360 \div 7. Eratosthenes's calculation came up with the answer of about 25,700 miles (41,143 km). The true value is about 25,000 miles (40,000 km), so he wasn't too far off.

Compound pulley

Archimedes

simple pulley is a rope Apassed around a wheel, and it is useful for lifting things vertically. One end of the rope is attached to the load and the other end of the rope is pulled to lift the load. Greek inventor Archimedes developed the compound pulley from the simple pulley by wrapping the rope around several wheels instead of one, which enabled people to lift heavier loads. It meant pulling the rope farther but took less effort at any one time. Compound pulleys, using chains rather than ropes, are still used for heavy lifting jobs.

Heart valves

с.250 все

Erasistratus of Ceos

A n ancient Greek doctor called Erasistratus of Ceos was one of the first people to think about how the human body works. Although we have

c.287BCE The ordinary people of Rome, the plebeians, gain a great victory in their campaign for recognition, as plebeian Quintus Hortensius becomes "dictator." He decrees that plebeian laws must apply to rich people, too.

282 BCE After 12 Greek sculptor Chares of Lyndus completes a 105 ft (32 m) high

с.499 все-1400

different theories today, his ideas did make sense. He gave the first correct account of how valves inside the heart prevent blood from flowing backward. His name for one of the valves, the tricuspid, is still used today.

Diaphragm separates the thorax from the abdomen

Model shows the internal organs of a female

Human anatomy based on dissection

Herophilus of Chalcedon

natomy is the study **L**of the structure of bodies. Early anatomists were often forbidden to cut open dead bodies, so some of their descriptions and diagrams of the internal organs of humans were based on guesswork. The ancient Greek doctor Herophilus was one of the first scientists to base his anatomy on real observations, and he accurately described the brain, nerves, blood vessels, eyes, and other parts of the body.

HUMAN ANATOMY BASED ON DISSECTION This 15thcentury model for teaching anatomy probably shows more detail than was known to Heophilus.

bronze statue of the sun god Helios, on the island of Rhodes. An earthquake destroys it within 60 years, and it is sold for scrap.

DOING SCIENCE IN THE BATH

Archimedes solves a weighty problem and discovers how things float

Golden leaves used to adorn a religious statue

GOLD FOR GODS AND KINGS Ancient craft workers fashioned gold into decorations that not only were beautiful but also indicated the importance of the wearer. That is why Hieron wanted to make sure that his wreath was made of pure gold.

EUREKA!

It is said that Archimedes was so excited by his discovery that he leaped out of his bath and ran naked through the streets shouting "Eureka!" ("I've found it!"). This probably never happened, but people still shout "Eureka!" at moments of discovery. Why do some things float and others sink? This is an important question for ship designers, but the ancient Greek scientist Archimedes may have found the answer while he was checking the quality of a king's jewelry. Archimedes was born in Syracuse, Sicily, in about 290 BCE. He was related to the king, Hieron II, so had plenty of time to think and write about mathematics and mechanics. Hieron often called upon Archimedes to help him with problems. He had a gold wreath that he thought contained some silver, and he asked Archimedes to find out exactly how much. Archimedes knew

he could check the wreath if he could measure its density (its mass in relation to its volume) because silver is less dense than gold. The obvious way to find the density of something is to measure its weight (which is proportional to its mass) and volume,

but Archimedes didn't know how to measure the volume of the wreath. One day, he noticed the water rising as he got into his bath. He

realized that he could fill a bathtub to the top, lower Hieron's wreath into it to make the water overflow, then take the wreath out and see how much water was needed to fill the bathtub again. That would be

Testing the principle Two identical containers filled to the brim with water will balance exactly. When an apple is carefully lowered into one of them, so that the container stays full, the balance is unchanged. Archimedes's principle says that the floating apple will push its own weight of water out of the container, making the total weight the same as before.

> Identical containers on an accurate set of scales

the volume of the wreath. Archimedes may also have noticed that he felt lighter in his bath. Left to itself, bath water doesn't rise or fall, so every part of it must get an upward push that balances its own weight. The same force must push on anything placed in the water. When anything is immersed in a fluid, even partly, it feels an upward

push equal to the weight of fluid it displaces. We now call this Archimedes's principle. Using this, Archimedes could have immersed the wreath in water and noted how much weight it lost, then have figured out how much silver the wreath contained, without measuring its volume at all.

Archimedes probably didn't do this. Nevertheless, he had solved Hieron's problem. He may also have discovered why things float or sink. Objects placed in water move downward until their weight is balanced by the weight of the water they displace, then stay at that level. If their average density is more than that of water, they cannot float. They sink.

Later, Hieron had more serious problems. When Archimedes was an old man, the Romans besieged Syracuse. Once again, he was called upon. He used his scientific knowledge to design ships, catapults, and even, it is said, giant mirrors to burn Roman ships with the sun's rays. In 211 BCE, the city was eventually captured. The Roman soldiers rampaged through it, burning and killing. Sadly, one of their victims was Archimedes, the genius who did science in his bath

Greek trireme of about 450 BCE

GREEK WARSHIP

The magnificent trireme, a Greek ship with three layers of oars, showed how much importance the Greeks attached to winning battles at sea. It was extremely fast and could sink an enemy ship with its built-in battering ram. Fighting techniques moved on, and the trireme evolved into a ship that could carry large numbers of heavily armed soldiers.

Archimedes was a genius who needed only the simplest of equipment to make profound discoveries.

Pipe organ c.250 BCE

Ctesibius of Alexandria

The Greek inventor Ctesibius **L** was the first person to put together all three parts of an organ: pipes, a keyboard, and a supply of air. To get a steady sound from the pipes, Ctesibius realized that he needed to supply air to them at a steady pressure. So he attached them to a large container, open at the bottom and standing in a tank of water. As he pumped air into the container, the weight of water pressing on the air kept the pressure fairly constant, even though the amount of air in the container varied. His organ, called a hydrolos because of

the water (from *hydro*, the Greek word for "water"), was loud enough to play outdoors.

Simple pattern carved in the bronze clasp

> SAFETY PIN This Hungarian brooch dates from about 50 BCE. It fastens using the same principle as a safety pin.

Safety pin c.250 BCE

The modern safety pin was invented in 1849 by US mechanic Walter Hunt, but this useful fastener has a much longer history. A clothing clasp called a fibula is thought to

have been invented by a group of people called the Phrygians in about 1100 BCE. It was worn by the ancient Greeks and Romans, often in elaborately decorated form. By 250 BCE, the pin had become recognizable as the object that Hunt reinvented more than 2,000 years later.

SAFETY PIN This type of early pin of about 750 BCE was found in Italy. It is a brooch that was probably worn by someone of high rank.

Front of brooch made from glass discs

Spring mechanism Surface area and volume of a sphere

Archimedes

The formulas for calculating the surface area and volume of a sphere are used throughout science. The first person to work them out was the Greek mathematician Archimedes. He proved that a sphere has four times the surface area of a circle the same size. He also proved that a sphere has two-thirds the volume of the cylinder that just contains it. These are easy problems to solve using modern mathematical tools, but Archimedes had to use imaginary

Standardized Chinese writing c.220 BCF

Shi Huangdi

In Chinese writing, each pictorial character stands for a word, not a sound. It works like numbers in Western languages. People in different Western countries all understand the symbol "2" but pronounce it "two." "deux." and so on, depending on their language. This principle is useful in China, because speakers of its many local dialects can all read the same writing, but only if the same characters are used everywhere. The standardization of Chinese writing was just one of the many reforms that the forceful emperor Shi Huangdi introduced in about 220 BCE, as part of his plan to turn the separate states of China into one nation.

> Three finger holes allowed only a few different notes to be played

Streetcar c .220 BCI

Shi Huangdi

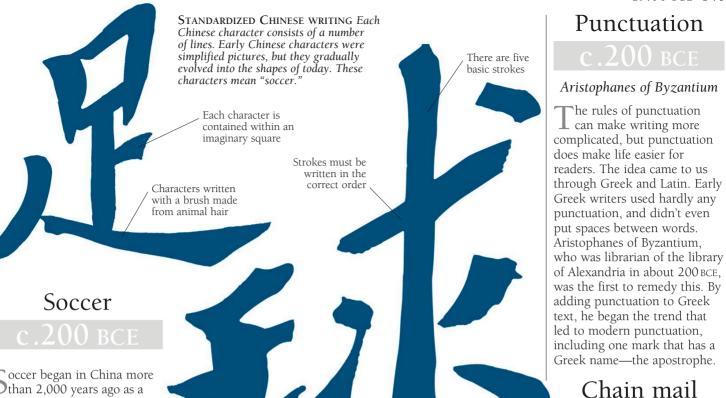
Today, electric streetcars run in many of the world's cities. Chinese emperor Shi Huangdi did not have electricity in 220 BCE, but he saw the need for orderly, smoothly flowing traffic. He decreed that all carts should have their wheels the same distance apart and had matching grooves put in the streets. This may have been the world's first streetcar system.

2222 BCE After four occupation by Celtic tribes, the city of Mediolanum in the north of Italy is overrun by Romans from the south and becomes part of their empire. It will eventually be known as Milan. 218 BCE Using elephants equipment, Carthaginian general Hannibal leads 40,000 soldiers over

spheres, which

he sliced, weighed,

and measured in his imagination to


get the answers. His

anticipated 17th-century

calculus (* see page 96).

methods, lost for centuries,

the snowbound Alps into Italy in an attempt to conquer Rome. He wins some battles but fails in the end.

Sthan 2,000 years ago as a game called *cuju*, originally used as a form of exercise for soldiers. Players competed by kicking a ball into a net and were not allowed to touch it with their hands—rules that still exist in today's version of the game.

Chain store

A chain store is a shop that is part of a group run by the same company and selling the same goods. They became a prominent feature of towns and cities everywhere in the 20th century. But the Hudson's Bay Company was operating a chain of stores in the US before 1750, and the earliestknown chain stores were selling their wares in China as long ago as 200 BCE.

5 BCE Rome passes laws ruling

that women must not wear more

than half an ounce of gold jewelry

Flute

The flute that musicians play today is held sideways rather than lengthwise. This "transverse" flute may have developed independently in both China and Europe. Pipes played sideways were used in China as early as the 9th century BCE, but the instrument now known in China as the *di*, or *dizi*, was not perfected until about 200 BCE. It has six finger holes,

or have tunics of more than one color. The laws also limit the number of guests at banquets and prevent men from wearing silk. FLUTE Almost any tube can form a flute. This bone was made into a musical instrument by a 10th-century Viking.

plus an extra hole, with a thin piece of bamboo or reed over it. When a musician blows into the pipe, the bamboo vibrates to create the plaintive sound typical of Chinese flute music. At about the time that this pipe began to be heard, musicians in what is now Tuscany, in Italy, also seem to have taken up the transverse flute. In Germany, it was used in military bands from about 1100 CE.

movement. From perhaps 200 BCE onward, Greek soldiers increasingly wore chain mail in battle, and soldiers in Sumeria may already have been using it a few years earlier. Made of thousands of iron rings looped together over a leather or cloth backing, chain mail offered protection against swords and spears. It was more flexible than a cuirass so it was relatively comfortable, although a shirt could weigh 22 lb (10 kg). Chain mail eventually became standard equipment for Roman legionnaires.

he ancient Greek warrior's

▲ bronze chest protector,

or cuirass, was heavy and

restricted its wearer's

213 BCE Wise men Chinese emperor Shi Huangdi that he is a fool to look for alchemists or magicians who can give him eternal life. The emperor gets even by having all their books burned. THE AGE OF AUTHORITY

Indian women were wearing the elegant sari as long ago as 200 BCE. This single piece of fine cloth, worn wrapped around the body and sometimes over the head, appears in Indian sculptures dating from about 150 BCE. Women depicted in the sculptures from this period are typically shown wearing a sari, a head scarf, and lots of jewelry. Today, saris are made from synthetic fabrics as well as traditional silk or cotton.

Steel

nce people had

discovered iron.

they accidentally made

steel, which is iron

containing a little carbon. It is much stronger than pure iron. The carbon could have come from the charcoal the people burned with iron ore to extract the iron. Steel making started in several places at about the same time. China and India had real steel industries from about 200 BCE They heated iron with charcoal to get carbon into it, then reheated and hammered the metal until the carbon was mixed throughout.

Enclosed plumb line hung vertically _

En ormen ad Januar og an a synon ad Januar og an un big an sin bin for animula Ticing of the internet sit animula sugars again i supering sit alies a mula produce or for formation, mula synon approve por phil for a for the second Quadrant was pivoted around this point

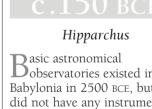
> Angle scale marked in degrees _

> > ASTRONOMICAL OBSERVATORY This brass astronomical quadrant was made in Paris during the late 17th to early 18th century. It would have been used to measure the altitude of stars.

Astronomical

observatory

Telescope through which the stars


were sighted

 Astronomers read the angle, indicated by the position of the plumb line on the scale, and then calculated the star's altitude

Piston

Pistons working in cylinders drive many machines today, using compressed air or fuel. Pistons are difficult to make accurately enough to stop leaks, so early inventors tried to avoid them. For example, the pumps that blew air into metalworking furnaces from about 1000 BCE were usually just bellows. But as early as 150 BCE, or even earlier, some metalworkers were using better air pumps using the pistonand-cylinder principle.

PISTON Early water pumps often used pistons because the water acted as a lubricant, and leaks didn't matter very much.

Dobservatories existed in Babylonia in 2500 BCE, but they did not have any instruments. A great observatory built at Alexandria in Egypt in about 300 BCE did not have many instruments either. The first observatory with fairly accurate instruments for measuring star positions was probably on the Greek island of Rhodes, where the astronomer Hipparchus worked between about 134 and 129 BCE. Much later, in the 9th or 10th centuries, great new observatories were established at Damascus and Baghdad.

c.200 BCE Rome suffers from success as the city's population grows out of control. Poorer people are packed into wooden buildings three floors high, which often collapse or catch fire. Within 20 years, plague sweeps the city. c.150 BCE Wealthy become convinced that dancing is a shameful and dangerous activity. To protect their children from what they see as its anti-Roman influence, they order that all dancing schools should close.

a buildings three floors

Horseshoes c.150 BCE

People were riding horses by 2000 BCE, but it was 150 BCE before they began to think of ways to protect horses' feet so they could ride them on rocky ground and roads. Shoes for horses and mules were developed by the people in eastern Europe who had first tamed the horse. Most early shoes were made of leather. Metal shoes, nailed to the hoof, were being used in western Europe by about 450 CE.

Precession of the equinoxes c.150 BCE

Hipparchus

The equinoxes are the times I of the year when day and night are the same length. Their dates shift slightly each year—an effect called precession. This was discovered by the Greek astronomer Hipparchus, who noticed that his star positions had all moved by the same amount from those measured by earlier Greek and Babylonian astronomers. With a little scientific detective work, he found out that the change was caused by a very slow shifting of Earth's axis of rotation.

Trigonometry c.150 BCE

Hipparchus

Trigonometry is a branch of mathematics that studies the relationships between the angles and sides of different figures or the distance of objects from each other. This relationship can be useful if you want to determine the size or distance of far away objects.

DUBCE Crates of

Mallus takes time off from his usual

work on Greek grammar to make

Philosopher

Hipparchus, a mathematician and astronomer, used his knowledge of trigonometry to measure the distances of the sun and moon more accurately than ever before, even though, today, we know his measurements were much too small. His research filled 12 books, and he became known as the founder of modern trigonometry.

Stirrups c.150 BCF

Stirrups, those useful footrests for riders, were almost certainly invented by people from the same area modern Ukraine—as those who tamed the horse in the first place (* see page 28). This simple invention made a huge difference to the way horses were used in war. It is very hard to stay on a galloping horse without stirrups, let alone fight for your life at the same time.

Star magnitudes

Hipparchus

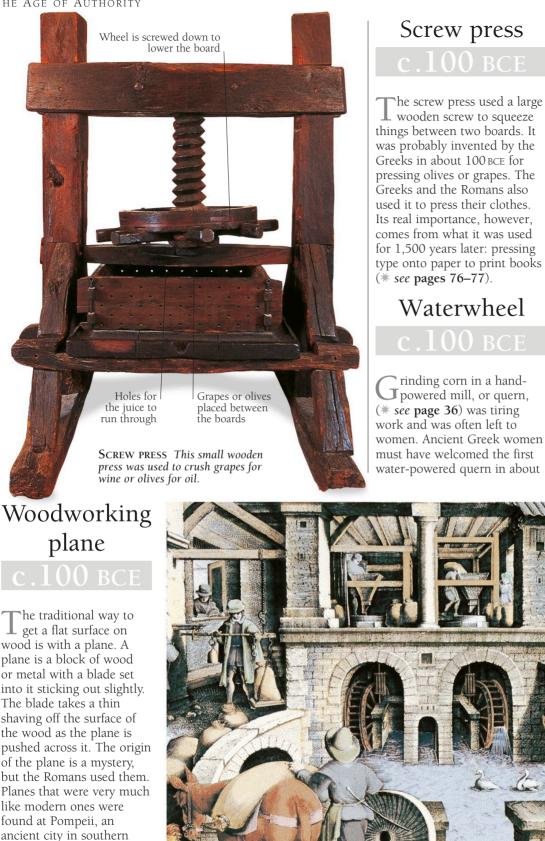
C ome stars look Obrighter than others, so astronomers classify them on a magnitude scale, which records their brightness as seen from Earth. The astronomer Hipparchus began this system when compiling a star catalogue. Working on the island of Rhodes. he listed 850 stars so accurately that his observations were useful until as late as the 17th century.

one of the first ever geographical globes. It shows that by this time the Greeks are convinced the world is round. 124 BCE Two scholars, and Dong Zhongshu, found China's first university. Its job will be to teach civil servants how to run the Chinese empire, including skills like interpreting portents and omens.

Groin vault

he barrel vault, a tunnel-L like structure made from a series of arches, could be used to create buildings of any length. But unfortunately, its walls could contain only small openings. Large ones made the arches collapse. The Romans, masters of the arch, found a solution: they made each opening into the start of another barrel vault. In this way, they could make buildings of any size from a grid of vaults crossing each other to form self-supporting "groin vaults."

Te don't know whether the Romans used iron plowshares in the light soils of southern Europe, but the implements were ideal for cutting through the heavier soils found in the north. While some people in the north continued with wooden plows, others, including the invading Romans and local people such as the Celts, switched to iron. Efficient agriculture may have been one of the things that helped the Celts build a strong culture—and make themselves a nuisance, if not a threat, to the Romans.


> Loops that held leather straps have rusted away

∖ Triangular shape used less iron than the modern rounded shape

Decorative points may also have been used as spurs

STIRRUPS These stirrups were used by Vikings between 850 and 1050 CE.

THE AGE OF AUTHORITY

but the Romans used them. Planes that were very much like modern ones were found at Pompeii, an ancient city in southern Italy, which the Romans colonized in 80 BCE and which was buried by the eruption of Mount Vesuvius in 79 ce.

China's Silk UBCE Road extends westward to reach the Roman Empire as Chinese emperor Wudi

conquers or makes alliances with large areas of central Asia. Ideas and luxury goods will travel the 3,700 mile (6,000 km) route.

After decades E in which its citizens have seen their coinage fall in value, Rome solves the

Phil's Galle

problem by introducing a gold coin, the aureus. Seventy years later, Emperor Nero will steal the gold to prop up his empire.

100 BCE. The top stone was connected to horizontal paddles turned by a fastflowing stream. Within 70 years, the Romans were building large vertical waterwheels like those seen today.

Tin can

ans made from tin-coated steel were first used to preserve food in 1810. But about 2,000 years earlier, the Romans already knew that tin was ideal for lining metal food containers because it was resistant to corrosion and easy to apply. They made their tin containers from copper and used them for cooking, not storage. Tin-lined copper pans can still be bought today.

Shorthand

Marcus Tiro

117 **D**oliticians like their words to be remembered, and the great Roman statesman Cicero was no exception. In 63 BCE, he

WATERWHEEL These waterwheels of the late 16th century were used to power a mill grinding corn into flour.

asked his friend Marcus Tiro to invent a shorthand system so that the important speeches he made in the senate could be recorded forever. Tiro did a good job. His system was still in use centuries after the Roman Empire had collapsed.

News bulletin 59 BCE

There has always been a demand for news. Without printing, the only way to get it to people was to write it out and pin it up where everyone could see it. *Acta Diurna* (Daily Acts) was started by Julius Caesar in 59 BCE as an official propaganda sheet. It quickly expanded and was soon offering the latest news on births, marriages, horoscopes, and public executions.

Paper c.50 BCE

It is easy to forget what marvelous stuff paper is. Light, strong, and cheap, it quickly displaced other writing materials as it spread from China to the West. The story is that a Chinese courtier invented it in 105 CE as a substitute for silk, but archaeologists have found paper dating from 49 BCE in the Shanxi district of China. Paper has been a key component of many later inventions, from printing to tea bags. (* See also The Papermakers.)

Julian calendar

Julius Caesar

By 45 BCE, the Roman Empire's calendar was in a mess. Extra days were added in a confusing way and dates were counted backward from certain

including Gaius Cassius and Marcus

Brutus kill Julius Caesar as he

BCE On March 15, a group of senators

THE PAPERMAKERS

TRADITIONAL PAPERMAKERS dip a frame with a mesh bottom into a vat containing water and plant fibers. As the water drains away, the fibers cling together on top of the mesh. Further drying and pressing form the paper into a sheet. Modern paper is made from wood fibers using huge machines, but the first paper was handmade with fibers from Chinese hemp and ramie plants.

PAPER AND PRINTING

The invention of letterpress printing in about 1450 made it easier for people to produce multiple copies of a book. But if books had continued to be printed on vellum (a kind of leather), they would have remained expensive. Paper arrived just in time to turn a good invention into a great one.

A worker uses traditional Chinese methods to make paper in a workshop in Tantou, China.

HOW PAPER REACHED THE WEST

It took 12 centuries for papermaking to complete its journey from China to Europe. Spreading first to Korea, it reached Japan in about 650 CE. Paper mills in Syria were exporting to Europe by the 8th century, but Europeans did not start making their own paper until about 400 years later.

special days. When officials began mismanaging it to suit themselves, reform became urgent. Julius Caesar introduced a year of 365 days with a leap year every fourth year. While he was at it, he rearranged the months, naming July after himself and August after Augustus, who was later to be his successor. The result was very close to the calendar we use now.

enters the senate house in Rome.

His assassins believe that he wants

Glassblowing

C enturies after the ancient Egyptians had discovered how to shape glass by blowing it into molds (*** see page 27**), people still did not realize that it could be shaped using air alone. It was in Syria, probably in about 10 BCE, that someone first put a blob of molten glass onto the end of a tube, blew hard, and watched the glass swell into a bubble without any mold to shape it. For some time, most glassworkers continued to shape glass in molds, but the glassblowing process eventually became as important as molding. The resulting smooth, rounded vessels were shipped all over the Roman Empire.

c.19 BCE Roman engineers in the south of France complete a huge aqueduct with three layers of arches. It channels water over the Gard River to the city of Nimes. The Pont du Gard will survive for more than 2,000 years.

to make himself king, destroying Rome as a republic.

Dome

dome is just an arch that arches in all directions. Sumerian builders were building rudimentary domes more than 4,000 years ago, but the first great dome builders were the Romans. They made extensive use of concrete. One of their earliest domes, which roofed a palace for the emperor Nero in 68 CE, was 50 ft (15 m) in diameter. The dome of the Pantheon in Rome, which was completed 60 years later and still stands today, is nearly three times as wide.

screw thread can exert a Large force when turned with a small force, making bolts and screws ideal for

holding things together. The thread is very difficult to make, especially the female thread on the inside of a nut, which is used in conjunction with the male thread on a bolt. By about 50 CE, a tool for cutting these, called a tap, was in use. At about the same time, the Greek scientist and inventor Hero of Alexandria was writing about machines with parts that had to be held together with well-made bolts.

Street lamp

Deople in large cities today depend on good street lighting. By about 50 CE, some public places in Rome had lighting after dark. It cannot have been very bright. The street lamps were just giant, metal versions of the teapotshaped pottery oil lamps invented in Greece about 750 years earlier (* see page 35).

The leader of the CE British Celtic Iceni tribe, Boudicca, leads a rebellion against the Romans with her

daughters. After early successes, she is defeated near Towcester by the Roman army under Suetonius Paullinus.

Topiary

opiary, the art of clipping or growing shrubs into geometric shapes, was a fashionable pastime in Rome in about 50 CE. It is most likely to have begun as some pruning that got out of hand, although a friend of the emperor Augustus claimed to have invented it. As well as being interesting in its own right, Roman topiary also suggests that the Romans had developed a form of shears suitable for use in the garden.

Wheelbarrow

he wheelbarrow should ▲ have been an obvious invention once the wheel had arrived (***** see page 19), but it appears that no one thought of it for another 3,500 years.

After 10 years E under the tyrannical Roman emperor Nero, a fire sweeps through Rome. Although

Chinese laborers were trundling barrows around from about 50 CE onward. but people still didn't catch on in the West. The earliest evidence we have of European builders and miners using this versatile one-wheeled vehicle are depictions of some in medieval illustrations.

Vending machine

Hero of Alexandria

he first known vending I machine was designed by the Greek inventor Hero of Alexandria in about 60 CE. The idea was that when someone dropped in a coin the machine would release a shot of holy water. Hero described his machine in a book. We don't know whether he ever built one-or if it would have been reliable!

Nero probably started the fire himself, he blames it on the Christians and uses it as an excuse to persecute them.

nU

Steam aeolipyle

Hero of Alexandria

ften said to be the first steam engine, the aeolipyle was built by Hero of Alexandria and was really just a toy. It was a metal ball set on a hollow spindle. Steam rushed into the ball through the spindle and out again through two nozzles at the sides. These acted like little rockets and made the ball spin around. Probably named after Aeolus, the Greek god of the winds, the aeolipyle didn't do anything useful, but it did demonstrate the power of steam. It would be

another 17 centuries before this power was unleashed.

DOME The dome of the Pantheon in Rome was the world's largest until modern times.

Formula for the area of a triangle

Hero of Alexandria

here is a well-known formula for figuring out the area of a triangle—half of the base times the height-but if the height isn't known, it has to be calculated before the formula can be applied. Nearly 2,000 years ago, Hero of Alexandria discovered a different formula that doesn't involve knowing the height of the triangle, just the length of its three sides. His formula is: area = $\sqrt{[s(s-a)(s-b)]}$ (s-c)]—where *a*, *b*, and *c* are the sides and s is half of the perimeter. Despite its simplicity, the formula is not widely used.

Water was heated in the boiler

Truss bridge c.100 CE

Scissors

cissors are ideal for cutting

3000 BCE, but scissors like those

were invented by the Romans in

about 100 CE. Until steel became

used today, with two separate

blades pivoted at the center,

cheaper in the 16th century,

Steam escaped through vents,

forcing the ball

to rotate

scissors remained a specialized

tool used only

and barbers.

like tailors

by professionals

Soft things such as cloth,

paper, or hair. The scissor

principle was known in

Then someone stands on a plank laid across a gap, only the top and bottom of it do much to hold them up. The wood in the middle adds weight but not strength. A truss, which is a framework with most of its strength at the top and bottom, is more efficient at bearing weight. The Romans had grasped this concept by 100 cE and were using truss bridges to get their armies across rivers. By 300 CE, they were also using trusses to support roofs up to 75 ft (23 m) wide.

> Earthquake detector

Chang Heng

It is obvious when a major earthquake is happening, but smaller warning shocks can go unnoticed

without the help of a detector, or seismoscope. In about 130 CE, Chinese scientist Chang Heng invented what may have been the first of thesecertainly one of the strangest. It had eight bronze dragons arranged in a circle, each holding a ball in its mouth, with eight bronze frogs directly below each with their mouths pointing upward. Due to the way the dragons were arranged, at least one of them would feel the slightest tremor. When this happened, its ball would drop, clanging into the mouth of the frog below, raising the alarm and supposedly indicating the direction of the earthquake.

> STEAM AEOLIPYLE This is a modern reconstruction of Hero of Alexandria's toy.

79 CE After an earlier southern Italian city of Pompeii is destroyed by the eruption of nearby Mount Vesuvius. Its inhabitants, including wealthy Roman vacationers, are buried alive in ash and lava. 115CE Chinese scholar, mother Ban Zhao dies at the age of 70. Her career, following marriage at 14 and the early death of her husband, included completing a history of the Han Dynasty and writing many poems.

The Age of Authority

Epicyclic universe c.140 CE

Bucket was

Pompeii, Italy

SOAP

The image on this Roman

bucket shows the goddess Venus

using soap to wash her hair.

Soap

Deople seem to have made

onward, by boiling fat with

used for medicinal purposes

soap from about 1000 BCE

wood ash. Soap was originally

and was not really the kind of

soap that makes a good lather.

It was probably the Romans, in

about 150 CE, who first started

using soap to wash things, and

kind of soap as a shampoo one

Roman women were using a

hundred years earlier.

found at

Ptolemy

Ptolemy was an astronomer and mathematician who lived in ancient Egypt. Five centuries before him, the Greek astronomer Eudoxus had explained the movements of the stars and planets with his theory of celestial spheres (* see page 44), but this did not account for all the details of the planets' movements or why they sometimes changed brightness. It became clear that the motions of the planets could not be explained with the simple idea that they moved in circles. Ptolemy solved the problem by suggesting that each heavenly body moved in small circles, or epicycles, at the same time as it orbited Earth in a large circle, generally accepted as the truth by astronomers for the next 1,500 years.

Crank c .150 CE

crank converts a to-and-fro Amovement into a rotary movement. For example, bicycle pedals convert the up- anddown motion of the legs into the rotary motion of the wheels. The date for when the crank was invented depends on how it is defined. The first rotary querns (* see page 36) could qualify as early cranks, and they go back to 600 BCE, but it is not until 150 CE that there is evidence of the first "bent rod" crank being used. One is depicted in a Chinese tomb model of a winnowing machine.

136 CE The Roman completes a great wall to keep out barbarians from the north of Britain. It stretches 73 miles (118 km) from Bowness on the Solway Firth to Segedunum (now Wallsend) on the Tyne River.

Sympathetic nervous system c.170 CE

Galen

Many parts of the body are not under conscious control but are operated by the sympathetic nervous system. This system automatically readies us for action by, among other things, speeding up the heart and shutting down the digestion. The influential Greek physician Galen studied the human body extensively, including its nerves. Some

184 CE Turbans, a religious peasant movement in northeast China, start a rebellion

of the nerves he identified in about 170 CE are now known to form part of the sympathetic nervous system.

Cataract operation c .200 CE

Cataracts is a condition of the eye in which the lens becomes cloudy, leading to impaired vision and even blindness. Surgeons today can usually restore sight by replacing the damaged lens. Amazingly, cataract surgery was being done about 2,000 years ago. An Indian medical encyclopedia, the *Susrutasamhita*, which is thought to have been compiled by an Indian surgeon named Susruta

Indian surgeon named Susruta, gives detailed instructions for the procedure. The only method he suggested for anaesthetizing patients seems to have been to give them alcohol.

Diophantus of Alexandria, al-Khwarizmi

To single person invented algebra. The art of doing arithmetic without actual numbers developed slowly, starting in Babylonia and ancient Egypt, with calculations expressed entirely in words. When Diophantus wrote his book Arithmetica in about 250 CE, he introduced symbols to replace some of the words. Nearly 600 years later, Persian scholar al-Khwarizmi clarified the idea of an equation and also showed how to solve quadratic equations. The word "algebra" comes from the Arabic "al-jabr."

that will cause the collapse of the Han Dynasty. They aim to replace the Han "Green Heaven" with a "Yellow Heaven" of perfect peace.

Book with pages c.350 CE

The first books had no ▲ pages—they were written on a continuous scroll. Roman emperor Julius Caesar is sometimes credited with having been the first to fold a scroll into pages instead of rolling it, making it easier for a messenger to carry. Both the ancient Greeks and the Romans had ring-bound notebooks with wooden pages, but it wasn't until about 350 CE that the book with pages, or codex, became the standard way of storing words. The early Christians found the more compact codex useful for hiding their forbidden texts under their clothes. (* See also Birth of the Book.)

BIRTH OF THE BOOK

FROM ABOUT 50 BCE, books, particularly religious texts, started getting longer and the codex gradually became more attractive. Papyrus, the usual writing material at that time (***** *see* **page 24**), tended to crack when folded into pages, so most of the new codexes were made from parchment (***** *see* **page 28**), a material that was known in 2400 BCE but had been little used.

WHY PAGES WON

As well as being a handy shape, a codex allows people to turn to any section instantly or flip the pages to scan the contents. Because the pages of books can have writing on both sides, it is also possible to pack in twice as many words as on a scroll of the same size.

A page from a Greek Bible of the 4th century CE.

THE OLDEST CODEXES

The oldest surviving book with pages is a Greek Bible written between 300 and 400 CE. It is known as the Codex Sinaiticus because it was found near Mount Sinai, Egypt. Another Bible, the Codex Alexandrinus, was written a century later. Both are kept in the British Museum.

Jointed fishing rod c.350 CE

ishing rods have probably been around nearly as long as fish hooks (* see page 8). It was only when wealthy Romans began to take up fishing as a pastime in the 4th century CE that rods more than about 3 ft 3 in (1 in) long came into use. They were made of wood, and because they were long, they had to be made in several sections. So they looked a bit like a modern, jointed fishing rod.

JOINTED FISHING ROD This floor mosaic was found in the Roman town of Leptis Magna, now in Libya, Africa. It clearly shows people fishing with rods.

250 CE The Roman creates a new class of priests known as exorcists. Their job is to persuade demons to leave people or places thought to be under their power, especially as a preliminary to baptism. 330 CE ^{In Constantinople} the world's largest racetrack is finally completed after 127 years. With room for 60,000 spectators, this "hippodrome" will host chariot races, political rallies, and public executions.

Public hospital

St. Fabiola

Temples may have been used as refuges for the sick as long ago as 4000 BCE, but it is thought that the first public hospital opened in Rome in about 397 CE. It was founded by a woman who did so much good that she was made a saint. Fabiola was a highly educated Roman aristocrat who became a Christian. She created several hospitals and also gave help to monasteries. The monks in turn started more hospitals.

Plow with wheels

A basic plow doesn't have wheels. The person doing the plowing holds it upright as an animal pulls it along. This is fine on light soils, but in the heavy soils of northern Europe, something sturdier was needed. In about 500 CE, heavy wheels were added to the basic plow, making it easier to handle and stable enough to be pulled by several animals.

Horse collar c.500 CE

The first animals used for hauling things were oxen, which pushed on a wooden bar, or yoke. This didn't suit horses. The yoke pressed on their throats so they couldn't

pull very hard. A padded collar that fitted around the neck was better. Its origins are not clear, but it may have been invented in China in about 500 CE. Horse collars were being used in the West by the 12th century.

> ASTROLABE This invention let people find their latitude or local time by studying the stars' position.

Quill pen c .500 CE

Quill pens came into use in about 500 CE and were in common use until the 19th century. They were usually made from one of the larger wing feathers of a goose. The feather was prepared by cutting the tip to a sharp point then making a slit to channel the ink. The hollow quill held enough ink for a line or two of writing.

BC and AD dates

Dionysius Exiguus

he year numbers used today were laid down by the Christian Church: BC means "before Christ" and AD stands for anno Domini, meaning "in the year of the Lord." In 525 CE, a monk named Dionysius Exiguus had the idea of using the birth of Christ as a starting point (AD 1), and calculated that this was 754 years after the founding of Rome. Today, BCE and CE are often used instead, meaning 'before common era" and "common era," respectively.

Astrolabe

The astrolabe was an astronomical calculator and star finder. Its star map would be turned to match the sky at any time, and adjustable sights allowed stars to be located accurately. The earliest surviving examples were made in the Middle East in the 6th century CE. By the mid-15th century, wealthy travelers might have owned an astrolabe. Block printed book

Books were being printed in China long before movable type was perfected (* see pages 66–67). The printers wrote their

books by hand on thin paper, then stuck each page face down on a block of wood. The writing, visible through the paper, showed them where to carve the wood to leave text standing proud. They inked the block and pressed paper

BLOCK PRINTED BOOK Patterns and symbols are carved into this wooden printing block.

400 CE The first inhabitants of Hawaii reach the island from the Marquesas Islands more than 2,000 miles (3,200 km) away. They bring with them no written language but a rich oral culture of myth and practical knowledge. 415_{CE} The earliestmathematician, Hypatia, is brutally murdered in Alexandria, Egypt. The leading mathematician and astronomer of her time, she was a prolific teacher and worked on geometry and number theory.

DECORATED FAN This late 19th-century Japanese folding fan is made of a wooden frame covered in gilded paper. It is decorated with a painting of a bird and chrysanthemums.

on it to create copies of the original writing. Things were printed in this way from about 600 CE onward.

Hand-painted

flowers

Tapestry c.600 CE

'rue tapestries are woven on a loom using different colored threads. The first tapestries were made in China about 1,500 years ago. Some, made of fine silk, looked almost like painted pictures. Others, designed as wall hangings, were coarser but larger. Tapestry was invented independently in Europe possibly in the 8th century. The famous French Bayeux tapestry, which tells the story of the invasion of Britain by William the Conqueror in 1066, is not

476 CE Roman empire

chieftain Odoacer deposes its last

comes to an end. German

a tapestry at all—it's a piece of embroidery, which is fabric decorated with needlework.

Windmill c.600 CE

The first known windmill, invented in 7th-century Persia, was a simple wheel with cloth sails used to drive a millstone to grind grain. The wheel was mounted on a vertical shaft directly above a millstone mounted on the same shaft. These windmills were giant, upside-down versions of the early waterwheels invented seven centuries before (*** see page 54**). They developed into

emperor, Romulus Augustulus, 66 years after the city of Rome was overrun by the Germanic people known as the Visigoths. today's wind turbines, used to generate an environmentally friendly and renewable source of electricity.

Folding fan c.650 CE

olding fans, as opposed to rigid ones, were invented in Japan in the 7th century. This clever accessory became especially popular in medieval China and Japan, where there was more to fans than simply keeping cool-they were important social items, used by both men and women and often lavishly decorated. In 18th-century Europe, where all things Chinese were fashionable, folding fans became popular and were carried by wealthy women.

The wooden handle is also delicately decorated.

Zero to represent nothing

Brahmagupta

ero is a difficult idea. How *can you count something* that isn't there? It was a long time before mathematicians could accept a number that stood for nothing. One of the first scholars to accept the concept was the great Hindu astronomer Brahmagupta, who worked in the 7th century. The English word "zero" comes, in a roundabout way, from the Hindu word "sunya," meaning "empty." Hindu mathematicians wrote zero as a circle, the same symbol that is used today.

529 CE As part of a drive to rid his empire of non-Christian thinking, Byzantine emperor Justinian

closes the 900-year-old Academy in Athens, a center of thought and learning founded by the great Greek philosopher Plato. The Age of Authority

Flamethrower

Callinicus of Heliopolis

Setting fire to an enemy's property usually means having to get close to it, but a weapon that shoots a jet of flame can do damage at a distance. The first people to try this were the Byzantines from Constantinople (presentday Istanbul in Turkey) in the 7th century CE. Possibly invented by a Syrian architect named Callinicus, "Greek fire"-a sticky, flaming liquid thrown in pots or squirted from tubes-was much feared by their enemies. Greek fire helped the Byzantines defeat a Saracen (Arab) fleet in 673 CE.

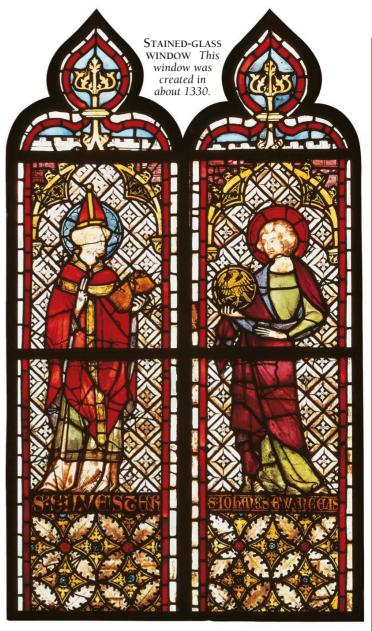
Paddle wheel c.780 CE

hips with paddle wheels Shave a long history. They may have existed toward the end of the 5th century CE, but the first clear description of one is given by the writer Li Kao in about 780 CE. It was a Chinese warship with twin paddle wheels turned by sailors walking on treadmills. It was said to be as fast as a sailing ship. In 1130, Chinese peasant Yang Yao led a revolt backed up by paddle warships. In 1838, British engineer Isambard Brunel launched the first transatlantic steamship service with the paddlepowered Great Western.

giant wheels that drove Brunel's ship the Great Eastern, launched in 1858. The original paddle wheels were 56 ft (17 m) in diameter

PADDLE WHEEL This is a model of the

Kimono c .700 CE


The Japanese kimono—a long, wide-sleeved robe dates from about 700 CE. It has no buttons or other fastenings and is simply wrapped around the body in a particular way and tied with a sash, which is called an *obi*. The kimono developed from a similar garment worn by courtiers in China as early as 200 BCE. By the 17th century, 1,000 years of further development had turned it into the beautiful garment we know today.

Porcelain

Anase or any

Porcelain is no ordinary pottery. It is pure white, translucent, and very strong. Its secret ingredient is a mineral called petuntse, which is a kind of granite. When mixed with china clay and fired at a high temperature, it turns to glass. Porcelain was discovered in China in about 800 CE and was perfected by about 1300 CE. From then on, China exported vast quantities to the West, where potters struggled to imitate it.

691 CE Caliph Abd al-Malik finishes the Dome of the Rock, a shrine in Jerusalem. It stands where it is said Muhammad, founder of Islam, ascended into heaven and Abraham, ancestor of the Jews, prepared to sacrifice his son.

Stained-glass window c.800 CE

In the 7th century, large sheets of glass did not exist, so builders had to make church windows by joining many small pieces of glass together. By the end of the century, they were using colored glass but did not make pictures with this until the 9th century. The glorious stained glass of Europe's Gothic cathedrals was in place by the 12th century, and painted glass appeared 200 years later.

Systematic use of zero

Muhammad al-Khwarizmi

It is accepted today that a zero at the end of a number makes it 10 times bigger, e.g., 20 is 10 times bigger than 2. But early number systems were rather vague about using zero in this way. They used it to show that the tens column, for example, had nothing in it, but rarely used it in the units column. The first mathematician to use zero in

750 CE At Tegernsee, River in Germany, a Benedictine monastery is founded. It becomes known as München, meaning "home of the monks." It will grow to become Germany's third largest city, Munich.

с.499 все-1400

today's systematic way was Muhammad al-Khwarizmi, in about 820 CE. His ideas reached the West through the efforts of the French scholar Gerbert of Aurillac, who became Pope in 999 CE.

Diagnosing smallpox c.900CE

Smallpox and the less dangerous disease measles have similar early symptoms. Persian physician ar-Razi, known in the West as Rhazes,

EXPLOSIVE EVENTS

THE HISTORY OF GUNPOWDER is not clear. The secret was certainly known first in China, but nobody is sure whether people in the West learned it from the East or discovered it for themselves. English scientist Roger Bacon recorded the formula for making gunpowder in the 13th century, but it is possible that he discovered it by studying the works of Arabs, who had themselves learned it from the Chinese.

told doctors how to tell the

difference in about 900 CE. He

said that "inquietude, nausea,

and anxiety are more frequent

Smallpox; while the pain in the

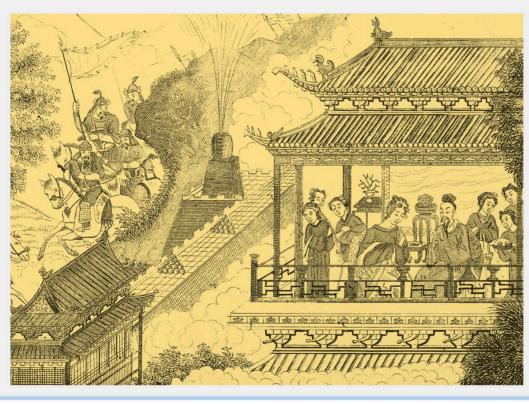
Smallpox than to the measles."

Cyrillic

alphabet

) ussian and some related

the Cyrillic alphabet. It was


named after St. Cyril, one of

Nanguages are written with

back is more peculiar to the

in the Measles than in the

Medieval engraving of workers packing gunpowder into a tube

the people who preachedCChristianity in eastern Europesin the 9th and 10th centuries.vLike the rather differentinalphabet used for English, itris derived from the Greekpalphabet that St. Cyril knew butehas several extra letters, whichcwere needed to represent thefspeech sounds of the region.F

Gunpowder c.900 CE

Gunpowder was the first known substance that would burn when packed into a tube. In about 900 CE, Chinese alchemists were surprised to discover that when three well-known ingredients were mixed in the right proportions, they could produce an intense flame or explosion. They put their discovery to work in fireworks for fun and rockets for war. From the 14th century onward. Europeans used gunpowder in cannons and firearms and this changed the whole nature of warfare. Gunpowder remained the only known explosive until the 17th century. (* See also **Explosive Events**.)

CANNONS AND ROCKETS

Gunpowder packed into a tube burns so intensely that it can throw objects out of the tube, forming a crude cannon, or propel the tube itself through the air as a rocket. Chinese scientists used both of these effects for military purposes and may also have used gunpowder to make bombs.

FIREWORKS

Gunpowder was probably first used in fireworks. Even an inaccurate rocket made a good display, experimental cannons could throw decorative balls of fire, and the explosive properties could provide fun in firecrackers.

12th-century Chinese emperor Wu-Wang entertains guests with gunpowder.

837 CE Planet Earth has April 9 as Halley's comet makes its closest ever approach. The wandering ball of dust and ice strays to within 310,000 miles (494,000 km) of the planet. It will return in about 76 years. 874 CE Ingólfr Arnarson reaches Iceland from Norway and becomes its first inhabitant. He starts a farm, which he calls Reykjavík, meaning "smoky," because of the steam from nearby hot springs. It will become Iceland's capital. THE AGE OF AUTHORITY

Paper money c.900 CE

A s China grew wealthier, increasing amounts of cash were needed to keep trade going. Paper money was used occasionally before 900 CE, but it became common really only when merchants in the great trading city of Chengdu began to use it in the 10th century. Within 300 years, under the rule of the Mongol emperor Kublai Khan, China had practically replaced metal coins with paper money.

Mental hospital 918 CF

A ttitudes toward mental illness have varied from place to place and time to time. In many countries, people have often put unusual behavior down to possession by demons or treated disturbed people like animals. But the people of 10th-century Baghdad (now the capital of Iraq) thought differently. Despite being constantly under attack from their enemies, they managed to set up the first known mental

968 CE On December historian Leo the Deacon observes a total eclipse of the PAPER MONEY 13th-century Mongol emperor Kublai Khan watches as officials pay his bills with paper money.

hospital in 918 CE. Their policy was to treat disturbed people with respect.

Andromeda galaxy 965 CE

as-Sufi

A galaxy is a system of stars. Our sun is just one star among hundreds of millions in the Milky Way galaxy. The Andromeda galaxy is 2.3 million light-years away. Islamic astronomer as-Sufi recorded it in 965 CE. Although it is very easy to see, it was not recorded again until 1612, after observation with a telescope.

Theory of vision c.1000

Alhazen

See **pages 66–67** for the story of how an Arab scientist faked insanity to found modern optics.

sun. Writing a description of what he sees, he is the first to record the glow, or corona, that surrounds the sun at totality.

Fireworks c.1000

ireworks were developed by the Chinese about 1,000 years ago, following the invention of gunpowder (* see page 63). Chinese fireworks came in just one color-yellow-but in about 1800, the French chemist Claude Berthollet discovered potassium chlorate, which made multicolored fireworks possible. Firework makers eventually discovered that strontium compounds produce crimson, while barium compounds produce green.

Movable type

1045

Bi Sheng

Printing with movable type—separate letter blocks that can be assembled to form text—revolutionized Western communication in the 15th century (* see pages 76–77), but as early as 1045, Chinese alchemist Bi Sheng was molding types from clay and glue, then assembling them by sticking them down with resin. The types could even be reused by heating the resin to release them. Unfortunately, Chinese uses thousands of characters and doesn't really suit movable type, a powerful idea best suited to Western languages.

Musical notation c.1050

Guido of Arezzo

Some music doesn't need to be written down because people can just remember it. But the complicated choral music of 9th-century Europe needed to be written down to

> FIREWORKS A Chinese family honors its kitchen god with a shower of sparks.

 $\begin{array}{c} 986\,{}_{CE}\,{}_{\text{Bjarni}\,\text{Herjulfsson}}\\ \text{the first European to sight the}\\ \text{mainland of North America when} \end{array}$

his ship is blown off course in a storm. He sails along what is now the Atlantic coast of Canada before returning home.

с.499 все-1400

indicate where voices should rise and fall. The squiggles people used at the time didn't look much like music until about 1050, when Guido of Arezzo, a Benedictine monk and music teacher, placed the marks on a grid of five lines, or staff. It was, however, another 500 years before people were writing music as we do today.

Mechanical clock

Su Sung, Henry De Vick

he first recorded mechanical clock, built in 1088, did not use clockwork. Its Chinese inventor, Su Sung, designed a waterwheel that paused to empty a bucket after it filled, marking intervals of time. The first clockwork clock was put in the Palais de Justice, Paris, by Henry De Vick in about 1360. It had only one hand and, with errors of up to two hours a day, was probably less accurate than Su Sung's clock.

Three-field system

"he same crop grown year L after year in the same field will eventually exhaust the soil. Early farmers just moved on and used new land, but this was impossible in medieval Europe because farmers had to stay in one place. From about 1100, European farmers began using a three-field system. They planted one-third of their land in the fall, another third in spring, and left the rest unplanted for a year to recover, rotating the use of the patches of land each year. In this way, the farmers got two harvests a year, and by planting a spring crop of peas or beans, which

> Murasaki J Shikibu writes

The Tale of Genji, considered to be

the world's first-ever novel and one

increase nitrogen in the soil, they increased the fertility of the land as well.

Gothic arch

The pointed Gothic arches in cathedrals made these medieval buildings lighter and more spacious than earlier ones. Roman arches were semicircular, so tall arches had to be wide, which created design problems. They also needed heavy walls to stop them from spreading. Gothic arches could be made taller without making them wider, and their sideways push was smaller so walls could be thinner and windows larger.

Fireplace

he first fireplaces were just I fire pits in the middle of the floor, and smoke went out through a hole in the roof.

A few fireplaces with tall chimneys appeared in the 12th century. They carried smoke away and created a draught to make the fire burn well. With a raised iron grate, which let air reach the fire from below as well as from above, they made a dent in the winter chill.

of the greatest works of Japanese literature. She is also a poet as well as a lady-in-waiting in Japan's imperial court.

)66 On Wednesday, September 27, William, Duke of Normandy, invades England with about 6,000

soldiers. He travels east toward Hastings, where on October 14, he will defeat Harold II's army and change English history.

VISION OF THE FUTURE

Arab scientist Alhazen fakes insanity to found modern optics

CITY OF CAIRO

Cairo, the capital of Egypt, is on the Nile River, 100 miles (160 km) south of the Mediterranean coast. In the 10th century, it became a walled city, one of the greatest of the medieval world. Its name comes from the Arabic words *al-Qahhirah*, which mean "victorious."

> Greek philosopher and mathematician Pythagoras.

SENSE OF SIGHT

Pythagoras, who lived from about 580 to 500 BCE, was one of the first people to think about how the eye worked. About 200 years later, Epicurus realized that sight was caused by light entering the eye.

Photography, modern telephones, and television are just a few of the inventions that depend on optics—the science of light. For hundreds of years, the subject was in confusion. Then, about 1,000 years ago, a "crazy" Arab scientist named Alhazen helped everyone see things more clearly.

The story is that Alhazen went to Cairo, Egypt's fastest-growing city, to advise the notoriously cruel ruler al-Hakim on how to control the flow of the all-important Nile River. But Alhazen's

ideas didn't work, and the Nile flowed on as usual. He thought that the only way to escape the wrath of the terrifying leader—who had once had all the dogs in Cairo killed just to stop them from barking was to pretend to be insane. Fortunately, his idea worked, and al-Hakim let him get on with his studies of mathematics and physics.

Alhazen stopped thinking about water and started thinking about light. What happened when he saw something? Did feathery feelers come out of his eyes to explore the surface of objects, as Pythagoras had

> thought? Or was ancient Greek philosopher Epicurus right to think that light, from a source like the sun, bounced off objects and entered the eye?

To a scientist like Alhazen, Pythagoras's ideas seemed ridiculous. If they were true, why couldn't people see in the dark? So he sided with Epicurus but took his ideas a lot further. Using his mathematical skills, Alhazen figured out much of what is known today about the way light is reflected by flat and curved mirrors and bent by glass or the atmosphere. He even explained why two eyes work better than one.

Like modern rulers, Cairo's al-Hakim relied on scientists for help with technical problems, such as controlling the waters of the Nile during its annual flood.

Alhazen wrote all this down in a great book called *Optics*, which was translated into Latin and reached Europe in 1270. It may be a coincidence, but this was

exactly when magnifying glasses and eyeglasses, the forerunners of microscopes and telescopes, began to appear in Europe.

The feared al-Hakim eventually disappeared in mysterious circumstances one night in 1021. Alhazen, who was instantly restored to sanity, lived on for another 20 years. Brilliant though he was, he could never have imagined where his work would lead. Even the internet makes use of ideas that Alhazen wrote about nearly a thousand years ago.

17th-century magnifying glasses 17th-century glass was often colored

17th-century eyeglasses

HELPFUL LENSES

Lenses to improve vision first appeared in the late 13th century, perhaps as a result of Alhazen's work. By the 17th century, eyeglass making had led to the development of much more powerful optical instruments. But simple eyeglasses and magnifying glasses like these were still needed, just as they are today.

Modern numerals

Leonardo Pisano

The modern number system arrived in the West after a long, slow trip from India. The system, which was started in the 6th or 7th centuries in India, was taken up by Arab mathematicians in the 9th century and reached the West during the 10th century. It made little impact until Leonardo Pisano wrote Liber Abaci (Book of the Abacus) in 1202. The book explained everything about Arabic numerals, from how to write them to the mysteries of hundreds, tens, and units. The new system made calculations much easier.

Propaganda dropped from the air

ilitary commanders have often tried to win battles with words instead of weapons. One way is to drop leaflets from the air.

This tactic was tried as early as 1232, when the Mongols (nomads of central Asia) besieged the Chinese city of K'aifeng. They used kites to drop leaflets on the people inside. It is not known whether any of the citizens read the leaflets, but by 1234 the Mongols had taken over the city.

1215 Supported by the Archbishop of Canterbury, England's barons demand a declaration of rights from King John. The Magna Carta (great charter) is drafted at Runnymede, near Windsor, and sealed by John on June 15. 1225 On the Île de la Cité Paris, the great cathedral of Notre Dame (Our Lady) is completed after 65 years' work. It sets a new standard for cathedrals and will become one of the world's most visited buildings.

Buttonhole c.1250

You might think that buttons and buttonholes were invented together, but buttons actually came first. The ancient Greeks and Romans used buttons to fasten their clothes at the shoulder, but these went through loops, not holes. Buttonholes were invented in Europe in the 13th century. They made buttons so popular that laws were passed to limit the number that people could have, to prevent rich people from having too many.

Magnetic poles

Petrus Peregrinus de Maricourt

rench engineer Petrus Peregrinus de Maricourt did the first known scientific experiment on a magnet. He put a sliver of iron in various places on a round lump of magnetic rock called lodestone and marked the stone to show how the iron positioned itself each time. His lines converged at opposite sides of the stone. The marked stone looked like a globe with lines of longitude radiating from the north and south poles. He called these points the magnetic poles, a term that is still used today.

Eyeglasses c.1280

Eyeglasses, in the form of a pair of lenses clipped on to the nose, appeared in the 13th century, but nobody is sure where they came from. The English scientist Roger Bacon described a magnifying glass for reading small print in 1268, but this is not quite the same

thing. In Italy, where eyeglass making was established by 1301, two men from Florence, Alessandro di Spina and Salvino degli Armati, have been credited with the invention. But, like so much else at this time, eyeglasses

may have been invented in China as early as the 10th century.

> EYEGLASSES Medieval eyeglasses were pivoted to grip the nose.

Mathematics of the rainbow

Qutb ash-Shirazi, Kamal Farisi

iguring out what's going on when we see a rainbow requires advanced trigonometry (* see page 53), and by about 1280, Muslim astronomers had created the math they needed. At an observatory financed by a grandson of the 13th-century Mongol ruler Genghis Khan, two students, Qutb ash-Shirazi and Kamal Farisi, applied the new math to the optical theories of Alhazen (* see pages 66-67) to offer an explanation of the way rain bends sunlight into a multicolored circle.

> Rocket c.1300

Although the Chinese may have made simple rockets as fireworks soon after the invention of gunpowder, serious military use came

1275 Venetian explorer Marco Polo crosses Asia's Gobi Desert into China, where he travels to the court of Kublai Khan, ruler of China and lands beyond. Polo will later recount this meeting, and more, in *The Travels of Marco Polo*. NAVIGATION CHART This 1375 chart centers on the Mediterranean Sea. The many straight lines aided navigation.

only later. "Arrows of flying fire" were used when the Mongols besieged the Chinese city of Kai-feng in 1232, but these were probably just fireworks tied to arrows. Chinese soldiers are not thought to have begun using rockets as weapons until 1300 at the earliest, but by 1330, rockets were equipped with explosive warheads and were no longer toys.

Shoe sizes

he earliest system of standard shoe sizes may possibly date back to 1305, when King Edward I of England decided that the inch should be fixed at the length of three barleycorns. This made the official barleycorn one-third of an inch long. It has been said that children's shoes then began to be based on this barleycorn measure. As a large child's foot at that time was about 13 barleycorns (4.33 in/ 11 cm) long, a shoe to fit it was called size 13.

1306 A small town protected by a dam on the Amstel River in the Netherlands finally gets official

Navigation chart

World maps were mostly used as book illustrations prior to the 12th century. Petrus Vesconte of Genoa, Italy, was one of the first to make navigation charts—maps useful to sailors. A 1311 chart made by him, drawn mostly from information he collected from sailors, rather than careful measurements, is the oldest known.

> Printer's type case c.1313

Wang Chen

Unaware of Bi Sheng's failure with movable type in 1045 (* see page 64), Chinese magistrate Wang Chen tried something similar in about 1313. He needed 60,000 wooden Chinese characters to print a book. To store these, he invented the first printer's type case, which had a compartment for each character. Because he needed so many cases, Wang Chen stacked them in layers on a spindle so that he could swivel one out as needed.

recognition after being granted privileges in 1275. Its name, Amsterdam, from "Amstel dam," will become familiar to millions.

Practical manual of anatomy

Mondino de' Luzzi

uch of what doctors now know about the human body originally came from early examinations of the dead. An Italian doctor, Mondino de' Luzzi, did a lot of this and often gave public lectures while he dissected corpses. Although he tended to see what his predecessor Galen (* see page 58) told him he should, his 1316 book Anathomia Mundini was the first European anatomy book since ancient times that was based on observation of human bodies. It was the first systematic guide to human dissection and remained the standard manual until 1543, when Andreas Vesalius's manual was published (* see page 80).

CANNON This French print shows highly developed cannons being used during the siege of Paris by the German Empire, 1870–1871.

Cannon

"he Chinese made cannons (large guns that stand on the ground) soon after they invented gunpowder (* see page 63), but because they were made only of bamboo, they were really just oversized fireworks. Only cannon barrels made of bronze or iron were strong enough to withstand a powerful explosion. They were not made until about 1320, when techniques for casting and boring them were perfected. The new weapons were rushed into action all over Europe. By the 15th century, the cannon had grown into a monster that could fire balls weighing more than 55 lb (25 kg).

Italian, not Latin, describes a journey through hell, purgatory, and paradise. It is one of the greatest poems in all literature.

Alchemy textbook c.1320

Geber

"he first popular books on alchemy-the study of base metals and theories for turning them into gold-were published in 1320 under a false name. By 1300, several books written by 8th-century Arab alchemist Jabir ibn Hayyan had been translated into Latin. The books had made Jabir famous, so an unknown alchemist pretended to be Jabir when he wrote De Investigatione Perfectionis (The Study of Perfection) to make people read it. He wrote several other books under the name Geber (his version of Jabir), but he could really have used his own name. His books were so good that alchemists everywhere used them anyway.

1333 A catastrophic flood sweeps through the Italian city of Florence as the Arno River overflows its banks.

Striking clock 1335

Early clocks just rang a bell to mark the beginning of each hour. The first clock to sound out the actual time was built in Milan, Italy, and started striking in 1335. It was a major achievement for medieval technology—a machine that could count. The Milan clock was quickly followed by others throughout Europe, including one in Salisbury cathedral, England, which was installed in 1386 and is still working today.

Chromatic keyboard

The first keyboard instrument was the organ, but it couldn't play all the different

destroyed. Despite this, Florence

grows and prospers, becoming

All of the city's bridges are

one of Italy's finest cities.

1321 Italian poet Dante Alighieri dies on September 14 at the age of 56. His Divine Comedy, written in sharps and flats, or semitones. It was therefore a great step forward when, in about 1350, organs in Europe began to have chromatic keyboards. These had semitones as well as whole tones, allowing them to play in more than one key. But the keyboards were designed for chubby fingers, and it was the end of the 15th century before organ keys slimmed down to their present size.

Firearms

annons were fairly easy to design, but figuring out how smaller, portable weapons could be charged with powder, aimed, and fired proved more difficult. The earliest attempts, used in Europe from about 1350, had no triggers and were held under the arm, making it impossible to aim them accurately. The first firearm that looked anything like a modern weapon was the harquebus. This didn't reach the battlefield until about 1470, and it was useless against fast, accurate bows and arrows.

Clavichord c.1360

The clavichord is a distant ancestor of the piano. The first reference to what was probably a clavichord is in a French ledger of about 1360, although the musical instrument did not get its modern name until later. The clavichord's mechanism is very simple: when a key is pushed down, a thin metal blade strikes the string. The note sounds until the key is released, giving the player great control over the sound—a definite advantage for musicians who like to practice at night.

Canal lock

Canal locks are pieces of medieval technology that can still be seen in action. They move boats up and down between stretches of canal with different water levels, trapping boats in a basin that fills to raise them or empties to lower them. The first is said to have been built at Vreeswijk in the Netherlands, in 1373, but there were certainly locks at Viterbo, Italy, by 1481.

Woodcut

woodcut is a picture Acarved on a piece of finegrained wood, which is then used for printing. Whole books were being printed from wood blocks in China by 600 CE, but the woodcut has a different history. It began to be used in about 1400, especially for the production of playing cards. But it really came into its own after 1450, when printing from movable types had been perfected. Readers wanted to see the same kind of pictures they had always had in handwritten books, and the woodcut was there to provide them.

French game was played with hands, not rackets. By about 1400, wooden bats had replaced hands, and a game resembling tennis emerged. In the 16th century, it was played indoors with rackets. Then, about 300 years later, a British army officer, Walter Wingfield, adapted the game to outdoors, creating "lawn" tennis as it is now known.

As the name suggests, the

TENNIS The game of jeu de paume was popular in 18th-century France.

A type of drill invented in about 1400, the brace is also the ancestor of the carengine crankshaft. It is a rod with a U shape

in the middle, a handrest at the top, and a drill bit at the bottom. The carpenter steadies it with the handrest, grasps the U, and moves his arm, making the same action as a piston in a car.

Players used a bat resembling a modern tennis racket

Tennis

Tennis today is a very different game from the French pastime *jeu de paume* (palm game) that started it all.

 $1347 \stackrel{\text{Germ warfare hits}}{\text{Europe as soldiers}} \\ \text{from the East catapult corpses} \\ \text{infected with Black Death into a} \\ \end{array}$

trading post in southern Ukraine. The virulent disease spreads rapidly, killing a third of Europe's population in four years. 1362 For the first time court proceedings are conducted in English instead of Latin or Norman French. The Statute of Pleadings, which makes this possible, says that proceedings must still be recorded in Latin.

NEW WORLDS, NEW IDEAS

HUMAN UNDERSTANDING of the world grew enormously between 1400 and 1750. Our planet ceased to be seen as the center of the universe and seemed to grow as explorers reached new lands. New discoveries, and new means to communicate them, led to an age of reason and the beginnings of modern science.

Metal movable type

Htai Tjong

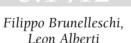
People in Korea started working on movable metal types in the 14th century, and in 1403, King Htai Tjong of Korea had the first true font of metal type made. One hundred thousand bronze characters were cast, and that was just the start. The king had two more complete fonts ready long before movable type was perfected in Germany (* see pages 75 and 76–77).

Water-powered ironworks

1408

Walter Skirlaw

edieval ironworkers heated iron ore with charcoal in a furnace to produce a spongy lump of iron called a bloom. The hotter the fire was, the better the furnace worked, so air was pumped in with bellows to feed the flames. As demand for iron grew and furnaces got larger, something more than muscle power was needed to work the bellows. In England, which would become the largest iron producer in the world, the problem was tackled by Walter Skirlaw, the Bishop of Durham. He set up a waterpowered bloomery in 1408.


METAL MOVABLE TYPE These casts are from Korean bronze type used in about 1406.

Code breaking

al-Kalka-shandi

arly attempts at secret writing were not effective, but by the late 14th century, Arab code writers and breakers, called cryptographers, were getting serious. They invented systems for changing each letter into a different one and used the fact that some letters occur more often than others to decipher supposedly secret messages. These tricks of the trade were published in 1412 by Egyptian scholar al-Kalkashandi, forming the first reliable set of instructions for code makers and breakers.

Perspective

he Italian architect and artist Filippo Brunelleschi discovered linear perspectivethe art of drawing objects in a way that gives an impression of their size and relative positionbetween 1410 and 1415. The discovery revolutionized the way artists drew pictures. Until he discovered the "vanishing point," to which all parallel lines converge, pictures were built up from flat shapes. Twenty years later, his friend Leon Álberti wrote a book giving detailed instructions on how to create the correct perspective. This enabled painters to produce pictures with a realism that was unsurpassed until 19th-century photography.

1405 Chinese admiral China's isolation with the first of a series of missions to countries around the South China Sea, which he knows as the Western Oceans. Sixty-two ships reach Indochina, Java, and Sri Lanka. Tower windmill c.1420

ne problem with windmills is that the wind doesn't always blow from the same direction. Early windmills contained their entire mechanism in a huge wooden box mounted on a pivot, so it was difficult to swing the sails into the wind. The tower mill, invented in about 1420, had all its heavy machinery in a fixed tower.

> Top cap turns so the sails face the wind Grindstone

Only the sails, which were mounted on a movable cap, had to be moved to

track the wind a much easier task.

TOWER WINDMILL The 19th-century mill represented by this model could steer its sails into the wind automatically.

1418 Italian architect is asked to design the dome of Florence's cathedral. His highly original solution, octagonal in form, with its white structural ribs exposed on the outside, will dominate the city's skyline.

73

1401-1750

Fantail

regulates

movement of the top cap

Gear wheel

power to the

grindstone

transmits

Sails turned by

the wind

Flywheel c.1430

car engine (** see* page A150) wouldn't work without its flywheel, a heavy wheel that stores energy during the brief bursts of burning inside the cylinders, then releases it to keep the engine running smoothly. Although early devices like the potter's wheel incorporated a kind of flywheel action, separate flywheels first appeared in the early 15th century. They evened out the jerky rhythm of machines powered by feet moving up and down on a treadle.

Oil painting 1430

Robert Campin, Jan van Eyck

lthough the Romans knew Aabout oil paint, it was the French and Flemish painters Robert Campin and Jan van Eyck who perfected its use in art. Both were attracted by the realism that oil paint allowed. Earlier paints, such as tempera, which was made with eggs, couldn't produce the same smoothly graded tones. Using the new paint and the new laws of perspective (* see page 73), van Eyck painted pictures with a realism never seen before.

Peep show

Leon Alberti

Having studied perspective, Leon Alberti realized that he could apply the same laws

1431 French military leader Joan of Arc is convicted of denying true religion, after she hears voices that guide The peep show was a box with a hole in one end. Inside was a threedimensional scene modeled in perspective. When the model was viewed through the hole, it leapt to life with startling realism. Alberti made his first peep shows in 1437. He even painted the scenery on glass to allow for lighting effects. Harpsichord

to a miniature scene to

make it more realistic.

c.1450

The harpsichord was king of the keyboards from about 1500 until well after the piano was invented in 1709

her to incite the French to expel the English. On Wednesday, May 30, the English burn her at the stake in Rouen. HARPSICHORD This harpsichord was made in Belgium in about 1600. It has two keyboards, known as manuals.

 Beautifully decorated case indicates the status of the harpsichord's owner

(* see page 100). Unlike the piano, its strings are plucked, not struck with hammers, as the keys are pressed. Because of this, it is not possible to vary the loudness of a note by striking the key with more or less

force. Some harpsichords have several sets of strings so that pieces of music can be played at different volumes. The instrument was first described in about 1450. It spread rapidly throughout Europe and is still played today.

Anemometer

Leon Alberti

Weather watchers measure the speed of the wind with an anemometer (from the

1435 Italian sculptor Donatello completes a nearly life-size bronze statue of the biblical hero David, the first Greek word "anemos," meaning "wind"). The type with cups attached to a vertical shaft dates from about 1850, but the first anemometer was devised 400 years earlier. Italian artist and mathematician Leon Alberti's instrument

was much simpler—just a rectangular metal plate, hinged at the top. When the wind blew, the plate tilted, giving a rough indication of the speed. Alberti described it in about 1450 in his book *The Pleasures* of Mathematics. As British scientist Robert Hooke was reinventing a more accurate form of anemometer, Mayans were building "windtowers."

Trombone c.1450

riginally called the sackbut, the trombone was invented in France in about 1450. It is basically a tube that produces sound from vibration of the lips. The simplest instruments of this type can play only a few notes because their length is fixed. A trombone can play a full range of notes because its length can be changed with tubes that slide in and out. The modern trombone has not changed much since the original instrument was designed more than 550 years ago.

nude figure made since ancient times. People are astonished by the expressive realism of this freestanding work of art.

Metal printing plate

Toodcuts, made in Europe from about 1400 (* see page 71), could not produce as finely detailed pictures, but metal plates could. An artist engraved the required lines on the plate, usually made of copper, with a sharp tool called a graver. The plate was then covered with greasy ink and the surface wiped clean again, leaving ink only in the engraved lines. When damp paper was pressed hard onto the plate, it picked up the ink from the lines, forming a print. This process, known as intaglio, was first used in about 1455. It required more pressure than normal printing, so printers still used woodcuts in books containing text printed with type.

Letterpress printing 1455

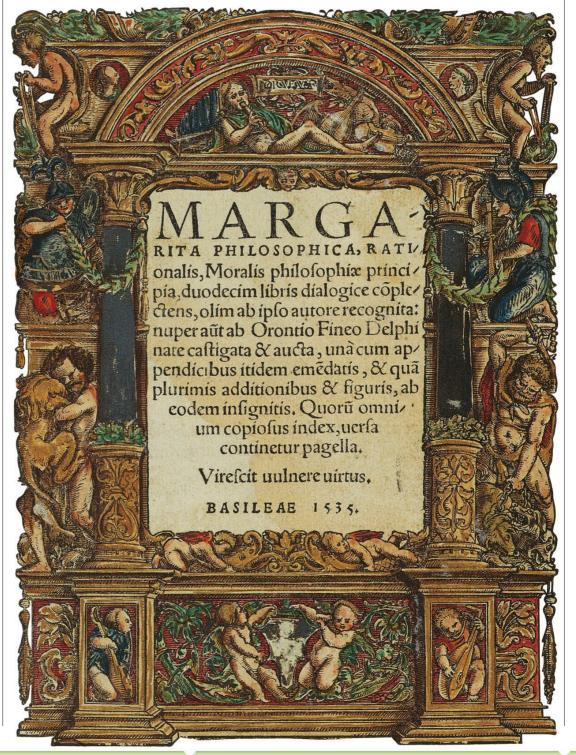
Johann Gutenberg

See **pages 76–77** for the story of how Gutenberg died in poverty as printing changed the world.

Dance notation

People who teach dance or develop dances have often needed to write down the movements they want the dancers to make. The ancient Egyptians did this to some extent with hieroglyphs, but the earliest written system appeared in Spain in about 1460, using letters to represent movements. In other parts of Europe, shortened words were

1436 The first of two laws grain is passed in England. The aim of the Corn Laws is to make


used for the same purpose in instruction books for dancers, such as two found in the library of Margaret of Austria: *The Book of Low Dances* (c.1460) and *The Art and Teaching of Fine Dancing* (c.1488).

ROMAN TYPE This title page from a 16th-century philosophical work shows the elegant type at its best.

Roman type 1464

Adolf Rusch

The first printed books used heavy, spiked letters. Printers soon wanted lighter letters better suited to the new printing technique. They chose an alphabet they thought was Roman, but which had actually been designed by a 9th-century English monk. The first "roman" type was used by German printer Adolf Rusch in 1464. In 1465, two other German printers, Sweynheim and Pannartz, used a type even closer to today's roman type, which is what you are reading.

England self-sufficient in grain by restricting both imports and exports. The effect is widespread starvation as prices rocket. $\begin{array}{c} 1452 \\ \text{Florence receives the} \\ \text{last of three pairs of bronze doors} \\ \text{by sculptor Lorenzo Ghiberti.} \end{array}$

They show *Old Testament* scenes modeled in deep, naturalistic relief. Centuries later, people will still flock to see them.

THE POWER OF THE PRESS

Inventor Johann Gutenberg dies in poverty as printing changes the world

JOHANN GUTENBERG

Little is known about Johann Gutenberg, not even his date of birth. His skill as a jeweler must have helped him perfect the metal types he needed.

> Paper is held pulls this on this tympan, bar to bring which is folded the platen down on top of the type down on

Printer

the type

Platen

Coffin moves

under the platen

A form of type is placed on the press bed

for change. For more than 1,000 years, it had been dominated by the Church and a society that valued traditional wisdom. Now new ideas were in the air. But with only pen and parchment to spread the word, that was where they

_ifteenth-century Europe was itching

were likely to stay. In the German city of Strasburg, a young jeweler named Johann Gutenberg was acting very strangely. He was borrowing money from his friends to buy materials that had nothing to do with jewelry. He wouldn't say

why he needed them or why they cost so much. In the end, his friends refused to lend him any more money until he came clean. His secret astonished them. He was working on an invention that would allow books

to be mass-produced instead of copied out by hand. Gutenberg's new movable type, oil-based ink, and printing press looked as if they had a future, and in 1438, the friends formed a partnership. But things began to go wrong. One partner died and his children wanted a share in the

partnership. They took Gutenberg to court. They lost, but the secret of

Punch hammered into soft copper

Copper matrices carry an impression of the letter

Gutenberg's work got out, and the race to print a book was on.

Gutenberg returned to his home city, Mainz, to perfect his invention. Still desperate for money,

PRINTING PRESS The printing press developed from winemaking and

bookbinding presses. The inked type faced upward and paper was pressed down on it.

MAKING A MATRIX

Each letter was carved on a steel punch, which was then hammered into a piece of copper to form a matrix. This was clamped into a mold, and molten metal was poured in, filling the shape punched into the matrix to form the type.

he persuaded businessman Johann Fust to make him two large loans. By 1455, Gutenberg's first book was ready. He showed it off at the trade fair in nearby Frankfurt,

0.01

Early printing was hard work. Type was set and inked by hand, and it took two or three people to produce each page.

where visitors commented on the book's clarity.

It was then that Fust suggested it was time he got his money back. But Gutenberg couldn't or wouldn't pay. Once again, he found himself facing a judge in court. This time, he didn't win. Fust got control of everything. Pausing only to steal Gutenberg's best assistant, he set himself up as the world's first successful printer.

Fust didn't keep his lead for long. Within 25 years, there were printers all over Europe. By 1500, they had printed 30,000 books, spreading new ideas far and wide and helping launch the age we call the Renaissance.

And Johann Gutenberg? He kept on printing but didn't make much money. The Archbishop of Mainz gave him food and clothing, but by 1468, Gutenberg was dead. The future he had helped create was on its way without him.

FIRST BOOKS The first books, like this Gutenberg Bible, were designed to imitate handwritten work. The printed letters were often embellished by hand with elaborate colored decoration.

Cryptographic frequency table

Leon Alberti

frequency table shows how often each letter of the alphabet is used. With this table, anvone can crack a simple substitution cipher. For example, in English, "e" is the most often used letter. If "k" is the most common letter in a ciphered document, it must represent "e." The first frequency table was published in 1465 by the Italian architect Leon Alberti. Because it made simple ciphers useless, Alberti also invented a cipher wheel that encrypted messages more securely.

AMERICA Columbus sailed westward on August 3, 1492, in this ship, the Santa Maria.

Carillon c.1480

Visitors to the Netherlands and Belgium can still enjoy the haunting sound of the carillon, a set of bells that plays tunes. Developed from earlier devices that produced simple clock chimes, it appeared around 1480. The secret of the carillon lies in the careful shaping of the bells. If this is not done correctly, they generate discordant tones that ruin the music.

Square sails carried on the main mast and foremast

Stove 1490

A n open fire wastes energy, so people put their fires in stone, tile, or brick ovens. The first recorded stove was built in Alsace, France, in 1490, trapping heat before it went up the chimney. Later stoves had iron fins to regulate the flow of the smoke and extract heat from it. In Russia, it was often part of the building, with flues heating all the rooms.

The New World

1492

Christopher Columbus

n the 15th century, a Lyoung Italian sailor made a miscalculation that led him to the Americas. Christopher Columbus thought the Earth was smaller than it really is. Because it was round, he said a quicker way of getting to China and India in the east would be to sail westward. Most people did not believe him, but in 1492, Queen Isabella of Spain sponsored a voyage to try out his idea. He never reached India but landed instead in the West Indies. Columbus made four voyages to this "New World" and reached South America, at what is now Venezuela, on his third voyage, in 1498. Although he failed to find a new route to Asia, his discovery brought the New World and Europe together, changing both forever. (* See also Columbus in the Americas)

> Automatic keyboard instrument c.1500

Defore about 1500, Dmusicians were needed to make instruments play music. Then instruments that played themselves began to appear. One had a cylinder the width of the keyboard with pins sticking out of it, one for each note to be played. Someone turned a handle to make the cylinder revolve, and the pins worked the keys to make them play harpsichord or organ music. King Henry VIII of England had an automatic keyboard instrument, and street entertainers are still using them in the 21st century.

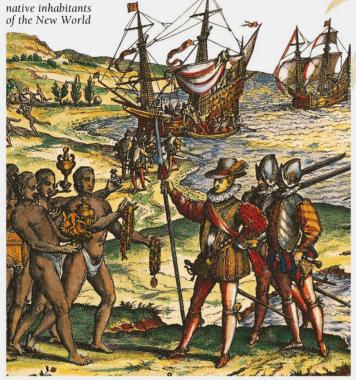
The Santa > Maria was a caravel from northern Spain

1455 The Wars of the Roses, a series of civil wars fought over who should rule England, begins with a battle at St. Albans. On this occasion, York, whose emblem is a white rose, defeats Lancaster, with their emblem of a red rose. 1475 In Bruges, Flanders, William Caxton publishes the first book to be printed in English. Having learned

Short, stocky

body

ALL PROVIDENT


about printing in Germany, he uses it to produce *Recuyell of the Historyes of Troye*, which he has translated from French.

1401-1750

COLUMBUS IN THE AMERICAS

WHEN COLUMBUS ARRIVED IN the Americas, both the north and south continents were already inhabited by people who had lived there for thousands of years and built advanced civilizations of their own. Columbus and his men brutally suppressed the indigenous peoples, killing and enslaving many of them, and decimating their populations. Soon after, European immigrants began to flood to the "New World," changing the continent forever.

Columbus meets

THE MEDIEVAL WORLD

Before Columbus sailed west, the entire world known to Europeans consisted of Asia, Africa, and Europe. China dominated Asia, while power in Europe was shared by many countries, including England, France, and Spain.

COLUMBUS'S BIG IDEA

Trade with the East was important in the 15th century, but getting there was difficult. Columbus thought he could reach the East by sailing west. Expert sailors told him he was wrong but failed to stop him from attempting it.

UNFAIR EXCHANGE

Europeans brought new plants, animals, and ideas to the Americas, in return acquiring new foods such as corn and potatoes. These newcomers were often bad news for native people, attacking them, enslaving them, and bringing disease.

Watch

Peter Henlein

he first watch was the size of a hamburger. Invented by German locksmith Peter Henlein, it used a spring instead of weights to drive clockwork inside. Henlein's "Nuremberg egg" had a metal cover, which had to be lifted to see the time, and no minute hand. Despite these shortcomings, people could at last carry the time with them.

 $10^{
m In}$ the Netherlands, painter Hieronymus Bosch completes his strange and disturbing triptych (picture in

PINEAPPLE A pineapple's fruit is formed by a number of separate flowers fusing together.

Pineapple

he pineapple, a native of South America, was unknown to Europeans before Columbus' discovery of America in 1498. Europeans then began to transport the fruit and grow the plants elsewhere. By 1502, Portuguese explorers had found pineapples in the West Indies. They were soon growing them 4,400 miles (7,000 km) away on St. Helena, an island in the South Atlantic, which was trading with Europe by 1590. By this time, the English adventurer Sir Walter Raleigh had discovered the pineapple on one of his voyages to North and South America.

Halftone woodblock print

Lucas Cranach, Hans Burgkmair

arly printing could produce Cpictures only in stark black and white. Crosshatching could be used to suggest in-between tones, but it was not very convincing. Two German artists, Lucas Cranach and Hans Burgkmair, were the first to solve this problem. They made several woodcuts for each picture, one for black, one for gray, one for a lighter gray, and so on. Printed on top of each other, they gave realistic results.

three sections) called The Garden of Earthly Delights. Its nightmare symbolism will influence painters 400 years later.

 $m ^{King}$ Ferdinand V and Queen Isabella of Spain, tell Pope Sixtus VI to set up the Spanish Inquisition.

Its aim is to seek out and destroy enemies of the Roman Catholic Church. It will become notorious for its use of torture.

Laudanum

Paracelcus

From the early 16th century, doctors used laudanum as a painkiller, until other drugs became popular nearly 400 years later. Made by dissolving opium in alcohol, it was introduced by Paracelcus, a Swiss physician. In England, Thomas Sydenham pioneered its use about a century after Paracelcus. Laudanum was widely used as a painkiller in the 18th and 19th centuries, and many patients became addicted to it.

AUDAN

LAUDANUM These laudanum bottles were essential items in the 19th-century medicine chest.

Music type c.1525

Pierre Attaignant

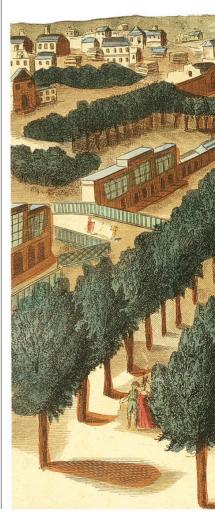
Printing music from movable type was, to begin with, done in two steps: first the fiveline staff, then the notes. By 1525, French printer Pierre Attaignant had invented a better system. Each note carried a bit of staff, so lines and notes were printed together. Within 10 years, Attaignant was printing music by every leading composer.

Fluorspar

Georgius Bauer

s well as being a beautiful Acrystal, fluorspar, or fluorite, is important in making steel and aluminum. It is a compound of calcium and fluorine, often found near hot springs. The German scholar and scientist Georgius Bauer, usually known as Agricola, described it first in 1529. He regarded it as a fossil, the term that scientists used then for anything found in the earth.

Solar system


Nicolaus Copernicus

In the 16th century, most people believed that the planet Earth stood still at the center of a moving universe. botanical garden was opened at Pisa, Italy, in 1543. Two years later, another was opened by the University of Padua in Italy. Modern botanical gardens, such as Kew Gardens in England, maintain seed banks to help save plants from extinction.

Complex numbers 1545

Gerolamo Cardano

Complex numbers are used in advanced mathematics. Without them, problems that involve the square root of a negative number cannot be solved. This is because the squares of negative numbers are always positive, so there is

1535 French explorer Jacques Cartier, trying to find a route to China through North America, sails up a river he names the St. Lawrence to a hill he calls Mont Réal and a village that will become Quebec. It is the beginning of Canada.

Example 1 Control of the Earth around the sun and the moon's rotation around Earth.

SOLAR SYSTEM

Users turned the handle of this 18th-

When Nicolaus Copernicus published a book in 1543 saying that Earth orbits the sun and revolves daily on its own axis, few believed him. By the late 17th century, however, most scientists in Britain, France, Denmark, and the Netherlands agreed with Copernicus, and in 1758, the Roman Catholic Church finally allowed its members to read what he had written.

Botanical garden

Botanical gardens are not just places to stroll. They are also living libraries of scientific knowledge, often gathered over centuries. The first public

1535 The Inca Empire of Peru is destroyed by Spanish conqueror Francisco Pizarro. Having executed

chieftain Atahualpa two years earlier, he sacks Cuzco, capital of the Inca Empire, and founds the modern city of Lima.

Scientific study of human anatomy

Andreas Vesalius

or centuries, what doctors knew about the structure of the human body was largely based on the work of the Greek physician Galen (* see page 58). Then, Flemish physician Andreas Vesalius took a fresh look at human anatomy. From his own dissections. he discovered that Galen had based his work on animals, not humans. In 1543, Vesalius produced a book describing human anatomy in detail. It showed what could be done by daring to dissect.

1401-1750

no "real" number that can be a square root of a negative number. In 1545, Italian mathematician Gerolamo Cardano swept this difficulty aside by inventing a new number to represent the square root of -1. Combined with ordinary numbers, it gave what are now called complex numbers, providing the solution to a wide range of mathematical problems.

Stage lighting

Sebastiano Serlio

In the early 16th century, the stages of most theaters in Europe were lit by daylight, but Italian architects were hoping to create a type of theatrical lighting to control stage effects. In 1545, Sebastiano Serlio suggested placing a globe of colored water in front of a torch or candle to tint and concentrate the light.

Railroads in mines

Trains pulled by locomotives did not appear until the 19th century, but transportation by rail was used earlier. Wheels roll more easily on rails than on a road, which allows heavier loads to be pulled. Railroads first appeared in mines, where tons of rock had to be moved through narrow tunnels. The earliest was built in France in about 1550. Similar railroads existed in England by 1605.

Occupational disease

155

Georgius Bauer

People are not designed to work in mines and factories, where dust and chemicals can attack them at close quarters and make them ill. One of the first people to recognize this was Georgius Bauer, better known as Agricola. In his great book De Re Metallica (About Metallurgy), he described the appalling conditions that existed in 16th-century mines and the occupational diseases, such as "difficulty in breathing and destruction of the lungs," that miners suffered.

Giambattista della Porta

The term "camera obscura" means "a dark room," and the modern camera started as a darkened room with a tiny hole in it. On the wall opposite the hole, a faithful, though upsidedown, image of the outside world appeared. It was fuzzy and dim until 1558, when Italian physicist Giambattista della Porta suggested changing the hole to a lens. The lens let in more light and focused it to a sharp image, which an artist could trace accurately.

BOTANICAL GARDEN The Jardin des Plantes, Paris, was opened to the public in 1650.

1536 When the Roman Catholic Church will not allow him to divorce his wife, King Henry VIII of England says that he will no longer obey the Pope. He closes down nunneries, monasteries, and similar places and confiscates their property. 1555 French astrologer Nostradamus publishes his book *Centuries.* Its verses, written in language that can be interpreted in different ways, are said to predict the future. One says the end of the world will be in 3797. NEW WORLDS, NEW IDEAS

Pulmonary circulation

Matteo Colombo

Long before William Harvey showed that blood circulates around the body (* see page 89), Italian surgeon Matteo Colombo showed its circulation through the lungs. In a book published in 1559, he described how blood was pumped by the heart to the lungs, where it mixed with a "spirit" (oxygen), became bright red, and was then returned to the heart. they cannot avoid distorting it in some way. The Flemish geographer Gerhard Mercator was the first person to tackle this systematically. He knew that for easy navigation, sailors needed a map that showed constant compass directions as straight lines. His way of representing the world does this. Although it makes countries near the poles look much too big, it is still used for many maps today.

Supernova

when he noticed that the constellation of Cassiopeia had acquired a bright new star. We know now that it was a supernova—a star destroying itself in a massive explosion. Tycho confirmed that the star was beyond the moon, therefore in the realm of the "fixed" stars. When he published this observation in 1573, his reputation was made. His star had exploded those ancient beliefs.

Tycho Brahe

A central point of the teachings of Aristotle was that the stars never changed. So the Danish astronomer Tycho Brahe got a big shock on November 11, 1572,

21 22 23

Iden N

GA

Add 1. to the Year of Our LORDS fails them Divide by 19 the Remainder Fains is the GOLDEN Number But if nothing Re maineth, then 19 is the GOLDEN NUMBER. To find the DOM: LETTER fill 1799 inclusion Add to the Year of our LORD its 4" Omitting Fractions & also the N1, Divide the Jame by 7 softhere is no Remainder, then A is the DOM LETTER. But if any N. Themaineth, then the LETTER standing ag that N is the DOM LETTER. Thus, O 1 2 3 4 5 6

GOLDEN NUMBER

A G F E D C B 3 For the next Century add to y Correy car only its 4" and Divide by 47 Sec

> Instructions for finding the date of Easter are given on the back

Bottle cork

For centuries, wine came in jars or barrels, which did not usually have corks. When bottles appeared, their stoppers were often made of cork. It is not clear when this material became widely used, but in about 1600 Shakespeare wrote his play As You Like It. One

1570 A new architecture classical lines and simple layout is born in Italy as Andrea character says to another, "Take the cork out of thy mouth, that I may drink thy tidings," showing that Shakespeare's audience must have been familiar with the invention.

Gregorian calendar

Pope Gregory XIII

A lthough Julius Caesar improved the calendar enormously in 45 BCE (* see page 55), by 1582 it had fallen behind the seasons again. The reason was that an Earth year is 365.242 days, not 365.25 as Caesar had assumed. Pope Gregory XIII sorted things out once and for all. First, he chopped out 10 days

to reset the calendar. Then, by decreeing that one leap year should disappear in three out of every four centuries, he corrected the error, creating the calendar we use today.

Constant swing of a pendulum

Galileo Galilei

The time a pendulum takes L to swing from side to side is the same whatever the size of the swing, provided it is not too large. The great Italian scientist Galileo was the first to notice this in about 1583, supposedly while watching a lamp swinging in Pisa cathedral during a boring service. The problem of accurate timekeeping was solved in principle, but a practical pendulum clock was not available until Christiaan Huygens of the Netherlands built one in 1657 (* see page 92).

Palladio completes the Villa Rotunda in Vincenza. Thousands of "Palladian" buildings will appear in the centuries to come.

Pencil 1565

Conrad Gesner

'onrad Gesner. a German-Swiss naturalist, was the first person to identify graphite as a distinct mineral. And he was also the first to think of using this soft, slippery form of carbon for writing. In 1565, he had the idea of placing it in a wooden holder to form a writing instrument. An abundant source of graphite was discovered in England at about this time, but pencils as we know them, with their "lead" glued into place, were not made until 1812.

Mercator map projection

Gerhard Mercator

Mapmakers have to show the curved Earth on flat paper, called a projection, so

1564 On April 26, a baby who will become the world's most famous writer is christened in Stratford-uponAvon, England. His father, merchant John Shakespeare, and mother, Mary Arden, call their first son William.

GREGORIAN

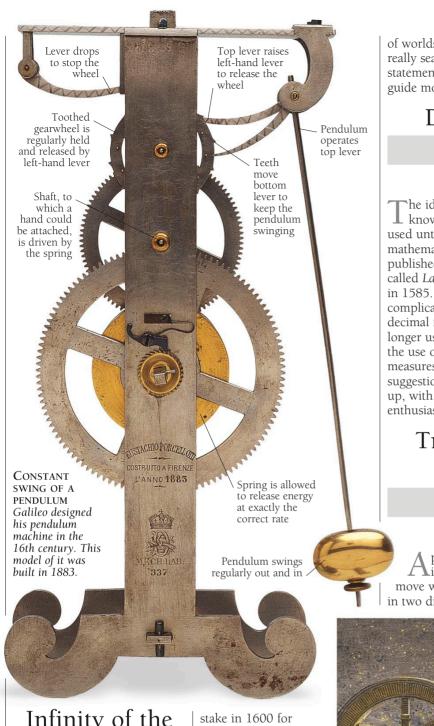
CALENDAR

This 18th-

century

perpetual

calendar gives the date of


Easter each

year either in

the Julian or

Gregorian

calendar.

of worlds like our own. What really sealed his fate was his statement that the Bible should guide morality, not astronomy.

Decimals

Simon Stevin

The idea of decimals was known but not much used until the Flemish mathematician Simon Stevin published a little pamphlet called *La Thiende* (The Tenth) in 1585. He proposed a complicated way of writing decimal fractions, which we no longer use. He also advocated the use of decimal coins, measures, and weights—a suggestion that has been taken up, with varying degrees of enthusiasm, almost everywhere.

Triangle of forces

Simon Stevin

A problem in mechanics is how an object will move when pulled or pushed in two directions at once. We can solve it with something called a parallelogram of forces, in which the strength and direction of forces acting on an object are represented by the sides of a parallelogram. This technique was developed from the slightly simpler triangle of forces invented by Simon Stevin in 1586. It was a new departure at the time, as were many of Stevin's discoveries, some of which put him ahead of the more famous Galileo.

Book carousel

Agostino Ramelli

hese days, we can access L a range of information without leaving our seats, using mobile apps and the internet. This is not a new idea. In 1588, Italian engineer Agostino Ramelli realized that readers were natural couch potatoes and designed a large wooden gadget like a fairground Ferris wheel, with shelves that stayed horizontal as the wheel turned. Users could stay seated while they spun the wheel to consult any one of 10 volumes. Ramelli recommended it particularly for "those who are suffering from indisposition.'

Infinity of the universe

Giordano Bruno

A stronomical references in the Bible reflect the current beliefs of the time, that Earth is the centre of the universe. The Italian philosopher and poet Giordano Bruno had other ideas, and was burned at the

with a unique,

almost mystical style, arrives in

Toledo, Spain. The Cretan-born

El Greco, a painter

stake in 1600 for views that now seem normal. It was bad enough that he believed that Earth orbited the Sun. It was unforgivable of him to say that the universe contained an infinity

INFINITY OF THE UNIVERSE The universe is much bigger than early astronomers, such as Hipparchus, once thought.

artist expresses his spirituality by crowding his pictures with elongated figures stretching toward heaven.

1588 In May, Philip II of Spain sends a heavily armed fleet of 130 ships—the Spanish Armada—to invade

Elizabeth I's England. After a rousing speech by the queen, English naval forces defeat the Spanish invaders.

NEW WORLDS, NEW IDEAS

KNITTING MACHINE This 19th-century machine is a development of Lee's design. Thermoscope

Galileo Galilei

alileo is famous for

Grevolutionizing physics

with his experiments and for

insisting that the Earth orbited

the sun. He also made several

useful inventions, including the

thermoscope. Noticing that air

expanded when it got warm, he dipped the neck of a bottle into liquid. As the air in the bottle warmed or cooled, the liquid

was pushed out or sucked in,

Wind-driven

sawmill

Cornelis Cornelisz

7 indmills for grinding

pumping water-that was

Lens to .

focus

light on

specimen

grain and windmills for

indicating the temperature.

before the late 18th century, when the U-bend and cistern were invented.

Modern algebraic notation

François Viète

'he first person to write algebra more or less as we do today was the French mathematician François Viète. His book Introduction to the Analytical Arts was the first to use letters consistently for mathematical quantities. Viète also introduced the plus and minus signs and used words

> such as "quadratus" instead of signs.

Water-filled globe focuses flame on to lens below

about it until a Dutch painter with the memorable name of Cornelis Cornelisz thought of applying wind power to another industrial task: sawing wood. Like other mills, the one he built in 1592 needed to be turned to face the wind. It was so big that he had to float it on a raft to make this possible.

Southern star constellations

Pieter Keyser

rom any one point on Earth, only half of the stars are visible. Earth gets in the way of the rest. So until Western explorers ventured south of the equator,

> Microscope was turned up and down a screw thread to focus the image

Compound

MICROSCOPE During the 1660s, Englishman Robert Hooke made compound microscopes, such as this one, containing two or sometimes three lenses.

William Lee

Knitting

machine

7hen English clergyman William Lee realized that his girlfriend liked hand knitting more than him, he set out to change this. He designed a knitting machine in 1589, which remained in use until the 19th century. Some of its principles are still used today. Lee asked Queen Elizabeth I to protect his ideas. First she said the machine was no good, and then she said it was too good and would ruin hand knitters. Lee died in poverty.

Flush toilet

John Harington

oilet humor goes back to the inventor of the flush toilet, or water closet, John Harington. He was a famous wit at the court of the English queen Elizabeth I, and he published his design under the title The Metamorphosis of Ajax, a pun on the word "jakes"-Elizabethan slang for a toilet. Harington installed the first water closet in England at Richmond Palace, but his invention was not much used

.591 The Rialto Bridge, one of the best-loved bridges in Venice, Italy, is completed, replacing an earlier

bridge. Antonio da Ponte, who won a competition with his design, gives it a single stone arch and a double row of shops.

Reservoir

Oil lamp used to light

specimen

of oil

 $597^{\text{One of the greatest}}_{\text{singer-songwriters}}$ of the Elizabethan age, John Dowland, publishes his First Book

Objective lens

of Songs or Ayres. It will be the bestselling song book of its time. Many of the lyrics express unbearable sadness.

European astronomers knew nothing about large areas of the heavens. In 1595, Pieter Keyser, a Dutch navigator, named 12 new constellations,

Eyepiece lens inside base of eye cup

Pasteboard barrel covered with fine leather

which he had discovered while he was sailing to the East Indies. By 1603, these had found their way into the latest celestial globes and atlases.

Compound microscope

Hans Janssen

It's possible to magnify things with a single lens, but in theory, it's better with two. The first microscope with two lenses, called a compound microscope, was built in about

William

Gilbert (1544–

1603)

MAGNETIC PLANET

WILLIAM GILBERT BELIEVED that the Earth contained a huge bar magnet, but in reality its core is too hot to allow this. The modern theory is that electric currents circulating in its liquid iron core create the magnetic field. However this field arises,

navigators have been using it for centuries whenever they use a magnetic compass to guide them. We now know that its influence extends far beyond Earth.

THE MAGNETIC COMPASS

The principle of the compass may first have been used by the Chinese for land exploration and in their *feng shui* philosophy for checking the orientation of buildings. The difference

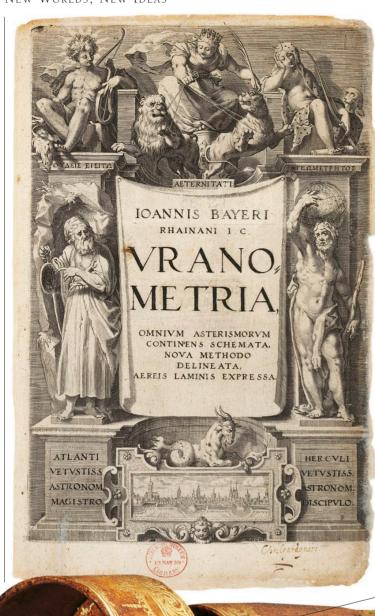
between magnetic and geographic north was known by 1050, and compasses with iron needles floating on water were in use at sea by the 12th century.

THE NORTHERN LIGHTS

Early sailors would have been familiar with the northern lights eerie, dancing curtains of light that sometimes appear in the night sky of the far north and south. But they would not have connected them with the behavior of their compasses. In fact, both reveal the existence of Earth's magnetic field. 1600, possibly by Dutch eyeglass maker Hans Janssen. Hampered by poor lenses, early compound microscopes didn't give such clear images as the single-lens instruments created later by Dutch naturalist Antoni van Leeuwenhoek.

Magnetism of Earth

William Gilbert


Magnetism was a complete mystery until the English physician William Gilbert started his experiments. He published the results in 1600. His book on the magnet took the first steps toward modern electromagnetic theory and also contained many observations about the magnetism of Earth. Gilbert concluded that compass needles point north because Earth itself is a giant magnet whose north and south poles roughly coincide with its geographic poles. In an age without Newton's theory of gravity (* see pages 98–99), Gilbert was not the only scientist who speculated that the whole universe was held together by magnetic attraction. (* See also Magnetic Planet.)

Lights, or auroras, like this can be seen near both north and south poles.

1598 In England, the Poor deal with people who are old, sick, or have no money. The laws

provide money for them but say that if people can work, they must go into a workhouse—often little better than going to prison. 1599 The Globe Theatre opens near the Thames River in south London with a performance by the Chamberlain's Men. The company's leading playwright is William Shakespeare, who has shares in the theater.

NAMING OF STARS Before Bayer published Uranometria, there was no systematic way of naming the stars. The book's ornate title page is typical of the period.

Naming of stars

Johann Bayer

housands of stars can be seen without a telescope, so astronomers need a system for naming them all. The standard way is to label the stars in each constellation with Greek letters; our nearest star (actually three stars close together) is called alpha Centauri because it is the brightest star in the Centaurus constellation and alpha is the first letter of the Greek alphabet. This system was invented by German lawyer Johann Bayer for a guide to the stars, Uranometria, which was published in 1603. It was the first really accurate star atlas. Where there were more visible stars than letters in the Greek alphabet, Bayer continued with Latin characters. His system has since been extended to cover about 1,300 stars.

Convex objective lens gathers light and bends it to form an upside-down image

Valves in the veins

Hieronymus Fabricius ab Aquapendente

nce blood has done its job of transporting important substances around the body, it goes back through the veins to the heart to be pumped around again. But gravity and friction are against it. Without one-way valves in veins, it might go the wrong way. In 1603, the Italian surgeon Hieronymus Fabricius ab Aquapendente published details of the valves that he had discovered in human veins. He didn't quite understand why they were there, but his observation helped William Harvey prove that blood circulates (* see page 89).

Theory of shadows

Johannes Kepler

The recording of light and shade, so easily done by the camera today, demanded

Thermostat c.1600

Cornelis Drebbel

A thermostat keeps something at a constant temperature by turning the

1600 Shakespeare writes what will become one of his greatest plays, *Hamlet*. With 10 years of experience heat up and down. In about 1600, Dutch inventor Cornelis Drebbel made a mechanical thermostat by coupling the damper of a furnace, which regulates the flow of air, with a thermometer. This was significant because it was one of the first examples of a feedback control system.

behind him, he produces a tragedy that presents, like no other play, the highs and lows of human existence. TELESCOPE This is a replica of one of Galileo's telescopes, which he made in 1610.

Butt rests against the shoulder

Trigger guard Frizzer

Trigger

1605 Spanish writer Miguel de Cervantes publishes his book *Don Quixote de la Mancha*. It will become the most translated book in the world. Its main character, Don Quixote, and his servant Sancho Panza, overcome many imaginary foes.

Telescope

Hans Lippershey

T n 1608, Dutch spectacle ∎maker Hans Lippershey discovered that if you look through the right pair of lenses, distant objects appear bigger. Possibly the first to invent the telescope, he may also have invented a microscope, which, like the telescope, involves looking through two lenses. He offered his telescope, or "looker," as he called it, to the government, but they said they would prefer binoculars. However, within a year, the Italian scientist Galileo had recognized the importance of the telescope and was using his own to make startling discoveries about our galaxy.

Newspaper

Johann Carolus

V ewspapers started as circulated between company offices. They gradually turned into publications of political news. Either of two German papers that started in 1609 could have been the world's first: the Relation published by Johann Carolus, or the Avisa Relation oder Zeitung. By 1650, all the major cities in Europe had newspapers, usually only a single sheet without headlines or pictures.

Moon craters

Galileo Galilei

veryone believed the Greek philosopher Aristotle's theory that the moon was a perfect sphere—until 1610, when Galileo pointed a telescope at it. He saw that the Moon was far from perfect, being pockmarked with clearly visible craters. It was just one of many observations that began to shake the certainties of the ancient world.

Moons of Jupiter

Galileo Galilei. Simon Marius

alileo became expert at J making telescopes and eventually built one that made objects look 20 times bigger. In January 1610, he trained it on Jupiter and saw the planet's four largest moons. He published this observation, and much else revealed by the telescope, in a book called The Starry Messenger. The moons were named—Io, Europa, Ganymede, and Callistoby the German astronomer Simon Marius.

Orion nebula

Nicolas de Peiresc

targazing became a popular Occupation once the telescope was invented. In 1610, a French scholar, Nicolas de Peiresc, aimed his telescope at the constellation of Orion and was the first to notice what looked like a cloud. We now know this to be a mass of

glowing gas containing new stars, which we call a nebula. It is strange that nobody recorded the Orion nebula before, because it is visible without a telescope.

Math for fun

Claude-Gaspar de Méziriac

ne of the first and most successful puzzle makers was the French mathematician Claude-Gaspar de Méziriac, with his 1612 book Pleasing and Delightful Number Problems. As well as the usual brainteasers involving weighing things with strange sets of weights and getting awkward combinations of objects across rivers, it included a number of intriguing card tricks. Its last reprint was in 1959.

Flintlock musket

The first portable firearms were made in the 14th century, but it was not until the 17th century that the first really effective ones appeared. They used a trigger mechanism to set off the powder, allowing a

soldier to hold the weapon with both hands and aim it accurately. The best of them was the flintlock musket.

The first true flintlock may have been made by a French gunmaker named Marin de Bourgeoys for Louis XIII of France, in about 1612. Its

Sliding tube

for focusing

Wooden stock

Spiral grooving, or rifling, cut inside the musket barrel spins the musket ball so that it flies in a straight line

FLINTLOCK MUSKET The flintlock musket was loaded from the front. It was slow in action but remained the standard longrange firearm until cartridges preloaded with powder and a bullet made it obsolete.

Eyepiece contains a concave

lens, which bends the light,

magnifying the image

trigger released a spring-loaded flint, which struck a steel plate, creating sparks to light the gunpowder and fire a bullet. By 1630, the flintlock musket was being used throughout Europe.

7On Thursday, 160/ May 14, colonists found Jamestown, on an island in the James River, Virginia

It is the first permanent English settlement in the Americas. The colonists have been led there by a guide, Christopher Newport.

2 Englishman John Rolfe discovers a new method for curing tobacco. This enables large quantities of

tobacco to be exported and sold. By 1630, as much as 1.5m lb (0.7m kg) of tobacco will have been exported to England.

LAWS OF PLANETARY MOTION Astronomer Johannes Kepler was the first to apply advanced mathematics to the planets.

Systematic study of metabolism

Santorio Santorio

I talian physician Santorio Santorio was trying to find out whether the solids and liquids leaving the body weighed the same as the food and drink being consumed. To do this, he sat on a pair of scales weighing his solid and liquid intake and outtake. He found that they didn't; there was something missing. We now know the missing ingredient is carbon dioxide, but Santorio called it "insensible perspiration." His 30-year experiment was the first in which detailed measurements of the body's metabolism were made.

Logarithms

John Napier, Joost Bürgi

Logarithms simplify calculations by converting multiplication and division into addition and subtraction. Scottish mathematician John Napier started working on the idea in about 1594 and published it in 1614. Further details followed in another book that came out two years after his death. Swiss mathematician Joost Bürgi published the same idea independently in 1620.

1614 Native American woman Pocahontas, daughter of Chief Powhatan, marries English colonist John Rolfe in Virginia. She had been captured by the English and had converted to Christianity, changing her name to Rebecca.

Index to a book

1614

Antonio Zara

A book without an index is like a website without a search engine. This applies especially to large, factual books, so it's not surprising that the first index was compiled by an encyclopedia maker. When Antonio Zara, Bishop of Petina, now in Croatia, compiled his *Anatomy of the Arts and Sciences* in 1614, he took pity on his readers and included a list of words and where to find them.

Laws of planetary motion

Johannes Kepler

Tn the early 17th century, L people accepted Copernicus's theory that the planets orbited the sun at a constant speed and in perfect circles. Then the astronomer Johannes Kepler showed that they didn't. Using the excellent data gathered by his former employer Tycho Brahe, he calculated that the planets' paths were ovals, or ellipses, not circles, and that their speed was not constant. The universe was turning out to be more complicated than people thought.

Structure of a candle flame

Francis Bacon

The English statesman and philosopher Francis Bacon believed that people could learn more about nature by observing things and thinking about them than by reading

 $\frac{1616}{\text{Aga completes a}}$ splendid new mosque in Constantinople (now Istanbul)

books and making hasty judgments. In 1620, he published details of a revealing observation he had made: a candle flame has a distinct structure, with a dark center and a bright edge. This simple fact eventually helped scientists to understand combustion. Bacon's way of thinking about observations has become a key method of science.

Submarine

1620

Cornelis Drebbel

nglish mathematician William Bourne described a submarine in 1578, but Dutch engraver Cornelis Drebbel was the first person to build one. His "diving boat" of 1620 was made of wood and covered in greased leather to stop leaks. Powered by 12 oarsmen, it made trips up and down the Thames River at a depth of about 15 ft (4.5 m). Passengers breathed through tubes held up on the surface of the water by floats. The passengers once included the man who paid for the invention, King James I.

Law of refraction

Willebrord Snell

ight normally travels in straight lines, but when it enters something like glass, its direction can change-an effect called refraction. In 1621, Dutch astronomer Willebrord Snell discovered the law that describes this change in direction. Once people knew the law, scientists eventually began to use it to design more effective lenses. Later, French mathematician Pierre de Fermat showed that Snell's law amounted to saying that light always takes the quickest route.

for Sultan Ahmet I. Its interior is decorated with blue tiles, which will in the future give it its popular name, the Blue Mosque.

1401 - 1750

SMELTING IRON WITH COKE Flames light the sky as coal is heated to make coke for smelting iron in 18th-century Britain.

Smelting iron with coke

Dud Dudley

I ron is made by heating its ore with carbon, and until the 17th century, the carbon came from wood charcoal. By 1620, trees were getting scarce, so English iron maker Dud Dudley began to experiment with coal. Coal contains a lot of sulfur, which would ruin the iron, so Dudley devised a way of removing the sulfur and other unwanted elements by roasting the coal. The solid that remained, which we call coke, was almost pure carbon. Dudley got a patent for his process in 1621, but coke was not widely used in smelting iron until 1709, when English iron master Abraham Darby started using it on a large scale.

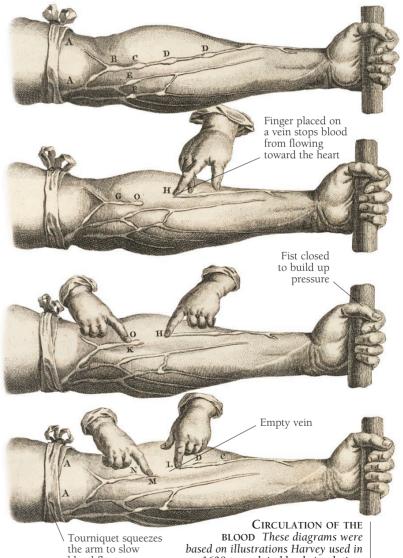
Dictionary

Henry Cockeram

The first dictionary actually called a dictionary was published by an Englishman, Henry Cockeram, in 1623. His *English Dictionarie* contained only "hard" words. He didn't see the point of listing words that everybody knew. John Kersey, however, in his *New English Dictionary* of 1702, did give definitions of everyday words, creating one of the first modern dictionaries.

1620 One hundred Puritans escape persecution by leaving England for America. The Pilgrim Fathers, as they will be known, set sail from Plymouth on September 16, heading for Virginia, but get lost and settle at Cape Cod.

Convection heating


Louis Savot

The Romans used warm air for heating, but it traveled under the floor, not inside the room. The alternative method of heating was an open fire, which sent most of its warm air up the chimney. French architect Louis Savot thought he could combine both ideas to heat rooms. In 1624, he designed a fireplace that drew in air under the floor, heated it, then wafted it into the room. He published the idea in 1685.

Circulation of the blood

William Harvey

In 1628, English physician William Harvey made one of the most important discoveries in the history of medicine. Through observation and experiment, he proved that our blood circulates. Before this, doctors believed that blood was made in the liver and then turned into flesh. Harvey's idea seems obvious today, but that's only because we live in the era of scientific medicine that he helped create.

blood flow

pased on illustrations Harvey used in 1628 to explain blood circulation.

1624 Dutch painter Frans Hals, a master of the quick, bold brushstroke, paints his best-known picture, *The Laughing Cavalier*. Unusually, its subject—an extravagantly dressed soldier—is smiling, as if for a photograph. NEW WORLDS, NEW IDEAS

Vernier scale

Pierre Vernier

Readings from a graduated scale can be inaccurate because the position of a pointer has to be estimated by eye. In 1631, French civil servant Pierre Vernier invented an improved scale, which is still used today. Instead of a simple pointer, it has a second smaller scale with slightly narrower divisions than the main scale. By noting which of these lines up exactly with the main scale, its user can obtain a much more precise readout.

Slide rule

William Oughtred

A n English minister, William Oughtred, turned math into mechanics in 1633 by making two scales showing the logarithms of numbers (* see page 88). Users could multiply and divide by sliding the scales to a certain position and reading off the answer.

> lvory . globe represents Earth

Robert Bissaker improved the sliding action in 1654, and the slide rule became a basic tool for scientists and engineers until the invention of calculators made it obsolete.

X–Y coordinates

René Descartes

Graphs turn pairs of numbers represented by *x* and *y* into meaningful shapes. This idea was invented by the French philosopher René Descartes, who is perhaps more famous for saying "I think, therefore I am." It allowed people to solve geometric problems with algebra and algebraic problems with geometry.

Support placed where Venus' and Earth's orbits cross

Descartes also started the convention of using letters from the end of the alphabet to represent unknown quantities and letters from the beginning of the alphabet to represent known ones.

Umbrella 1637

The first rainproof umbrella dates from 1637. King Louis XIII of France was reported as having sunshades and "umbrellas of oiled cloth." These would probably have

Brass ball

represents

the Sun

Ring rotates slowly to represent change in Venus' orbit looked like traditional Chinese and Japanese parasols, with a folding wooden frame. The steel-ribbed device we use now was invented by Samuel Fox of England in 1852.

Parabolic path of a projectile

Galileo Galilei

Until the 17th century, people believed that things kept moving only if something kept pushing them. Galileo

> TRANSIT OF VENUS This model, made in about 1760, shows how Venus can seem to move across the Sun.

> > Bar supporting Venus rotates quickly

> > > Engraved line shows the path of Venus

 $\begin{array}{c} 1632 \text{ The famous Japanese} \\ \text{Shiganosuke forces his opponent} \\ \text{out of the ring to become the} \end{array}$

world's first Yokozuna, or grand champion of Sumo, after the revival of public matches 32 years earlier. 1642 The great Dutch artist Rembrandt van Rijn paints a huge group portrait called *The Night Watch*. The painting shows an army company marching out from its headquarters in the shadowy gloom of early morning. showed that this was untrue—a moving object keeps moving until something stops it. Objects in the real world slow down and stop because of friction or gravity. Galileo did more experiments that proved that a falling object speeds up as it falls. He went on to study projectiles-objects that are thrown into the air. He deduced that a projectile moves forward at a constant speed but accelerates downward. It therefore follows a curved path called a parabola.

> Transit of Venus 1639

Jeremiah Horrocks

"transit" of Mercury or AVenus occurs when one of them appears to travel across the face of the sun. Transits of Venus happen only in June or December and always in pairs eight years apart. They are very rare, the pairs occurring at intervals of well over a century. English clergyman Jeremiah Horrocks was an amateur astronomer. Using standard astronomical tables, he calculated that there would be a transit of Venus in December 1639, the first ever recorded. He also calculated a new distance for the sun.

Mezzotint engraving 1642

Ludwig von Siegen

There was no good way of printing all the tones of a picture until Dutch artist Ludwig von Siegen invented the mezzotint, a variation on the ordinary engraving process used with metal printing plates

MEZZOTINT ENGRAVING Mezzotints were used to publish pictures of many celebrities, including chemist Humphry Davy.

(* see page 75). Instead of drawing directly on the metal plate, the artist first roughens its entire surface. Printed, this would give solid black, because the roughened surface traps the ink. By smoothing different areas of the plate to varying degrees, however, the artist can produce lighter tones where required—completely smooth areas do not print at all. Mezzotint reproductions of paintings were popular until the invention of photography.

Barometer

Evangelista Torricelli

I talian physicist Evangelista Torricelli helped Galileo in the last months of the great scientist's life. Galileo suggested the experiment that made Torricelli famous. Torricelli filled a tube with mercury, then

1643 Louis XIV, who will later be known as the Sun King, becomes king of France. He regards himself as having absolute power over his subjects. As well as spending hugely on war, he will also be an extravagant patron of the arts. BAROMETER This is a replica of the barometer invented by Torricelli.

upended it in a dish. The mercury started to drop out, then stopped. Torricelli realized that the mercury was prevented from falling further by the pressure of the atmosphere. As the air pressure rose and fell, so did the mercury in the tube. Torricelli had invented the barometer, although it was French physicist Edmé Mariotte who named it in 1676

20

Torricelli's column / of mercury could reach a height of about 30 in (760 mm)

1647 In India, the Taj Mahal is completed. Built by the emperor Shah Jahan in memory of his favorite wife, Revolving stage

Giacomo Torelli

Behind every stage show is machinery that the audience never sees. including the revolve. With this huge turntable, a scene can be changed in seconds. The first revolve was probably built by an Italian architect, Giacomo Torelli. He built a theater containing one in Venice, Italy, in about 1645. He then worked at a theater in Paris, France. His work there was so good that when he returned to Italy, his successor in Paris destroyed the machinery in a fit of jealousy.

Recognition of gases as distinct from air

1648

Jan Baptista van Helmont

an Baptista van Helmont was an alchemist. He believed in the "philosopher's stone," which was supposed to turn ordinary metals into gold. He also made a real discovery: that the gases given off by two different processes-burning charcoal and fermenting grape juice—were actually one and the same. He recognized, too, that it was a distinct gas, not just another form of air. We now call this gas carbon dioxide. His works, published after his death in 1648, show that he also discovered another gas, nitric oxide.

Mumtaz Mahal, it is made of white marble, inlaid with semiprecious stones. It will attract visitors for centuries to come.

lli e show t the

Strength of a vacuum

Otto von Guericke

orricelli's barometer (* see page 91) showed that the atmosphere exerts a force. According to legend, Engineer Otto von Guericke of Magdeburg in Germany showed just how large that force could be. In 1654, he gave an amazing demonstration to Emperor Ferdinand III. He took two metal bowls, put them together to form a sphere, and pumped the air out with a pump he had developed. With no air inside the bowls, the air pressure on the outside held them together so strongly that teams of horses could not pull these "Magdeburg hemispheres" apart. (* See also Working in a Vacuum.)

Pendulum clock

Christiaan Huygens

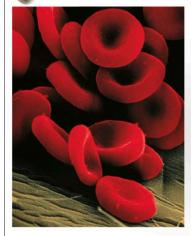
alileo realized as early as J1583 that a pendulum would make an excellent timekeeper, but he never managed to turn it into a practical clock. The Dutch mathematician Christiaan Huygens solved the problem in 1657 when he designed a mechanism that allowed the swing of a pendulum to control the rotation of weight-driven gearwheels. He also devised a pendulum that would swing at exactly the same rate whatever the size of its swing. The pendulum improved the accuracy of timekeeping so much that it was at last worth giving clocks a minute hand.

many new facts. Unfortunately, his father thought this was all a waste of time and stopped his allowance. Swammerdam died an unhappy man.

Rotation of Mars 1659

Christiaan Huygens

Squinting through what would today be considered very poor telescopes, 17thcentury astronomers made many discoveries. In 1659, Christiaan Huygens managed to sketch surface features on Mars. He noticed that the features moved between his observations, and he realized that the planet was rotating. Seven years later, the Italianborn French astronomer Gian Cassini measured the length of a day on Mars—the time the planet takes to make one rotation. He found it was just 40 minutes longer than a day on Earth.


Capillaries

Marcello Malpighi

The microscope helped solve many mysteries. One of them was the missing link in William Harvey's theory of the way blood

> SPIRIT LEVEL This early 20th-century instrument uses the principle of the spirit level to measure small changes of height of plots of land.

Telescope through which surveyor sights a measuring rod

RED BLOOD CELLS *A scanning electron microscope reveals the dish shape of red blood cells.*

1652 Dutch commander lands at Table Bay in the Cape of Good Hope to set up a supply

Red blood cells

Ian Swammerdam

Blood is red because it is full of red cells. Nobody knew this until the Dutch naturalist Jan Swammerdam looked at blood under a microscope in 1658. One of the best microscopists of his day, he used the instrument to discover

station for Dutch ships on their way to the Dutch East Indies. The country of South Africa will develop from this settlement. 1655 The island of Jamaica becomes an English colony. An expedition led by Admiral William Penn and

General Robert Venables overwhelms the Spanish settlers who have been there since the time of Christopher Columbus. circulates (***** *see* **page 89**). How did blood get from arteries to veins? Marcello Malpighi, working in Bologna, Italy, in 1661, found the answer. The blood traveled through tiny vessels, which were visible only under a microscope: capillaries.

Level

nything affected by gravity A can be used to check whether something is level. The best thing is a bubble in a liquid, which always rises to the highest point. In a slightly curved-shape tube, this is in the center when the tube is level. If the tube is mounted in a suitable holder, the user has to only place it on an object and center the bubble to ensure the object is level. This gadget, the level, first appeared in 1661, and builders still use levels today.

pressure is raised and vice versa. In France, this principle is called Mariotte's law, because Edmé Mariotte not only discovered it for himself but also noted that the law does not hold if the temperature changes.

Life table 1662

John Graunt

People who study population are known as demographers. They use statistics, such as how many people live in an area and how many births and deaths per thousand. English shopkeeper John Graunt founded the subject by studying death records. In 1662, he published tables showing the probability that someone of a given age would live to some greater age. "Life tables" like these are now the basis of life insurance.

WORKING IN A VACUUM

THE ANCIENT PHYSICS OF ARISTOTLE said that a vacuum was impossible. In the 17th century,

improved technology could challenge this directly. Once Guericke had demonstrated an effective air pump, other people, such as Irish chemist Robert Boyle, built them, too. With the ability to move air around at will, they began to find out more about combustion, sound, weather, and much else.

Replica Boyle-Hooke vacuum pump of 1659

Glass chamber / fitted on top of this cylinder

Otto von Guericke was a great showman as well as a good scientist.

MAKING A VACUUM

Simple pumps use pistons to suck out air. One-way valves stop it from rushing back in. Because a piston sucks out only a fraction of the remaining air on each stroke, the vacuum is never perfect, even if the valves and seals don't leak. This did not put off early experimenters.

THE SCIENCE OF AIR

With air under control, scientists like Guericke, Boyle, and Edmé Mariotte could find out some facts about it. For example, without air, candles don't burn and there is no sound; and reducing the pressure of moist air makes clouds form. Mariotte and Boyle also discovered the law that links air pressure and volume (* see this page).

Boyle's law

Robert Boyle, Edmé Mariotte

Robert Boyle worked with the English physicist Robert Hooke, who helped him build an effective air pump. Boyle used the new pump to make all sorts of discoveries about air, but the one everybody remembers is Boyle's law. This says that the volume of a given mass of gas varies inversely with its pressure, which means that the gas will contract if the

Reflecting telescope

James Gregory

The first telescopes used lenses to refract light from a distant object before it reached the observer. The lenses produced color fringes, making the images indistinct. Mirrors didn't do this, so a telescope that used mirrors promised clearer vision. Italian astronomer Niccolò Zucchi suggested this in 1616, but the

1660 Britain's premier scientific association, the Royal Society, is founded in London after 15 years of informal meetings between prominent English scientists. Two years later, it will receive a royal charter from King Charles II. Handle moved to force piston in or out Rack turned

Rack turned by gearwheel to move piston

first practical design came from Scottish mathematician and astronomer James Gregory in 1663. In 1668, Isaac Newton produced his own design, which drew the reflecting telescope to the attention of scientists. Gregorian reflectors are still used. One was launched into space in 1980.

1661 King Louis XIV of France sets up the Royal Academy of Dancing to improve ballet training. Under its first director, Pierre Beauchamps, professional standards improve. Centuries later, it will become the Paris Opéra Ballet.

Polar caps of Mars c.1666

Gian Cassini

Mars has polar ice caps like Earth—at least they look like them, but they are probably thinner and made mainly of frozen carbon dioxide. In about 1666, Gian Cassini, who made some of the earliest telescopic observations of Mars, was the first person to report the caps. In spite of his pioneering work, Cassini was somewhat old-fashioned in his approach. He later rejected Isaac Newton's theory of gravity (***** see **page 98**).

Phosphorus

Hennig Brand, Robert Boyle

Phosphorus makes matches burn. It is also an essential part of the chemistry of our bodies. German alchemist Hennig Brand discovered it in 1669 when, for some reason, he made an extract of his own urine. To his amazement, the extract glowed in the dark; it was phosphorus. Hennig kept his discovery secret, but in 1680, Robert Boyle also discovered the new element for himself.

Shop scales 1669

Gilles de Roberval

Old-fashioned scales with separate weights use a mechanism devised by French mathematician Gilles de Roberval in 1669. The pans are supported from below with a system of arms that makes them move vertically. Objects do not have to go exactly in the center of the pans, making the scales ideal for shops and other places where speed and simplicity matter.

Champagne

Dom Pérignon

7inning race-car drivers cannot resist shaking the bottle of champagne they get and squirting its overflowing contents everywhere. The trick works because champagne contains carbon dioxide, which is formed by a special method of fermentation called méthode champenoise. It was invented, it is said, by a Benedictine monk called Dom Pérignon, in about 1670. But he was probably only one of many winemakers in the Champagne region of France who contributed to the development of this unique drink.

Diffraction of light

Robert Hooke

Light travels in straight lines. This is almost true. At the edges of objects, it actually bends very slightly, so shadows are a little smaller than the simple straight-line idea would

1675 After the Great Fire, of London in 1666, mathematician and architect Christopher Wren's designs of a

suggest. This effect is called diffraction and was discovered in 1672 by the English physicist Robert Hooke. Hooke's discovery later supported the theory that light traveled in waves (***** *see* **page 97**) because waves would bend around objects in exactly this way.

Protozoa

Antoni van Leeuwenhoek

Dutch naturalist Antoni van Leeuwenhoek was not a trained scientist, but he was lucky enough to have a job that left him plenty of spare time. He spent it making ever better lenses with which he could see ever smaller things. In 1674, he became the first person to see protozoa—tiny, single-celled creatures that swim around in ponds and rain barrels. His descriptions of the hidden world around us made a big impact on science.

Speed of light 1676

Ole Rømer

ight travels so fast that it's difficult to measure its speed. It helps if you work with light that has to travel a long way. Danish astronomer Ole Rømer found this out by accident in 1676, when he noticed that the time between eclipses of Jupiter's moons (when they are hidden behind the planet) varied throughout the year. Rømer realized that this must be because the distance from Earth to Jupiter varied throughout the year, and so did the distance that light from the moons had to travel. Rømer calculated that the speed of light was 137,000 miles (225,000 km) per second. This was 25 percent too slow, but a good start.

bold new replacement for St. Paul's Cathedral are accepted. Some of the boldness is removed by his client, the Church.

POLAR CAPS OF MARS The Hubble Space Telescope took this photo of Mars in 1997.

1666 On September 2, a small blaze in a bakery in London gets out of control, starting the Great Fire of London. Four days later, more than 13,000 houses and many public buildings, including St. Paul's Cathedral, lie in ashes.

Polar cap

Bacterium is magnified thousands of times

BACTERIA The E. coli bacterium, shown here, is essential to health, but some strains can cause food poisoning.

> Slender hairs, or fimbriae,

anchor the

a surface

bacterium to

Binary system 1679

Gottfried Leibniz, Shao Yung

The binary system records numbers by using just two symbols, such as 0 and 1. The system is essential to modern computers, but it may go back more than 3,000 years. The Chinese classic *I Ching*, written in the 12th century BCE, showed how to make predictions from binary patterns. The 11thcentury Chinese philosopher Shao Yung was influenced by the book, and it is possible that German mathematician Gottfried Leibniz was made aware of the binary system through his writings. Leibniz loved the beauty of the binary system. To him, its two digits stood for nothingness and God. He thought it could form a universal language, something that never occurred to the writer of the I Ching.

LEMONADE By the 19th century, lemonade was big business. This Italian lemonade seller is no longer roaming the streets but has a permanent stall.

Bacteria

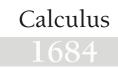
Antoni van Leeuwenhoek

Bacteria are even smaller than protozoa. So it wasn't until 1676, when Antoni van Leeuwenhoek had made a lens that magnified 280 times, that he saw some of the larger types of bacteria, collected from his own mouth. To see them, he used some secret techniques, which probably included lighting his tiny subjects from the side so that they stood out sharply like dust in a sunbeam.

Lemonade 1676

Lemon juice must have been used in drinks for a very long time, but the first commercial lemonade appeared in Paris in 1676. Thirsty Parisians could buy it from roaming sellers belonging to the *Compagnie de Limonadiers*, which had an exclusive license to distribute the drink. Lemonade sellers dispensed the refreshing mixture of water, lemon juice, and honey from tanks strapped to their backs.

1678 Puritan preacher John Bunyan writes the first part of *The Pilgrim's Progress*, the story of the journey of a soul seeking salvation. His rich, biblical prose conveys the ideas of vice and virtue through the book's human characters. 1679 The onion-shaped domes and twisted, brightly colored turrets of St. Basil's Cathedral, Moscow, are


finally completed after 124 years of work. The building is a high point of Russian Orthodox Church architecture.

Rigid cell wall with slimy outer covering NEW WORLDS, NEW IDEAS

Gilt balancewheel

cove

authority, the first major tunnel made this way was for the Canal du Midi, which crosses France, linking the Atlantic Ocean and the Mediterranean Sea. Between 1666 and 1681, French engineer Pierre Riquet cleared a 515 ft (160 m) path for the canal through a sandstone hill by setting off gunpowder in hundreds of holes, which he had drilled into the rock.

Gottfried Leibniz, Isaac Newton

Calculus is the mathematics of change: physical change, such as movement, or mathematical change, such as increasing area. It was invented independently by Gottfried Leibniz in Germany and Isaac Newton in England. Newton created a special method to solve problems in mechanics. Leibniz produced something more like modern calculus.

Plate supporting wheels /

Pressure cooker

Denis Papin

Food cooks more quickly in water that is hotter than its normal boiling point. In 1679, French-English physicist Denis Papin made water hotter than hot with his "digester," a closed vessel with a safety valve. When water was heated inside it, the pressure rose. The increased pressure stopped the water from boiling until it was hotter than normal.

Repeating watch

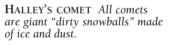
1680

Daniel Quare

Owners of early watches had to take them out of their pocket and open a protective

1682 The Palace of Versailles is ready at last on a site just southwest of Paris, after 21 years of building **REPEATING WATCH** The exquisite mechanism of this Quare repeating watch was normally hidden from its user.

cover before they could read the time—assuming there was enough light. In 1680, English clockmaker Daniel Quare made life easier when he invented his "repeater." Its owner had only to reach into a pocket and touch a button or move a lever to hear the approximate time ring out on a tiny bell inside the watch. This was especially useful at night.


Tunneling with explosives

Pierre Riquet

The mountains of Europe are riddled with tunnels, many of which were blasted through the solid rock with the help of explosives. According to one

that at times involved 30,000 workers. King Louis XIV moves his court into the extravagantly furnished new buildings.

Halley's comet

Edmond Halley

It used to be thought that comets appeared only once. Then English astronomer Edmond Halley showed that they could orbit the sun, coming back repeatedly. He studied the path of a comet that appeared in 1682 and was able to show that this, and two earlier comets, were in fact the same comet. In 1705, he predicted that it would return again in 1758. It did and was named in his honor.

1688 England's first female novelist, Aphra Behn, publishes *Oroonoko*, the story of an African prince Newton had the basics by 1666, but in 1684, Leibniz became the first to publish his work, making Newton his lifelong enemy.

Laws of motion

Isaac Newton

English scientist Isaac Newton formulated three laws of motion, which he published in 1687. The laws are still used to get people to the moon. The first law states that the velocity of an object (its speed and direction) will change only if a force acts on it. This was discovered by Galileo, but the other two laws are all Newton. The second says how

who is made a slave. Some people do not believe a woman could have written anything so good and accuse her of copying. much an object's velocity will be changed by a given force, while the third says that pushing on an object makes it push back equally hard in the opposite direction.

Gravity 1687

Isaac Newton

See pages 98–99 for the Story of how Newton discovered the glue that holds the universe together.

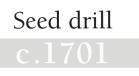
Wave theory of light

Christiaan Huygens

Light has puzzled scientists since the earliest times. Although the law of refraction was known by 1621, nobody could explain why light obeyed it. Christiaan Huygens proposed the first theory that light was a stream of waves. These waves made secondary "wavelets" when passed through an object. When light hit glass at an angle, the "wavelets" produced slowed down, making the light bend. In conflict with Newton's ideas, it was not seriously considered until the 19th century.

Clarinet

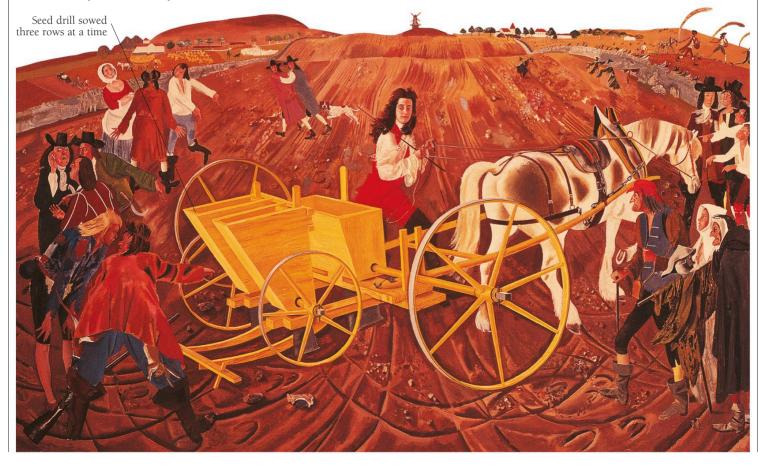
<u>c.1700</u>


Johann Denner

The clarinet is a woodwind instrument with a wide range of notes and a smooth, distinctive tone. It was developed from an earlier musical instrument, the chalumeau, by the German musician and instrument maker Johann Denner, in about 1700. To extend the range of the chalumeau, Denner added three extra keys to bridge the awkward gap between the instrument's lower and upper registers. The lower register of a clarinet is still sometimes called the chalumeau.

Phlogiston theory of combustion

Georg Stahl


When something burns, flames come out, so people naturally thought that combustible substances lost something when they burned. In about 1700, German chemist Georg Stahl called this "phlogiston." A problem with this theory is that things get heavier when they burn, so phlogiston would have to weigh less than nothing. By 1783, French chemist Antoine Lavoisier had substituted gain of oxygen for loss of phlogiston, which is the true explanation of burning.

Jethro Tull

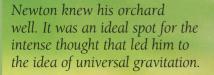
Seed drills sow seed in neat Trows instead of scattering it. The Babylonians had them, but in about 1701, English farmer Jethro Tull invented the first automatic seed drill. It was part of a system of farming that he developed after seeing grapevines flourishing in rows with the soil between them loose and weed-free. Not all his ideas were accepted, but the benefits of precise drilling were. The successors to Tull's drill are at work in fields today.

SEED DRILL Jethro Tull shows off his seed drill in this mural from the Science Museum in London.

1694 The Bank of England July 27. Although private, it lends all its money—£1.2 million—to the government, and is in turn granted the right to issue currency and do all the country's company banking. 1697 "Sleeping Beauty," "Cinderella," and other fairy tales reach a wide public for the first time, as French writer Charles Perrault publishes *Tales of Mother Goose*. He has collected them from people who knew them by heart.

THE MOON IS FALLING

Isaac Newton discovers the glue that holds the universe together



When Isaac Newton was only three years old, his father died and his mother married again. She went to live in the next village, leaving him with his grandmother. Newton was not happy. He often sat in the orchard behind his home, Woolsthorpe Manor in Lincolnshire, England, smoldering with hatred for his new stepfather. In 1653, when Newton was 10, his mother came

TRINITY COLLEGE Trinity College, Cambridge, England, was founded by King Henry VIII in 1546. Newton went there to study in 1661.

back. She expected him to make himself useful, but he wanted only to read. In the end, she packed him off to school.

Newton didn't learn much at school except Latin, but Latin was the language of science. He certainly needed it when he got to Cambridge

University. There was so much to read. The official teaching was old-fashioned, but Newton taught himself the new science of Galileo, Descartes, and others. "Plato is my friend, Aristotle is my friend," he wrote in his notebook, "but my best friend is truth."

No sooner had he received his degree, in 1665, than the Plague came, which forced everyone to leave Cambridge. Newton returned to Woolsthorpe. The orchard was still there, and Newton still went to sit there, his mind now full of scientific questions. One of them was, "What keeps the planets in their orbits?" A famous story tells us that as Newton pondered this among the old trees, with heavenly bodies like the moon uppermost in his thoughts, an apple fell. It took a genius like Newton to see the connection. The moon kept circling Earth because, like the apple, it was falling. Gravity made the moon curve toward Earth instead of continuing in a straight line. And what worked for the moon could work for the planets circling the sun.

Newton was able to show that the force of gravity got weaker in proportion to the square of distance. In other words,

a planet twice as far from the sun as another will experience only onequarter of the force; if it is three times as far away, the force will be one-ninth, and so on. Other people had suggested this, but Newton went further.

Using powerful new math he'd invented, together with his laws of motion, he proved that gravity could account for the orbits of all the planets. It was the glue that held the universe together.

In 1687, Newton published his book Mathematical Principles of Natural Philosophy, usually known as the Principia, a shortened form of its Latin title. In it he explained his three basic laws, which govern the way objects move, and his theory of gravity and the universe. But his personal universe was not so well ordered. Just before publication, another scientist, Robert Hooke, accused him of copying his ideas. Newton never forgave him. Just as he hated the man who stole his mother, he now despised the rival who was trying to steal his glory.

UNIVERSAL LAW

The mass of the moon is unimaginably greater than that of an apple. Yet both obey the same law of gravity.

REFLECTING TELESCOPE

Newton believed that lenses would never make a good telescope, so he designed one that used a mirror instead. It is still a popular design.

> Replica of Newton's reflecting telescope

> > SOLAR SYSTEM

This clockwork model of the solar system was built in about 1712. Newton thought of the solar system as a giant machine. He was never sure that God would not have to intervene to keep it running.

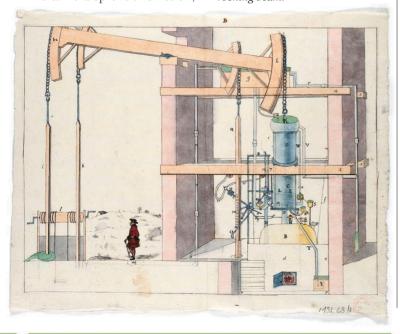
Two separate plant groups 1703

John Ray

Plants come in two kinds: the ones that look like grasses or palms, and the rest. Scientists call them monocotyledons and dicotyledons—monocots and dicots for short. The baby seedlings in the first group have only one leaf, while the others have two. These important plant groups were first recognized by English naturalist John Ray in 1703, after a lifetime of study.

Composition of white light

Isaac Newton


Long before Newton's time, it was generally known that white light passing through a prism is broken into colors. However, most people believed that it was due to some change the prism made on light—like clay being pressed through a mold. To disprove this notion, Newton showed that light is actually made up of many colors by using a second prism to recombine light back into white. Although he made this discovery in 1670, he waited until 1704 to publish his findings in his book *Opticks*.

Piano

Bartolomeo Cristofori

oday, most keyboard instruments play louder when the keys are struck harder. The best keyboard of 300 years ago, the harpsichord, did not do this because it plucked its strings with a mechanism that was unaffected by the force applied. Italian harpsichord builder Bartolomeo Cristofori invented touch sensitivity in 1709 with his gravicembalo col piano e forte (harpsichord with soft and loud), which eventually became the piano. Cristofori's keyboard instrument hit its strings with small hammers, giving more control over the sound.

STEAM ENGINE The piston of a Newcomen engine was connected to the rods of a water pump by a rocking beam.

 $1703^{Peter the Great, the tsar of Russia, founds the city of St. Petersburg, which he calls his "window on$

Europe." Thousands of Russian serfs die in the building of the city, which, in 1712, will become Russia's capital for two centuries.

Steam engine c .1710

Thomas Newcomen, John Calley

nglish engineer Thomas Newcomen designed his steam engine in about 1710 and built the first one in 1712. It was based on an earlier pump invented by Thomas Savery, which used the vacuum created by condensing steam to such water out of mines. Working at first with another inventor, John Calley, Newcomen made the vacuum move a piston, which then drove a separate pump to remove the water. Although incredibly inefficient, the Newcomen engine remained the best available for 50 years.

Laws of chance

Jakob Bernoulli, Abraham de Moivre

uessing and Jgambling might not suggest the precision of mathematics, but top mathematicians like Pierre de Fermat and Blaise Pascal were studying the laws of chance as early as the 17th century. The first important book on the subject came from Swiss mathematician Jakob Bernoulli and was published in 1713. Then, in 1718, came another by French mathematician Abraham de Moivre, which revealed most of today's basic probability theory.

MERCURY THERMOMETER This early English thermometer has its tube attached to a scale marked on a separate piece of wood.

1707 England and Scotland become the Kingdom of Great Britain with the passing of the Act of Union. Scotland agrees to be governed by parliament in England but keeps it own legal system and Presbyterian Church.

Aberration of light

James Bradley

There was no direct evidence \bot that Earth is speeding through space until English astronomer James Bradley discovered the aberration of light in 1728. Imagine a car standing in the rain. Streaks of rain run vertically down the windows. When the car moves, the streaks slope backward. This is what Bradley saw, only the car was Earth, the rain was light from a star, and the slope was an extra tilt of his telescope.

Achromatic lens

Chester Hall

saac Newton said that lenses Lwould always produce images with color fringes. In 1729, English judge Chester Hall proved him wrong. By combining a convex lens of ordinary glass with a concave lens of heavy flint glass, he canceled out the fringes, creating a color-free, or achromatic, lens. English optician John Dollond later did the same. The lenses led to the first really good microscopes and telescopes.

Georg Brandt

In the early 18th century, L chemistry was shaking off the last of alchemy. Georg Brandt, a metallurgist from Sweden, used the more scientific approach. He was rewarded in 1730 with the discovery of cobalt. He later exposed alchemists claiming to make gold as frauds. Cobalt is now essential to advanced magnets and radiotherapy.

26 Anglo-Irish writer Jonathan Swift writes Travels into Several Remote Nations of the World, later known as Gulliver's Travels. His satire about countries called Lilliput, Brobdingnag, Houyhnhnms, and Laputa will become a classic.

STEREOTYPE This is a clay stereotype mold. The metal stereotype made from it is reversed.

William Ged

nce a book was printed, early printers broke up the type and reused it. If a reprint was needed, they had to set up the pages again. Scottish goldsmith William Ged saved labor in 1727 by inventing the stereotype, a copy of a page of type made by pouring metal into a plaster mold. French printer Gabriel Valleyre had a similar idea but used clay. With stereotypes, printers did not have to lock up tons of type.

At Oxford University, England, John Wesley, with his brother Charles, founds the Methodist

Church. Preaching personal salvation through faith, Wesley's new, less formal Church appeals strongly to working people.

mus appeared broken

lited the log 30 the

ompanion o

TEL LIVE FORT

Daniel Fahrenheit

Mercury

thermometer

erman physicist Daniel JFahrenheit invented two things at once: a more useful thermometer and a temperature scale, which was later named after him. Early thermometers either relied on the expansion of air or allowed alcohol to expand from a small bulb into a fine tube. Fahrenheit's thermometer, which he produced in 1714, used the second of these methods, but with mercury instead of alcohol. This allowed him to measure higher temperatures.

Diving bell

During the tame partice twitch William Ged was working biestor-moulding method for casting Stareotypes, a F

minter, Gabriel Valleyre invented, in 1730, a method of sast noiter sopper inter a mould made from a type of clay, i etter, however, worst not sliveys, clearly defined not on

This development was later revived and mprov a Government Frinting Office in Washington, U.S. The Jacobilise method amployed the movable se

toulding press on which was latel the termet. An horrole new of the bies underslog of the lapt of the press ind labor spread over time surface of the size was read

mpression offeringer. The mould was bridd in a warm by ch Vision sauting, the plater holding the mould was sh

1 porte al

ale and mic he or

wess had been dos

the bed of the press

Edmond Halley

diving bell is a chamber in Awhich people can stay under water without diving equipment. In 1687, William Phips, the future governor of the state of Massachusetts made one to recover sunken treasure in the West Indies, but his divers wouldn't use it. The first long periods spent under water were in a bell invented by English astronomer Edmond Halley. In 1717, he described how people had survived at a depth of 55 ft (17 m) for an hour and a half. He supplied air to the bell by sending it down in weighted barrels.

Stereotype

Sextant

John Hadley, Thomas Godfrey

Cailors can navigate by Omeasuring the height of the sun. Simple ways of doing this are inaccurate, and looking straight at the sun can damage the eyes. In about 1730, John Hadley in Britain and Thomas Godfrey in North America both found a better method: looking at a reflection of the sun in a movable mirror. The instruments that they invented were called octants, because the mirror swung over one-eighth of a circle. A later version, the sextant, gave even greater accuracy. When used with a chronometer to compare local time with ship time, it allowed sailors to figure out their exact position.

Flying shuttle

John Kay

T n weaving, thread on a reel Lin a holder called a shuttle is shot back and forth. John Kay, the son of an English woolen manufacturer, invented the flying shuttle in 1733. Before then, for wide cloth, a solitary weaver would have to walk from one side of the loom to the other to pick up the shuttle and throw it back, so it was more economical to have two weavers to throw it back and forth. Kay found a solution by adding rollers to the shuttle so that it ran on a track. It was operated by one weaver, halving the labor needed to make broad cloth. It was a key to the Industrial Revolution in Britain (* see page 111) but brought Kay neither fame nor fortune.

Index arm is moved until the mirrors appear to line up the Sun with the horizon

The horizon

mirror

reflects

the sun

Index mirror reflects onto the horizon mirror below SEXTANT Using a system of mirrors, the sextant measures the sun's altitude to an accuracy of 0.01 degrees.

> Telescope allows navigator to see the horizon and sun

Rubber

Charles-Marie de la Condamine

Rubber got its name in 1770 when British chemist Joseph Priestley found it would rub out pencil. Rubber trees, with their sticky sap, had been discovered earlier by the French scientist Charles-Marie de la Condamine, while he was on an expedition in South America. Rubber wasn't really new to Europeans-even Christopher Columbus knew about it-but it was Condamine's samples, sent back to France in 1736, that put this unique natural product on the scientific map.

Bernoulli effect

Daniel Bernoulli

🕻 wiss scientist Daniel Bernoulli figured out that if a stream of fluid (a gas or liquid) speeds up, its pressure drops. This "Bernoulli effect" can be seen in a popular science exhibit-a ball suspended on a stream of air from a blower. The air coming out of the blower is moving faster than the air that went in, so its pressure is lower than the surrounding air.

Rollers underneath

reduce friction

Measurement of blood pressure

Stephen Hales

' tephen Hales was an English clergyman and also an expert scientist. He specialized in

taking measurements of living things and was the first person to measure blood pressure. His technique, revealed in 1733, was brutally straightforward: he simply stuck a tube into a horse's artery and measured the height to which the blood rose. He also invented surgical forceps, among other innovations.

By reading the angle from the index arm.

the sun's altitude. and hence the

latitude of the ship, can be calculated

FLYING

SHUTTLE Shown here are two 18th-century Kay shuttles

The first magazine \mathcal{I} to be called a magazine is published in Britain. At this time, magazine means

"storehouse," and The Gentleman's Magazine is a sort of storehouse of articles collected every month from other publications.

32 American writer and printer Benjamin Franklin begins publishing Poor Richard's Almanac, about a simple country dweller who becomes known for his practical proverbs and witty aphorisms. Franklin continues the Almanac until 1758. If the ball moves from the air stream, the higher pressure pushes it back.

Franklin stove 1740

Benjamin Franklin

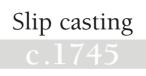
Benjamin Franklin was a writer, scientist, and diplomat, who played a leading part in creating the US. He still found time to create a simple invention that would warm thousands of homes in the republic: the Franklin stove. It was marketed as the "Pennsylvania Fireplace" and was the ancestor of the woodburning stoves of today. Made of cast iron, it had a hinged door to enclose the fire and an adjustable ventilator to control the rate of combustion.

High-quality steel

Benjamin Huntsman

Mass-produced steel is good enough for most things, but sometimes a more personal touch is needed. English clockmaker Benjamin Huntsman, finding that ordinary steel made poor watch springs, began to make his own steel in Sheffield in about 1740. He was the first to make steel hot enough to melt, allowing it to form a perfectly even alloy. He kept the process a secret, never patented it, and it was eventually copied by other people. Huntsman's work helped make Sheffield famous for fine steel.

Celsius scale of temperature


Anders Celsius

Inventors of temperature scales hate doing the obvious. Daniel Fahrenheit set the freezing and boiling points of water at a seemingly strange 32 and 212 degrees. In 1742, Swedish astronomer Anders Celsius went decimal with a scale that ran from 0 to 100, but made freezing point 100 and boiling point 0. Eventually, his scale was turned upside down to produce the Celsius scale used today.

Silver-plated tableware

There has always been a demand for anything that looks like solid silver but costs less. In 1743, English cutlery maker Thomas Boulsover discovered that he could make copper look and behave like silver. Working in Sheffield, Boulsover heated copper between thin sheets of silver then rolled the hot sandwich to produce Sheffield plate. It quickly pushed solid silver off all but the wealthiest tables.

Ralph Daniel

Some earthenware items are made by slip casting. A suspension of clay in water, called slip, is poured into a mold. When dry, the shape is removed and fired. English potter Ralph Daniel invented the process in about 1745. He started with iron mold, but soon discovered that plaster molds worked better because they sucked out water from the slip and sped up drying.

Leyden jar

Ewald von Kleist, Pieter van Musschenbroek

In the 18th century, electricity was often regarded as a fluid—something that has no definite shape but takes on the shape of its container. This may have been the thinking behind German physicist Ewald von Kleist's invention of the Leyden jar in 1745. The jar was covered with metal and made of glass so that electricity could not leak out. The following year, physicist Pieter van Musschenbroek of the University of Leiden in the Netherlands invented the jar independently. He named it and told other people about it. A charged jar could give a mighty shock. One demonstration involved 1,000 hand-holding monks. When the jar was connected to the first and last monk, all of them jumped.

Metalcovered glass.

LEYDEN JAR This jar is charged by bringing a source of electricity into contact with the central rod.

Flour from potatoes

Eva Ekeblad

F ood was scarce in 18th-century Sweden, but hidden in the greenhouses of its upper classes was the answer potatoes. Swedish countess Eva Ekeblad used them to make flour and alcohol. This provided extra flour and also allowed some of the wheat, rye, and barley previously used for alcohol to go into making bread, easing the famine. The potato went from an exotic vegetable to a staple food.

1742 On April 13, in Dublin, Ireland, German composer George Frideric Handel's choral and orchestral work *Messiah* is performed for the first time. An instant success, it will be a hugely popular work for centuries to come.

1745 Charles Edward Stuart, known as Bonnie Prince Charlie, lands on the isle of Eriskay, off western

Pointed end

shuttle pass through the

helps the

threads

With two pins, this shuttle weaves

two-ply thread

Scotland, on July 25. He will lead an unsuccessful attempt to put him on the British throne in place of the German George II.

REVOLUTIONARY CHANGES

POLITICAL REVOLUTION in France and independence for the US had enormous effects on the world between 1750 and 1850. At the same time, the Industrial Revolution moved Western workers from farms to factories, and sciences such as chemistry shook off their last links with the ancient past.

Electrical nature of lightning

Benjamin Franklin

US scientist Benjamin Franklin could have killed himself when he flew a kite in a thunderstorm. He did it to prove that lightning is caused by electricity. Electric charge from the thunderclouds passed down the string, and Franklin collected it in a Leyden jar (* see page 103). Amazingly, he lived to show that the charge behaved just like electricity from other sources.

Scientific names for plants

Carolus Linnaeus

Until Swedish botanist Carl von Linné published his Species Plantarum (Kinds of

1752 In August, the bell that will be known as the Liberty Bell arrives in Philadelphia, from England,

ELECTRICAL NATURE OF LIGHTNING Thunderclouds threaten as Franklin flies his kite.

Plants) in 1753, botanists described plants using very long-winded names. Linné, known as Linnaeus, classified plants into closely related groups, or genuses, then gave each one the genus name plus its own species name. For example, *Taraxacum officinale* is the dandelion.

in use today.

Carbon dioxide

Linnaeus's system is still

Joseph Black

Carbon dioxide was recognized by the alchemist Jan Baptist van Helmont in 1648, but the first person to investigate it systematically and relate it to other chemical substances was the British chemist Joseph Black. In 1756, he announced his discovery that carbonates release what he called "fixed air" (carbon dioxide) when heated. Black's work eventually helped chemists gain a new understanding of air and also of combustion.

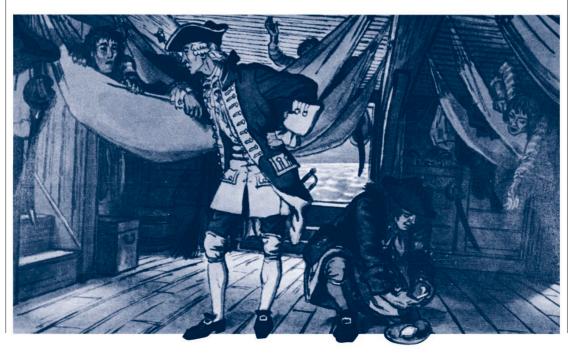
Prevention of scurvy

James Lind

Scurvy is caused by lack of yitamin C. The gums swell, joints get stiff, and there may be bleeding beneath the skin. In 1757, British naval surgeon James Lind published a book recommending that sailors should receive rations of citrus fruits, which contain vitamin C. At that time, more British sailors died from scurvy than in battle. The navy thought about Lind's idea for 40 years, then tried it. Scurvy disappeared like magic.

Indestructible lighthouse

John Smeaton


Lashed by storms off the Coast of England, the Eddystone rock has been feared by sailors for centuries. The weather had destroyed two lighthouses there before British engineer John Smeaton discovered how to defy nature. He cemented together interlocking blocks of stone with concrete that would set under water. His lighthouse lasted more than 100 years. Even then it was the rock that crumbled, not the lighthouse.

Improved blast furnace

John Smeaton

When Abraham Darby started using coke to smelt iron (* *see* page 89), he needed a better blast furnace. British engineer John Smeaton, one of the first to apply science to engineering, made the furnace larger and blew air through it with a fan powered by an efficient new waterwheel. Water rushed over the top of the new "overshot" wheel instead of underneath it.

PREVENTION OF SCURVY James Lind tells sick sailors that limes are the answer to their problems.

where it was made. It will be rung on July 8, 1776, to celebrate the first public reading of the Declaration of Independence. $1759 \stackrel{\rm French writer}{\rm Voltaire, a critic of} \\ {\rm those who try to restrict others'} \\ {\rm freedom of thought, writes his} \\$

novel *Candide*. Its central character, Candide, fights against the stupidity of the world but is forced in the end to give up.

REVOLUTIONARY CHANGES

Faller wire Pulleys guided the thread rotated the spindles

James Hargreaves

daughter) could spin

several threads at

once. Traditional

spinners were alarmed about

the machine,

because it could put them out

of work, but it

helped to start

the Industrial Revolution in Britain and brought greater prosperity in the end.

Until the middle of the 18th century, people spun thread with a spinning wheel, which could spin only one thread at a time. James Hargreaves's spinning jenny (said to be named after his

Clove / helped to twist the fibers together

Creels held / the fibers to be spun

> Driving wheel was turned to make the spindles rotate -

Latent heat

Joseph Black

When water is heated, it keeps getting hotter until it turns into steam. Some of the heat doesn't actually raise the temperature but is used to change the "state" of water into steam. Likewise, when water changes into ice, heat is also released. This hidden heat was discovered by British chemist Joseph Black. Three years later, he explained the effect to James Watt, who had noticed it while working on a steam engine.

Finding longitude at sea

John Harrison

E arly sailors navigated by the sun and the stars. This was all right for determining their latitude (position north or south), but measuring longitude (position east or west) was difficult. One way was for them to compare

the time at home. shown by a clock, with the time where they were at sea, shown by the sun But no clock existed that would work at sea and keep accurate enough time. The government offered £20,000 to anyone who solved the longitude problem. Between 1735 and 1761, British clockmaker John Harrison built four chronometers. The fourth model was tested on a trip to Jamaica and proved accurate to within five seconds. Although Harrison had solved the problem, the government was reluctant to give him his full reward, and he was an old man before it finally paid up.

1762 Ideas about education change with the publication of *Émile* by the French thinker Jean-Jacques

Rousseau. His argument that true education can be built only on children's natural impulses will greatly influence later educators.

SPINNING JENNY This replica of Hargreaves's machine shows that it was basically the older spinning wheel rearranged to drive several spindles.

FINDING LONGITUDE AT SEA The fourth version of Harrison's chronometer looks very much like a modern watch, only bigger. It is shown here at about two-thirds its actual size.

1763 The Treaty of Paris ends the Seven Years' War, also known as the French and Indian War. France gives

Britain all its North American lands east of the Mississippi River, and Canada. Spain gives up Florida to Britain for Cuba.

Dividing engine 1766

Jesse Ramsden

ccurate measurements Arequire accurately made measuring tools. Before British instrument maker Jesse Ramsden perfected his dividing engine in 1766, angles on theodolites and other instruments were made by hand by craftsmen and could be somewhat hitor-miss. The dividing engine produced scales for scientific instruments mechanically. It was faster and more accurate than craftsmen and meant that maps, as well as astronomical and navigational measurements, were more reliable.

Hydrogen 1766

Henry Cavendish

British scientist Henry Cavendish was the first person to show that hydrogen was a distinct gas, not just a sort of air. He released hydrogen from sulfuric acid by dissolving metal in it, then measured its density. He found that it was lighter than any other gas. Later, he confirmed that hydrogen forms water when it burns. This led French chemist Lavoisier to call it hydrogen, from the Greek for "water maker."

Improved steam engine

James Watt

The first steam engines were built to pump water out of coal mines. It was lucky there was plenty of coal, because the engines wasted a lot of fuel. James Watt discovered how to reduce the waste, allowing steam engines to compete with waterwheels in powering the new factories. He also invented better ways of controlling steam engines and connecting them to other machines. (* *See also* **The Story of Steam**.)

Steam tractor

Nicolas Cugnot

Early steam engines were huge, heavy, and underpowered, but by 1769, they were good enough for Nicolas Cugnot, a French army engineer, to build a three-wheeled steam tractor. The following year, he built a bigger one to pull heavy guns. Its single front wheel, which was used for steering, was driven by a two-cylinder high-pressure steam engine. Although the later machine successfully pulled a three-ton cannon at walking speed, Cugnot never got the money he needed to solve its problems, such as how it could carry enough water to keep the engine going and how to stop the high-pressure steam from leaking out.

Water frame

Richard Arkwright

Before fibers can be woven into cloth, they have to be spun into threads. To keep up with the demands of new weaving machinery, such as the flying shuttle (* see page 102), spinning had to speed up. In 1769, Richard Arkwright invented a high-speed spinning machine that made really strong thread. He called it a water frame because it was driven by water power.

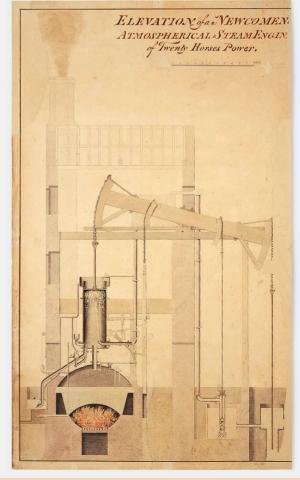
THE STORY OF STEAM

THOMAS SAVERY'S STEAM ENGINE, which he patented in 1698, simply sucked up water with the vacuum created when steam condenses. Thomas Newcomen's engine, built in 1712, had a piston and could

operate a mechanical pump but wasted fuel because its cylinder had to be warmed up from cold after every stroke. James Watt added a separate cooling chamber, allowing the main cylinder to stay hot all the time.

SAVERY'S ENGINE

Steam entered a chamber, forcing water out through a valve. The steam was then cooled, creating a vacuum that sucked water in through another valve, ready to be forced out during the next cycle.


NEWCOMEN'S ENGINE

Steam entered a cylinder, causing a piston to move upward. The steam was then cooled, creating a vacuum that allowed the atmosphere to push the piston down. This operated a pump through a rocking beam.

WATT'S ENGINES

Having added a separate cooling chamber, Watt further improved Newcomen's engine by letting steam push the piston down as well as up and adding gears that allowed the engine to drive rotating machinery.

Drawing of a Newcomen engine of about 1826

1765 England enacts the Quartering Act to raise revenues in the English colonies. These two acts are widely resented by colonists and spark the independence movement in the American colonies. 1769 San Francisco Bay, one of the world's best natural harbors, is discovered by people arriving on foot. Led by Spanish explorer Gaspar de Portolá, they were sent to look for Monterey Bay but missed it and went too far north. REVOLUTIONARY CHANGES

Factory

Richard Arkwright

Richard Arkwright realized spinning machine (* see page 107) meant that spinners would have to gather where there was a waterwheel. In about 1770, in partnership with two local stocking makers, Samuel Need and Jedediah Strutt, he opened a waterpowered mill at Cromford in Derbyshire, England. This was the first real factory and marked the start of the industrial age.

Oxygen

Carl Scheele, Joseph Priestley

xygen has a complicated history. Swedish chemist Carl Scheele discovered it in 1772 but waited five years before publishing the fact. Meanwhile, British chemist Joseph Priestley discovered a gas in which things burned fast. Believing that burning things gave out "phlogiston" (* see page 97), he called it "dephlogisticated air." But the French chemist Antoine Lavoisier proved that the gas combined with burning substances rather than sucking phlogiston out. Lavoisier's new name for it, oxygen, means "acid maker," which it isn't.

Bode's Law

Johann Titius, Johann Bode

There's something odd about the planets from Mercury to Uranus. There seems to be a relation between their distances

from the sun. This was first noticed by German astronomer Johann Titius, and his formula was published by fellow astronomer Johann Bode in 1772. At that time, there were gaps where the formula predicted there should be planets. When later astronomers found that the asteroids and Uranus filled the gaps, it seemed to prove Bode's law. Then Neptune and Pluto were discovered, and these planets don't obey the law, so the relationship is probably just an amazing coincidence.

Carbonated drinks

Joseph Priestley

The first carbonated drinks flowed out of the ground natural carbonated water from

FACTORY Collycroft woolen mill was built in Bedworth, England, in about 1790. It was a typical waterpowered factory. This model of it is cut away to show the inside.

Water flows under the mill, turning the wheel

1770 London's Bethlem asylum for mentally ill people that is better known as Bedlam,

shuts its doors to admissionpaying spectators. The behavior of its inmates is no longer regarded as entertainment. 1772 John Fielding, chief Bow Street Police Court, London, starts issuing the *Quarterly* *Pursuit*, an information sheet detailing current stolen property and wanted persons. It will become the daily *Police Gazette*.

1751-1850

health-giving springs. The first to imitate them was Joseph Priestley. In 1772, he started producing "soda water" in quantity. He had found out how to make it several years earlier and in the process had made important discoveries about the gas carbon dioxide.

Precision boring machine

John Wilkinson

arly steam engine builders were hampered by the difficulty of making the huge cylinders the engines required. British ironmaster John Wilkinson improved matters greatly with the precision boring machine he built in 1775 at his father's factory in Wales. It could bore deep, wide holes in large pieces of iron to form much more accurate cylinders than before. James Watt used the machine when building his later engines (***** *see* **page 107**).

Division of labor

Adam Smith

To make a sandwich, bread has to be filled and condiments added. If two people have to make a pile of sandwiches, is it quicker if both people make complete sandwiches or if one fills and the other adds condiments? The second way is quicker because doing just one job is simpler. This principle, called division of labor, was identified in 1776 by Scottish economist Adam Smith. He saw its extra productivity as the true source of prosperity.

Photosynthesis

Jan Ingenhousz

n sunlight, green plants Ltake in more carbon dioxide than they give off, and they give off more oxygen than they take in. In darkness, the reverse is true. Dutch doctor Jan Ingenhousz published this discovery in 1779 under the delightful title Experiments Upon Vegetables, Discovering Their Great Power of Purifying the Common Air in Sunshine, and of Injuring It in the Shade and at Night. This was the first description of the basics of photosynthesis.

1776 On Thursday, July 4, Independence is approved in the US. It notes why 13 British

colonies "ought to be Free and Independent States." Independence Day will later be celebrated as a national holiday

Iron bridge

Abraham Darby, Thomas Pritchard

A metal bridge seemed revolutionary at a time when stone, bricks, and wood were the only materials used for large structures. Abraham Darby built the world's first iron bridge in 1779 to the design of Thomas Pritchard. Its 100 ft (30.5 m) arch spans the Severn River at Coalbrookdale, Shropshire, in England. Having survived disastrous floods in 1795, Darby's bridge is still used today.

Mule spinning machine

Samuel Crompton

Samuel Crompton's "mule" Scould draw, twist, and wind fibers into a fine thread. Unlike a hand spinner, though, it could work on a thousand reels at the same time. Like the animal of the same name, the mule was a hybrid, using ideas from Hargreaves's spinning jenny and Arkwright's water frame (* *see* pages 106 and 107). It soon replaced both of them.

Uranus

William Herschel

The planet Uranus is just visible to the naked eye, but British astronomer William Herschel discovered it with a telescope. On March 13, 1781, he spotted what he thought might be a comet, but the way it moved convinced him it was a planet. He wanted to name it after the king, while French

1777 Europeans learn of the existence of New Zealand when British explorer James Cook publishes A Voyage astronomers generously insisted it should be called Herschel. In the end it was decided to stick to naming planets after gods, and it became Uranus.

HOT-AIR BALLOON The first demonstration of a Montgolfier balloon took place in June 1783.

Hot-air balloon

Joseph Montgolfier, Étienne Montgolfier

he first hot-air balloons were made by two French papermakers, Joseph and Étienne Montgolfier. In September 1783, they sent three animals on a successful 2 mile (3 km) trip in a balloon. Then, in November, they organized the first human escape from Earth's surface. Two volunteers remained aloft for 25 minutes, climbing to 1,500 ft (450 m) above Paris and traveling 5.3 miles (8.5 km). Strangely, the brothers never risked a flight themselves.

Towards the South Pole and Round the World. Cook spent a year charting its islands and getting to know its Maori people. REVOLUTIONARY CHANGES

Hydrogen balloon

Jacques Charles

While the Montgolfiers were experimenting with hot air over Paris (* see page 109), the French scientist Jacques Charles was working with the lightest of all gases, hydrogen, to get a balloon airborne. In 1783, he ascended in a hydrogen balloon to nearly 10,000 ft (3 km). Charles is also known for a law describing how gases expand when heated.

Parachute

Louis Lenormand

renchman Louis Lenormand invented his parachute as a means of escape from a burning building. After testing it by jumping from trees, he made his first serious trial in December 1783. He leaped from the top of the Montpelier observatory in France with a 14 ft (4.3 m) chute and landed safely on the ground. The first person to jump from the air was another Frenchman, André Garnerin, who took the plunge in 1797 after his hotair balloon burst over Paris.

Tungsten

Juan D'Elhuyar, Fausto D'Elhuyar

 $T_{\mbox{glows white-hot}}^{\mbox{ungsten}}$ is the metal that glows white-hot inside an old-fashioned light bulb. It has

1784 Jedidiah Morse, father of the inventor of Morse code, publishes the US's first

the highest melting point of any metal that can be made into wire, is very dense making it good for fishing weights—and is an important ingredient of cutting tools. It was first isolated by the Spanish D'Elhuyar brothers, Juan and Fausto, in 1783, although it was already known to the Swedish chemist Carl Scheele.

Bifocal eyeglasses

Benjamin Franklin

see things close up

lder people can find it hard to

glasses make nearby objects clearer but make distant ones less clear. In his old age, Benjamin Franklin solved the problem with the bifocal lens. This has a section for distant vision mounted above one for near vision. When wearers of bifocal eyeglasses look down to read, they automatically see through the near vision part of the lens; when they look up, the distant vision section comes into play.

Heddle

raised and lowered the warp threads

as well as far away. Reading

Pickproof lock

Joseph Bramah

Picking a lock means opening it without the key. Some locks are harder to pick than others, but one of the hardest was invented as long ago as 1784. British engineer Joseph Bramah offered £210 to anyone who could pick his lock, but it was 67 years before anyone claimed the reward. Even then it took US locksmith

> A. C. Hobbs 51 hours—hardly feasible for a burglar.

Gear wheels / drove cams to move the different parts

geography textbook, Geography Made Easy. It is a great success, and Morse writes several more books on US geography. Finished cloth wound onto a roller

1786 On May 1, an Austria, gives a warm reception to *The Marriage of Figaro*, a new

POWER LOOM By the mid-19th century, the power loom had been developed into a highly effective, reliable machine. British looms like this one by Harrison and Sons produced cloth for sale worldwide.

> opera by Wolfgang Amadeus Mozart. Its comic scenes disguise an attack on the foolishness and corruption of the nobility.

Puddling process for wrought iron

Henry Cort

I ron with too much carbon in it is brittle. Before British ironmaster Henry Cort invented his "puddling" process in 1784, the only way to produce flexible, or wrought, iron was to hammer freshly smelted iron while it was still hot, squeezing out carbon. Cort melted iron with iron oxide to form a puddle, then stirred it while hot gases burned off the carbon. The purer metal gathered into a large ball that, with just a little hammering, became wrought iron.

Power loom

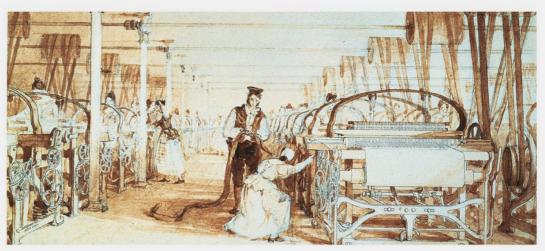
Edmund Cartwright

The designer of the first power loom, Edmund Cartwright, was a British country parson. He was, in his own words, "totally ignorant of the subject, having never at that time seen a person weave." He realized, though, that cheap yarn from powered spinning machines could

transform cloth making. His first loom, built in 1785, was very crude, but by

1787, he had improved it enough to start a weaving factory in Doncaster. The government later awarded him £10,000 in recognition of his pioneering work. (* See also Weaving a New World.)

During the summer,


O/ the Constitution of

the United States of America is

written by 55 delegates meeting

WEAVING A NEW WORLD

BETWEEN ABOUT 1750 AND 1850, in a process known as the Industrial Revolution, Britain transformed itself from a largely agricultural nation into the world's leading industrial power. The industry that led the way was cloth making. Attracted by higher wages, workers moved from farms into the new factories. These were made possible by water power, steam power, new machines, and more adventurous ways of raising money.

This 1834 drawing of a Lancashire cotton mill cannot convey the deafening noise of the many power looms.

SPEEDING UP SPINNING Until about 1770, spinning was largely done by women in their own homes. Merchants would deliver raw wool and then collect the homemade yarn. When powered machines were introduced, spinning took place in factories instead.

LOOMING LARGER

Weaving was also done at home, mainly by men, but factories also threatened this home-based industry. Changes were slower than in spinning, but by 1825 half of British cloth was woven on power looms in factories. FROM COUNTRY TO CITY Early factories were noisy and dangerous but offered new opportunities for women and better wages than farm work. Even skilled craft workers, unable to compete with factory prices, were forced into industrial cities.

Stability of the solar system

Pierre-Simon Laplace

A lthough gravity explains the way the planets move, Newton (* *see* pages 98–99) was not sure they would go on forever. He suggested that God intervened from time to time to keep them on track. A century later, people did not believe so readily in divine intervention. In 1786, French mathematician Pierre-Simon Laplace proved that Newton's theory, properly

in Philadelphia. It defines the various parts of the US's system of government and the basic rights of its citizens. applied, does predict a stable solar system: in the long run, any wobbles cancel out.

Centrifugal governor

James Watt

The governor was one of James Watt's more significant additions to the steam engine. It kept the engine's speed constant as conditions varied. Watt adapted it from a device used

1787 Eleven ships sail from England, carrying the first white settlers to Australia. They arrive at Botany in windmills. Weights mounted on a spindle flew out sideways if the engine sped up, closing the steam valve and slowing down the engine. Like Cornelis Drebbel's thermostat of 1600 (* see page 86),

it was an early example of feedback control.

CENTRIFUGAL GOVERNOR Watt based his governor on this windmill regulator.

Bay but later divert to a new site, Port Jackson. Of the 1,030 people who land there on January 26, 1788, 736 are convicts.

THRESHING MACHINE The machine represented by this model was built in 1860. It was driven by a separate steam engine.

Platinum

P. F. Chabaneau

The valuable, silverygray metal platinum was known as long ago as 700 BCE, but only as an impurity in gold. Workable platinum was first produced in 1789 by the French physicist P. F. Chabaneau. Instead of using it for some sensible laboratory apparatus, he had it made into a decorative cup, which he gave to the Pope.

Uranium

Martin Klaproth

Jranium, essential to nuclear power, was discovered in 1789

Threshing drum beat the grain out of the cereal /

Elevator J took the grain up for further cleaning

Iron-hulled ship

John Wilkinson

John Wilkinson had iron in his soul. When he was 20 years old, he built an iron furnace. Later, in addition to making a machine to bore holes in iron (*** see page 109**), he was involved in building the first iron bridge. He used his boring machine to make iron cannons and, in 1787, built an iron barge to carry them down the Severn River in Britain the first ever iron ship. He was even buried in an iron coffin.

Steamship

John Fitch, William Symington, Robert Fulton

The first working steamboat, built in France, shook to pieces in 15 minutes. In 1787, US clockmaker John Fitch built a more robust craft that made several 20 mile (30 km) trips. Grain received its final cleaning and grading here /

In Britain, William Symington built a steam tugboat that pulled barges in 1802. Another US inventor, Robert Fulton, having seen the tugboat, built the first really successful steamship, the SS *Clermont*, in 1807. With its sister ship SS *Phoenix*, it plied the Hudson River for many years.

Threshing machine

Andrew Meikle

orn was traditionally beaten, or threshed, with sticks to separate the grain from its straw and outer covering, known as chaff. The wind was then used to blow away the smaller chaff. In 1788, Scottish millwright Andrew Meikle invented a machine to do the threshing. The wheat was trapped between a rotating drum and a close-fitting cover, to strip the chaff from the grain. There was no wind inside the machine, so the mixture had to be separated afterward.

1788 After years of odd behavior, King George III of England becomes so deranged that parliament passes a bill to remove him from the throne and replace him with his son. He will recover the next year before the law comes into effect.

Modern chemistry

Antoine Lavoisier, John Dalton

Before French chemist Antoine Lavoisier cleaned it up, chemistry was full of oldfashioned names and notions. As well as overturning mistaken theories, he and his followers renamed the known elements and compounds and established the basic naming system used today. After this, Lavoisier's 1789 Elementary Treatise of Chemistry, together with British schoolmaster John Dalton's 1808 New System of Chemical Philosophy, laid the foundations of modern chemistry. Lavoisier's brilliance did not save him from the French Revolution, though; he was guillotined in 1794.

 $\begin{array}{c} 1789 \\ \text{The United States} \\ \text{Supreme Court is} \\ \text{established as the highest court} \\ \text{in the land and the final court of} \end{array}$

appeal. John Jay becomes the first Chief Justice. Congress adopts the first 10 amendments to the Constitution, the Bill of Rights.

112

by the German chemist Martin Klaproth. He named it after the planet Uranus. Although he believed that he had isolated a new element from the mineral pitchblende, in reality he had extracted only uranium dioxide. The French chemist Eugène Péligot, realizing this in 1841, was the first to produce uranium as pure metal.

Printing ink roller

William Nicholson

In the 18th century, printing Link was dabbed onto the type with leather pads. This was a slow process and required some skill to get the type inked evenly. In 1790, British engineer William Nicholson came up with an improvement that was literally revolutionary: a leather roller. When printing presses were mechanized in the 19th

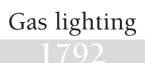
century, the leather on the roller was replaced by a strange but effective mixture of glue and molasses.

Speech synthesizer

Wolfgang von Kempelen

Tf your computer can talk, it's thanks to research that goes back to the 18th century. By the 1770s, the basics were understood well enough for Hungarian engineer Wolfgang von Kempelen to start building the first speech synthesizer. He published details of his machine in 1791 in his book The Mechanism of Human Speech and a Description of a Speaking Machine. His machine could produce sentences, but it needed a lot of skill to "play." The original machine, with nostrils and a mouth, bellows for lungs, and a reed for the voice, is now in the Deutsches Museum, Munich, Germany.

Titanium


William Gregor, Martin Klaproth

itanium dioxide is what makes white paint white. Pure titanium and its alloys are used inside jet engines because they stand up well to the enormous heat. This versatile element was first discovered. as an ore called menachanite. by British clergyman William Gregor on a Cornish beach in 1791. Three years later, German chemist Martin Klaproth confirmed Gregor's discovery and chose the name titanium for the new element.

Ambulance

Dominique Larrey

The ambulance was a L military invention. Before French surgeon Dominique Larrey's work, few armies had much more than a first-aid kit for battlefield injuries. In 1792, Larrey organized the "flying ambulance"-a mobile team of paramedics supporting Napoleon's troops in battle. They carried medical supplies with them and could get some of the wounded to the hospital on a lightweight vehicle. Larrey became chief surgeon of the French army and later devised ambulances to get the wounded into field hospitals.

William Murdock

n the 19th and 20th centuries, Loal gas was used for lighting. Early experiments were carried out in Belgium and Scotland by chemist J. P. Minckelers and the Earl of Dundonald, but the gas industry owes more to Scottish engineer William Murdock. In 1792, he lit his cottage in Cornwall, England, by heating coal in a closed vessel and piping the gas to lights. Later, he developed a complete system for making and storing gas.

AMBULANCE By 1915, during World War I, the military

789 The French Revolution begins in earnest on Tuesday, July 14, when the people of Paris storm

the Bastille, a royal prison, and organize a people's militia. The hated King Louis XVI is forced to withdraw his troops.

The Ordnance 91 Survey of Great Britain is founded and begins to make new maps of Britain and

Ireland. Its prime objective is to provide better maps for military purposes. Its work sets new standards for detail and accuracy.

SCREW-CUTTING LATHE This is said to be Henry Maudslay's first screw-cutting lathe. It originally had gears to vary the thread it cut, but these are now missing.

> bars formed the bed of the lathe

Cast-iron tailstock supported the free end of the workpiece

Accurate lead screw moved the tool as the workpiece rotated

Tool was clamped here and moved by hand or lead screw

Headstock gripped and rotated the workpiece

Tailstock was adjusted by turning this bar Triangular steel

Semaphore telegraph

Claude Chappe

etween 1792 and 1814. DFrance was usually at war with Austria. Some of the fighting was near Lille in northern France. To speed up communication with Paris, engineer Claude Chappe built a chain of towers. Each one had movable arms to signal letters and numbers, which could be seen from the next tower using a telescope. In August 1794, this semaphore telegraph sent news of a victory over a distance of 128 miles (205 km) in less than an hour.

Screw-cutting lathe

Henry Maudslay, David Wilkinson

lathe spins metal against a tool to give it a circular shape. If the tool also moves

94 What will become one of the world's best loved poems, "The Tyger," which begins "Tyger, tyger,

Cotton gin

Eli Whitney

otton is the fiber attached

to the seeds of the cotton

plant. It cannot be used until

the seeds have been removed.

machine to remove the seeds-

through a comb to rake out the

seeds. It was so successful that it

made the US the world's leading

other regions such as Egypt and

cotton producer, overtaking

India. Despite this, it brought

Whitney little profit.

In 1793, US engineer Eli

Whitney invented the first

the cotton gin. A revolving

cylinder covered with rows

of hooks forced the cotton

burning bright / In the forests of the night," is printed by British artist and poet William Blake in Songs of Innocence and Experience.

sideways, it cuts a screw thread. This could be done with a handoperated screw mechanism, but in 1797, Henry Maudslay in Britain and David Wilkinson in the US invented lathes where the tool was driven by a screw geared to the lathe. They cut accurate threads with ease.

Chromium

Nicolas Vauquelin

hromium can prevent corrosion of other metals, either as plating or in stainless steel. French chemist Nicolas Vauquelin discovered the element in 1797 as an impurity in lead ore. He called it chromium, from the Greek word for color, because its compounds are brightly colored. This makes them especially useful in paints.

Lithography

Aloys Senefelder

ost printing today relies on a process invented in 1798 by an unsuccessful

France replaces its 5 old weights and measures with the metric system. Its basic unit, the meter, is taken

German actor, Aloys Senefelder. He was trying to make printing plates from limestone, by writing on them with grease and then etching them, when he discovered that his plates would print before they were etched because the printing ink stuck to the grease but not to the wet stone. In today's lithography, the plates are metal and the image is formed photographically, but the principle remains the same.

Beryllium

Nicolas Vauquelin

Perhaps the best-known beryllium compound is the green gemstone called emerald. Electrical contacts made of copper also contain beryllium, which makes the copper springy without reducing its conductivity. Beryllium was first identified as beryllium oxide by French chemist Nicolas Vauquelin in 1798. This compound conducts heat well but does not conduct electricity, making it useful today in certain electronic components. Pure beryllium metal was prepared in 1828 by German chemist Friedrich Wöhler and, independently, by French chemist Antonine Bussy. It is often used in the space and nuclear industries.

to be one 40-millionth of the circumference of Earth. By the late 20th century, it will be used by most countries worldwide.

Shaft was turned by a gearbox (now missing)

time, sc better w

Smallpox vaccine

Edward Jenner

Smallpox was a deadly viral infection common 200 years ago. British surgeon Edward Jenner noticed that people who caught cowpox, a similar but milder disease, never got smallpox. In 1796, he scratched a boy's skin, then applied fluid from a girl with cowpox. It was the first vaccine. The boy later survived deliberate smallpox infection, and in 1798 Jenner published the first book on vaccination. (* See also Protection for Life.)

Laughing gas 1799

Humphry Davy

Joseph Priestley discovered nitrous oxide in 1772, but it was 1799 before Humphry (later Sir Humphry) Davy found that the gas could make people laugh. While suggesting that it might be useful in surgery, he also liked to throw parties at which he used nitrous oxide to give his guests a good laugh.

PROTECTION FOR LIFE

EDWARD JENNER HIT ON THE PRINCIPLE by which all vaccines work. The body creates different antibodies to destroy specific viruses or other invaders. But making the right antibody takes time, so a big infection can overwhelm the system. It works better with advance warning in the shape of harmless vaccine particles resembling the unwanted guest. Then, if the real thing comes along, the body is ready for it.

Simple tools used by Jenner for his

SMALLPOX BEFORE JENNER Before vaccination, the only precaution against smallpox was variolation, a procedure made popular by Lady Mary Wortley Montagu. Infectious matter from a person with smallpox was applied to a scrape in the skin of someone who wanted to be protected. This risky process could produce either immunity or smallpox itself.

Vaccine points

Vaccination lancets

Edward Jenner

VACCINATION FOR ALL

Jenner's work stirred up a lot of opposition, but his ideas began to take hold as deaths from smallpox dwindled. In 1881, the French biologist Louis Pasteur created a vaccine against anthrax, a fatal disease caught from animals. Today, we can be vaccinated against a wide range of once deadly infections.

> Lancet and vaccinator

LAUGHING GAS In this 1802 cartoon, James Gillray suggests some comical dangers of playing with laughing gas. Davy is wielding the bellows.

Stratigraphy 1799

William Smith

S tratigraphy, a key way to Sunderstand Earth, was developed by British surveyor William Smith. He noticed the same sequence of rock layers in different places. Tracing these over a wide area, he drew the first geological maps. He also saw that each rock had its own fossils and that those in higher layers were more complex life forms. This lets geologists group rocks by age, according to the fossils they contain.

1796 A new medical homeopathy is introduced by a German doctor named Samuel Hahnemann. It treats an illness with tiny doses of drugs that produce effects similar to the symptoms of that illness.

1798 British poets William Samuel Taylor Coleridge together produce the slim volume *Lyrical* *Ballads*. It opens with Coleridge's "Rime of the Ancient Mariner" and marks the start of poetry's Romantic Movement.

Battery

Alessandro Volta

T n 1780, Italian doctor Luigi Galvani noticed that a frog's leg in contact with two different metals would twitch and found that the effect was electrical. His friend Alessandro Volta proved that it was the metals, not the animal tissue, that produced the electricity. In 1800, he made the first battery, a stack of silver and zinc discs separated by brine-soaked cardboard, and showed that electricity from his "pile" behaved like static electricity.

Electrolysis of water

William Nicholson, Anthony Carlisle

British engineer William Anthony Carlisle began to use Volta's new battery. They found that bubbles formed when they put wires from the battery into salt water. Investigation revealed that the bubbles from one wire were hydrogen. Oxygen was liberated at the other wire, but it combined with the wire rather than forming bubbles. This was the start of electrochemistry, which would reveal much about the nature of chemical compounds.

Iron-framed printing press 1800

Charles Stanhope

In printing, the bigger the area of type, the greater the force needed to squeeze the

Pedals for

the strings

retuning

years earlier, its goal is to collect

at least one copy of everything

published in the US, as a way

of establishing copyright.

1800 In the US, the Library of Congress is founded. Like the British Museum library, founded 41 CHROMATIC HARP This French pedal harp dates from about 1810.

Strings stretched between the neck and the sound box paper into contact with it. Wooden presses couldn't stand the force needed to print a large sheet. Charles Stanhope, a scientifically minded aristocrat, improved things by making the first cast-iron press. Stronger than a wooden press, it could print large sheets in one pull.

Asteroid

Giuseppe Piazzi

Ttalian Lastronomer Giuseppe Piazzi discovered the first asteroid in 1801 but soon lost it again as it moved into the daytime sky. It fitted just where Bode's Law said there was a missing planet (* see page 108). German mathematician Carl Gauss invented a way of calculating its orbit from Piazzi's few observations. Using this information, German astronomer Franz von Zach later found the missing asteroid. Piazzi named it Ceres.

Chromatic harp

Sébastien Érard

Simple harps have one string per note and can normally play in only one key. Adding too many extra strings would make the instrument unplayable, so attempts to solve the problem have all been based on rapid retuning. The first harp that could play in every key was designed by Sébastien Érard in France

1801 Following a decree of the revolutionary government of France, seven years earlier, what were once the between 1801 and 1810. Its double-action pedal mechanism can instantly retune any of its seven sets of strings.

Jacquard loom 1801

Jacques de Vaucanson, Joseph-Marie Jacquard

By raising and lowering the warp (lengthwise) threads on a loom in the right sequence, elaborate patterns can be woven. In the 18th century, this was done manually by a "drawboy." Inventor Jacques de Vaucanson replaced the boy with a punch-card mechanism in 1745, but this was ignored until 1801, when Joseph-Marie Jacquard turned it into the Jacquard loom. As well as weaving under the control of punch cards, it acted as an inspiration to the earliest computer pioneers.

Ultraviolet light

Johann Ritter

Radio waves, X-rays, and many other kinds of radiation, including light, the only visible kind, are electromagnetic waves. They can be arranged in order of wavelength to form a spectrum. The part of the electromagnetic spectrum that we can see, the visible spectrum, has red at one end and violet at the other. In 1800, William Herschel discovered infrared radiation beyond the red end of the visible spectrum when he put a thermometer there and noted that it heated up. This made German physicist Johann Ritter have a look beyond the violet end. There, he found that silver chloride, which darkens in light, darkened more quickly, again revealing the presence of radiation-ultraviolet light.

royal art collections of France at last become fully accessible to the public. They are displayed at the Louvre palace in Paris.

High-pressure steam engine

Richard Trevithick, Oliver Evans

ames Watt would never try steam at high pressure because he was convinced it was too dangerous. British engineer Richard Trevithick had no such fears. He made his cylinders extra thick and the pressure 10 times higher. In 1802, he patented the resulting smaller, more powerful engine, which made steam power far more versatile. At about the same time. Oliver Evans was pioneering high-pressure engines in the US, where they were taken up with even greater enthusiasm.

Mass production 1802

Marc Brunel, Henry Maudslay

ass production reduces a complex operation to simpler operations, each carried out by a separate machine. The first true mass production system made wooden blocks for the rigging of sailing ships. It was designed by French engineer Marc Brunel and built by British engineer Henry Maudslay. Each of its 45 machines carried out a single operation, such as drilling a hole. It increased output per person by more than 10 times.

Names for clouds

Luke Howard

louds tell us a lot about the weather, so it's not surprising that meteorologists recognize many types. Most of the names they use, such as cirrus and cumulus. were invented in 1803 by British chemist Luke Howard. His lifelong interest in the weather led him to lecture on

meteorology and to publish the first book about it. In recognition of his work, he was elected to the Royal Society (a leading scientific society founded in 1660) in 1821. Railroad locomotive

Richard Trevithick

In 1804, when Richard Trevithick added wheels to his high-pressure engine and used it on a tramway, he created the first steam locomotive.

Strongly

built

boiler

Rods

powered by

the piston

drove the

rear wheels

It pulled 70 people and 11 tons (10 tonnes) of iron 10 miles (16 km) at a speed of 5 mph (8 km/h). Its advanced features included blowing used steam up its own chimney to make the fire burn faster. Unfortunately, the locomotive wore out the cast-iron tracks on which it ran, so Trevithick was forced to abandon it.

RAILWAY LOCOMOTIVE This is a model of Trevithick's locomotive Catch-Me-Who-Can, which he built in 1808.

> Pump fed water into the boiler

1802 After the breakup of her marriage, Marie Tussaud, an expert in wax modeling, arrives in Britain from France, with several models and two children. She will tour Britain for 33 years, then start a waxwork museum in London.

1804 Tsurya Namboku IV, chief playwright of the Kawarazaki Theatre in Japan, scores his first big hit with Tokubei of India: Tales of Strange Lands. Written for top actor Onoe Matsusuke I, it is full of the macabre and the grotesque.

Arc light c.1807

Humphry Davy

By 1807, British chemist Humphry Davy had demonstrated a sensational effect to an audience at the Royal Institution of Great Britain. He brought together two carbon rods connected to a colossal 3,000-volt battery, then drew them apart to produce a blinding white flame 4 in (10 cm) long. It was another 70 years before electric generators were good enough to turn this bold experiment into practical lighting for streets and warehouses.

ARC LIGHT In Minneapolis, the first electric arc lights were illuminated in February 1883.

Sodium and potassium 1807

Humphry Davy

Volta's battery (* see page 116) brought a flurry of new discoveries. Two of them, sodium and potassium, were made by Humphry Davy at the Royal Institution. Because these elements are so reactive, they are never found uncombined. In separate experiments, Davy melted sodium hydroxide and potassium hydroxide, then connected a battery across the molten masses to extract the metals from their different compounds electrically.

Atomic weights

John Dalton

In 1808, British schoolmaster John Dalton helped create the formulas and equations of modern chemistry. In his *New System of Chemical Philosophy*, he said that chemical elements consist of atoms, each element having atoms of a different weight. The ratios of these weights, and the proportions in which atoms combined, were whole numbers. Ignored for nearly 50 years, Dalton's work eventually had a great effect.

Lace-making machine

Lace was originally made by clever hands manipulating lots of bobbins. Only rich people could afford to buy it. In 1809, British inventor John Heathcoat patented a machine that could imitate handmade lace. With his partner Charles Lacy, he set up a mill to turn out the new product. It was wrecked in 1816 by Luddites organized groups of workers who tried to stop machines forcing workers into factories.

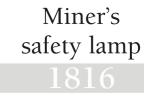
Nicolas Appert, Peter Durand

Canned food started with an attempt to provide better food for French soldiers. The idea was developed by French confectioner Nicolas Appert, in

1807 Three years after all US states north of Maryland abolish slavery, British antislavery reformers William Wilberforce and Thomas Clarkson finally succeed in making it illegal to import slaves into any British colony.

CANNING Canned food gradually became commonplace as food companies opened factories for canning all kinds of food.

1809. He put jars of food into boiling water, then sealed them while still hot. Although Appert didn't know it, this killed bacteria and prevented reinfection. In 1810, British inventor Peter Durand replaced the jars with tin-coated iron containers, creating the first canned food. By 1820, it was feeding the British navy.


Compound steam engine

Arthur Woolf

In a high-pressure steam engine, the steam released after each stroke of the piston is still under pressure and therefore contains wasted energy. By feeding it into a second cylinder, much of this

1812 In Germany, folklore researchers Jacob and Wilhelm Grimm publish the first of a two-volume set of folktales called *Kinder-und Hausmärchen*. The stories will appear 45 years later as *Grimms' Fairy Tales*.

1751 - 1850

Humphrey Davy, George Stephenson

C ee **pages 120–121** for the Story of how Davy and Stephenson fought to save miners' lives

Kaleidoscope

David Brewster

n 1816, Scottish physicist David Brewster took time off work to invent the optical toy called a kaleidoscope. Multiple reflections between a pair of mirrors set at an angle to each other turn a collection of colored fragments into a constantly changing symmetrical pattern. Its name is Greek, meaning "see beautiful shapes."

Cylinder printing press

Friedrich König, Andreas Bauer

arly 19th-century printing presses worked in much the same way as the one used by Gutenberg in 1455 (* see page 76). Then, with better engineering, faster machines

became possible. The first was designed by German engineers Friedrich König and Andreas Bauer in 1811. The paper was wrapped around a cylinder that rotated as the type rolled under it. In 1814, a steamdriven König and Bauer at the offices of The Times newspaper in London hit a record-breaking total of 1,100 sheets an hour.

Tube in which colored fragments are viewed

Sensory and motor nerve

fibers

Charles Bell

research on the human nervous

system. Working in London, he

investigated the structure of the

biggest discovery was that there are two kinds of nerve fibers:

messages to the spinal cord and brain, and motor fibers that

brain and spinal nerves. His

sensory fibers that bring in

send out instructions. Bell's

by the French physiologist

François Magendie.

findings were later confirmed

KALEIDOSCOPE Brewster's

kaleidoscope was far

more elaborate than

today's toy.

€ cottish anatomist Charles

Bell did fundamental

can be recovered. British

inventor Jonathan Hornblower patented the idea in 1781 but was prevented from developing it by James Watt, who claimed that it infringed his own steam engine patent (* see page 107). However, British engineer Arthur Woolf rediscovered the principle in 1804 and produced the first successful compound engine in 1811, after Watt's patent had expired.

3 Jane Austen sees her novel Pride and *Prejudice* in print at last, 17 years after she started writing it.

Austen declares the book's central character, Elizabeth Bennett, to be her favorite among the many

Object plates

heroines she has created.

containing loose

colored fragments

1815 On June 18, Napoleon suffers his final defeat, at the Battle of Waterloo in Belgium. As well as

making some tactical errors, he is heavily outnumbered by 133,000 men led by General von Blücher and the Duke of Wellington.

Lockable

case

MAKING THE MAGIC LAMP

Humphry Davy and George Stephenson fight to save miners' lives

BEING A MINER A section through Bradley mine in Staffordshire, in 1808, shows the rock strata and the jobs of miners. In addition to coping with rock fall and floods, early miners worked in almost total darkness. Any light came from candles, which could cause devastating explosions. Monday, May 25, 1812, was a terrible day for the mining village of Felling, near Newcastle, England. A massive underground explosion killed 92 miners, some of them only 10 years old. It was one of a series of disasters caused by the flame in miners' lamps making "firedamp," or methane gas, explode. In the previous 10 years, 108 miners had died in the northeast alone. Now the number had risen to 200. Something had to be done.

A committee was formed to investigate the problem. It asked the advice of William Clanny, a local doctor, Humphry Davy, a chemist, and George Stephenson, a self-educated mine mechanic.

Both Clanny and Stephenson started work on a safer lamp. Clanny sealed his with water, but miners had to pump air in by hand, so it wasn't very useful. Stephenson tried letting the air in through small holes. Firedamp got in, too, and

burned, but the metal around the holes cooled the flame, preventing explosions. Stephenson's lamp was tested in October 1815, and it worked.

Back in London, Davy experimented with firedamp from a mine. Like Stephenson, he fed in air through small holes, but he realized that the holes had

to be very small indeed. His lamp had copper gauze around the flame. It was tested in January 1816 and was a success. The mine owners held a celebration dinner and gave Davy some silverware worth 50 times a miner's yearly pay.

> The miners were not impressed. They resented a southerner getting credit for something one of their own people had already invented. Many wouldn't use Davy's lamp and stuck to their "geordie"— Stephenson's design. Davy said that

THE COMPETITORS Humphry Davy and George Stephenson were very different people. Davy, born in the southwest of England, was a well-educated gentleman and a skilled scientist. Stephenson, who came from the northeast, was a tough, practical mine mechanic who had never been to school.

Humphry Davy was a chemist, but he turned his hand to scientific matters of many kinds.

George Stephenson pioneered the first public steam railroad as well as invented a safety lamp.

Stephenson had stolen the idea from him and that the geordie wouldn't work because it wasn't scientific.

In the end, most miners' lamps incorporated ideas from all three inventors. They had glass instead of gauze around the flame, so they gave more light than Davy's lamp, but the air was still fed in through gauze to prevent explosions. The problem was solved.

Or was it? Unfortunately, the new lamps encouraged mine owners to send miners into areas that were previously thought too dangerous. And because the lamps weren't totally safe, there were just as many deaths as before. Davy and Stephenson may have fought each other for nothing.

The industrial world of the 19th century was powered by coal. The safety lamp, which made it possible to work in dangerous areas, helped coal owners get a lot more coal out of their mines.

CONTINUING TRAGEDY Explosions like this one in 1866 at Barnsley, England, were still killing miners 50 years after the invention of the safety lamp.

SAFETY LAMPS

Davy's lamp (right) and Stephenson's lamp (left) were

the first safety lamps to be used in coal mines, but the Marsaut

lamp of the 1880s (center) was

one of the safest and saw many

vears of successful service.

Helmet made of copper and brass Face plate

tunnel rings to be inserted. South African–born civil engineer James Greathead improved this in the 1860s.

Diving suit

Augustus Siebe

The first practical diving suit was invented in 1819 by German engineer Augustus Siebe. Until then, underwater workers sat in a diving bell—an open-bottomed air chamber. Siebe's first suit was a jacket with an airtight helmet into which air was pumped from the surface. By 1830, he had created a totally enclosed suit.

Stethoscope

René Laënnec

French doctor René Laënnec wanted to listen to his patients' lungs and hearts but was perhaps shy of putting his ear to their chests. Instead, he listened through a wooden tube and found that this *cylindre* transmitted body sounds that he could relate to various medical conditions. After he published his findings in 1819, other doctors improved on his instrument, eventually creating the device seen today.

Adding machine

Thomas de Colmar

The first calculating machine that really worked was the arithmometer, patented by French insurance agent Thomas de Colmar in 1820. Although it could add, subtract, multiply, and divide, it was at first a failure, mostly because its inventor was not an engineer. By the 1850s, an improved version was beginning to be noticed, and by 1880 hundreds were in use—particularly in the insurance industry.

Stirling engine

Robert Stirling

Exploding boilers upset Scottish clergyman Robert Stirling, so he invented an engine that didn't need steam. Patented in 1816, it works by compressing a cold gas then transferring it to a heated cylinder, where it expands against a piston to do work. It is then cooled again by a radiator. The Stirling engine is quiet, clean, and efficient, but its cost and bulk limit its use.

Superphosphate fertilizer

C.101/

James Murray

Plants need phosphorus, and one source of this is fertilizer made of bones. In about 1817, Irish doctor James Murray discovered that treating bones with sulfuric acid made them soluble so that plants got their phosphorus more **DIVING SUIT** The heavy helmet of the 1830 Siebe suit provided a somewhat restricted view.

quickly. He called his product superphosphate. It didn't catch on, until 1843 when British farmer John Lawes started making it on a larger scale.

Tunneling shield

Marc Brunel, Peter Barlow, James Greathead

igging a tunnel under a river was impossible until French engineer Marc Brunel invented his shield in 1818. This supported the tunnel and stopped water from rushing in. As the tunnel grew, workers moved the shield forward and built a lining behind it. Brunel created the first river tunnel in 1843. Later, Peter Barlow developed a circular shield that allowed precast

1816 In Rome, the opera The Barber of Seville by Italian composer Gioacchino Rossini has its first performance. Based on an earlier comedy by the French writer Pierre de Beaumarchais, it will become one of Rossini's most popular operas.

1818 The first sciencefiction novel, *Frankenstein*, is published. It was written two years earlier by Mary

Shelley while she was staying in Switzerland with the poet Byron. She was one of several guests he challenged to write a ghost story.

Electromagnetism 1820

Hans Christian Ørsted

Tntil Danish physicist Hans Christian Ørsted's crucial experiment of 1820, electricity and magnetism were seen as two separate subjects. The experiment was made possible by the battery, which Volta invented in 1800 (* see page 116). Ørsted put a compass needle near a wire then connected the wire to the terminals of a battery. The needle set itself at right angles to the current in the wire, showing that electricity could create magnetism. The two subjects were really one.

Quinine 1820

Pierre Pelletier, Joseph Caventou

Quinine is the active substance in a tree-bark extract that helps patients with malaria, a disease caused by a parasite in the blood. It was isolated in 1820 by French chemists Pierre Pelletier and Joseph Caventou and marked the start of a shift from the use of whole plant extracts toward chemically pure drugs for treating disease. The same pair of men also isolated several other well known natural chemicals, including chlorophyll.

Dry cleaning

Thomas L. Jennings

A patent is a legal document that prevents other people from copying your invention. In 1821, Thomas L. Jennings became the first African American to be granted one. US Patent 3306X was registered for Jennings' "dry scouring" process, a precursor to today's modern dry cleaning. The physical copy of the patent was destroyed in a fire, so we don't know many details about his process, but we do know that it was hugely successful. It made him enough money to buy the freedom of his wife and children, who until then had been enslaved.

Non-Euclidean geometry 1823

János Bolyai, Nikolay Lobachevsky

€ chool geometry includes DEuclid's (* see page 45) statement that there can be only one line that passes through a given point and lies parallel to a given line. In 1823, Hungarian mathematician János Bolyai discovered that he could forget this idea and create a "non-Euclidean" geometry that made sense. Russian mathematician Nikolay Lobachevsky published the same discovery in 1829. Euclidean geometry describes the small spaces we are used to but may not be true for space as a whole. In the

1850s, German mathematician Bernhard Riemann extended non-Euclidean geometry, providing a basis for Einstein's view of gravity (* *see* **pages 178–179**).

Waterproof cloth

Charles Macintosh, working in rainy Glasgow, Scotland, found a way to make the first waterproof cloth. He discovered that rubber would dissolve in naphtha, a gasolinelike liquid produced in the making of coal gas. In 1823, he stuck two layers of fabric together with his rubber solution. Although at first there were problems with leaking seams and softening rubber, a "macintosh" soon became the only thing to wear in the rain.

ADDING MACHINE Arithmometers were made by several different companies. This wood-cased brass machine dates from about 1870.

1819 British administrator Sir Stamford Raffles founds a colonial settlement on the island of Singapore. Ideally positioned between the Indian Ocean and the South China Sea, the island will become a highly successful country. 1822 Ancient Egyptian hieroglyphs are deciphered thanks to the Rosetta Stone. Found by French troops

in 1799, this has the same text in hieroglyphs and Greek, allowing French scholar Jean François Champollion to crack the code.

Maximum efficiency of a heat engine

Sadi Carnot

heat engine, such as a steam Aengine, turns heat, a form of energy, into mechanical work, another form of energy. The percentage of heat that gets turned into work is known as the engine's thermal efficiency. It is never anywhere near 100 percent. In 1824, French scientist Sadi Carnot discovered what limits the maximum power ouput of any given engine. It is the temperature difference between the hottest and coldest parts inside the engine: the larger the difference, the greater the power output.

Portland cement

Joseph Aspdin

Portland cement is ordinary building cement. It has nothing to do with Portland, in the south of England; it was invented in the north of the

country by a Yorkshire builder, Joseph Aspdin, in 1824. He burned a mixture of clay and limestone until it became so hot that it partly turned into glass. Aspdin thought his material was just as good as the fine stone quarried in Portland, hence the name.

Self-trimming candle wick

J. J. Cambacères

o burn properly, a candle needs just the right length of wick. Before 1824, wicks had to be trimmed by hand, because the wax burned down but the wick didn't. French inventor Cambacères found that if the wick is braided instead of twisted, it flops over and sticks out through the flame, constantly burning away and trimming itself. All candles are now made this way.

Aluminum

Hans Christian Ørsted

lthough aluminum is the

Most common metal on

Earth, nobody had seen any

Water tank was carried in a waggon behind the locomotive

some from aluminum chloride in 1825. It had already been named by Humphry Davy, who identified it in alum, used in dyeing. He called it alumium, then aluminum (now its name in North America), and finally, by its English name, aluminium, to match names like sodium. Whatever the name, it is one of the world's most useful metals.

until Danish chemist Hans

Christian Ørsted extracted

Public steam railroad

George Stephenson

eorge Stephenson was Jalready building industrial locomotives when he became engineer of a proposed public tram system from Darlington to Stockton in northeast England. He thought that steam locomotives and iron rails would be better than the proposed horses and wooden rails. On September 27, 1825, a steam

train ran from Darlington

OCOMOTION

to Stockton. The world's first public steam railroad had opened. Both passengers and freight traveled in open carsexcept the railroad's directors, who had a covered carriage. (* See also Railroad Mania.)

Amalgam filling

August Taveau, Thomas Bell

Taving teeth filled is no fun. but it used to be much worse. The first metal fillings had to be heated to boiling point before going into the tooth. In about 1826, August Taveau in France and Thomas Bell in Britain found that a mixture of mercury and silver formed a paste that could be inserted cold and would harden rapidly. They had invented the amalgam filling, which is still used today.

PUBLIC STEAM RAILROAD Stephenson's Locomotion No. 1, seen here as a model, provided the power for the first public steam railroad.

1824 The great German composer Ludwig van Beethoven, now totally deaf, composes his ninth symphony.

Written for a large choir as well as full orchestra, its last movement contains a setting of Schiller's "Ode to Joy."

The Bolshoi (Great) Theatre opens in Moscow, Russia. Taking over the dancers of its predecessor, the

Petrovsky Theatre, it renames the company the Bolshoi Ballet. It will become one of the world's finest ballet companies.

124

RAILROAD MANIA

RAILROADS STARTED AS WOODEN TRACKS for horse-drawn traffic, but once Stephenson had proved what steam could do, steam railroads spread across Britain and the Americas with astonishing speed. Money, both public and private, poured into the new technology. By 1850, Britain had more than 6,250 miles (10,000 km) of track, while pioneers in the US had opened up the West with 9,000 miles (14,500 km) of railroads.

BRING YOUR OWN TRAIN

In Britain, the Surrey Iron Railway opened in 1803 and ran from Wandsworth on the Thames River to Merstham, south of London. It was the first to be open to everyone, but carriers had to provide their own wagons and horses.

\ Horses walked between the wooden tracks

THE RAILROAD AGE BEGINS At the opening of the Stockton & Darlington Railway, crowds fought to experience the new thrill of rail travel. A total of 600 people piled into the wagons, some even clinging to the outside. A simple horse-drawn railroad speeded production at a quarry near Bath, England, in about 1730.

GOING LIKE A ROCKET The first all-steam railroad with its own rolling stock ran between Liverpool and Manchester in England. It opened on September 15, 1830, with a train hauled by Stephenson's *Rocket*, the clear winner of competitive trials held in 1829.

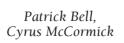
This 1949 painting by Terence Cuneo vividly captures the excitement surrounding the opening of the Stockton & Darlington Railway.

Interchangeable parts

1826

John Hall

Most products today are assembled from massproduced parts. In the 18th century, nobody could make parts accurately enough to guarantee that they would fit together, but the US government needed guns with interchangeable parts so that weapons could be repaired quickly. In 1826, US gunmaker


> 6 Japanese artist Katsushika Hokusai

starts publishing a series of prints

entitled Thirty-six Views of Mount

John Hall succeeded in making exactly what they wanted. He'd had to invent a new set of tools and techniques but, in doing so, had perfected an essential ingredient of mass production.

Reaping machine

Without mechanical help, harvesting demands fields full of people. The first

Fuji. The series includes The Breaking Wave off Kanagawa, which will become the bestknown Japanese print of its time.

successful reaper was designed in 1826 by Scottish farmer Patrick Bell, who encouraged other farmers to copy it. A few years later, in the US, Cyrus McCormick invented a similar machine, which, like Bell's, had a revolving reel for drawing the corn into the cutter. McCormick's production models went on sale in 1840 and competed successfully with a factory-built version of the Bell reaper. McCormick sold his reapers by the thousand. His company continued until 1902, when it merged with four others to form the International Harvester Company.

1827 The first volume of US bird artist John Audubon's *Birds of America* is published by London engraver

Mammals from eggs

Karl von Baer

Most people know that birds come from eggs, but it's not so obvious that mammals do, too. This fact was published in 1827 by Estonian naturalist Karl von Baer. A professor at Konigsburg University (now Kaliningrad in Russia), he found out more about how animals develop and created the science called comparative embryology.

Robert Havell. The complete book contains 435 magnificent hand-colored illustrations and makes Audubon famous.

Greenhouse effect

Joseph Fourier

The greenhouse effect is in the news as cars and power stations pump carbon dioxide into the atmosphere. Natural greenhouse effects would keep the Earth at a comfortable temperature, but the polluting gases produced by humans trap too much heat and make the Earth warmer. The existence of the effect, and its similarity to how a greenhouse works, were first suggested by the French mathematician Joseph Fourier in 1827. He didn't know how much people would worry about it 175 years later.

Match

John Walker

A s chemical knowledge increased, inventors began to apply it in the search for a better light. A few burned their fingers with creations like chemical-tipped wood dipped in sulfuric acid, then, in 1827, British chemist John Walker produced the first practical match. His "friction lights" lit up when rubbed on sandpaper, just like

some matches today.

Macadamized road

John McAdam

C cottish engineer John McAdam realized that the best base for a road was dry soil. In 1827, he started building roads made from compacted soil with stones on top. Iron-tired cartwheels broke the stones into smaller pieces, which filled any gaps and made the surface waterproof. "Macadamized" roads were used everywhere until cars, whose pneumatic tires damaged them by sucking out the smallest stones, demanded a road surface made with tar or bitumen

Multiple fire tube boiler

Marc Séguin, George Stephenson

The first steam boilers were tanks on top of a fire. This was inefficient because little of the water was in contact with the fire. In 1827, French engineer Marc Séguin invented a boiler with tubes going through the water and hot gases from a fire going through the tubes. It heated water quickly and wasted less heat. George Stephenson used the same idea in *Rocket*, the first locomotive to run on an all-steam railroad.

Ohm's law

Georg Ohm

Ohm's law is fundamental to electrical and electronic engineering.

It says that electric current = voltage ÷ resistance. So when you connect a wire across a battery, if you double the length of the wire, and therefore the resistance, you will halve the current. George Ohm's scientific colleagues in Germany thought that the law was nonsense when he published it in 1827, but Ohm had the last laugh. In 1841, the Royal Society in London gave him a medal, and his name lives on as the unit of resistance.

Water turbine

Claude Burdin, Benoît Fourneyron

rench engineer Claude Burdin coined the word "turbine" from the Latin *turbo*, meaning "spinning top." One of his students at the St. Étienne Technical School, Benoît Fourneyron, built a working water turbine in 1827. Water fell on to a horizontal rotor and rushed through curved blades, making the rotor spin and producing as much power as six horses. He was soon building turbines that spun at 2,000 rpm (revolutions per minute) to produce 40 kW of power—ideal for generating electricity. In 1895, Fourneyron turbines were installed for this purpose at Niagara Falls on the Canada/US border.

∖ Handles for pushing the machine

BUDDDIA for the Clutch lever

Differential gear

Onésiphore Pecqueur

A vehicle with both back wheels on one axle will have trouble getting around corners. This is because the wheel on the outside of the curve has to travel further, and therefore turn faster, than the wheel on the inside. This is impossible if both wheels are

attached to the same shaft. Modern rear-wheel drive cars avoid this problem by having

> Head tipped with mixture containing phosphorus

MATCH Early matches lit as soon as they were warmed by friction so were supplied in a fireproof

box in case they lit by accident.

Modern matches are safer to carry.

1828 Noah Webster grammar and spelling when he publishes the American Dictionary

of the English Language. It contains about 70,000 entries almost half have not appeared in any earlier dictionary.

Thin wooden spill

burned easily

1829 Following a campaign by religious reformer Ram Mohan Roy, the rite in which a widow

throws herself on her husband's funeral pyre is outlawed by the British authorities who control parts of India at this time. each rear wheel on a separate axle, driven from the engine through an arrangement called a differential gear. This contains several gearwheels, which allow the two rear wheels to rotate at different speeds where necessary. It was invented by French engineer Onésiphore Pecquer in 1827, long before cars were thought of, for use on steam vehicles.

Braille

Louis Braille

ouis Braille was blinded in an accident at the age of three. When he was 10, he went to Paris, where he was shown a way of writing messages with raised dots, designed for soldiers to use at night. Braille simplified and improved this system and, in 1829 and 1837, published his own six-TENT.NO151 dot code for blind people. It's difficult to learn but is still in use today.

Lawn mower

1830

Edwin Budding

Lawns were possible before lawn mowers, but only for people with gardeners or sheep to keep them trimmed. Edwin Budding's cylinder mower, patented in 1830, made tidy green squares available to far more people. Largely displaced by other machines for small lawns, Budding's mechanism lives on in tractor-pulled mowers for large areas of grass.

Electromagnetic induction

Michael Faraday, Joseph Henry

When Hans Christian Ørsted discovered that electricity could produce magnetism (* see page 123), ELECTROMAGNETIC INDUCTION Faraday's ring looks very much like some modern transformers.

British scientist Michael Faraday guessed that magnetism might produce electricity. In 1831, he showed that it could. Plunging a magnet into a coil of wire produced a surge of currentthe principle of the electric generator. Faraday also found that if two coils were wound on an iron ring, connecting or disconnecting one coil to or from a battery produced a current in the otherthe principle of the transformer.

Gears turned

the cutting

cylinder

which is used to change electric voltages. US scientist Joseph Henry discovered electromagnetic induction at about the same time, but Faraday published his findings first.

Cell nucleus

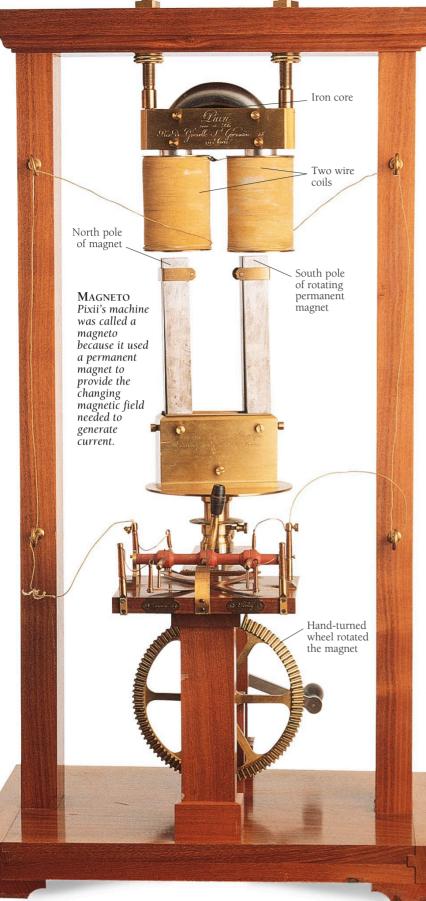
Robert Brown

Most living cells keep their genes in a nucleus, a distinct blob in their center. This structure was first noticed and named by Scottish botanist Robert Brown in 1831, while he was investigating orchids. Although Brown didn't understand what the nucleus did, his discovery was part of a growing realization that plant cells, far from being empty, were full of life.

LAWN MOWER Budding based his grass-cutting machine on the rotary cutter used for trimming the surface of woolen cloth in textile mills. Early Budding mowers were large machines for professional gardeners—this one was made by Ransomes of Ipswich, England—but the principle was later applied to domestic models.

> Handle for a second person to help with the machine

Roller for adjusting the height of the cut


Cutting

cvlinder

Main roller provided drive

1830 A group of British travelers, the Raleigh Travellers' Club, forms the Geographical Society of London. It supports explorations in Africa, the Arctic, and other areas and, in 1859, will become the Royal Geographical Society.

1831 Inspired by love for Irish actress Harriet Smithson, French composer Hector Berlioz writes his highly romantic *Symphonie Fantastique*. He fashions the huge orchestral work as a musical drama that ends with its hero's death.

1833 Oberlin College, the first college to admit both men and women, is established in Ohio. Two years

later, it will be the first college to admit African Americans and, in 1841, will award academic degrees to three women.

Safety fuse

William Bickford

Blasting out rock from mines and quarries with gunpowder is a good idea as long as nobody gets blown up. Until William Bickford's invention of the safety fuse in 1831, miners set off explosions with gunpowder laid on the ground or packed into reeds or goose quills—all highly dangerous. Bickford made his fuse from cloth wrapped around gunpowder. It burned at a predictable rate, allowing people to get away to safety before the big bang.

Steam bus

Goldsworthy Gurney, Walter Hancock

Buses existed before 1831, but they were pulled by horses. The first mechanical buses appeared in Britain. Inspired by Stephenson's *Rocket* (* see page 125), English inventor Goldsworthy Gurney built several steam coaches that operated between Cheltenham and Gloucester. In London, Walter Hancock set up a steam omnibus service. Opposition from horse-coach owners soon forced Gurney off the road, but Hancock's service was able to survive for five years.

Magneto

Hippolyte Pixii

Soon after Michael Faraday discovered that relative motion between a magnet and a wire produces

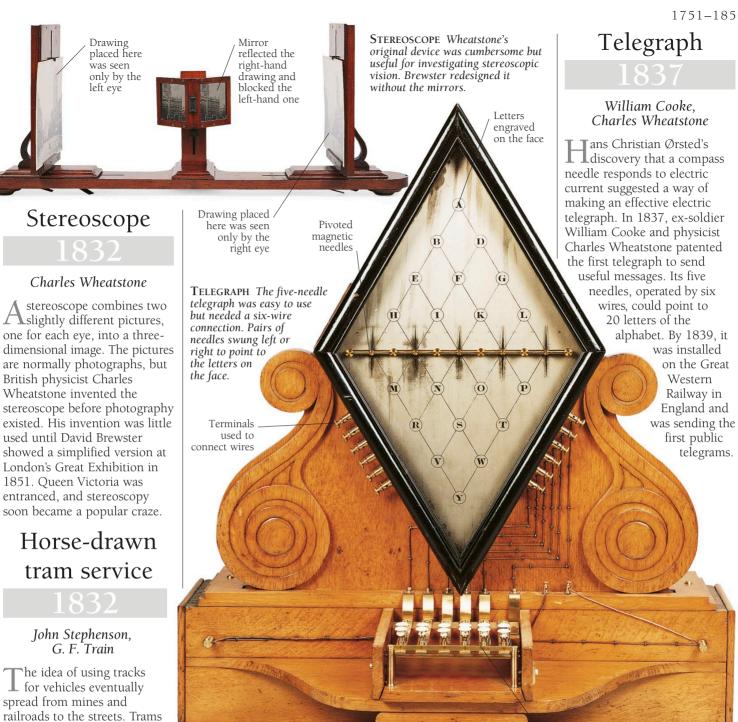
 $1835^{\rm Fourteen years after}_{\rm his death, one of}_{\rm Napoleon's pet projects, the Arc de Triomphe, is completed at the}$

electric current, Hippolyte Pixii, son of a Paris instrument maker, devised the first practical electric generator. His machine, built in 1832, rotated a magnet near a coil of wire, generating alternating current in the wire. Later, at the suggestion of physicist André Ampère, he added a switch that broke the circuit for half of each rotation, creating a pulsed direct current for experiment in electrolysis.

Electric motor

William Sturgeon, Thomas Davenport

t wasn't easy to develop a Luseful motor from Hans Christian Ørsted's discovery that electricity could move a magnet (* see page 123). The vital component was the commutator, a switch that continually reverses the current to keep the motor rotating. Practical commutators were invented in 1832 by British engineer William Sturgeon and in 1834 by US blacksmith Thomas Davenport. Davenport used his motor to drive several machines, including a car.


Inductance

Joseph Henry

n 1832, US scientist Joseph Henry discovered selfinductance, often called simply inductance. In this, the magnetism created by an electric current tends to maintain that current when conditions change. The effect is shown clearly when a wire is coiled up to create a stronger magnetic field. Joseph Henry discovered it when he disconnected an electromagnet and saw big sparks as the current carried on through the air instead of stopping.

top of the Champs Élysées in Paris. Built by Jean Chalgrin and Jean Raymond, it celebrates past French victories.

1751-1850

Reflex

Marshall Hall

Then someone pulls their finger away from a hot iron, they're using a reflex, a response that bypasses the brain for maximum speed. British physiologist Marshall

During its fight for 1836 During its light for independence from Mexico, the state of Texas is hit hard when the Mexicans, under

were at first drawn by horses. Probably the earliest tram

trams started running on the

New York and Harlem Railroad

in 1832, and his company later

built trams for services all over

the world. The US entrepreneur

G. F. Train also brought the

he installed a tramway in

the first in Britain.

tram to many cities. In 1860,

Birkenhead, near Liverpool-

builder was the Irish-US inventor John Stephenson. His

> Santa Anna, wipe out everyone in the fort called the Alamo. Santa Anna is later defeated by Texans shouting "Remember the Alamo!"

Hall, seeing a headless newt respond to a pinprick, was the first to realize that nerves from the spinal cord can act independently to receive sensations and make suitable responses. British colleagues ridiculed Hall's ideas, but European scientists discovered that he was right.

In the United

83/ Kingdom, King

William IV dies without an heir.

On Tuesday, June 20, his niece

Keys pressed in pairs to send letters

Samuel Morse, Alfred Vail

See pages 130–131 for the story of how Morse and Vail invented a new way to communicate.

Victoria, aged only 18, becomes queen. She will become one of the most important figures in British history.

WIRING THE WORLD

Samuel Morse and Alfred Vail invent a new way to communicate

MORSE'S FIRST TELEGRAPH The first telegraph Morse built was more elaborate than the final version reengineered by Vail. Its operator did not tap out messages directly but assembled shaped pieces of metal in a holder, which moved through a switch mechanism to turn the current on and off.

This unlikely

Morse[†]s first receiver.

contraption was

The Reverend Jedidiah Morse did not want his son to be an artist, but he felt it was better than having him waste time with electricity. So, after being tutored in England, Samuel Morse became a painter, one of the best

🖕 in the US.

In 1832, on a ship home from Europe, Samuel heard about the newly invented electromagnet, and his interest in electricity was rekindled. With his artist's imagination, he could see it sending messages around the world.

By 1835, Morse had built an electric telegraph, using odds and ends that included one of his wooden frames for stretching artists' canvas. But how was he to convey thousands of different words along its single wire?

His first idea was to make a numbered list of words, then send the numbers, switching the current once for one,

Morse's telegraph needed only one wire, which made it easy to construct. To make the single wire work, Morse and Vail invented a code based on patterns of pulses—an idea now used for all kinds of telecommunications. twice for two, and so on. It was terribly slow, even with an automatic switch and a better code that used short and long bursts of current—"dots" and "dashes." His homemade telegraph proved to be unreliable, too.

That might have been the end of it, but in 1837, at an unsuccessful demonstration of the telegraph in New York, Morse met the young engineer Alfred Vail. Vail took one look at Morse's amateurish efforts and offered to redesign the whole thing. He strengthened the electromagnet and replaced Morse's complicated switch with a simple, hand-operated key. He threw out Morse's word list and devised a dot-and-dash code for each letter of the alphabet. The telegraph was beginning to take shape.

In 1843, after several successful demonstrations and some political wrangling, the US government gave Morse \$30,000 to build a telegraph line between Baltimore and Washington, DC. There were quite a few technical problems, because nobody had ever laid 40 miles (65 km) of wire before. But by May 24, 1844, everything was ready..

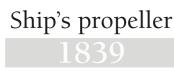
With Vail in Baltimore tending a stack of batteries and Morse in Washington looking after the politicians, the new line delivered its first message: "WHAT HATH GOD WROUGHT." Within a year, it was open to the public. Within another 30 years, telegraphs

covered the globe. Thanks to Vail the engineer, the vision of Morse the artist had become a reality.

This receiver embossed dots and dashes on paper tape.

ALFRED VAIL Vail met Morse

soon after graduating from college. He agreed to help Morse and pay for getting patents as long as he could share in any profits. He got his father to help Morse as well.


A Morse key for sending messages

THE FINAL SYSTEM

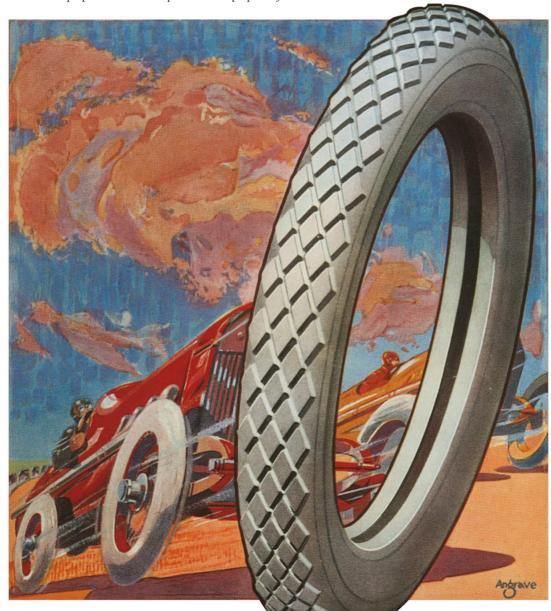
By about 1870, many refinements had been made to the telegraph. Operators could decode a message just by listening to the clicking of a sounder, leaving them free to write it down. Punched tape allowed messages to be stored, and a version of Morse code had been developed for use with underwater cables.

NOT VERY PRIVATE

A picture from a songsheet of 1860 illustrates one problem with the telegraph: every message had to be read by the operator. This could cause embarrassment, as here, with messages of an intimate nature. REVOLUTIONARY CHANGES

John Ericsson, Francis Smith

Early steamships had paddle wheels, but these did not work well in high seas. Engineers John Ericsson of Sweden and Francis Smith (later Sir Francis) of Britain both invented underwater propellers. Smith's looked like a screw, while Ericsson's was more like a fan. The British Navy wasn't interested in either, but a small ship equipped with Ericsson's propeller was shown to the US Navy. In 1839, both propellers were attached to larger ships, and trials confirmed the effectiveness of this new form of propulsion.


Photography c.1839

Louis Daguerre, William Fox Talbot

In 1826, French inventor Nicéphore Niepce coated a sheet of metal with tar, put it in a box with a lens, and pointed it out of the window.

Eight hours later, he had a permanent photograph. By 1839, his colleague Louis Daguerre was taking pictures in 20 minutes. A year later, William Fox

SHIP'S PROPELLER This is a model of SS Francis Smith, which was fitted with Smith's propeller. Modern ships have their propeller further back.

1838 US lion tamer Isaac to England and amazes Queen Victoria by putting his head in a lion's mouth. She asks artist Edwin Landseer to paint the American's portrait, complete with lions. 1839 The Grand Liverpool Steeplechase, the horse race now called the Grand National, is run for the first time Talbot announced a rival system. It allowed shorter exposures and could produce multiple prints. (* *See also* **Photo Pioneers**.)

Cell as the basic unit of living things

1839

Matthias Schleiden, Theodor Schwann

German lawyer Matthias Schleiden turned his hobby of botany into a fulltime job and studied plants under the microscope. In 1838, he concluded that all plants are made of tiny building blocks, or cells, and they grow as the cells divide. A year later, his friend Theodor Schwann found that the same applied to animals, establishing one of the basics of biology.

Vulcanized rubber

Charles Goodyear

Raw rubber gets weak and sticky when warm. In the US, rubber worker Nathaniel Hayward discovered that sulfur reduced the stickiness. Businessman Charles Goodyear, who had himself been trying to improve rubber, bought Hayward's invention. In 1839, after a series of experiments, he discovered a chemical reaction with sulfur that made the rubber harder and stronger. This way of hardening rubber is called vulcanization, and it is essential today for car tires and many other rubber items.

VULCANIZED RUBBER By 1923, when this advertisement appeared, cars had become more common and rubber tires were big business.

at Aintree, Liverpool, in England. The winner is Lottery, a nineyear-old owned by John Elmore and ridden by Jem Mason.

PHOTO PIONEERS

MANY EARLY 19TH-CENTURY artists and scientists wanted to capture the lifelike images they saw in the camera obscura

(* *see* **page 81**), a common drawing aid at that time. Silver salts darkened on exposure to light, but they were not really sensitive enough. Worse still, they kept what sensitivity they had after the picture was taken, so the image was soon destroyed. Daguerre and Fox Talbot both solved these problems

but in completely different ways.

Early daguerreotype camera

Plate holder

Daguerreotype Aperture images rings

Daguerre's pictures were taken with silver iodide, formed by iodine acting on a silvered copper plate. Sitters had to be clamped in place for the extremely long exposure. After treatment with mercury vapor and fixing with salt, the delicate,

DAGUERREOTYPES

silvery image was framed under glass to protect it.

Lens and attachments

A daguerreotype camera of the 1840s

CALOTYPES

When daguerreotypes appeared, Fox Talbot hastened to perfect his calotype process. It used paper soaked in silver salts. He discovered that before these darkened visibly they formed a hidden image, which a developing solution could reveal, allowing shorter exposures. After fixing with a sodium salt, he used his paper negatives to make positive prints.

Calotype made by Fox Talbot at his home, Lacock Abbey, England, in about 1843

Fuel cell

William Grove

Unlike ordinary electric batteries, fuel cells never run down—as long as they've got something to burn. A Welsh judge, William Grove, made the first one in 1839. Knowing that electricity splits water into hydrogen and oxygen, he simply reversed the process. His cell burned hydrogen in oxygen to produce water and electricity. Today, fuel cells are used in space and may soon appear in electric cars.

Polystyrene

Eduard Simon

The clear plastic of CD cases is polystyrene. It is also made into a lightweight packaging material. It consists of molecules of a carbon-based chemical, styrene, linked to form chains. It was first made in 1839 by German chemist Eduard Simon but was not used because impurities made it brittle. In 1937, US chemist Robert Dreisbach made purer styrene, and within a year polystyrene was on the market.

Babbitt metal

Isaac Babbitt

Robearings—holes lined with metal that can stand up to the constant rubbing of a shaft. One of the best materials for lining plain bearings is babbitt metal. It is an alloy of two soft metals, tin and lead, and two harder ones, antimony and copper. It takes oil well, will not seize up if it runs dry, and lasts a long time. It was invented by US goldsmith Isaac Babbitt in 1839. Electroplating c.1840

George Elkington, Auguste de La Rive

Electroplating uses electricity to coat surfaces with a layer of metal. It can make brass look like gold. The process was invented independently in about 1840 by British industrialist George Elkington and Swiss physicist Auguste de La Rive. It was Elkington who made it a success. He invented a plating bath then bought up all the rival processes so that people had to use his system.

1840 Britain gains control of New Zealand as 45 Maori chiefs sign the Treaty of Waitangi. The treaty aims to give the Maori British citizenship and protect their land, but its terms are not clear and will later lead to conflict. 1840 Canadian Samuel Cunard starts the first regular Atlantic steamship service when RMS *Britannia* sails from Liverpool to Boston. Cunard will continue to lead the way across the Atlantic with larger ships, such as *Queen Elizabeth*.

REVOLUTIONARY CHANGES

Ozone

Christian Schönbein

Ozone in the stratosphere protects us from radiation, but ozone from a photocopier can be dangerous. It's a highly reactive form of oxygen, with three atoms per molecule instead of two. Ozone can be made by passing air through an electrical discharge—as in a photocopier. Discovered and named in 1840 by German chemist Christian Schönbein, many uses have since been found for it, from purifying water to bleaching food.

Postage stamp 1840

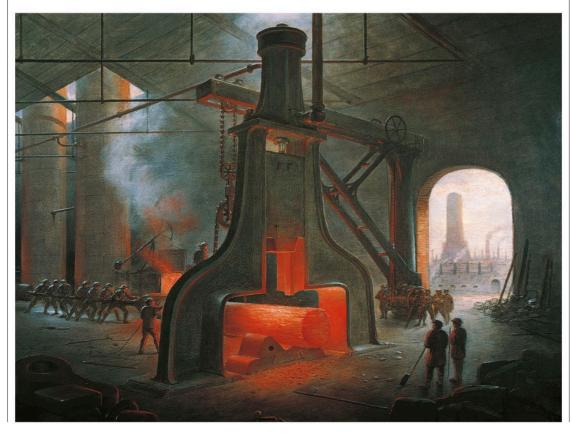
Rowland Hill

Rowland Hill believed in democracy. When he discovered that post office procedures made letters too expensive for ordinary people, he pointed out the folly of charges that were based on distance and collected on delivery. A fixed charge, he said, prepaid with an adhesive stamp, would slash costs by 75 percent. People listened in the end, and in 1840 Britain introduced the penny post. With it came the first postage stamp, the famous penny black.

Steam hammer

1040

James Nasmyth


In 1839, British engineer Isambard Kingdom Brunel started work on his ship *Great Britain.* He soon discovered that hammering out the giant shafts for its paddle wheels was beyond human ability. Scottish engineer James Nasmyth came up with the idea of a steam hammer and designed one that would hit harder than a whole gang of people. He made the first one in 1840 and patented it in 1842. By then, though, Brunel had changed his mind about his ship, deciding to use the more modern propellers instead of paddle wheels.

Dinosaurs

Richard Owen

People had been finding fossilized dinosaur bones all over the place, but they didn't know what they were. Then British surgeon Richard Owen recognized that they belonged to an extinct group of reptiles unlike any now living. He named them "Dinosauria," meaning "terrible lizards," in 1841. Owen later became famous for opposing Darwin's theory of evolution and for getting the details of the earliest fossil bird completely wrong.

STEAM HAMMER A gang of workers feeds a red-hot piece of iron through a hammer which slowly pounds it into shape.

1840 Snowshoe racing becomes an organized sport in Canada with the formation of the Montreal Snowshoe Club. Racers strap broad, flat frames to their feet to stop them from sinking and run races of up to 1 mile (1.6 km).

1841 George Catlin publishes Letters and Notes on the Manners, Customs, and Condition of the North E CONTRACTOR O CON

PACKAGE TOUR By the 1870s, Cook's brochure offered package tours to wonders of the world both ancient and modern.

Package tour 1841

Thomas Cook

A British missionary, Thomas Cook, organized the first vacation tour in 1841. It was only a train trip from Leicester to Loughborough, but it proved there was a demand. In 1855, Cook organized trips to France and then tours of Europe. His firm is now famous worldwide.

Doppler effect

The sound of a speeding car falls to a lower pitch as the car passes. Austrian physicist Doppler explained this in 1842. As a sound source approaches, the waves reaching our ears are bunched up, but as it recedes they stretch out. This happens with light, too, so astronomers can tell how fast stars are approaching or receding. With radar, it enables police to check the speed of cars.

American Indians. He had painted over 500 works while traveling the Great Plains and visiting American Indian tribes.

Conservation of energy 1842

Julius von Mayer

s early as 1806, a British doctor, Thomas Young, was using the word "energy" in its modern sense: the capacity to do work. In 1842, another doctor, Julius von Mayer of Germany, stated that energy cannot be created or destroyed. Mayer did not have much supporting evidence, and at the time, few people understood what he was saying, but this principle of conservation of energy has since become central to science. The principle was discovered independently by at least three others with more influence: William Grove in 1846, and James Joule and Hermann von Helmholtz in 1847.

Christmas card

AND

NEW YEAD

The first Christmas card was designed by British painter John Horsley for Henry Cole, later a founder of the Victoria & Albert Museum in London. Showing people enjoying a Christmas party, it went on sale in London in 1843.

Computer program

Ada Lovelace

In the early 1800s, British inventor Charles Babbage designed his "analytical engine"—what we would

1842 China surrenders the island of Hong Kong to Great Britain as part of the Treaty of Nanking, which ends the First Opium War. Another island will be added in 1860, and in 1898 more territory will be leased for 99 years.

now call a mechanical computer. He was assisted by Ada Lovelace, who was the first to realize that if such a machine existed, it would be able to do more than just calculations. Although the machine was never completed, Lovelace wrote an algorithm for it, the world's first computer program.

River tunnel

Marc Brunel, Isambard Brunel

The first underwater tunnel was dug under the Thames River in London, from Rotherhithe to Wapping. It was started in 1825 but didn't open until 1843. Even using Marc Brunel's tunneling shield (* see page 122), water poured in several times during construction, once injuring Brunel's son Isambard so

1843 A new dance sensation hits Paris in the shape of the polka, a stepand-hop dance from Bohemia **CHRISTMAS CARD** John Horsley's card combined religion, good cheer, and rustic decoration.

seriously that work stopped for several years. London Underground trains now rattle through the tunnel every day.

Sunspot cycle

Samuel Schwabe

A mateurs can contribute a lot to astronomy by making regular observations. In Germany, Samuel Schwabe kept watch on the sun for 17 years, hoping to find a planet closer to the sun than Mercury. Instead, he found that the spottiness of the sun increased and decreased in an 11-year cycle. He announced the fact in 1843. It's of great importance on Earth, because sunspots can ruin radio communication.

with a lively 2–4 rhythm. In no time at all, people in the US, Latin America, and Scandinavia will be polka-crazy, too.

Type-rotating printing press 1845

Richard Hoe

The first printing press produced a couple of sheets a minute. Modern presses print 10 whole newspapers every second, mainly because they go around and around instead of up and down. The first totally rotary press was built by US engineer Richard Hoe in 1845. It could print two sheets a second but had one snag: if all the pieces of type on its revolving cylinder were not locked in tightly, they shot out when the press started.

Wheel drives

the machine

Anaesthetic

William Morton

naesthetics were first used Aby two US dentists, Horace Wells and William Morton. Wells tried using laughing gas (* see page 115), unsuccessfully, in 1845 and had also tried ether as a local anaesthetic. Morton thought that he would try to get his patients to inhale ether, and he used it in a successful demonstration of anaesthetic surgery in 1846. A year later, Scottish surgeon James Simpson started using chloroform to help women through the pain of childbirth.

Thread unwinds as it is used up

Lock-stitch sewing machine

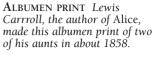
Walter Hunt, Elias Howe, Isaac Singer

nventors struggled for years Lto mechanize sewing. The solution was to use two threads. An eye-pointed needle pushed one thread through the cloth from above while a shuttle whizzing to and fro below looped another thread through it. Walter Hunt invented this in the US in about 1843, and Elias Howe patented the same idea in 1846, but we really owe the sewing machine to US inventor Isaac Singer. He added his own ideas to Howe's and turned a raw invention into a mass-market product.

Neptune 1846

Urbain Le Verrier, Johann Galle

The discovery of the planet Neptune proved the power of physics. Astronomers knew that Úranus had an irregular orbit, and the only explanation was that it must be attracted by another planet. French astronomer Urbain Le Verrier calculated where this planet must be. When German astronomer Johann Galle looked there on September 23, 1846, he found the planet within an hour. A British mathematician, John Adams, had already done the same calculation in 1844, but British astronomers did not take this seriously.


1846 Founded on the bequest of English scientist James Smithson, Congress establishes the Smithsonian Institution for "the increase and diffusion of knowledge." In the 21st century, it will be the world's largest museum complex. 1847 Charlotte Brontë, one of three literary sisters living in Yorkshire, writes *Jane Eyre*. This powerful novel, with its self-willed heroine and emphasis on social psychology, will become one of the most famous in English literature.

Nitroglycerine 1846

Ascanio Sobrero

Until 1846, the only widely used explosive was gunpowder. Then Italian chemist Ascanio Sobrero discovered nitroglycerine, the first "high explosive." Much more powerful than gunpowder, it is also extremely dangerous: just dropping a container of the chemical on the floor can cause a devastating explosion. Despite this problem, nitroglycerine was used in mining even before a way was found to make it safe.

Albumen print c .1850

Louis Blanquart-Évrard

Those very old, brown family photos that you may have seen could have been printed on albumen paper. It was a breakthrough in its time. Before French photographer Louis Blanquart-Évrard invented it in about 1850, prints were made by Fox Talbot's original process (* see page

132). The new paper, with its glossy coating of egg white, gave much richer, sharper results.

ELECTRICAL NATURE OF NERVE IMPULSES Emil Du Bois-Reymond invented this "frog pistol." He put a frog's leg inside the tube and formed a contact with the nerve ends, which made the leg muscles contract.

Electrical nature of nerve impulses

Emil Du Bois-Reymond

German physiologist Emil Du Bois-Reymond knew there was something electrical about animals when a fish gave him an electric shock. In 1849, he discovered that when nerves were stimulated, electrical waves traveled along them. Du Bois-Reymond realized that far from being channels for "animal spirits," as some people had thought, nerves were more like telegraph wires delivering messages around the body.

Laws of thermodynamics

William Thomson, Rudolf Clausius

he first law of

. thermodynamics is just conservation of energy (* see page 135). The second is heat energy flows only from hot to cold. The consequences are surprising. For example, a glass of cold water contains more heat than a teaspoonful of boiling water (even though the boiling water has a higher temperature) because there is more of it. But the second law prevents this heat from doing any work. Several scientists worked on this idea from 1824 onward. William Thomson coined the term "thermodynamics" in 1849, and Rudolf Clausius published the laws in 1850. Since then, two more have been added.

Mechanical equivalent of heat

James Joule

T team engines showed that heat could turn into work. Could the opposite be true? When British physicist James Joule announced in 1847 that he had warmed water simply by stirring it, nobody believed him. After a further two years' work, Joule submitted a paper to the Royal Society called On *the Mechanical Equivalent of* Heat, which was accepted. It stated exactly how much heat was produced by a given amount of work. The unit of energy now bears his name.

Keys used to make a contact with the nerve ends in the frog's leg

Speed of nerve impulses

1850

Hermann von Helmholtz

By 1849, scientists knew that nerve impulses were electrical, making it possible to measure their speed. The German scientist Hermann von Helmholtz quickly invented the necessary equipment. In 1850, his new "myograph" showed that nerves were quicker than most other things biological. He saw impulses zipping along at about 60 mph (100 km/h).

1848 Revolution sweeps Europe as French, Germans, Italians, Poles, Czechs, Slovaks, Hungarians, Danes, and Transylvanians demand greater political rights, better government, and, where necessary, national independence. 1849 The British writer Charles Dickens starts serial publication of what he considers his best novel, *David Copperfield*. The story of a young man betrayed by his stepfather earns Dickens the amazing sum of £7,000 (\$34,000).

SCIENCE TAKES CONTROL

THE LATE 19TH CENTURY saw the rise of totally new industries that could not have existed without science. Plastics, synthetic fabrics, electric light, telephones, sound recording, popular photography, cars, and radio were just a few of the inventions that would eventually transform people's lives.

1851-1900

Mechanism of the inner ear

1851

Alfonso Corti

Buried deep inside the ear is the organ of Corti, a delicate mechanism that turns sound into nerve impulses. It was first described in 1851 by Italian anatomist Alfonso Corti. It contains thousands of tiny hairs, which brush against a membrane suspended in fluid. When sound waves shake the fluid, the membrane ripples against the hairs, making nerve cells attached to them send signals to the brain.

Prefabricated building

Joseph Paxton

In 1851, British gardener Joseph Paxton created the first large building made from prefabricated components. The Crystal Palace was built to house the Great Exhibition in London. The spectacular glass and iron structure was 1,848 ft (563 m) long, 108 ft (33 m) high, and 408 ft (124 m) at its widest point. It went up in just six months. Paxton's secret was the repeated use of basic parts that slotted together like a construction kit.

Foucault's pendulum

Jean Foucault

Although early 19th-century scientists knew that the Earth must rotate on its axis, they had no direct proof. Then, in 1851, French physicist Jean Foucault hung a heavy ball on

D in Venice, Italian

composer Guiseppe Verdi sees

the first performance of Rigoletto,

At La Fenice Theatre

REFRIGERATOR The US General Electric "monitor top" refrigerator of 1934 had its compressor mounted on top.

a 220 ft (67 m) wire inside a tall building in Paris, forming a large pendulum. As it swung back and forth, it appeared to be turning gradually, but it was actually Earth turning beneath it. Foucault's pendulum is a popular science exhibit today.

Refrigerator

John Gorrie, Ferdinand Carré

G ases get hot when they are compressed and cool down when they expand. So

his 17th opera. It is a big step forward in the development of opera, with music and storytelling cleverly intertwined.

one way to refrigerate is to compress a gas, let it cool, then lower its pressure to cool it still more. The cold gas can then cool other objects. US doctor John Gorrie found that he could produce cold air to cool feverish patients in this way and patented a refrigerator based on this principle in 1851. Eight years later, French inventor Ferdinand Carré developed a refrigerator more like those we use today. These use a working fluid that changes from liquid to gas when it expands. This makes it absorb even more heat from inside the fridge.

WET-PLATE PHOTOGRAPHY Roving photographers had to carry all these

bottles of chemicalsand a darkroom.

1852 One of Europe's most common birds, the house sparrow, is introduced into the US. Arriving in

photography 1851 Frederick Archer

Wet-plate

Chloride. Gru

For the.

Joneing ; Butte

> lthough calotypes could Abe reprinted, their paper negatives were grainy (* see page 133). In 1851, British sculptor Frederick Archer made the first transparent negatives by coating glass with a light-sensitive cellulose solution. The new plates produced clearer pictures than their predecessors and needed shorter exposures, but they had to be exposed while wet and developed immediately. The results were so good that photographers did not mind, and "wet plates" quickly replaced the earlier processes.

Airship

Henri Giffard

French engineer Henri Giffard's airship was the first successful powered flying machine. As in all airships, lift came from a light gas, in this case hydrogen, so its threehorsepower steam engine had only to push it along. Choosing a dead calm day, Giffard piloted the 144 ft (44 m) cigar-shaped craft over Paris at a speed of 6 mph (10 km/h) for 20 miles (30 km). It would be years before airships could cope with windy conditions.

Brooklyn, New York, and fed partly by grain spilled by horses, the newcomer will cover the continent within a century. SCIENCE TAKES CONTROL

Gyroscope

Jean Foucault

wheel that is spinning Aresists changes in the direction of its axis. Jean Foucault used this fact to confirm his earlier observation of the Earth rotating beneath a swinging pendulum (* see page 139). In 1852, he mounted a wheel so that its axis was free to point in any direction. He set it spinning and watched as it kept its position while the Earth turned beneath it. He called this arrangement a gyroscope, meaning "something that makes rotation visible.'

Bloomers

Amelia Bloomer

Pants for women were thought outrageous in the 19th century, which may have been why US reformer Amelia Bloomer liked them. She advocated long, baggy pants gathered at the ankle as part of a new costume that she hoped would liberate women. When she appeared in her pants in about 1853, there was more laughter than liberation. But within 35 years, a new invention made "bloomers" seem like a good idea—they were ideal for women who wanted to ride a bike.

Glider

George Cayley, Otto Lillienthal

ttempts to soar like a bird Acame to nothing until British aristocrat George Cayley abandoned flapping wings. He figured out what was needed to

1854 Florence Nightingale arrives at a British Army hospital in Turkey, where more soldiers are dying from

lift, stabilize, and control a fixed-wing machine. Realizing that no existing engine could power an airplane, he stuck to gliders. In 1853, his coachman flew the first manned glider flight. Later, a young German named Otto Lilienthal built a series of small

gliders and

succeeded in

making regular

controlled flights

in them. Cayley's

work established

and Lilienthal's

the basics of

aircraft design.

Plunger

thread

with screw

Hollow needle

BLOOMERS The new fashion, also known as Turkish trousers, was worn as early as 1849 by the actor Fanny Kemble and others, but it was Amelia Bloomer who gave it publicity, hence the name.

disease than from bullets in the war they are fighting. Her nursing services will make her famous worldwide.

HYPODERMIC SYRINGE This fearsome syringe of the Pravaz type was made in France.

Hypodermic syringe

Charles Pravaz. Alexander Wood

'he two parts of the \mathbf{L} hypodermic syringe, the needle and the plunger. were invented in 1853 by two different people in two different countries. In France, surgeon Charles Pravaz invented a gadget for injecting fluid into veins through a tube with a blade inside it. In Scotland, physician Alexander Wood invented the hollow needle and adapted Pravaz's device to go with it, forming the first hypodermic syringe.

Safety elevator

Elisha Otis

lisha Otis was working as a master mechanic in a US bed factory when he invented something to diminish a recurring nightmare. Knowing elevators, he invented a safety hoist with arms that shot out 1853. Later, in New York City, New York store. After his death,

1855 While exploring the Zambesi River in Africa, Scottish missionary David Livingstone discovers an

Boolean algebra

George Boole

oday's computers owe a lot L to someone whose only math teaching came from a shoe repairer—his father. George Boole had to learn the rest himself, but by the age of 24, he was submitting work to serious mathematical journals. He thought that logic should be part of math, and in 1854 he published An Investigation into the Laws of Thought. It described what is now called Boolean algebra. This allows complicated logical statements to be simplified and underlies the design of much digital hardware and software.

Can opener

Robert Yeates

hammer and chisel for Letting into cans were essential kitchen tools until British inventor Robert Yeates invented his can opener in 1855. It wasn't very convenientjust a sharp blade that had to be stuck into the can top and worked around the rim. But the design became popular in the US when a canned-beef company gave it a cast-iron bull's head and issued it free of charge with their cans.

> Printing telegraph

David Hughes

The first electric telegraphs **I** allowed messages to be sent along a wire (* see page 129). The message was given to a clerk, who tapped it out in Morse code. At the other end, another clerk translated the

enormous waterfall 355 ft (108 m) high and nearly 1 mile (1.6 km) wide. He loyally names it after Queen Victoria.

that people were scared of and grabbed the sides of the elevator shaft if the supporting cable broke. He sold the first safety hoist, for goods only, in he demonstrated its effectiveness by having the cable cut while he was in it. He installed his first passenger safety elevator in 1857 in a his sons. Charles and Norton. continued the business, and the name Otis is on elevators and escalators everywhere today.

1851-1900

children becoming ill from

infected milk. By 1856, he had

sterilized it without spoiling its

about bacteria, he thought that

it was the removal of water that

Aniline dye

William Perkin Jntil 1856, natural plant extracts dominated the dye

made it safer to drink

flavor. He called it condensed milk because, knowing nothing

patented a process of boiling

milk under vacuum, which

dots and dashes into words. Many inventors tried to bypass this with "printing telegraphs" that sent written messages directly. The first successful system was invented in 1855 by David Hughes, who taught music in the US. Its keyboard, which looked a little like a piano, sent out signals that were automatically translated and printed at the receiving end.

Condensed milk

Gail Borden

In 1851, US inventor Gail Borden was distressed to see

Each key sent out a different letter of the alphabet The message was recorded on paper tape

Chain and pulley drove the rotating mechanism

Heavy weight attached to the pulley descended to power the machine

PRINTING TELEGRAPH Hughes' "piano" keyboard would have seemed quite natural in an age without typewriters. Each key sent a differently timed pulse to a printer at the other end of the line. Good operators could send 30 words a minute.

1858 In Australia, ballot boxes appear as the first secret ballots are held in Victoria and South Australia. The system will be adopted in Britain in 1872 and in the US after the 1884 presidential elections. 1858 The third and final Seminole war ends. Led by chief Oceola, the Seminole tribe has fought the US industry. This changed when a young British chemistry student, William Perkin, tried to make the drug quinine and produced an intense violet dye instead. Mauve was soon in great demand by fashionable Victorians. Many more dyes of the same type, known as aniline dyes, were to come out

Transatlantic telegraph

of different labs as Perkin's little

error turned into an industry.

Cyrus Field, Charles Bright, William Thomson

By the 1850s, there were several short underwater telegraph lines. US financier Cyrus Field wanted to go further and link the US and Britain with a cable across the Atlantic. He recruited several brilliant engineers and scientists, including Charles Bright and William Thomson. After heroic efforts, a cable was laid in 1858 to great rejoicing on both sides. There were problems, including poor insulation, which made the cable fail within weeks, but it proved that the idea worked. A permanent link between the two countries was finally established in 1866.

government for years to keep their native lands in Florida. Ultimately, the tribe will be forced to relocate in the West.

Evolution by natural selection

Charles Darwin

Tn 1859, Charles Darwin, the **⊥**son of a doctor, published a book that shook the world. On the Origin of Species presented evidence that animals and plants were not created as we see them today but evolved from earlier forms and are still evolving. Darwin's theory was based on what he called natural selection. Every member of a species is slightly different. Darwin said that the members with differences that make them more able to compete are more likely to survive and pass on these useful differences to their offspring. (* See also Arguing About Apes.)

Although Lenoir's engines did not produce much power, he sold hundreds of them in France and Britain

> Lead-acid battery

Gaston Planté

ven the latest cars rely on a very old type of battery. French physicist Gaston Planté knew that electrodes of lead and lead oxide immersed in sulfuric acid formed a rechargeable cell. Realizing that this would deliver more current than existing cells, he developed it into a practical battery in 1859. Commercial versions were ready just in time for the first cars.

Parallel beam of light produced Light from enters here

in here

Prism separates light into its spectrum

Gas engine

source

Étienne Lenoir

Burning an engine's fuel Dinside it rather than in a boiler promised a smaller, more efficient machine. But the first successful engine of this type was not particularly small and certainly not very efficient. Invented by French engineer Étienne Lenoir in 1859, it was basically a steam engine converted to run on gas. Its single piston sucked a mixture of gas and air into a cylinder. A spark then lit the mixture to push the piston out again.

Oil well

Edwin Drake, George Bissell

Deople originally used petroleum only for lighting and medicinal purposes. They collected it as it oozed out of a soft rock called shale. One of the best places for this was Titusville, Pennsylvania, There in 1859, Édwin Drake persuaded landowner George Bissell to let him try drilling for oil instead of just waiting for it to emerge. Only 69 ft (21 m) down, he struck lucky, creating the world's first oil well and the industry that would make the US rich.

1859 A clock with a huge bell known as Big Ben is installed in St. Stephen's tower at London's Houses of

Parliament. The sound of Big Ben will become known all around the world when the BBC begins to broadcast it 65 years later.

Telescope to view the spectrum

The machine

was operated manually

MILKING MACHINE

This Danish milking

machine of 1892

demanded a very

patient animal.

Spectroscope

Machine supported

by the cow itself

Robert Bunsen, Gustav Kirchhoff

ach element, when made hot enough, gives out light at wavelengths that identify it like a fingerprint identifies a person. The spectroscope reveals these as lines that can be photographed and measured. It was invented in 1859 by German chemist

Robert

SPECTROSCOPE This 19thcentury instrument, based on Bunsen's and Kirchoff's design, used a prism to split light into its colors.

.859 Rights such as self-expression, privacy, and the rights of minorities, which future generations will

take for granted, are defended by British philosopher John Stuart Mill in his essay On Liberty. It will influence many people.

Bunsen and physicist Gustav Kirchhoff. The two scientists used their new instrument to compare lines from the sun with those from elements on Earth, giving the first analysis of the sun's atmosphere.

Milking machine

1800

L. O. Colvin

The first successful milking machine was patented by US engineer L. O. Colvin in 1860. Its big disadvantage was that it applied a constant vacuum to suck out the milk, which could damage the cow's udder. It was 1889 before Scottish engineer Alexander Shields introduced the modern type of machine, which sucks intermittently like a calf.

Open-hearth process for making steel

William Siemens, Pierre Martin

"he open-hearth process was once the most important way of making steel. It was invented by German-British engineer William Siemens in 1861 and perfected by French engineer Pierre Martin. It works by blowing a very hot flame on to a mixture of steel scrap and molten iron from a blast furnace, held in a shallow, brick-lined bath. This melts the steel and burns out excess carbon from the iron. The hot gases from the hearth are used to heat brick-lined

chambers. Air to feed the flame is drawn through these chambers to preheat it. This saves fuel and also allows the flame to be made hot enough to melt steel.

Linoleum c.1861

Frederick Walton

Linoleum, invented by British rubber manufacturer Frederick Walton, in about 1861, was the first successful smooth floor covering. Walton originally made it by coating

ARGUING ABOUT APES

ALTHOUGH MOST SCIENTISTS accepted Darwin's theory, the public and most of the Church were not so happy. As well as contradicting religious beliefs, the theory implied that living creatures were ruled entirely by physical laws. Worse still, it seemed to treat people as animals descended from apes. Fortunately for Darwin, who was a shy man, his friend, the naturalist Thomas Huxley, positively enjoyed speaking up for him in the great debate.

LIFE BEFORE DARWIN

Most people thought species were fixed or replaced occasionally by God. Some scientists had proposed theories of evolution. Jean Lamarck thought that animals could pass on changes that happened to them during their lives.

HOW DARWIN GOT HIS IDEAS

Darwin saw that finches on various Pacific islands were different. He also looked at the fossil record. The idea of natural selection came to him after he read an essay by the naturalist Thomas Malthus. Malthus said that animals compete to survive, and Darwin realized that competition could explain why animals change.

cloth with layers of a substance containing linseed oil and other ingredients. This slowly reacted with air to form a thick, resilient coating. Linoleum is still used in areas that get heavy wear.

Speech center in the brain

Paul Broca

Whenever we talk, certain parts of our brain, mostly on the left side, go into action. One of them is Broca's area, which helps us find the right words. It was identified by French surgeon and anthropologist Paul Broca in 1861. He studied people with injuries that made them speak hesitantly but did not stop them from understanding what people said. He usually found damage to an area in the front left of the brain. It was the first time that anyone had identified a part of the brain with a particular job. Other scientists, notably the German neurologist Carl Wernicke, later found areas near Broca's that were associated with other aspects of speech and language.

In 1874, when this cartoon was published, the idea of people having apes for ancestors still seemed strange.

NEW FORMS OF DARWINISM

Darwin's theory fits well with modern genetics, but not all scientists accept it completely. The renowned US geologist Stephen Jay Gould says that it fails to explain the way species have evolved in jumps, rather than smoothly.

1861 The tiny principality of Monaco, just east of Nice in the south of France, regains its independence after 46 years of rule by Sardinia. Its only city, Monte Carlo, opens what will rapidly become the world's best known casino.

1861 On March 17, after years of struggle, the Kingdom of Italy, with Victor Emmanuel II as its king, is proclaimed by a parliament assembled in Turin. Rome and Venice, still occupied by foreign troops, are not part of it. SCIENCE TAKES CONTROL

YALE LOCK This lock has been cut in half to show how the key moves the tumblers to the right height so that the inner cylinder can be turned.

Solar

hydrogen

Anders Ångström

he Swedish physicist

▲ Anders Ångström was

a pioneer of spectroscopy,

a way of discovering the

composition of things by studying the light they give out when hot. One of the things he studied was very hot-the sun. By comparing its light with light given out by hydrogen in his

laboratory, he was able to show in 1862 that the sun's atmosphere contains hydrogen.

> Roller skates

Joseph Merlin, James Plimpton

'he first person to skate without ice may have been Joseph Merlin, who lived in the 18th century in what is now Belgium. But his skates seem to have been more like in-line skates than roller skates. Four-wheeled skates were invented in 1863 by an

American, James Plimpton. He started a US and British craze for roller skating, which is still popular today.

Underground railroad

John Fowler

"raffic threatened mid-19th-century cities with death by choking. London fought back in 1863 with the world's first underground railroad. It wasn't very far underground: just a deep trench dug down the center of the street and roofed over so that traffic could run above it. Despite fumes from its steam locomotives, the Metropolitan Railway, engineered by John Fowler, was a great success. Electrified in 1906, the line is still in use today.

1863 During this year of the Civil War, President Abraham Lincoln gives his two most famous speeches,

the Emancipation Proclamation and the Gettysburg Address. Both emphasize the importance of the freedom of all men.

1863 In October, soccer's governing body, the Football Association, is founded at a meeting in London. It will

standardize the rules of the game and, within eight years, organize the English championship, which will be known as the FA Cup.

Yale lock

Linus Yale

he Yale is probably the most widely used type of lock. It was invented in the US in 1861 and is based on a principle known to the ancient Egyptians: several pins stop the lock from moving until the right key pushes them all into the right positions. Linus Yale's father had designed a lock using this "pin tumbler" idea in 1848, but it was Linus Yale Jr. who perfected the compact revolving barrel and flat key that is used today.

Parkesine

Alexander Parkes

"he first plastic was based L on the natural substance cellulose. British chemist Alexander Parkes discovered that if he treated cellulose with nitric acid, dissolved it in alcohol and ether, and mixed it with pigments, it formed a dough that he could mold into small articles. He won a medal for his discovery in 1862, and in 1866 the Parkesine Company went into business. It failed within two years, possibly because Parkes was too stingy to make his new material properly.

Antiseptics

Ignaz Semmelweis, Joseph Lister

ungarian doctor Ignaz Semmelweis upset his boss by telling medical students at Vienna's maternity hospital to disinfect their hands. Although he proved that this made giving birth less dangerous, he was fired in 1849. Even after 1864. when Louis Pasteur's germ theory was accepted in France, most surgeons still did not even put on clean clothes before an operation. In 1865, Scottish surgeon Joseph Lister sprayed carbolic acid, a powerful germ killer, around his operating room and onto dressings, and things began to change. Lister's ideas led in the end to modern, sterile surgery.

Mercury vacuum pump

Hermann Sprengel

arly 19th-century vacuum pumps moved air with pistons. But as the pressure dropped, the pistons and valves began to leak and contamination of the vacuum by lubricants became a problem. A German glassblower, Heinrich Geissler, found a solution in 1855 when he made use of the vacuum that appears above the mercury in a barometer. Then in 1865, Hermann Sprengel used falling mercury to sweep out gas molecules, producing a high-vacuum pump, which led to many further inventions, including the cathode-ray tube.

6555

Pullman sleeping car

George Pullman, Ben Field

Before air travel, it could take days to travel between cities in the US, and people usually had nowhere to sleep but in their seat on the train. Builder George Pullman realized that there was a market for something more civilized than this. Working with his friend Ben Field, he introduced the first railroad car with comfortable beds, the Pioneer, in 1865. The beds were arranged like bunks, with the lower bed doubling as a seat for daytime. Pullman was soon running a big organization with its own town, Pullman, to house its workers.

Clinical thermometer

Thomas Allbutt

Tineteenth-century doctors knew that a patient's temperature was a good guide to their health, but until British physician Thomas Allbutt invented the clinical thermometer, there was no convenient way of measuring it. The only thermometers available could take 20 minutes to give a reading, and some of them were 12 in (30 cm) long. Allbutt reduced them to a pocket-sized instrument, which was not only more convenient to handle but also worked much faster. He usually put his thermometer under a patient's arm, not in their mouth.

SOLD BY S. MAW, SON, AND THOMPSON, LONDON, Dr. Clifford Allbutt's Short Clinical Thermometer (Solf registering.)

Hair slides

Flat discs

1865 On Friday, April 14, just days after the end of the Civil War, President Abraham Lincoln, attending a

performance of *Our American Cousin* at Ford's Theater in Washington, DC, is shot. He dies the following morning.

Pasteurization

Louis Pasteur

Dasteurization gets its name from the great French scientist Louis Pasteur, who was the first person to show that invisible organisms can spoil food and cause disease. He invented the process in 1865. It makes liquids hot enough to kill any harmful organisms without destroying their food value. For example, milk can be pasteurized by being heated to 145°F (63°C) for 30 minutes, then quickly chilled for storage. Although pasteurization increases food safety, some people prefer untreated dairy products from disease-free cows.

Laws of heredity

1000

Gregor Mendel

man and a woman, both With brown eyes, could have a one-in-four chance of producing a child with blue eyes. Basic genetic facts like this go back to the work of an Austrian monk, Gregor Mendel. By crossing different strains of peas, he discovered that organisms inherit their characteristics in a way governed by mathematical laws. He published his results in 1866, but it was only in 1900 that Dutch botanist Hugo De Vries realized their importance to modern biology.

1865 Writing as Lewis Carroll, British mathematician Charles Dodgson publishes Alice in Wonderland. Based on stories written for a child named Alice Liddell, and illustrated by John Tenniel, the book is an immediate success.

LECLANCHÉ CELL Liquid-filled glass cells just like this one remained in use well into the 20th century. They were ideal for powering electric door bells.

Germs

Louis Pasteur

In the mid-19th century, some natural processes were still a mystery. What turned grape juice into wine, for example? Why did it sometimes go sour? French chemist Louis

Pasteur proved that invisible organisms were responsible. He also proved that diseases were transmitted by microorganisms, rather than polluted air. The Academy of Sciences officially accepted his conclusions in 1864, and Pasteur was given his own laboratory at France's École Supérieure in 1867. His "germ" theory then began to be more widely accepted. By establishing the reality of germs, Pasteur revolutionized medicine and the food industry. (* See also The **Bug Hunters**.)

> Glass beaker

THE BUG HUNTERS

OTHERS BEFORE PASTEUR had thought that invasion by invisible organisms might be responsible for decay and disease. But they had not been able to prove it, so most people believed that decaying matter created life by "spontaneous generation." Even after Pasteur, many people found it hard to believe in the invisible killers. Those who did, such as Scottish surgeon Joseph Lister and German doctor Robert Koch, made great progress.

GERMS BEFORE PASTEUR

In 100 BCE, a Roman writer declared that disease was caused by an invisible invasion. Much later, in 1684, Francesco Redi wrote that spontaneous generation could not occur because "only life produces life." In the 19th century, Italian scientist Agostino Bassi showed that a disease of silkworms was caused by infection with invisible fungus spores.

PASTEUR'S LEGACY

German doctor Robert Koch showed that bacteria could be bred in the laboratory and established many of the techniques of bacteriology. By 1883, he had isolated the organisms that cause cholera and tuberculosis. Scientists now know that not all bacteria are bad—

we depend on many microorganisms inside our bodies to keep them working properly.

> Compound microscopes

Silkworm cocoons

Leclanché cell

Georges Leclanché

as the Leclanché cell.

a glass jar containing a zinc rod

invented in 1866 by French

engineer Georges Leclanché. The cell's negative terminal was

in a solution of ammonium

chloride. A smaller pot inside

the jar contained manganese dioxide and a carbon rod.

forming the positive terminal.

It eventually developed

into today's smaller,

dryer battery.

odern batteries started

GERMS This selection of equipment from Pasteur's laboratory shows both his tools for studying germs and one of his major concerns—the health of silkworms.

1866 The world's first skijumping competition is held in Telemark, Norway. It is won by Sondre Nordheim, who

made the sport possible by inventing ski bindings. He will later ski the 200 miles (322 km) from Telemark to Oslo.

Bronze ink stand

and ink wells

1867 Russia sells Alaska to the US, prompted by a fall in demand for furs from the region and the threat of British invasion. Many Americans think the price of \$7.2 million is too high, but Alaska will prove to be rich in oil.

Pipette

Culture

slide

146

Dynamite

Alfred Nobel

The dangers of nitroglycerine were brought home to Swedish chemist Alfred Nobel in 1864 when his nitroglycerine factory blew up, killing his younger brother. Determined to tame this otherwise useful explosive, he mixed it with an absorbent material, kieselguhr, converting the dangerous liquid into a safer solid, which he patented in 1867 as dynamite. Ironically, it made him rich enough to set up the foundation that awards the Nobel Peace Prize.

Paper boat

Elisha Waters, George Waters

In 1867, US carton maker Elisha Waters and his son George started making rowing boats out of paper. They glued paper over a wooden form, let it dry, then varnished it. The keel and other main members were made of wood. The light, stiff boats were ideal for sports; during 1876, US crews rowing Waters boats won no fewer than 12 major races. The Waters construction technique has since been reinvented in the modern fiberglass boat.

Helium in the sun

Pierre Janssen, Norman Lockyer

The gas helium gets its name from *helios*, Greek for "sun," because that's where it was first detected. In 1868, French astronomer Pierre Janssen saw a dark line in the yellow region of the sun's spectrum. He thought it came from sodium, but British astronomer Norman Lockyer declared that it indicated an unknown element. He named it with the help of chemist Edward Frankland.

Möbius strip

August Möbius

• erman **J** mathematician August Möbius died without revealing his best-known discovery, the Möbius strip. It was found among his papers after his death in 1868. It is a simple strip of paper given a half twist and then glued to form a loop, and it has weird properties. For example, it has only one edge and it is impossible to make each side of it a different color because it has only one side. When cut down the center, it opens out into a single loop twice the size with a double half twist. Two Mobiüs strips zipped together form what is called a Klein bottle, which has no edges and only one surface.

Margarine

Hippolyte Mège-Mouriés

any people today prefer margarine to butter, but it's hard to believe that anybody preferred the first margarine, a mixture of beef fat, skimmed milk, cow's udder, and pig's stomach. When French inventor Hippolyte Mège-Mouriés concocted it in 1869, Napoleon III awarded him a prize for producing the first alternative to butter. It soon improved, and by 1885, it was enough of a threat to the dairy industry for the British government to stop the use of its original name, "Butterine."

CHEWING GUM Early competition produced some unlikely advertising, such as this suggestion that gum chewing was the height of fashion.

Air brake

George Westinghouse

To stop a long train, the brakes must be applied to all the wheels, but how? US inventor George Westinghouse found the answer in 1869—use air. Unlike a mechanical linkage, air can be taken from carriage to carriage easily. Westinghouse's system also had an important safety feature. The brakes were held in the off position by air pressure and applied by releasing it, so any leaks automatically put them on.

Chewing gum 1869

Thomas Adams

The main ingredient of chewing gum is chicle, a rubbery substance from a Central American tree. Many 19th-century inventors tried to use it like rubber. One of them was US photographer Thomas Adams, who bought some from a Mexican. He failed to make rubber, but he noticed that the Mexican liked chewing chicle. In 1869, he boiled up some with flavorings and offered it to a store. Customers loved it.

1867 The British North America Act creates the Dominion of Canada from New Brunswick, Nova Scotia, and what will be Quebec and Ontario. Its government is based on British practice, and its sovereign is the British monarch. 1869 In Victoria, Australian Richard Oates dig up Australia's largest gold nugget, weighing more than 56 lb (71 kg). They get £9,534 (\$36,540) for the find, which becomes known as the "Welcome Stranger" nugget. Science Takes Control

Synthetic alizarin 1869

Heinrich Caro, William Perkin

In 1869, Heinrich Caro in Germany and William Perkin in Britain demonstrated the power of chemistry by wiping out an entire industry. They both found a way to make alizarin, the active component of a natural red dye. It was one of the few red dyes available at the time, and thousands of people earned their living producing the natural substance—until the chemists got to work. Caro beat Perkin to the patent by one day, but Perkin still made the dye in Britain, using a cheaper method.

CELLULOID Basically colorless, celluloid could be made in a variety of forms, from fake ivory to mock tortoiseshell.

Periodic table

Dmitry Mendeleyev

In 1866, Russian chemist Dmitry Mendeleyev listed the elements by atomic weight. He found that the list showed a pattern, with similar elements appearing at regular intervals, or periods. He published his periodic table in 1869 and in 1871 produced a version with gaps where there were breaks in the pattern. He said that the gaps represented undiscovered elements, but most chemists did not see the importance of this until at least 20 years later.

Dynamo 1870

Zénobe Gramme

Electric generators were not very effective until Belgian engineer Zénobe Gramme built his dynamo in 1870. It used an electromagnet powered by the generator itself. Several other types of dynomos already existed, but Gramme's version went further. It had a highly efficient design and a new way of connecting its generating coils. Gramme's dynamo gave a strong, steady output, making it a much better generator.

Celluloid

John Hyatt

Celluloid was the first truly successful plastic. Like its unsuccessful predecessor Parkesine (***** *see* **page 144**), it was based on cellulose. Its US inventor, John Hyatt, created the first clear, flexible material, making possible both popular photography and motion pictures. Patented in 1870, celluloid was also used for everything from dolls to shirt cuffs. Unfortunately, it was extremely flammable and caused many accidents, so it is rarely used today.

Penny-farthing bicycle

1870

James Starley, William Hillman

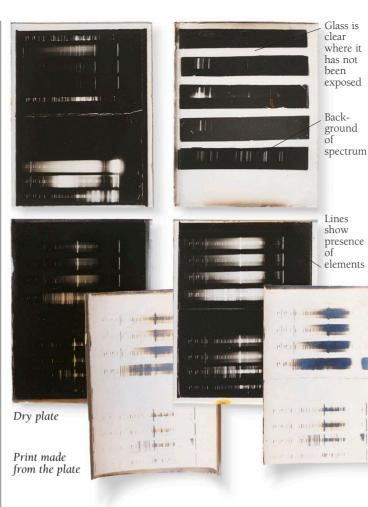
Bizarre though it looks, with its huge front wheel and tiny rear wheel, the penny-farthing was a serious invention by leading bicycle pioneers. British engineers James Starley and William Hillman created it in 1870 as a lighter alternative to existing velocipedes. The big front wheel did the same job as modern gears, enabling the rider to power the bike efficiently. It worked—on one long trip, a group of pennyfarthing riders averaged 46 miles (74 km) a day.

1869 On November 17, after 15 years' hard negotiating and harder digging, the Suez Canal is opened. Designed by French diplomat Ferdinand de Lesseps, it provides a shortcut from the Indian Ocean to the Mediterranean Sea. 1870 German archaeologist Heinrich Schliemann discovers the city of Troy, long thought to be just the stuff of ancient Greek legends. He finds battlements, walls, and gold treasure on a mound called Hissarlik in Turkey.

1851-1900

Modern microscope condenser

Ernst Abbe


The image-forming lenses of a microscope are important, but until about 1870, nobody had thought much about the optics that simply illuminate the object—the condenser. Early microscopists used condensers, but German physicist Ernst Abbe's was the first scientific design. Most microscopes now have Abbe condensers.

Dry photographic plate

Richard Maddox

A lthough wet plates produced excellent photographs (* *see* page 139), they were not safe or convenient. Photographers searched everywhere for the magic ingredient that would allow them to make dry plates. They eventually found it in the kitchen cabinet: gelatine.

"Ivory" hairbrush "Ivory" clothes brush

In 1871, British doctor Richard Maddox mixed some gelatine with silver bromide and spread it on glass. When it was dry, the new coating stayed sensitive, could be developed easily, and needed shorter exposure times. Modern photography had arrived.

Cable car

Andrew Hallidie

A ndrew Hallidie, a wire-rope maker in the US, was shocked to see five horses killed as a horse-drawn bus slid down one of San Francisco's steep hills. So he used his ropes to create the world's first cable cars. It opened in 1873 and is still running today. Cable cars are pulled along by a constantly moving rope running in a slot

1872 In the US, the world's first national park is opened. The president, Ulysses S. Grant, signs a bill that preserves Yellowstone, a 3,468 sq mile (8,983 sq km) area in the Rocky Mountains, as a permanent wilderness.

DRY PHOTOGRAPHIC PLATE *Dry* plates were useful to scientists. These show spark spectra (c.1915).

in the road. To move, the cable cars grab the rope; to stop, they let go and apply their brakes.

Jeans

Jacob Davis, Levi Strauss

In the 1850s, the US's gold rush attracted people from everywhere. Levi Strauss had a business that supplied them with everything they needed, including pants. Tailor Jacob Davis started making denim pants with riveted pockets and suggested to Strauss that they could make lots of money. So Strauss provided cash to get started, Davis supplied the know-how, and in 1873 they got the first patent for jeans.

1873 Canada forms a new police force to combat smuggling, horse theft, and banditry. The Northwest

Barbed wire

1874

Joseph Glidden

How an invention is made can matter more than what it is. Barbed wire is an example. Early types cost so much to make that few people used them. US farmer Joseph Glidden saw some barbed wire in 1873 and the following year patented a new type that could be made cheaply by machine. Soon his Barb Fence Company

> was turning out miles of cattle-controlling wire and helping make the US's Great Plains into great farming country.

JEANS What we call jeans did not get their name for years. This 1910 advertisement calls them overalls.

Johann Miescher

DNA, the key to genetics and life, may seem like the latest thing, but it was discovered in 1874. Swiss scientist Johann Miescher was a student when he found a new substance, which he called nuclein, in the nucleus of white blood cells. He later realized that it was actually two substances. Separating out the acid part, he called it nucleic acid. It is now known as deoxyribonucleic acid, or DNA.

Mounted Police, later the Royal Canadian Mounted Police, will become famous as the Mounties, who "always get their man." **TYPEWRITER** This 1875 Sholes and Glidden machine typed in capital letters only.

Type bars / hit the paper from below

> QWERTY keyboard \

Typewriter

Christopher Sholes, Carlos Glidden, Samuel Soulé

As an ex-newspaper editor, Christopher Sholes knew exactly what a typewriter had to do: write faster than a pen. Many people had tried and failed to produce such a machine, but Sholes, helped by fellow US inventors Carlos Glidden and Samuel Soulé, succeeded. In 1873, he sold the idea to Remington, a firm of gunmakers. They launched the world's first real typewriter in 1874, after which their gun

1874 British writer Thomas Hardy establishes his reputation with his fourth novel, *Far from the* business took a back seat. The layout of the keyboard was developed to stop fast typists from jamming the keys and is still used today.

> Four-stroke engine

Alphonse Beau de Rochas, Nikolaus Otto

Most gasoline and diesel engines use the fourstroke cycle. Fuel and air

Madding Crowd. It describes the tragic relationships of heroine Bathsheba Everdene with three very different men. Paper wrapped around a cylindrical patten

Telephone

Alexander Graham Bell

See pages 152–153 for the story of how Bell invented the telephone.

Thomas Edison

n 1877, US inventor Thomas Edison was working on a recorder for telegraph signals. He noticed that paper indented with the signals made sounds when pulled under a needle. So he made a machine with tinfoil wrapped around a revolving cylinder and a needle connected to a thin metal disc. When he spoke, the disc vibrated and the needle indented waves on the tinfoil. Turning the cylinder again, Edison heard his own voice. He had invented sound recording. (* See also **Recording Pioneers.**)

are drawn into a cylinder, compressed, and burned, and the burned gases pumped out. The first person to think of it was French engineer Alphonse Beau de Rochas in 1862. His work was

forgotten and reinvented by German engineer Nikolaus Otto in 1876. Despite de Rochas's earlier work, the cycle is still known today as the Otto cycle. SOUND RECORDING A phonograph from about 1885 shows recording at its simplest.

Needle touches the cylinder here .

Handle for turning the cylinder

35

1874 A group of artists including Monet, Pisarro, and Renoir, rejected by the French Academy, hold their own show. Journalist Louis Leroy, shocked by pictures that capture real light and color, dubs them the Impressionists.

Photographic motion capture

Eadweard Muybridge

E adweard Muybridge was born in Britain but worked in the US. He was the first person to record live motion photographically. A racehorse owner had asked him to settle an argument: did a galloping horse ever lift all its hooves off the ground at once? In 1877, Muybridge set up a row of cameras along a racetrack. As a horse galloped by, it tripped their shutters, making each camera record a different part of the movement. The answer to the question was "yes."

Cream separator 1878

Gustav de Laval

Skimmed milk isn't Sskimmed—it's spun like clothes in a washing machine. The first cream separator using this principle was invented in 1878 by Swedish engineer Gustav de Laval. In its final form, his machine poured milk on to a set of spinning discs, which forced the watery part

Threaded drive axle moves the tinfoil beneath the needle

Brass
 cylinder—
 tinfoil is
 wrapped
 around this

to the outside and left the cream in the center. By 1883, Laval had built a steam-powered separator, 40 times faster than a modern washing machine.

Light bulb

Thomas Edison, Joseph Swan

In 1878, both Thomas Edison in the US and the chemist Joseph Swan in Britain made light bulbs. Both of them had trouble finding a filament that would last long. Edison tried platinum but soon switched to carbon, which Swan had first tried 20 years earlier. By 1880, both inventors had produced good light bulbs, which they showed off at the 1881 Paris Electrical Exhibition. From then on, their lamps began to be used everywhere.

MICROPHONE Two carbon rods touch to form one type of Hughes microphone.

RECORDING PIONEERS

THE EARLY RECORDING industry solved its problems step by step. Tinfoil was not a good recording medium. It was soon replaced by wax. Edison produced cylindrical records on his phonograph, but they were slow and expensive to copy. Flat discs, which could be stamped out by the thousand, dealt with that. But the problem of how to make sounds louder was not solved until the arrival of electronics in the 1920s.

THE PHONOGRAPH Edison developed his invention into a sophisticated home entertainment device that could produce surprisingly good sound. He eventually solved the problem of copying cylindrical recordings but failed to sign up many good musicians.

THE GRAPHOPHONE

Microphone

David Hughes

Returning to London after making a fortune in the

US, David Hughes set up as

he discovered that loose

electrical contacts were

a full-time inventor. In 1878,

sensitive to sound. Two barely

touching carbon rods placed

on a table and connected to a

battery and telephone earpiece

These sounds were so tiny that

microphone. Its real future was

Connecting

wires

Hughes called his invention a

as part of a better telephone.

Wooden

Carbon rods

could reveal sounds as quiet

as the tramp of a fly's feet.

Recordings on wax were first made by US inventors Chichester Bell and Charles Tainter. Their machine recorded on cylinders that were wax-coated. Although used mainly for dictation, it could produce excellent recordings.

Two-stroke engine 1879

Dugald Clerk

two-stroke engine uses more fuel than a fourstroke engine of the same power, but it also weighs less. Its mechanism is simpler, and each of its cylinders delivers power on every revolution, not every other revolution, as in a four-stroke. The first effective two-stroke engine was invented by Scottish engineer Dugald Clerk in 1879 and patented in 1881. It was designed to run on coal gas to power workshop machinery. Two-stroke engines are now used for things like scooters and lawn mowers, where lightness matters more than efficiency.

Early 20th-century gramophone

THE GRAMOPHONE

Flat disc records were invented in 1887 by a German engineer, Emil Berliner, working in the US. Because of their shape, they were easily mass-produced. And when renowned musicians started recording on them, their future was assured.

1875^{On Wednesday,} merchant navy captain Matthew Webb becomes the first person to swim the English Channel without any buoyancy aid. He completes the 21 mile (34 km) crossing in 21 hours 45 minutes. 1876Financed by wealthy von Meck, Russian composer Pyotr Tchaikovsky writes the ballet *Swan Lake*. In 1877, it is danced, with little success, by the Bolshoi Ballet under choreographer Wenzel Reisinger.

DOING AWAY WITH DISTANCE

Helped by Thomas Watson, Alexander Graham Bell invents the telephone

> t was Valentine's Day, 1876. A good day to tell the world about an invention that would help people communicate. It's lucky Alexander Graham Bell didn't leave it any longer. Two hours after he'd deposited papers describing his telephone to people at the US Patent

Bell's box telephone incorporated a larger magnet than others, which made it more sensitive.

> Bell demonstrated this telephone to Queen Victoria.

PUBLICITY MACHINE

Bell was an expert at publicity. His crude laboratory instruments became fine objects of polished brass,

rich wood, and ivory when they were to be demonstrated to someone as important as Queen Victoria. Bell made a good impression on the Queen when they met in 1878, despite making the mistake of touching her arm without permission to attract her attention to an incoming call.

Office, his rival, Elisha Gray, warned them that he was about to do the same. But Bell was first.

It was hard on Gray. Both men had similar ideas, but Bell had an advantage: he knew more about speech and hearing. Bell's father was a speech teacher and had invented a way to help deaf people speak. His grandfather had given speech lessons, so as Alexander grew up in Edinburgh, Scotland, he was surrounded by ideas about speech and hearing. He even got his dog to talk by making it growl then moving its mouth with his hands!

The family emigrated to Canada in

1870. Bell went to Boston, where he opened a school for teachers of the deaf. He experimented with a harmonic telegraph, which sent messages as dots and dashes similar to musical notes. Bell noticed that a strip of iron near an electromagnet mimicked the vibrations of a similar strip and

electromagnet connected to it by wires. He thought he might use this to transmit speech.

With mechanic Thomas Watson, he tried hard to make electric currents imitate sound

Early telephone cable

WIRED FOR SOUND

As telephones became more popular, cities got choked with overhead wires, so some lines went underground. Early phone cables contained many paperinsulated wires in a lead sheath. waves. The original arrangement wasn't sensitive enough, so Bell tried a needle dipping into acid. The needle was attached to a sheet of parchment stretched on a frame, with a horn to concentrate sound on to it. Sound shook the parchment, which varied the resistance of the needle's contact with the acid, which, in turn, varied the current.

The first successful telephone contained acid. Bell may have called out to Watson because he had spilled some.

By 1877, Bell's instrument had become a pair of identical wooden "telephones," each containing a bar magnet, a coil of wire, and a thin iron disc.

SIMPLE BUT EFFECTIVE

Section through 1878 telephone

The telephone didn't work at first. But on Friday, March 10, 1876, while Bell was fiddling with the transmitter in one room and Watson was working on the receiver in another, Bell said, "Mr. Watson, come here, I want you." And Watson came. He had heard Bell's words, the first ever spoken on a telephone. Bell's earlier patent did not include the liquid transmitter that made the transmission of speech possible, so he went back to his original design and improved it. By 1877, he had started a company and was giving demonstrations.

Bell grew rich from the telephone. He used some of his money to help deaf people and some to build a home in Canada. He made several more inventions and became president of the National Geographic Society, turning its magazine into the publication we know today. But Bell will always be remembered best for doing away with the distance that can separate two people who need to talk. CLOSE CALL

An 1877 Bell advertisement shows early telephones in use. Bell's system contained no amplification, making distant calls faint. This was remedied by the invention of the carbon microphone (* see page 151).

Bell

butterstamp" telephone

Cash register

James Ritty, John Patterson

cash register records every Asale, preventing store clerks from putting money into their own pockets. The first one was invented by US tavern keeper James Ritty in 1879. It displayed the money paid on a dial and recorded it by punching a paper roll. It wasn't easy to use, and cash registers caught on only after coal merchant John Patterson bought the idea. As well as improving it, he set up the world's first professional sales force to sell it.

CASH REGISTER Many early cash registers, like this one from 1935, had dials rather than keys.

Electric train 1879

Werner von Siemens

A s soon as good electric motors were available, they were used in trains. The first electric train was exhibited in Berlin, Germany, in 1879. Built by German engineer Werner von Siemens, it ran in a circle, took only 30 people, and went no faster than 4 mph (6 km/h). Within five years, real electric trains and trams were running in Germany, the US, and Britain.

Saccharin

Ira Remsen, Constantin Fahlberg

Saccharin is very much Sweeter than sugar and does not make people fat, so it is used a lot in food and beverages, despite its disagreeable aftertaste. US chemist Ira Remsen and his student Constantin Fahlberg discovered it by accident in 1879. They noticed that after one session in the lab, everything they touched tasted sweet. They soon tracked down the chemical responsible for this and turned it into a commercial product.

Venn diagram

John Venn

7enn diagrams help with logic. They were invented in 1880 in England by a Cambridge University instructor, John Venn, and use circles to stand for different things. For example, suppose there is one circle representing cats, another black things, and a third green things. The cat circle would be drawn to overlap the black circle, but not the green circle, to show that some cats are black but no cats are green. The idea can be extended to much more complicated statements.

Public electricity supply

Thomas Edison

Electric light bulbs were not much use without electricity. One of their inventors, Thomas Edison, knew this very well, so he built the first public electricity supply

1879 In Boston, religious leader Mary Baker Eddy founds the First Church of Christ, Scientist. Christian Scientists believe that humans are spiritual, not material, and value prayer above conventional medicine. system. It opened in New York in September 1882, a year after Edison had demonstrated the idea in London. Edison's system provided brighter, safer lighting than gas, but it used direct current, which did not transmit over long distances. Because of this, it lost out to alternating current in the end.

Practical life raft

Maria Beasley

aria Beasley invented the first life raft that was fireproof, compact, safe, and easy to launch. It had guard rails to prevent users from falling overboard and rectangular metal floats that folded up neatly for storage. Twenty of Beasley's rafts were carried on the ill-fated RMS Titanic, which sank on its maiden voyage in 1912. Thanks to her invention, 706 passengers were able to float safely until help arrived.

Function of thyroid gland

Victor Horsley

The thyroid gland lies in the neck, wrapped around the voice box. In 1883, Victor Horsley (later Sir Victor) proved that the gland's job is to control how fast the body burns food called its metabolic rate. He did this by removing the thyroid glands from monkeys. We now know that the thyroid gland makes a hormone that speeds up the body's cells.

1881 P. T. Barnum, James L. Hutchinson form the circus known as "The Greatest Show on

Electric streetcar

Magnus Volk

A tram is an electric bus that runs on rails in the road. Many inventors created trams in the early 1880s. The German firm Siemens and Halske was operating trams between Frankfurt and Offenbach

ELECTRIC STREETCAR This is a model of a double-decker streetcar that operated in London in about 1915. Streetcars were a feature of many large cities by 1900. Some places abandoned them; others kept them. Now some cities are bringing back this form of transportation.

Earth." Starring Jumbo the Elephant from April 1882, it will become the most successful circus of its time in the United States.

154

1851-1900

Windings

Rotor

in 1884, but the first tramway to take paying passengers was probably one built in 1883 by British engineer Magnus Volk. Running on narrow-gauge tracks along the sea front at Brighton, England,

it is still in service.

Wires collect electricity from overhead cables to power the streetcar

Induction motor

Nikola Tesla


A n induction motor is an electric motor that has no electrical connections to the part that rotates. This makes it more reliable, because there are no sliding contacts. It was invented in 1883 by Serbian-US engineer Nikola Tesla. INDUCTION MOTOR Tesla's original motor did not look much like the machines of today, but its operating principle was the same.

He figured out how to create a rotating magnetic field using stationary electrical windings.

ELTHAM

Placed in this rotating field, a conducting rotor will spin. This is because the field induces currents in the rotor, turning it into a magnet, which is pushed around as the field rotates. Induction motors now power most of the world's electrically driven machinery.

Three-phase electricity supply

three-phase electricity A supply uses three wires instead of two. It gives two different voltages from one set of wires and can create the rotating magnetic field needed in an induction motor. The idea occurred to Nikola Tesla in 1883. US engineer George Westinghouse, looking for something better than Edison's supply system, bought Tesla's idea in 1888. Today, nearly all household electricity is delivered by three-phase systems.

> Car has controls at both ends so it does not have to turn around

Metal wheels ran along rails _

WOOLWICH COMMON WELL HALL RD. ELTHAF

1882 Judo begins in Japan when Kano Jigoro learns about a samurai form of fighting called jujitsu and founds his Kodokan School. Fighters in this unarmed combat sport try to master their opponent by turning their own force against them. 1883 The volcanic island of Krakatau in Indonesia destroys itself in one of the world's biggest eruptions. The explosion is heard 3,000 miles (5,000 km) away. Thousands are killed and dust pollutes the atmosphere for years.

Artificial silk

Hilaire Chardonnet, Joseph Swan

A rtificial silk was the first synthetic fiber. In about 1880, both Hilaire Chardonnet in France and Joseph Swan in Britain made "silk" by squirting cellulose nitrate solution through a nozzle. The product was highly flammable, but both inventors found a way of converting it back into safer cellulose. Chardonnet got a patent for his process in 1884 and by 1891 had set up a factory at Besançon to make artificial silk commercially.

Motorcycle

Edward Butler, Gottlieb Daimler

The first motorcycle had three wheels. It was designed by British engineer Edward Butler in 1884, although he didn't build it until 1887. Its engine was at the back and drove a single rear wheel. In 1885, German engineer Gottlieb Daimler

designed the first two-wheeled motorcycle. He built it purely because he wanted to test a new highspeed gas engine that he had designed (*** see page 157**). It got its first outing on November 10, 1886.

Multistage steam turbine

Charles Parsons

A steam turbine is like a fan in reverse. Steam rushes through blades, making them spin. If there were only one set of blades, most of the steam's energy would be wasted, but in 1884 British engineer Charles (later Sir Charles) Parsons invented a turbine with many sets of blades on one shaft. These were graded in size to capture most of the steam's energy. Turbines like this are now used everywhere to power ships and electric generators.

Adder-lister

William Burroughs

The first adding machine that printed its calculations was created by a US inventor who left school at 15. It took William Burroughs four years to produce his first machine, which he completed in

MOTORCYCLE The Holden motorcycle, patented in 1897, had four cylinders driving the back wheel directly.

1884 The first women's singles tennis championship is held at the All England Croquet and Lawn Tennis Club, Wimbledon, which was founded in 1877. Maud Watson claimed the title from Lilian Watson 6-8, 6-3, 6-3. **ADDER-LISTER** *The Burroughs machine had an intricate mechanism.*

1885. It had more than 80 keys, arranged in columns of nine, and a handle to operate the printer. The following year, Burroughs formed the American Arithmometer Company. He continued to develop his machine, but it was 1892 before it was good enough to sell.

Bicycle

John Starley

any inventors worked on bicycles in the 1870s and '80s. But the first design that looked like a modern bike was made by British engineer John Starley in 1885. Several makers had already produced chaindriven "safety bicycles," but Starley was the first to make both wheels about the same size, put them in a diamond-shaped frame, and slope the front forks to the correct angle to make the wheel go in a straight line. His machine's name, the Rover, lives on in the Range Rover and Land Rover.

BICYCLE The Rover in this 1888 advertisement has all the essential features of a modern bike.

Bicycle hub gear

W. T. Shaw

Cycling uphill is easier if you can change into a lower gear. British engineer W. T. Shaw was one of the first people to help cyclists, with his "cryptodynamic" gearing of 1885. Then, in 1902, British engineers Henry Sturmey and James Archer both invented similar gears. These were brought together by bicycle maker Frank (later Sir Frank) Bowden. Like earlier designs, the Sturmey-Archer gear was housed inside the bike's rear hub.

1884 US writer Mark Twain writes his most popular book, *Huckleberry Finn.* This children's novel, a sequel to his highly successful *The Adventures of Tom Sawyer*, uses vivid language and humor to deal with violence and racism.

156

Carl Auer von Welsbach

In the late 19th century, many people used gas lamps. Electric lighting could have swept these away, but in 1885, Austrian chemist Carl Auer von Welsbach discovered how to get more light from gas. He found that salts of thorium and cerium gave out an intense light when deposited on asbestos fibers and heated. By the 1890s, gas lamps were wearing little knitted covers known as mantles over their flames. When a lamp was lit, the metals in its mantle gave out enough light to rival an electric bulb.

Karl Benz, Gottlieb Daimler, Émile Levassor

The first car, the Motorwagen, was built in 1885 by German engineer Karl Benz. It was a threewheeler with a singlecylinder engine. Soon Benz and others were making fourwheeled cars. In 1889, Gottlieb Daimler produced one with four gears. But it was French engineer Émile Levassor who produced the first car with its engine at the front, driving the rear wheels through a clutch and gearbox. His 1891 model was the forerunner of the cars we drive today.

Monotype typesetting system

Tolbert Lanston

O ne of the slowest operations in traditional printing was setting up type. By the 1880s, several inventors were trying to mechanize the process. First to succeed was US inventor Tolbert Lanston. His Monotype system of 1885 had a keyboard and a machine for casting type from molten metal. The caster followed instructions created by the keyboard, delivering type almost ready to print. Monotype dominated book printing for more than 70 years.

Gasoline engine

Gottlieb Daimler, Wilhelm Maybach

The gasoline engine evolved from engines that ran on natural gas. These could not run on liquid fuel, so the carburetor, which turns gasoline into a mist and mixes it with air, was an essential component of a gasoline engine. By 1885, German engineers Gottlieb Daimler and Wilhelm Maybach had designed an effective carburetor. They used it in a new highspeed engine, which was the first true gasoline engine and the forerunner of those that power most cars today.

Rabies vaccine

Louis Pasteur

Rabies is an infection of the nervous system, which people can catch from animal bites, and usually kills if not caught in time. The French biologist Louis Pasteur developed the first vaccine against rabies by heating tissue from infected animals to create a weakened virus. On July 6,

1885, he gave a dramatic demonstration of its power by vaccinating a boy who had been bitten by a dog with rabies. The boy lived.

Steering column and indicator

> Chain drive to the wheels ,

CAR This Benz car, made in 1888, was sold by Emile Roger, Benz's agent in Paris. It had a tubular metal frame, like a bicycle, and bodywork based on horse-drawn vehicles. The engine was at the rear, below the driver's seat.

1884 The London Society for the Prevention of Cruelty to Children is founded following the passing of a cruelty law. Later, it will link with other societies to form the National Society for the Prevention of Cruelty to Children (NSPCC). 1884 The world system of standard time zones is established. Delegates from 27 nations meet in Washington, DC,

to consider proposals about time zones made in the 1870s by Canadian railroad planner and engineer Sir Sandford Fleming. SKYSCRAPER The Empire State Building in New York City is perhaps the most famous skyscraper. Completed in 1931, it has 102 floors.

The steel mast was designed as a mooring mast for airships

William Jenney

A lthough tall buildings can be built with brick or stone, real skyscrapers need a steel frame. The first such building was designed by US engineer William Jenney in 1884. Built in Chicago, it was completed in 1885 and was 10 stories high. Its steel frame took much of the weight of its stone walls. By the 1930s, this idea had been extended to produce walls hung from the frame, called curtain walls.

Dishwasher

Josephine Cochrane

Washing dishes is a timeconsuming chore, but Josephine Cochran invented a machine that could do it automatically. She designed the machine in a shed behind her home then formed a company to manufacture it. She showed her machine at the 1893 World's Fair at Chicago, where nine Garis-Cochran dishwashers generated a lot of interest among restaurant and hotel owners. Household dishwashers came later.

Inexpensive aluminum

Charles Hall, Paul Héroult

A common metal on Earth but was once too expensive to use. It is found as aluminum oxide, whose oxygen cannot easily be removed by chemical means. In 1886, both Charles Hall in the US and Paul Héroult in France dissolved aluminum oxide in molten cryolite (sodium aluminum fluoride) and used electricity to drag the aluminum and oxygen apart. The Hall-Héroult process has transformed aluminum from an exotic curiosity to the stuff of jumbo jets and soda cans.

> Recording on wax

Chichester Bell, Charles Tainter

The first sound recordings were made on foil wrapped around a grooved cylinder. A needle, moving up and down, created "hills and dales" in the shape of the sound waves. These recordings were fragile and inaccurate. In 1886, US inventors Chichester Bell and Charles Tainter patented the Graphophone, which recorded on waxed cardboard cylinders. The wax, along with a recording stylus that made a v-shaped groove, gave a better sound.

> Function of the ear's semicircular canals

Marie Flourens, Yves Delage

The semicircular canals of the inner ear are three fluid-filled tubes joined together at right angles. In 1824, French biologist Marie Flourens noticed that pigeons moved strangely after a tube was cut. In 1886, another French biologist, Yves Delage, realized what was happening.

1886 US president Grover Cleveland accepts one of the world's most famous symbols, the Statue of Liberty, as Moving the head moves the tubes, but the liquid inside lags behind. Hairs in the tubes detect the relative movement and tell the brain which way the head is moving.

Linotype typesetting machine

Ottmar Mergenthaler

Until the 1970s, most newspapers were set in type using a machine invented by German-US engineer Ottmar Mergenthaler in 1886. The Linotype machine used molten metal, but instead of making individual letters like the Monotype machine (***** see **page 157**), it produced whole lines of type—hence the name. Newspaper printers liked it because it was quick to use and needed only one operator.

> Steam sterilization of surgical instruments

Ernst von Bergmann

nce surgeons realized that infections were caused by germs (* see page 146), they had to decide what to do about them. Should they kill them with antiseptics or try to keep them out of the operating room from the start? Today, the second approach is normal practice. It was pioneered by German surgeon Ernst von Bergmann in 1886. He was the first person to sterilize instruments and dressings with steam. He later made everything else used in operations as germ-free as possible.

a gift from the people of France.

Marking the centenary of US

independence, it stands

306 ft 8 in (93.5 m) high.

1886 French sculptor Auguste Rodin creates the first version of what will be one of his best-known works, *The Kiss*. Originally placed in a set of doors called *The Gates of Hell*, it is based on a scene from Dante's *Divine Comedy*.

Comptometer

Dorr E. Felt

The Comptometer was L one of two calculating machines used in accounting offices from the late 19th to the mid-20th century. While its rival, the Burroughs machine (* see page 156), could produce a printed record, the Comptometer was faster. Invented by US engineer Dorr E. Felt, it was first used in 1887. As with the Burroughs machine, numbers were entered using columns of keys-one for units, one for tens, and so on. The result was displayed in a set of windows for clerks to copy out by hand.

Esperanto

1887

Ludwik Zamenhof

International cooperation is hampered by the fact that people in different countries speak different languages. Many people have tried to solve this problem by inventing a universal language. The only one that has had any success is Esperanto, invented in 1887 by Polish oculist Ludwik Zamenhof. Based on European languages, it has simple, regular rules. Some of these seem strange to English speakers: plural nouns demand plural adjectives, for instance. Despite this, more than 100,000 people can speak it.

Fractal curve

Giuseppe Peano

A fractal curve is a wiggly line that looks the same however much it is magnified. An example is the coast of a country, which looks just as wiggly on a smallscale map as on the actual shore where sand meets sea. The first fractal curves were described by Italian mathematician Giuseppe Peano, in 1887. They were viewed as a mere curiosity until the 1970s, when Polish mathematician Benoit Mandelbrot investigated them in more detail. He used them to create some stunning computer graphics.

> Horn channeled the sounds from

the disc

Gramophone

Emile Berliner

"he first recording machines L made cylindrical records. In 1887, German engineer Emile Berliner, working in the US, came up with a better idea discs. He coated metal with wax. recorded sound by cutting through the wax, then etched the metal to make a permanent record. The cutter moved from side to side, not up and down as in earlier machines. On playback, the needle followed this "lateralcut" groove more faithfully, giving better reproduction. More importantly, discs could be stamped out

by the thousand, making Berliner's gramophone the best choice for music lovers.

Handle was used to keep the turntable moving around

Disc was played on a turntable /

1886 Scottish writer Robert Louis Stevenson publishes The Strange Case of Dr Jekyll and Mr Hyde,

about a doctor who can turn into a fiend. A "Jekyll and Hyde" will come to mean anyone with two sides to their character. was lowered onto the disc

Steel needle

1887 Two more classic fictional characters are born when Scottish writer Sir Arthur Conan Doyle writes

Drive belt

GRAMOPHONE Early Berliner gramophones had no motor, so listeners had to turn a handle. The discs were the same size as a CD but played for only about a minute.

A Study in Scarlet featuring ace detective Sherlock Holmes and his friend Dr. Watson. The story will be followed by many others.

MAIL ORDER The Sears, Roebuck catalog became a part of the American way of life, allowing people in rural areas to enjoy the fruits of the nation's prosperity.

Mail order

Richard Sears, Alvah Roebuck

Richard Sears thought up mail order while working for a US railroad company. Acquiring some unwanted watches, he sold them by mail to other railroad workers. He used the profits to set up a company, which by 1887 had produced the first mail-order catalog. He later formed a new company with repairman Alvah Roebuck. By 1894, the Sears, Roebuck catalog was 507 pages thick.

High-voltage power transmission

Sebastian de Ferranti

T n the 1880s, there were many Lrival electricity systems. But British engineer Sebastian de Ferranti could see the future. Electricity would be generated in big power stations outside cities, not little ones inside them, and transmitted at high voltage. In 1887, he designed a giant power station at Deptford, just outside London, and cables that could take 10,000 volts. The station's directors pushed him out in 1891, and it was not completed to his plan. But Ferranti was right: high-voltage transmission is universal today.

1888 Dutch painter Vincent van Gogh cracks under the strain of living with French painter Paul Gauguin in the south of France. He cuts off part of his left ear and later paints a portrait of himself with his head bandaged.

Steam tricycle

Leon Serpollet

A tone time it looked as though steam, not gasoline, might be best for motor vehicles. Several inventors designed steam tricycles in the 1880s. In 1887, French engineer Leon Serpollet overcame their chief problem with a boiler that produced instant steam. He built this into a tricycle, then showed it off by driving it 282 miles (451 km) from Paris to Lyon. Later, he built steam cars. In 1903, one reached 80 mph (130 km/h).

Pneumatic tire

Robert Thomson, John Dunlop

British inventor Robert Thomson patented air-filled leather tires in 1845, but these were never as popular as solid rubber ones. The first successful pneumatic tire was patented in 1888 by Scottish vet John Dunlop, after he experimented with rubber tubing on the wheels of his son's tricycle. The finished product was protected by a canvas cover. Dunlop's tire was ideal for bicycles and later became essential for cars.

Kodak camera

George Eastman

Until 1888, photography was difficult. Cameras were complicated, and users

1889 A baby is born in the town of Branau, 30 miles (50 km) north of Salzburg, Austria. His father's had to process their own pictures. US businessman George Eastman changed that with his Kodak camera. It was simple to use and came already loaded with film. After use, the camera went back to Eastman, who returned it, reloaded, along with the pictures. With his slogan, "You press the button, we do the rest," Eastman became a rich man.

Radio waves

1888

James Clerk Maxwell, Heinrich Hertz

In 1864, Scottish physicist James Clerk Maxwell predicted the existence of electromagnetic waves moving at the speed of light. German physicist Heinrich Hertz wanted to generate such waves and see if they behaved like

Earpiece was / hung on a hook to disconnect the phone

Wire connected the earpiece to the phone

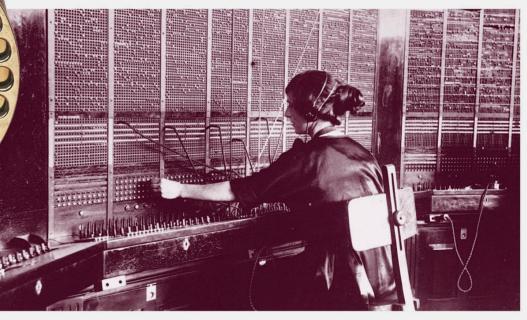
> AUTOMATIC TELEPHONE EXCHANGE This 1905 phone was designed for use with a Strowger exchange. Automatic dialing was available for local calls only.

surname, earlier changed from Schicklgruber, is Hitler. The baby is named Adolf. Fifty years on, he will plunge the world into war. light, to find out if light itself was electromagnetic. He found that electrical sparks produced waves that could be received on a distant loop of wire, producing more sparks. He had discovered radio waves. Further experiments showed that they did behave much like light. Satisfied with these discoveries, complete by 1888, Hertz made no further use of them.

Automatic telephone exchange

Almon B. Strowger

Telephone exchanges are needed to connect phones to each other. At first, connections were made by operators pushing plugs into sockets. Then, in 1889, Kansas City funeral director Almon B. Strowger, fed up with his operator diverting calls to a rival, devised the first successful automatic telephone switch. Callers could control it from their own phone by sending groups of electrical pulses down the line. The first automatic exchange opened at La Porte, Indiana, in 1892. At first, callers generated the control pulses by repeatedly pushing a button. Later, the more convenient rotary dial mechanism made this process automatic, too. (See also Getting Connected.)


Tabulating machine

Herman Hollerith

A s the population of the US grew, classifying the people took longer. Engineer Herman Hollerith decided to mechanize the 1890 census. Citizens were recorded as holes punched in a card. Hollerith's "tabulating" machines then sorted and counted the cards at high speed.

GETTING CONNECTED

TELEPHONES WOULD NOT WORK without exchanges. Your phone would have to be permanently connected to every other phone in the world, just in case you wanted to call it. In reality, connections are set up only when they are needed, by routing a call through a number of switches that connect you first to the exchange that handles the phone you want then to that particular phone.

An operator on a telephone exchange board connects callers to the number they ask for.

CALLING THE OPERATOR

Before automatic exchanges, all calls were connected by operators. To make a call, you would lift the receiver and, on some systems, alert the operator by turning a handle. You would then ask for the number you wanted and the operator would make the connection by plugging your line into a switchboard.

STROWGER'S SYSTEM

Strowger's basic idea was a remotecontrolled switch that could connect one phone to any of several others. It was operated by electric pulses from the user's telephone line. Electromagnets and ratchets moved a connector to one of 10 rows of contacts, then along the selected row to reach the exact phone required.

1889 French engineer Gustave Eiffel builds a spectacular iron tower for the Paris World's Fair. It beats 100 other entries in a competition, pushing technology to its limits. Not everyone likes it, but it will become the emblem of Paris. 1889 In November, US investigative journalist Nellie Bly sets out to beat Jules Verne's fictional hero Phileas Fogg and travel around the world in less than 80 days. She does it in 72 days, 6 hours, 11 minutes, and 14 seconds. Science Takes Control

Halftone screen

Max Levy, Louis Levy

Black-and-white photos, with all their tones of gray, are printed by the halftone process. This turns them into dots—large ones in dark areas, small ones in paler areas. In the original process, the dots were made by copying the photo with a camera that had a screen carrying crisscross lines just in front of the film. The first successful halftone screen was made in 1890 by US inventors Max and Louis Levy. They cemented together two sheets of glass, each ruled with straight lines. Screens like this were in use until the 1970s.

Tetanus immunization

Emil Behring, Kitasato Shibasaburo

etanus, or lockjaw, is an infection caused by germs in soil. These can breed inside a cut, producing poisons that make muscles contract and may cause death. In 1890, German and Japanese bacteriologists Emil Behring and Kitasato Shibasaburo found they could protect animals from tetanus by injecting serum from another infected animal. Today, most people in the WELLCOME' West receive letanus Toxoio

TETANUS IMMUNIZATION Tetanus vaccine, or toxoid, contains the poison produced by tetanus germs, made safe by heat or chemicals. routine immunization with tetanus vaccine. If they suffer a deep, dirty cut, they will need only a booster dose to ensure continued protection.

Steam-powered airplane

Clèment Ader

French engineer Clèment Ader was very nearly the first person to fly a plane. His steam-powered aircraft, the *Eole*, managed a longer flight than the more famous Wright brothers (*** see page 175**), but it didn't quite count. On October 9, 1890, Ader managed a 160 ft (50 m) "flight" near Paris, but the machine wasn't really flying because it wasn't under control. The experiment proved that a steam engine was just too heavy for flight.

Surgical gloves

William Halsted

By the 1880s, many surgeons were convinced that germs were a threat to their patients. Sterilization and antiseptics

could help, but what about the surgeon's hands? They were a source of infection, even when scrubbed, but could not be replaced by instruments. US surgeon William Halsted found the answer in 1890 he invented the thin rubber gloves that all surgeons wear today.

> Double walls greatly . reduce heat transfer by air currents

VACUUM BOTTLE Dewar flasks can be made of metal as well as glass. This model of a metal flask has been cut open to reveal its double wall. Metal flasks are not easy to make but have the advantage of being stronger and safer than glass flasks.

1890 Norwegian dramatist challenges accepted attitudes to women with his realistic play

For Active Immunisation

OCT 1943 Series P 1300B

Prepared and Tested at ome Physiological Research Li gley Court, Beckenham, Engli

0.5% Phenol pr

Hedda Gabler. Ignoring the conventions of 19th-century drama, Ibsen creates a powerful new form of theater.

1891 New York City opens a new concert hall, financed by industrialist Andrew Carnegie. Russian composer Tchaikovsky is guest conductor during its first week. Most important American and visiting musicians will perform here.

Gaslight photographic paper

Leo Baekeland

In the 1880s, photographers made prints by daylight. This restricted their hours of work. The first photographic paper that worked in artificial light usually gaslight—was invented by Belgian-US chemist Leo Baekeland in 1891. He sold his Velox paper to George Eastman in 1898, helping make photography affordable for all.

Long-distance telephone cable

Oliver Heaviside, Michael Pupin

Early long-distance telephone calls suffered from blurring and distortion, an effect already noticed on telegraph cables. It could make it impossible to understand what someone was saying. Scientists were baffled until British telegraph engineer Oliver Heaviside invented a new mathematical method that showed where the problem lay. He published his results in 1892, and in 1900 US physicist Michael Pupin used them to improve longdistance lines by adding special coils at regular intervals.

Vacuum bottle

C cottish physicist James (later Sir James) Dewar was one of the first to make oxygen so cold that it turned into a liquid. But he had storage problems, because at –183°C oxygen turns back to gas. So he invented a special bottle, the Dewar flask. It was made of two layers of glass, silvered like a mirror and with a vacuum between them. Infrared radiation. or radiant heat, was reflected from the silvering, while the

vacuum stopped heat from being carried in through air currents.

1851-1900

VISCOSE RAYON This material has a glamorous, glossy finish. By 1903, when these samples were made, it was beginning to rival natural silk

MOVING PICTURE Using a Kinetoscope was nothing like going to the movies. Peering through the eyepiece, the viewer saw a moving image that lasted about as long as a modern TV commercial.

Viscose rayon

Charles Cross, Edward Bevan, Clayton Beadle

"he first artificial silk was expensive because it was made by a slow, dangerous method (* see page 156). In 1892, three British chemists, Charles Cross, Edward Bevan, and Clayton Beadle, invented the viscose process. Cellulose is converted into nonflammable cellulose xanthate and dissolved in caustic soda to form a yellow, sticky liquid. This is squirted through nozzles and reacts with further chemicals to make a silky artificial fiber called viscose rayon.

Dmitry Ivanovsky, Martinus Beijerinck

virus is an infectious Aparticle that can multiply only inside a living cell. It is basically just a set of genes wrapped in a protective coating. It takes over a plant or animal cell, forcing it to make copies of the invader. The first scientist to realize that bacteria were not the only infective agents was Russian microbiologist Dmitry Ivanovsky. He published a paper on a virus infection of tobacco plants in 1892. Dutch botanist Martinus

1892 In the US, a five-month struggle

between a big trade union and

bosses of the steel industry starts

Beijerinck did similar work in 1898. Both discovered that viruses were far smaller than bacteria and invisible under an ordinary microscope.

Moving picture

William Dickson. Thomas Edison

Tt is not clear L who invented movies. A young US engineer, William Dickson, who worked for Thomas Edison, has a good claim. Edison thought that phonograph listeners might like something to watch and asked Dickson to provide it. Dickson devised a machine, the Kinetograph, which took 40 pictures each second on a long strip of film. The film was then viewed, by one person at a time, in another machine, the Kinetoscope. It held only 50 ft (15 m) of film, so a

in Homestead, Pennsylvania, after workers' wages are cut.

movie lasted only 20 seconds.

Film passed through in a continuous loop

893 Norwegian painter Edvard Munch produces The Scream, a painting that conveys intense feelings of

anxiety and emotional torment. It will become one of the most famous examples of the style known as expressionism.

several deaths.

Science Takes Control

Whitcomb Judson, Gideon Sundback

Chicago engineer Whitcomb Judson got tired of lacing his boots and invented a fastener that hooked them up with one pull. He patented it in 1893, but it tended to come unhooked. Swedish engineer Gideon Sundback realized that the hooks were the problem. By 1914 he had developed the modern fastener, with cups, not hooks, locking together. It was used in 1923 for a boot called the Zipper, and the name stuck.

Bubonic plague agent

Kitasato Shibasaburo, Alexandre Yersin

Bubonic plague is a deadly disease carried by rat fleas. It has killed millions in repeated epidemics. Thanks to the discoveries of Japanese and Swiss bacteriologists Kitasato Shibasaburo and Alexandre Yersin in 1894, we now know that it is caused by a type of germ known as a bacillus. It is usually called *Yersinia pestis* in honor of Yersin's contribution.

Phototypesetting

Eugene Porzolt

Photography offers an alternative to metal type. Letters can be projected on to film. The first phototypesetting machine, designed in 1894 by Hungarian engineer Eugene Porzolt, was a failure. But from the 1960s, with computers controlling the process, phototypesetting became the way most words got printed. Computers now store letter shapes in digital form. So, like metal type, phototypesetting itself is now a thing of the past.

Radio communication 1894

Guglielmo Marconi

Ttalian inventor Guglielmo Marconi started experimenting with radio waves in 1894, when he was only 19. Others, such as the British and Russian physicists Oliver Lodge and Alexander Popov, did the same. But it was Marconi who really got radio going. Within a year, he was sending signals 1.25 miles (2 km). By 1896, he was in Britain and had the world's first radio patent. After much further development, it was Marconi's "wireless telegraph" that sent the distress signals from the sinking ship Titanic in 1912.

Argon

Lord Rayleigh, William Ramsay

rgon is known as an inert gas because it does not react chemically. It is used in light bulbs because it makes the filament last longer. It was discovered by British physicist Lord Rayleigh, who noticed that nitrogen from air was denser than nitrogen from chemicals. Both he and British chemist William (later Sir William) Ramsay thought that atmospheric nitrogen might be contaminated with an

1893 On December 23, Richard Strauss conducts the first performance of German composer Engelbert Humperdinck's tuneful opera Hansel and Gretel. The story, by Humperdinck's sister Adelheid, is based on a well-known folk tale. unknown, heavier gas. They both found it in 1894. Its name "argon" is Greek for "inactive."

Movies 1895

Auguste Lumière, Louis Lumière

ovies did not become a Ltruly theatrical experience until French brothers Auguste and Louis Lumière invented the Cinématographe, the first system that could show an audience a moving picture that ran for several minutes. Their machine acted as both camera and projector. It gave its first public performance on December 28, 1895, in Paris. The program of 12 short films, including one showing Lumière factory workers, caused a sensation.

Helium on Earth

William Ramsay

Helium, the gas that is used to fill party balloons, was first found on Earth by William Ramsay in 1895. He heated a mineral called cleveite, which contains uranium, and discovered that it gave off a gas. The gas's spectrum contained a yellow line matching that of helium in the sun, which proved its identity. Swedish chemists Nils Langlet and Per Cleve also found the gas at about the same time. Later, Ramsay and British chemist Frederick Soddy discovered that helium is produced whenever radioactive elements decay.

1894 London's Tower Bridge, started in 1886, finally opens. Built by Sir Horace Jones and Sir John Wolfe Barry, and powered by steam, it is London's only moving bridge. Its twin towers will become a well-known symbol of the city.

Liquid air 1895

Carl von Linde

I fair is made cold enough, it turns into a liquid. The drop in temperature is produced by compressing air, letting it cool, then letting it expand so that it cools still further. The first to

do this on a large scale was German engineer Carl von Linde. His system, invented in 1895, produced a continuous stream of liquid air. He later distilled air to produce liquid nitrogen, used as a coolant, and liquid oxygen, used in steel making.

X-rays

Wilhelm Röntgen

German physicist Wilhelm Röntgen discovered X-rays in 1895 while he was investigating cathode rays (electrical discharges inside a tube containing very little air). He noticed that when the tube was working, some crystals lying nearby glowed, even though the

light could escape from it. He figured out that the cathode rays, hitting the glass of the tube, were producing other rays that made the crystals glow. He did some further experiments, which showed that the rays could pass through solid objects and affect photographic plates. This led him to make the first ever X-ray picture. At first, Röntgen was not sure that he should announce his discovery. He was worried that other scientists might not believe him. But soon everyone was talking about the new rays that made hidden things visible.

tube was shielded so that no

Wheel guided the film into the mechanism

Rotating shutter / has red, green, and blue apertures to give the film color

MOVIES The early movie camera (left) was hand-cranked. The projector (right) could show films in color. *tenses for red, exp green, and blue images*

Handle was turned to show the film X-RAYS Small animals like this rat made good subjects for early experimenters with X-rays. For the first time, their skeletons could be seen without dissection.

> Film wound , onto a spool

Radiation from uranium 1896

Henri Becquerel

rench physicist Henri Becquerel wanted to see if crystals that glowed after exposure to sunlight gave out X-rays. In 1896, he found that certain uranium salts affected a wrapped-up photographic plate when placed on it in sunlight. Becquerel thought that sunlight may have made the crystals produce X-rays, which went through the wrapping. Then he discovered that the experiment worked in the dark. The crystals gave out penetrating radiation all by themselves.

1895 In April, the song Waltzing Matilda, by "Banjo" Paterson, is performed in Winton, Queensland, Australia, for the first time. Its title means "carrying a bag of belongings, or swag," and it tells the story of a wandering laborer, or swagman.

1896 The ancient Greek Olympic Games are revived in Athens by Pierre Fredi, Baron de Coubertin. Fourteen nations take part in the all-male competition. It includes a new event, the marathon, which is won by a Greek shepherd.

Surgical mask

Johannes von Mikulicz-Radecki

With sterilization of instruments and surgical gloves in frequent use, one of the last sources of infection in the operating room was the surgeon's own breath. In 1896, a gifted Polish surgeon working in Germany, Johannes von Mikulicz-Radecki, blocked up this loophole by placing gauze over his mouth to form the first surgical mask.

Toothpaste in a tube

William Colgate

oothpaste existed in L the 19th century but was packaged in jars. The first person to put it in a tube was US dentist Washington Sheffield. His Creme Dentifrice of 1892 was not very popular, and it was eclipsed four years later with the marketing of Colgate Ribbon Dental Cream by New York soap and candlemaker William Colgate. He changed the shape of the tube nozzle, and described the result with the successful slogan "Comes out a ribbon, lies flat on the brush.'

Sphygmomanometer

Scipione Riva-Rocci

The usual instrument for measuring blood pressure, the sphygmomanometer, was invented in 1896 by Scipione Riva-Rocci, an Italian children's doctor. A cuff around the arm is inflated until the blood stops flowing. The air pressure is then reduced until the flow just starts again, indicating the maximum blood pressure.

> Blood pressure / reading taken from here

Doctors now listen to the flow with a stethoscope, a refinement added in 1905 by Russian surgeon N. S. Korotkoff. This allows them to measure the minimum pressure as well.

Cathode ray

oscilloscope

Ferdinand Braun

lectric waves are

displays electrical

invisible, so the cathode

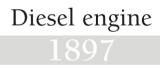
signals on a screen, is

a valuable tool. It was

invented in 1897 by

German physicist

Ferdinand Braun.


He took the still-

ray oscilloscope, which

SPHYGMOMA-NOMETER This 1905 instrument is similar to those used today. The rubber bulb pumps air into the arm cuff.

> Exhaust casing received the spent steam

experimental cathode ray tube (a glass tube containing very little air, in which a negative electrode, or cathode, gives off electric particles) and added magnetic coils to move the particles horizontally and vertically in response to signals. In this way, Braun managed to draw patterns on a screen inside the tube.

Rudolf Diesel

In 1892, German engineer Rudolf Diesel patented an engine that gave more power for less fuel. It compressed its fuel and air to a much higher pressure than a gasoline engine, making it so hot that it burned without the aid of a spark. In 1897, he built a fully developed engine, which

1896 Popular British newspaper the Daily Mail is founded by media tycoon Alfred Harmsworth. It includes features such as a women's column, competitions, and stories and will soon change the nature of newspaper publishing. 1897 Vampires get a boost from British writer Bram Stoker's horror novel Dracula. He bases it on the

TOOTHPASTE IN A TUBE People who

were accustomed to toothpaste from a jar

seem to have had trouble with it when it came

out of a tube, but Colgate's toothpaste behaved itself.

ancient Slavic religious belief that a buried body that does not decompose will leave its grave at night to drink human blood.

1851-1900

TURBINE SHIP The original steam turbine in the Turbinia was an extremely advanced piece of engineering for the end of the 19th century and still looks impressive today. Parsons's engine was a more compact and efficient power plant than the older piston engine.

Blades turned by lowpressure steam High-pressure steam entered turbine here Thrust block transmitted push of propeller to the ship

Charles Parsons Steamships changed forever When British engineer Charles (later Sir

Turbine ship

Charles) Parsons launched

۔ Shaft turned the ship's propeller

Blades turned by high-pressure steam

the first multiple-unit electric train. It was introduced on the Chicago South Side Elevated Railroad in 1898 and was later used on New York's Manhattan Elevated Railway.

Transmission of malaria by mosquito

Ronald Ross

alaria is a disease caused by tiny parasites living in the blood. Patients suffer recurrent chills and sweats. Nobody knew how the parasites got there until British bacteriologist Ronald (later Sir Ronald) Ross studied infected birds in India. He proved in 1897 that the parasites are carried by mosquitoes and injected when they bite. A year later, three Italian scientists showed that only one mosquito, the Anopheles, gives malaria to humans.

1898 Canadian adventurer reaches Newport on the US' northeast coast to become the *Turbinia*, the first ship powered by his steam turbine. In 1897, he demonstrated it to the Royal Navy near Portsmouth, England. Navy ships were powered by piston engines, and *Turbinia* made them look ridiculous as it darted among them at the record speed of 34 knots (43 mph or 69 km/h). Tests in other ships confirmed the turbine's superiority.

> Conditioned reflex

1999

Ivan Pavlov

reflex is an automatic response, such as pulling a hand away from a hot object. In 1898, Russian scientist Ivan Pavlov started experiments that led him to discover a more complicated kind of reflex. When investigating digestion in dogs, he found that the sound of food being prepared made their mouths water. He later found he could train them to salivate whenever a bell was sounded. Pavlov called this kind of reflex conditional, because it happened only after learning, but it is now usually called a conditioned reflex.

first person to sail around the world single-handedly. He set out from Boston in a 95-year-old boat more than three years earlier.

\ Outer casing cut away to show turbine blades

Blades turned by medium-pressure steam

delivered 25 horsepower from a single cylinder. Diesel engines can be expensive, heavy, and noisy but are unbeatable where fuel consumption really counts.

Electron

J. J. Thomson

British physicist J. J. (later Sir J. J.) Thomson was the first person to show that atoms contain smaller particles. He studied cathode rays, and, by subjecting the rays to electric and magnetic fields, he showed in 1897 that they consisted of negatively charged particles. Thomson discovered that it made no difference what materials he used, and he concluded that the particles existed in everything. He believed that they were lighter

and could move faster than any

atom and realized that he had

found something new. We now

Multiple-unit

electric train

call the particles electrons.

Frank Sprague

Instead of one powerful locomotive at the front, many electric trains have smaller driving motors at several points along their length. This gives better acceleration and more passenger space, but the motors have to work together so that all the coaches speed up and slow down at the same rate. In 1897, US engineer Frank Sprague managed to control separate motors in this way and used them in

1897 The world's first run in the US from Hopkinton, Massachusetts, to Boston—just over 26 miles (42 km). It will be repeated every April, but women will not be allowed to compete for another 75 years. Science Takes Control

Magnetic recording 1898

Valdemar Poulsen

anish telephone engineer Valdemar Poulsen was worried by one obvious defect of the telephone. Unlike the telegraph, it didn't work without someone there to answer it. So in 1898. he invented the first telephone answering machine, the Telegraphone. To do so, he had to invent a totally new technologymagnetic recording. His machine recorded telephone messages on a reel of thin steel wire and could also be used for dictation. (* See also Recording with Magnetism.)

Polonium

1898

Marie Curie, Pierre Curie

Polonium is a very rare element. Highly radioactive, it can be used to discharge unwanted static electricity. The best source is pitchblende, but 1,100 tons (1,000 tonnes) of this yield only 40 mg of polonium. Polonium was the first element to be revealed by its radioactivity, and it was discovered by radioactivity pioneers Marie and Pierre Curie in 1898. They called it polonium after Marie's native country, Poland.

ASPIRIN Soluble aspirin from Bayer is seen here in its original packaging.

1899 What will become one of the most played piano pieces of all time, *Maple Leaf Rag*, is published in

Marie Curie, Pierre Curie

See **pages 170–171** for the Story of how Marie and Pierre Curie discovered radium and made radiotherapy possible. of refrigerator) that was easier to clean and a machine for sweeping the city streets. It was not the first street sweeper, but it became one of the most widely used. **RIGID AIRSHIP** Airships like this were used by the Royal Naval Air Service in World War I.

Aspirin

Felix Hoffman

O ther drugs have partly replaced aspirin as a painkiller, but it is still used for treating strokes and heart attacks. Chemically related to a plant extract, salicylic acid, it was first made by German chemist Felix Hoffman, whose father may have taken the acid for rheumatism. The compound was first marketed by Bayer, a German company, in 1899.

Street sweeper

Florence Parpart

Florence Parpart had several patents to her name, including an improved icebox (an early form

Missouri by US composer and pianist Scott Joplin. A later attempt by Joplin to break into opera will prove unsuccessful. Rudder steered the airship left or right Cabin for the crew was called a gondola

Escalator

George Wheeler, Charles Seeberger

"he first escalator, invented by US engineer Jesse Reno, was just a sloping, moving walkway with a grooved tread to stop passengers from slipping. It wasn't even called an escalator. This name was used by US engineer Charles Seeberger to describe a design with folding steps originally invented by George Wheeler. Seeberger joined the Otis Elevator Company, which exhibited the escalator at the 1900 Paris Exposition. Later, the company added the grooved tread from Reno's design to complete the escalator we know today.

Fingerprinting 1900

Francis Galton, Edward Henry

ingerprints are a good way of tracking down criminals, but they work only because there is a way of classifying them. Without this, a new print could not be compared with those on record. British scientist Francis (later Sir Francis) Galton, having confirmed that every fingerprint is different, devised a basic classification system. Police officer Edward (later Sir Edward) Henry developed this into the system widely used today. It was published in 1900. Two years later, fingerprints made their first appearance in court.

1899 Three years of war begin in South Africa when the Boers (descendants of the original Dutch settlers), led by Paul Kruger, start fighting with the British. Resentment had built up over the huge influx of Britons seeking gold there.

168

1851-1900

Rigid airship

Ferdinand von Zeppelin

The first airships were just elongated balloons with an engine and passenger compartment. In 1900,

German general Count Ferdinand von Zeppelin built the first airship with a rigid frame. Its lifting gas was held in separate gas bags inside the frame, allowing a more aerodynamic shape. Zeppelins, as they became known, were used as bombers in World War I. After this they carried passengers, until public confidence was destroyed in 1937 when the *Hindenburg* caught fire in a dramatic accident, killing 35 passengers.

Quantum theory

Max Planck

Tn 1900, physicists had some problems. One was that the light from red-hot objects was not of the expected color. German physicist Max Planck found he could predict the color correctly by assuming that energy was radiated only in multiples of a fixed amount, or quantum. This also explained why the energy of electrons ejected from metals by light depended on the color, not the brightness, of the light. Over the next 30 years, quantum theory allowed Niels Bohr, Erwin Schrödinger, Werner Heisenberg, and others to develop a new view of the world in which matter and energy could be both waves and particles (* see page 190). This has transformed physics.

RECORDING WITH MAGNETISM

RECORDINGS ON WAX WERE FRAGILE and quickly wore out. The alternative, magnetic recording, also had problems, including noise and distortion. Both were eventually conquered. Magnetic recording proved ideal for recording computer data and television pictures. Its use with computers has more recently developed into digital magnetic recording, which produces the

Rigid frame gave

the airship a smooth, sleek shape

Nose was

strengthened to take

the mooring cable

near-perfect tapes used to make CDs.

Valdemar Poulsen, inventor of magnetic recording

FROM METAL TO PLASTIC

Early magnetic recordings were made on steel wire or tape. During World War II, the first modern recorder, the Magnetophon, was developed by AEG and BASF in Germany. Like all later machines, it used coated plastic tape.

VIDEO RECORDING

Video signals contain very high frequencies. An ordinary recorder would need to run very fast to record these. Video recorders, invented in 1956, have a recording head that scans the tape at a high enough speed to record these frequencies.

Ampex VR1000 video recorder from about 1956

DIGITAL RECORDING

Since about 1950, computers have used magnetic recording for storing data. Unlike sound, data can be recorded without errors. Sound converted into digital form before recording gives a perfection unknown to the pioneers.

1900 China sees the end of a long campaign against foreigners in the country, led by a secret martial arts society known as the Boxers. After a year of terrorism, Western troops finally rescue besieged foreigners from Beijing. 1900 US tennis player Dwight F. Davis donates a cup to be awarded at an annual international lawntennis tournament for men. It will become known as the Davis Cup. Intended for amateurs, it will later become professional.

PARTNERS IN DISCOVERY

Marie and Pierre Curie discover radium and make radiotherapy possible

> In 1891, Marie Sklodowska arrived in Paris, aged 23. She had done well in school in Poland, and now, after eight years as a governess, she had saved enough money for college. She registered at the Sorbonne, the university in Paris, and became a student, studying physical science and mathematics.

> By 1894, Marie had her degree. Something else important happened that year, too. She met Professor Pierre Curie, and in 1895 they got married, forming one of science's most fruitful partnerships.

> > Marie decided to research the uranium radiation recently discovered by Henri Becquerel. She studied pitchblende, a mineral containing uranium, and found that it produced more radiation than the uranium alone could account for. It clearly contained something more "radioactive," as she called it, than uranium. With Pierre, she dissolved pitchblende in chemicals to produce compounds they could separate out. Work stopped briefly in 1897 for the birth of Marie's first daughter.

In the summer of 1898, the Curies found a new radioactive element, polonium, but there was more radiation still unaccounted for. Its source must be very radioactive indeed. Although they hadn't isolated it yet, they dubbed it radium, announcing their discovery in December.

After another four years' work, Marie had produced just one-tenth of a gram of pure radium chloride. She became a Doctor of

Science—the first woman in Europe to do so—and in 1903 shared the Nobel Prize for physics with Pierre and Becquerel. As the first woman to win a Nobel Prize, Marie became famous. She and Pierre both got great jobs.

In 1904, the Curies had another

daughter. Then, in

Glass flask used by Marie Curie

HAPPY FAMILY

Marie and Pierre Curie were

children as well as to science.

They are seen here in 1904,

two years before Pierre's

tragic death, with their

daughter Irene, who

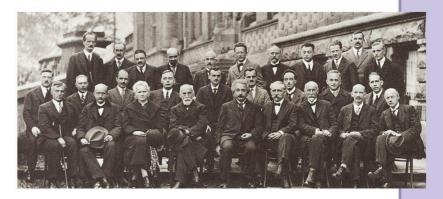
was then aged seven.

devoted to each other and their

Ionization chamber made by Pierre Curie Quadrant

built by

Ionization


chamber

Pierre

Curie

electrometer

MEASURING RADIATION The Curies had to build most of their research equipment for themselves. Radiation can make air conduct electricity, and Pierre developed several highly sensitive measuring instruments that made use of this effect. 1906, tragedy struck. Pierre was hit by a speeding cart and was killed. Marie had to take over Pierre's professorship at the Sorbonne—another first for a woman—and continue the research by herself. With the help of a colleague, she finally produced pure radium in 1910. The following year she received a second Nobel Prize. This time, there was nobody for her to share it with.

During World War I, Marie's research took a back seat. After the war, she toured the world, using her fame to drum up support for a new use of her great discovery. Doctors had found that radium, the most powerful source of radiation then known, could treat cancer. Marie Curie had made radiotherapy possible. Although radium is now little used for this purpose, it remains to remind us of a remarkable woman.

LASTING FAME By 1927, when this photograph was taken, Marie Curie had earned her place at the Solvay Congress, a meeting of top physicists held in Brussels, Belgium. She is sitting in the front row, third from the left. Other famous names in the group include Bohr, Bragg, Einstein, Heisenberg, Lorentz, Pauli, Planck, and Schrödinger.

CERTIFICAT. MON DIUN PAR LE RAYONNEMENT Y

Extracting radium from pitchblende was a hard, tedious grind. Working under primitive conditions, the Curies had to treat several tons of the tarry, black rock with chemicals to get just a few milligrams of radium chloride.

TEST RESULTS

The Curie Laboratory could test gamma ray sources. This certificate, signed by Marie, verifies a source equal to 10 mg of radium.

INVENTIONS FOR EVERYONE

IN THE FIRST 50 years of the 20th century, new inventions and discoveries transformed both everyday life and the world of science. Ordinary people got radio, lifesaving drugs, and cars. Scientists created a new physics that revealed the awesome energy hidden in matter. The modern world was nearly here.

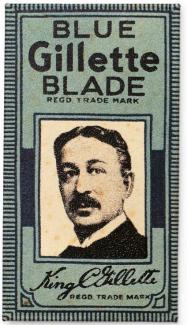
Brake disc

"caliper"

housing

pads

Blood groups 1901


Karl Landsteiner

Early attempts at blood transfusion often killed the patient. In 1901, Karl Landsteiner, an Austrian pathologist (someone who studies the effects of disease on body tissues), showed why. Unless carefully matched, the red cells in one person's blood can destroy those of another. He discovered three groups of human blood, which he called A, B, and O. Only bloods of the same group could be safely mixed. He later found a fourth group, AB, and other groups have been discovered since. As well as ensuring safe transfusions, blood grouping can help eliminate suspects in murder cases.

Eugen Langen

Monorails are railroads with a single rail. The earliest was built in 1880 and had its rail underneath the cars. The

more interesting suspended type, sometimes seen in amusement parks, has also been used for serious transportation. The earliest successful example, which still survives, is the monorail that runs along the Wupper River at Wuppertal in northwest Germany. It was designed in 1901 by Eugen Langen, a German engineer better known for his work on the internal combustion engine.

DISC BRAKE This Lockheed disc brake was made in about 1970.

Safety razor

King C. Gillette

King C. Gillette changed the Klife of men the world over when he followed the advice of

a colleague and invented "something that would be used and thrown away." It was the disposable razor blade, which fitted into a new safety razor. Men may not have liked having to buy new blades all the time (by 1904, Gillette had sold more than 12 million), but they did appreciate a razor that was safer and quicker to use than the old, open-bladed straight razor.

Disc brake 1902

Frederick Lanchester

Most modern cars have disc brakes. A steel disc is gripped between a pair of pads when braking is needed. The system was patented in 1902 by British car pioneer Frederick Lanchester, who, in 1896, also

SAFETY RAZOR An otherwise wellshaved King C. Gillette sports a moustache on this 1930s packaging.

1902 Britain's most exclusive club is formed as Edward VII founds the Order of Merit, an honor given built the first all-British fourwheeled car. Lanchester's brake must have been rather noisy, because the pads were lined with copper. Another British engineer, Herbert Frood, substituted quieter, asbestoslined pads in 1907.

Air-conditioning

Willis Carrier

combination of high temperature and high humidity is uncomfortable. When air is saturated with water vapor, sweat cannot evaporate. US engineer Willis Carrier realized in 1902 that refrigeration could deal with both heat and humidity. He designed an "apparatus for treating air," in which air was cooled to the temperature at which moisture condenses out of it. The water was then drained away, producing pleasantly cool, dry air.

1901 On New Year's Day, the six separate colonies of Australia become states in a new federation, the Commonwealth of Australia. It has an independent government, but it is still ruled by Britain's Queen Victoria.

for services to science or art. Only 24 people can hold it at any one time. The first female OM will be Florence Nightingale. INVENTIONS FOR EVERYONE

Hormones

William Bayliss, Ernest Starling

Tormones are chemicals L that control the body, such as adrenaline, which makes the heart pound in times of stress. The first hormone was discovered in 1902 by British physiologists (people who study how living things work) William (later Sir William) Bayliss and Ernest Starling. They found that the digestive system puts a chemical into the bloodstream when food reaches it, making the pancreas secrete digestive juice. They called the chemical secretin. Starling later coined the word "hormone" from the Greek for "setting in motion."

Tea-making alarm clock 1902

Frank Clarke

Although the British love their early morning tea, few can have risked Frank Clarke's 1902 automatic tea maker to get it. It was perhaps a little ahead of the technology. While you dozed, clockwork struck a match that lit a flame under a kettle. When the water boiled, the steam operated a mechanism that tipped the kettle to pour water into the pot and sounded an alarm—as if you'd need one!

Spark plug

Robert Bosch, Gottlob Honold

common problem with early internal combustion engines was how to ignite the fuel. One way was with sparks made by passing electricity through moving contacts inside the cylinder. In 1902, a German engineer, Gottlob Honold, who worked for electrical engineer Robert Bosch, invented a better method. He applied a much higher voltage to contacts with a fixed gap between them—a spark plug. Ignition was now controlled electrically.

> TEA-MAKING ALARM CLOCK Clarke's tea maker was mechanical because in 1902 few homes had electricity.

Copper kettle

Methylated-/ spirit stove

1902 In April, French composer Claude Debussy's only opera, *Pelléas et Mélisande*, receives its first performance. Scottish soprano Mary Garden becomes famous for her interpretation of the female lead, Mélisande.

Teddy bear 1902

Morris Michtom, Margarete Steiff

Popular US president Theodore "Teddy" Roosevelt became even more popular in

> Two wings linked by struts braced to combine their strength <

1902, when he went on

a hunting expedition but refused to shoot a defenseless bear cub. Cashing in on this, New York retailer Morris Michtom began selling plush-covered bears with shoebutton eyes and jointed limbs, calling them "Teddy's Bears." They were a huge success, and their name soon became "teddy bears." At about the same time, German designer Margarete Steiff started making similar bears, which became bestsellers.

Vacuum cleaner

Hubert Booth

Early gadgets for removing dust just tried to blow it away. When British engineer

1902 British empire builder Cecil Rhodes dies. His will creates a new scholarship to Oxford University (for men Cotton fabric stretched tightly over the framework of the wing

Propellers to push the plane through the air

Hubert Booth placed a handkerchief over his mouth and sucked the upholstery of a chair, the filth he collected convinced him that vacuum cleaning would be much better. His company, started in 1902, made cleaners, but they were so big they had to be parked outside the houses they cleaned.

Electrocardiogram

1903

Willem Einthoven

Doctors routinely check a patient's heart by making a record of its electrical activity, in what is called an electrocardiogram, or ECG. The first person to measure

only) meant to promote unity among English-speaking nations. Rhodes Scholarships will later be open to women.

Multistage rocket

Konstantin Tsiolkovsky

Russian scientist Konstantin Tsiolkovsky was thinking about interplanetary flight as long ago as 1895. In 1903, he suggested a way of getting large objects into space, using rockets with several stages that would be jettisoned as their fuel was used up. All major rockets are now built this way.

UP AND AWAY

IT TOOK A CENTURY of thought and experiment to conquer the air. The two big problems were lift and control, and the obvious masters of both were birds. One breakthrough came with the observation that a bird's tail is as important as its wings. The early pioneers also realized that flapping wings were not essential, which led to a practical airplane driven by a propeller.

GEORGE CAYLEY

A wealthy aristocrat, Cayley had established the basic shape of the airplane by 1799. It had a fuselage carrying fixed wings and a tail. After much research, he launched the first human-carrying glider in 1853.

OTTO LILIENTHAL

Lilienthal, a German engineer, studied the flight of birds before going on to develop effective fixedwing gliders. In 1896, after thousands of experimental flights, he died in a crash.

OCTAVE CHANUTE

French-US engineer Chanute was in his 60s before he got interested in flying. During the 1890s, he made thousands of successful glider flights, accumulating data that he passed on to the Wright brothers.

3 The Tour de France bike race is started

by French journalist Henri

Desgrange to provide a source of

Lilienthal glider built in about 1891, seen here from underneath

1903 Emmeline Pankhurst founds the Women's Social and Political Union to campaign for votes for British women. Ignored at first, the "suffragettes," as they are called, are driven to violent methods, such as burning empty buildings

Airplane

propellers at the back, and no

cockpit. The plane was controlled

by wires that warped the wings.

Orville Wright, Wilbur Wright

lthough people had been Agoing up in balloons since 1783, they were not satisfied. They wanted to fly like birds, not just drift with the wind. The first real flight was made in North Carolina on December 17, 1903. Watched by his brother Wilbur, US bicycle mechanic Orville Wright kept their fragile plane airborne for 12 seconds. The Wright brothers had at last solved the two great problems of flight: getting a machine to take off and controlling it in the air. (* See also Up and away.)

als | **AIRPLANE** Striking features of the Villem | 1903 Wright Flyer included pusher

Takeoff and

landing skid

the heart's electrical signals was Dutch physiologist Willem Einthoven. Using a sensitive instrument that he built in 1903, he set about finding out how a normal heart behaved.

Engine positioned off-center to balance the pilot

Windshield wiper 1903

Mary Anderson

Before windshield wipers, drivers had to get out of the car whenever they needed to clear rain or snow from the windshield. American entrepreneur Mary Anderson came up with a better idea: a swinging arm holding a wiper blade, operated by a handle inside the car. There was no electric motor as in today's cars. Another feature that seems strange now was that the wiper could be removed to give clearer vision in fine weather.

> exciting stories for his paper. Out of 60 riders, only 21 finish. Maurice Garin wins after nearly 95 hours in the saddle.

INVENTIONS FOR EVERYONE

The Landlord's Game

Lizzie Magie

A ncestor of the popular Monopoly (*** see page 198**), The Landlord's Game was patented in 1904 by Lizzie Magie. It aimed to show that renting made landlords rich but tenants poor. Magie believed that wealth from the land should belong to all. Later, businessman Charles Darrow acquired the game and sold it to Parker Brothers, who removed the anti-capitalist message, changed the name, and made Darrow rich.

Lie detector

Max Wertheimer, John Larson

zech psychologist Max Wertheimer developed the first so-called lie detector in 1904, while he was still a student. In California. another medical student. John Larson, worked with police to build a better one in 1921. Known as a polygraph, it monitored blood pressure, pulse, and breathing, because these can change when people lie. They sometimes change when people are telling the truth, too, so not all courts accept lie detector tests.

Thermos flask

Rheinhold Burger

ames Dewar's vacuum bottle (* see page 162) was far too delicate.

1904 The US celebrates the 100th anniversary of the Louisiana Purchase by holding in St. Louis,

Missouri, the World's Fair, where air-conditioning debuts, and the 1904 Summer Olympic Games, where the US wins 21 events. 1905 Chicago lawyer Paul P. Harris founds Rotary International, a worldwide group of business and but later acknowledged the work of Stevens. Cat's whisker

1006

Function of

chromosomes

Nettie Stevens.

Edmund Wilson

S biologist Nettie Stevens

was the first to link cell

structures with genetics. In

1905, while experimenting

with beetles, she discovered

Y chromosomes. determine

female. Another American,

Edmund Wilson, discovered

the same thing independently

that two structures, the X and

whether an animal is male or

Greenleaf Pickard

n the 1920s, listening to L the radio often meant fiddling with a "cat's whisker." The whisker—a short piece of wire-tickled the surface of a crystal and enabled radio waves to work headphones. German physicist Karl Braun had discovered this effect in about 1900, but US engineer Greenleaf Pickard patented the arrangement in 1906. His device gave rise to the transistor.

Triode valve 1906

Lee De Forest

Electronics started in 1904, when British scientist John Fleming found that a vacuum tube containing two electrodes, one of them heated, passed

professional people dedicated to higher ethical standards in their work. Meetings "rotate" from office to office, hence the name.

One of Dewar's students, Rheinhold Burger, saw how to make it more useful. He enclosed the glass bottle in a metal case with protective rubber mountings and a screw cap. Burger sold the idea to a German company and, after a competition to find a name, it was launched in 1904 as the Thermos flask.

Theory of relativity

Albert Einstein

See **pages 178–179** for the Story of how Einstein's theories of relativity shed light on Newton's universe.

CAT'S WHISKER Crystal sets were popular in the 1920s. Placed in contact with a metal whisker, a crystal such as galena (lead sulfide) could turn radio waves into sound signals—but only if the whisker was touching one of the crystal's sensitive spots.

> Headphones convert varying electric currents into sound waves

Wire connecting the crystal set to the headphones

> TRIODE VALVE The De Forest Audion of 1907 was based on a light bulb. The screw cap connects to the hot cathode; the wires go to the other electrodes.

Crystal

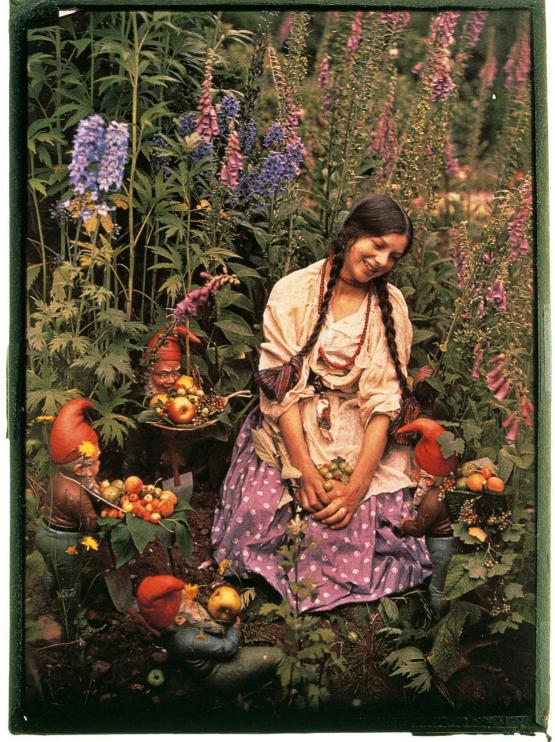
"Cat's

whisker

176

current in one direction only. In 1906, US inventor Lee De Forest added a third electrode. By varying its voltage, he could control the current between the other two. De Forest called his device the Audion. We would now call it a triode. He used it first to detect radio waves but was soon using it to amplify and generate them as well.

Sound radio


Reginald Fessenden

arconi got the first radio patent in 1896 (* see page 164), but it took 10 years for radio to get a voice. Early stations could send out radio waves only in short bursts, but to transmit sound, continuous waves are needed. In 1906, Canadian-US engineer Reginald Fessenden invented an electric generator that worked at 1,000 times the frequency of an ordinary power outlet, creating continuous radio waves that could carry sound. His first broadcast, on Christmas Eve, 1906, was a program of speech and music.

Color photography

Auguste Lumière, Louis Lumière

efore French inventors DAuguste and Louis Lumière introduced their Autochrome process in 1907, photographers had to take three photographs to get one color picture. The Lumière brothers coated glass with red, green, and blue starch grains, filled the gaps between them with black, then added a coating that was sensitive to all colors. The starch acted as filters, giving three images in one shot. These combined to form a pleasing color picture.

Vitamins

Frederick Hopkins, Casimir Funk

Te all need carbohydrates, proteins, minerals, and fats, but these alone are not

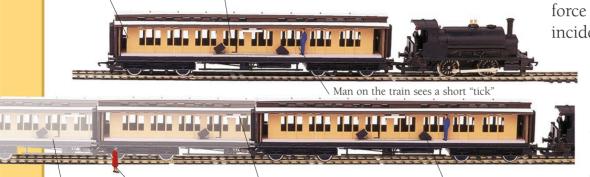
enough. British biochemist Frederick (later Sir Frederick) Hopkins found that rats died when fed on artificial milk with only these ingredients but thrived if real milk was added. He concluded in 1907 that the rats needed "accessory factors" in their diet. In 1912, Polish biochemist Casimir Funk

COLOR PHOTOGRAPHY Autochromes needed long exposures so most were of tranquil scenes.

identified one of these in rice. Finding that it was a chemical called an amine, he proposed the name "vitamine." Not all vitamins are amines, but the name, minus its "e," has stuck.

Irish people wanting independence for their country are outraged by the portrayal of Irish peasants in the

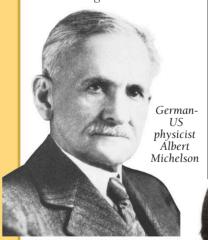
first performance of J. M. Synge's Playboy of the Western World at the Abbey Theatre, Dublin. They will later admire the play


Italian educator Maria Montessori begins teaching children in Rome with the system that will become

known by her name. The Montessori method is based on children's ability to learn by themselves, with guidance.

RIDDLES OF SPACE AND TIME

Albert Einstein publishes his Theories of Relativity and sheds light on Newton's universe


Train is traveling at nearly the speed of light, The time it takes a beam of light to travel up to a mirror and down represents one tick of a clock When Albert Einstein was a small boy in Germany, he saw his first pocket compass. It made a great impression on him. Whichever way he turned it, its needle always pointed the same way. Some outside

Train in starting position Voman on the platform sees a long "tick"

RUNNING LATE

Because relative motion cannot alter the speed of light, it must make moving clocks slow down.

FAILED EXPERIMENT Michelson and Morley used a turntable with two light beams crossing it. Mirrors combined the beams into a pattern that would show up any difference in the speed of light in the two directions. But, whichever way they turned their table, they found no change. Train has moved forward by the time the light beam hits the mirror

US physicist

Edward Morley

Train has moved further by the time the light beam reaches the detector

force was controlling it. The incident helped set him searching for the truth about the universe.

For a while, Einstein couldn't get a job because he had upset some important people. When he did get work in 1902, in Bern, Switzerland, it was only as

a clerk in the Patent Office. But in his spare time, he began to develop a revolutionary theory.

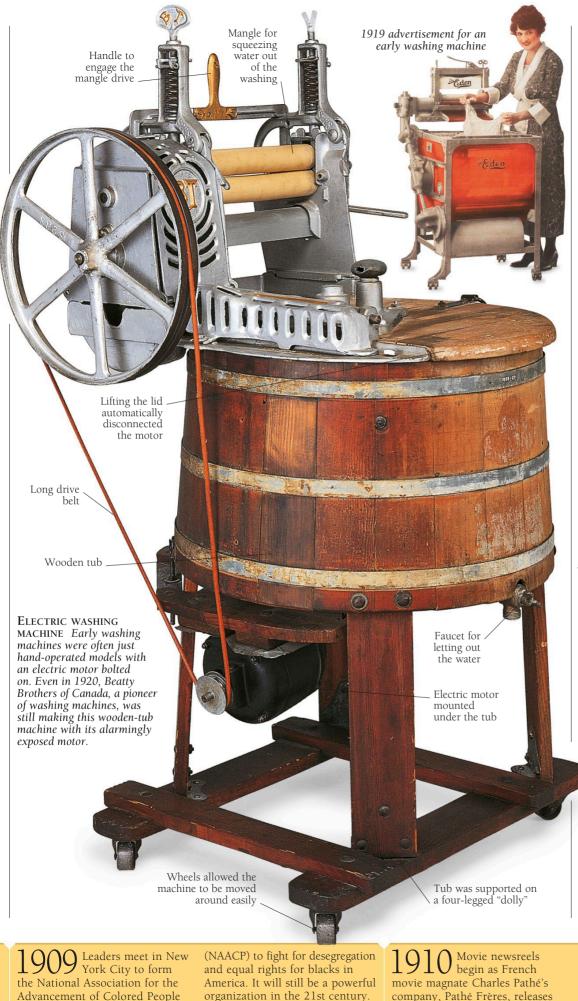
In 1887, US scientists Albert Michelson and Edward Morley thought they would use light to measure the speed of Earth in its orbit through the ether, a theoretical medium thought to pervade all space. According to theory, light traveling in the same direction as Earth would slow down, just as a car looks slower when seen from the car behind. But the speed of light didn't change. Something was wrong with a basic theory of physics.

Einstein's *Special Theory of Relativity*, published in 1905, rescued physics from this embarrassment. With the help of ideas from Dutch physicist Hendrik Lorentz, Einstein modified the laws of physics to predict a constant speed of light. The modifications left almost all the old laws of physics unchanged at ordinary speeds but showed how, at speeds approaching the speed of light, strange things happen to

moving objects. As seen by someone moving at a different speed, their length in the direction of motion decreases, their mass increases, and any processes within them slow down. At its simplest, the Special Theory says that the mass of an object depends on its speed. If a force acts on an object, it accelerates, but as it speeds up, more energy goes into increasing its mass and less into increasing its speed. This prevents it from reaching the speed of light. One consequence is the equation $E = mc^2$, which says that mass and energy are interchangeable.

But the Special Theory was incomplete. It did not deal with gravity. Einstein put this right in

ORIGINAL GENIUS Albert Einstein was a highly original thinker who gave us a new view of the world. As well as creating the *Special* and *General Theories of Relativity*, he contributed greatly to the quantum theory of matter.


1915 with his *General Theory of Relativity*. Replacing space and time with space-time, it said that gravity was a property of space, not a force. At first this seemed to go against the law of conservation of energy, but German mathematician Emmy Noether proved that the law still held, thus saving the theory that also predicted black holes and gravity's ability to bend light.

Gravity, a warping of space and time, affects everything—even light. Black holes create gravity so intense that light is trapped, but they can be detected by

their effects. In this picture, matter is being pulled away from a giant star.

Young Albert was ill in bed when his father gave him a compass to keep him amused. Einstein later recalled his vivid realization that "something deeply hidden had to be behind things."

Electric washing machine

Alva Fisher

Inventors tried for years to find a way of reducing the hours spent over a steaming washtub, but only electric power could offer real labor savings. The first electric washing machine, the Thor, was designed in 1907 by US engineer Alva Fisher. It had a drum that turned back and forth to tumble clothes clean. Its motor was simply bolted on to the outside, so it wasn't all that safe with water splashing around.

Umami

Kikunae Ikeda

It used to be thought that your tongue could detect only four types of taste: sweet, sour, salty, and bitter. But in 1908, Japanese chemist Kikunae Ikeda realized that there was a fifth taste, which he named umami. Your tongue detects it as the meaty taste of foods rich in protein. He established that the umami taste comes from compounds called glutamates. Ikeda designed a process to mass-produce monosodium glutamate (MSG) as a flavor enhancer. This compound is still widely used today.

Thomas Sullivan

Tea bags seem to have been invented by accident. A likely date is 1908. The story is that New York tea merchant Thomas Sullivan started

sreelsthe first of a weekly newsenchcompilation called Pathé Journal.Pathé'sThe crowing rooster of PathéreleasesNews will be known worldwide.

1901-1950

sending out tea samples stitched into cloth bags. Rather than open these, people just poured boiling water over them, and Sullivan was soon getting orders for more. By 1920, proper tea bags were being used in the US, mainly large ones for the catering trade. Tea bags were introduced to Britain by Joseph Tetley & Company in 1953.

Neon sign

Georges Claude

Several 19th-century inventors experimented with tubes containing gas at low pressure and found that electricity could make the gas light up. In 1910, French

Electric starter

Charles Kettering

In early cars, the driver had to turn a handle at the front to start the engine. The handle could kick dangerously. Henry Leland, head of Cadillac Motors, found this unacceptable and

NEON SIGN New techniques had to be invented before neon signs could be widely used for advertising.

Fertilizer from the air

Fritz Haber, Carl Bosch

Plants need nitrogen. Although air is four-fifths nitrogen, plants cannot absorb it directly. Nitrogen-rich fertilizers are one answer, but by 1900, natural supplies, such as bird droppings, were beginning to run out. In 1909, German chemist Fritz Haber succeeded in capturing nitrogen from the air. He used heat and high pressure to make it react with hydrogen, forming ammonia, which could be made into fertilizers and other products. By 1914, another German chemist, Carl Bosch, had found a way to increase the yield of ammonia, and developed Haber's method for large-scale use. The Haber-Bosch process is now essential to agriculture and much else.

On December 14,

L Norwegian explorer

Roald Amundsen and his team

become the first people to reach

physicist Georges Claude tried the gas neon and found that it produced an intense orangered glow. This was of little use for lighting, but after the new tubes had been used at the Paris Motor Show, an advertising agency suggested that they could be made into signs. By 1912, the first neon sign was in place over a Montmartre barber's shop.

Continental drift

Alfred Wegener

I fyou look at an atlas of the world, you will see that South America and Africa would fit together like jigsawpuzzle pieces. In 1912, German meteorologist Alfred Wegener said that this was not a coincidence. He said that all the continents had once been joined together as a continent he called Pangaea, which began to drift apart millions of years ago. His ideas were forgotten, but in the 1960s, scientists realized that he had been right.

the South Pole. Powered only by dogs, they beat the motorized expedition led by Robert Scott, which sadly never returns. asked US engineer Charles Kettering to create a selfstarter. Kettering succeeded where earlier inventors had failed, and the 1912 Cadillac was the first car that could be started from the driver's seat.

Cosmic rays

Victor Hess

he pioneers of radioactivity found their instruments responding to radiation from outside their labs. Its origin was a mystery until US physicist Victor Hess sent balloons carrying measuring instruments high into the atmosphere. By 1913, he had found that the radiation became stronger as the balloons went higher, suggesting that the "rays" came from beyond Earth. US physicist Robert Millikan confirmed this and in 1925 coined the term "cosmic rays" for this radiation from the depths of the universe.

1912 On the night of Sunday, April 14, the supposedly unsinkable *Titanic* hits an iceberg on its maiden

Stainless steel

10

Harry Brearley

Brearley hit on stainless steel by accident while trying to make a steel that would resist the heat inside a gun. He was in charge of the Firth

Brown Laboratories in Sheffield, England, an important steelmaking center. In 1913, after a series of experiments, he made some steel containing about 13 percent chromium. He found that it was of little use for guns but realized that it was resistant to corrosion. Unlike other scientists, who had made similar steels, Brearley saw its potential for cutlery. It was a local Sheffield cutler who suggested the name that we now use for it.

Mark of stainless steel makers Butler of Sheffield

, Bone handle

STAINLESS STEEL This tea knife of 1915 was one of the first that did not need cleaning with an abrasive after a meal.

Assembly line

Henry Ford

See pages 182–183 for the story of how Henry Ford

adopted the assembly line to mass-produce the world's most successful car.

voyage. By the next morning, it is on the bottom of the Atlantic Ocean. More than 1,500 people die, but about 700 are saved.

A MOTOR FOR THE MULTITUDE

Henry Ford adopts the assembly line to massproduce the world's most successful car

MAN OF VISION

Henry Ford looked to a future in which efficient production methods would make everyone rich. His factory eventually had raw materials going in at one end and finished cars coming out at the other.

TIN LIZZIE

Between 1908 and 1927, one of every two cars built in the world was a Model T. With its rugged construction and low price, it was ideal for the still rural US. In 1891, when the first modern car was built, Henry Ford was a young engineer working in Detroit, Michigan, not far from the farm where he had been born. Most people still worked on the land. Ford would be one of the people who helped change this, transforming the US into an industrial nation.

By 1896, Ford had built his first car. In 1903, he set up the Ford Motor Company. At that time, cars were individually built and very expensive, so they were strictly for the

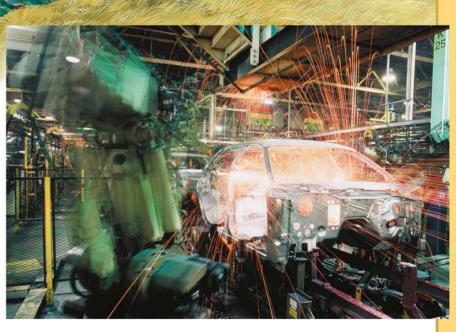
> rich. Ford realized he could keep costs down by producing just one type of car, and in 1908, he launched "a motor car for the great multitude"—the Model T.

Demand for the "Tin Lizzie," as it was nicknamed, was soon running ahead of supply, and Ford moved to a new factory at Highland Park, just outside Detroit. Even here, people still had to walk from car to car to work on each one—and when they were walking, they were not working.

Ford wanted to find a faster, less expensive production method. In the US meat industry, workers stood still while carcasses were moved slowly past them. In 1913, Ford experimented with this "assembly line" idea for making part of the Model T. Output of the part went up by 300 percent, so he decided to make the whole car on an assembly line.

Model T Tourer (1916)

MORE CARS


The Ford story does not, of course, end with the Model T. Later designs included the sleek Edsel, the sporty Mustang, and the GT40, designed in Britain and built for serious racing.

Ford succeeded in his mission to bring mobility to the masses, and in doing so changed the American way of life. As well as providing pleasure on picnics, low-cost vehicles made every industry more efficient.

Now, instead of wandering around the factory, workers spent all their time adding parts to cars as they passed by. Each worker did only one operation, and their pace was set by the moving line. By April 1914, Ford had cut the time it took to make a car from 12 man-hours to one and a half. Soon the factory was turning out a car every 24 seconds. The Model T became the

world's most successful car, with total sales reaching more than 15 million. The assembly line did have its disadvantages. Working in this way was stressful, so workers often left. Ford solved this problem by doubling his workers' pay and reducing the hours they had to work. It seemed crazy, but it was just good business. Ford realized that his employees had a private life and didn't just make cars. Thanks to his new methods, they would soon be buying them, too.

MODERN MANUFACTURE

The first cars had their bodies bolted onto a separate chassis, but today's car body is a single, self-supporting steel shell. For many years, the shell was handwelded together by skilled workers, but such heavy, repetitive tasks are now done by robots, like these at Ford's plant in Ontario, Canada.

Structure of the atom

Niels Bohr

British physicist Ernest Rutherford pictured the hydrogen atom as a heavy nucleus with an electron orbiting around it. But classical physics said this could not be right because the electron would radiate energy and stop orbiting. Danish physicist Niels Bohr saved the situation in 1913 by showing that electrons could radiate energy only when jumping from a higher to a lower orbit. The radiation would appear as light whose frequency depended on the size of the jump.

Mary Jacob

lthough a "breast Asupporter" was patented in 1893, the idea didn't catch on. US innovator Mary Jacob was unsatisfied with the whalebone corsets popular with women at the time. She sewed together a couple of handkerchiefs and some ribbon and in doing so invented a precursor to the modern bra. In 1914, she changed her name to Caresse Crosby, patented the brassière, and started selling it. Although she was not very successful in this, she did manage to sell the idea to a big corset company, and by the 1920s women everywhere were wearing bras.

Lipstick

Maurice Levy

Lipstick has been with us for centuries, but without a convenient package, women

1914 Archduke Ferdinand, heir to the Austrian and Hungarian thrones, is assassinated on June 28. The couldn't carry it around. In 1915, US inventor Maurice Levy attached a solid lipstick to a sliding carrier inside a metal tube with a lid. The lipstick could be slid out for use then put back safely inside its container to protect handbags and pockets. Lipstick soon became more widely used.

Leprosy

treatment

Alice Ball Leprosy is an infection that can cause the gradual loss of fingers and toes. Dr. Alice

Ball developed the first effective

treatment for it. She was the

University of Hawaii's first female chemistry professor,

resulting conflict escalates to

involve 32 countries. It will

end in 1918, after 47 million

people have been killed

having been the first woman and first African American to receive its master's degree. Her treatment was an injectable extract of the active part of a traditional herbal medicine. Ball developed this ingenious treatment at the young age of 23 but sadly died a year later, never getting

to see its successful, widespread use. LIPSTICK As this early print shows, lip color

LIPSTICK As this early print shows, lip color became popular when presented in convenient, solid form.

Black hole 1916

Karl Schwarzschild

Tsing Einstein's General Theory of Relativity (* see pages 178–179), German astronomer Karl Schwarzschild figured out what happens near a massive star that has collapsed to a single point. He reasoned that gravity becomes so intense that within a certain distance from the point (now called the Schwarzschild radius) even light cannot escape its monumental pull. Black holes, as they are now known, emit no light but can be detected by the effect their gravity has on nearby stars.

Domestic food mixer

Herbert Johnson

Bakers had been mixing dough by electricity for years before an effective mixer reached the

DOMESTIC FOOD MIXER *By the* 1930s, *when many homes had electricity, appliances like food mixers were beginning to be more widely used.*

1916 A work that will become a favorite of concertgoers and science-fiction producers alike, *The Planets*, is published by British composer Gustav Holst. His orchestral suite portrays the planets' astrological characters.

184

kitchen. Early domestic mixers were little more than motorized egg whisks, but the Troy Metal Products H-5, introduced in 1919 and later called the Kitchen Aid, was based on a professional mixer designed by US engineer Herbert Johnson. Its built-in bowl revolved in the opposite direction to the beaters, and this "planetary" action is now used in most mixers.

Central heating

Alice Parker

The use of hot air for central heating goes back to the Romans, but African American inventor Alice Parker reinvented it for modern America. In the early 1900s, most buildings were heated by coal or wood, often in open fires. Parker's furnace ran on natural gas, a safer and more convenient alternative to solid fuel. A key feature of her invention was that it allowed different amounts of hot air to be sent to different parts of a building. Her exact

BIRTH OF BROADCASTING

design was never used, but it provided a crucial model for future central heating systems.

Public broadcasting service

David Sarnoff, Guglielmo Marconi

lthough US engineer Reginald Fessenden broadcast speech and music in 1906, and US radio executive David Sarnoff proposed a "radio music box" in 1915, real public broadcasting began only in the 1920s. By this time, electronics had developed greatly, allowing big transmitters to be built. The first regular service was started in Britain by Guglielmo Marconi in February 1920. In November 1920, US station KDKA began broadcasting from Philadelphia. Governments in both countries later stepped in to regulate the new medium. (* See also Birth of Broadcasting.)

Listening to radio on a train in 1930

To transmit sound, a

radio transmitter needs to generate

Tuning

dials

PUBLIC BROADCASTING

SERVICE Using

valves, not

a crystal,

this 1925

superior

Ethophone radio gave

performance.

Frame

antenna was turned

toward the

transmitting

Mahogany

required

station

case

powerful, continuous, high-frequency waves. Reginald Fessenden pioneered these with high-speed electric generators, but it was the development of large electronic valves during World War I that really made broadcasting possible. The first listeners had to build their own receivers because the lack of regular broadcasts meant there was no market for ready-made radios.

BROADCASTING IN BRITAIN

Marconi's early radio broadcasts were banned, but after public pressure, his company was allowed to broadcast for 15 minutes a week from a hut near Chelmsford, starting in February 1922. In May, the station moved to London, and October saw the birth of the British Broadcasting Company. In 1927, this became a public corporation, the BBC.

BROADCASTING IN THE US

Unhampered by red tape, and led by visionaries such as David Sarnoff of the Radio Corporation of America, US broadcasting grew rapidly. By 1922, the US had 600 stations, mainly financed by advertising, while Britain still had only one. But competition threatened chaos, so in 1927 the industry finally came under government regulation.

1917 The Union of Soviet Socialist Republics, the USSR, is formed following the Russian revolution. The Congress of Soviets, controlled by the Bolsheviks under their leader Vladimir Lenin, takes over the former Russian Empire. 1920 American women are to vote when the 19th Amendment to the US Constitution is ratified. With votes hanging in the balance, Tennessee finally votes to ratify the amendment, bringing the vote count to 36 states in favor.

1901-1950

Self-adhesive bandage

Earle Dickson

Before ready-made dressings, cuts were covered with gauze stuck down with tape. Earle Dickson, of US surgical dressing manufacturer Johnson & Johnson, changed this in 1920. Working in his kitchen, he took a strip of adhesive tape, laid down squares of gauze on it, covered it with fabric and rolled it up for future use. His invention was soon on sale as Band-Aid. In 1928, T. J. Smith & Nephew introduced the similar Elastoplast to Britain.

Tube connects the pump to a needle Insulin

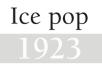
Frederick Banting, **Charles Best**

I nsulin is a hormone that tells Lthe liver to remove glucose from the blood. People whose bodies cannot make enough insulin suffer from diabetes, in which blood glucose may reach dangerous levels. It was known that insulin came from a gland called the pancreas, but efforts to extract it from the pancreas of certain animals failed. The organ's digestive juices were also released and digested the insulin before it could be extracted. Then, in 1921. Canadian doctor Frederick (later Sir Frederick) Banting, assisted by a student, Charles

Best, figured out a way to stop the pancreas's juices from destroying the hormone. Thanks to their work, insulin is now available for controlling diabetes.

Leaded gasoline

Thomas Midgley Jr.


In a properly adjusted car Lengine, the fuel and air burn smoothly rather than exploding. When engineers made car engines more powerful by increasing the pressure inside them, they found that destructive explosions, or "knocking," became a problem. In 1921, US engineer Thomas Midgley Jr. discovered that adding lead compounds to the fuel could

INSULIN This modern electric pump gives someone with diabetes a convenient way to inject themselves with insulin, slowly and continuously.

Viewfinder

restore smooth running. Most cars used leaded gasoline until the 1980s, when concerns about pollution caused a switch to fuels that didn't need lead to stop the knock.

Frank Epperson

Refreshing, flavored ice on a stick was patented by US salesman Frank Epperson in 1924, but its US brand name, Popsicle, was registered a year earlier. The legend is that Epperson invented the ice lolly by accident in 1905, when he was a boy, by leaving a drink with a stirrer in it out on a cold night. His patent describes cylindrical ice pops made in ordinary test tubes.

Traffic signal

Garrett Morgan

traffic signal was installed Lin London in 1868, but a more widely used signal was patented by US inventor

Dials for setting the amount of insulin to be injected

Theremin

Leon Theremin

The theremin was the first successful electronic musical instrument. Still played today, it produces those spooky wailing sounds popular in science-fiction films. It was invented in 1920 by Russian scientist Leon Theremin, who originally called it the etherophone. It is one of the few instruments played by waving the hands near it rather than touching it. The distance of the hands affects its tuning, giving total control over its unearthly notes.

35MM CAMERA The Leica was not a single-lens reflex, as most 35mm cameras are today, but gave good results.

50mm

Nine years after the 1921 Nine years after a death of Emperor Meiji, who helped Japan become a modern industrial nation, a

shrine to his memory is built in Tokyo. Its traditional wooden buildings will be destroyed in an air raid 24 years later.

22 British archaeologist Howard Carter discovers the treasure-filled tomb of the Egyptian pharaoh

Tutankhamen in the Valley of the Kings. Unlike most tombs, this one has not been looted, making it important to Egyptology

Garrett Morgan in 1923. It had three movable arms with STOP and GO written on them. mounted on a pole. Signals were given by raising, lowering, and swiveling the arms to show or hide these words. The signal also had a position that stopped all traffic, to allow an orderly switch from one direction to another.

Frozen food

Clarence Birdseye


S naturalist Clarence Birdseye got the idea for frozen foods on a trip to Newfoundland, Canada, in 1912. It's very cold there, and Birdseye saw people leaving freshly caught fish outside to freeze. He invented a machine that froze fish between refrigerated metal plates, and in 1924 helped found the General Seafoods Corporation. He was soon selling quick-frozen fruit and vegetables as well as fish. His name lives on as the familiar brand name Birds Eye.

35mm camera

Oskar Barnack

he first precision miniature camera was the Leica. designed by German mechanic Oskar Barnack. It went into production in 1924. Barnack had started working on it much earlier but was delayed by World War I. To make the Leica, he adapted an instrument for testing 35mm movie film, made by the company he worked for, Ernst Leitz. He created the now standard frame size. 24×36 mm, simply by doubling the size of a movie frame.

25 One of the first films to use the technique of "montage"-telling a story by rapid cutting between shots-is

VE ALL STONES AND FOREIGN MATERIAL SAMPLE BEFORE TESTING POINTER IS THE TR VALUE OF SAMPLE Numbers on the scale

> Support for the scale

> > Sample of peas was placed in this chamber

Composition of stars

Cecilia Payne-Gaposchkin

Tn the 1920s, it was thought L that stars were made of the same mix of elements as the Earth. Astronomers had figured this out by studying the spectrum of starlight. In 1925, British astronomer Cecilia Payne-Gaposchkin realized that they had not allowed for the effect of temperature so had greatly underestimated the amounts of hydrogen and helium. Her theory was rejected at first but was later proved to be correct.

Erik Rothheim. Lyle Goodhue

The first aerosol can was L invented by Norwegian engineer Erik Rothheim in 1926. It was used for packaging paint and polish but never really caught on. More successful was an aerosol developed in 1941 by US chemist Lyle Goodhue. He found that the new can was ideal for spraying cockroaches with insecticide to kill them. Millions of these "bug bombs" were supplied to US troops in World War II,

and by 1946, aerosols were in production for domestic use.

> Fifty years later, world production was numbered in billions.

made in Russia by Sergey Eisenstein. His Battleship Potemkin will become a model for many other filmmakers

 $26^{\mathrm{The \ first \ woman \ to}}_{\mathrm{swim \ the \ English}}$ Channel unaided, US Olympic swimmer Gertrude Ederle, knocks

two hours off the record as she makes it from Cap Gris-Nez in northern France to Kingsdown, Kent, in 14 hours, 31 minutes.

Film soundtrack 1926

Lee De Forest

C ound for the first films was Supplied by live musicians. The only recordings available were gramophone discs, and it was difficult to keep these in step with the film. The obvious place for the recording was on the film itself. The first person to succeed in putting it there was US inventor Lee De Forest. His Phonofilm system of 1926 produced the first soundtracka narrow stripe down the side of the film, recording sound waves as a varying shade of gray. It was the forerunner of the later, more successful Movietone system.

Liquid-fueled rocket

Robert Goddard

The first rockets used solid fuel. They were really just big fireworks. Modern rockets use liquid fuel, which allows much more controllable motors to be built. The first liquidfueled rocket was launched by US physicist Robert Goddard. Burning gasoline and liquid oxygen, it lifted off briefly from his

Aunt Effie's farm in Auburn, Massachusetts, on March 16, 1926. It was another 15 years before the same idea was used in Adolf Hitler's deadly flying bombs during World War II.

Plant growth hormones

Friedrich Went

"he life of plants is controlled by a number of different hormones. The first to be discovered was a group known as auxins. Dutch botanist Friedrich Went, a professor at the University of Utrecht, found them in 1926 while studying how plants grow. He discovered that auxins were not only responsible for stimulating plant growth but were also involved in the one-sided growth that makes plants bend toward the light.

LIQUID-FUELED ROCKET A Titan II rocket lifts off in January 1965 carrying an unmanned Gemini spacecraft. The 100 ft (30 m) long rocket was powered by the liquid fuel hydrazine.

Combustion tank where fuel mixed with oxidizer burned

Pop-up toaster 1926

Charles Strite

Burnt toast was normal With early electric toasters. They just kept toasting until someone turned them off. The first that turned off and popped the toast out automatically was patented in 1919 by US inventor Charles Strite. It was designed for caterers. The toaster as we know it, based on Strite's design, did not reach the breakfast table until 1926, when the Waters Genter Company, later known as McGraw Electric, marketed the first Toastmaster.

Expanding universe

Edwin Hubble

Until US astronomer Edwin Hubble started studying the sky in the 1920s, nobody suspected that there were countless galaxies beyond our own Milky Way. Having proved the existence of such galaxies, Hubble discovered in 1927 that

1926 The Showa (bright peace) period begins in Japan with the enthronement of Emperor Hirohito. He is

content to leave government to others until August 1945, when he ends World War II by insisting that Japan surrenders. 1927 Indian lawyer Bhimrao Ranji Ambedkar begins a campaign of direct action aimed at improving the social status of the Dalits, or "Untouchables." He will urge the Dalits, traditionally given the worst jobs, to take up Buddhism.

Internal clock

Curt Richter

A nyone who has had jet lag knows that we have a built-in clock that tells us when to be active and when to sleep. The first scientist to study this was US biologist Curt Richter, head of the psychiatric clinic at the Johns Hopkins University in Baltimore. In 1927, he published the results of research into the biorhythms, or internal cycles, that govern animal

behavior. We now know they apply to humans, too.

Chain saw

Emil Lerp, Andreas Stihl

The world's first gas-engined chain saw let rip on Mount Dolmar, Germany, in 1927. German engineer Emil Lerp's new, "portable" sawing machine had a moving chain like a modern saw but was too heavy

for one person to pick up. A chain saw light enough for one person to wield didn't appear until 1950, made by a company founded by Lerp's rival, Andreas Stihl.

Big Bang theory

Georges Lemaître, George Gamow

In 1927, Edwin Hubble discovered that the universe is expanding. In the same

year, Belgian astronomer Georges Lemaître proposed a simple but radical explanation: everything had originally been squeezed into an incredibly dense "primeval atom" that had exploded to create the universe we know. In 1948, Russian physicist George Gamow revived Lemaître's idea in an attempt to explain how the chemical elements were formed. British astronomer Fred Hoyle scornfully dubbed this the Big Bang theory, and the name stuck. (* See also Starting with a Bang.)

BIG BANG THEORY It is impossible to know what the Big Bang was like, but this is an artist's impression.

STARTING WITH A BANG

WHEN ALBERT EINSTEIN HEARD Georges Lemaître's Big Bang theory, he exclaimed, "This is the most beautiful and satisfactory explanation of creation to which I have ever listened." Although it doesn't explain where the "primeval atom" came from, an explosion about 15 billion years ago does account for the universe we see today. Backed up by recent evidence, the Big Bang is now the preferred picture of the beginning of time.

EVIDENCE FOR THE BIG BANG

POP-UP TOASTER By the 1960s,

they were rushing away from us, with speeds that increased

the farther away they were. The universe, far from being

changeless, was expanding.

Cosmologists now accept this

as evidence for the Big Bang

that started it all.

toasters were looking more stylish, but their principle—releasing the toast after a set time—was the same.

The strongest evidence for the Big Bang is the expansion discovered by Hubble. The theory also predicts that the universe should be filled with low-level microwave radiation, and this was found in 1965. Finally, about a quarter of the universe (by mass) is made of helium. Stars alone could not have produced this amount, but the first fireball could.

STEADY STATE THEORY

In the same year that George Gamow revived the Big Bang theory, British astronomers Hermann Bondi, Thomas Gold, and Fred Hoyle proposed that the universe had always existed in a "steady state." They suggested that as the universe expanded, new matter filled the gaps to keep everything looking the same. Recent discoveries have made this theory seem unlikely.

George Gamow (right) with Swiss-US physicist Wolfgang Pauli

1927 Australia's parliament moves from Melbourne to Canberra, a new city designed by US architect Walter Griffin. Building work had started in 1913. The name derives from an Aboriginal word meaning "meeting place." 1927 Intrepid US aviator Charles Lindbergh lands safely at Le Bourget airport, near Paris, after crossing the Atlantic single-handedly in his plane *The Spirit of St. Louis*. The flight from Roosevelt Field, Long Island, makes him a star. BUBBLE GUM This Dubble Bubble advertisement from the 1940s is obviously aimed at children. Unlike chewing gum, bubble gum has always been seen as mainly a product for children and teenagers.

Uncertainty principle

Werner Heisenberg

Elementary particles, such as electrons, are described by the branch of physics called quantum mechanics (* see page 169). This says that a particle is not only a particle but also a wave. One consequence of this is that nobody can know both the momentum (mass × velocity) and position of a particle at the same time. Momentum comes from a spread-out wave, while position comes from a concentrated wave, and you can't have both at once. German physicist Werner Heisenberg announced this "uncertainty principle" in 1927.

Chlorofluorocarbons

DUBBLE BUBBLE

Thomas Midgley Jr., Albert Henne

arly refrigerators used chemicals like ammonia, which is extremely smelly and poisonous. In 1928, it took US scientists Thomas Midgley Jr. and Albert Henne just two days to find something better: chlorofluorocarbons, or CFCs. These compounds of chlorine, fluorine, and carbon had already been produced by Belgian chemist Frederic Swarts in the 1890s, but Midgley and Henne found a better way of making them. Unfortunately, they have a devastating effect

1927 Thin meets fat as two stars, Stan Laurel from Britain and Oliver Hardy from the US, team up at Hal Roach's Hollywood Studio for their first film, *Putting Pants on Philip*. The comic duo will make many more films together. on Earth's protective ozone layer, so they have not been made since the late 1990s.

ELECTRIC RAZOR Razors like this 1934 Schick allowed men to shave anywhere there was an electrical outlet.

Bubble gum

Walter Diemer

Walter Diemer, a young accountant working for the Fleer Chewing Gum Company in Philadelphia, Pennsylvania, thought he could improve on the company's product. In 1928, he produced a gum that was so stretchy he could blow bubbles with it. He had created bubble gum. His company started selling it as Dubble Bubble. Diemer taught the sales force how to blow the perfect bubble, and the gum became a favorite worldwide.

Penicillin

Alexander Fleming, Ernst Chain, Howard Florey

See pages 192–193 for the story of how Ernst Chain and Howard Florey built on Alexander Fleming's lucky find.

Electric razor

Jacob Schick

Attempts to do away with wet shaving go back to 1908 or earlier, but the first

1928 British women finally get the same voting rights as men, after 10 years in which they could vote only if they owned a house, were married to a man who owned a house, or had a university degree and were over 30. inventor to tackle the problem successfully was Lieutenant-Colonel Jacob Schick of the US Army. In 1928, he used the profits from an earlier invention, a razor that stored blades in its handle, to finance his new electric razor. Despite the Great Depression that hit the US in the following year, Schick's dry shaver was soon selling well.

Cinemascope

Henri Chrétien, Claude Autant-Lara

inemascope squeezes a wide image onto normal movie film by distorting it with a special lens. A similar lens on the projector distorts the image back again to produce a widescreen picture. French physicist Henri Chrétien invented the lens in the late 1920s, and experimental films were made in 1928 by French film director Claude Autant-Lara. But Cinemascope really hit the screens in the 1950s, as movies struggled to tempt audiences away from television.

Sliced bread

Otto Rohwedder

Devising a machine that sliced bread can't have been that difficult, but US inventor Otto Rohwedder took 16 years to do it. One reason was that in 1917, after five years' work, he lost everything in a fire. More important was

the fact that sliced bread quickly went stale. By 1928, Rohwedder had perfected a machine that not only sliced but also wrapped the bread into a handy, long-lasting package. Within five years, most bread in the US came sliced.

Prestressed concrete

Eugène Freyssinet

Ordinary concrete tends to crack under loads that stretch it. One elegant solution was invented in 1928 by French civil engineer Eugène Freyssinet. He put stretched steel wires into concrete while it was wet. When it had set, he released the wires so that they squeezed the concrete together, canceling out the forces that would otherwise make it crack. Prestressed concrete is now used to produce light, strong structures of all kinds.

Electroencephalograph

Hans Berger

lectrodes placed on someone's head can reveal the electrical activity of their brain. This helps doctors diagnose disorders such as epilepsy. An electroencephalograph, or EEG, machine, records the activity as a set of squiggly lines. The first machine was built by German physiologist Hans Berger in 1929, after five years' work with dogs and humans. No one showed much interest in Berger's work at first, but a local optical company, Carl Zeiss, was impressed by his device and helped him build a better one.

1928 A groundbreaking new dictionary of the English language, A New English Dictionary on Historical *Principles*, is published after years of work by James Murray and others. It will be better known as the Oxford English Dictionary. electrodes in place ELECTRO-ENCEPHALOGRAPH This modern EEG cap was made by

Rubber cap holds

cap was made by Neuramedical Supplies.

ONNECTOR

Multipin connector plugs into the recorder

Polaroid

Edwin Land

Polaroid polarizes light. That is, it blocks all light waves except those whose vibrations

1929 In October, prices on the New York stock exchange collapse, ruining thousands of people who had are lined up in one particular direction. Polaroid sunglasses, which admit only vertically polarized light, can reduce troublesome reflections from smooth horizontal surfaces like water and roads. US physicist Edwin Land perfected this material, which has many other uses, in 1929. The thin plastic sheet, treated with optically active crystals, quickly replaced the bulkier polarizers that had been used earlier.

poured money into the market. The crash triggers a depression that lasts for years and makes millions of people jobless.

1901-1950

Electrodes on scalp

THE ANTIBIOTIC MIRACLE

Howard Florey and Ernst Chain build on Alexander Fleming's find to develop a lifesaver

It was September 1928. Scottish bacteriologist Alexander Fleming was showing a friend some plates he used for growing bacteria. Suddenly, he stopped. The plate in his hand was

covered with bacteria, but there was also a patch of mold, and around the mold there were no bacteria. Fleming worked at Sir Almroth Wright's vaccine laboratories in St.

Mary's Hospital, London. There, he grew more mold and made an extract he called penicillin. He tested it, used it to cure an eye infection, and wrote about it but pursued it no further. He was more interested in vaccines. Penicillin, he thought, would be best used in laboratories.

Alexander Fleming working in his lab at St. Mary's Hospital, Paddington, London Ernst Chain, working at the Sir William Dunn

School of Pathology in Oxford, England, suggested to his boss, Australian pathologist Howard Florey, that they should investigate penicillin. Florey decided to see whether it would affect bacteria inside animals—something Fleming hadn't tried. Chain's job would be to isolate the active agent from the mold.

In May 1940, Florey injected eight mice with lethal bacteria. Then he injected four of them with penicillin. The next day, the untreated mice were dead, but the rest were fine. Florey phoned a colleague. "It's a

miracle," he told her.

Florey wanted to test penicillin on human patients, but to produce enough he had to turn his lab into a factory. Soon it was filled with piping and chemical fumes. By February 1941, he had enough penicillin for the first human

trial. Policeman Albert Alexander was gravely ill with a serious infection. On February 12, 1941, he started receiving penicillin. The effect was spectacular. He almost recovered, but Florey didn't have enough penicillin to keep the treatment going, and Alexander died. Later, five

Culture dish showing the effect of penicillin on bacteria

HAPPY ACCIDENT

Bacteria can be grown in dishes filled with nutrient gelatin. Fleming had piles of these lying around, which led to his lucky find.

ANIMAL MAGIC

Fleming thought that penicillin would be good for getting rid of unwanted bacteria in the laboratory. But Florey and Chain saw its potential for curing disease and were the first to try it on mice.

Two laboratory technicians at a penicillin plant in Liverpool, UK, prepare samples for bacteriological testing in 1946.

World War II poster advertising penicillin

more patients were given penicillin. All improved. Some were saved from death.

Florey decided to make a lot more penicillin. Nobody in wartime Britain could help, so he

went to the US. There, experts devised a better way of growing mold, and a drug company started producing penicillin in bulk. It would be needed, because by December 1941, the US was at war.

Back in Britain, production at Florey's lab was stepped up, chemical companies started helping, and further tests were organized. By 1943, there was no doubt. Penicillin was a lifesaver. Thanks to Fleming, Chain, and Florey, the first antibiotic had arrived. Others followed within a few years. Together, they have saved millions of lives. Laboratory vessel

Penicillin

Science on

A SHOESTRING Florey and Chain had little money or time, so they had to improvise. Early vessels for growing mold were made from cocoa tins soldered onto cookie tins, but later, glass equipment allowed largescale production.

Fermentation vessel

samples 🤇

Early

Synthetic rubber tires

Walter Bock, Eduard Tschunkur

By the 1880s, scientists had some idea of the chemical composition of rubber, but their attempts to copy it failed. They had more success when they tried imitating its properties rather than its chemistry. In 1929, German chemists Walter Bock and Eduard Tschunkur made a synthetic rubber good enough for tires. This was important in World War II, when Germany's natural rubber supplies were cut off.

Supermarket

Michael Cullen

The first essential of a supermarket is self-service. This was invented in 1916 by

US grocer Clarence Saunders. His Piggly Wiggly store in Memphis, Tennessee, cut costs by letting customers take their purchases right off the shelves, something unheard of at the time. The other vital ingredients, bulk buying and quick turnover, were added in 1930 when another US grocer, Michael Cullen, opened his King Kullen store in an old garage in Long Island, New York. Customers flocked to this, the first true supermarket.

Jet engine

Frank Whittle, Hans von Ohain

The jet engine was patented in 1930 by a young British Royal Air Force pilot, Frank (later Sir Frank) Whittle. He had great difficulty convincing anyone that it would be useful. Things were different in Germany. When Hans von Ohain thought up a similar engine, it was immediately taken up by a major plane company. The first jet plane, a Heinkel HE-178, flew from a German airfield in 1939, two years before the first British jet flight.

Clear adhesive tape

Richard Drew

'ellophane appeared in the late 1920s. One of its main uses was for wrapping items like flowers and fruit to make them look attractive, so it demanded a clear sealing tape to go with it. First to solve the problem was US engineer Richard Drew of the Minnesota Mining and Manufacturing Company, now known as 3M. Having invented masking tape—an adhesive tape made from paper-in 1925, he coated Cellophane with a similar adhesive to

produce

Scotch Tape in 1930. Seven years later, Colin Kininmonth and George Gray produced Sellotape, a British competitor.

Radio astronomy 1931

Karl Jansky, Grote Reber

Radio astronomy started at Bell Telephone Labs in the US, where engineer Karl Jansky was tracking down radio interference. One source of interference eluded him until, in 1931, after months of frustration, he pointed his antenna upward. The mysterious interference was coming from the stars. Another US radio engineer Grote Reber built the first radio telescope, a 31 ft (9.5 m) dish, in 1937. By 1942, he had made the first radio map of the sky.

Electronic flash

Harold Edgerton

The flash in most of today's cameras took 50 years to perfect. It started as a bulky device used when taking research photographs

E GLOSTER E 28/30

JET ENGINE The Gloster E28/39 was the first plane to be equipped with the jet engine designed by Frank Whittle. It took to the skies in April 1941, four years after Whittle's first engine was started up, and two years after the first successful German jet flight.

1930 After 19 days' solo flying in a converted De Havilland Moth, British aviator Amy Johnson reaches Darwin, Australia, from England. The feat, achieved after only 50 hours' flying experience, wins Johnson a £10,000 (\$48,500) prize. Undercarriage retracts during flight

1930 After the formation organization FIFA in 1904, the World Cup finally kicks off in

Montevideo, Uruguay. Only 13 teams compete, which do not include any from Britain. Uruguay takes the cup. of high-speed objects, such as bullets. US engineer Harold Edgerton realized as early as 1926 that a high voltage applied to a tube containing xenon gas could produce very brief but intense pulses of light. By 1931, he had devised a practical flash.

Scrabble 1931

Alfred Butts

The world's best-known word game was invented in 1931 by an unemployed New York architect, Alfred Butts.

> DOURLI LATTER SCC41

Downik comit comit

BOURA BOURA

Point wow

Monal Mag

F₄ M₃ A₁ N₁

G₂ R₁ E₁ A₁ T₁

SCRABB

0, G2

State S, P₃ I, N,

B, E, S, T

DOUNCE LETTER SCOTE

N,

С,

R,

Α,

Β,

Β,

L,

E,

SCKABBLE

A, T, L, O, D, V,

He called it Criss-Cross. Nobody wanted to make the game, so Butts went into partnership with a retired government official, James Brunot, who started making it in his garage. Renamed Lexico, the game went on sale in 1946. Within two years, games makers Selchow & Righter had snapped it up and were selling it under vet another name-Scrabble. The letter values were fixed by counting the number of times each letter appeared on a page of the New York Times.

SCRABBLE The Scrabble board contains 225 squares, of which 81 are "premium" squares that increase a player's score. because it contains a heavier form of hydrogen, called deuterium. US chemist Harold Urev discovered deuterium in 1931. He then realized that electrolysis of water releases more hydrogen than deuterium, leaving behind water enriched with deuterium. Using this process, he and fellow chemist Edward Washburn created the first heavy water. They published their discovery in 1932.

Button-up shirt

Cecil Gee

British tailor Cecil Gee opened his first shop in 1929 in London. His customers didn't want fussy shirts that had to be pulled on over their head. Nor did they like separate collars attached with fiddly studs. So in 1932, Gee

designed a shirt with buttons all the way down, which could be slipped on like a jacket, and also had its collar sewn in place. After years of resistance by traditionalists, Gee's design became the standard men's shirt.

> Full-color movie

Herbert Kalmus

Several color movie processes 20th century, but most used only two colors, giving unrealistic results. One of these two-color processes was

1932 On May 20–21, American aviator Amelia Earhart becomes the first woman to fly nonstop solo across FULL-COLOR MOVIE The Technicolor camera was really three cameras in one. After processing, its three films were printed on to a single film for projection.

Technicolor, invented by US engineer Herbert Kalmus. In 1932, it was redesigned to work with three colors. The first full-color movies had arrived. Although hampered by a huge camera taking three reels of film at once, Technicolor was used for many classics, including *The Wizard of Oz*.

the Atlantic Ocean, sealing her reputation as a great pilot. She sets a record time of 14 hours, 56 minutes in a Lockheed Vega 5B

High-speed jet of hot gases from the engine pushes the plane along

1932

Harold Urey, Edward Washburn

Heavy water

Ailerons

control

banking

and turning

Heavy water has the same chemical properties as ordinary water but is nearly 11 percent heavier. This is

1931 The Empire State Building, the world's tallest skyscraper, is completed in New York. It will eventually be outdone by taller buildings, but with 102 stories, and a starring role in the movie *King Kong*, it will remain a tourist attraction. MARS BAR Forrest Mars played on people's guilt about eating candy by marketing his new bar as a food, pointing out that it contained such nutritious ingredients as eggs, milk, and butter.

Ernest Walton and was first used successfully in 1932. The giant machine gave protons enough energy to split up the nuclei of lithium atoms, releasing helium nuclei, which are also called alpha particles.

Sulfonamide drugs

Gerhard Domagk

Before antibiotics, sulfonamides were the only drugs that could kill a wide range of bacteria. The first, Prontosil, was actually a bright red dye, discovered in 1932 by German bacteriologist

Mars bar

Forrest Mars

"he Mars bar started with L the idea of turning malted milk into confectionery. In 1922, Forrest Mars suggested this to his father, US candy maker Frank Mars, who created a chocolate-covered nougat and caramel bar called Milky Way. After an argument with his father, Forrest left for England in 1932. He set up his own company in Slough, near London, where he perfected the Mars bar, a version of his father's product cleverly adapted to British tastes.

Particle accelerator

John Cockcroft, Ernest Walton

N uclear physicists can study the structure of matter by firing subatomic particles such as protons and alpha particles (helium nuclei) at other atoms to smash them up and see what comes out. At first, the physicists had to use particles emitted naturally by radioactive materials like radium. Today, they nearly always use particle accelerators, which produce energetic particles artificially. The first was built by British physicists John Cockcroft and Gerhard Domagk. Scientists later realized that this broke down in the body to give a more potent drug, sulfanilamide. From 1936 onward, after clinical trials by British doctor Leonard Colebrook, this and other related "sulfa" drugs began to save thousands of lives. They are still used today when antibiotics fail.

Electron microscope 1933

Ernst Ruska

An image cannot contain detail smaller than the waves used to form it. Because

1933 Adolf Hitler is chancellor in Germany. He uses his position to establish the of this, ordinary light microscopes cannot reveal really tiny objects. In 1933, German engineer Ernst Ruska invented a microscope that worked with much smaller waves. The waves were electrons. Although these were once regarded as particles, quantum physics (***** *see* **page 169**) shows that they are also waves. Using them, electron microscopes can now reveal objects as small as molecules.

Stereophonic sound

Alan Blumlein, Harvey Fletcher

tereophonic sound was Odeveloped independently on both sides of the Atlantic. In Britain, engineer Alan Blumlein, seeking realistic sound for large-screen films, obtained a patent covering the fundamental principles of stereophony in 1933. He also developed a microphone technique for stereo recording and developed the basic system that is used to make stereophonic discs. In the US, physicist Harvey Fletcher of Bell Telephone Laboratories gave his first public demonstration in 1934, in New York City.

FM radio

Edwin Armstrong

The letters FM on a radio station stand for "frequency modulation." This means that the transmitted frequency goes up and down slightly with the ups and downs of the sound wave it is carrying. It's more complicated than the earlier "amplitude modulation" (AM) system but resists interference better. FM was perfected

absolute rule of the National

Socialist (Nazi) Party. Violently

suppressing all opposition, he establishes himself as a dictator.

1933 US President Franklin D. Roosevelt begins speaking directly to the American public by means of regular radio addresses. These "fireside chats" boost the public's confidence in their country's leader. in 1934 by US engineer Edwin Armstrong, who first demonstrated it using a transmitter on top of the Empire State Building.

Front-wheel drive car

Andrè Citröen, André Lefèbvre

any modern cars have their engine connected to the front wheels, avoiding lengthy transmission systems and giving them better grip. A lot of inventors tried this in the early 20th century, but the first to succeed in a big way was French carmaker Andrè Citröen, whose chief engineer was André Lefèbvre. Their "traction avant" system appeared in 1934, and car manufacturers Citröen have been making front-wheel drive cars ever since.

> HAMMOND ORGAN One of the Hammond's great advantages was that it was much smaller than a traditional pipe organ. It could compete with the piano as an instrument for the home.

Perspex

Rowland Hill, John Crawford

The first thick, clear plastic available in large sheets was Plexiglas. Developed by German chemist Otto Röhm, it was introduced by the Röhm & Haas companies in Germany and the US in 1931. The following year, two British chemists, Rowland Hill and John Crawford, discovered how to make sheets of a related but more glasslike material, polymethyl methacrylate. Produced by chemical company ICI, it went on sale in 1934 under the more user-friendly name of Perspex.

"Bollywood," the

Indian version of

Hollywood, gets started with the

opening of a major movie studio,

Hammond organ

Laurens Hammond

The sound of the Hammond organ comes from lots of spinning magnetic wheels, one

Cat's eyes 1935

Percy Shaw

Cat's eyes are the little reflectors set in the road that make driving at night safer. Possibly inspired by real cats' eyes, British engineer

Swell pedal

the volume

controls

of sound

Gauge indicates gas pressure /

Dual keyboard

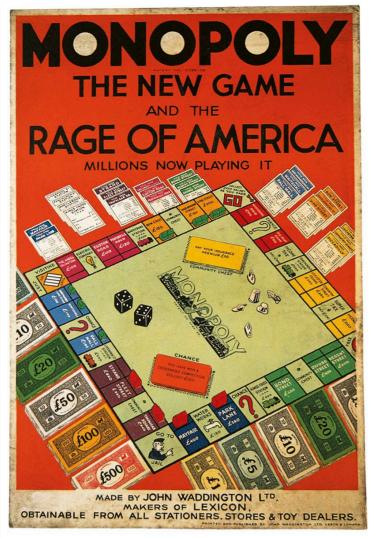
different sound

for each hand

allows a

for each note. Teeth on the wheels create pulsating currents in magnetic coils, and these are mixed and amplified to produce the final sound. US engineer Laurens Hammond built his first organ in 1934, using a constant-speed motor he had invented earlier. Each wheel could have only a whole number of teeth, so the scales he got were slightly out of tune. His solution was to add a wobble to every note, covering up the errors while creating the unique Hammond sound.

Bombay Talkies, in Mumbai. It is the brainchild of Indian producer Himansu Rai and a London-based Indian playwright, Niranjan Pal. 1934 Following the death of President Paul von Hindenburg, German chancellor Adolf Hitler becomes Führer Percy Shaw invented them in 1934, but they were not used until the following year. Their secret was in the rubber that housed the reflectors. Whenever a car ran over a cat's eye, a flexible "eyelid" wiped the reflectors clean, ready for the next driver. Shaw became a millionaire but never left his hometown in Yorkshire.


Polyethylene

Eric Fawcett, Reginald Gibson

Chemists Eric Fawcett and Reginald Gibson were part of a team at British chemical company ICI. They were investigating the reactions of the gas ethylene at high pressure. In 1935, they found a white, waxy solid in one of their reaction vessels. It was a new plastic, polyethylene. It was an excellent insulator and easy to mold. ICI marketed the new material in 1939 as Alkathene.

POLYETHYLENE *Chemists Fawcett and Gibson used this apparatus in their discovery of polyethylene.*

> ("leader"). This gives him the powers of chancellor, president, and leader of the army, cementing his dictatorship.

MONOPOLY The British version of Monopoly, with London street names, appeared in 1936. Its advertising traded on its success in the US.

Monopoly 1935

Charles Darrow

This popular board game was invented by US heating engineer Charles Darrow. He based it on a less successful game invented in 1924 by Lizzie Magie (* see page 176). His first board featured streets in Atlantic City, a favorite vacation spot. The tokens—dog, hat, and so on—were copies of charms on his wife's bracelet. Manufacturers rejected the game at first, but it finally appeared in time for

Christmas 1935.

RADAR One detection system helps another: radar used to aim a searchlight in 1945. Radar 1935

Robert Watson-Watt

In 1935, the British government, fearing war, asked Scottish engineer Robert Watson-Watt whether he could produce a radio "death ray." Watson-Watt knew that radio could not destroy enemy aircraft but thought it might be able to detect them. On February 26, using signals from a BBC transmitter, he detected a distant bomber. After this,

he supervised the construction of radar stations along the English coast. These started working just as the war with Germany began in 1939. They helped the Royal Air Force win the Battle of Britain. (* See also Seeing by Radio.)

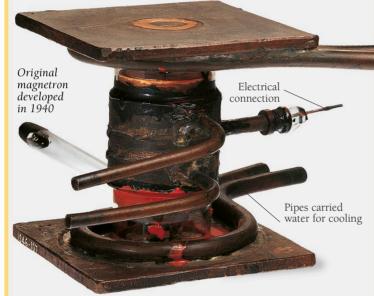
Color film

Leopold Mannes, Leopold Godowsky

Color film was invented by two US classical musicians, Leopold Mannes and Leopold Godowsky. Their film had three separate light-sensitive layers. Each layer formed an image in one of the three primary colors. Although its processing was complicated, the pictures it produced were so good that, in 1930, Kodak invited Mannes and Godowsky to work in its research laboratories. The result, Kodachrome, was launched on April 15, 1935.

1935 US composer George Gershwin writes his folk opera *Porgy and Bess*, a unique blend of jazz, pop, and

opera that will come to be thought of as his greatest work. Its lyrics are written by his elder brother, Ira. 1936 On December 11, Britain's King Edward VIII tells the nation that he must leave his throne for love


of the woman he has been forbidden to marry, Mrs. Wallis Simpson. He settles in France and marries her the next year.

SEEING BY RADIO

"RADAR" GETS ITS NAME from "radio detection and ranging." It detects objects and measures their distance, or range, by sending out short pulses of radio waves and showing if anything reflects them back. The time between sending a pulse and getting it back shows the distance of the reflecting object. Its direction is found by using a steerable antenna.

EARLY RADAR

The discoverer of radio waves, Heinrich Hertz, showed that they were reflected from metallic surfaces, and several early radio experimenters thought that they might be used to detect objects. German engineer Christian Hülsmeyer patented a detection system in 1904, and a crude form of ranging with radio pulses was achieved in 1925.

LATER DEVELOPMENTS

The first radar stations worked with quite large wavelengths. This made their measurements rather imprecise and also meant that the stations had to be big. In 1940, the invention of the magnetron, which could produce much shorter waves called microwaves, allowed compact, precise radars to be installed in aircraft. Radar is now essential to aviation.

Parking meter

Carlton Magee

The hated parking meter first appeared in 1935, on the streets of Oklahoma City. It was invented by Oklahoma businessman Carlton Magee,

1936 Adolf Hitler fails to demonstrate white

racial superiority at the carefully

stage-managed Olympic Games

who wanted to stop all-day parkers from clogging the streets. He also thought it might make a little money for his city. The Park-O-Meter, as Magee called it, was remarkably similar in appearance to the meters used today. Much to the annoyance of inconsiderate parkers, Magee's idea has proved a hit with city authorities everywhere.

in Berlin, when black US athlete

Jesse Owens wins four gold

to acknowledge the fact.

medals. Hitler simply refuses

Richter scale

Charles Richter, Beno Gutenberg

News reports usually rate earthquakes on the Richter scale. Devised in 1935 by US seismologists Charles Richter and Beno Gutenberg,

the scale relates to the energy released by an earthquake

at its center, with each step representing 10 times the energy of the previous one. So an earthquake measuring 8 on the Richter scale, which would usually be catastrophic, releases a million times as much energy as one rated at 2, which wouldn't be noticed.

Structure of Earth's core

Inge Lehmann

eep below the Earth's crust, right at the center of our planet, is the core. Scientists can study this entirely hidden layer by measuring and interpreting seismic waves generated by earthquakes. In 1936, Danish seismologist Inge Lehmann realized that her measurements of these waves did not fit with the widely accepted theory that Earth had an entirely molten core. She instead argued that the way the waves travel through the core shows that it must have a solid center.

1936 After years of strife between Nationalists and Republicans, the Spanish Civil War starts on July 17. **HELICOPTER** The Fw 61 looked more like a wingless plane than a helicopter. Its rotors spun in opposite directions to make it fly straight.

Helicopter 1936

Heinrich Focke

t took a long time to develop La really usable rotating-wing aircraft. Early helicopters had little lift, and because the way the rotor worked was not fully understood, they tended to flip over sideways. The French Breguet-Dorand gyroplane of 1935 solved most of these problems, but the first helicopter to develop into a practical production machine was the Focke-Wulf Fw 61. Designed by German engineer Heinrich Focke, the machine had two rotors and took to the air in 1936.

Suntan lotion

1930

Eugène Schueller

The first mass-market suntan lotion was produced in 1936, after Paris designer Coco Chanel acquired a house in the south of France and made tanning fashionable. The perfumed, golden oil that helped prevent the skin from burning was created by a small company founded by French chemist Eugène Schueller. Today, his company, L'Oréal, is much larger, and the name of his oil, Ambre Solaire, is known worldwide.

People from many nations join in. After three years and 100,000 deaths, Nationalist General Franco will control Spain.

Television

Vladimir Zworykin, Isaac Shoenberg

See pages 202–203 for the story of how Vladimir Zworykin and Isaac Schoenberg perfected all-electronic television.

Pulse code modulation О

Alec Reeves

n 1937, British engineer Alec Reeves came up with a new way to reduce interference on telephone calls: convert them into code, like telegraph messages. The code would resist interference during transmission and could be converted back into speech once received. Reeves called his idea pulse code modulation. With the electronics of his day, it was too expensive to use widely, but it is central to the digital communications revolution of today.

Trampoline

George Nissen

s a child, US businessman AGeorge Nissen loved to watch trapeze artists bouncing on their safety nets. So he later designed his own, more effective bouncing rig. In 1937, he learned that the Spanish for springboard was "trampolín." This, in English form, would become the trademark of his new product. Children loved the Trampoline, and when war came Nissen sold lots to the US air force to help pilots with fitness training. The first world trampolining championship was held in 1964.

Epoxy resin

Henry Moss

E poxy resins are found in glues that come in two tubes. One tube contains resin. the other a hardener. When the two are mixed, they set hard because the hardener contains chemical groups that link the resin molecules together. British chemist Henry Moss made the first epoxy resins in 1937, and a two-part glue was marketed in 1946. Its Swiss makers, Ciba (now Ciba-Geigy) named their new product Araldite.

Superfluidity

Peter Kapitsa, John Allen

Tt normally takes an effort to make a fluid flow. But at really low

temperatures, things can be very different. In 1937, Russian physicist Peter Kapitsa discovered that below about –456°F (–271°C), liquid helium loses its resistance to flow and also develops strange habits, such as climbing up the walls of its container as a thin film. Kapitsa published his findings in 1938, as did Canadian physicist John Allen, who discovered it independently.

Grocery cart

Sylvan Goldman

S retailer Sylvan Goldman noticed that people in his Humpty Dumpty supermarkets never bought more than they could carry. He reasoned that if they could carry more, they would buy more. So, in 1937, he got a local odd-job man to

weld wheels and baskets to metal folding chairs.

> Chamber into which hot water was forced

Holder for ground coffee

> Cup was placed here to catch the coffee

Customers resisted the strange-looking contraptions at first, so Goldman hired people to push his first crude grocery carts around the store until everyone got the idea and started to use them.

Pressurized aircraft cabin

Lockheed Corporation

ircraft fly more smoothly A and use less fuel at high altitudes. But the low pressure at these heights does not agree with people, so passenger cabins have to be pressurized. The first fully pressurized aircraft was the experimental US Lockheed XC-35, which was based on an existing Lockheed plane, the Electra. Built in 1937, the modified plane's reinforced fuselage had few windows, causing pilots to dub it the "Can't see-35."

Espresso coffee

Achille Gaggia

7hen Italian engineer Achille Gaggia wanted coffee, he

wanted it fast. So he invented a pump that forced nearly boiling water through finely ground coffee. Because the water moved so quickly, there wasn't time for bitter flavors to develop. A cup of espresso took only the pull of a lever, so it soon became popular with café owners. Gaggia patented his invention in 1938, and his name is now likely to be seen wherever coffee lovers gather.

San Francisco's 1937 elegant Golden Gate Bridge opens to traffic, after heroic struggles with rock and

water by engineer Joseph Strauss. For another 27 years, its 4,200 ft (1,280 m) main span will be the longest in the world

ESPRESSO

Small espresso

machines, like

this one from about 1950, use

steam pressure

to force water

through the coffee.

COFFEE

American aviator Amelia Earhart sets out from Oakland, California, on a planned flight around the

world. She and her navigator, Fred Noonan, lose radio contact a month into the flight and disappear, never to be found.

058 CO LTD

Nylon

Wallace Carothers

Tylon was launched by US chemical company DuPont in 1938. Its inventor, US chemist Wallace Carothers, specialized in polymersmolecules made by joining lots of identical molecules together. He was trying to imitate silk, which is a protein, so he tried joining molecules with a linkage found in proteins, called the amide bond. In 1934, he succeeded so well that he could pull a continuous strand of "polyamide," or nylon, straight out of a laboratory beaker. The first nylon stockings went on display, to wild acclaim, in 1939.

Ballpoint pen

Ladislao Biró, Georg Biró

Hungarian artist Ladislao Biró and his brother Georg, a chemist, thought they were making a totally new writing

instrument. In fact, US inventor John Loud had invented something similar in 1888. New or not, Ladislao's ball-tip rolled on, lubricated by Georg's greasy, smudge-proof ink. The Biro pen was patented in 1938.

Later, the brothers met British entrepreneur Henry Martin. He noticed that ballpoints didn't leak at high altitude and sold them to the Royal Air Force. Ballpoints reached British shops in 1945—in time for Christmas.

BALLPOINT PEN The original ballpoint pen of the 1940s, made by the Miles Martin Pen Company, was a luxury product, which cost more than an ordinary fountain pen.

1938 The world's first large oceanarium, Marineland, in Florida, opens to the public. Visitors are thrilled by fish such as sharks and rays, normally seen only in the open sea. Later, they will get soaked as dolphins do tricks.

1901-1950

NYLON After being knitted, stockings are shaped to ensure a wrinkle-free fit by pulling them over dummy legs, a process known as boarding. It is seen here in a factory of 1946.

> - Worker checks for flaws in the stocking while she boards it

Dummy legs made of metal

Teflon

Roy Plunkett

The slippery, heat-resistant plastic used for coating pans was discovered by accident. On April 6, 1938, Roy Plunkett, a research chemist for US chemical company DuPont, was testing the refrigeration gas tetrafluoroethylene. He had some in a cylinder, but it wouldn't come out. When he investigated, he found that it had turned into a white powder. The gas molecules had joined together to form polytetrafluoroethylene. Its more familiar trademark, Teflon, was registered in 1945. In the 1960s, researchers found a way to make the nonstick plastic stick to metal.

1938 On March 13, the Nazi chancellor of Austria, brutally installed by Hitler, asks in German troops to

suppress disorder. Next day, Hitler and troops are in Vienna, declaring *Anschluss* (union) between the two countries.

MAKING THE DREAM COME TRUE

Vladimir Zworykin and Isaac Shoenberg work to perfect all-electronic television.

> C aturday, January 30, 1937, was a sad day for Scottish television pioneer John Logie Baird. That was when the British Broadcasting Corporation (BBC) finally abandoned his mechanical television system, with its whirring wheels and messy chemicals. He had come a long way since his first

experiments with television in 1923, but it wasn't far enough. His dream was over. The future was electronic.

Three months earlier, on November 2, 1936. the BBC had started the world's first regular, highdefinition, public television broadcasting service. In alternate weeks, it used two different sets of equipment. The idea was to test two rival systems. One was Baird's; the other had been created by a team at Electrical and Musical Industries (EMI) led by Russian-born engineer Isaac Shoenberg. The all-electronic EMI system won easily. Its pictures were sharper, its cameras were

Baird Televisor, 1926

more mobile, it was more reliable, and it cost less. In all but detail, it was the system we use today. Shoenberg's team had been formed five years earlier. They had worked

with remarkable speed, but they weren't the

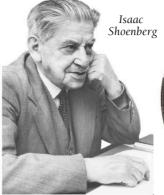
John Logie Bairð

first to research all-electronic

television. On the other side of the Atlantic, a lone pioneer,

Philo T. Farnsworth, had started work on his electronic "image dissector" in 1926. He gave the first demonstration of allelectronic television in

1934. Unfortunately, his cameras needed too much light, and his work came to a dead end.


ELECTRONIC EYE

The strange shape of the Emitron camera reflected the shape of the image tube inside it. The drooping nose held the tube's electron gun. Above this were two lenses, one of which was a viewfinder.

PICTURES FROM A SPINNING DISC

Baird did much to create interest in television. He used a rotating disc to sweep a spotlight over the subject to be televised, with a matching disc in the receiver. This mechanical system could not make pictures good enough to compete with electronics.

Modern television owes far more to another US engineer, Russian-born Vladimir Zworykin. He was the first to take up the suggestion, made in 1908 by Scottish engineer Alan Campbell Swinton, that a cathode ray tube could create as well as display pictures. In 1929, Zworykin took charge of

TV PIONEERS

The two main pioneers of allelectronic television were both born in Russia. Shoenberg was born in 1880 and Zworykin in 1889. Shoenberg emigrated to Britain in 1914, and Zworykin to the US in 1919. It was Zworykin who developed the first successful camera tube. It scanned the image with a beam of electrons. Tubes of this type were highly sensitive and could show fine detail.

Britain's first television receivers were very expensive, worked only in London, and offered only a single channel. But they were the start of something big.

TELEVISION IN THE US Regular television broadcasts began later in the US than in Britain, but the US system expanded more quickly. This National Broadcasting Company studio, equipped by the Radio Corporation of America, is seen in 1939, broadcasting where war had forced the BBC to stop.

television development at the Radio Corporation of America. By 1931, he and his team had created the first successful electronic camera tube, the Iconoscope. Shoenberg's team later used Zworykin's basic idea to develop their own Emitron tube, which formed the heart of the cameras they designed for the BBC.

On September 1, 1939, as war gripped Europe, the BBC television service was closed down. Just four months earlier, the US' first regular television service had started, when the National Broadcasting Company (NBC) broadcast the opening of the New York World's Fair. Zworykin, Shoenberg, and a host of other engineers and enthusiasts had finally made the dream of television come true.

XEROGRAPHY Chester Carlson did much of the basic research into dry photocopying in his kitchen.

Chester Carlson

US physicist Chester Carlson wanted to make office work easier. He studied various methods of copying documents, then, in 1938, produced his first xerographic copy, using a zinc plate coated with sulfur. The original was on a microscope slide, and the copy was formed from moss spores stuck to wax paper. (* See also Making Copies.)

Paul Müller

The chlorine-based chemical DDT had been known for years before Swiss chemist Paul Müller discovered, in 1939, that it made a good insecticide. It kills insects but has little effect on warmblooded animals. In World War II, DDT was used to protect troops from insectborne diseases. Later, it was used to kill insects that attack crops. Because DDT tends to persist in the environment and can find its way into food, it is now little used.

1939 On September 1, German troops invade Poland. Two days later, Britain and France declare war

MAKING COPIES

XEROGRAPHY GETS ITS NAME from the Greek "xeros" meaning "dry." A lens projects an image on to a drum, the surface of which conducts electricity when exposed to light. Where the image is bright, the drum becomes more conductive and the electricity leaks away. Powdered resin dusted on the drum is attracted to the parts that are still electrified. The resin is transferred to paper and heated until it melts to form a permanent copy.

Early xerographic copiers were big and slow. This is part of one from 1960.

LIFE WITHOUT XEROGRAPHY

Copying documents used to be difficult. They could be photographed with a special camera, but this was expensive and too big for an office. Or they could be made by the diffusion-transfer process, invented in 1939. This made copies in the office, but used wet chemicals and was very slow.

Nuclear fission

 $\mathbf{1}$

Lise Meitner, Otto Frisch

When uranium is bombarded with neutrons, the nuclei of its atoms can split, releasing energy. This was discovered

on Germany. The French rely on their heavily fortified "Maginot Line" along the German border. Britain prepares for all-out war. by German chemists Otto Hahn and Fritz Strassmann in 1938, but it was Austrian physicists Lise Meitner and Otto Frisch, her nephew, who explained the details and coined the term "nuclear fission." Realizing that it could be used to make a bomb, they quickly alerted other physicists and, through them, the US president.

1940 US writer Ernest Hemingway writes his novel *For Whom the Bell Tolls*, based on his experiences in the

XEROGRAPHY AT WORK

Carlson's process has transformed office work. Machines that make 60 copies a minute are now commonplace. Xerography is also used in laser printers, which produce documents directly from digital data, rather than from other documents. Color copiers, basically three machines in one box, now offer excellent quality.

Single-rotor helicopter

1940

Igor Sikorsky

The first successful helicopter, made in 1936, had two rotors that went

Spanish Civil War. Its main idea is that everyone, wherever they live, should be concerned by oppression occurring anywhere.

SINGLE-ROTOR HELICOPTER The Westland-Sikorsky S-51 was the first helicopter to be developed for civil purposes, in 1947.

Rotor blades provide lift for the helicopter and can also move it in any direction

> Tail rotor stabilizes and helps steer the helicopter

Landing gear

around in opposite directions. This stopped the machine from spinning around. By 1940, the Russian-born US engineer Igor Sikorsky had flown a singlerotor helicopter. He stopped the spin with a small tail rotor that pushed sideways. It could also be used to help the helicopter turn left or right.

Digital logic design

Claude Shannon

igital logic circuits operate machines from computers to dishwashers. They would be almost impossible to design without US engineer Claude Shannon's thesis of 1940. He said that the work of British mathematician George Boole (* see page 140) could be used to simplify the design of electrical circuits that worked out what a machine should do next. To prove it, he built a robot mouse that could find its way around a maze.

Plutonium

Glenn Seaborg Plutonium is one of several elements, all heavier than

uranium, that are nonexistent

194 US wakes up to the

reality of world war as Japanese

submarines and carrier-based

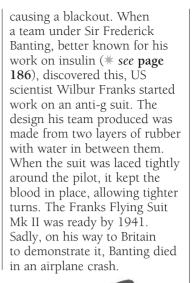
On December 7, the

or extremely rare in nature but can be made in artificial nuclear reactions. US chemist Glenn Seaborg and his colleagues discovered 10 of these between 1940 and 1955. Plutonium is the most important because of the special properties of one form called plutonium-239. This highly toxic material, which is produced in some types of nuclear reactors, can be used to make atomic weapons.

Binary electronic computing

John Atanasoff, Clifford Berry

arly computing machines used the decimal system to represent numbers. This is not a good way of using electronic circuits. US mathematician John Atanasoff and his student Clifford Berry realized this as early as 1940. Their unsuccessful attempt at a computer, the ABC, used the binary system, which works with the base 2 instead of 10. It was more efficient because logic circuits work best when switching between just two voltages. Although the ABC was little known at the time, it may have influenced EDVAC, the first modern computer design (* see page 208).

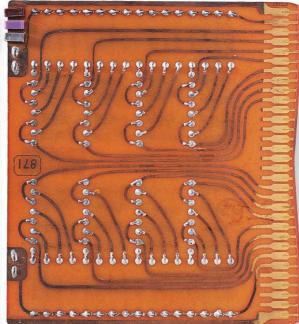

planes attack the US Pacific fleet based at Pearl Harbor. Eight battleships and 10 other vessels are sunk or damaged

Anti-g flying suit

Frederick Banting, Wilbur Franks

fighter plane making a tight turn acts like a spin dryer. The so-called "g" force drains blood out of the pilot's brain, possibly

ANTI-G FLYING SUIT By the 1950s, suits like this one by Dunlop were filled with air, not water.



US sculptor Gutzon Borglum completes his giant heads of presidents George Washington, Thomas

Jefferson, Abraham Lincoln, and Theodore Roosevelt carved into the granite of Mount Rushmore, South Dakota.

Electromechanical computer 1941

Konrad Zuse

The first true computer was built in 1941 by German engineer Konrad Zuse. It was controlled by a program and represented numbers in binary form, but it was not electronic. It used relays—switches operated by electromagnets. As these have actual moving contacts, they are extremely slow compared with electronic switches. So Zuse's Z3 computer was really the last of the mechanical computers, not the first of those we use today.

Printed circuit board

1941

Paul Eisler

Until Austrian engineer Paul Eisler invented the printed circuit board, or PCB, all electronic equipment was

1942 The elegant French luxury liner

Normandie, holder of the Blue

Riband for the fastest Atlantic

laboriously wired by hand. In 1941, Eisler printed wiring patterns on to copper foil stuck to plastic sheet, then placed this in an etching bath to remove the copper not protected by printing. After cleaning, and drilling holes for wires, the board was ready to receive components. The first PCBs were fitted inside antiaircraft shells.

Polyethylene terephthalate

Rex Whinfield, James Dickson

lothes, duvet filling, bottles, and photographic film can all be made from polyethylene terephthalate, better known as PET. It was invented in 1941 by British chemists Rex Whinfield and James Dickson. Because Britain was at war, it was not until 1954 that the new material went into production there, as Terylene. By then, the US DuPont company had already developed and launched their own version of the material, which they called Dacron.

crossing—which it won with a time of 3 days, 22 hours, and 7 minutes—catches fire in New York harbor and is destroyed.

Silicon solar cell

Russell Ohl

Solar cells convert sunlight into electricity. Modern cells can convert about one-third of the sunlight that falls on them, but the very first devices, made from about 1890, converted less than 1 percent. The breakthrough came with a cell invented in 1941 by US scientist Russell Ohl. He used two types of impure silicon, rather than pure silicon and a metal. When brought together and exposed to light, current flowed from one to the other.

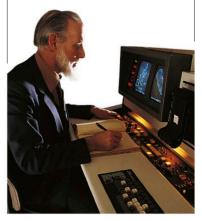
Ballistic missile

Wernher von Braun

A ballistic missile is a rocket with a warhead that flies high into the sky and then falls on to its target. The development of such weapons has now led to the design of large rockets for peaceful purposes. The first effective ballistic missile was the V-2, designed for Hitler by German

 $\frac{1942}{2} \text{ In Oxford, England,} \\ \text{called Oxfam is created to raise} \\ \text{money for hungry children in} \\$

PRINTED CIRCUIT BOARD The front and back of a board from a 1959 Ferranti Orion computer reveal its simple, hand-drawn design.


engineer Wernher von Braun and first launched in October 1942. It carried 1,600 lb (725 kg) of explosive 50 miles (80 km) above Earth to drop on London as the most feared weapon of World War II.

Scanning electron microscope

1942

Vladimir Zworykin, Dennis McMullan

S canning electron microscopes, or SEMs, combine high magnification with great depth of focus to produce vivid pictures of tiny three-dimensional objects. They work by scanning objects with a beam of electrons. The first SEM was built by Russianborn US physicist Vladimir Zworykin and others in 1942. It didn't seem as good as existing electron microscopes (* see page 196), so it was

SCANNING ELECTRON MICROSCOPE The picture from a SEM is viewed on a screen, not through an eyepiece.

Greece, which is ravaged by war. It will continue after the war to provide aid for refugees and for poorer parts of the world. dropped. Later, British engineer Charles Oatley got his student Dennis McMullan to try again, and by 1951 he had built a working instrument. The first commercial SEM, producing the striking images familiar today, was launched in 1965.

Nuclear reactor

Enrico Fermi

When a uranium-235 nucleus splits under bombardment by neutrons, it gives out further neutrons. These can split other nuclei, which release yet more neutrons. This process was first kept going in a controlled "chain reaction" by a team led by Italian-born US physicist Enrico Fermi. Their nuclear reactor, built in a squash court at Chicago University, was used for research that helped build the first atomic bomb.

Frequencyhopping radio

Hedy Lamarr, George Antheil

E avesdropping enemies or radio interference can be overcome by making the radio frequency jump about. Hedy Lamarr, who is also known for her work as an actress, patented a system for military use based on this idea. A punched paper roll, similar to those in automatic pianos, made the transmitter switch between many different frequencies, while an identical roll kept the receiver in step. The same basic idea is used in Bluetooth technology today.

AQUA-LUNG Scuba divers, like this one exploring Red Sea corals, take their own air with them, which gives them greater freedom.

1943 The Rodgers and Hammerstein musical Oklahoma! opens on Broadway, New York, to wild Aqua-Lung

Jacques Cousteau, Émile Gagnan

Before French explorer Jacques Cousteau and engineer Émile Gagnan thought up the Aqua-Lung in 1943, divers got air through pipes or by using a snorkel. They could not swim freely far below the surface. The Aqua-Lung had compressed air cylinders worn on the body and connected to the diver's mouthpiece through an automatic pressure regulator. It changed our view of the oceans and created the popular sport of scuba diving.

Function of DNA

Oswald Avery

The first step toward unlocking the mechanism of genetic inheritance was taken

in 1944 by Canadian-born US bacteriologist Oswald Avery, who explained an observation made by British researcher Fred Griffith in 1928. Griffith found that pneumonia bacteria were either rough or smooth and that an extract of the smooth bacteria could make the rough ones smooth. More important, all their descendants inherited this characteristic. In a long series of experiments, Avery showed that the substance responsible was not a protein. as expected, but a nucleic acid, DNA (* see page 149).

acclaim. Including songs such as *Surrey with the Fringe on Top*, it will win a Pulitzer Prize and continue for 2,248 performances.

1944 Kiri Te Kanawa is born in Gisborne, New Zealand, to an Irish mother and an aristocratic Maori father.

After success as a soprano in her own country, she will study singing in London and eventually become an international star.

Artificial kidney

Willem Kolff

When kidneys fail, a machine can take over their job. Artificial kidneys clean up blood by passing it through a membrane that lets out unwanted chemicals but keeps in the rest. The first practical machine was invented in 1944 by Dutch doctor Willem Kolff. It passed the blood through artificial sausage skin, which has microscopic pores. The skin was wrapped around a slatted drum immersed in a special fluid. Kolff later pioneered better machines and techniques that have now made kidney dialysis a routine procedure.

Myers-Briggs Type Indicator®

Katharine Cook Briggs, Isabel Briggs Myers

In the 1940s, Katharine Cook Briggs and her daughter Isabel Briggs Myers developed the Myers-Briggs Type Indicator®. It is a questionnaire that aims to ARTIFICIAL KIDNEY Home dialysis machines appeared in the 1960s. This machine, discreetly disguised as furniture, was used by one of the first home patients.

reveal people's different ways of seeing the world, dividing them into 16 types, based on how much they lean toward one end or the other of four scales: Extrovert–Introvert; Sensing– Intuition; Thinking–Feeling; and Judging–Perceiving.

Electronic computer

Tommy Flowers, John Mauchly, John Presper Eckert

Mechanical computers were in use by the 1930s, but electronics, using tubes, promised greater speed. The first all-electronic computer, Colossus, was developed by UK engineer Tommy Flowers and used at Bletchley Park. Programmed by switches and plugs, not a stored program, it was the first working machine to use electronics for logic and counting. It was part of the topsecret work that cracked the

1944 US composer Aaron Copland writes Appalachian Spring for US ballet dancer Martha Graham. The

music from the ballet perfectly expresses the open-air, pioneering spirit of the US and will become a concert classic. German army's Enigma code during World War II. US engineers Mauchly and Eckert developed a similar machine a year later.

Computer architecture 1945

John von Neumann

Most modern computers keep their programs, and the data on which they work, in one and the same memory. This makes them more flexible. It is not clear who invented the idea, but the best candidate is John von Neumann, a mathematician

Only part of Charles Babbage's Analytical Engine was completed before Babbage's death in 1871. This is part of the "mill" or processor of the machine, with its printing mechanism.

ATOMIC BOMB The Manhattan project produced two types of bombs. Little Boy was a plutonium bomb and Fat Man was a uranium bomb.

who was involved in designing the "stored program" computer EDVAC. This design appeared in 1945, and the concept was first proved in 1948. (* See also Computer Pioneers.)

Atomic bomb

Robert Oppenheimer

Most people would prefer that the atomic bomb had not been invented. But in 1940,

1945 On May 8, the end of war in Europe is formally declared. as the Germans surrender in dropped on Nagasaki

with Germany at war with the world and possibly working on a bomb of its own, the development of an atomic weapon seemed essential. The USA therefore created the Manhattan Project. Led by US physicist Robert Oppenheimer, a team of scientists at the secret Los Alamos Laboratory developed the technology needed to purify the right kind of uranium or plutonium and make it explode. After a test in July 1945, the first atomic bomb ever used in war was dropped on August 6, destroying the Japanese city of Hiroshima and most of its inhabitants.

France. On August 14, the Japanese surrender to the US and Allies. World War II is finally over.

COMPUTER PIONEERS

THE COMPUTER ARCHITECTURE pioneered by John von Neumann is basically simple. A single memory stores data coming from outside and from the arithmetic unit that does the computing. Instructions and data are retrieved from the same memory by the control unit—which sequences and decodes instructions—and by output devices such as displays. Earlier computers used several different architectures and often worked with inefficient decimal arithmetic.

BEFORE ELECTRONICS

The idea of a programmable computer goes back to British mathematician Charles Babbage's Analytical Engine, conceived in 1834 but never built. The first working, nonelectronic computer was built in 1941 by German engineer Konrad Zuse.

Motor scooter

1940

Corradino d'Ascanio

The shape of the modern motor scooter was determined in 1946 by Italian engineer Corradino d'Ascanio. His boss, Enrico Piaggio, wanted something to get him around the aircraft engine factory he owned. D'Ascanio soon came up with the basic design: U-shaped body, twostroke engine under the seat, and small, easy-tochange wheels. Cheap to make and fun to ride, the EARLY ELECTRONIC COMPUTERS

The first all-electronic computer, Colossus, was big and slow. Better architecture and use of the binary system gradually improved things. The first practical stored program machine, EDSAC, was built by British computer scientist Maurice Wilkes in the 1940s.

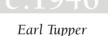
MODERN COMPUTERS

The arrival of integrated circuits (ICs) transformed computers from the early 1960s onward. Computers had already been shrunk by transistors, but ICs made them even smaller and could also form compact, highspeed memories.

Vespa (Italian for wasp) was named after the sound its engine made, and it became an engineering classic.

Grip was twisted to control the throttle

MOTOR SCOOTER This Vespa 125 is the 1951 version of the first 125, which was introduced by Piaggio in 1948.


Microwave oven

1946

Percy Spencer

When US engineer Percy Spencer was working on radar for the Raytheon Company in 1945, he noticed that the powerful microwaves had melted some candies in his pocket. After experimenting with popcorn and eggs, Spencer built the first, crude microwave oven. In 1946, Raytheon took out a patent, and in 1947 the Radar Range went on sale at \$5,000.

Tupperware

Plastic refrigerator boxes manufacturer Earl Tupper, in about 1946. He found the right plastic and designed an airtight seal, but people did not seem to want the boxes. In 1948, after meeting ace saleswoman Brownie Wise, Tupper hit on a new sales technique. Hostesses invited their friends over, then demonstrated and sold

the boxes to them.

Engine and gearbox directly connected to the rear wheel

1946 Former British Winston Churchill popularizes the term "iron curtain" in a speech warning of the dangers of communist expansion and Soviet isolationism. The Cold War begins. Easily . changed wheels

1946 Perhaps the most widely read book about babies, Common Sense Book of Baby and Child Care, written by

US pediatrician Benjamin Spock, is published. It will be blamed for many things, including the youth culture of the 1960s.

TRANSISTOR Looking like a random collection of wires, the first transistor was the result of advanced thinking. Modern transistors are a million times smaller.

 Transistor is about 4 in (10 cm) high

Carbon dating

Willard Libby

arbon dating enables archaeologists to estimate the age of organic materials. It was developed by US chemist Willard Libby in 1947. He showed that Earth's atmosphere contains a tiny proportion of a radioactive form of carbon, carbon-14, and that living organisms take up both this and ordinary carbon. After the death of an organism, its carbon-14 starts to decay, so the smaller the proportion of carbon-14, the older the sample must be.

Subbuteo

Peter Adolph

Subbuteo is a popular tabletop soccer game played with model soccer players mounted on curved bases, which allow them to move without falling over. Players flick their chosen players at an oversized ball. The game was invented in 1947 by British birdwatcher Peter Adolph. He named it using the Latin name of a bird called the hobby, *Falco subbuteo*. When its current maker, Hasbro, said in 2000 that production would have to stop, there was an international outcry. They relented and the game lives on.

False eyelashes

David Aylott, Eric Aylott

The first convincing false eyelashes were made for the movie industry. In 1947, British studio makeup artists David and Eric Aylott created strips of false eyelashes that were easy to apply and could stand the scrutiny of a closeup. The Aylotts later developed lashes for everyday use under the name Eyelure. By the 1960s, Eyelure was selling eight million pairs a year.

1947 Jack R. (Jackie) Robinson becomes the first African American major league baseball player of the 20th century. As a player for the Brooklyn Dodgers, he wins rookie of the year for leading the league in stolen bases.

Transistor

John Bardeen, Walter Brattain, William Shockley

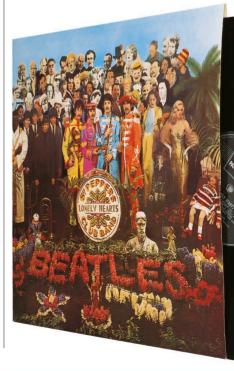
A transistor is a tiny piece of silicon within which the flow of electricity is controlled, making the whole of modern electronics possible. There are many different types of transistors. The first one, invented in 1947 by US physicists John Bardeen, Walter Brattain, and William Shockley, was made of germanium, not

silicon, and worked on a different principle from those in modern computer chips. But it started a revolution. Within 25 years, electronics based on vacuum tubes (* *see* page 176) was virtually dead.

Holography

Dennis Gabor

Unlike an ordinary photograph, a hologram captures every detail of the light waves reflected by an object. This makes objects appear with startling realism; in a hologram viewed at an angle, objects look just as they would from that angle. The technique was invented in 1948 by Hungarian-born British engineer Dennis Gabor. It works by recording the interference pattern created when light reflected from an object mixes with unreflected light. The best light source is a laser. As this was not invented in 1948. Gabor had to make do with ordinary light shining through a small hole.


Long-playing record

1948

Peter Goldmark

Before 1948, a 12 in (30 cm) record played for only four minutes each side, produced poor sound, and broke easily. So a disc that

LONG-PLAYING RECORD By 1967, when The Beatles released the record Sgt. Pepper's Lonely Hearts Club Band, LP cover design had become high art.

1948 The General Assembly of the

Universal Declaration of Human

United Nations adopts the

Rights at a session in Paris on December 10. The vote is carried unopposed, but eight members, including the USSR, abstain.

210

offered 25 minutes of pure sound per side, and was made of flexible vinyl, created a sensation. It was developed by Hungarian-born US engineer Peter Goldmark for Columbia Records. Rival company RCA-Victor soon brought out a record that played for the same time as the old "12-incher" ideal for a single song—but was only 7 in (18 cm) across. Both were highly successful.

Polaroid camera

Edwin Land

US inventor Edwin Land had a successful company making Polaroid material. When his daughter asked to see a picture he had just taken of her, he asked himself, "Why not?" In 1948, after a few years' work, he launched the Polaroid Land camera. The secret was in the film, which contained its own developing system and could produce a brown-andwhite print 60 seconds after the picture was taken.

Tennis shoes

Adolf Dassler

ennis shoes can be traced ⊥ back to a design that German sports shoe manufacturer Adolf "Adi" Dasler registered in 1949-a year after he split with his brother Rudolf to found the company Adidas. Dasler's shoes were worn by some notable athletes, including the American Jesse Owens, who won four gold medals in the 1936 Olympics. The new shoes had three stripes down each side, which gave extra support. The stripes were probably the start of the elaborate decoration seen on tennis shoes today.

Plastic wrap

Dow Chemical Company

Traditional plastic wrap is a plastic called PVDC. It is related to PVC, a material used

for window frames and electrical insulation. Plastic wrap was supposedly discovered in 1933 by accident, as an indestructible sticky residue on laboratory glassware. It was first marketed in the US by the Dow Chemical Company in 1949. The first users were

professional caterers, but a

appeared in 1953.

domestic version, Saran Wrap,

Error-correcting

code

Richard Hamming

Today, much information comes in the form of digital codes. Cell phones and CDs, for example, use digital codes. Unfortunately, the media that transmit or store these codes are not perfect, and errors occur. If these were not corrected, many systems would not work. US mathematician Richard Hamming solved this problem as early as 1950. He devised codes that showed when an error had been made and also how to correct it.

> Lens panel was folded flat for

carrying

Cable release could be

attached here

POLAROID CAMERA *The first Polaroid Land camera looked much like the roll-film cameras many photographers were using at the time.*

CORRECT ON

1949 On October 1, China becomes a communist country as Mao Zedong, having defeated Nationa that the People's establish

Nationalist opposition, proclaims that the government of the People's Republic of China is now established in Beijing. 1950 US scientist writer Isaac Asimov publishes a collection of short stories entitled Front moved on rails for focusing

MODEL

I, *Robot*. It includes his three laws of robotics, a moral system that should be built into all robots to stop them from hurting humans.

INFORMATION & UNCERTAINTY

IMPROVEMENTS IN information technology, and a new understanding of the machinery of life, dominated the years after 1950. These developments were related—scientists needed computers to help them map human genes. They used them for many other discoveries, too. Suddenly, we knew almost too much. How should we use this knowledge?

1951 onward

John Hetrick

The first airbag was patented in 1952 by US inventor John Hetrick. But it was not until 1973, when the rising death toll on US roads began to cause concern, that General Motors developed a practical airbag and offered it as an option. In spite of consumer resistance, and worries about deaths caused by early airbags, by 1988, most US cars were equipped with airbags. European car makers followed suit later.

High-level computer language

Grace Hopper

In the early days of computing, programs were written in code that suited a computer but was difficult for people to read. Mathematician (and US Navy Rear Admiral) Grace Hopper made computers more userfriendly. She wrote a program that could translate a language quite like English into a list of instructions a computer could follow. This led to one of the earliest high-level languages, COBOL, still in use today.

Polio vaccine 1952

Jonas Salk, Albert Sabin

Poliomyelitis, or polio, is a viral infection that can cause paralysis. It posed

USE OF HEART-LUNG MACHINE This reconstruction of a 1980 operating room shows a heartlung machine in use. The circular devices in the center pump blood.

1952 In Kenya, the British declare a state of emergency and arrest Jomo Kenyatta, leader of the Kenya a serious threat until US physician Jonas Salk developed a vaccine that could create resistance to the virus. It contained an inactive (dead) virus and was first used in a successful trial in 1952. After further trials, the Salk vaccine was approved in 1955. Later, Polish–US physician Albert Sabin developed the vaccine more widely used today, which contains weakened polio virus.

COLOR TELEVISION The Sony Trinitron, introduced in 1968, was a descendant of the tubes first developed to show color pictures in the NTSC system. It was based on the same principle, but it had a much simpler

design and gave brighter, more stable pictures.

Color television

National Television Systems Committee

It was hard to make televisions show color without making existing blackand-white receivers useless.

Single

beam gun

Trinitron tube

The US National Television Systems Committee (NTSC) provided the solution in 1953. Their system splits pictures into brightness variations, which can be displayed on a normal black-and-white set, and color information, which color receivers use to add color to the picture. Later variants of NTSC that transmit colors more accurately are now in use.

Use of heart– lung machine

John Gibbon Jr.

eart surgery was once almost impossible because the heart is full of blood and constantly moving. The first person to drain a human heart so that he could work on it was US surgeon John Gibbon Jr. in 1953. He was able to do this because the job of the patient's heart had been temporarily taken over by a heart-lung machine. This continually pumped blood out of the body, recharged it with oxygen, and pumped it back. Modern versions are the result of decades of development by experimenters. Their use in heart surgery is now routine.

African Union, in an effort to crush the Mau Mau—armed members of the Kikuyu tribe rebelling against British rule. 1953 Nepalese Sherpa Tenzing Norgay and New Zealand mountaineer Edmund Hillary reach the top

of Mount Everest, on May 29. They are the first people who can prove they have climbed to the summit. Hillary is later knighted. INFORMATION & UNCERTAINTY

Structure of DNA

Francis Crick, James Watson, Rosalind Franklin

See pages 216–217 for the structure of DNA.

Breathalyzer

Robert Borkenstein

The difficulty in proving that a driver had been drinking led US policeman Robert Borkenstein to invent the Breathalyzer in 1954. Alcohol

> BREATHALYZER A police officer would fit a fresh sample tube into this 1979 Breathalyzer before asking a driver to blow into the bag.

US psychologist James Olds and physiologist Peter Milner found a part of the rat's brain that they could stimulate electrically to give a reward greater than any food. By wiring this "pleasure center" to a lever, they could get the rat to push it thousands of times an hour. The center is now thought to be involved in human behaviors such as drug addiction.

> Bag inflated to measure breath

Nuclear power station

Institute of Physics and Power Engineering

The first operational nuclear power station was built at Obninsk, near Moscow. It started working in June 1954. The station was designed by the USSR's Institute of Physics and Power Engineering, which started work on it in 1951. It was small and simple and had a power output of only 5 megawatts (MW), as compared with 1000 MW for a modern reactor, but it was still a triumph for the USSR.

Polypropylene

Karl Ziegler, Giulio Natta

In 1953, Italian chemist Karl Ziegler discovered a catalyst (a substance that speeds up a chemical reaction) that allowed polythene to be made from the gas ethylene more easily. In 1954, Italian chemist Giulio Natta discovered that Ziegler's catalyst also worked with the related gas propylene. The result was polypropylene, the tough, flexible plastic now used for everything from garbage cans to carpets. Commercial production began in 1957.

Atomic clock 1955

Louis Essen, Jack Parry

In 1955, working at the National Physical Laboratory with his colleague Jack Parry, British physicist Louis Essen made a clock that would gain or lose less than one second in 300 years. It worked by electrically sensing a natural vibration of cesium atoms.

1954 British medical student Roger (later Sir Roger) Bannister runs a mile in less than four minutes,

Turboprop

airliner

Vickers Armstrong Aircraft

"he turboprop led the way

L toward today's mass air

travel. Basically, a jet engine

higher speeds and a smoother

The first turboprop airliner was

driving a propeller, it gave

flight than a piston engine.

the British Vickers Viscount.

makers liked to boast that it

balance a coin on the arm of

It carried its first paying

passengers in 1953. The

was so smooth you could

your seat-on its edge.

in the bloodstream passes into the breath, so the more alcohol there is in a driver's blood, the more there will be in their breath. The Breathalyzer has a glass tube containing chemicals that change from orange to green as they react with alcohol. Drivers blow into a bag to give a measured quantity of breath. If the green goes too far along the tube, they are over the limit.

Pleasure center in the brain

James Olds, Peter Milner

Laboratory rats can be trained to work a lever in return for food. But in 1954,

breaking both a record and a psychological barrier. Bannister's time will be beaten seven weeks later by Australian John Landy.

Kidney transplant

Joseph Murray

ll early attempts to Atransplant organs failed. Scientists eventually realized that rejection was caused by the body's immune system. US surgeon Joseph Murray confirmed this when he tried to graft skin on to wounded soldiers. He noticed that the only successful grafts came from an identical twin. In 1954, he and several colleagues tried transplanting a kidney from one twin to another. The twin given the new kidney survived for years. In the 1960s, after drugs to suppress the immune system were developed, Murray made successful kidney transplants from unrelated donors.

1954 Japanese director Akira Kurosawa blends Japanese tradition with western technique in *The Seven* *Samurai*, perhaps the best-ever film about the Samurai, a powerful warrior caste. It wins silver at the Venice Film Festival.

1951 ONWARD

ATOMIC CLOCK This part of the first atomic clock created a beam of cesium atoms that could absorb radio waves of only one precise frequency. This effect was used to monitor the frequency of a separate quartz oscillator, keeping it very accurate.

Hovercraft

Christopher Cockerell

he hovercraft principle is most often seen in lawn mowers, but seagoing hovercraft vessels have been in use since 1959. The principle was patented by British engineer Christopher Cockerell in 1955. He arrived at it by blowing air from a vacuum cleaner through the space between two cans of slightly different sizes, mounted one inside the other. He found that this arrangement gave increased lift and eventually scaled it up to produce machines that could travel over both land and water.

HOVERCRAFT Cockerell's first working model, about 3 ft (1 m) long, was built in 1955. It worked well but needed a lot of power.

was a hundred times more accurate, and, in 1967, the unit of time itself was redefined in terms of atomic vibrations.

Oven

produced

a stream

atoms

Liquid

the

Vacuum pump

removed air

from the

chamber

air trap

improved

vacuum

of cesium

Synthetic diamonds

Percy Bridgman, General Électric Company

S physicist Percy Bridgman never made diamonds himself, but he did develop ways of subjecting materials to

incredibly high pressures—one of the conditions essential to the formation of diamond from carbon. In 1955, scientists at the US General Electric Company used Bridgman's techniques to make the first synthetic diamonds. Since 1960, industrial diamonds have been made in quantity by this process. These diamonds. which are a bit like grains of sand, are

Coils

field

canceled

the effect

of Earth's

magnetic

Rigid

supporting

column

used to add bite to cutting tools like saw blades and drill bits.

of the Flies. Schoolboys stranded on an island descend into savagery as they struggle to survive. It will be filmed in 1963 and 1990.

55 Rock 'n' roll gets its first wide airing as US band Bill Haley and the Comets shoot to the top of the

Exhaust outlet

for engine

charts with Rock Around the Clock. Its blues-based harmony and strong backbeat enrage the old and enchant the young.

Within two years, Essen's clock

British writer

William (later Sir William) Golding publishes his first and best-known novel, Lord

215

Smooth skin

reduced drag

THE SECRET OF LIFE

Francis Crick and James Watson race to find the chemical structure of DNA

CRICK AND WATSON World War II interrupted Francis Crick's studies, so he was still working on an advanced degree when biologist James Watson arrived at the Cavendish. Crick's official work was soon put aside as he took up the challenge of DNA.

Original

laboratory model of DNA

Francis Crick

In February 1953, two men rushed into the Eagle, a pub in Cambridge, England. The English one, Francis Crick, said that they had found the secret of life. The American, James Watson, wondered if they really had.

The race to find the structure of DNA began in 1944, when US immunologist Oswald Avery showed that bacteria inherited their characteristics through DNA. This has four key components—A, T, G, and C for short. In

James Watson key components—A, T, G, and C for short. In
 1949, Austrian biochemist Erwin Chargaff noticed that the amount of A is
 always the same as the amount of T, and likewise for G and C.
 This was all that was known about DNA when biologist James Watson
 arrived at Cambridge's Cavendish Laboratory in 1951. The Cavendish
 specialized in X-ray analysis of molecular structures, and physicist Francis
 Crick was an expert there. Watson was convinced that unraveling DNA

MAKING CHEMISTRY VISIBLE The ways that atoms fit with each other follow known rules. Before computers, it was hard to see the effect of these rules without building a physical model. This double helix was assembled by James Watson using metal plates shaped to represent the chemical groups he knew were present in DNA.

would be the breakthrough of the century. He needed Crick's help because in the US, the great chemist Linus Pauling was already hot on the trail.

At King's College London, UK, physicist Maurice Wilkins was working on DNA, and his assistant Rosalind Franklin had managed the difficult task of producing clear X-ray images suggesting its structure. Crick and Watson got hold of Franklin's images and used them to help build models. Their first attempt was obviously wrong and Franklin told them to think again. All the time, Pauling was breathing down their necks. Crick and Watson eventually saw a draft diagram of his proposed structure, but they knew that it too was wrong.

Watson studied Franklin's latest X-ray picture and became convinced that a DNA molecule was spiral, or helical, in shape. He wondered whether it could be a double helix, rather than the triple helix they had considered, because important biological objects come in pairs. Then Franklin suggested that DNA's "backbone"

ROSALIND FRANKLIN Using X-rays alone, Rosalind Franklin nearly found the structure of DNA. Her work was vital to Crick and Watson. She died in 1958, four years before they and Wilkins got their Nobel Prize.

was on the outside. Suddenly, Watson saw that T fit with A, and C with G, like rungs between

the uprights of a twisted ladder. It explained Chargaff's observation and, more importantly, how DNA was copied. He told Crick, and that was when they rushed to the Eagle.

Watson and Crick were worried in case they were mistaken, so they raced to build an accurate model. There was nothing wrong with it. It was definitely the structure of DNA. Later, even Pauling was delighted to agree that Crick and Watson had indeed found the secret of life.

COPYING MACHINE

Life continues through the ages because DNA, with the help of several enzymes, can reproduce itself. As the molecule untwists and splits down the middle, a new T bonds to each A, and a new C to each G, forming two identical copies.

Guanine

PAIRING OFF

In DNA, atoms forming a type of sugar are linked by groups containing phosphorus. Between these, hydrogen atoms link thymine (T) to adenine (A), and cytosine (C) to guanine (G). This model is diagrammatic only.

VIDEO RECORDER Video cameras of the early 1970s needed a heavy box like this to make the actual recording on a reel of wide tape.

> horizontally at low speed while a rotating head scanned it vertically at high speed, effectively folding up a long, fast tape into a short, slow one. Domestic video recorders, such as VHS, use a related principle.

Velcro

George de Mestral

I from the French for velvet

(velours) and hook (crochet). It

is actually two materials: one

other in tiny loops. Placed in

covered in tiny hooks, the

contact, the hooks catch

in the loops and the

to fasten clothes

and much else.

Swiss inventor

Mestral got the

idea in 1941 by

noticing plant

burrs clinging

to his dog. It

took 15 years of research to copy

the burrs' hooked surface in a fabric.

Artificial satellite

Valentin Glushko,

Sergey Korolyov

he first artificial Earth

launched on October 4, 1957.

It weighed only 184 lb (84 kg)

▲ satellite was Sputnik I,

and went only 584 miles

(942 km) into space but

George de

surfaces cling together

he name Velcro comes

1956

Parity

violation

Chien-Shiung Wu

T n physics, parity is the L concept that an object and its mirror image act exactly the same, but with left and right reversed. By 1956, it had been shown that this theory held true for the electromagnetic and strong nuclear forces. but to the astonishment of physicists, Wu established that it was not true of the weak nuclear force. This parity violation, as it is known, means that the mirror world is somehow different. Her male collaborators in the experiment received the 1957 Nobel Prize in Physics, but Wu received only a separate mention.

Video recorder 1956

Charles Ginsburg, Ray Dolby

Television signals contain much higher frequencies than those recorded on audio tape (* see page 169). Capturing them by running the tape faster is not practical. The problem was solved by US engineers Charles Ginsburg and Ray Dolby in 1956. They used a wide tape running

1956 Soviet writer Boris Pasternak's only novel, *Dr Zhivago*, is published in the West. Because it describes an individual's struggle for identity within the USSR, it is considered subversive and not published there until 1987. proved that the USSR was well ahead in space technology. The engineers responsible, Valentin Glushko and Sergey Korolyov, received many honors. The US responded by creating the National Aeronautics and Space Administration (NASA) in July 1958. The space race was on.

Chemical mechanism of nerves

John Eccles, Alan Hodgkin, Andrew Huxley

N ineteenth-century scientists knew that nerves worked electrically. By 1957, the exact mechanism had been unraveled by Australian physiologist John Eccles and British physiologists Alan Hodgkin and Andrew Huxley (all later knighted). They found that an excited nerve releases a substance that opens pores in the outer membrane of the next nerve cell. Sodium ions then flow in, making the cell electrically positive and also making more pores open. The process continues, causing an electrical wave to travel down the nerve.

Rotary internal combustion engine

Felix Wankel

Car engines go around and around, but their pistons go up and down. German engineer Felix Wankel thought this was bad. By 1957, he had built and tested an engine without pistons. The Wankel engine has a rotor that spins inside a fixed chamber to carry out the various stages of combustion. Although it has

Engine is mounted in the rear compartment

ROTARY INTERNAL COMBUSTION ENGINE The first production car with a Wankel engine was the German NSU Spider, a sports car launched in 1963. It won the German GT Rally Championship in 1966 and all classes of the German Hill Climb Championship in 1967.

1956 Egyptian president Gamal Abdel-Nasser nationalizes the Suez Canal. France and Britain, fearing he Car body is basically the Bertone-styled Sportprinz

will close it to vital oil shipments, launch an invasion of the area, with Israel as an ally, but pull out under international pressure.

218

1951 onward

been used in cars, it has proved difficult to maintain a gas-tight seal between rotor and chamber. So the piston engine, in spite of needing more parts than the Wankel, still rules the road.

FORTRAN

John Backus

E arly computer programmers had to write thousands of virtually unreadable coded instructions to make their machines work. US researcher John Backus changed this with the first successful high-level programming language, which could translate English-like statements into machine code. FORTRAN, released by IBM in 1957, produced results nearly as good as those achieved by hand coding, but in a fraction of the time.

Penrose triangle

Lionel Penrose, Roger Penrose

Many drawings by the Dutch artist M. C. Escher show "impossible worlds" that include baffling tricks of perspective. Inspired by these, British geneticist Lionel Penrose and his physicist son Roger invented the Penrose triangle in 1958. It looks like a triangle until you realize that it contains three right-angle joints so could not be made. Escher was in turn inspired by the Penroses' work to draw some more impossible worlds.

In reality, the sides of the triangle do not meet

The impossible looks possible from this angle

PENROSE TRIANGLE A real Penrose triangle is impossible, but this object looks like one when viewed from the correct angle. Liquid Paper®

Bette Nesmith Graham

Before PCs and laptops, people used electric typewriters. They worked well, apart from the fact that any mistakes were hard to erase. Bette Nesmith Graham, an American typist and bank secretary, hit on the idea of

covering up errors with quick-drying white paint. She invented this "correction fluid" and, after making some improvements, put it on the market as Mistake Out, later changing its name to Liquid Paper®. She eventually sold her company for more than \$45 million.

Superglue 1958

Harry Coover, Fred Joyner

Superglue bonds surfaces carrying any trace of water. The water triggers

> a reaction that turns the liquid glue into strong plastic. The chemical involvedcyanoacrylatewas discovered in 1942, but it was 1951 before US researchers Harry Coover and Fred Joyner realized its potential. Superglue

became a product in 1958, and Coover demonstrated it on television by using just one drop to lift the show's host right off the floor. Many careless people have since confirmed how well it sticks to skin.

Flap conceals the gas cap

1957 The Treaty of Rome creates the European Economic Community, joining the economies of six European

SPIDER

countries. The EEC establishes a common trade policy and makes it cheaper and easier for member nations to trade with each other.

1958 The US establishes government agency responsible for the exploration of space, the

Radiator

and fan at the front

> National Aeronautics and Space Administration (NASA). The first seven astronauts will be chosen the next year.

SEMICONDUCTOR INTEGRATED CIRCUIT This early chip is shown without its normal protective package.

Van Allen radiation belts

Laser concept 1958

Charles Townes, Arthur Schawlow

"he laser started out in 1953 L as a type of amplifier for microwaves called a maser (from Microwave Amplification by Stimulated Emission of Radiation). One of its inventors, US physicist Charles Townes, and another US physicist, Arthur Schawlow, later showed that the same principle could apply to light. Changing the initial M to L for light gave the name laser. Most lasers are, however, used not as light amplifiers but as light sources with very special properties. (* See also Masers and Lasers.)

1958 Godtfred

Christiansen

Lego

ego bricks existed in _1949 but were reinvented in their modern form in 1958 by Godtfred Christiansen. He was the son of a Danish carpenter, Ole Christiansen, who, in 1932, founded a company making wooden products, including toys. By 1934, the toys were taking over, and the company was renamed Lego, from the Danish "led godt" meaning "play well." Godtfred, who joined the company when only 12, was also the force behind the creation of Legoland.

1959 Twelve nations sign the Antarctic Treaty. Its goal is to keep the world's last wilderness free of military

Semiconductor integrated circuit

Jack Kilby, Robert Noyce

Modern electronic devices, such as laptop computers, pack a lot into a small space. They do this with integrated circuits—silicon chips containing thousands or millions of transistors and other components connected to form a complex circuit. The first of these, made in 1958 by US engineer Jack Kilby, contained only a few components but demonstrated the principle. The following year, another US engineer, Robert Noyce, invented a better way of making integrated circuits. He used a film of metal to connect up transistors buried beneath the surface of a silicon chip. With many improvements, this process is still used today.

Silicon chip

1900

James Van Allen

arth is surrounded by electrically charged particles that come from the sun and are captured by Earth's magnetic field. They gather in two doughnut-shaped belts around the equator. The inside of the inner belt is about 600 miles (1,000 km) above Earth's equator, while the outside of the outer belt is about 15,000 miles (25,000 km) up. These dangerous regions are called the Van Allen belts, after US physicist James Van Allen, who discovered them in 1958 by studying cosmic-ray data gathered by equipment on board the Explorer 1 satellite.

Shape of brick

LEGO Massive, accurate molds like these are needed to make bricks that will always snap together.

operations, including nuclear weapons, and make it somewhere science can flourish in a spirit of international cooperation. 1959 Through two separate Hawaii become the 49th and 50th states of the USA. President Eisenhower declares Alaska a state in January, and dissolves the territory of Hawaii in August to create the newest state.

MASERS AND LASERS

WHEN ATOMS OR MOLECULES absorb energy, they become "excited." If they are then struck by radiation of a suitable frequency, they release their energy as a wave exactly in step with that radiation. This "stimulated emission" was predicted by Albert Einstein

in 1917. In a laser, the new radiation strikes other excited atoms, which then emit further light. This chain reaction produces high-intensity radiation with all the waves in step with each other.

Lasers in machines like this cut metal without distorting it.

This enlarged view of the music layer of an audio CD shows fine depressions that a laser can read.

LASER LIGHT

LUMONICS

Laser light is pure—that is, it consists of waves of a single frequency, all in step. This makes it useful where a light bulb's uneven waves of many frequencies would not do. It can be very intense, allowing industrial lasers to cut through metal, and can also be formed into a much narrower beam than ordinary light.

LASERS IN ACTION

Lasers are ideal for measurement. Their narrow beam is used in surveying to bounce off distant reflectors and give pinpoint positioning. Tiny, low-powered infrared lasers detect the microscopic messages written on CDs. Lasers are essential for making holograms (** *see* **page 210**) as well as great for putting on light shows.

Float glass

Alastair Pilkington

N early all window glass is made by the float glass process. A ribbon of molten glass is poured on to the mirrorlike surface of a pool of molten tin. The tin smooths the underside of the glass while flames play on the top to smooth this. Alastair Pilkington of British glass company Pilkington thought up the idea in 1952. After seven years' development, it was ready to use.

Seat belt

Nils Bohlin

When a car stops suddenly, as in a crash, Newton's first law (***** see **page 96**) says that its occupants will carry on at their original speed. This means that they will hit the inside of the now stationary car and be injured. The way to prevent this is to anchor them to the car so that they stop when it stops. Various seat belts were tried before Swedish engineer Nils Bohlin came up with today's lap-and-diagonal design. His belts were first used in a 1959 Volvo.

Cause of Down syndrome

Jérôme Lejeune

Human cells usually have 46 chromosomes containing their genes. But in 1959, French geneticist Jérôme Lejeune showed that the cells of people with Down syndrome, a condition that can cause learning difficulties and medical problems, have an extra copy

1960 One of the U-2 spy planes regularly flown over Soviet territory by the US is shot down. Pilot Gary of one particular chromosome, known as chromosome 21, making 47 in all. As a result of later work, babies can now be checked for this and other gene problems before they are born.

Bubblewrap

Alfred Fielding, Marc Chavannes

Bubblewrap consists of two layers of soft plastic with rows of air bubbles trapped between them. Used to pack delicate articles, it is cleaner and more effective than materials like shredded paper. It appeared in its earliest form, AirCap cellular cushioning, in 1960. Its US inventors, Alfred Fielding and Marc Chavannes, were originally trying to make textured wall coverings but soon realized that packaging offered a bigger market.

1960 In Sharpeville, South Africa, a crowd gathers in protest against laws that restrict the movement of black Africans. Police open fire; 67 people are killed. A state of emergency is declared, and black political groups are outlawed.

Communications satellite 1960

John Pierce

ommunications satellites are radio relay stations in space. They enable signals to reach places far away from the transmitter. In 1960, to convince people that this would work, US engineer John Pierce made use of the experimental satellite Echo 1. This giant aluminum-coated balloon made a good radio reflector, and Pierce showed that signals could be bounced off it over long distances. His work led to the launch of Telstar, the first satellite to relay television, in 1962.

Artificial neural network

Frank Rosenblatt

A n artificial neural network (ANN) is a lot of electronic "nerve cells" joined together. It processes information in a similar way to the brain. Electronic models of natural nerve cells were developed in the 1940s by US researchers Warren McCulloch and Walter Pitts to help them understand how the brain worked. Another US scientist, Frank Rosenblatt, put these cells together to form the first ANN, a patternrecognizing network called the Perceptron, He demonstrated it in 1960. ANNs are used in deep learning—training computers on real-world data, for use in tasks such as speech recognition.

SI units

11th General Conference on Weights and Measures

Science and technology mead consistent units of measurement for things like length, mass, force, and electric current. The Système International d'Unités, or SI, provides such units. Adopted in 1960, SI cleaned up an older system called MKS (meter– kilogram–second) by defining six basic units (plus a seventh added in 1971) and deriving all the others from them. It also standardized the prefixes, such as kilo (a thousand) that are used to express measurements.

> Lamp lies next to the ruby rod when the unit is closed

Closed laser unit

RUBY LASER Flash tubes pumped

energy into the pale pink ruby rod of this 1960 laser. The inside of the casing

wasted. The ends of the rod had to be

precisely parallel to get laser action.

was silvered to prevent energy from being

Quasar 1960

Allan Sandage, Maarten Schmidt

uasars are starlike objects. They are found in some parts of the sky that also give out strong radio waves. US astronomer Allan Sandage found the first in 1960. Its spectrum was puzzling. In 1963. Dutch-born US astronomer Maarten Schmidt suggested that it was a normal spectrum shifted sideways by a huge amount. According to astronomical theory, this showed that the quasar was billions of light-years away and therefore must be fantastically bright. Further observations indicated that quasars are also quite small, suggesting that they are active black holes (* see page 184).

Ruby laser 1960

Theodore Maiman

A year after it was shown that lasers were possible (* see page 220), US physicist Theodore Maiman made one. He used a rod of synthetic ruby with silver-coated ends, surrounded by flash tubes. Light from the tubes excited atoms in the rod, making them give out light. Trapped between the reflecting ends, this stimulated further atoms, creating the first pulses of laser light.

Disposable diaper

Vic Mills

From the mid-1940s onward, many attempts were made to invent a disposable diaper.

ful weaker, pro-Western government of South Vietnam, the US sends military advisors and weapons and the Vietnam War begins.

1961 The Communist East Germany stems the flow of illegal emigrants by building a wall across Berlin to

prevent them from getting into West Germany. Temporary at first, it soon becomes 29 miles (47 km) of solid concrete.

Synthetic ruby rod

> Synthetic / ruby rod

Mirrorlike surface ensures that the ruby is bombarded with as much light as possible /

1960 In an unsuccessful effort to prevent communist North Vietnam from invading and taking over the None were really successful until US engineer Vic Mills, fed up with the cloth diapers worn by his granddaughter, put the US company Procter & Gamble to work on the problem. After several years of tests, Pampers were launched in 1961.

Shape memory alloys

William Buehler, David Muzzey

7hen strongly heated and then cooled, shape memory alloys (SMAs) "remember" the shape they had when hot. However much they are bent while cold, heating them restores their original shape. They are useful for making, among other things, sleeves to join metal tubes and valves to control the rate of fluid flow. The first SMA was made from nickel and titanium by US researcher William Buehler. Another US scientist David Muzzev discovered its properties in 1961, supposedly by heating a bent metal strip with his lighter.

Industrial robot

George Devol, Joseph Engelburger

Industrial robots are jointed arms controlled by computer. They can do complex jobs, such as welding and painting cars. They are also good at tedious jobs like unloading finished parts from a machine. The first working robot did this. It was developed by US engineer George Devol and installed in 1961. With businessman Joseph Engelburger, Devol went on to found the first industrial robotics company. (* See also Willing Servants.)

WILLING SERVANTS

THE WORD "ROBOT" comes from the Czech word for forced labor. It first appeared in 1920, in the play *R.U.R.* by Karel Čapek, but people have been making machines that imitate life for centuries. By the 18th century, clockwork dolls were serving tea in Japan, while French inventor Jacques de Vaucanson had made a realistic mechanical duck. But a self-sufficient, intelligent robot remains the stuff of science fiction.

A robot arm spot-welding the suspension unit of a car. Robots are ideal for dangerous, repetitive jobs like this.

FOLLOWING THE RULES

Most modern robots have little intelligence or awareness of their surroundings. They have to be programmed in great detail to tell them what to do. Some robot arms can learn what movements to make by recording the actions of a human operator. They then simply repeat them.

BREAKING FREE

More advanced robots have less need of humans. With sensors to detect obstacles, they can move around freely, while a computer gives them enough intelligence to do complex tasks like cleaning, cooperating with other robots, or even exploring Mars.

1961 US writer J. Heller in *Catch-22*. To be grounded, airman Yossarian has to be crazy, and he must be crazy to be flying, but if he asks to be grounded, he can't be crazy any more, so he has to keep flying. Catch 22!

1961 On May 5, Alan first American in space. The Mercury 3 mission is the first mission to study the physiological changes of the pilot in space flight. Shepard flies in suborbital space for a little over 15 minutes.

Space flight

Yuri Gagarin

The first person to fly through space was Yuri Gagarin, a major in the USSR's air force. He went into orbit around Earth in the spacecraft Vostok 1 on April 12, 1961. Gagarin's flight lasted for 1 hour, 48 minutes. He reached a speed of 17,000 mph (27,400 km/h) and a height of 203 miles (327 km). Gagarin was an international hero on his return. Sadly, he was killed seven years later, while he was testing a new plane.

Hip replacement

John Charnley

s people grow older, Atheir hips can wear out. The first successful hip replacements were largely the work of British surgeon John (later Sir John) Charnley in 1962. He inserted a metal ball into the top of a patient's thigh bone with a new kind of cement and matched this with a cup made of tough polythene attached to the pelvis. With improvements, this became the method now used for millions of people every year.

HIP REPLACEMENT Many designs of artificial hip have been tried since Charnley's work in the 1960s. This "Exeter" joint, made in 1985, uses stainless steel for its metal part.

1962 War threatens as presidents Kennedy of the US and Khrushchev of the USSR stage a standoff over the SPACE FLIGHT This poster was produced in 1973 to commemorate Russian cosmonaut Yuri Gagarin's space flight. It reads, "Cosmonaut Day USSR 12 IV 1961."

ДЕНЬ КОСМОНАВТИКИ

Resealable plastic bag

Steven Ausnit, Kakuji Naito

Plastic bags with little toothless zippers built in were conceived by Danish inventor Borgda Madsen in the 1940s. Romanian engineer Steven Ausnit, working in the US, produced the first practical versions of these about 10 years

installation of Soviet nuclear missiles in Cuba. After a tense few days, Khrushchev backs down and the missiles go home. later. His zippers were formed separately and then welded onto the bags. In 1962, Japanese inventor Kakuji Naito created even better bags by forming bag and zipper from the same piece of plastic.

Carbon fiber

Leslie Phillips

Fibers of carbon, made by stretching synthetic fiber then toasting it to blackness, are twice as stiff as the same weight of steel. Plastics reinforced with them are both stiff and light, making them ideal for critical structures in

1962 After thousands of babies are born with abnormally short arms and legs, the sedative drug thalidomide,

advanced aircraft and for high-performance sports equipment. Carbon fiber technology was pioneered in 1963 by British engineer Leslie Phillips at the Royal Aircraft Establishment. It is now used throughout the aircraft industry.

Push-button phone 1963

AT&T

hones with buttons began to replace phones with dials in 1963, when US phone company AT&T introduced its Touch-Tone system. Dial phones work by disconnecting the phone line once for 1, twice for 2, and so on. Push-button phones send musical tones down the line. There are four tones for the four rows of buttons, and three for the three columns. Pressing a button sends out the pair of tones corresponding to its row and column.

Polaroid color photograph

1963

Edwin Land

Polacolor film, launched in 1963, has three layers, each sensitive to light of one color red, green, or blue. Each layer contains a dye that absorbs just the light to which the layer is sensitive. The blue-sensitive layer, for example, contains yellow dye, which absorbs only blue light. Pulling the film out of the camera activates it and squeezes it into contact with a white print sheet. As the layers

introduced in 1958, is finally withdrawn. Doctors had traced the malformations to mothers taking the drug while pregnant.

1951 ONWARD

develop, their dyes are trapped in proportion to the exposure received, and the remaining dye moves into the print. Where the subject absorbs blue, for example, the blue layer receives less exposure, so more of its yellow dye reaches the final print, making it, too, absorb blue. The process takes just 60 seconds. MINISKIRT Ultra-short skirts and dresses were a symbol of the social upheaval of the 1960s. In Britain, they even created problems for the tax man, because their length allowed them to be classified as children's clothes, which were tax-free.

POLAROID COLOR PHOTOGRAPH In 1975, Polaroid launched a new camera, the Color Swinger. It was designed to encourage use of a new and improved Polacolor film introduced the same year.

Electronic music synthesizer

Robert Moog

Several people had already electronic music before US inventor Robert Moog invented the Moog synthesizer in 1964. Unlike most of its earlier, less successful rivals, it could be played from a normal keyboard. It produced each of its different sounds by starting with a note that was rich in harmonics—multiples of the note's basic frequency—and

1963 On November 22, US president John F. Kennedy is assassinated as he travels in an open car through passing it through filters that reduced the loudness of each harmonic by a different amount. This is known as subtractive synthesis. The Moog could also vary the way in which sounds started, continued, and stopped, giving effects that varied from plucked strings to organ notes.

Miniskirt

André Courrèges

Miniskirts, shorter than any that women had worn before, first appeared in the collection of French fashion

Dallas, Texas. The alleged killer, Lee Harvey Oswald, is himself killed by a nightclub owner before he can be tried. designer André Courrèges, who showed them in Paris in 1964. His models wore them with boots. By December 1965, the fashion had reached Britain, where London designer Mary Quant offered skirts that stopped more than 6 in (15 cm) short of the knee.

1963 Comic art meets the US artist Roy Lichtenstein paints Whaam! a 13 ft (4 m) wide

Quarks

Murray Gell-Mann

n the early 1960s, nuclear L physicists observed more and more new subatomic particles. It seemed that even protons and neutrons were made up of particles, which could combine in previously unseen ways. In 1964, US physicist Murray Gell-Mann, building on earlier work with Israeli physicist Yuval Ne'eman, proposed a set of truly basic particles that explained the new observations. He called them quarks. He and other scientists then developed an elaborate, and now accepted, theory of how they work.

Electronic telephone exchange

AT&T

ld-fashioned automatic telephone exchanges (* see page 161) were built from unreliable electromechanical switches in which electromagnets moved mechanical contacts. They were replaced in the 1960s by so-called "electronic" exchanges. Calls were actually switched by a new type of electromechanical switch, because purely electronic switching proved difficult to combine with the existing network. The first such exchange was the ESS No. 1. Developed by the US company AT&T, it went into service in 1965.

blowup of a comic strip frame. His careful rendering of the comic's crude printing helps start the Pop Art movement. INFORMATION & UNCERTAINTY

Computer mouse

Doug Engelbart

S engineer Doug Engelbart was leader of the Human Factors Research Center of the Stanford Research Institute in California. The computer mouse was one of several similar devices his team tried out in the 1960s. It was the clear winner. Despite its ease of use and friendly nickname, it was nearly 20 years before the mouse was introduced to the public with the launch of the Macintosh computer in 1984.

Minicomputer

Kenneth Olsen

In the 1960s, computers were huge—and cost at least \$1,000,000 apiece. US engineer Kenneth Olsen thought that smaller might be better. In 1965, he produced the PDP-8, one of the first computers to

MÁRIA TELKES The inventor of the portable solar still, shown here in her lab at MIT, Massachusetts, spent much of her career working on solar energy.

1965 US artist Andy Warhol achieves fame with his painting of a can of Campbell's tomato soup. By Cable attaches to the computer

Transparent plastic Shape suits matches / left- or righthanded users problem in 1968 with a lightweight device that uses sunshine to convert seawater into drinking water. The seawater goes into a shallow black bag with porous walls. Sunlight heats the bag, making pure water evaporate and collect in a separate chamber. This idea has saved many lives.

Pull tab can

Ermal Fraze

he first canned drinks had to be opened with a separate opener. If this got left behind on a picnic, everyone went thirsty. So, in 1965, US engineer Ermal Fraze patented a new kind of can with a pull tab on the top. Pulling the ring peeled off a metal tab to open the can. Sharp-edged can tabs became a menace on streets and beaches, but in 1976, US engineer Daniel Cudzik saved the pull tab by inventing the stay-on type used today.

Dolby noise reduction system

Ray Dolby

Tape recordings were plagued by background hiss until US engineer Ray Dolby invented his noise reduction system. It works by boosting quiet, high-frequency sounds during recording. On playback, these sounds are reduced to their original volume. Since the hiss is a high-frequency sound, it gets reduced, too. Dolby delivered his first batch of noise reduction units to the Decca Record Company in 1966.

Jump jet

1966

Hawker Siddeley Aviation

Most aircraft get lift from wings or rotors, but jump jets get off the ground by directing the thrust of their jet

COMPUTER MOUSE The Apple Pro Mouse, introduced in 2001, uses optical tracking rather than the rolling ball of the conventional mouse. It also does away with a separate mouse button: users click by pushing its whole body.

use integrated circuits (***** *see* **page 220**). It was small (about the size of a two-drawer filing cabinet), powerful, and cost an affordable \$18,000.

Designed mainly for laboratory use, it was an instant success with scientists and engineers around the world.

Solar still

Mária Telkes

For someone adrift in a lifeboat, a big worry is getting enough water to drink. Mária Telkes solved this

choosing such an everyday object, he states that painters have no exclusive claim to call their work art. JUMP JET The Harrier GR1 showed its capabilities at Britain's Farnborough air display in 1968, and in a transatlantic air race. Powered by a Bristol (later Rolls-

engine, it entered service with

Royce) Pegasus Mk 101

the Royal Air Force

in 1969.

Cockpit holds single pilot

Air for engine is sucked in here

1966 On St. Valentine's Day, Australian currency goes decimal. The nation rejects the British Pound

and its proposed replacement, the Royal, and opts for the Dollar. The switch goes smoothly and is completed in 1967. engines downward, giving them the versatility of a helicopter with the speed of a jet. Once the plane is airborne, the thrust is directed backward for forward flight. The first operational "vectored thrust" aircraft was the Harrier, made in Britain by Hawker Siddeley Aviation. Based on the earlier. experimental Kestrel fighter, it jetted off the ground in August 1966. Needing no runway, it could be used to fly in and out of combat areas to support troops. The Harrier is now used by several air forces.

Heart transplant

Christiaan Barnard

"he world's first heart ⊥ transplant was carried out by South African surgeon Christiaan Barnard in 1967. The patient survived for only 18 days, but he would have died anyway if he hadn't had the operation. During the following year, more than 100 heart transplants were attempted by Barnard and other surgeons around the world. Results continued to be poor at first, but new techniques and better drugs to prevent rejection have made transplants more successful.

Pulsar

Jocelyn Bell, Antony Hewish

T n 1967, in Cambridge, LEngland, a young astronomer, Jocelyn Bell, found a new kind of radio source that emitted short, closely spaced pulses. She and fellow astronomer Antony Hewish later realized that it was the spinning remnant of a supernova (* see page 82) sending out a rotating beam of radiation, like the lamp on a police car. Whenever the beam hit Earth, it created a pulse. Since then, more than 300 pulsars have been discovered.

Dark matter

Vera Rubin

merican astronomer Vera ARubin found that some galaxies rotate so quickly that the gravity of their stars is not enough to hold them together. Because they do not fly apart,

VERA RUBIN Using a powerful spectroscope, Rubin measures frequencies of light waves at the Carnegie Institution for Science,

there must be some extra mass that we cannot see keeping them intact. This necessary but invisible mass, greeted at first with skepticism, is now known as dark matter. It has changed our view of the universe.

Graphical user interface

Doug Englebart, Alan Kay

omputer screens with a graphical user interfacewindows, icons, and menusseem normal now. But when US engineer Doug Engelbart and his team showed the beginnings of such a system, the "electronic office," at the National Computer Conference in San Francisco in 1968, the audience were stunned. Among them was graduate student Alan Kay, who later developed the idea of the computer screen as a virtual desktop, complete with icons.

1951 ONWARD

Movable nozzles direct thrust downward for takeoff

1968 Black US civil rights leader Martin Luther King Jr. visits Memphis, Tennessee, in support of a strike by sanitation

workers. While standing on his motel balcony, he is killed by a sniper. The gunman, James Earl Ray, gets 99 years in prison.

68 In May, increasingly rebellious French students bring turmoil to the streets of Paris with political

protests and riots. The same year sees demonstrations worldwide against US involvement in the Vietnam Wsar.

Main undercarriage with wheels for landing

Pylons for attachment of weapons

Outrigger wheels stabilize aircraft on the ground

Information & Uncertainty

Newman Darby, Jim Drake, Hoyle Schweitzer

Windsurfers get closer to the waves than do most other sailors. The idea started with US enthusiast Newman Darby, but the first people to get a patent were two Californian surfers, Jim Drake and Hoyle Schweitzer. Their 1968 Windsurfer was 12 ft (3.5 m) long and weighed 60 lb (27 kg). Modern boards are shorter and lighter, typically weighing only 26 lb (12 kg).

Video home security system 1969

Marie Van Brittan Brown, Albert Brown

A frican American nurse Marie Van Brittan Brown and her electrician husband, Albert, invented the first home security system that used television. A camera at the front door of the house enabled the occupant to see visitors before opening it with a remotely operated lock. The system also allowed audio communication.

Structure of insulin

Fred Sanger, Dorothy Hodgkin

Insulin (* see page 186) is a hormone that is essential to health. The sequence of its 51 amino acids was determined by British biochemist Fred Sanger

MILITARY USES Strong and light, Kevlar® is used to make military-grade protective gear.

1969 In September, Arab nationalist Captain Muammar al-Qaddafi seizes control of the government of in 1955, but the way its atoms are arranged in space—useful information for people trying to make a synthetic version was finally figured out in 1969 by British crystallographer Dorothy Hodgkin. She analyzed the structure of insulin crystals with X-rays, a technique pioneered by physicist Lawrence (later Sir Lawrence) Bragg in the early 20th century.

Floppy disk

IBM

Floppy disks were originally 8 in (20 cm) across and held only 100 kilobytes of data. IBM engineers used them from about 1970 onward to update programs on mainframe computers. By 1973, IBM had a disk drive that could accept input from users, but the disks were just as big. Small, 3.5 in (9 cm) floppy disks were introduced by the Sony Corporation in 1980. Today, disks are largely obsolete as new media, such as online sharing and storage, have taken over.

Microprocessor 1971

Ted Hoff

The microprocessor, which made personal computers possible, was invented by accident. In 1969, Japanese calculator makers Busicom asked US microchip company Intel to develop a new scientific calculator chip. Engineer Ted Hoff at Intel thought it would be much easier to design a programmable chip than to build in all the required functions. When Busicom went bust in 1970. Intel bought back the rights to the chip and, in 1971, launched it as "a microprogrammable computer on a chip," the Intel 4004. Although very slow by modern standards, it was the first in a series of devices that led to today's powerful microprocessors.

Microchip

MICROPROCESSOR Two Intel 8008 processors, successors to the original 4004, are seen with their top covers removed to reveal the chip inside.

Kevlar®

Stephanie Kwolek, Herbert Blades, Paul Morgan

Kevlar® is a plastic that, weight for weight, is five times as strong as steel. It was developed in the US by chemists Stephanie Kwolek, Herbert Blades, and Paul Morgan. Chemically, it is related to nylon, but the addition of an extra chemical group adds strength and stiffness. This makes it suitable for demanding applications such as radial tires and bulletproof vests. Kevlar® is also used in fiber-reinforced panels for aircraft and boats and in golf clubs and flameproof clothing. It can even stand the heat in brakes, replacing asbestos.

Libya in a military coup that deposes King Idris. Al-Qaddafi later allegedly supports international terrorist groups. $\frac{1972}{1972} \stackrel{China and the US}{_{creep toward a better}} \\ relationship when Chinese \\ premier Zhou Enlai and US$

president Richard Nixon sign the Shanghai Communiqué in March. Formal diplomatic relations will start in 1979.

<image><image><page-footer>

Image converter for space

George R. Carruthers

I mage converters can make ultraviolet images visible. They usually have a tube containing electrodes in a vacuum, with a glass window to let light in. African American engineer George R. Carruthers realized that in space you don't need the window—the tube can be open, as space provides the vacuum. This admits more light, increasing efficiency.

Video game

Nolan Bushnell

The first successful video game, Pong, was designed by US computer enthusiast

VIDEO GAME Toshihiro Nishikado's classic game Space Invaders was written in 1978 and is still played.

Nolan Bushnell in 1972. Although extremely simple just two on-screen paddles that flipped a ball back and forth it fascinated customers in bars and pubs, who had never seen anything like it before. The prototype, installed in Andy Capp's Tavern in Sunnyvale, California, quickly broke down as its makeshift coinbox filled up and jammed. Later adapted into a phone app, Pong can still be played today. **CAT** SCAN A doctor consults X-ray images of a brain, taken using a CAT scanner, to inform her diagnosis.

CAT scanner

Godfrey Hounsfield, Allan Cormack

ormal X-ray pictures are taken from just one angle. By taking them from several angles, and doing some calculations, much more can be revealed. British engineer Godfrey (later Sir Godfrey) Hounsfield and US physicist Allan Cormack worked independently on this idea. Cormack developed much of the math, while Hounsfield built the first practical machine. His computerized axial tomography (CAT) scanner used X-rays and a computer to produce images of successive

slices across the long axis of the body. ("Tomography" comes from the Greek "*tomos*" a "slice".) When the scanner was tested in 1972, it gave doctors their first three-dimensional glimpse inside a living human body.

Pocket calculator

Jack Kilby, Jerry Merryman, James van Tassel, Clive Sinclair

The earliest "pocket" calculator, the Canon Pocketronic, weighed 880 g (31 oz). Released in 1970, it was based on work by US engineers Jack Kilby, Jerry Merryman, and James Van Tassel at Texas Instruments. British inventor Clive (later Sir Clive) Sinclair developed his pocket calculator later, and

1972 The nuclear arms race slows down as the first series of Strategic Arms Limitation Talks (SALT 1) benefited from advances in technology. His Executive calculator, launched in 1972, was only 0.4 in (1 cm) thick.

Genetic engineering 1972

Stanley Cohen, Herbert Boyer

A n organism's genes are carried in its DNA. In 1969, US biochemists discovered how to snip DNA into smaller pieces. Then, in 1972, US biochemists Stanley Cohen and Herbert Boyer began work on altering organisms by cutting up the DNA of one organism and inserting genes from another. This is called genetic engineering. It has produced useful new bacteria and plants, but some people worry about its long-term effects.

1972 At the Munich Olympics in Germany, 22-year-old US swimmer Mark Spitz wins a record seven gold medals. He also sets a new world record in each of the seven events that bring him gold. between the US and the USSR finally bears fruit. The most important outcome is a treaty to limit deployment of missiles.

INFORMATION & UNCERTAINTY

OZONE LAYER DAMAGE A computer graphic shows the average distribution of ozone in Earth's southern hemisphere ozone layer in October 1991.

> Blue area indicates the thinning of the ozone laver

Plastic soft drink bottle

Nathaniel Wyeth

ost plastics can't stand up to the pressure exerted by carbonated drinks, so for a long time bottle manufacturers stuck to glass. Then US engineer Nathaniel Wyeth figured out a way of using the plastic PET (* see page 206) to make a stronger bottle. Knowing that synthetic fibers were strengthened by being stretched during manufacturing, he designed a tool that stretched PET in two dimensions as it was molded. The result, patented in 1973, was the first carbonation-proof bottle.

Space station

NASA

space station is a base in Aspace with accommodation and laboratories for several people. The earliest attempt was Salyut 1, launched by the USSR in 1971, but this crashed back to Earth within six months. The first successful space station was the 83 ton

shape, like the sails of a boat, is

Ozone layer damage

Mario Molina, Sherwood Rowland

n the 1980s, scientists Inoticed that Earth's protective ozone layer had thinned dramatically over the Antarctic. This had been predicted. In 1974. US chemists Mario Molina and Sherwood Rowland had figured out that the gases used in aerosols would decompose in intense sunlight, releasing chlorine that destroyed ozone. Dutch chemist Paul Crutzen had earlier

Skylab, launched by NASA in May 1973 and occupied until February 1974. It was used to observe the sun and a comet and to experiment with manufacturing in space. It survived until 1979.

Binary pulsar

Joseph Taylor Jr., Russell Hulse

n 1974, US astronomer ↓ Joseph Taylor Jr. and his student Russell Hulse discovered an unusual pulsar (* see page 227). The time between its pulses varied over an eight-hour period. Taylor and Hulse deduced that the pulsar was orbiting another, unseen star. The Doppler effect (* see page 134) squeezed the pulses together when the pulsar was approaching Earth and stretched them apart when it was receding. The orbit seems to be shrinking gradually, suggesting that the system is radiating gravitational waves, as predicted by Einstein (* see pages 178-179).

1973 In Australia, Sydney's world-famous opera the result of a long political struggle, which included the house is completed. Its beautiful resignation of Joern Utzon, its Danish architect, in 1966.

predicted a similar effect for nitrogen oxides from cars. Many governments had taken action to reduce these pollutants, but too late.

PET scanner

Michael Phelps, Edward Hoffman

PET (positron emission Ltomography) scanner can produce images that show events inside a living body, particularly the brain. It works by responding to the gamma rays produced when positrons meet electrons. A substance modified to make it emit positrons is tracked inside the body by combining information from several gamma ray detectors. The first PET scanner

74 Richard Nixon is the first US president to resign. He steps down rather than be charged with misconduct for human studies was built in 1974 by US chemist Michael Phelps, assisted by his student Edward Hoffman.

Supercomputer

Seymour Cray

ven with the enormous power of today's computer chips, scientists with really serious calculations to do have to use supercomputers. These big machines crunch numbers at high speed by using several processors at once. The first was the Cray-1, produced by US engineer Seymour Cray in 1976. It could perform 240 million calculations a second, operating not just on pairs of numbers, like a normal computer but on lists of pairs. By 1985, the Cray-2 was churning out more than a billion results per second.

> Long, thin wings like a glider

Modified

bicycle in the cockpit powered the propeller

over the Watergate scandal. People connected with him had burgled the offices of his election rivals, the Democratic party.

Conductive plastics

Alan Heeger, Alan MacDiarmid, Hideki Shirakawa

Metals conduct electricity. Plastics don't. Unless they're conductive plastics, created in 1977 by US chemist Alan Heeger, New Zealand chemist Alan MacDiarmid, and Japanese chemist Hideki Shirakawa. They used iodine to free up the electrons in polyacetylene, creating a plastic a billion times less resistant to electricity. It can even, in some cases, emit light. The possibilities seem endless.

> Magnetic resonance imaging

Paul Lauterbur, Raymond Damadian

Placed in a magnetic field, some atomic nuclei absorb energy. If someone is probed with radio waves while inside a huge magnet, a picture of the inside of their body can be created. When the nuclei release this energy, using Magnetic resonance imaging (MRI). MRI reveals chemical differences, so it can detect abnormal cells. US chemist Paul Lauterbur and US physician Raymond Damadian both contributed to its invention. Damadian produced the first human body image in 1977.

MAGNETIC RESONANCE IMAGING This experimental MRI headset fed radio waves into people's heads.

Public-key cryptography

Whitfield Diffie, Martin Hellman, Ron Rivest, Adi Shamir, Leonard Adleman

Public-key cryptography, conceived in 1975 by US cryptographers Whitfield Diffie

Humanpowered aircraft

Paul MacCready, Bryan Allen

Dreams of human flight faded in the 17th century, when scientists realized

HUMAN-POWERED AIRCRAFT Gossamer Albatross got its name from its structure thin plastic stretched over a frame—and its huge wingspan.

> Polyester film covering

Wings could be removed for transportation

1975 Former Portuguese colony East Timor is

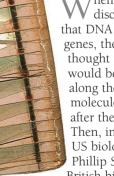
taken over by Indonesia, despite

protests from Portugal, who had

and Martin Hellman, allows people to send electronic messages securely. The system was given practical form by US researchers Ron Rivest, Adi Shamir, and Leonard Adleman in 1977. People give out a public key that specifies how messages sent to them should be scrambled. Once in this form, messages can be read only by someone with the matching private key. A public key is a huge number containing hundreds of digits. It could take a powerful computer years to find the matching private key.

granted it independence, and the UN. It will become an Indonesian province in 1976 and will suffer continuing unrest. the size of the wings and muscles required. Then, with the invention of modern plastics, long, light wings became possible. Using these, human leg muscles are just big enough for flight. US engineer Paul MacCready provided 96 ft (29 m) long wings with Gossamer Condor. Cyclist Bryan Allen provided muscles to drive a propeller. They achieved human-powered flight on August 23, 1977. Two years later, Allen pedaled Gossamer Albatross across the English Channel.

1976 Popular interest in increased by the publication of US writer Alex Haley's book


Gene exons and introns

Phillip Sharp, Richard Roberts

When scientists discovered that DNA carries genes, they thought that these would be strung along the molecule one after the other. Then, in 1977, US biologist Phillip Sharp and British biologist

Richard Roberts both discovered that genes are often separated or split by stretches of DNA that don't do anything. They called the active parts exons and the inactive parts introns. Before genes get to work, the cell makes a copy with the introns chopped out.

Roots. Built around the life story of an African slave, Kunta Kinte, it explores black identity while promoting racial understanding.

INFORMATION & UNCERTAINTY

Personal computer 1977

Steve Jobs, Stephen Wozniak

The first three computers for personal use appeared in 1977. The Commodore PET and Tandy TRS-80 are now almost forgotten, but the third was the Apple II, a machine with its own monitor and plugin expansion cards. The other machines were good, but the dedication of the Apple's promoter and designer, US computer enthusiasts Steve Jobs and Stephen Wozniak made all the difference. (* See also Computers for All.)

Global positioning system 1978

US Air Force

f you had a global positioning system (GPS) receiver, you would never get lost. The present GPS began in 1978 with the launch by the US Air Force of the first two NavStar satellites.

CELL PHONE The first cell phones were called "car phones" because they were too big to carry around.

1979 Margaret Thatcher becomes Britain's first female prime minister after a decisive election victory for her Receivers now tune in to four out of 24 satellites, each of which carries a highly accurate atomic clock. By comparing the received times with the actual time and the known positions of the satellites at that time, the receiver can determine where it must be.

Test-tube baby

Patrick Steptoe, Robert Edwards

ouise Brown, the world's first "test-tube" baby, was born in England on July 25, 1978. British gynecologist Patrick Steptoe took an egg from her mother. His colleague Robert Edwards added sperm from her father. The doctors placed the fertilized egg in her mother's womb, where it grew into a healthy baby. Twenty-one years later, Louise had a job in a nursery.

COMPUTERS FOR ALL

IN 1975, ENCOURAGED by his friend Steve Jobs, US computer hobbyist Stephen Wozniak built and marketed the Apple I computer—a bare circuit board aimed at electronics hobbyists. Jobs saw that computers had a wider market and got Wozniak to design a more complete, stylish-looking machine that simply plugged in and worked. Apple II transformed the computer industry, making even giants like IBM take notice.

RISE OF THE HOBBYIST

The personal computer came out of the work of countless electronics hobbyists—some of them now big names—who, in the early 1970s, built and programmed their own crude machines in their bedrooms and garages.

THE ALTAIR 8800

The first kit computer appeared in 1975. The Altair 8800 had no screen, no keyboard, and hardly any memory, but its very simplicity made it ideal for computer pioneers to cut their teeth on.

Cell phone

Bell Labs

'ell phones were pioneered in the US by Bell Telephone Laboratories. After a trial in Chicago in 1979, the first public service opened in 1983. Meanwhile, Scandinavia had launched its own system in 1981. All cell phones use the same idea. There are relatively few radio frequencies, but millions of users, so the base stations that relay calls to the fixed phone network

are given a limited range. Outside that range, frequencies can be reused. As callers move, computers automatically retune their phones to a frequency in the new area. It nearly always works.

1979 The nuclear power industry reels when the "impossible" happens at the Three Mile Island nuclear power

Word processing software

computer

Seymour Rubinstein

By the late 1970s, personal computers could display a page of text. With cheaper printers available, they looked set to replace typewriters. US software developer Seymour Rubinstein, seeing his chance, started writing word processing software. Unsuccessful at first, he launched a second attempt, WordStar, in 1979. This used short, easy-to-remember, nonprinting codes typed into a document to specify its fonts and formatting. Although it cost \$450 (about \$1,150 today), the program quickly took a two-thirds market share, selling nearly a million copies in five years. People were still using it in the late 1980s.

station in Pennsylvania, An accidental meltdown damages the plant and dents public confidence in nuclear safety.

Conservative party. Her time in office will bring more freedom for private companies and less for trade unions.

its launch in 1979, it was the Soundabout in the US and Stowaway in Britain. Morita got his way in the end—it is now the Walkman everywhere.

Cellular address code

<u>1980</u>

Günter Blobel

Healthy people have all their different proteins in the right places, wherever they are needed. By 1980, German doctor Günter Blobel had discovered how this happens. He found that every protein carries a molecular code, a sequence of amino acids, which controls its movement through the body. Responding to the code, a cell membrane either blocks the protein or lets it through—unless it is needed by the membrane itself, in which case it hangs on to it

Spreadsheet software

Daniel Bricklin, Bob Frankson

spreadsheet program displays a constantly updated table of related numbers. This simple idea has probably sold more personal computers than any other piece of software. When US student Daniel Bricklin and programmer Bob Frankson launched the first spreadsheet program, VisiCalc, in 1979, it was a revelation. People were amazed by the way they could make changes to one number and instantly see the effect on all the others. They had a new management tool.

1979 Soviet Union troops cross the border into Afghanistan to prop up the country's communist regime,

Walkman

Akio Morita

A kio Morita, cofounder of the Japanese firm Sony, invented a cassette player small enough for people to carry around. His name for it was Walkman. This was considered bad English, so at

> WALKMAN Sold in Britain as the Stereo Stowaway, this early Walkman had some facilities absent from later models, including provision for two sets of headphones.

, Adjustable headset

Apple II

computer

COMPUTER

LIBERATION In the early 1970s,

some people, including

Ted Nelson, son of a Hollywood

actress, began to demand computing

Cord plugs into the cassette player

SON

Headphones allow the user to listen to music without disturbing other people nearby

Transparent area allows tape to be seen

which has been weakened by years of infighting between its leaders. Within days, the USSR has installed a new leader. 1980 Strikes over food prices in Gdansk, Poland, lead to workers getting the right to form free trade unions. Under their leader, Lech Walesa, they form the union Solidarity, which will later defeat the communist government.

power for all. Personal computers and the internet have given this to many in the West, but most of the world's population still has no access to computers. the body. Responding to the code, a cell membrane either blocks the protein or lets it through—unless it is needed by the membrane itself, in which case it hangs on to it.

INFORMATION & UNCERTAINTY

Genetic control of embryonic development

1980

Edward Lewis, Christiane Nüsslein-Volhard, Eric Weischaus

The fruit fly Diecus quies, and has large chromosomes (* see page 176) so is ideal for genetics research. In 1978, US geneticist Edward Lewis found that its genes are arranged along its chromosomes in the same order as the body parts they control. By 1980, German geneticist Christiane Nüsslein-Volhard and US geneticist Eric Weischaus had found that only 140 of the genes are essential during development. Some control the body plan, others create segments of the body, and others determine features within segments. Work like this helps scientists to understand development in humans.

G proteins

Martin Rodbell, Alfred Gilman

Bodies wouldn't work if Cells didn't respond to things. Heart cells respond to adrenaline (* see page 174) by pumping harder. Eye cells respond to light with nerve impulses. US pharmacologist Alfred Gilman used the work of US

biochemist Martin Rodbell to help find the link between stimulus and response. By 1980, he had found G proteins. Activated by a stimulus, these make cells containing them respond. Gilman's finding has helped to explain some diseases, including cholera.

Queen Elizabeth II signs the

B B Electrical and computer

connections

Controls used to

position probe

Optical

microscope for

viewing sample

and probe

SCANNING TUNNELING MICROSCOPE The part of the microscope that actually scans a surface is dwarfed by all the equipment needed to line it up with its tiny target and hold it steady.

Post-it note

Twin all-moving tail fins

> 9[™]FS €809

C

Spencer Silver, Art Fry

Post-it notes started with a not very sticky adhesive made by US chemist Spencer Silver,

who worked for US manufacturing company 3M. He had a feeling that the adhesive might be useful but couldn't think of a use for it. Eventually, his colleague Art Fry found one. Art sang in a choir and needed bookmarks

Constitution Act. Canada's new status is largely the result of a long campaign by its prime minister, Pierre Trudeau. that wouldn't fall out of his music. A strip of Silver's adhesive was the answer. After much development, and the realization that the peelable, sticky sheets had many other uses, 3M's Post-it notes were launched in 1980.

1982 Argentine troops invade the Britishrun Falkland Islands, off South America. Britain's prime minister,

Mirror reflects

light into optical

microscope

Paint designed to absorb microwaves

Engines shielded by

angular

cowling

Margaret Thatcher, sends troops to defend the islands. Altogether, about 900 British and Argentine troops die. Argentina is defeated.

helped to explain some diseases, including cholera. Fry found one. Ar choir and needed 1982 In April, Canada gets from the British parliament when

1951 onward

Scanning tunneling microscope

Gerd Binnig, Heinrich Rohrer

The scanning tunneling ▲ microscope, invented by Swiss physicists Gerd Binnig and Heinrich Rohrer in 1981, reveals the three-dimensional reality of individual atoms. It scans a metal surface with a sharp probe that doesn't quite touch it. A small voltage makes electrons "tunnel" out of the metal, creating a current, and a control signal raises or lowers the probe to keep this current constant as the surface is scanned. Fluctuations in the control signal can then be converted into an amazingly detailed picture of the surface.

IBM PC 1981

William Lowe, Don Estridge

In 1980, US computer giant IBM saw the desktop computer as both a threat and an opportunity. One of its managers, William Lowe,

suggested that the company should develop a personal computer. A small company called Microsoft provided the operating system. By fall, the design was ready, and another manager, Don Estridge, took over production. The IBM PC was launched in New York on August 12, 1981. Within days, output had to be quadrupled as demand outstripped supply.

Space shuttle

NASA

space shuttle blasts into space, then glides home like a plane. Unlike a plane, it starts each journey attached to a huge fuel tank and booster, rockets, the whole thing weighing 2,000 tons. The tank is discarded, but the boosters are reused. After trials in which shuttles were launched from jumbo jets, the shuttle Columbia lifted off from Cape Canaveral in Florida on April 12, 1981. Its 54-hour mission, ending at Edwards Air Force Base in California, was the first of many.

Compact disc

Philips Electronics, Sony Corporation

Competing companies Philips and Sony did not want a repeat of earlier mistakes, in which their rival video systems had both been beaten by the VHS recorder (***** see **page 218**), so they worked together to invent the CD. When commercial CD players appeared in 1982, the Philips player included a key component made by Sony.

Cause of AIDS

Flossie Wong-Staal

The cause of acquired immunodeficiency syndrome, or AIDS, was unknown until Chinese– American virologist Flossie Wong-Staal and her team at the US National Cancer Institute identified the human immunodeficiency virus, or HIV. The same discovery was also made by Luc Montagnier and Françoise Barré-Sinoussi in France. Wong-Staal

went on to clone the virus and establish its genome, which led to the design of blood tests for HIV. Today, antiretroviral therapies prevent people with HIV from developing AIDS by reducing the amount of the virus in the blood to very low levels.

Stealth aircraft

Lockheed Martin Corporation

C tealth technology tries to Omake planes invisible to radar (* see page 198). The idea is not new: in World War II, German submarine snorkels were coated with radar-absorbing material to reduce the risk of detection. Another technique is to shape objects so that they do not reflect radar waves back to where they came from. Both ideas were used in the first stealth aircraft, the US Lockheed F-117 fighter, which became operational in 1983. Despite its weird shape and special paint, one was shot down over Yugoslavia in 1999.

Cyclonic vacuum cleaner

James Dyson

See **pages 238–239** for the story of how James Dyson took on the world with the first cyclonic vacuum cleaner.

Conventional wheels hidden during flight _

Louvres hide hot engines from heatseeking missiles

STEALTH AIRCRAFT The angular shape of the F-117A deflects radar pulses, while its special black paint absorbs them and also makes it less visible at night.

1983 On Wednesday February 16, which will be known as "Ash Wednesday," Australia's worst ever bush fires kill 72 people, including 12 firefighters, and cause \$400m of damage. Some fires are the work of arsonists.

1983 At Black Rock, Nevada, British businessman Richard Noble makes land speed history in his

jet car *Thrust 2*. His speed of 633.468 mph (1,019.467 km/h), is 11.061 mph (17.797 km/h) faster than the world record.

Internet

J. C. R. Licklider, Larry Roberts

US psychologist Licklider, head of Information Processing at the US military's Advanced Research Projects Agency (ARPA) started his Intergalactic Computer Network—officially known as Arpanet—in 1963. Its goal was to link

Its goal was to link research computers together. Network specialist Larry Roberts took over in 1966. By 1970, Arpanet was using packet switching, the transmission technique that makes the internet possible. Procedures for transferring data were fixed by 1978, and became compulsory in 1983, effectively creating the modern internet. (***** See also Network of Networks.)

Dust-free builder's chute

G. H. Vlutters, A. J. Vlutters

Dutch building equipment suppliers G. H. and A. J. Vlutters invented their garbage chute in 1984. Before then, builders made their own chutes from planks. Dust went everywhere, and large objects sometimes bounced out and fell. The Vlutters were inspired by a stack of disposable cups. If the cups had no bottoms, they would form a flexible tube. They made the cups bigger, added chains and a winch, and persuaded builders to buy them.

Sections link together to form the chute ____

1983 Germany's Stern magazine excites world interest with excerpts from what it says are Hitler's diaries. Despite the approval of British historian Hugh Trevor-Roper, they turn out to be the work of a forger called Konrad Kujau. 1984 In Bhopal, central India, a leak at an insecticide plant releases 50 tons of deadly gas into

Figures' movements based

on those of real actors

3-D GRAPHICS COMPUTER *Graphic computers generated hundreds of "actors" for the movie Titanic.*

a populated area. About 2,500 people are killed, 50,000 are temporarily disabled, and many more will claim lasting effects.

DUST-FREE BUILDER'S CHUTE *A* chute like this, erected in minutes, is safer than earlier chutes, which took hours to build.

3-D graphics computer

James Clark

omputer-generated images for films and advertising are made with specialized graphics computers. The first person to see the need for such computers was US engineer James Clark. He intended them for scientific and military work, but when his company, Silicon Graphics, gave one of its first workstations to Star Wars director George Lucas, in 1984, it opened up a new market. Today, digital actors can replace extras in a movie, and entire films are created

Top "cup" is attached


to the

building

DNA fingerprinting 1984

Alec Jeffreys

very person's DNA is unique. DNA fingerprinting compares DNA found after a crime with DNA from a suspect. It was invented in 1984 by British geneticist Alec (later Sir Alec) Jeffreys. The DNA is first split into fragments with an enzyme. Everyone's DNA will split differently. When drawn through gelatin by electricity, some fragments move faster than others. The resulting pattern of spots is revealed by making radioactive DNA stick to the original DNA. It can be used as evidence in a trial. In 2013, advanced DNA sequencing techniques were developed that can distinguish between identical twins.

John Warnock, Charles Geschke

PostScript is a language that describes printed pages. Any printer that understands PostScript can print a PostScript file. Because the language describes shapes, instead of issuing instructions, the result is limited only by the quality of the printer. PostScript was devised by US computer scientists John Warnock and Charles Geschke and released by their company, Adobe, in 1984. When Apple used it in their LaserWriter printer, and a third company, Aldus, added a lavout program, PageMaker, desktop publishing was born.

Fullerenes

Harry Kroto, Richard Smalley, Robert Curl

Scientists once knew only three forms of carbon diamond, graphite, and amorphous. Then, in 1985, FULLERENES A buckminsterfullerene molecule is a semiregular polyhedron. Buckminster Fuller based designs for huge domes on polyhedra of this kind.

British chemist Harold (later Sir Harold) Kroto and US chemists Richard Smalley and Robert Curl vaporized graphite with a laser beam. This formed molecules containing 60 carbon atoms arranged as a hollow ball. They named the new form of carbon buckminsterfullerene, after a US architect famous for his domes. Other fullerenes have since been found.

Windows operating system

Microsoft Corporation

The Apple Macintosh set a new standard. Its pointand-click interface made the IBM PC's text-based operating system, Microsoft's MS-DOS, look old-fashioned. In 1985,

1984 India's prime minister, Indira Gandhi, is killed by her Sikh bodyguards. It is the end of a conflict in which Sikh extremists in the Punjab violently sought independence and resented the use of troops to clear the Sikh temple at Amritsar.

NETWORK OF NETWORKS

THERE ARE MANY INTERNETS but only one "internet." An internet is any network that interconnects several smaller networks. The internet connects thousands of internets to form a vast global network. It consists of "backbones," such as NSFNET in the US and EBONE in Europe, into which are plugged smaller regional and local networks. These connect to individual computers.

GETTING THE MESSAGE

A home computer connects to the internet through a computer belonging to an Internet Service Provider (ISP). This computer is connected through the ISP's network to the internet and has a unique address. Data travels as independent "packets," which find their way with the help of special computers called routers.

Computers using the internet have to talk TCP/IP, its official "language." This is actually a pair of protocols, or standards. TCP is Transmission Control Protocol, responsible for the exchange of data between programs running on different computers. IP is

Internet Protocol, which

its way around the net.

ensures that data can find

EXCHANGING DATA

Microsoft hit back with Windows, but because PC users wanted to keep their old programs, Windows operated through MS-DOS,

version, so Maclike that it provoked a lawsuit, appeared in 1987. Finally, Windows 3, launched in 1990, helped the PC dominate the computer it had once imitated.

1985 Irish musician Bob Geldof organizes Live Aid, a 16-hour charity concert at London's Wembley Stadium, with

making it slow. An improved

further time at Philadelphia's JFK Stadium. World-class performers take part, and money rolls in for the world's poor.

237

TAMING THE WHIRLWIND

James Dyson takes on the world with the first vacuum cleaner that doesn't need a bag

EARLY VACUUM CLEANER From their invention in about 1902 until Dyson applied the cyclonic principle, all vacuum cleaners sucked air through a bag. Some early models were powered by hand. Electricity made cleaning easier and a little more efficient.

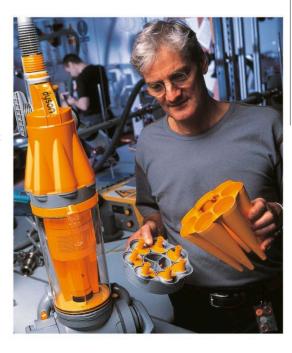
Vacuum cleaner early 1900s

Dust

collected in here

Dyson got the idea for his cleaner from the industrial cyclone, which is used to collect unwanted particles, such as the sawdust from a sawmill. His challenge was to get the principle to work on a much smaller scale inside a domestic machine. It was late at night. An intruder was creeping around a factory yard. For a long time, he stared at and examined a giant metal cone sticking out of the factory roof. He made several sketches of the cone, then he was off into the darkness. James Dyson had just had his first encounter with an industrial cyclone, a device that removes dust from the air coming out of a factory. It was to change his life.

The next morning, Dyson built a copy of the cyclone in his own small factory, where he was making wheelbarrows. He wanted it to trap the paint powder that filled the air when his wheelbarrows were sprayed. There was already a fan in the factory that sucked air through a cloth filter, but the cloth needed cleaning hourly. In the cyclone system, the air whirled around inside a cone. The powder was flung out like water out of clothes in a spin dryer and deposited at the bottom of the cone.


Then Dyson thought of something else. At home, near Bath, England, he used a powerful vacuum cleaner. The design of vacuum cleaners hadn't changed much since they were invented. They worked well only with a new bag, because the dust they sucked up from the carpet quickly clogged the pores in the bag, reducing suction. The bag was like the cloth filter in Dyson's factory, which he had replaced with a cyclone, and he wondered if he could replace the bag with a cyclone system, too.

Dyson rushed home and made a cardboard model of the industrial cyclone. He ripped the bag off an old vacuum cleaner and replaced it with his cardboard cone. To his delight, he found that the bagless vacuum cleaner worked well. He had made an important invention.

That was in 1978. It would be another 15 years before Dyson's Dual Cyclone cleaner was launched, although his first cyclonic cleaner, the G-Force, featured on the cover of *Design* magazine in 1983 and reached Japan in 1986. Those years were filled with intensive engineering, which he loved, and dealing with

businessmen and lawyers, which he hated. In the end, he had to manufacture his invention himself. He didn't want his idea stolen or suppressed by jealous rivals. When the Dual Cyclone was finally launched in

1993, the first reaction from customers was shock—it looked so different. Then sales grew. After two years, Dyson's invention was the number one vacuum cleaner in Britain and was generating worldwide sales of well over \$1 million a day. The whirlwind was tamed.

Dyson G-Force cyclonic vacuum cleaner, sold in Japan from 1986

1940s advertisement for a Hoover vacuum cleaner

FORCE FOR CHANGE

Japanese customers loved the unusual pink of the G-Force, the first cyclonic cleaner to go into production. The color was suggested by the early morning light in the fields of Provence in the South of France.

JAMES DYSON

The multi-cyclone cleaner seen here is just one of many ideas Dyson has produced. Training at the Royal College of Art, London, helped him develop his creativity. Before the cyclonic cleaner, he had invented a new kind of boat and a wheelbarrow with a ball-shaped wheel. Just as important as his creativity, though, was his determination to see things through.

PROZAC A drug prescribed for depression, Prozac is taken by about 40 million people worldwide.

neurologist Arvid Carlsson, who developed another antidepressant, later withdrawn because of side effects.

Supermassive black hole

John Kormendy, Alan Dressler, Douglas Richstone

Supermassive black holes have They can destroy everything around them, but astronomers now believe they are involved in the creation of galaxies. They can be detected by the way nearby stars and matter orbit them at colossal speeds. In 1987, a 30-million-sun black hole was found independently by Canadian astronomer John Kormendy and US astronomers Alan Dressler and Douglas Richstone. Many more have been found since then.

Gene that causes cystic fibrosis

Lap-Chee Tsui, Francis Collins

n cystic fibrosis (CF), thick, Lsticky mucus clogs the lungs and intestines. A child can inherit the condition if both parents are carriers. The faulty gene that causes it was found in 1989 by Canadian geneticist Lap-Chee Tsui at the Hospital for Sick Children in Toronto, Canada, and US geneticist Francis Collins at the University of Michigan. Their discovery makes it possible to detect CF carriers and may one day make the condition curable.

1989 TV screens worldwide fill with scenes of jubilation as the Berlin Wall is torn down after 28 years. of a faulty gene, then replaced the cells. With regular followup treatments to maintain

enough gene-corrected white cells, the girl became able to lead a normal life.

World Wide

Web

Tim Berners-Lee

The World Wide Web grew from the work of British

physicist Tim Berners-Lee at

the European Centre for Nuclear Research (CERN) in Switzerland. CERN's scientists needed to get at information scattered among computers

worldwide. Berners-Lee's

when he had written the

software and defined the standards that would make

it work, the web became

available to CERN scientists.

The public saw it a year later.

Gene therapy

French Anderson

ene therapists attempt to restore health to people

with genetic disorders by

replacing faulty genes. The

approved gene therapy was

a four-year-old girl who had

French Anderson removed

some white cells from her

inherited a defective immune

system. In 1990, US geneticist

blood, inserted normal copies

first person to receive officially

answer was the web. In 1990,

Digital cell phone

Groupe Spécial Mobile

The first cell phones used a simple but insecure analogue radio system, in

Berliners of all ages join in cracking up the concrete barrier between East and West. Bemused East German soldiers just watch.

Hightemperature superconductors

Georg Bednorz, Alex Müller

Cuperconductors, used in **O**powerful electromagnets, show no resistance to electric current. But they work only at very low temperatures. In 1986, German physicist Georg Bednorz and Swiss physicist Alex Müller found a superconductor that worked at a higher temperature. Their new barium-lanthanum copper oxide sparked off a search for others. By 1988, researchers had found a similar oxide that was superconductive at -234°F $(-148^{\circ}C)$, which could be made to work by being cooled with cheap liquid nitrogen.

> HIGH-TEMPERATURE SUPERCONDUCTORS Electromagnets like this use superconductors to carry their huge currents. The magnet is enclosed in a cooling chamber.

1986 Chernobyl power explodes, showering much of northern Europe with long-lasting

Prozac

Arvid Carlsson, Ray Fuller

In 1972, a team led by US biochemist Ray Fuller synthesized the compound fluoxetine. Fifteen years later, it became the antidepressant Prozac. Fluoxetine reduces the rate at which serotonin, a nerve chemical, is reabsorbed. This makes more serotonin available, which eases depression. Fuller's work used some research by Swedish

radioactive fallout. Coming after several other nuclear disasters, this one finally shatters dented confidence in the industry.

GENE THERAPY A scientist pulls a thread of pure DNA out of solution to isolate it from an organism.

which speech was converted more or less directly into radio waves. In 1982, the Groupe Spécial Mobile was formed to develop a digital system for Europe and beyond. Digital phones convert sound waves into numerical codes describing their shape, then send these codes by radio. By 1991, trial versions of the GSM system were ready, and the following year all major European operators began to use it. GSM now powers cell phones in 85 percent of the world market.

Separation of stem cells

Ann Tsukamoto

Your body is made up of trillions of tiny cells, which carry out a huge range of functions. They produce antibodies, regulate the

1990 After 27 years in prison, South African antiapartheid activist Nelson Mandela is released by President immune system, detect foreign substances, protect against rogue cells, help with clotting, and carry oxygen around your body. Despite this incredibly wide range of functions, all of these cells spring from one basic type—stem cells. In 1991, Tsukamoto and her team devised an ingenious way of separating stem cells from other types of cells and keeping them alive for further research. Stem cells can be used to treat a large number of conditions, including heart disease and diabetes.

Disposable TV camera

Smith & Nephew Dyonics

In surgery, the smaller the incision, the better. So one essential tool of modern surgery is the endoscope, a fiber-optic device that lets surgeons peer through a "keyhole" incision. In 1992, US company Smith & Nephew Dyonics patented a more flexible alternative: a tiny camera that could be passed into the body. As it is difficult to sterilize, the camera is designed to be used only once, then thrown away.

Graphical web browser

Marc Andreessen

■he first World Wide Web sites (* see page 240) were entirely text-based. The web could deliver pictures but not with text. This changed in 1993, when the US National Center for Supercomputing Applications released Mosaic, the first graphical web browser. Developed by 21-year-old US student Marc Andreessen, it changed the way we use the web. The richness and convenience of Mosaic's direct descendants, Netscape (by Andreessen) and Internet Explorer, are now taken for granted by web users.

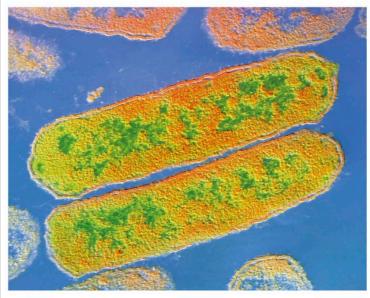
GRAPHICAL WEB BROWSER Mozilla Firefox, released in 2002, is available in 75 languages and is used by more than 500 million people around the world.

F. W. de Klerk. Mandela and de Klerk work to create a nonracial democracy. Mandela will win the first election open to all races. 1993 Steven Spielberg wins a best picture Oscar for *Schindler's List*, his World War II drama about German

concentration camps. The same year, his dinosaur movie, *Jurassic Park*, grosses a record \$725 million in four months. INFORMATION & UNCERTAINTY

Genetically modified food

Calgene Inc.


Farmers and growers have been changing the genetic makeup of our food for centuries. The first genetically modified (GM) food produced by genetic engineering (*** see page 229**) and approved for sale was the Flavr Savr tomato, produced by US company Calgene. A modified gene made it firmer, allowing it to be picked later without its being too soft to transport. This meant it had more flavor. Other GM foods, such as soybeans, followed.

Comet Hale-Bopp

Alan Hale, Thomas Bopp

In 1995, two US amateur astronomers, Alan Hale and Thomas Bopp, independently discovered a new comet. At seven times further away from Earth than the sun, it was the most distant ever spotted by amateurs. The professionals found that it was a thousand times as bright as Halley's comet, with a nucleus about 30 miles (50 km) across. By 1997, it was much closer to the sun and was clearly visible to the naked eye. It has now retreated into space and will not be seen from Earth for another 2,400 years.

COMPLETE BACTERIAL DNA SEQUENCE Haemophilus influenzae (*above*) was the first of several organisms to have its entire DNA sequenced by The Institute for Genomic Research in the mid-1990s.

hidden among the millions of chemical units making up its DNA (* see pages 216-217). To study a genome, scientists first have to list these units in the right sequence. The first free-living organism to have its entire DNA sequence revealed was a bacterium that can cause meningitis-Haemophilus influenzae. A team led by US geneticist Robert Fleischmann at The Institute for Genomic Research (TIGR) used the "shotgun" method. The team first broke the bacterium's DNA into thousands of random fragments, then used a computer to put these into a complete sequence. The result was presented, to great acclaim, in May 1995.

1994 The dream of decades is realized when the Channel Tunnel, which runs under the English Channel

to link Britain and France by rail, is opened. Construction of the tunnel has taken more than six years and cost £10.5bn (\$15bn). 1994 South Africa rejoins after holding its first election open to people of all races. The clear winner is the African National Congress, led by Nelson Mandela, who becomes the country's first black president.

COMET HALE-BOPP When Hale-Bopp was at its closest to the sun, in April 1997, its dust tail was longer than the distance from the sun to Earth.

Complete bacterial DNA sequence

1995

Robert Fleischmann

An organism's complete set of genes—its genome—is

242

Internet retailing 1995

Jeff Bezos

While hundreds of internet retailers crashed in 2001, the oldest of them all remained healthy. Amazon.com, the internet bookstore (which now sells other things as well) was founded by US computer scientist Jeff Bezos in 1994. It sold its first book in July 1995. Following a great US tradition, business whizz Bezos started the website in his garage. He also wrote his own software for the site, which he named after the world's longest river.

Full-length computergenerated movie

The Walt Disney Company

Making a full-length animated film is laborious and expensive. In the early 1990s, specialized graphics computers (*** see page 236**) became capable of doing most of the work. The first movie that was made in this way was Disney's *Toy Story*, a tale of rivalry between a handcrafted cowboy and a mass-produced space ranger. It was released in 1995. Its success led to the making of other computergenerated films, including *A Bug's Life* and *Monsters*, *Inc*.

Proof of Fermat's last theorem

Andrew Wiles, Richard Taylor

004

The last unproved theorem of 17th-century French mathematician Pierre de Fermat stated that, for *n* greater than 2, there were no positive whole numbers *x*, *y*, and *z* such that $x^n + y^n = z^n$. Fermat said he had a proof but never wrote it down. In 1993, British mathematician Andrew Wiles produced his own 200-page proof. Other mathematicians spotted some gaps, but by 1995, with the help of Richard Taylor, one of Wiles' former students, these were plugged and Fermat's last theorem was proved.


Life on Mars?

David McKay

n August 1996, US geologist LDavid McKay made an announcement about a meteorite. It contained evidence, he said, that there may once have been life on Mars. The 4.5 billion-yearold meteorite was found in Antarctica in 1984, but its Martian origin was not confirmed until 1994. Two years' work revealed organic chemicals within it that suggested the presence of living bacteria at some time in the past. The surface of the meteorite carried no such chemicals, ruling out Earth contamination. There were

INTERNET RETAILING

Amazon.com is the world's biggest internet business. It has more than 80 giant warehouses worldwide.

1996 Afghan Islamic fundamentalists, the Taliban, capture the capital, Kabul, in the civil war that broke out in Afghanistan when Soviet troops left in 1989. They seize power and impose a strict rule based on Islamic law.

1997 Britain's lease on Hong Kong runs out after 100 years, and the area is handed back to China. Elaborate agreements are negotiated by the British in an attempt to ensure that Hong Kong citizens retain their full political rights.

also inorganic compounds that are secreted by bacteria. Scientists regard the evidence as inconclusive.

Dolly the sheep 1997

Ian Wilmut, Keith Campbell

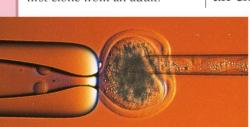
See pages 244–245 for the story of how Ian Wilmut and Keith Campbell created Dolly the sheep.

Growth of new brain cells

Fred Gage, Peter Eriksson

People used to think that once all our brain cells are in place, no more can grow. In 1998, neurologists Fred Gage in the US and Peter Eriksson in Sweden showed this is not so. They labeled brain cells in terminally ill patients with a chemical that revealed cell division. On examining the brains after death, they found that they had been producing up to 1,000 new cells every day.

MicroStar air reconnaissance vehicle


Lockheed Martin Corporation

S mall aircraft are harder to detect than large ones. In 1989, the US Lockheed Martin Corporation took this to an extreme with their military reconnaissance plane MicroStar. Its wingspan was 5 in (12 cm), and it weighed 3 oz (85 g). It carried a tiny television camera and transmitter. Designed to fly at a height of 200 ft (60 m), it could send vital spy pictures to people below.

CLONING AN ADULT MAMMAL

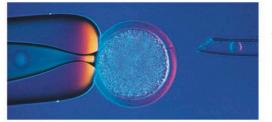
Ian Wilmut and Keith Campbell create Dolly, a perfect copy of a grown-up sheep

IAN WILMUT Born in 1944, Ian Wilmut joined the Animal Breeding Research Station (now the Roslin Institute) near Edinburgh, Scotland, in 1974. There, with Keith Campbell, he developed a way of cloning animals from partly developed embryos. The results, two sheep called Megan and Morag, were born in 1995. They were forerunners of the first clone from an adult.

Harry Griffin picked up the phone.
It was the evening of Saturday
February 22, 1997, and he was enjoying a break from the busy Roslin Institute,
Scotland, where one of his jobs was to deal with journalists. The call shattered his weekend. Tomorrow, a Sunday newspaper was going to publish a story that was supposed to be kept secret until the following week.
Scientists at the Institute, collaborating with the biotechnology company

PPL Therapeutics, had created a sheep that was an exact copy—a clon—of an adult sheep.

Lamb 6LL3—Dolly—had been born in July 1996. Journalists tried to figure out what she meant for humanity. Could humans now be cloned? Should they be? British genetic engineer Ian Wilmut, who led the Dolly team, didn't think so. He wanted to produce sheep that delivered medicines in their milk. If he could make one sheep do this, cloning might turn it into a flock.


An egg cell has its nucleus removed.

HOW ANIMALS ARE CLONED

To create a copy of an animal, one of its cells is grown in a laboratory under special conditions then injected into a cell from which the nucleus has been removed. The fused cells are usually given a brief electric shock to activate them. Although the basic technique for moving genetic material from cell to cell dates from 1952, success rates for cloning are still low.

A laboratory-grown adult cell is collected.

A pipette, on the left, holds the nucleus-free egg cell in place while the complete adult cell is pushed into it by the tube seen on the right.

Animals had been cloned before, but all from cells at an early stage of development. As an embryo grows, its cells become specialized. Some of them form nerves, some form muscles, and so on. The genes not needed in any particular type of cell are "turned off." It is this that allows many different types of cells to be created from just one set of genes. So although every adult cell contains every gene, none has all its genes available in working form.

In 1995, another scientist at the Roslin Institute, Keith Campbell, had found a way to turn back the clock and make an adult cell behave like an early embryonic cell.

The world's press converged on Dolly after Britain's Observer newspaper printed her story on Sunday February 23, 1997.

He kept adult cells alive in culture dishes using a medium that contained very little "growth factor"—in effect putting them on a starvation diet. This starvation turned the genes that had been turned off during

development back on again. A cell treated in this way, because it had a full set of genes available for work, could, when fused with an egg that had had its nucleus removed, form the starting point for a new animal.

Wilmut and his colleagues took an egg from a sheep and sucked out its genetic material with a tiny tube. Then they inserted a "starved" cell from the udder of a different sheep. A tiny electric shock started the egg dividing to produce an embryo.

They implanted this in the womb of another sheep. They had to do this 277 times to get just one Dolly—the others all died at some stage.

When Dolly was born, she didn't look like the sheep that had carried her, or even like the sheep that had provided the egg. She looked exactly like the sheep that had provided the udder cell. Shaped by the genes from that cell, Dolly was that sheep's clone—a world first. A little ahead of schedule, Dolly was front-page news.

DOLLY BECOMES A MOM

On April 13, 1998, Dolly proved that she was a fully functional sheep by giving birth to a healthy lamb named Bonnie. The following March, Dolly produced triplets, seen here with their mother. The lambs are completely normal, but Dolly seems to be older than her chronological age.

MP3 compression standard

Fraunhofer Institut, Moving Picture Experts Group

ownloading music from the internet would take forever without compression to remove unnecessary information. This could reduce quality, but MP3 (or MPEG Layer-3) ensures that the effects of compression are masked by louder sounds. It was developed by the Fraunhofer Institut in Germany and released by the Moving Picture Experts Group (MPEG) in 1998. Although its use on the internet created some copyright problems, a little MP3 player is a really neat way to carry music around.

SATELLITE CELL PHONE Ordinary satellite phones use satellites in high orbits. They are not truly mobile because they have to be carefully aimed at the chosen satellite before use.

Satellite cell phone

Iridium Satellite LLC

Cell phones will not work in remote areas where there are no base stations. Phones working through satellites in high Earth orbits have been available since 1982, but the mobile network Iridium, which went live in 1998, uses 66 satellites in much lower orbits. At first, demand fell short of

1999 South African novelist J. M. Coetzee becomes the first author to win the prestigious Booker expectations, and Iridium had to close down, but it is now back in business.

Carbon nanotube "muscle"

Ray Baughman

Better robots came Closer in 1999 with the demonstration of "muscles" made from fullerenes (* see page 237). Robots are normally operated by electric or pneumatic actuators. These are slow and heavy, but an actuator made from "buckypaper"—a sheet containing billions of tubular carbon molecules—promises superior performance. Developed by an international team led by US scientist Ray Baughman, the muscle flexes when a low voltage is applied. The movement is small, but the force is greater than with human muscle. With the right leverage, it could work a robot.

Biological molecular motor

Carlo Montemagno

olecular motors are so small that they contain only a few molecules. In 1999, researchers led by US engineer Carlo Montemagno demonstrated a motor whose shaft, 12-millionths of a millimeter in diameter and made from a protein molecule, rotated at 200 revolutions per minute. The movement was created by a reaction between the protein and the enzyme ATPase. It occurred when the

connumummummummummummummummum

motor was immersed in a solution of the energy-rich molecule ATP. Such motors may one day power invisible pumps inside human bodies.

Homegrown replacement organ

Anthony Atala

Rejection problems and lack of donors make replacing human organs difficult. In 1999, US doctor Anthony Atala showed that an entire new organ could be made from just a few cells of the old one. He took muscle and lining cells from the bladders of dogs and grew them around plastic balls to form new bladders. When he replaced the dogs' bladders with the artificial ones they

artificial ones, they worked perfectly.

Prize twice. Having won it in 1983, with his novel *The Life and Times of Michael K*, he completes the double with *Disgrace*.

2000 The century's most feared "insect," the millennium bug, bites only mildly, as computer clocks flip from 1999 to 2000. Although some older chips think it is now 1900, the worldwide chaos predicted by doomsters fails to materialize.

Leech neuron computer 1000

Bill Ditto

In 1999, US physicist Bill Ditto demonstrated the first computer made by connecting living nerve cells together. His "leech-ulator" could do only simple operations and needed an ordinary computer to help it display the results, but it worked. Ditto's goal was to develop a computer that could "think" without detailed programming.

Gene targeted sheep

Kenneth McCreath

ene targeting is inserting \mathbf{J} a new gene at a specific point in an organism's genome (***** *see* **page 242**), rather than adding it at random. It allows the gene to work properly and be inherited by offspring. The first person to target genes in a large animal was Scottish geneticist Kenneth McCreath. He put the gene for an enzyme into the DNA of sheep cells, moved the nuclei to egg cells, and grew these into sheep. The enzyme appeared in their milk.

Growing bone outside the body

Julia Polak

Tn 2000, Julia Polak and her Lteam at the Chelsea and Westminster Hospital in Britain discovered that human bone cells could be made to grow outside the body. The cells were helped to bond together using Bioglass, a ceramic

material containing silicon, calcium, and phosphorus. This had been developed in the 1960s by British researcher Larry Hench. It is now hoped that it will be possible to inject liquid Bioglass enriched with bone cells into patients to aid the healing of broken bones or to treat brittle bones in older people.

Human genome

Francis Collins, Craig Venter

he human genome—a L human being's complete set of genes-is contained within a long sequence of chemical units (Å, T, G, or C) that is unique to human DNA (* see pages 216-217). A draft of the sequence was announced on June 26, 2000, by two rivals, the public Human Genome Project (HGP), led by Francis Collins, and the private Celera Genomics, led by Craig Venter. Neither genome was actually complete. Celera had done more but charged people to see theirs, while HGP's lesscomplete genome was free. Both organizations published more complete information in February 2001. (* See also Start of Something Big.)

Cloned endangered (animal

Philip Damiani

"he gaur, an ox found in Asia, is on the list of endangered species. In January 2001, a baby gaur named Noah was born to a domestic cow in Iowa. Researcher Philip Damiani cloned it (* see pages 244-245) from skin

DOO It's "happy birthday" to Queen Elizabeth the Queen Mother, affectionately known as the Queen Mum, as she reaches 100 on Friday, August 4. Crowds see her on the balcony of Buckingham Palace with three generations of royal children.

START OF SOMETHING BIG

THE HUMAN GENOME is only the start of a project that could last another century. Scientists will use it, among other things, to find connections

between genes and diseases. There will be several areas of study. Important among these will be functional genomics, which is about what genes do, and structural genomics, which deals with the shape of the proteins that enable them to do it.

HUMAN GENOME PROJECT

Dr. Craig Venter, former president of Celera Genomics This international project was started in 1990, with the goal of completing it by 2005. This was later brought forward to 2003. There are four major participants in the US and one in Britain, with research centers in at least 18 other countries making

contributions. Its results are freely published.

CELERA GENOMICS

Celera was founded in 1998 by the PE Corporation, a US biological laboratory equipment company, and Craig Venter. It operates the world's largest genomic production plant and makes extensive use of supercomputers. Academic and commercial organizations pay a subscription to make use of the company's genomic information.

> CLONED ENDANGERED ANIMAL The gaur is found in forests in Asia. It eats grass and bamboo shoots.

cells from a dead gaur, frozen eight years earlier. He fused these with cow eggs whose genes had been removed, producing

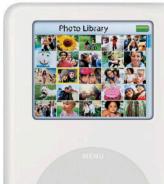
embryos that he implanted into cows. Noah was the only calf to come through alive, but he later died from an infection.

2001 On September 19, by the US is attacked by On September 11, terrorists flying four hijacked planes-two destroy the World

Trade Towers in New York. The US and other countries unite together to fight terrorist organizations around the world.

Self-cleaning glass 2001

Kevin Sanderson


X 7 indow cleaning mav soon be a thing of the past. In 2001, Britain's Pilkington glass company announced the invention of self-cleaning glass, developed by a team under chemist Kevin Sanderson. Its secret lies in a special coating, which makes rain run off the glass, taking dirt with it. The coating, which is extremely thin, also acts as a catalyst, allowing ultraviolet light and oxygen to unstick any dirt that might be left behind .

iPod

2001

Steve Jobs, Lee Black

A pple launched its nowfamous music player, the first pocket device able to hold

IPOD Since 2001, the basic iPod has acquired enough capacity for 10,000 tunes and a color screen that can show photos and album art.

2002 The traditional currencies of many European countries cease to be accepted for payment as 12

1,000 songs, in 2001. Early models used the MP3 music compression system (* see page 246), but later iPods can also use an even more efficient file format unique to Apple. By 2005, more than 1.5 million songs, and even the album art that goes with them, were available for downloading through Apple's iTunes website. Despite the sleek white box and ultra-cool user interface, the iPod did not contain any new technology, just a hard disk drive and a little computer to control it and decode the music. With its distinctive look and ability to find any tune in seconds, it quickly displaced the portable CD player and the Walkman. (* see page 233)

More moons for Jupiter

Scott S. Sheppard, David Jewitt

In 2002, astronomers from the University of Hawaii revealed

that the planet Jupiter has even more moons than we thought. Using a 140 in (3.6 m) telescope atop a Hawaiian volcano, they discovered 11 new satellites. This took the total number of Jupiter's known satellites up to 39-far more than any other planet in the solar system. It is perhaps a bit of an exaggeration to call these moons-they are not large, round bodies, but relatively small, irregularly shaped lumps of rock that were captured by the giant planet's huge gravitational field. By 2013, 67 moons had been found orbiting Jupiter.

eurozone nations switch their coins and banknotes to the euro. Money in other forms has been euro-based since 1999.

Single-atom transistor

Paul McEuen, Dan Ralph

he first transistor built L around a single atom was created by scientists at Cornell University in 2002. Buried inside a specially designed molecule was a lone atom of cobalt. When the molecule was hooked up to an electronic circuit, the cobalt atom responded to a control voltage by changing the current through the device. This is only what an ordinary transistor would do, but the invention could be a step toward something newmolecular electronics. This technology would involve the building of circuits by chemical synthesis, replacing the current technique of etching shapes onto silicon.

Synthetic virus

Jeronimo Cello, Aniko V. Paul, Eckard Wimmer

A ny virus can easily mass-produce itself by using the genetic machinery in the cells of a suitable victim. In 2002, however, a team from the State University of New York was the first to synthesize a virus

SYNTHETIC VIRUS The polio virus has 20 fivesided faces around its genetic core.

2003 The US, Britain, and other nations invade Iraq. Within three weeks, Saddam Hussein and his Ba'ath from scratch. Using the genome (genetic makeup) of the polio virus, as downloaded from the internet, they made a copy using ordinary chemicals.

Super-tough fiber

2003

Ray Baughman

The plastic fibers in bulletproof vests are tough, but in 2003, scientists at the University of Texas and Trinity College, Dublin, spun a fiber 17 times tougher. It was made from carbon nanotubes—tubular molecules consisting entirely of carbon—dispersed in a soft plastic. Possible uses include better seat belts and explosionproof blankets.

Outer coat made of four different proteins (false color)

party are toppled, leaving the country free of its cruel dictator but devastated and under the control of foreign troops.

Oldest planet 2003

Donald Backer, Stephen Thorsett, Steinn Sigurdsson

lthough the universe is about 13.7 billion years old, the planets in our solar system were formed a mere 4.5 billion years ago. In 2003, the existence of a planet formed 12.7 billion years agoa billion years after the universe—was confirmed by the Hubble Space Telescope. Planet PSR B1620-26C, or Methuselah, belongs to a star system 5,600 lightyears from Earth. The planet showed up as a "wobble" in some star data for many years before it was caught on camera.

OLDEST PLANET Floating 380 miles (611 km) above the Earth, the Hubble Space Telescope can detect remote objects like Methuselah normally hidden by our atmosphere.


Water on Mars

NASA

In 2003, NASA landed two robot rovers, Spirit and Opportunity, on Mars. Their job was to explore the planet, looking in particular for signs of past life. Opportunity was the first to find geological evidence of water that had flowed long ago. In 2004, Spirit found even clearer signs of water, backing up the evidence of its twin. Although the rovers didn't actually find liquid water,

the presence of sedimentary rocks and water-cut shapes show that water must once have been present. In 2013, Curiosity—a rover launched in 2011—heated soil from the planet's surface and detected water vapor. The dust on Mars contains 2 percent water, which is bound to chemicals in the soil.

WATER ON MARS Opportunity (left) sent back images (above) showing layers of sediment and the effects of rippling water on rock.

2004 An earthquake in creates a huge, fast-moving wave called a tsunami, causing terrible destruction in the coastal areas of surrounding countries. Nearly a quarter of a million people lose their lives. 2005 Sir Bob Geldof organizes Live8—11 concerts designed to put pressure on world leaders to help Africa by canceling debt, increasing aid, and trading more fairly. More than 1,000 musicians are seen by billions on 182 TV networks. Information & Uncertainty

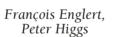
Low-cost mine clearance 2005

Paul Richards

The world is littered with land mines, which kill or maim more than 15,000 people every year. Getting rid of them was costly until 2005, when British engineer Paul Richards, based in South Africa, invented MineBurner. Instead of explosives, it uses bottled gas and oxygen to cut into land mines and destroy them, making disposal much cheaper.

Smartphone

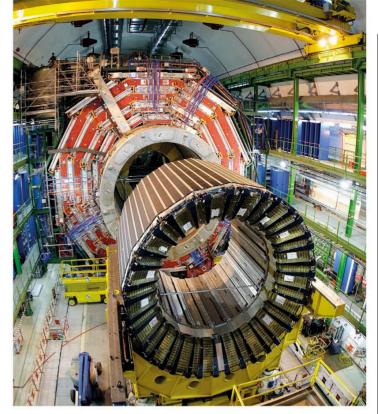
Steve Jobs, Jonathan Ive


T n 2007, Apple launched the LiPhone, which had an operating system, iOS, making it into a handheld computer on which the internet could be accessed and phone calls could be made. The phones can also run apps whose functions include organization, news, social networking, and games. With an iconic design similar to the hugely popular iPod and a touch screen, iPhones were in great demand. Soon, other cell phone companies created smartphones with similar designs.

First lab-grown, synthetic organ transplant

Alexander Seifalian, Harvard Bioscience, Dr. Paolo Macchiarni

"he world's first successful transplant of a synthetic organ grown in a laboratory was performed in July 2011. A plastic, Y-shaped model of the patient's trachea, or windpipe, was created and then lined with the patient's stem cells. This meant his body would accept the synthetic organ. This operation paved the way for organ transplants that don't need a donor. Previous synthetic transplants were created from a patient's body tissue or a segment from a donor organ.


Higgs boson particle

n July 4, 2012, scientists at the CERN laboratory in Switzerland found a particle that could be the Higgs boson, a subatomic particle theorized to be responsible for the fact that objects have mass. In the 1970s, its existence was proposed by Peter Higgs and François Englert. Although the found particle is yet to be confirmed as the Higgs boson, Higgs

SMARTPHONE The first iPhone was made mostly of aluminum and had a simple design, which quickly became iconic.

2008 The bankruptcy Brothers bank is the start of a worldwide financial crisis. 2009 Barack Obama becomes the first African American to be elected president of the US.

HIGGS BOSON PARTICLE The Large Hadron Collider is a huge machine in which particles were smashed together to find the Higgs boson.

and Englert were awarded the Nobel Prize in Physics in 2013 for its likely discovery.

Fuel from plastic

Azza Abdel Hamid Faiad

nwanted plastics can be difficult to get rid of. They can be buried or partially recycled, but they often end up in the sea, which leads to catastrophic consequences for wildlife and the environment. In 2011, a 16-year-old Egyptian student won a prize at the EU Contest for Young Scientists for her way of turning plastics into fuel. Using an aluminosilicate catalyst, she transformed trash into methane, propane, and ethane. She estimated that the fuel generated from Egypt's plastic waste could be worth up to \$78 million a year.

2010 Starting in Tunisia, demonstrations and protests, the "Arab Spring," challenge the governments of the Arab world.

Life in the deep

Mark Lever

Life, it seems, can exist almost anywhere there is water. A team of scientists led by Mark Lever studied rock samples from the crust under 1.6 miles (2.6 km) of ocean and 1,150– 1,900 ft (350–580 m) below the seabed. Even with no light, oxygen, or nutrients, there were living microbes present, seeming to live off energy from chemical reactions between rock and water. Similar life-forms may live on other planets.

Earth-like planets

Erik A. Petigura, Andrew W. Howard, Geoffrey W. Marcy

In 2013, astronomers studying data from NASA's Kepler space telescope discovered more than 3,000 possible

2011 The population of Earth exceeds billion. It is predicted to reach billion by 2024. planets outside our solar system. Many of these were found to orbit at the right distance from their stars to support Earth-like temperatures that could make them habitable for life.

Reusable rocket

Elon Musk

Traveling into space is L expensive. Much of the cost goes toward the enormous rocket needed to escape Earth's gravity, and once this has done its job, it becomes space junk. In 2011, the entrepreneur Elon Musk set up SpaceX to develop a rocket that could return to Earth and be used again. He reached his first milestone in December 2015, when the exhausted first stage of a Falcon 9 rocket flipped itself around to land vertically near the launch site.

Smart speaker

Amazon.com

Ever since the talking computer HAL in the 1968 film 2001: A Space Odyssey, people have dreamed of a machine they could speak to and get a response from. The first machine to get close was Apple's iPhone, with its Siri assistant, in 2011. Amazon's Echo brought the idea into the home. Responding to the wake word "Alexa," it can control almost anything around the house, including heating and lighting.

Demis Hassabis

In 1997, a computer called Deep Blue played against the world chess champion, Garry

2014 Malala Yousafzai shares the Nobel Peace Prize, becoming the youngestever winner at the age of 17. Kasparov, and won. This was impressive, but 20 years later, an artificial intelligence system called AlphaGo beat Lee Sedol, the world's best player of a far more difficult game called Go. The system amazed onlookers by making moves never seen before in the game's 2,500-year history.

Humancarrying drone

EHang

Highly efficient batteries and electric motors make it possible to build machines that fly in a new way, using four or more small, high-speed rotors instead of fixed wings or one large, slower rotor. These machines—known as drones come in all sizes but do not usually carry people. At the 2016 CES® in Las Vegas, the Chinese drone-maker EHang showed EHang 184, the first commercial machine designed to carry a passenger.

James Webb Space Telescope

American, European, and Canadian space agencies

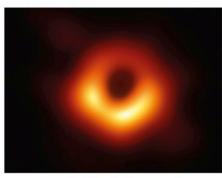
The biggest space telescope ever built, the James Webb, dates back to 1996 but is not yet in space. The project got its final green light in 2018. Its mirror—18 hexagonal segments that unfold to 21 ft (6.5 m) wide after launch—dwarfs those of previous space telescopes. Its four instrument systems, using mainly infrared light, will soon enable us to see stars and planets currently beyond our reach.

JAMES WEBB SPACE TELESCOPE Engineers check the telescope after testing the primary mirror.

2018 Technology company Apple becomes the first company to be valued at \$1 trillion.

Black hole image

Astronomers worldwide


A black hole is a region in space with gravity so strong even light can't escape. In 2019, astronomers put together a global network of radio telescopes. They then used an algorithm developed by computer scientist Katie Bouman to produce a picture of the superheated gas at the edge of a supermassive black hole. It was hard evidence that black holes, predicted by Albert Einstein in 1915, actually exist.

Ultra-highspeed video

2019

Feng Chen, Lidai Wang

Most high-speed video cameras capture separate frames. But by allowing frames to overlap and tagging them so they could be separated later, Feng Chen and Lidai Wang

BLACK HOLE This image is a composite, made up of many different images all put together.

managed to get their camera up to nearly four trillion frames per second. At this speed, the motion of individual light pulses can be seen in detail.

Mars probes 2020

UAESA, NASA, CNSA

Hope, the Arab world's first mission to Mars, will launch from Japan in 2020 to track the escape of hydrogen and oxygen from the planet's atmosphere. In the same year, NASA will launch a Mars probe to search for signs of past life, while China plans to send an orbiting spacecraft plus a rover.

2020 Following a referendum held in 2016, the UK leaves the European Union on January 31.

INTO THE FUTURE The best part of this book remains unwritten—because it hasn't happened yet.

Index of inventions & discoveries

clay tablet book 25

clepsydra 33

clear adhesive tape 194

AB

aberration of light 101 achromatic lens 101 acupuncture 26 adder-lister 156 adding machine 122 aerosol 187 agriculture 10, 12-13 air brake 147 air-conditioning 173 airbag 213 airplane 175 airship 139 albumen print 137 alchemy textbook 70 algebra 58 algebraic notation, modern 84 alphabet 35 AlphaGo 251 aluminum 124, 158 amalgam filling 124 Amazon Echo 251 amber, attraction of objects to 37 ambulance 113 anesthetic 136 Andromeda galaxy 64 anemometer 74 aniline dye 141 anti-g flying suit 205 antiseptics 145 Aqua-Lung 207 arc light 118 arch 27 Archimedean screw 36 Archimedes's principle 47, 48-49 argon 164 armor 33 artificial: neural network 222; satellite 218: silk 156 aspirin 168 assembly line 181, 182-183 asteroid 116 astrolabe 60 astronomical observatory 52 athletic shoes 211 atom, structure of 184 atomic: bomb 208; clock 214 theory 45; weights 118 automatic keyboard instrument 78 automatic telephone exchange 161 automaton 44 ax 15 Babbitt metal 133 Babylonian calendar, improved 43 bacteria 95 ballistic missile 206 ballpoint pen 201 barbed wire 149 barometer 91 barrel vault 29 basket weaving 16 bathroom 29 battery 116 BC and AD dates 60 bell chime 29 Bernoulli effect 103 beryllium 114 bicycle 156; hub gear 156 bifocal eyeglasses 110 Big Bang theory 189 bikini 208 binary electronic computing 205 binary system 95 biological clock 189 biological molecular motor 246 black hole 184; image of 251 blast furnace, improved 105 block printed book 60 blood groups 173 blood pressure, measurement 102 bloomers 140 boat 15; built from planks 21

Bode's Law 108 book carousel 83 book with pages 59 Boolean algebra 140 boomerang 9 botanical garden 80 bottle cork 82 bow and arrow 8 Boyle's law 93 bra 184 Braille 127 brass 32 Breathalyzer 214 brick 17 bridge for boarding ships 47 bronze 20 bubble gum 190 bubblewrap 221 bubonic plague agent 164 button-up shirt 195 buttonhole 69 С cable car 149

calculus 96 calendar 21 camel 34 camera obscura 81 can opener 140 canal lock 71 candle 20; flame, structure of 88 canning 118 cannon 70 capillaries 92 car 157 carbon dating 210 carbon dioxide 105 carbon fiber 224 carbon nanotube "muscle" 246 carbonated drinks 108 carillon 78 carpenter's brace 71 carpet 27 cash register 154 CAT scanner 229 cat's whisker 176 cat's eyes 197 catapult 43 cataract operation 58 cathode ray oscilloscope 166 cause of AIDS 235 cave painting 8 celestial spheres 44 cell: as the basic unit of living things 132; nucleus 127 cellular address code 233 cell phone 232, 250 celluloid 148 Celsius scale of temperature 103 central heating 41, 185 centrifugal governor 111 chain mail 51 chain store 51 chain saw 189 chair 26 champagne 94 chariot 29 chemical nerve mechanism 218 chemistry, modern 112 chewing gum 147 chisel 11 chlorofluorocarbons 190 Christmas card 135 chromatic harp 116 chromatic keyboard 70 chromium 114 chromosomes, function of 176 cinema 164 Cinemascope 191 circulation of the blood 89 city 18 clarinet 97 clavichord 71

clinical thermometer 145 cloned endangered animal 247 clouds names for 117 coal 45 cobalt 101 cobalt blue 36 code breaking 73 coded correspondence 43 color: film 198; photography 177; television 213 comet Hale-Bopp 242 communications satellite 222 compact disc 235 complex numbers 80 compound microscope 85 compound pulley 47 compound steam engine 118 compressed air 46 comptometer 158 computer architecture 208 computer mouse 226 computer program 135 condensed milk 141 conditioned reflex 167 condom 82 conductive plastics 231 conservation of energy 135 continental drift 181 convection heating 89 cookbook 45 copper 14 corset 32 cosmetics 21 cosmic rays 181 cotton 21 cotton gin 114 crank 58 cream separator 151 crossbow 43 cryptographic frequency table 78 cutting holes in the skull 10 cyclonic vacuum cleaner 235, 238-239 cylinder printing press 119 Cyrillic alphabet 63 D dam 25 dance notation 75 dark matter 227 DDT 204 decimals 83 deep-sea life 250 dice 30 dictionary 89 diesel engine 166 differential gear 126 diffraction of light 94 digital logic design 205 digital cell phone 240 dinosaurs 134 disc brake 173 dishwasher 158 disposable diaper 222 disposable TV camera 241 dividing engine 107 diving: bell 101; suit 122 division of labor 109 DNA 149; bacterial sequence 242; fingerprinting 236; function of 207; structure of 214, 216-217 dog 10 Dolby noise reduction system 226 Dolly the sheep 243, 244-245 dome 56 domestic food mixer 184 Doppler effect 134 Down syndrome, cause of 221 drill 7 drum 15

dry cleaning 123 dry photographic plate 149 dust-free builder's chute 236 dynamite 147 dynamo 148

EFG ear: semicircular canals 158

earth, air, fire, and water 41 Earth size of 47 structure of core 199 earthquake detector 57 electric: motor 128; razor 190; starter 181; train 154; tram 154; washing machine 180 electromechanical computer 206 electrocardiogram 175 electroencephalograph 191 electrolysis of water 116 electromagnetic induction 127 electromagnetism 123 electron 167; microscope 196 electronic: computer 208; flash 194; music synthesizer 225; telephone exchange 225 electroplating 133 engraving tool 8 epicyclic universe 58 epoxy resin 200 error-correcting code 211 escalator 168 Esperanto 159 espresso coffee 200 Euclidean geometry 45 evolution by natural selection 142 expanding universe 188 factory 108 false eyelashes 210 fertilizer from the air 181 fiber, super-tough 248 film soundtrack 188 fingerprinting 168 fire: making 11; use of 7 firearms 71 fireplace 65 fireworks 64 fishhook 8 flag 32 flamethrower 62 flax 11 flint mining 10 flintlock musket 87 floppy disk 228 flour from potatoes 103 fluorspar 80 flush toilet 84 flute 51 flying actor 42 flying shuttle 102 flywheel 74 FM radio 196 folding fan 61 formal logic 45 formula for area of triangle 57 FORTRAN 219 Foucault's pendulum 139 four-stroke engine 150 fractal curve 159 Franklin stove 103 frequency-hopping radio 207 freezer pop 186 front-wheel drive car 196 frozen dessert 45 frozen food 187 fuel cell 133 fuel from plastic 250 full-color movie 195 full-length computergenerated movie 243 fullerenes 237 G proteins 234 gas: engine 142; lighting 113;

mantle 156 gases, as distinct from air 91 gaslight photographic paper 162 gasoline engine 157 gene: exons and introns 231; targeted sheep 247; that causes cystic fibrosis 240; therapy 240 genetic control of embryonic development 234 genetic engineering 229 genetically modified food 242 germs 146 glass 27; float 221; laminated 176 glassblowing 55 glasses (eyeglasses) 69 glider 140 global positioning system 232 gloves 32 Gothic arch 65 gramophone 159 graphical user interface 227 graphical web browser 241 gravity 97, 98-99 greenhouse effect 126 Gregorian calendar 82 grid-plan city 42 grindstone 16 groin vault 53 growing bone outside body 247 growth of new brain cells 243 gunpowder 63 gyroscope 140

Η

halftone: screen 162; woodblock print 79 Halley's comet 96 Hammond organ 197 hand ax 7 handles for tools 8 harp 24 harpsichord 74 heart: transplant 227; valves 47 heart-lung machine, use of 213 heat engine efficiency 124 heavy water 195 helicopter 199 helium: Earth 164; sun 147 Higgs boson particle 250 high-level computer language 213 high-temperature superconductors 240 high-voltage power transmission 160 hip replacement 224 holography 210 home security system, video 228 homegrown replacement organ 246 hormones 174 horse 28; collar 60 horse-drawn tram service 129 horseshoes 53 hot-air balloon 109 house 9 hovercraft 215 human anatomy: based on dissection 47; practical manual of 70; scientific study of 80 human-carrying drone 251 human genome 247 human-powered aircraft 231 hydrogen 107; balloon 110 hypodermic syringe 140

IJK

IBM PC 235 ice pop 186 ice skates 34 iced dessert 45 image converter for space 229 index to a book 88 inductance 128 induction motor 155 industrial robot 223 infinity of the universe 83 ink 27 inner ear mechanism of 139 insulin 186⁻ structure of 228 interchangeable parts 125 internet 236; retailing 243 iPod 248 iron 30; in building 41 iron bridge 109 iron plowshare 53 iron-framed printing press 116 iron-hulled ship 112 iron-tipped plowshare 35 irrigation 16 Jacquard loom 116 James Webb Space Telescope 251 jeans 149 jet engine 194 jointed fishing rod 59 Julian calendar 55 jump jet 226 kaleidoscope 119 Kevlar® 228 kidney transplant 214 kiln-fired pottery 19 kimono 62 knitted socks 42 knitting 34; machine 84 Kodak camera 160

IM

lace-making machine 118 Landlord's Game, The 176 laser concept 220 latent heat 106 lathe 24 laudanum 80 laughing gas 115 law of refraction 88 lawn mower 127 laws of: chance 100; heredity 145; motion 96; planetary motion 88; thermodynamics 137 lead 14; pipe 45 lead-acid battery 142 leaded gasoline 186 leather 16 leavened bread 26 Leclanché cell 146 leech neuron computer 247 Lego 220 lemonade 95 leprosy treatment 184 letterpress printing 75, 76-77 level 93 lever 24 Leyden jar 103 lie detector 176 life raft, practical 154 life table 93 light bulb 151 light, speed of 94 lighthouse 46; indestructible 105 lightning, electrical nature of 105 linoleum 143 linotype typesetting machine 158 lipstick 184 liquid air 164 Liquid Paper™ 219 liquid-fueled rocket 188 lithography 114 lock 30 lock-stitch sewing machine 136 logarithms 88 long-distance telephone cable 162 long-playing record 210 longitude at sea, finding 106 loom 16 lost-wax casting 26 lubricants 21 lyre 24 macadamized road 126 magnet 34 magnetic: compass 37; poles 69; recording 168; resonance

imaging 231 magnetism of Earth 85 magneto 128 mail order 160 malaria, and mosquito 167 male and female plants 31 mammals from eggs 125 margarine 147 Mars: life on 243; polar caps 94; probes 251; rotation of 92; water on 249 Mars bar 196 mass production 117 match 126 mathematics of the rainbow 69 math for fun 87 mechanical clock 65 mechanical equivalent of heat 137 mental hospital 64 Mercator map projection 82 mercury 45; thermometer 101; vacuum pump 145 metabolism, study of 88 metal: casting 18; coins 37; movable type 73; printing plate 75 mezzotint engraving 91 microphone 151 microprocessor 228 microscope condenser 149 MicroStar air reconnaissance vehicle 243 microwave oven 209 milking machine 143 mine clearance, low-cost 250 miners' safety lamp 119, 120-121 minicomputer 226 MiniDisc 241 mining 7 miniskirt 225 mirror 27 Monopoly 198 monorail 173 monotype typesetting system 157 moon craters 87 moons of Jupiter 87, 248 Morse code 129, 130-131 mortise and tenon joint 14 mosaic 46 motorcycle 156 motor scooter 209 movable type 64 moving picture 163 MP3 compression standard 246 Möbius strip 147 mule 42 mule spinning machine 109 multiple fire tube boiler 126 multiple-unit electric train 167 multistage rocket 175 multistage steam turbine 156 music type 80 musical notation 64 musical ratios 37, 38-39 Myers-Briggs Type Indicator® 208 NO

navigation chart 69 neon sign 181 Neptune 136 nerve impulses: electrical nature of 137; speed of 137 New World, the 78 news bulletin 55 newspaper 87 nitroglycerine 137 non-Euclidean geometry 123 nuclear: fission 204; power station 214; reactor 207 numbers in tens, writing 20 numerals, modern 68 nylon 201 oars 34 occupational disease 81 Ohm's law 126 oil lamp 35 oil painting 74

oil well 142 olive 18 open-hearth steel making 143 opium 18 Orion nebula 87 oven 10 oxygen 108 ozone 134; layer damage 230

Ρ

pack mule 18 package vacation 134 paddle wheel 62 paintbrush 9 painting with wax 24 paper 55; boat 147; money 64 papyrus 24 parabolic path of a projectile 90 parachute 110 parchment 28 parity violation 218 Parkesine 144 parking meter 199 particle accelerator 196 pasteurization 145 paved road 30 peep show 74 pen nib 44 pencil 82 pendulum: clock 92; constant swing of 82 penicillin 190, 192-193 penny-farthing bicycle 148 Penrose triangle 219 periodic table 148 personal computer 232 perspective 73 Perspex 197 PET scanner 230 phlogiston theory of combustion 97 phosphorus 94 photographic motion capture 151 photography 132 photosynthesis 109 phototypesetting 164 piano 100 pickproof lock 110 pineapple 79 pipe organ 50 piston 52 planets, Earthlike 250; oldest 249 plant groups, two separate 100 plant growth hormones 188 plastic drink bottle 230 plastic wrap 211 platinum 112 pleasure center in the brain 214 plow 16; with wheels 60 plutonium 205 pneumatic tire 160 pocket calculator 229 Polaroid 191; camera 211; color photograph 224 polio vaccine 213 polonium 168 polyethylene 197 polyethylene terephthalate 206 polypropylene 214 polystyrene 133 pop-up toaster 188 porcelain 62 Portland cement 124 Post-it note 234 postage stamp 134 PostScript page description language 237 potato 28 potter's wheel 19 pottery 9; painted 14 power loom 111 prestressed concrete 191 precession of the equinoxes 53 precision boring machine 109 prefabricated building 139 pressure cooker 96

pressurized aircraft cabin 200 printed circuit board 206 printer's type case 69 printing ink roller 113 printing telegraph 140 proof of Fermat's last theorem 243 propaganda dropped from air 68 protozoa 94 Prozac 240 public: broadcasting service 185; electricity supply 154; hospital 60; steam railroad 124 public-key cryptography 231 puddling process for wrought iron 111 Pullman sleeping car 145 pulsar 227; binary 230 pulse code modulation 200 nunctuation 51 push-button phone 224 Pythagoras's theorem 37

OR

quantum theory 169 quarks 225 quasar 222 quill pen 60 quinine 123 rabies vaccine 157 radar 198 radiation from uranium 165 radio astronomy 194 radio communication 164 radio waves 160 radium 168, 170-171 railroad locomotive 117 railroads in mines 81 ramp 24 resealable plastic bag 224 reaping machine 125 recording on wax 158 red blood cells 92 reflecting telescope 93 reflex 129 refrigerator 139 repeating watch 96 reusable rocket 251 revolving stage 91 Richter scale 199 rigid airship 169 ring-pull can 226 river tunnel 135 road 19 rocket 69 roller skates 144 roman type 75 rope 9 rotary internal combustion engine 218 rotary quern 36 rubber 102 ruby laser 222 rudder 68 running water 32 S

saccharin 154 saddle 46 safety: fuse 128; lift 140; pin 50; razor 173 sail 19 sailboard 228 sari 52 satellite cell phone 246 saw 30 scales 17 scanning microscope: electron 206; tunneling 235 scientific botany 46 scientific names for plants 105 scissors 57 Scrabble 195 screw 56 screw press 54 screw-cutting lathe 114 scurvy, prevention of 105 seal 16

seat belt 221 secret writing 32 seed drill 97 self-adhesive dressing 186 self-cleaning glass 248 self-trimming candle wick 124 semaphore telegraph 114 semiconductor integrated circuit 220 sensory and motor nerve fibers 119 sexagesimal number system 31 sextant 102 shadow clock 36 shape memory alloys 223 sheep 11 ship 31; propeller 132 shoes 33; sizes 69 shop 37; scales 94 shorthand 54 SI units 222 sickle 14 signs of the zodiac 42 silicon solar cell 206 silk 27 silver 17 silver-plated tableware 103 single-rotor helicopter 204 skis 28 skyscraper 158 sliced bread 191 slide rule 90 sling 31 slip casting 103 smallpox vaccine 115 smallpox, diagnosing 63 smelting iron with coke 89 smartphone 250 soap 58 soccer 51 socks 35 sodium and potassium 118 solar eclipses, cause of 41 solar hydrogen 144 solar still 226 solar system 80; stability of 111 sound radio 177 sound recording 150 southern star constellations 84 space: flight 224; shuttle 235; station 230 spark plug 174 spear thrower 8 spectroscope 142 speech center in the brain 143 speech synthesizer 113 sphere, surface area/volume 50 sphygmomanometer 166 spinning jenny 106 spoked wheel 31 spreadsheet software 233 stage lighting 81 stained-glass window 62 stainless steel 181 standardized Chinese writing 50 stars: composition 187; magnitudes 53; naming of 86 stealth aircraft 235 steam: aeolipyle 57; bus 128; engine 100; engine, highpressure 117; engine, improved 107; hammer 134; ship 112; sterilization of surgical instruments 158; tractor 107; tricycle 160 steam-powered airplane 162 steel 52 stem cells, separation of 241 stereophonic sound 196 stereoscope 129 stereotype 101 stethoscope 122 Stirling engine 122 stirrups 53 stone: buildings 24; tools 7 stove 78

stratigraphy 115

street lamp 56 street sweeper 168 striking clock 70 Subbuteo 210 submarine 88 sulfonamide drugs 196 sunspot cycle 135 suntan lotion 199 supercomputer 230 superfluidity 200 Superglue 219 supermarket 194; cart 200 supermassive black hole 240 supernova 82 superphosphate fertilizer 122 surgical: gloves 162; mask 166 swing, child's 32 sympathetic nervous system 58 synthetic: alizarin 148; diamonds 215; organ transplant 250; rubber tires 194; virus 249

TU

tabulating machine 161 tapestry 61 tea 26; tea bag 180

tea-making alarm clock 174 teddy bear 174 Teflon 201 telegraph 129 telephone 150, 152-153 telescope 87 television 200, 202-203 tennis 71 test-tube baby 232 tetanus immunization 162 theater scenery 41 theory of relativity 176, 178-179 theory of shadows 86 theory of vision 64, 66-67 theremin 186 thermos flask 176 thermoscope 84 thermostat 86 35mm camera 187 3-D graphics computer 236 three-field system 65 three-phase electricity supply 155 threshing machine 112 thyroid gland, function of 154 tin can 54 titanium 113 tongs 31 toothpaste in a tube 166

Banting, Frederick 186, 205 Bardeen, John 210

topiary 56 tower windmill 73 trading 15 traffic signal 186 tram 50 trampoline 200 transatlantic telegraph 141 transistor 210; single atom 248 transit of Venus 91 triangle of forces 83 trigonometry 53 triode valve 176 trombone 74 trumpet 33 truss bridge 57 tungsten 110 tunneling shield 122 tunneling with explosives 96 Tupperware 209 turbine ship 167 turboprop airliner 214 two-stroke engine 151 type-rotating printing press 136 typewriter 150 ultraviolet light 116 umami 180 umbrella 90

uncertainty principle 190 underground railroad 144 university 43 uranium 112 Uranus 109

VW

vacuum bottle 162 vacuum cleaner 174 vacuum, strength of 92 valves in the veins 86 Van Allen radiation belts 220 Velcro 218 vending machine 56 Venn diagram 154 Venus 25 Vernier scale 90 video: game 229; recorder 218 viruses 163 viscose rayon 162 vitamins 177 vulcanized rubber 132 Walkman 233 watch 79 water: frame 107; turbine 126 water-powered iron works 73 waterproof cloth 123

Carlisle Anthony 116

Carlson, Chester 204

waterwheel 54 wave theory of light 97 welding 28 wet-plate photography 139 wheat and barley 11 wheel 19 wheelbarrow 56 wheeled vehicle 19 whistle 10 white light, composition of 100 wind-driven sawmill 84 windmill 61 Windows operating system 237 windshield wiper 175 woodcut 71 woodworking plane 54 word processor software 232 World Wide Web 240 writing 20, 21-22; brush 37

XYZ

X-rays 165 X-Y coordinates 90 xerography 204 Yale lock 144 zero to represent nothing 61 zero, systematic use of 62 zipper 164

Cranach, Lucas 79 Crawford, John 197 Cray, Seymour 230 Crick, Francis 214, 216-217 Cristofori, Bartolomeo 100 Crompton, Samuel 109 Cross, Charles 163 Ctesibius of Alexandria 46, 50 Cugnot, Nicolas 107 Cullen, Michael 194 Curie, Marie 168, 170-171 Curie, Pierre 168, 170-171 Curl, Robert 237

D

d'Ascanio, Corradino 209 D'Elhuyar, Fausto 110 D'Elhuyar, Juan 110 Daguerre, Louis 132 Daimler, Gottlieb 156, 157 Dalton, John 112, 118 Damadian, Raymond 231 Damiani, Philip 247 Daniel, Ralph 103 Darby, Abraham 109 Darby, Newman 228 Darrow, Charles 198 Darwin, Charles 142 Dassler, Adolf 211 Davenport, Thomas 128 Davis, Jacob 149 Davy, Humphry 115, 118, 119, 120–121 de Colmar, Thomas 122 de Ferranti, Sebastian 160 De Forest, Lee 176, 188 de la Condamine, Charles-Marie 102 de La Rive, Auguste 133 de Laval. Gustav 151 de Maricourt, Petrus Peregrinus 69 de Mestral, George 218 de Méziriac, Claude-Gaspar 87 de Moivre, Abraham 100 de Peiresc, Nicolas 87 de Roberval, Gilles 94 de Rochas, Alphonse Beau 150 de Vaucanson, Jacques 116 De Vick, Henry 65 de' Luzzi, Mondino 70 Delage, Yves 158 della Porta, Giambattista 81

Democritus 45

Index of inventors & discoverers

A

ab Aquapendente, Hieronymus Fabricius 86 Abbe, Ernst 149 Adams, Thomas 147 Ader, Clèment 162 Adleman, Leonard 231 Adolph, Peter 210 Aeschylus 41 Al-Kalka-shandi 73 al-Khwarizmi, Muhammad 58, 62 Alberti, Leon 73, 74, 78 Alfred Gilman 234 Alhazen 64, 66-67 Allbutt, Thomas 145 Allen, Bryan 231 Allen, John 200 Amazon.com 251 Anaxagoras 41 Anderson, French 240 Anderson, Mary 175 Andreessen, Marc 241 Ångström, Anders 144 Antheil, George 207 Appert, Nicolas 118 Archer, Frederick 139 Archestratus 45 Archimedes 47, 48-49, 50 Archytas of Tarentum 44 Aristophanes of Byzantium 51 Aristotle 45 Arkwright, Richard 107, 108 Armstrong, Edwin 196 As-Sufi 64 Aspdin, Joseph 124 AT&T 224, 225 Atala, Anthony 246 Atanasoff, John 205 Attaignant, Pierre 80 Ausnit, Steven 224 Autant-Lara, Claude 191 Avery, Oswald 207 Avlott David 210 Aylott, Eric 210

В

Babbitt, Isaac 133 Backer, Donald 249 Backus, John 219 Bacon, Francis 88 Baekeland, Leo 162 Bakken Farl 219 Ball, Alice 184

Barlow Peter 122 Barnack, Oskar 187 Barnard, Christiaan 227 Bauer Andreas 119 Bauer, Georgius 80, 81 Baughman, Ray 246, 248 Bayer, Johann 86 Bayliss, William 174 Beadle, Clayton 163 Beasley, Maria 154 Becquerel, Henri 165 Bednorz, Georg 240 Behring, Emil 162 Beijerinck, Martinus 163 Bell Labs 232 Bell, Alexander Graham 150, 152-153 Bell, Charles 119 Bell, Chichester 158 Bell, Jocelyn 227 Bell, Patrick 125 Bell, Thomas 124 Bénédictus, Édouard 176 Benz, Karl 157 Berger, Hans 191 Berliner, Emile 159 Berners-Lee, Tim 240 Bernoulli, Daniel 103 Bernoulli, Jakob 100 Berry, Clifford 205 Best, Charles 186 Bevan, Edward 163 Bezos, Jeff 243 Bi Sheng 64 Bickford, William 128 Binnig, Gerd 235 Birdseye, Clarence 187 Biró, Georg 201 Biró, Ladislao 201 Bissell, George 142 Black, Joseph 105, 106 Black, Lee 248 Blades, Herbert 228 Blanquart-Évrard, Louis 137 Blobel, Günter 233 Bloomer, Amelia 140 Blumlein, Alan 196 Bock Walter 194 Bode, Johann 108

Bohlin, Nils 221

Bolyai, János 123

Bohr Niels 184

Boole, George 140 Booth, Hubert 174 Bopp, Thomas 242 Borden, Gail 141 Borkenstein, Robert 214 Bosch, Carl 181 Bosch, Robert 174 Boulsover, Thomas 103 Boyer, Herbert 229 Boyle, Robert 93, 94 Bradley, James 101 Brahe, Tycho 82 Brahmagupta 61 Braille, Louis 127 Bramah, Joseph 110 Brand, Hennig 94 Brandt, Georg 101 Brattain, Walter 210 Braun, Ferdinand 166 Brearley, Harry 181 Brewster, David 119 Bricklin, Daniel 233 Bridgman, Percy 215 Briggs Myers, Isabel 208 Bright, Charles 141 Broca, Paul 143 Brown, Albert 228 Brown, Mike 250 Brown, Robert 127 Brunel, Isambard 135 Brunel, Marc 117, 122, 135 Brunelleschi, Filippo 73 Bruno, Giordano 83 Budding, Edwin 127 Buehler, William 223 Bunsen, Robert 142 Burdin, Claude 126 Burger, Rheinhold 176 Bürgi, Joost 88 Burgkmair, Hans 79 Burroughs, William 156 Bushnell, Nolan 229 Butler, Edward 156 Butts Alfred 195 C

Calgene Inc. 242 Calley, John 100 Callinicus of Heliopolis 62 Cambacères, J. J. 124 Campbell, Keith 243, 244-245 Campin, Robert 74 Canadian Space Agency 251 Cardano, Gerolamo 80

Carlsson, Arvid 240 Carnot, Sadi 124 Caro, Heinrich 148 Carolus, Johann 87 Carothers, Wallace 201 Carré, Ferdinand 139 Carrier, Willis 173 Carruthers, George R. 229 Cartwright, Edmund 111 Cassini, Gian 94 Cavendish, Henry 107 Caventou, Joseph 123 Cayley, George 140 Cello, Jeronimo 248 Celsius, Anders 103 Chabaneau, P. F. 112 Chain, Ernst 190, 192-193 Chang Heng 57 Chappe, Claude 114 Chardonnet, Hilaire 156 Charles, Jacques 110 Charnley, John 224 Chavannes, Marc 221 Chrétien, Henri 191 Christiansen, Godtfred 220 Citröen, Andrè 197 Clark, James 236 Clarke, Frank 174 Claude, Georges 181 Clausius, Rudolf 137 Clerk, Dugald 151 CNSA 251 Cochrane, Josephine 158 Cockcroft, John 196 Cockeram, Henry 89 Cockerell, Christopher 215 Cohen, Stanley 229 Colgate, William 166 Collins, Francis 240, 247 Columbus, Christopher 78 Colvin, L. O. 143 Cook, Thomas 134 Cook Briggs, Katharine 208 Cooke, William 129 Coover, Harry 219 Copernicus, Nicolaus 80 Cormack, Allan 229 Cornelisz, Cornelis 84 Cort, Henry 111 Corti, Alfonso 139 Courrèges, André 225 Cousteau, Jacques 207

Denner, Johann 97 Descartes, René 90 Devol, George 223 Dewar, James 162 Dickson, Earle 186 Dickson, James 206 Dickson, William 163 Diemer, Walter 190 Diesel Rudolf 166 Diffie, Whitfield 231 Dionysius Exiguus 60 Diophantus of Alexandria 58 Ditto Bill 247 Dolby, Ray 218, 226 Domagk, Gerhard 196 Doppler, Christian 134 Dow Chemical Company 211 Drake, Edwin 142 Drake, Jim 228 Drebbel, Cornelis 86, 88 Dressler, Alan 240 Drew, Richard 194 Du Bois-Reymond, Emil 137 Dudley, Dud 89 Dunlop, John 160 Durand, Peter 118 Dyson, James 235, 238-239

EF

Eastman, George 160 Eccles, John 218 Eckert, John Presper 208 Edgerton, Harold 194 Edison, Thomas 150, 151, 154, 163 Edwards, Robert 232 EHang 251 Einstein, Albert 176, 178–179 Einthoven, Willem 175 Eisler, Paul 206 11th General Conference on Weights and Measures 222 Ekeblad, Eva 103 Elkington, George 133 Empedocles 41 Engelbart, Doug 226, 227 Engelburger, Joseph 223 Englert, François 250 Epperson, Frank 186 Érard, Sébastien 116 Erasistratus of Ceos 47 Eratosthenes of Cyrene 47 Ericsson, John 132 Eriksson, Peter 246 Essen, Louis 214 Estridge, Don 235 Euclid of Alexandria 45 Eudoxus of Cnidus 44 European Space Agency 251 Evans, Oliver 117 Fahlberg, Constantin 154 Fahrenheit, Daniel 101 Faiad, Azza Abdel Hamid 250 Fallopius, Gabriel 82 Faraday, Michael 127 Farisi, Kamal 69 Fawcett, Eric 197 Felt, Dorr E. 159 Fermi, Enrico 207 Fessenden, Reginald 177 Field, Ben 145 Field, Cyrus 141 Fielding, Alfred 221 Fisher, Alva 180 Fitch, John 112 Fleischmann, Robert 242 Fleming, Alexander 190,192-193 Fletcher, Harvey 196 Florey, Howard 190, 192–193 Flourens, Marie 158 Flowers, Tommy 208 Focke, Heinrich 199 Ford, Henry 181, 182-183 Foucault, Jean 139, 140 Fourier, Joseph 123, 126 Fourneyron, Benoît 126 Fowler, John 144 Fox Talbot, William 132

Franklin, Benjamin 103, 105, 110 Franklin, Rosalind 214, 216–217 Franks, Wilbur 205 Frankson, Bob 233 Fraunhofer Institut 246 Fraze, Ermal 226 Freyssinet, Eugène 191 Frisch, Otto 204 Fry, Art 234 Fullen, Ray 240 Fulton, Robert 112 Funk, Casimir 177

G

Gabor, Dennis 210 Gagarin, Yuri 224 Gage, Fred 243 Gaggia, Achille 200 Gagnan, Émile 207 Gaius Duilius 47 Galen 58 Galilei, Galileo 82, 84, 87, 90 Galle, Johann 136 Galton, Francis 168 Gamow, George 189 Geber 70 Ged William 101 Gee, Cecil 195 Gell-Mann, Murray 225 General Electric Company 215 Geschke, Charles 237 Gesner, Conrad 82 Gibbon, John Jr. 213 Gibson, Reginald 197 Giffard, Henri 139 Gilbert, William 85 Gillette, King C. 173 Ginsburg, Charles 218 Glidden, Carlos 150 Glidden, Joseph 149 Glushko, Valentin 218 Goddard Robert 188 Godfrey, Thomas 102 Godowsky, Leopold 198 Goldman, Sylvan 200 Goldmark, Peter 210 Goodhue, Lyle 187 Goodyear, Charles 132 Gorrie, John 139 Gramme Zénobe 148 Graunt, John 93 Greathead, James 122 Gregor, William 113 Gregory, James 93 Groupe Spécial Mobile 240 Grove, William 133 Guido of Arezzo 64 Gurney, Goldsworthy 128 Gutenberg, Beno 199 Gutenberg, Johann 75, 76–77

Η

Haber, Fritz 181 Hadley, John 102 Hale, Alan 242 Hales, Stephen 102 Hall, Charles 158 Hall, Chester 101 Hall, John 125 Hall, Marshall 129 Halley, Edmond 96, 101 Hallidie, Andrew 149 Halsted, William 162 Hamming, Richard 211 Hammond, Laurens 197 Hancock, Walter 128 Hargreaves, James 106 Harington, John 84 Harrison, John 106 Harvard Bioscience 250 Harvey, William 89 Hassabis, Demis 251 Hawker Siddeley Aviation 226 Heathcoat, John 118 Heaviside, Oliver 162 Heeger, Alan 231 Heim, Jacques 208

Heisenberg, Werner 190 Hellman, Martin 231 Henlein Peter 79 Henne, Albert 190 Henry, Edward 168 Henry, Joseph 127, 128 Hero of Alexandria 56, 57 Herophilus of Chalcedon 47 Héroult Paul 158 Herschel, William 109 Hertz, Heinrich 160 Hess, Victor 181 Hetrick, John 213 Hewish, Antony 227 Higgs, Peter 250 Hill, Rowland 134 Hill, Rowland 197 Hillman, William 148 Hipparchus 52, 53 Hippodamus of Miletus 42 Hodgkin, Alan 218 Hodgkin, Dorothy 228 Hoe, Richard 136 Hoff, Ted 228 Hoffman, Edward 230 Hoffman, Felix 168 Hollerith, Herman 161 Honold, G. 174 Hooke, Robert 94 Hopkins, Frederick 177 Hopper, Grace 213 Horrocks, Jeremiah 91 Horsley, John 135 Horsley, Victor 154 Hounsfield, Godfrey 229 Howard, Andrew W. 250 Howard, Luke 117 Howe, Elias 136 Htai Tjong 73 Hubble, Edwin 188 Hughes, David 140, 151 Hulse, Russell 230 Hunt, Walter 136 Huxley, Andrew 218 Huygens, Christiaan 92, 97 Hyatt, John 148

IJ

IBM 228 Ingenhousz, Jan 109 Institute of Physics and Power Engineering 214 Iridium Satellite LLC 246 Ivanovsky, Dmitry 163 Ive, Jonathan 250 Jacob, Mary 184 Jacquard, Joseph-Marie 116 Jansky, Karl 194 Janssen, Hans 85 Janssen, Pierre 147 Jeffreys, Alec 236 Jenner, Edward 115 Jenney, William 158 Jewitt, David 248 Jobs, Steve 232, 248, 250 Johnson, Herbert 184 Joule, James 137 Joyner, Fred 219 Judson, Whitcomb 164 Julius Caesar 55

K

Kalmus, Herbert 195 Kapitsa, Peter 200 Kay, Alan 227 Kay, John 102 Kepler, Johannes 86, 88 Kettering, Charles 181 Keyser, Pieter 84 Kilby, Jack 220, 229 Kirchhoff, Gustav 142 Klaproth, Martin 112, 113 Kornendy, John 240 Korolyov, Sergey 218 König, Friedrich 119 Kroto, Harry 237 Kwolek, Stephanie 228

LM

Laënnec, René 122 Lamarr, Hedy 207 Lanchester, Frederick 173 Land, Edwin 191, 211, 224 Landsteiner, Karl 173 Langen, Eugen 173 Lanier, Jaron 240 Lanston, Tolbert 157 Lap-Chee Tsui 240 Laplace, Pierre-Simon 111 Larrey, Dominique 113 Larson, John 176 Lauterbur, Paul 231 Lavoisier, Antoine 112 Le Verrier, Urbain 136 Leclanché, Georges 146 Lee, William 84 Lefèbvre, André 197 Lehmann, Inge 199 Leibniz, Gottfried 95, 96 Lejeune, Jérôme 221 Lemaître, Georges 189 Lenoir, Étienne 142 Lenormand, Louis 110 Lerp. Emil 189 Levassor, Émile 157 Lever, Mark 250 Levy, Louis 162 Levy, Maurice 184 Levy, Max 162 Lewis, Edward 234 Libby, Willard 210 Licklider, J. C. R. 236 Lillienthal, Otto 140 Lind, James 105 Linnaeus, Carolus 105 Lippershey, Hans 87 Lister, Joseph 145 Lobachevsky, Nikolay 123 Lockheed Corporation 200 Lockheed Martin Corporation 235. 243 Lockyer, Norman 147 Lovelace, Ada 135 Lowe, William 235 Ludwik of Zamenh 159 Lumière, Auguste 164, 177 Lumière, Louis 164, 177 Macchiarni, Dr. Paolo 250 MacCready, Paul 231 MacDiarmid, Alan 231 Macintosh, Charles 123 Maddox, Richard 149 Magee, Carlton 199 Magie, Lizzie 176 Maiman, Theodore 222 Malpighi, Marcello 92 Mannes, Leopold 198 Marconi, Guglielmo 164, 185 Marcy, Geoffrey W. 250 Mariotte, Edmé 93 Marius, Simon 87 Mars, Forrest 196 Martin, Pierre 143 Mauchly, John 208 Maudslay, Henry 114, 117 Maxwell, James Clerk 160 Maybach, Wilhelm 157 McAdam, John 126 McCormick, Cyrus 125 McCreath, Kenneth 247 McEuen, David 248 McKay, David 243 McMullan, Dennis 206 Mège-Mouriés, Hippolyte 147 Meikle, Andrew 112 Meitner, Lise 204 Mendel, Gregor 145 Mendelevev, Dmitry 148 Mercator, Gerhard 82 Mergenthaler, Ottmar 158 Merlin, Joseph 144 Merryman, Jerry 229 Microsoft Corporation 237

Midgley, Thomas Jr. 186, 190

Miescher, Johann 149 Mills, Vic 222 Milner, Peter 214 Michtom, Morris 174 Molina, Mario 230 Montagu, Lady Mary Wortley 115 Montemagno, Carlo 246 Montgolfier, Étienne 109 Montgolfier, Joseph 109 Moog, Robert 225 Morgan, Garrett 186 Morgan, Paul 228 Morita, Akio 233 Morse, Samuel 129, 130-131 Morton, William 136 Moss, Henry 200 Moving Picture Experts Group 246 Möbius, August 147 Müller, Alex 240 Müller, Paul 204 Murdock, William 113 Murray, James 122 Murray, Joseph 214 Musk, Elon 251 Muybridge, Eadweard 151 Muzzey, David 223

N

Naito, Kakuji 224 Napier, John 88 NASA 230, 235, 249, 251 Nasmyth, James 134 National Television Systems Committee 213 Natta, Giulio 214 Nesmith Graham, Bette 219 Newcomen, Thomas 100 Newton, Isaac 96, 97, 98–99, 100 Nicholson, William 113, 116 Nissen, George 200 Nobel, Alfred 147 Noyce, Robert 220 Nüsslein-Volhard, Christiane 234

0

Ohl, Russell 206 Ohm, Georg 126 Olds, James 214 Olsen, Kenneth 226 Oppenheimer, Robert 208 Ørsted, Hans Christian 123, 124 Otis, Elisha 140 Otto, Nikolaus 150 Oughtred, William 90 Owen, Richard 134

PQ

Papin, Denis 96 Paracelcus 80 Parker, Alice 185 Parkes, Alexander 144 Parpart, Florence 168 Parry, Jack 214 Parsons, Charles 156, 167 Pasteur, Louis 145, 146, 157 Patterson, John 154 Paul, Aniko V. 248 Pavlov Ivan 167 Paxton, Joseph 139 Payne-Gaposchkin, Cecilia 187 Peano, Giuseppe 159 Pecqueur, Onésiphore 126 Pelletier. Pierre 123 Penrose, Lionel 219 Penrose, Roger 219 Pérignon, Dom 94 Perkin, William 141, 148 Petigura, Erik A. 250 Phelps, Michael 230 Philips Electronics 235 Phillips, Leslie 224 Piazzi, Giuseppe 116 Pickard, Greenleaf 176 Pierce, John 222 Pilkington, Alastair 221 Pisano, Leonardo 68 Pixii, Hippolyte 128

Planck Max 169 Planté Gaston 142 Plimpton, James 144 Plunkett, Roy 201 Polak, Julia 247 Pope Gregory XIII 82 Porzolt, Eugene 164 Poulsen, Valdemar 168 Pravaz, Charles 140 Priestley, Joseph 108 Pritchard, Thomas 109 Ptolemy 58 Pullman, George 145 Pupin, Michael 162 Pythagoras 37, 38-39 Quare, Daniel 96 Qutb ash-Shirazi 69

RS

Rabinowitz, David 250 Ralph Dan 249 Ramelli, Agostino 83 Ramsay, William 164 Ramsden, Jesse 107 Ray, John 100 Rayleigh, Lord 164 Réard, Louis 208 Reber, Grote 194 Reeves, Alec 200 Remsen, Ira 154 Richards, Paul 250 Richstone, Douglas 240 Richter, Charles 199 Richter, Curt 189 Riquet, Pierre 96 Ritter, Johann 116 Ritty, James 154 Riva-Rocci, Scipione 166 Rivest Ron 231 Roberts, Larry 236 Roberts, Richard 231 Rodbell, Martin 234 Roebuck Alvah 160 Rohrer, Heinrich 235 Rohwedder, Otto 191 Rømer, Ole 94 Rosenblatt, Frank 222 Ross Ronald 167 Rothheim, Erik 187 Rowland, Sherwood 230 Röntgen, Wilhelm 165 Rubin, Vera 227 Rubinstein, Seymour 232

Rusch Adolf 75 Ruska, Ernst 196 Sabin, Albert 213 Salk, Jonas 213 Sandage, Allan 222 Sanderson, Kevin 248 Sanger, Fred 228 Santorio, Santorio 88 Sarnoff, David 185 Savot Louis 89 Schawlow, Arthur 220 Scheele, Carl 108 Schick, Jacob 190 Schleiden, Matthias 132 Schmidt Maarten 222 Schönbein, Christian 134 Schueller, Eugène 199 Schwabe, Samuel 135 Schwann, Theodor 132 Schwarzschild, Karl 184 Schweitzer, Hoyle 228 Seaborg, Glenn 205 Sears, Richard 160 Seeberger, Charles 168 Séguin, Marc 126 Seifalian, Alexander 250 Semmelweis, Ignaz 145 Senefelder, Aloys 114 Serlio, Sebastiano 81 Serpollet, Leon 160 Shamir Adi 231 Shannon, Claude 205 Shao Yung 95 Sharp, Phillip 231 Shaw, Percy 197 Shaw, W. T. 156 Shen Nong 26 Sheppard, Scott S. 248 Shi Huangdi 50 Shibasaburo, Kitasato 162, 164 Shirakawa, Hideki 231 Shockley, William 210 Shoenberg, Isaac 200, 202-203 Sholes, Christopher 150 Siebe, Augustus 122 Siemens, William 143 Sigurdsson, Steinn 249 Sikorsky, Igor 204 Silver, Spencer 234 Simon, Eduard 133 Sinclair, Clive 229 Singer, Isaac 136

Smalley, Richard 237 Smeaton, John 105 Smith & Nephew Dyonics 241 Smith, Adam 109 Smith, Francis 132 Smith, William 115 Snell Willebrord 88 Sobrero, Ascanio 137 Sony Corporation 235, 241 Sophocles 42 Sostratus of Cnidus 46 Soulé, Samuel 150 Spencer, Percy 209 Sprague, Frank 167 Sprengel, Hermann 145 St. Fabiola 60 Stahl, Georg 97 Stanhope, Charles 116 Starley, James 148 Starley, John 156 Starling, Ernest 174 Steiff, Margarete 174 Stephenson, George 119, 120–121, 124, 126 Stephenson, John 129 Steptoe, Patrick 232 Stevens Nettie 176 Stevin, Simon 83 Stihl, Andreas 189 Stirling, Robert 122 Strauss, Levi 149 Strite, Charles 188 Strowger, Almon B. 161 Sturgeon, William 128 Su Sung 65 Sullivan, Thomas 180 Sundback, Gideon 164 Swammerdam, Jan 92 Swan, Joseph 151, 156 Symington, William 112

TUV

Tainter, Charles 158 Taveau, August 124 Taylor, Joseph Jr. 230 Taylor, Richard 243 Telkes, Mária 226 Tesla, Nikola 155 Thales of Miletus 37 The Walt Disney Company 243 Theophrastus 46 Theremin, Leon 186 Thomson, J. J. 167

Thomson Robert 160 Thomson William 137, 141 Thorsett, Stephen 249 Tiro, Marcus 54 Titius, Johann 108 Torelli, Giacomo 91 Torricelli, Evangelista 91 Townes, Charles 220 Train, G. F. 129 Trevithick, Richard 117 Trujillo, Chad 250 Tschunkur, Eduard 194 Tsiolkovsky, Konstantin 175 Tsukamoto Ann 241 Tull. Jethro 97 Tupper, Earl 209 UAESA 251 Urey, Harold 195 US Air Force 232 Vail, Alfred 129, 130-131 Van Allen, James 220 Van Brittan Brown, Marie 228 van Eyck, Jan 74 van Helmont, Jan Baptista 91 van Leeuwenhoek, Antoni 94, 95 van Musschenbroek, Pieter, 103 van Tassel, James 229 Vauquelin, Nicolas 114 Venn, John 154 Venter, Craig 247 Vernier, Pierre 90 Vesalius, Andreas 80 Vesconte, Petrus 69 Vickers Armstrong Aircraft 214 Viète, François 84 Vlutters, A. J. 236 Vlutters, G. H. 236 Volk, Magnus 154 Volta, Alessandro 116 von Baer, Karl 125 von Bergmann, Ernst 158 von Braun, Wernher 206 von Guericke, Otto 92 von Helmholtz, Hermann 137 von Kempelen, Wolfgang 113 von Kleist, Ewald 103 von Linde, Carl 165 von Mayer, Julius 135 von Mikulicz-Radecki, Johannes 166 von Neumann, John 208 von Ohain, Hans 194

von Siegen, Ludwig 91 von Welsbach, Carl Auer 157 von Zeppelin, Ferdinand 169

W

Walker, John 126 Walton, Ernest 196 Walton, Frederick 143 Wang Chen 69 Wankel, Felix 218 Warnock, John 237 Washburn, Edward 195 Waters, Elisha 147 Waters, George 147 Watson, James 214, 216-217 Watson-Watt, Robert 198 Watt, James 107, 111 Wegener, Alfred 181 Weischaus Eric 234 Went, Friedrich 188 Wertheimer, Max 176 Westinghouse, George 147, 155 Wheatstone, Charles 129 Wheeler, George 168 Whinfield, Rex 206 Whitney, Eli 114 Whittle, Frank 194 Wiles, Andrew 243 Wilkinson, David 114 Wilkinson, John 109, 112 Wilmut, Ian 243, 244-245 Wilson Edmund 176 Wimmer, Eckard 249 Wong-Staal, Flossie 235 Wood, Alexander 140 Woolf, Arthur 118 Wozniak, Stephen 232 Wright, Orville 175 Wright, Wilbur 175 Wu, Chien-Shiung 218 Wyeth, Nathaniel 230

XYZ

Yale, Linus 144 Yeates, Robert 140 Yersin, Alexandre 164 Zara, Antonio 88 Ziegler, Karl 214 Zimmerman, Tom 240 Zuse, Konrad 206 Zworykin, Vladimir 200, 202–203, 206

Picture credits & acknowledgments

The author would like to thank the staff at the Smithsonian: Kealy Gordon, Product Development Manager, Jill Corcoran, Director, Licensed Publishing; Brigid Ferraro, Vice President, Consumer and Education Products; Carol LeBlanc, President; National Museum of American History, Kenneth E. Behring Center; National Air and Space Museum. Also: Louise Pritchard and everyone at Bookwork, who made this book happen; plus Caryn Jenner for proofreading.

Skirlaw. Walter 73

The publisher would like to thank the following people for their help with making the book: Nimesh Agrawal for picture research and Jessica Cawthra for proofreading.

The publisher would like to thank the following for their kind permission to reproduce their photographs (Key: c=center; b=bottom; l=left; r=right; t=top) Courtesy of Apple: 249bl. Advertising Archives: 166bl, 180tc, 184br, 190tl, 193cl, 229cl. AKG London: 38cl, 56–57t, 71, 74t, 79tr, 83br; Erich Lessing 15tr, 18tr; Gilles Mermet 43tr; Instrumentmuseum, Berlin 116; Paris Bibliotheque Nationale 64tl; Postmuseum, Berlin 129cr. Alamy Images: ZUMA Press, Inc. 250bl. Alamy Stock Photo: EHT / Xinhua / Alamy Live News 251tr; Granger Historical Picture Archive 106br; Imaginechina Limited 55cra; Rocketclips, Inc. 229tr; Science History Images 37tr. Ancient Art & Architecture Collection: 39cr, 39br, 11tr, 24bl, 26br, 29cr, 32-33t. Antiquarian Images: 38tl. The Art Archive: 58; Biblioteca Nazionale Marciana Venice/Dagli Orti 52bl. Ashmolean Museum: 35c. Bradbury Science Museum: Los Alamos 208cra, 208cr. Bridgeman Images, London / New York: 86-87b, 105tl; Bible Society, London 59tr; Bibliotheque Nationale, Paris 69tr; Christie's Images, London 66tl; Down House, Kent 143cr; Giraudon 62tr; Natural History Museum, London 79tc. British Library: 22bl, 23br, 76bc. British Museum: 7r, 8l, 12tc, 16-17, 19, 22b, 22tl, 22tc, 22cl, 23tr, 24-25t, 26tl, 27, 30cl, 44t, 46br, 48tl, 49tr, 60bl. Corbis: 41bc, 59b, 70, 95br, 96cr, 98tl, 105b, 112-3, 140bl, 147tr, 183cr, 247b, 63cr, Martial Trezzini/EPA 250tc; Minnesota Historical Society 118cl. The Culture Archive: 134tr, 149cr. Danish National Museum: 53. Dreamstime.com: Pressureua 241b. Mary Evans Picture Library: 2-3t, 12cl, 31tr, 63bl, 66bl, 66bc, 80-81, 104, 131tr, 132bl, 135, 184c; Engraving by Emile Baynard 2tl, 6, 18br; Illustrated London News 2tc, 40. Football Museum: 51t. Linton Gardiner: 182bl3. Getty Images: Alfred Eisenstaedt / The LIFE Picture Collection 226clb; Daily Herald Archive / SSPL 193t; De Agostini / A. Dagli Orti 60-61t; Frans Lemmens 14-15b; Simon Dawson/Bloomberg 243; Thomas Koehler Photothek 228cb. Glasgow Museum: 202bc. Ronald Grant Archive: 20th Century Fox 236br.

Robert Harding Picture Library: 92bl; Dr. Denis Kunkel/Phototake NYC 95tr; Ellen Rooney 41t. Hulton Archive: 3tl, 3tc, 118–9, 138, 172. iStockphoto.com: Bbuong 102ca. Museum of London: 12tl. NASA: 249tl; JPL/Cornell 249l, 249br; Kepler Mission/Wendy Stenzel 250br; NASA/Chris Gunn 251bcr. Natural History Museum: 14bl. Peter Newark's Pictures: 76cla. Robert Opie Collection: 160tl, 195cl, 196, 198tl. Christine Osborne: 13r. Quadrant Picture Library: The Flight Collection 226–7. Royal Horticultural Society, Wisley: Lindley Library 21. Saint Bride Printing Library: 76clb. Saxon Village: Crafts 69ca. Science & Society Picture Library: 2tr, 4–5, 7c, 71, 8–9b, 10–11c, 10b, 16cl, 17tr, 20r, 24bl, 30–31, 33br, 34tl, 34–35, 37c, 42cl, 44bl, 45, 47, 52tr, 54b, 60r, 62cl, 65c, 67c, 68c, 73r, 73tl, 74–75, 75br, 78, 80cl, 80t, 82c, 82b, 84–85, 84tl, 85c, 86tl, 86–87cb, 88, 89tl, 89br, 90, 91tc, 91r, 92, 92–93, 93tr, 93c, 96tl, 97b, 99cr, 100bl, 101, 102–103b, 103cr, 106tl, 107br, 108-9, 109tr, 110-1, 111tr, 112tl, 114-5t, 115tr, 115c, 115b, 117, 119, 120cl, 120bl, 120bc, 121tr, 121br, 122-3, 124, 125cl, 125t, 126bl, 126-7, 128, 130cl, 131cr, 131bc, 132tl, 133cl, 133t, 134bl, 137c, 137t, 139tr, 139tc, 140c, 141, 144tl, 144-5, 145, 146b, 148-9, 149tc, 150tl, 150-1b, 152bl, 152tl, 152c, 153br, 154cl, 153cr, 154-5, 155tr, 156tr, 156cr, 156bl, 157, 159, 160-1, 161r, 162bl, 162br, 163tl, 163r, 164-5, 165cr, 166ca, 166-7, 168bl, 168-9, 169c, 169br, 170tl, 170bc, 170cl1, 170cl2, 171tr, 171br, 173tr, 173bl, 174bl, 175br, 176bl, 176br, 177, 178clb, 179tr, 180c, 181l, 181r, 182tl, 185tr, 185bl, 186b, 187, 188-9, 189br, 190-1, 191tr, 192cla, 192cl, 193br, 194-5, 195tr, 197br, 198br, 199cl, 200cb, 200-1b, 201, 202cl, 203tc, 203br, 205tl, 205br, 206tl, 208tl, 208tr, 209b, 210tl, 210br, 211, 213bc, 213cr, 214l, 215br, 215t, 218tl, 218–9, 219ca, 219cra, 220tl, 220–1b, 221tr, 222cl, 222bc, 224tc, 225l, 226tl, 228cr, 230tc, 230-1, 231tr, 232bl, 232-3t, 233tr, 233br, 234tr, 240tl, 240bc, 241tl, 242tl; Graseby Medical 186c; NASA 94, 188bl, 174-5. Science Photo Library: endpapers, 3tr, 48cl, 66tl, 178bc, 179cra, 189cr, 202cb, 203tr, 204tl, 207br, 212f, 216tl, 216tc, 217tr, 221ca, 223, 236t, 244cla, 244cl, 244cb, 244bc, 246, 247tr, 248bl; CNRI 242cb; Emilio Segre Visual Archives / American Institute of Physics 227tr; James M. Hogle, Harvard Medical School 248br. Statens Historika Museum: Stockholm 50-51. Superstock Ltd.: 46tl, 77tr. Topham Picturepoint: 245cr. TRH Pictures: 199tr. Art Directors & TRIP: 39tr, 85br, 236l, 33c. University Museum of Archaeology and Anthropology, Cambridge: 50br. University of Archaeology and Anthropology: 20c. Matthew Ward: 182bl1, 182bl2. Barrie Watts: 192bl1, 192bl2, 192bl3

All other images © Dorling Kindersley. For further information see: www.dkimages.com Illustrations by Peter Dennis.