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EDITOR'S PREFACE 

The volume you are holding is a rare treasure chest of old, once secret, 

and always useful things. It is also immortal-it will never go out of 

date. Thirdly, it is universal-a magical passport between cultures, 

sacred and scientific, provincial and foreign, ancient and modern. 

Six books from the Wooden Books series have been combined to 

produce Qjadrivium, plus 32 new pages for good measure. We have 

tried to minimize repetition due to overlap in the original books but a 

few instances ren1ain here and there. Also, since this is a transatlantic 

edition, we have opted for a mixture of English and American spelling 

and punctuation. If this upsets some readers, we apologize. 

A volume of this scope involves bringing together the work of many 

people. Thanks to Sally Pucill, Richard Henry, Adam Tetlow, John 

Michell,John Neal, Dr Paul Marchant, Robin Heath, David Wade, Dr 

Khaled Azzam, Malcolm Stewart, Polly Napper, Geoff Stray, Dr Moff 

Betts,John Neal, Prof Scott Olsen, Richard Heath, Matt Tweed, Mark 

Mills, ProfRobert Temple, Stephen Parsons, Nathan Williams, Charlie 

Dancey, and Tracey Robinson for their help and contributions. 

Thanks to the additional Wooden Books series editors, George 

Gibson of Walker & Bloomsbury in New York, and Daud Sutton in 

Cairo. Thanks finally to Prof Keith Critchlow for the foreword, and 

to the authors themselves, Miranda Lundy, Daud Sutton, Anthony 

Ashton, and Dr Jason Martineau. 

John Martineau 



The TETRATI<YS of the Pythagoreans augniented by the LAJ\fBDA 

of tl1e Tin1aeus. Plato kept three 1Jtt1nbers back, only revealing 
seven: 1, 2, J, 4, 8, 9, and 27, as related to the planets. 

Pebbles or khalix 1verc the Greek 11onnfot 1nathc111atics. 



FOREWORD 

The Qteadrivium was first formulated and taught by Pythagoras as the 

Tetraktys around 500 BC, in a community where all were equal, even 

materially and morally, and where women had equal status to men. It 

was the first European schooling structure that honed education down 

to seven essential subjects, later known as the seven liberal arts. 

Education comes from the Latin educe1'e meaning 'to lead out', 

pointing to the central doctrine that Socrates, under Plato's pen, 

elucidated so clearly-Knowledge is an inherent and intrinsic part 

of our soul structure. The Trivium of language is structured on the 

cardinal and objective values of Truth, Beauty and Goodness. Its three 

subjects are Grammar that ensures the good structure of language, 

Logic for finding truth, and Rhetoric for the beautiful use of language 

in expressing truth. The Q.!fadrivium arises out of the most revered 

of all subjects available to the human mind-Number. The first of 

these disciplines we call Arithmetic. The second is Geometry or the order 

of space as Number in Space. The third is Harmony which for Plato 

meant Number in Time. The fourth is Astronomy or Number in Space 

and Time. All these studies offer a safe and reliable ladder to reach the 

simultaneous values of the True, the Good, and the Beautiful. This in 

turn leads to the essential harmonious value of Wholeness. 

Our soul, which is proven to be immortal by Socrates in the Phaedo, 

comes from a position of complete knowledge prior to being born 

into the body. Re-membering-the point of education-literally 

means putting the separate members back into a wholeness. The goal 
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of studying these subjects was to climb back (up) to Unity through 

simplification based on the understanding gained by engaging in each 

area of the Qt!adrivium. The goal lay in finding their source (traditionally 

this was the sole purpose of the search for knowledge). 

In his discussions on the ideals of education, Socrates reveals his 

model of the continuity of consciousness. This was as a 'line' drawn 

vertically reaching from the beginnings of conscious knowledge in 

Estimations right up to the climax of consciousness as Noesis which is 

Unified Understanding. Beyond this is the indescribable and ineffable. 

There are significantly four stages (another quadrivium or Tetratkys) 

given by Socrates' division of the 'Ontological line'. The first division 

is between the Sensory world and the Intelligible world. These are 

fundamental, as between Mind and Matter. Next each of these is 

divided. This is where Estimations can be divided from Opinions~ 

even correct opinions but still based on sensory experience. Above 

the first divided line we move into the Intelligible world of the Mind 

and we find ourselves in the 'truth-bearing' realm of the Qt!adrivium. 

This is now objective knowledge. The final topmost division of the 

intelligible is Nous or Pure Knowledge itself where the knower, the 

known, and the knowing become One. This is the goal and source 

of all knowledge. Thus, time and wisdom tested, the Qt!adrivium 

offers the sincere seeker the opportunity to regain their own inner 

understanding, and the integral nature of the universe and themselves 

as an inseparable part. 
Arithmetic has three levels: the materially Numbered, Mathemati­

cians' Number (indefinite), and Ideal or Archetypal Number complete 
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at IO. Geometry unfolds in four stages: The non-dimensional point, 

which moves to become a line. This in turn moves to become a plane. 

Finally it achieves solidity as the tetrahedron. Harmony, which is equally 

the nature of the Soul, as Music has four 'scales'. The pentatonic, the 

diatonic, the chromatic, and the shruti. The word Cosmos was originated 

by Pythagoras, and means 'order' and 'adornment'. This last was their 

way of describing the heavens we see as being an 'adornment' of pure 

principles, the number of the visible planets relating to the principles of 

proportional harmony. The study of the 'perfection' of the heavens was 

a way of perfecting the movements of one's own soul. 

Students of the ~adrivium include; Cassiodonus, Philolaus, 

Timaeus, Archytus, Plato, Aristotle, Eudemus, Euclid, Cicero, Philo 

the Jew, Nichomachus, St. Clement of Alexandria, St. Origen, Plotinus, 

Iamblichus, Macrobius, Capella (the most entertaining version available), 

Dionysius the Areopagite, Bede, Alcuin, Al-Khwarizmi, Al-Kindi, 

Eriugena, Gerbert d 'Aurillac, the Bretheren of Purity, Fulbert, Ibn 

Sina (Avicenna), Hugo of St. Victor, Bernardus Silvestris, Bernard of 

Clairvaux, Hildegard of Bingen, Alanus ab Insulis, Joachim of Fiore, 

Ibn Arabi, Grosseteste (the great English scientist), Roger Bacon, 

Thomas Aquinas, Dante, and Kepler. 

We finish with a quote from the Pythagoreans, through the Golden 

Verses: "And thou shalt know that law ... established the inner nature 

of all things alike", and another from Iambilichus: "Not for your sake 

was the world (cosmos) generated-but you were born for its sake" 

Keith Critchlow 
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Gregor Reisch's sixteenth-century engraving showing Pythagoras using 

a medieval counting board to form the numbers 1,241 and 82 (right) 

while Boethius calculates using the lndhm numerals we arc familiar 

with today (left). In the center is Arithmetic, with the two geometric 

progressions r,2,4,8, and 1,3,9,27 appearing on her dress. 



SACRED 
NUMBER 

The Secret Qualities of Quantities 

Miranda Lundy 

with additional material by Adam Tetlow & Richard Henry 





INTRODUCTION 

What is number? How do we distinguish the one from the many, or, 
for that matter, the two from the three? A crow, disturbed by four men 

with guns going to hide under its tree, will fly away and carefully count 
them home again from a distance, one by one, tired and hungry, before 
returning safely to its nest. But five? Crows lose count at five. 

We all know certain things about certain numbers: six circles fit 
around one, there are seven notes in a scale, we count in tens, three 

legs make a stool, five petals form a flower. Some of these elementary 

discoveries are actually the first universal truths we ever come across, so 

simple we forget about them. Children on distant planets are probably 

having the same experiences of these elementary quanta. 

The science and study of number is one of the oldest on Earth, 

its origins lost in the mists of time. Early cultures wrote numbers 

in pottery markings, weaving patterns, notched bones, knots, stone 

monuments, and the numbers of their gods. Later systems integrated 

the mysteries under the magical medieval ~adrivium of arithmetic, 

geometry, music, and astronomy-the four liberal arts required for a 

true understanding of the qualities of number. 

All science has its origin in magic, and in the ancient schools no 

magician was unschooled in the power of number. These days the lore 

of sacred number has been usurped by a tide of quantitative numbers, 

not covered in these pages. BooK I of Qjadrivium is a beginner's guide 

to mystic arithmology, a small attempt to unveil some of the many 

secret and essential qualities of number contained within Unity. 
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THE MONAD 
one unity 

Unity. The One. God. The Great Spirit. Mirror of wonders. The still 

eternity. Permanence. There are countless names for it. 

According to one perspective, one cannot actually speak of the One, 

because to speak of it is to make an object of it, implying separation 

from it, so misrepresenting the essence of oneness from the start, a 

1nysterious conundrun1. 

The One is the limit of all, first before the beginning and last after 

the end, alpha and omega, the mold that shapes all things and the one 

thing shaped by all molds, the origin from which the universe emerges, 

the universe itself, and the center to which it returns. It is point, seed, 

and destination. 

One is echoed in all things and treats all equally. Its stability among 

numbers is unique, one remaining one when multiplied or divided by 

itself, and one of anything is uniquely that one thing. One is alone, all 

one, and no thing can exist to describe it. 

All things are immersed in the shoreless ocean of Unity. The 

quality of oneness permeates everything, and while there is nothing 

without it, there is also no thing within it, as even a co1nn1unication 

or idea requires parts in relationship. Like light from the Sun or 

gentle rain the One is unconditional in its love, yet its majesty and 

mystery remain veiled, and beyond apprehension, for the One can 

only be understood by itself. It is alone, all one, and no thing can 

exist to describe it. 

One is simultaneously circle, center, and the purest tone. 
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DUALITY 
opposites 

There are two sides to every coin, and the other side is where the 

Dyad lives. Two is the otherworldly shadow, opposite, polarized, and 

objectified. It is there, other, that not this, and essential as a basis for 

comparison, the method by which our minds know things. There are 

countless names for the divine pair. 

To the Pythagoreans, two was the first sexed number, even and 

female. To develop their appreciation of twoness, they contemplated 

pairs of pure opposites, such as limited-unlimited, odd-even, one-many, 

right-left, male-female, resting-moving, and straight-curved. We might 

also think of the positive and negative charge in electromagnetism, and 

the in-and-out of our breathing. 

The dyad appears in music as the ratio two to one, as we experience 

a similar tone an octave higher or lower, at twice or half the pitch. In 

geo1netry it is a line, two points, or two circles. 

Linguistically when speaking ofboth parts of something working as 

one we use the bi- prefix, as in bicycle or binary, but when the divisive 

quality of two is invoked, words begin with the prefix di-, thus discord 

or diversion. The distinction between self and not-self is one of the first 

and last we generally make. 

Modern philosophers, if they stop to think about twoness, can get 

little further than the ancients. All experience a left and a right, front 

and back, and up and down through two eyes and two ears. Men and 

women alike live under a Sun and a Moon, sometimes remembering 

how miraculously balanced they seem, the same size in the sky, one 

shining by day, the other by night. 
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THREE 
is a crowd 

Male in some cultures, female in others, three, like a tree, bridges heaven 

and earth. The Triad relates opposites as their comixture, solution, or 

mediator. It is the synthesis or return to unity after the division of two 

and traditionally the first odd number. 

The third leg of a stool gives it balance, the third strand of a braid 

makes a plait (knots can only be tied in three-dimensional space). 

Stories, fairy tales, and spiritual traditions abound with portentous 

threes, juggling past, present, and future with the knower, knowing, 

and the known. As birth, life, and death, the triad appears throughout 

nature, in principle and form. The triangle, trinity's most simple and 

structural device is the first stable polygon, defining our first surface. 

In music the ratios 3 :2 and 3: r define the intervals of the fifth and its 

octave, the most beautiful harmonies other than the octave itself, and 

the key to ancient tunings. Three is the first triangular number. 

The vesica piscis formed by two overlapping circles (opposite top left) 
immediately invokes triangles. An equilateral triangle in a circle defines 

the octave, so that the area of the ring (below left) is three times that of the 

small circle. Below center we see Archimedes' (287-212 Be) favourite 

discovery-the volumes of the cone, sphere, and drum are in the ratios 

one to two to three. 
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Q!JATERNITY 
two pairs 

Beyond three we enter the realm of manifestation. Four is the first born 

thing, the first product of procreation, two twos. The Tetrad is thus 

the first square number other than one, and a symbol of the Earth and 

the natural world. 

Four is the basis of three-dimensional space. The simple solid 

known as the tetrahedron, or 'four facer', is made of four triangles, or 

four points or spheres and is as fundamental to the structure of three­

dimensional space as the triangle is to the plane. 

Four is often associated with the material modes of manifestation, 

Fire, Air, Earth, and Water, and a square around a circle defines a 

heavenly ring whose area is equal to the enclosed circle (opposite top right). 
The solstices and equinoxes quarter the year, horses walk on four legs, 

and other earthly fours abound. 

Four as static square is echoed by the dynamic cross. The interplay of 

cross and square is encoded within the traditional rite of orientation for a 

new building, where the sunrise and sunset shadows from a central pillar 

give the symbolic east-west axis. The principle of quadrature is universal, 

appearing in ancient Chinese texts and the writings of Vitruvius. It 

survives today in the term quarters, referring to the districts of a city. 

All everyday matter is appropriately made of just four particles: 
protons, neutrons, electrons, and electron neutrinos. 

Four appears in music as the third overtone, 4: I, which is two 

octaves, and also as the ratio 4 :3, known as the fourth, which is the 

complement of the fifth inside the octave. 
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PH IVE 
life itself 

The quality of five is magical. Children instinctively draw fivefold 

stars, and we all sense its phizzy, energetic quality. 

Five marries male and female-as two and three in some cultures, or 

three and two in others-and so is the universal number of reproduction 

and biological life. It is also the number of water, every molecule of 

which is a corner of a pentagon. Water itself is an amazing liquid crystal 

lattice of flexing icosahedra, these being one of the five Platonic solids 

(below, second from right), five triangles meeting at each point. As such, 

water shows its quality as being that of flow, dynamism, and life. Dry 

things are either dead or they are awaiting water. 

Fives are found in apples, flowers, hands, and feet. Our nearest 

planet, Venus, goddess of love and beauty, draws a lovely fivefold 

pattern about Earth as she whirls around the Sun (opposite top left). 

Our most universal scale, the pentatonic, is made of five tones (the 

black keys on a piano), grouped into two and three. The Renaissance 

demand for intervals involving the number five, like the major third, 

which uses the ratio 5 :4, produced the modern scale. 

Five is the diagonal of a three-by-four rectangle. However, unlike 

threes and fours, fives disdain the plane, waiting for the third dimension 

to fit together to produce the fifth element. 
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ALL THINGS SIXY 
the hex 

The Hexad, like its graceful herald the snowflake, brings perfection, 

structnre, and order. The marriage by multiplication of two and three, 

even and odd, six is also the number of creation, with a cosmos made 

in six days a common theme in scripture. 

The whole numbers that divide other numbers are known as their 

factors, and most numbers have factors that sum to less than themselves, 

and so are known as deficient. Six, beautifully, is the sum and product 

of the first three numbers, and its factors are also just one, two, and 

three, these summing to six and so making it the first pe,fect number. 
The radius of a circle can be swung through its circumference in 

exactly six identical arcs to inscribe a regular hexagon, and six circles 

perfectly fit around one. After the triangle and square the hexagon is 

the final regular polygon that can tile perfectly with identical copies of 

itself to fill the plane. 

The three dimensions make for six directions: forward, backward, 

left, right, up, and down, and these are embodied in the six faces of a 

cube, the six corners of an octahedron and the six edges of a tetrahedron. 

Six occurs widely in crystalline structures such as snowflakes, quartz, 

and graphite, and hexagons of carbon atoms form the basis of organic 

chemistry. Just add water. 

The well-known Pythagorean 3-4-5 triangle has an area and a 

semiperimeter of six. Six is also the pentatonic octave in music. 

Insects creep and crawl on six legs, and the honey bee arranges its 

dry, waxy secretions into an instinctive hexagonal honeycomb. 
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THE HEPTAD 
seven sisters 

Seven is the Virgin, standing qnite alone and having little to do with any 

of the other simple numbers. In music a scale of seven tones emerges as 

naturally as its sister five-tone scale. These are the white keys on the piano, 

producing the seven modes of antiquity, a universal pattern. Like all 

numbers, seven embodies the number preceeding it; spatially it functions 

as the spiritual center of six, as six directions emanate from a point in space, 

and six working circles surround a seventh restful one in a plane. 

The Moon's phases are widely counted in four sevens with a 

mysterious moonless night or two completing its true cycle. 

Our eyes perceive three primary colours of light-red, green and 

blue-which combine to produce four more-yellow, cyan, magenta 

and white. According to the ancient Indians, a vertical rainbow of 

seven subtle energy centers, or 'chakras', runs up our bodies. Today we 

understand these as the seven endocrine glands. 

The seven planets of antiquity, arranged in order of their apparent 

speed (opposite, upper center), make amazing connections with metals 

(opposite, upper left) and the days of the week (opposite, 11pper right): Moon­

)-silver-Monday, Mercury-~-quicksilver-Wednesday, Venus-~­

copper-Friday, Sun-0-gold-Sunday, Mars-O-iron-Tuesday, Jupiter­

+-tin-Thursday, and Saturn-)-lead-Saturday (see too page 305). 
There are seven frieze symmetries, seven groups of crystal structures, 

and seven coils in the traditional labyrinth (all shown opposite). 
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EIGHT 
a pair of squares 

Eight is two times two times two, and as such is the first cubic 

number after one. As the number of vertices of a cube or faces of 

its dual, the octahedron, eight is complete. At the molecular level 

this is displayed by atoms, which long to have a full octave of eight 

electrons in their outermost shell. A sulphur atom has six electrons 

in its outermost shell, so eight atoms get together to share electrons, 

forming an octagonal sulphur ring. 

Within architecture the octagon often signifies the transition 

between Heaven and Earth, as a bridge between the square and the 

circle. A spherical dome often surmounts a cubic structnre by way of a 

beautiful octagonal vault. 

Eight is particularly revered in the religion and mythology of 

the orient. The ancient Chinese oracle, the I-Ching, is based on 

combinations of eight trigrams, each the result of a twofold choice 

between a broken or an unbroken line, made three times. Depicted 

opposite is the 'Former Heaven Sequence', said to represent the ideal 

pattern of transformations in the cosmos. Note how each trigram is the 

complement of its opposite. 

In religious symbolism, the eighth step is often associated with 

spiritual evolution or salvation. This may result from the fact that in a 

seven-tone scale the eighth note is the octave, twice the pitch of the first 

note, and so signals the movement to a new level. 

In the modern world, computers think in delightful units called 

'bytes', each made of eight binary 'bits'. 

All spiders have eight legs and all octopi have eight tentacles. 
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THE ENNEAD 
three threes 

Nine is the triad of triads, the first odd square number, and with it 

son1ething extraordinary occurs, for the first nine nu1nbers can be 

arranged in a magic square where every line of three in any direction 

has the same total (opposite center). This ancient number pattern was first 

spotted four millennia ago on the shell of a divine turtle emerging from 

the river Lo in China. 

Three tin1es three is one 111ore than two tin1es two tilnes two, and the 

ratio between nine and eight defines the crucial whole tone in music, the 

9:8 seed from which the scale emerges, as the difference between the two 

most simple harmonies in the octave, the fifth 3 :2, and the fourth 4:3. 

There are nine regular three-dimensional shapes: the five Platonic 

solids and the four stellar Kepler-Poinsot polyhedra (see BooK III). 

Nine appears in our bodies as the cross-section of the tentacle­

like cilia, which move things around our surfaces, and the bundles of 

microtubes in centrioles, essential for cell division (below). 
Nine is the celestial number of order, and many ancient traditions 

speak of nine worlds, spheres, or levels of reality. Cats know. They 

have nine lives, dress to the nines whenever possible, and seem to spend 

111ost of their tin1e on cloud nine, wherever that is. 

28 
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TEN 
fingers and thumbs 

The fact that humans have eight fingers plus two thumbs must have 

worked in ten's favour, as cultures as various as the Incas, the Indians, 

the Berbers, the Hittites, and the Minoans all adopted it as the base for 

their counting systems. Today we all use base ten. Ten is the child of 

five and two, and unsurprisingly the word ten derives from the Indo­

European dekm, meaning 'two hands'. 

Ten is particularly formed as the sum of the first four numbers, so 

r +2+ 3+4-ro, a fact of profound significance to the Pythagoreans who 

immortalized it in the figure of the Tetraktys (black dots, opposite center) 
and called it Universe, Heaven, and Eternity. As well as being the fourth 

triangular number, ten is also the third tetrahedral number (/owe,; opposite 
right), a fact that lends it great importance as a simultaneous building 

number of both two- and three-dimensional triangular form. 

Ten is formed from two pentagons and ten life-invoking pentagons 

sit perfectly around a decagon, and DNA, appropriately as the key to the 

reproduction of life, has ten steps for each turn of its double helix, so 

appears in cross-section as a tenfold rosette (opposite top left). 
There are ten Sephirotlz in the Jewish Kabbalah's Tree of Life (lower, 

opposite left) and tenfold symmetry was often used in Gothic archi­

tecture (opposite top right). 
Plato believed that the decad contained all numbers, and for most 

of ns today it does, as we can express just about any number we care to 

think about in terms of just ten simple symbols. 
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ELEVENSES 
measure and the Moon 

Eleven is a mysterious underworldly number-in German it goes by 

the appropriate name of Elf. Eleven is important as the first number 

that allows us to begin to comprehend the measure of a circle. This 

is because, for practical purposes, a circle measuring seven across will 

measure eleven halfway around (opposite top left). 
This relationship between eleven and seven was considered so 

profound by the ancient Egyptians that they used it as the basis for the 

design of the Great Pyramid. A circle drawn around the elevation of 

the Great Pyramid has the same perimeter as that of its square base. 

The intended seven-elevenfold conversion between square and curve is 

den1onstrated by nun1erous surveys. 

The ancients were obsessed with 1neasures, and the nu1nber eleven is 

central in their metrological scheme. Shown opposite is the extraordinary 

fact that the size of the Moon relates to the size of the Earth as does three 

to eleven. What this means is that if we draw down the Moon to the 

Earth, as shown, then a heavenly circle through the Moon will have a 

circumference equal to the perimeter of a sqnare around the Earth. This 

is called 'squaring the circle'. Q,,ite how the old drnids worked this out 

we may never know, but they clearly did, for the Moon and the Earth 

are best measured in miles, as shown. A double rainbow also magically 

sqnares the circle (see page 78). 

Eleven, seven, and three are all Lucas nu111bers, sisters of the 

Fibonacci numbers, new numbers forming from the smn of the previous 

two numbers. The Fibonacci sequence begins I, r, 2, 3, 5, 8, whereas the 

Lucas sequence begins 2, r, 3, 4, 7, II. 
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THE TWELVE 
heaven and earth 

Twelve is the first abu11daut number, with factors one, two, three, four, 

and six, sun11ning to n1ore than itself Twelve points on a circle can join 

to form four triangles, three squares, or two hexagons (opposite center). 
As the product of three and four, twelve is also sometimes associated 

with their sun11 seven. 

Twelve et~oys the third dimension and is the number of edges of 

both the cube and the octahedron. The icosahedron has twelve vertices, 

and its dual, the dodecahedron (literally 'twelve facer') has twelve faces 

of regular pentagons. Twelve spheres fit perfectly around one to define 

a cuboctahedron. We will meet these polyhedra later. 

In a seven-note scale, notes increase as a pattern of five tones and 

two halftones. In modern tuning the five tones are divided to create a 

scale of twelve identical halftones, the well-tempered twelve tone scale 

we all hear every day. 

Curiously, the next most simple Pythagorean triangle, after the 

three-four-five, has sides of five, twelve, and thirteen units. 

Twelve is often found arranged around a central solar hero, and there 

are many twelve-tribe nations. In ancient China, Egypt, and Greece, 

cities were often divided into twelve districts, and, of course, there are 

usually twelve foll moons in a year. 

The material universe is today understood as being made of three 

generations of four fundamental particles, twelve in all. 
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COVENS AND SCORES 
into higher numbers 

Thirteen, the coven, beloved of the ancient Maya, and central to the 

structure of a deck of cards, is a Fibonacci number expressed in the 

motions of Venus, for whom thirteen years is eight of our own, and lest 

you think it unlucky, remember the teacher of twelve disciples is the 

thirteenth member of the gang, as the thirteenth tone in the chromatic 

scale completes the octave. 

Fourteen, as twice seven, and fifteen, as three fives, each have unique 

qualities but begin to demonstrate how non-prime higher numbers tend 

to be perceived in terms of their factors. 

Sixteen is 2 x 2 x 2 x 2, the square of four (itself a square). 

Seventeen keeps many secrets. Both Japanese haiku and Greek 

hexameter consist of seventeen syllables, and Islamic mystics often refer 

to it as particularly beautiful. 

Eighteen, as twice nine and thrice six, and nineteen, a prin1e nun1ber, 

both have strong connections to the Moon (see page 42). 
Twenty, a score, the sun1 of fingers and toes, is a base in n1any cultures. 

Finger-counting, as in the exan1ple shown (opposite), was widespread in 

medieval European markets. In French eighty is still q11atre-vi11gt (four 

twenties) and the ancient Maya used a sophisticated base-20 system (glyphs 

for 1-19 shoiv11 below). 
There is not enough space here to cover every number in detail, but 

interesting facets of higher numbers appear in the glossary of numbers 

at the back of the book (see pages 364-366). 

. . . ... . ... ..... ····-------- ... . ... 
== 
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THE ()JJADRIVIUM 
the qualities of quanta 

Another word for a whole number is a qua11t11m and the QEadrivium is 

an education in the behaviour of simple quanta. The purest study of 

quanta deals in factors, ratios, triangular, square, and cubic nun1bers, 

prime and perfect nmnbers, and the way numbers appear in sequences 

like the Fibonacci and Lucas sequences. We will meet many of these 

ideas as we go along, but dividing the unity of space and time also 

throws light on to the nature of quanta in these media. 

For instance, opposite we see some of the limits placed by space 

on number. Allowing only perfect polygons there are three regular 

grids (opposite top left), five regular solids (top right), eight semi-regular 

grids (ceuter left) and thirteen semi-regular solids (ceuter right). These 

nun1bers, 3, 5, 8 and 13 are an interesting bunch, and vve will 111eet 

them again in this book. 

The numbers of music unfold as simple ratios between periods or 

frequencies (lower, opposite): r:r (unison), 2:r (the octave), 3:2 (the fifth), 

and 4:3 (the fourth). The frequency of the fifth differs from that of the 

fourth as 9:8 (the value of the tone which gives rise to the scale). 

The way number unfolds in space and time requires that we study 

the manifest cosmos, and the traditional subject of study here is the solar 

system. However, we could also add the beautiful simplicity of the 

periodic table, the quantum behavior of the subatomic realms, or the 

organisation of other natural phenomena with discrete elements. 

Numerical facts of space and time are universal. They may or may 

not play the same tunes in the nearest intelligent galaxy, but they will 

agree that fifths sound lovely, and recognize five simple solids. 
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GNOMONS 
ways of growing 

Aristotle observed that some things suffer no change other than 

magnitude when they grow. He was describing the principle the Greeks 

referred to as 'gnomonic growth'. Originally a term for a carpenter's 

tool, a gnomon is defined as any figure, which, when added to another 

figure, leaves the resultant figure similar to the original. Contemplation 

of the gnon1011 leads to an understanding of one of nature's 1nost con1n1on 

principles, growth by accretion. Structures such as bones, teeth, horns, 

and shells all develop in this way. 

The ancients had a general fascination with patterns and progressions 

created by whole-number ratios. Examples are triangular, rectangular, 

square, and cubic nnmbers (opposite top, and see too pages 358 and 367); also 

Plato's lambda, or la111bdoma, which produces the full range of musical 

ratios; and the proportional rectangles used in Greek design where each 

subseqnent rectangle is built on the diagonal of the previous one (opposite 
center). The Fibonacci sequence is a 111ore recent discovery, but relies on 

the same principle of gnomonic growth. The drawing below shows a 

cutaway cross section of the Aztec temple of Tenayuca, revealing five 

gnomic reconstructions, 1nade every 52 years, when their calendar, 

inherited from the Mayans, was reset and all buildings renewed. 
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TIME AND SPACE 
cosmology and manifest number 

Looking around us, there are numbers that particularly manifest in the 

heavens around Earth. These are covered in detail in BooK VI, but we 

will introduce a few here. There are, for instance, twelve full moons in a 

solar year, but the twelfth falls eleven days short of the end, which means 

that a twelve-moon year, like the Islamic calendar, slides slowly against 

the solar year, coming round again after 33 years, three elevens. 

Other Sun-Moon marriage numbers are r8 and 19; as eclipses repeat 

after 18 years, and full moon dates repeat after 19 years. Stonehenge 

displays this as 19 stones in its inner horseshoe. Two full moons occur 

every 59 days, and Stonehenge records this in its outer circle of 30 stones, 

one of which is half-width, suggesting 29.5 days per moon. 

Venus draws a fivefold pattern around Earth every eight years 

allowing ns to draw an amazing diagram (opposite center). In those eight 

years there are almost exactly 99 full moons, nine elevens, the number 

of names or reflections of Allah in Islam. Jupiter draws a beautiful 

elevenfold pattern around Earth (opposite top). 
The numbers of many longer cycles, such as the Great Year, or 

precession of the equinoxes, are also rich in secret qualities. Each great 

month, such as the Age of Pisces, or Aquarius, lasts 2,160 years, also the 

diameter of the Moon in miles. Twelve great months give the ancient 

Western value of 25,920 years for the whole cycle. 

The ancient Maya were superb stargazers. Their calendar syn­

chronized not just the Sun and Moon, but also Venus and Mars. They 

worked out that Sr (or 3 x 3 x 3 x 3) full moons occur exactly every 2,392 

(or 8 x 13 x 23) days, an astonishingly accurate gearing. 
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BABYLON, SUMER, AND EGYPT 
early number systems 

Around 3,ooOBC the Sumerians developed the earliest writing we know 

of, and with it a base-60 number system (see page 356). A particularly 

useful number, 60 is divisible by r, 2, 3, 4, 5, and 6. 

Working in base-60 gives number patterns different from our 

modern base-IO system; a Sumerian clay tablet impressed with a 

cuneiform, 'wedge-shaped', stylus shows the 36 times table opposite. 

Their base-60 system survives today as our measurement of cycles and 

circles with 60 seconds in a n1inute, 60 111inutes in an hour, or degree, 

and 6 x 60- 360 degrees in a circle. 

Ancient Egyptian numerals were made of characters standing for r, 

IO, 100, and so on. An example of Egyptian arithmetic is their method 

of multiplication, which uses repeated doubling followed by selective 

addition to find the answer. 

The ancient vision of nun1ber is a 1nusical one in which every 

number inverts in the mirror of Unity, two becoming a half, three 

becoming a third, and so on. In base-60 this reciprocation is especially 

beautiful, as all multiples of 2, 3, 4, 5, and 6 become simple fractions. 

For example, 15 becomes a quarter. The Babylonians inherited and used 

this system to invoke their gods. 

Egyptian fractions used a mouth hieroglyph (below), while fractions 

of volume were represented using the Eye of Horus. 

,<§>, <§> ~ if ~ ODD(ru<§> 
D [] D 

' 0 ~~~ m) ~~ DO 
Y.c; Yioo Y2 Y'.1 o/,\ Y'.!29 
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ANCIENT ASIA 
manipulating in tens 

In China a written decimal system with 13 basic characters has been used 

for more than 3,000 years (see page 356). Another particularly beautiful 

system of writing numbers is the suan zi or sangi rod notation, complete 

with a small zero, used in China, Japan, and Korea in some form since 

at least 200 BC (below). Later, the famous Chinese abacus replaced rod­

numeral counting boards. The speed of its operators, particularly in the 

Far East, is legendary, and it is still in widespread use today. 

India has an ancient numerical tradition. Number is prominent in 

many of its scriptures, and Indian cosmology uses huge numbers rivaled 

today only by those of modern physics. Indian numerals originate with 

the Brahmi sytem of numerals, with 45 characters for the numbers r to 

90,000. In time the speculations of Indian mathematicians required a 

new system combining the first nine number names with powers of ten. 

Rapid and elegant calculation techniques and the description of very 

large numbers resulted in some astonishing calculations. 

The zero also emerged, to denote an empty decimal power without 

confusion. Indeed, it is from India that we received, via the Arabs, our 

modern decimal place value system. 
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GEMATRIA 
talking numbers and secret codes 

The Phoenicians used a very neat twenty-two letter consonant alphabet 

to encode the sounds of their tongue. In time this script was adopted by 

most Mediterranean peoples and through its Latin variation came to be 

the alphabet that we use today. 

Gematria uses letters as number symbols, so language becomes 

n1athen1atics. I1nportant canonical, geon1etrical, n1usical, 111etrological, 

and cosmological numbers are defined by many key terms in ancient 

texts. First appearing widely in ancient Greece, gematria was sub­

sequently adapted to Hebrew and also to Arabic, where it is known as 

abjad. A simplified system also exists in all three languages using the 

san1e values without the zeros. 

The example below shows two related phrases connected through 

an identical sum. It gives some idea of the magical and simultaneous 

resonance between words and nun1bers that any literate and 1111111erate 

reader would have experienced, since for more than r,ooo years 

gematria was not merely an occult specialty but the standard way of 

representing numbers. 

This secret science is still used today by mystics and sorcerers who 

use its connections between words, phrases, and nun1ber for their 

mystical significance and talismanic power. 

'l11c Holy Spirit Fountain of Wisdom 

300.70 I.3.10.70.50 . 80.50.5.400.40.l 

TO ArION ITNEYMA ITH[H 2'.0<DIA2'. 
= 1,080 = 80.8.3.8 " 200.70.500.10.1.200 

', 370 134 · 576' 99 981 



AR CI-IA IC 
GREEK HEBREW ARABIC \T.ALUE 

PHOENICIAN EAST I \VEST 
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system the 1..-tt..-r:, for bo, ,w, .WcJ, S1•0, 900 S:. 1,,x10 differ in tht.' \Vt'sl ,1nd the List llf th,• Islamic world. 
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MAGIC SQ!)ARES 
when it all adds up 

Magic squares are a fascinating way of arranging numbers, and there 

are whole books about them and their secret uses. The magic sum of 

any square is the same whichever line is added. 

Seven magic squares are traditionally associated with the planets 

(opposite). The three-by-three square is Saturn's, and the squares increase 

by one order as they descend through each planetary sphere to reach the 

lunar nine-by-nine square. Elegant patterns of odd and even numbers 

occur in these squares (shaded in the diagrams). Each planet also has a magic 

seal based on the structure of its square, a useful code for wizards. 

A magic square is an example of a permutation, ordering things in 

a set in a particular way. There are eight ways to sum to fifteen using 

three numbers from one to nine, and all eight ways are present in the 

three-by-three magic square. 

Other totals found in magic squares are worth a second look. The 

Maya would surely have delighted in the fact that the eight-by-eight 

square has the magic sum of 13 x 20, while the solar line total of eleventy­

one gives an 01ninous 666 square sutn. 

With gematria as an additional magical key, words and magic 

squares naturally interweave in the secret world of spells and other 

talismanic arts (see example below). 
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MYTH, GAME, AND RHYME 
numbers we grow up with 

Some of our earliest experiences with number occur by way of games, 

rhymes, stories, and cultural myths, many of which are treasure troves 

of hidden numerical relationships. 

Ancient forms of language were regularly number-based, so in 

poetry we find triplets (three lines of verse), quatrains (verses of four 

lines), pentameters (lines with five stressed syllables), hexameters (lines 

with six stressed syllables), and haiku (a three line poem of seventeen 

syllables: five, seven, then five; compare with the 17-11ote scale page 196). 
Games, like myths and stories, can store information. The sum of 

a pack of playing cards, counting jack, queen and king as II, 12, and 

13, is 364, which with the joker produces 365, the number of days in 

a year. The eighteens and nineteens of the Chinese game of Go echo 

the cycles of the Sun and the Moon (see page 42). These ancient games 

reflect eternal principles, suggesting larger cosmic games, also with 

nun1ber at their center. 

Many games are dependent upon number for their structure and rules. 

Imagine a game of poker played by people who couldn't count higher 

than three! Below are two examples ofknight's tours from chess, both of 

which produce magic squares when numbered in sequence. 
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MODERN NUMBERS 
the dawn of complexity 

When the ancient Greeks proved that the diagonals of squares could not 

be expressed as fractions, it is said to have caused a crisis in their ranks, a 

little like the terror still experienced today by many people faced with 

a square root symbol, { 

The last 400 years of human thought have transformed our 

conception of number. After the adoption of Indian numerals and the 

zero, the next piece of witchcraft was the invention of 11egative numbers, 

creating a number line which vanished in two directions. Negative 

numbers were helpful but created a conundrum: square a negative 

number and it becomes positive-so what are the square roots of 

negative numbers? Mathematicians realized that there was another 

entire number line, of the square roots of negative numbers, which they 

called imaginary numbers, labeled today with an i (so i is the square root 

of minus one). Numbers today live on a number plane, with a real part 

and a complex part. Interestingly, it is the play between imaginary 

and real numbers that effortlessly produces the beautiful complexity of 

fractals and chaos theory, models of the recursive shapes and processes 

we find all around us in nature. 

With the decimal system we use today, we can describe numbers 

like rr, or pi, the ratio between a circle's circumference and its 

diameter, with great accuracy. However, some of the most beautiful 

objects in modern mathematics simply employ repeated fractions 

which would have been familiar to the ancients. These capture the 

complex essence of square roots, the Golden Section <p or <!), pi rr, and 

the exponential growth function, e. 
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ZERO 
nothing left to say 

Zero has been left until last, because in a sense it is not actually a number 

at all, just a mark representing the absence of number. It is perhaps for 

this reason, and the horror many theologians had of it, that nothing 

took such a long time to emerge as something at all, and in quite a few 

sensible cultures it never did. 

A symbol for zero has been invented independently at least three 

times. The Babylonians in 400 BC started using the shape of two wedges 

pressed into clay to act as an 'empty place' marker in their sexagesimal 

numerals, 'no number in this column'. On the other side of the world, 

and nearly a thousand years later, the Mayans adopted a seashell symbol 

for the same function. 

The circular form that 'nothing' assumed under the Indians reflected 

the indentation left in sand when a pebble used for counting is removed. 

Thus our modern zero, inherited from the Indians, began as the visible 

trace of something no longer there. 

Like one, zero probes the borderline between absence and presence. 

In early Indian mathematical treatises it is referred to as Sunya, meaning 

'void', calling to mind the abyss, the ultimate unknowable, the pregnant 

ground of all being. 

It is perhaps appropriate that our zero takes the form of a circle, 

itself a symbol of one, and that our one takes the form of a short line 

between two points. As acknowledged in gematria, each number 

already contains the seed of its successor within it, and the symbols for 

zero and one strangely combine to create the Golden Symbol <J,, a fitting 

thought with which to end this book. 
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INTRODUCTION 

Sacred Geometry charts the unfolding of number in space. It differs 

from mundane geometry purely in the sense that its moves, concepts 

and products are regarded as having symbolic value and meaning. Thus, 

like good music, the study and practice of geometry can facilitate the 

evolution of the soul. As we shall see, the basic journey is from the single 

point, into the line, out to the plane, through to the third dimension 

and beyond, eventually returning to the point again, watching what 

happens on the way. 

These pages, BooK II of Q_yadrivium, cover the elements of two­

dimensional geometry-the unfolding of number on a flat surface. 

The three-dimensional geometrical story is then told in BooK !II. This 

material has been used for a very long time indeed as one introduction 

to metaphysics. Like the elements of its sister subject, music, it is an 

aspect of revelation, a bright indisputable shadow of Reality and a 

creation myth in itself. 

Number, Music, Geometry, and the study of patterns in the Heavens 

are the four great Liberal Arts of the ancient world dealing with quanta, 

or whole numbers. These simple universal languages are as relevant 

today as they have always been, and may be found in all known sciences 

and cultures without disagreement. Indeed, one would expect any 

reasonably intelligent three-dimensional being anywhere in the universe 

to know about them in much the same way as they are presented here. 

Just above the entrance to Plato's Academy was a sign: "Let none 

ignorant of geometry enter here." So let's do some research. 
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POINT, LINE, AND PLANE 
none, one and two dimensions 

Begin with a sheet of paper. The point is the first thing that can be 

done. It is without din1ension and is not in space. Without an inside or 

an outside, the point is the source for all which now follows. The point 

is represented (below) as a small circular dot. 

The first dimension, the line, comes into being as the One emerges 

into two principles, active and passive (below right). The point chooses 

somewhere outside of itself, a direction. Separation has occurred and 

the line comes into being. A line has no thickness, and it is sometimes 

said that a line has no end. 

Three 'ways' now become apparent (opposite): 

i) With one end of the line stationary, or passive, the other is 

free to rotate and describe a circle, representing Heaven. 

ii) The active point can move to a third position equidistant 

from the other two, thus describing an equilateral triangle. 

iii) The line can produce another which moves away until 

distances are equal to form a square, representing Earth. 

Three forms, circle, triangle and square have manifested. All are rich 

in meaning. Our journey has begun. 
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SPHERE, TETRAHEDRON, AND CUBE 
from two to three dimensions 

Although this book concerns itself primarily with the plane, the three 

'ways' of rotation, n1ove111ent of a vertex, and translation of an object, 

are here taken one step further, into three dimensions (opposite): 

i) The circle spins to become a sphere. Something circular 

remains essentially circular (top row). 
ii) The triangle produces a fourth point at an equal distance 

from the other three to produce a tetrahedron. One equilateral 

triangle has made three more (central row). 
iii) The square lifts a second square away from itself until 

another four squares are formed and a cube is created (lower row). 

Notice how the essential division into circularity, triangularity and 

squareness from the previous page is preserved. 

The sphere is a symbol of the cosmos and the totality of manifest 

creation. Very large and very small things in nature tend to be 

spherical. Einstein discovered that a point in four dimensions (i.e. yon 

here and now) is a sphere expanding at the speed of light, and all we 

can see of the entire universe is inside an event-horizon sphere. The 

cube represents the Earth. 

The sphere possesses the smallest surface area for its volume of any 

possible three-dimensional solid whereas, amongst regular solids, the 

tetrahedron is the opposite. 

A tetrahedron is in fact hiding in a cube-if you draw a single 

diagonal line on every face of a cube so that they join at the corners, 

you will have defined the edges of a tetrahedron. Try it! 
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ONE, TWO, AND THREE 
playing with circles 

Get a ruler, compass, something to draw with and something to draw 

on. Draw a horizontal line across the page. Open the compass and 

place the point on the line. Draw a circle (top). 
Where the circle has cut the line, place the compass point and draw 

another circle, leaving the compass at the same opening as before. When 

one circle is drawn over another like this so that they pass through each 

others' centers, then an important almond shape, the vesica piscis, literally 

'fish's bladder', is formed. It is one oftbe first things that circles can do. 

Christ is often depicted inside a vesica. Two equilateral triangles have 

been defined (opposite center). 
A third circle can be added to the line as before, normally on the 

other side of the forming circle, this simple act defining all six points of 

a perfect hexagon (/011Je,; opposite). Alternatively, the third circle can be 

added as shown below to produce an elegant triangular form. 

Circles thus effortlessly produce perfect triangles and hexagons. 
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SIX AROUND ONE 
or twelve or even eighteen 

The six points of the hexagon give rise to the flower-like pattern shown 

below. Alternatively it can be drawn by 'walking' a circle around 

itself-something most children have done at school, whether under 

instruction or just playing with a compass. 

We are now seeking the lower diagram opposite, and need the 

centers of the six onter circles. One way is to extend the flower, lightly 

drawing the six circles shown dashed in the top diagram above, to give 

us the six centers. Otherwise we can draw straight lines as shown in the 

lower diagram. Both ways work. 

We can now see that six circles fit around one. We can push glasses, 

coins or tennis balls together to see it, yet it is extraordinary really. 'Six 

around one' is a theme which the Old Testament of the Bible opens on, 

with the six days of work and the seventh day of rest. There is indeed 

something very sixy about circles. 





TWELVE AROUND ONE 
how to draw a dodecagon 

As one produces six, so six produces twelve. Here the arms of a six­

pointed star extend from the flower to intersect the outer rims of the 

six circles. Beautifully, this forms a perfect overall division of space 

into twelve parts (shown opposite). The twelve-sided polygon is called a 

dodecagon, which means literally 'twelve sided'. 

The dodecagon is also made from six squares and six equilateral 

triangles fitted around a hexagon-can you see them all opposite? In 

addition, the shape divides into its factors, three, four and six, as four 

triangles, three squares, and two hexagons (lower, opposite row). 
Shown below is the three-dimensional version of the same story. A 

ball naturally fits twelve others around it so that they all touch the center 

and four neighbours. You see this arrangement in apples and oranges 

in every market stall. The shape made is called the cuboctahedron and 

is closely related to the tetrahedron and cube we saw on page 67. Most 

crystals grow along these lines. 

Twelve is the number which fits around one in three dimensions in 

the same way that six fits around one in two dimensions. The New 

Testament is a story of a teacher surrounded by twelve disciples. 
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THE FIVE ELEMENTS 
a brief foray into the third dimension 

Although covered in depth in Born< III of this volume, it is worth 

mentioning here that there are just five regular three-dimensional solids. 

Each has equal edges, every face is the same perfect polygon and every 

point is the same distance from the center. Known as the five Platonic 

Solids, they were recognized in the British Isles two thousand years 

before Plato-4,000 year-old carved stone sets of them have been found 

at stone circles in Aberdeenshire, Scotland (below,Jrom Critchlow). 
The first solid is the tetrahedron, with four vertices and four faces 

of equilateral triangles, traditionally representing the element of Fire. 

The second solid is the octahedron, made from six points and eight 

equilateral triangles, representing Air. The Cube is the third solid, 

eight vertices and six square faces, representing Earth. The fourth is 

the icosahedron, with twelve points and twenty faces of equilateral 

triangles, the element of Water. The last, and fifth, element is the 

dodecahedron, which has twenty vertices, representing the mysterious 

fifth element of Aether. 

Notice how beautiful the dodecahedron is, and how it is made of 

twelve pentagons, perfect five-sided shapes. 
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CIRCLING THE SQ1JARE 
the marriage of heaven and earth 

The circle is the shape traditionally assigned to the Heavens, and the 

square to the Earth. When these two shapes are unified by being made 

equal in area or perin1eter we speak of'squaring the circle', n1eaning that 

Heaven and Earth, or Spirit and Matter, are symbolically combined, or 

married. Fivefold Man exists between sixfold Heaven and fourfold 

Earth and Leonardo da Vinci's image (opposite) also shows how a man's 

span equals his height, that this measure equals seven of his feet and 

other important ratios. 

As we saw earlier (page 33), the Earth and the Moon square the circle, 

for if the Moon (diameter 3) is drawn down to the Earth (diameter n) 
then a heavenly circle through the Moon (dotted, below ce11ter) has radius 7, 

and so circumference 44, the same as the perimeter of the square around 

the Earth. This works because Jl, which relates the circumference of a 

circle to its diameter is practically 2o/,. In Leonardo's image the Moon 

would fit above the man's head. 

Also shown (below left and right) is a simple construction for a square 

using ruler and compass. Octagons soon follow. 

··<@> 
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THE CANON 
3, 7 and 11 

The squaring of the circle by the Moon (size 3) and the Earth (size II) is 
also manifest in the geometry of a double rainbow, whose two beautiful 

bows at 41.5° and 52.5° precisely draw the same diagram (below,Jrom 
Martinean)~a marriage of Heaven and Earth indeed! 

A portal door, of Gerum Church in Gothland, Sweden (opposite) 
encodes 3 by II. Three elevens is thirty-three and Irish and Norse 

myths abound with tales of 33 warriors. Jesus dies and is resurrected 

aged 33, and the Sun takes 33 years for a perfect repeat sunrise. Seven 

also works with both 3 and IL It is an old secret that the Earth's tilt, often 

hidden in sacred art as the tilt of a holy head (the Virgin Mary's or the 

Buddha's), is easily produced as the diagonal of a rectangle 3 wide and 7 

high. Finally I Y, is the ancient Egyptian value for half of Jl. 

The Sandreckoner's diagram (opposite) is a unique way of dividing a 

rectangle's edge into harmonic fractions (after Malcolm Stewart). 
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PYRAMID PI 
a marriage of everything 

There is perhaps no more famous a geometric object on Earth than the 

Great Pyramid at Giza in Egypt with its strange passages and enigmatic 

chambers. The five diagrams opposite show: 

I. The square of the height is equal to the area of each face. 

2. The Golden Section in the pyramid, <Jl = 1.618 (see page 86). 

3. Pi in the pyramid. Pi, or TI, defines the ratio between a 

circle's circumference and its diameter (3.r4r59 ... ). 

4. The pyramid squaring the circle (see page 76). 
5. A pentagram defining a 'net' for the pyramid - cut and fold! 

Geo1netry 111eans 'Earth-1neasure'. The Pyran1id functions as a 

ridiculously accurate sundial, star observatory, land surveying tool and 

repository for weights and measures standards. Written into the design 

are highly accurate measurements of the Earth, detailed astronomical 

data and these simple geometric lessons. 

A 3-4-5 triangle fits the shape of the King's Chamber (below) and 

also gives the angle of slope of the second pyramid at Giza. Halfway 

between the two slopes is 51.4°, one seventh of a circle. 

So 
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HALFLINGS AND THIRDLINGS 
defined by triangles and squares 

An equilateral triangle (opposite top left), or two nested squares (opposite 
top right) both do the same thing-the circle inside each of these figures 

is exactly half the size of the surrounding circle. This is a geometrical 

image of the musical octave, where a string-length or frequency is 
halved or doubled. 

Appropriately, the three-dimensional equivalent of the triangle, the 

tetrahedron, defines the next fractional proportion, one third, as the 

ratio of the radius of the innermost sphere to that of the containing 

sphere (opposite, bottom left). Two nested cubes, or two nested octahedra, 

or an octahedron nested in a cube (opposite, bottom right) all produce one 

third too. The geometric third is musically equal to an octave plus a 

fifth in harmonic notation. Thus two dimensions quickly define a half, 
and three dimensions a third. 

A close but not perfect marriage is between five and eight (below), 
whose geometries often play with one another. In both these diagrams 

the inner circle could be the size or orbit of the planet Mercury if the 

outer circle is taken as being the size or orbit of the Earth. 
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THE SHAPES OF SOUNDS 
and three quarters 

Geo1netry is 'nu1nber in space', 1nusic is 'nu1nber in tin1e'. As we shall 
see in BooK IV, basic 111usical intervals are sin1ply elen1entary ratios, r:r 

(unison), 2:1 (the octave), 3:2 (the fifth), 4:3 (the fourth) and so on. The 

difference between the fourth and the fifth, which works out at 9:8, is 

the value of one tone. Musical intervals, like geometrical proportions, 

always involve two elements in relationship, two string-lengths, two 

periods (lengths of time) or two frequencies (beats per length of time). 

Simple ratios sound and look beautiful. 

We can see musical intervals as shapes by swinging a pen in a circle 

at one frequency, and a table in an opposite circle at another frequency, 

the device being called a hannonograplt. Shown opposite are two patterns 

from near-perfect intervals. The octave (upper) draws as a triangular 

shape, the fifth (lower) a pentagonal form. 

In the spirit of the previous page, two octaves, or a quarter, can be 

exactly defined by two triangles, four squares, or, intriguingly, by a 

pentagon in a pentagram (below). 





THE GOLDEN SECTION 
and other important roots 

A pentagram inside a pentagon is shown opposite. A simple knot, 

carefully tied in a ribbon or strip of paper and pulled tight and flattened 

out makes a perfect pentagon. Try it some time! 

In the main diagram opposite you can see that pairs oflines are each 

dashed in different ways. The length of each such pair oflines is in the 

Golden Section ratio, 1 :cl>, where <I> (pronounced 'phi') can be either 0.618 

or r.618 (more exactly 0.61803399 ... ). The books in this volume use the 

lower case <I> for 0.618 and the upper case CJ) for r.618. 

Importantly, cp divides a line so that the ratio of the lesser part to the 

greater part is the same as the ratio of the greater part to the whole. No 

other proportion behaves so elegantly around unity. For instance, l + 

r.618 is 0.618, and r.618 x r.618 =2.618. So one divided by cJ, equals cp (or 

cJ, minus one), and cJ) multiplied by cJ, equals cJ, plus one! 

The Golden Section is one of three simple proportions found in the 

early polygons (lower, opposite). With edge-lengths 1, a square produces 

an internal diagonal of Y2 (the square root of two), a pentagram cJ,, and 

a hexagon Y3 (the square root of three). Many familiar objects from 

cassettes to credit cards and Georgian front doors are CJ) rectangles. h 
and Y3 are found widely in crystals, while c], appears predominantly in 

organic life, possibly due to the flexible icosahedral nature of water 

and other liquids. All three geometric proportions are employed in 

good design, along with harmonic ratios. 

Neighbouring terms in the Fibonacci Series: l, 1, 2, 3, 5, 8, 13, 21, 34, 

55 ... (adding each pair of numbers to get the next) approximate <I> with 

increasing accuracy. For the keen, cl>= Y2(Y5-1) and CJ)= Y2(Y5+1). 
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SOME SPECIAL SPIRALS 
and how to draw them 

Spirals are marvellous forms which nature uses at every scale. Three 

have been selected for this book, all of which give the impression of a 

spiral from multiple arcs of circles. 

The first is the Greek Ionic volute shown top left. This is quite hard 

to draw and the secret lies in the small 'key' shown above it. The dotted 

lines in the main drawing show the radii of the arcs and give clues to the 

centers. It's not as hard as it looks! 

Regular spirals such as the one shown top right also need a key. This 

can simply be two dots (the easiest), a triangle, a square, a pentagon, or 

a hexagon (as shown). The more points you have the more perfect the 

spiral will be. Here's how to do one with just two dots. Draw two dots 

quite close together and draw a semicircle centered on one starting from 

the other. Now, keeping the pen in the same place, open the compass a 

bit wider, moving the point to the other dot and continue in the same 

direction, drawing another semicircle. Repeat this a few times and a 

spiral will appear. It sounds harder than it is-if you try it you will 

soon get the idea. The bigger the key the wider the coils. Now look at 

the Ionic volute key again-can you see what is happening? 

The bottom picture shows a Golden Section spiral, one of the family 

of exponential spirals which are common throughout the natural world. 

A Golden Section rectangle has the special property that removing a 

square from it produces another Golden Section rectangle, and the 

Golden Section spiral is formed by removing successive squares and 

filling each with a quarter arc. 
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How TO DRAW A PENTAGON 
and a golden section rectangle 

The method of construction of a pentagon shown opposite is perfect 

and is from the Almagest of Ptolemy (d. ca. 168 AD). 
Draw a horizontal line with a circle on it. Keeping the compass 

opening fixed, place the point at < r> and draw the vesica through the 

center of the circle. Now open the compass wide and draw arcs from< r 

> and <2> to cross above and below the circle. Use a straight edge to draw 

the vertical through the center of the circle. Next draw the vertical 

through the vesica to produce <3>. With the point of the compass at <3 

> swing an arc down from <4> at the top of the circle to give <5>. With 

the point at <4> swing through <5> to give two points of the pentagon. 

With the point of the compass on these new points in turn, swing from 

the top to find the last two points of the pentagon. 

A Golden Section rectangle, widely used in painting and architecture, 

is constructed from the mid-point of the side of a square (below) . 
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THE HEPTAGON 
seven out of three 

Divide a circle into six and draw the primary equilateral triangle. Find 

the midpoints <I> and <2> of the triangle's two upper arms and drop two 

lines down to give two points < 3 > and <4> on the base of the triangle, and 

two on the bottom of the circle. Finally, from the top, swing through 

the four points on the triangle to give the last four points of the seven 

on the circle. 

Although it is impossible to draw a precise heptagon using ruler 

and compass alone, you can do it perfectly using seven equal rods or 

matchsticks (shown below left). This wedge is an exact fourteenth of 

a circle, so you need two of them for a one seventh division. More 

ancient rough solutions use a cord with either six knots or in a loop with 

thirteen (below center and right). 
The ancient builders were amazing surveyors. Avebury stone circles 

in England are positioned exactly at latitude 51.4°, one seventh of a circle 

up from the equator. Luxor in Egypt is at a latitude exactly halfway 

between Avebury and the equator. Mecca meanwhile is at the northern 

Golden Section latitude between the two poles. 
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THE ENNEAGON 
nines and magic lozenges 

The construction shown opposite divides a circle into a near-perfect 

nine from an initial six-pointed star using three centers. 

The digits of many special numbers sum to nine: 2,160 or 7,920 for 

instance, the diameters of the Moon and the Earth in miles; or 360 and 

666, and pentagonal angles like 36, 72, and ro8. In fact, all multiples of 

nine add up to nine. Nine is three times three, or three squared. Many 

tribal cultures speak of nine worlds, or nine dimensions. 

The golden Bush Barrow lozenge found near Stonehenge (below 
left) has internal angles of 80° and 100°, suggesting nine-fold geometry. 

Sunrises and sunsets at the latitude of Stonehenge vary over 80°, and 

moonrises and rnoonsets over 100°, so this was a useful object. 

Not for beginners is the obscure fact that a sphere-point enneagon 

(or nine coins arranged in a perfect nine-sided figure) can contain two 

more spheres which exactly touch (below right). 
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RABATMENT 
and the rule of three 

Painters have a whole bag of secret tricks to help them produce the 

perfect picture. Students of composition are taught 'the rule of three', 

where a canvas is divided in three horizontally and vertically, into nine 

small versions of the original rectangle (below left). The four intersections 

produced are excellent places to choose as focus points in the design and 

are used by many artists. By contrast, items placed on center-lines seem 

contrived in the con1position, too obvious. 

Another trick is to draw a square within your rectangle and use the 

lines produced as focal axes (below center). This is called rabatment. In 

Golden Section rectangles the space left over from a square is another 

Golden rectangle. The process may be continued indefinitely. 

Occnlt centers (below right) are found by using the diagonals of a 

rectangle, and right-angled triangles with the other corners. 

Dividing a line into 2 or 3 parts uses the first few steps of the Fibonacci 

sequence, I, 2, 3, 5, 8, 13, 21, and so on, where adjacent tern1s ho1ne in 

on the Golden Section 0.618. Some painters use Ys divisions or even the 

Golden Section itself. Opposite we see two wonderful examples of 

rabatment at play. Botticelli uses a Golden Section rectangle reduced 

by rabatment in stages to compose his painting, while Grimshaw uses a 

rectangle between c[, and h, with halves and Golden lines as guides. 
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SIMPLE TILINGS 
repeating patterns over an infinite sU1face 

A regular tiling (or tessellation) of the plane occurs when the same regular 

polygon is used to fill the plane, leaving no spaces. Only three of these 

are possible (shown below). A semi-regular tiling allows for more than one 

type of polygon but insists that each vertex is the same. For example, in 

the central pattern opposite every vertex is a meeting of two hexagons 

and two triangles. Eight semi-regular tilings are possible and all are 

shown opposite (though the top left and top right grids opposite are left 

and right-handed versions of each other and count as one). 

Some designs can be filled in further. As shown on page 73, 

dodecagons are just made of hexagons, triangles and squares, and 

hexagons are simply collections of triangles. As we shall soon see, 

triangles and squares can go on to do the most amazing things together. 

What of the other regular polygons? Octagons only tile with squares 

(opposite top center). Pentagons do not fit together happily on the plane, 

preferring the third dimension (see pages 74-75). 

Heptagons and enneagons stand aloof. 
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FURTHER TILINGS 
further fun in the bathroom 

There are twenty demi-regular tilings (where two vertex situations are 

permitted) and most of these, and a few other interesting ways to tile 

the plane, are shown on these two pages. 

These tessellations form the basis for pattern construction in many 

traditions of sacred and decorative art across the world. They can be 

found underlying Celtic and Islamic patterns and in the natural world 

they appear as crystal and cellular structures. William Morris used 

them widely for his repeat wallpaper and fabric designs. Their uses are 

limited only by your imagination! 

On the next page we see one of these grids put to use. 
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THE SMALLEST PART 
reversible stencils and rotatable blocks 

Many of the semi and demi-regular grids can be reduced to a simple 

square or triangular unit which can then be reflected or rotated to 

recreate the whole pattern. Often these repeat triangles or squares are 

surprisingly small. It is worth remembering, however, that in practical 

applications it is often easier to rotate a printing block or stencil than it 

is to reflect it-and in such cases one has to double the stencil or carve 

a larger block. 

The design shown opposite is based on one of the grids on the 

previous page (see if you can find which one). It is produced by rotation 

and reflection of the primary unit (below right). Once this basic unit has 

been identified, all that you need to do is draw this minimum amount 

(opposite top) to be able to create the entire design. 

Squares and equilateral triangles can both be halved to produce 

smaller triangular units (below left). But, again, take care and think about 

what you are doing; for instance you cannot do this with the example 

shown opposite-can you see why? 
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The sniallest unit of tlie 
pattern beloiv, dra1vn at 
t/Je san1e scale, and sl101ving 
the grid lines 1vhich have 
i11fonned its desig11. 
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SYMMETRY 
regular and beautiful 

Syn1111etry n1eans 'n1easuring together', and things are tern1ed syn1-

111etrical when they possess l1arn1onious proportions, often between 
repeated elements. Elements may be repeated in a number of different 

ways: displaced, reflected, rotated, spiraled, scaled, stretched, folded, or 

multiple combinations of these. 

Symmetries can be manifest (clear) or occult (hidden). For example, 

the balanced weights below (center) hint at the equations of mathematics 

and physics that model the hidden symmetries which underlie the 

physical world. Symmetry is the subject of an entire book in this series, 

and the images below and opposite are suggestive rather than complete. 

Apart from the symmetries listed above, there are also topological 

or mapping symmetries (below right), branching symmetries, fractal 

symmetries (where parts are images of the whole), crystal symmetries, 

electron orbital syn1n1etries, aperiodic syn1111etries (see Li sy11u11etries, page 

120), radial sy1n111etries, pern1utation sy1n1netries, series sy1nn1etries (for 
example phyllotaxis, see page 324) and species of assymmetries. 

It is important to realise that geometry and harmony are themselves 

merely forms of symmetry, especially in the way their products are 

appreciated as aesthetic. The plot of a film or novel can likewise be 

thought of as symmetrical, as can notions of fate or justice. 

'Measuring together' can indeed mean many things. 
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ISLAMIC DESIGNS 
stars are born from subgrids 

Islamic patterns speak of infinity and the omnipresent center. 

For the pattern opposite, start with six circles round one, developing 

a grid of overlapping dodecagons from triangles, squares and hexagons 

(see pages 73 and 99). The key points now are halfway along the side of 

every polygon. These are joined up in a special way and extended as 

shown in the top part of the diagram. Many beautiful patterns are 

sitting in every simple snbgrid, just waiting to be pulled out. 

The subgrids themselves are rarely shown in traditional art. They 

are considered part of the underlying structure of reality, with the 

cos1nos overlaid-'cos1nos' 111eans 'adornment'. 
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A CHURCH WINDOW 
not far from the Isle of Man 

A piece of church window masonry is shown opposite. The design 

speaks of the implicit trinity in nnity. It is a very beantiful design and 

remarkably satisfying to draw. See if yon can follow its construction 

from the diagram below, which begins with the enclosing circle. Notice 

how every detail is defined by the geometry. 

Draw a large circle and divide it into six. In this circle draw a large 

triangle and inscribe a circle to fit inside it. This gives the centers of 

three touching circles (the center-lines of the tracery). Notice how these 

circles do not touch either the outer circle or the center of the window. 

A small circle (at the bottom of the image below) then assists in giving the 

width of the stone tracery itself, enabling the inner, middle and outer 

edges of tracery to be defined. 

Now see if you could draw the tracery on the next page. 
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TREFOILS AND Q1JATREFOILS 
the geometry behind tracery 

Everything is made of light, all matter is, and without matter there 

would be no sound. Atoms and planets arrange themselves in geo­

metrical patterns. How profound then is a window, which allows the 

passage oflight into an otherwise dark space. 

The designs of church windows follow many rules, forms and 

traditions, and some clues are given on these pages. The easiest to draw 

are the three qua trefoils (bottom row of this page). 

The south window of Lincoln cathedral with its striking double 

vesica is shown opposite, and below it three famous and very early west 

windows, from Chartres, Evreux and Rheims cathedrals. A good 

balance is kept between line and curve. 
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STONE CIRCLES AND CHURCHES 
vesicas in action for over 4,000 years 

Four flattened stone circles are shown opposite with their consistent 

geometry as discovered by Professor Thom. On the left are examples of 

the type-A shape, on the right type-BS. The vesica-based constructions 

are also shown (see page 68 for vesica). 
Shown on this page is the ground plan of Winchester Cathedral. 

An interplay of simple vesica-based triangular and square systems, ad 
triangulum and ad quadratwn, underlies the plans of many ecclesiastical 

buildings (see top row page 83). 

The design of a sacred building, whether church, stone circle or 

temple, requires the designer to marry the universal symbolism of 

the geometrical moves he or she is making with the specific religious 

language. Local factors also go into the cauldron, for example Sun, star 

or Moon rise and set positions, or nearby sacred hills, springs or leys. 

Below we see Winchester Cathedral's axis pointing 72° from north, 

creating a magical magnetic pentagram. 
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DELIGHTFUL ARCHES 
how to draw a few of the many 

Arches take remarkably similar forms all over the world and a few are 

shown here. Living trees often make the best arches. 

The top row opposite shows five two-centered arches. Their span 

has been divided into 2, 3, 4, 5, and 5 again. The straight dotted lines 

show the radii of their arcs. The heights of arches can vary but for 

these five their heights are defined by a rectangle which gives a musical 

interval, thus 2:3, 3 :4 and so on (page 84). 

The second row of arches opposite are four-centered. n1e curve of 

the arch changes at positions given by the solid line. Ideas for defining 

their heights are also given. 

The bottom two arches opposite are a horseshoe arch, which can 

also be pointed, and a pointed arch. The pointed arch seems to turn 

up-'the return'-but the lines are actually dead straight. 
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A CELTIC SPIRAL 
Euclidean geometry in ancient Ireland 

The design shown opposite comes from a four inch bronze disc found 

on Loughan Island in Northern Ireland, and dated to around 2000 years 

ago. It is an exceptionally beautiful example of the early Celtic style. 

As we have already seen with stone circles and arches, the seamless 

cotajunction of multiple arcs can be highly aesthetic and it reached its 

perfection in the early Celtic period. 

Many early Celtic pieces show evidence of compass use and the 

final drawing for this disc required no less than 42 separate compass­

point positions! It is thought that the master artists who created these 

designs started with a basic geometric template, such as a touching 

circles pattern, then sketched their forms before retnrning to geometry 

to tighten everything up so that their curves all became arcs, sections 

of circles. This gives a tautness to the curves. In this way intuition and 

intellect work together. 

The lower sequence of pictures shows how to plot arcs through 

points. The first diagram shows an arc centered on <C>. We want the 

arc to change effortlessly at <a> and then pass through ,b,. What do 

we do? Find the perpendicular bisector between points <a> and <b> by 

opening the compass, describing two equal arcs from <a> and ,b,, and 

drawing the line through their intersections (lower, opposite center). This 

cuts the <a-c> line at a new point <o> which then beco111es the center \ve 

were looking for (lower right). 
All of the beautiful curves in the Loughan Island disc are drawn and 

tautened in this simple and elegant manner. 
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LI SYMMETRIES 
formed in time 

Li syn1n1etries are so fan1iliar to us that we aln1ost don't notice then1. 

They surround us and pervade the natural world, but it was only in the 

1950s that these enigmatic forms of symmetry began to be understood 

as self-organising systems through the pioneering work of Alan Turing. 

The Chinese, however, have been studying them for millennia, and it 

is from them that they get their name. 

Li symmetries may be distinguished from static symmetries in that 

they are primarily caused by the interaction between processes and 

materials. For instance the repeated action of wind over sand produces 

the familiar ribbing of sand dunes, a symmetry which can occur at 

different scales. Likewise, the action of heat on wet clay creates crack 

patterns which also closely ressemble the layout of many towns and 

cities, even down to relatively small details such as the width of the 

roads (see David Wade's illustratio11s opposite). 

Li sy1nn1etries extend into anin1al 111arkings, stretch patterns such as 

tree barks, cloud patterns, and many other areas of nature. 

Next time you are out and about, see how many you can spot! 
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THE SEVENTEEN SYMMETRIES 
from slide, spin and mirror 

The Arab alchemist Jabir ibn Hayyan, known in the West as Geber, 

regarded 17 as the numerical basis of the physical world. 

Using a very simple sample design the next three pages explore 

the three basic operations of rotation, reflection and sliding. These, 

combined with the three regnlar tilings, give seventeen 'wallpaper' 

or plane symmetry groups which are shown below, opposite, and on 

the next page (after Critchlow). The final facing page shows the seven 

possible frieze symmetries derived in the same way. 

This visual key can be very useful when creating repeats for fabric or 

pottery patterns (see too pages ro2-ro3). 'Pattern', by the way, comes from 

the Latin word pater, meaning 'father', in the same way that 'matrix' 

comes fron1 tnater, meaning '111other'. 

Remember, not all stencils can be turned over (reflected) without 

n1aking a 111ess, so choose your repeat units with care. 

And on that rather practical note this dense little book on one 

of the oldest subjects on Earth has now reached its end. I hope you 

have gleaned enough ideas from it to create something good, true and 

beautiful next time you get designing! 
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PLATONIC 
& ARCH I ME DEAN 

SOLIDS 

Daud Sutton 





INTRODUCTION 

Imagine a sphere. It is Unity's perfect symbol. Each point on its surface is 

identical to every other, equidistant from the unique point at its center. 

Establishing a single point on the sphere allows others to be defined 

in relation to it. The simplest and most obvious relationship is with the 

point directly opposite, found by extending a line through the sphere's 

center to the other side. Adel a third point and space all three as far from 

each other as possible to define an equilateral triangle. The three points 

lie on a circle with radius equal to the sphere's and sharing its center, 

an example of the largest circles possible on a sphere, known as great 

circles. Point, line and triangle occupy zero, one and t'\VO din1ensions 

respectively. It takes a minimum of four points to define an uncurved 

three-dimensional form. 

This section of Q!adriui11111 charts the unfolding of number in three­

climensional space through the most fundamental forms derived from 

the sphere. A cornerstone of n1athen1atical and artistic inquiry since 

antiquity, after countless generations these beautiful forn1s continue to 

intrigue and inspire. 
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THE PLATONIC SOLIDS 
beautiful forms unfold from unity 

----··-·---

In1agine you are on a desert island; there are sticks, stones, and sheets 

ofbark. If you start experimenting with three-dimensional structures 

you may well discover five 'perfect' shapes. In each case they look 

the same from any JJertex (corner point), their faces are all made of the 

same regular shape, and every edge is identical. Their vertices are the 

most symmetrical distributions of four, six, eight, twelve, and twenty 

points on a sphere (below). 

These forms are examples of polyhedra, literally 'many seats' and, 

as the earliest surviving description of then1 as a group is in Plato's 

Timaeus, they are often called the Platonic Solids. Plato lived from 

427 to 347 BC, but there is evidence that the Platonic Solids were 
discovered much earlier. 

Three of the solids have faces of equilateral triangles-three, 

four, or five n1eeting at each vertex-and have na111es deriving fro1n 

their number of faces; the tetrahedro11 is made from four, the octahedro11 

eight, and the icosahedro11 twenty. The 3-4-5 theme continues with the 

common rnbe, with its six square faces, and the dodecahedro11 with its 

twelve regular pentagonal faces. Over the pages which follow we will 

get to know these striking three-dimensional forms better. 
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THE TETRAHEDRON 
4 faces : 6 edges : 4 vertices 

The tetrahedron is composed of four equilateral triangles, with three 

meeting at every vertex. Its vertices can also be defined by the centers 

of four touching spheres (lower, opposite rig/,t). Plato associated its form 

with the element of Fire because of the penetrating acuteness of its 

edges and vertices, and because it is the simplest and most fundamental 

of the regular solids. The Greeks also knew the tetrahedron as p11ra111is, 

whence the word pyra1nid. Curiously the Greek word for fire is p11r. 

The tetrahedron has three 2-fold axes, passing throngh the 

midpoints of its edges, and four 3-fold axes, each passing through one 

vertex and the center of the opposite face (below). Any polyhedron with 

these axes of rotation has tetral,edra/ symmetry. 

Each Platonic Solid is contained by its circ11111spl1ere, which just 

touches every vertex. The Solids also define two more spheres: their 

midspl,ere, which passes through the midpoint of every edge, and 

their insphere, which is contained by the solid, perfectly touching the 

center of every face. For the tetrahedron the inradi11s is one third of the 

cirrn111radi11s (lower, opposite left). 
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THE OCTAHEDRON 
8 faces : 12 edges : 6 vertices 

The octahedron is made of eight equilateral triangles, four meeting 

at every vertex. Plato considered the octahedron an inter111ediary 

between the tetrahedron, or Fire, and the icosahedron, or Water, and 

thus ascribed it to the element of Air. The octahedron has six 2-fold 

axes passing through opposite edges, four 3-fold axes through its face 

centers and three 4-fold axes through opposite vertices (below). Solids 

combining these rotation axes display octahedral sy111111etry. 

Greek writings attribute the discovery of the octahedron and 

icosahedron to Theaetetus of Athens (417-369nc). Book xm of Euclid's 

Elements (see page 144) is thought to be based on Theaetetus' work on 
the regular solids. 

The octahedron's circumradius is bigger than its inradius by a 

factor of Y3 (see page 377). The same relationship occurs between the 

circun1radius and inradius of the cube, and between the circun1radius 

and 111idradi11s (and the midradius and inradius) of the tetrahedron. 

The tetrahedron, the octahedron and the cube are all found in the 

111ineral kingdon1. Mineral dian1onds and con1111011 fluorite crystals 

often form octahedra. 

edge 011 : 2-fold face 011 : 3-fold fro111 1>ertex: 4-fold 
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THE ICOSAHEDRON 
20 faces : 30 edges : 12 vertices 

The icosahedron is composed of twenty equilateral triangles, five 

to a vertex. It has fifteen 2-fold axes, ten 3-fold axes and six 5-fold 

axes (below), known as icosahedral symmetry. When the tetrahedron, 

octahedron, and icosahedron are made of identical triangles, the 

icosahedron is the largest. This led Plato to associate the icosahedron 

with Water, the densest and least penetrating of the three fluid elements: 

Fire, Air, and Water. 

The angle where two faces of a polyhedron meet at an edge is 

known as a dihedral a11gle. The icosahedron is the Platonic Solid with 

the largest dihedral angles. 

If you join the two ends of an icosahedron's edge to the cente~ of 

the solid an isosceles triangle is defined-the same as the triangles that 

make up the faces of the Great Pyramid at Giza. Opposing edges of an 

icosahedron form Golden Section rectangles (see page 152). 

Arranging twelve eqnal spheres to define an icosahedron leaves 

space at the center for another sphere just over nine tenths as wide as 

the others (lowe,; opposite right). 

edge 011 : 2-fold face 011 : 3-fold from vertex : 5-fold 
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THE CUBE 
6 faces : 12 edges : 8 vertices 

The cube has octahedral symmetry (be/01/J). Plato assigned it to the 

clement of Earth due to the stability of its square bases. Aligned to our 

experience of space, it faces forwards, backwards, right, left, up, and 

down, corresponding to the six directions North, South, East, West, 

zenith, and nadir. As we saw in Boore I of this volume, six is the first 

perfect number, with factors adding up to itself(1 +2+ 3 =6). 

Add the cube's twelve edges, the twelve face diagonals and the four 

interior diagonals to find a total of twenty-eight straight paths joining 

the cube's eight vertices to each other. Twenty-eight is the second 

perfect number (1 + 2 + 4 + 7+ 14=28). 

Islam's annual pilgrimage is to the Kaaba, literally Cube, in Mecca. 

The sanctuary of the Temple of Solomon was a cube, as is the crystalline 

New Jerusalem in Saint John's revelation. In 43onc the oracle at Delphi 

instructed the Athenians to double the volume of the cubic altar of 

Apollo, whilst maintaining its shape. 'Doubling the cube', as the 

problem became known, ultimately proved impossible using Euclidean 

geon1etry alone. 

edge 011 : 2-fold fro111 vertex: 3-fold face 011 : 4-fold 





THE DODECAHEDRON 
12 faces : 30 edges : 20 vertices 

The beautiful dodecahedron has twelve regular pentagonal faces, three 

of which meet at every vertex. Its symmetry is icosahedral (below). 
Like the tetrahedron, or pyramid, and the cube, the dodecahedron 

was known to the early Pythagoreans and was commonly referred to 

as the sphere of twelve pmtagons. Having detailed the other four solids 

and ascribed them to the elements, Plato's Timaeus says enigmatically 

"There remained a fifth construction which God used for embroidering 

the constellations on the whole heaven." 

A dodecahedron sitting on a horizontal surface has vertices lying 

in four horizontal planes which cut the dodecahedron into three parts. 

Surprisingly, the middle part is equal in volume to the others, so each 

is one third of the total! Also, when set in the same sphere, the surface 

areas of the icosahedron and dodecahedron are in the same ratio as their 

volumes, and their inspheres are identical. 

'Fool's Gold', or iroll pyrite, forms crystals much like the dodecahedron, 

but don't be fooled, their pentagonal faces are not regular and their 

symmetry is tetrahedral. 

edge Oil : 2-fold from vertex: 3-fold face Oil : 5-fold 
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A SHORT PROOF 
are there really only five? 

A regular polygo11 has equal sides and angles. A regular polyhedro11 has equal 

regular polygon faces and identical vertices. The Platonic Solids are the 

only possible co,wex regular polyhedra. In book xm of his Ele111e11ts Euclid 

of Alexandria (ca. 325-265 BC) proves that each of these five convex 

regular polyhedra can be constructed, and concludes by demonstrating 

that there are no other possibilities. 

At least three polygons are needed to make a solid a11gle. Using 

equilateral triangles this is possible with three <a>, four <b> and five <C> 

around a point. With six the result lies flat <d>. Three squares make a 

solid angle <e>, but with four <[, a limit similar to six triangles is reached. 

Three regular pentagons form a solid angle <g>, but there is no room, 

even lying flat, for four or more. Three regular hexagons meeting at 

a point lie flat <!1>, and higher polygons cannot meet with three around 

a point, so a final limit is reached. Since only five solid angles made of 

identical regular polygons are possible, there are at most five possible 

convex regular polyhedra. 

The angle left as a gap when a polyhedron's vertex is folded flat 

is its a11gle deficie11cy. Rene Descartes (1596-1650) discovered that the 

sum of a convex polyhedron's angle deficiencies always equals 720°, 

or two full turns. Later, in the eighteenth century, Leonhard Euler 

(1707-1783) noticed another peculiar fact: in every convex polyhedron 

the number of faces minus the number of edges plus the number of 

vertices equals two. 
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ALL THINGS IN PAIRS 
platonic solids two by two 

What happens if we join the face-centers of the Platonic Solids? Starting 

with a tetrahedron, we discover another, inverted, tetrahedron. The 

face-centers of a cube produce an octahedron, and an octahedron creates 

a cube. The icosahedron and dodecahedron likewise produce each other. 

Two polyhedra whose faces and vertices correspond perfectly are known 

as each other's duals. The tetrahedron is self-dual. Dual polyhedra have 

the same number of edges and the same symmetries. 

The illustrations opposite are stereogram pairs. Hold the book at 

arm's length and place a finger vertically, midway to the page. Focus 

on the finger and then bring the central blurred image into focus. The 

in1age should jun1p into three din1ensions! 

Dual pairs of Platonic Solids can be married with their edges 

touching at their midpoints to give the compound polyhedra shown 

below. Everything in Creation has its counterpart or opposite, and 

the dual relationships of the Platonic Solids are a beautiful example 

of this principle. 
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AROUND THE GLOBE 
in elegant ways 

Plato's cosmology constructs the Elemental Solids from two types of 

right-triangular atom. The first atom is half an equilateral triangle, 

six of which then compound to produce larger equilateral triangles; 

these go on to form the tetrahedron, octahedron and icosahedron. The 

second triangular atom is a diagonally halved square, which appears in 

fours, 111aking squares which then forn1 cubes. 

The Platonic Solids have planes of symmetry dividing them 

into 111irror in1age halves; the tetrahedron has six 111irror planes, the 

octahedron and cube have nine, and the icosahedron and dodecahedron 

have fifteen. When the tetrahedron, octahedron and icosahedron are 

constructed from Plato's triangular atoms, paths are defined which 

make their mirror planes explicit. The cube however needs twice as 

many triangular divisions as Plato gave it (top row) to delineate all its 

mirror planes (middle row). 
Projecting the subdivided Platonic Solids onto their circumspheres 

produces three spherical systems of symmetry. Each spherical system is 

defined by a characteristic spherical triangle with one right angle, and 

one angle of one third of a half turn. Their third angles are respectively 

one third of a half turn (top row), one quarter of a half turn (middle row) 
and one fifth of a half turn (lower row). This sequence of Yi, Y,, and Yi 

elegantly inverts the Pythagorean whole number triple 3, 4, .5. 
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ROUND AND ROUND 
lesser circles 

Any navigator will tell you that the shortest distance between two 

points on a sphere's surface is always an arc of a great circle. When a 

polyhedron's edges are projected onto its circumsphere the result is a set 

of great circle arcs known as a radial projectio11. Opposite, the left hand 

column shows the radial projections of the Platonic Solids with their 

great circles shown in dotted line. 

A spherical circle smaller than a great circle is called a lesser circle. 
Tracing a circle around all the faces of the Platonic Solids set in 

their circumspheres generates the patterns oflesser circles shown in 

the middle column. The apocryphal book xiv of Euclid's Elements 
proves that when set in the same sphere, the lesser circles around the 

dodecahedron's faces (fo11rtlz row) are equal to the lesser circles around 

the icosahedron's faces (fifth row). The same is true of the cube (second 
row) and the octahedron (third row) as a pair. 

Shrink the lesser circles in the middle column until they just 

touch each other to define the five spherical curiosities in the right 

hand column. Many neolithic carved stone spheres have been found 

in Scotland carved with the same patterns as the first four of these 

arrangements (see page 74). The dodecahedral carvings of twelve circles 

on a sphere, some 4,000 years old, are the earliest known examples of 

man-made designs with icosahedral symmetry. 

Large lesser circle models can be made from circles of willow, or 

cheap hula-hoops, lashed together with wire, string, or tape. 
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THE GOLDEN SECTION 
and some intriguing juxtapositions 

Dividing a line so that the shorter section is to the longer as the longer 

section is to the whole line defines the Golden Section (belo/11). The 

Golden Section proportion is an irrational nun1ber, inexpressible as a 

simple fraction (see pages 54 and 377). I ts value is one plus the square root 

of five, divided by two-approximately 1.618. It is represented by the 

Greek letter cJ) (plzi), or son1eti111es by T (ta11). cJ) has intin1ate connections 

with unity; cJ, times itself (cl>') is equal to cJ> plus one (2.618 ... ), and one 

divided by cJ> equals cJ> minus one (0.618 ... ). It is innately related to 

fivefold symmetry; the heavy lines in the pentagram below form a 

continuous series of Golden Section relationships. 

Remove a square from one side of a Golden Section rectangle and 

the remaining rectangle will also have sides in the Golden Section. This 

process can continue indefinitely and establishes a Golden Section spiral 

(belo/11 right). Remarkably, an icosahedron's twelve vertices are defined 

by three perpendicular Golden Section rectangles (opposite top). The 

dodecahedron is richer still. Twelve of its twenty vertices are defined 

by three perpendicular cJJ' rectangles, and the remaining eight vertices 

are found by adding a cube of edge length cJ> (/01/Jer, opposite). 

(j) J 
,1, 

~------- --------------

,1, 
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POLYHEDRA WITHIN POLYHEDRA 
and so proceed ad infinitum 

The Platonic Solids fit together in remarkable and fascinating ways; the 

appendix on page 376 shows many relationships. The upper stereogtam 

pair opposite shows a dodecahedron with edge length one. Nested 

inside it is a cube, edge length CJ), and a tetrahedron, edge length h 
times the cube's (see page 377). The tetrahedron occupies one third of 

the cube's volun1e. 

In the lower stereogram pair opposite, the six edge midpoints of 

the tetrahedron define the six vertices of an octahedron. As well as 

halving the tetrahedron's edges this octahedron has half its surface area 

and half its volume, perfectly embodying the musical octave ratio of 

r :2. Similarly the twelve edges of the octahedron correspond to the 

tvvelve vertices of a nested icosahedron. The icosahedron's vertices cut 

the octahedron's edges perfectly in the Golden Section (see page 146 for 
instructions Oil how to 1nal.ze these stereogra111 in1ages to ju1np into 3-v). 

Imagine these two sets of nestings combining to give all five 

Platonic Solids in one elegant arrangement. Since the outer dodeca­

hedron defines a larger icosahedron by their dual relationship, and the 

inner icosahedron likewise defines a smaller dodecahedron, the nestings 

can be continued outwards and inwards to infinity. 

The tetrahedron, octahedron, and icosahedron, made entirely from 

equilateral triangles, are co11vex deltahedra. There are only five other 

possible convex deltahedra, all shown lower, opposite. 
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COMPOUND POLYHEDRA 
a stretch of the imagination 

The interrelationships on the previous page generate particularly 

beautiful compound polyhedra. Fix the position of an icosahedron, 

and octahedra can be placed around it in five different ways, giving 

the compound of five octahedra (top left). Similarly the cube within 

the dodecahedron, placed five different ways, generates the compound 

of five cubes (top right). The tetrahedron can be placed in the cube 

two different ways to give the compound of two tetrahedra shown 

on page 146. Replace each of the five cubes in the dodecahedron 

with two tetrahedra to give the compound of ten tetrahedra (middle 
left). Remove five of the tetrahedra from the compound of ten, to 

leave the compound of five tetrahedra (middle right). This occurs in 

two versions, right-handed or dextro and left-handed or laevo; the 

two versions cannot be superimposed and are described as each 

others' enantiomorphs. Polyhedra or compounds with this property of 
'handedness' are described as chiral. 

Returning to the cube and dodecahedron, and this time fixing 

the cube, there are two ways to place the dodecahedron around it. 

The result of both ways used simultaneously is the compound of 

two dodecahedra (lower left). In the same way the octahedron and 

icosahedron pair gives the compound of two icosahedra (lower right). 
Many other extraordinary compound polyhedra are possible, for 

example Bakos' compound of four cubes is shown on page 128. 
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THE l(EPLER POLYHEDRA 
the stellated and great stellated dodecahedron 

The sides of some polygons can be extended until they meet again, 

for example the regular pentagon extends to form a five-pointed star, 

or pentagram (below). This process is known as stellation. Kepler had a 

great fascination with polyhedra (see for example page 306) and proposed 

the application of stellation to them, observing the two possibilities of 

stellation by extending edges, and stellation by extending face planes. 

Applying the first of these to the dodecahedron and icosahedron (below) 
he discovered the two polyhedra illustrated opposite and named them 

the larger and smaller icosahedral hedgehogs! 

Their modern names, the stellated dodecahedron (opposite top) and 

the great stellated dodecahedron (lower, opposite), reveal that these 

polyhedra are also two of the face stellations of the dodecahedron. 

Each is made of twelve pentagram faces, one with five, the other with 

three to every vertex. They have icosahedral symmetry. 

Although its five sides intersect each other, the pentagram has eqnal 

edges and equal angles at its vertices and so can be considered a non­
convex regular polygon. Likewise, these polyhedra can be regarded as non­
convex regular polyhedra. 
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THE POINSOT POLYHEDRA 
the great dodecahedron and great icosahedron 

Louis Poinsot (1777-1859) investigated polyhedra independently of 

Kepler, rediscovering Kepler's two icosahedral hedgehogs and also 

discovering the two polyhedra shown here, the great dodecahedron 

(top) and the great icosahedron (lower). Both of these polyhedra have 

five £1ces to a vertex, intersecting each other to give pentagran1 vertex 

figures. The great dodecahedron has twelve pentagonal faces and is 

the third stellation of the dodecahedron. The great icosahedron has 

twenty triangular faces and is one of an incredible fifty-eight possible 

stellations of the icosahedron (often numbered as fifty-nine including 

the icosahedron itself). These stellations also include the compounds 

of five octahedra, five tetrahedra, and ten tetrahedra. 

A non-convex regular polyhedron must have vertices arranged like 

one of the Platonic Solids. Joining a polyhedron's vertices to form new 

types of polygon within it is known as.faceting. The possibilities of faceting 

the Platonic Solids produce the compounds of two and ten tetrahedra, 

the compound of five cubes, the two Poinsot polyhedra (below left) and 

the two Kepler star polyhedra (below right). The four Kepler-Poinsot 

polyhedra are therefore the only non-convex regular polyhedra. 
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THE ARCHIMEDEAN SOLIDS 
thirteen semi-regular polyhedra 

The thirteen Archimedean Solids (opposite) are the subject of much of 

the rest of this book. Also known as the semi-regular polyhedra, they have 

regular faces of more than one type, and identical vertices. They all fit 
perfectly within a sphere, with tetrahedral, octahedral or icosahedral 

symmetry. Although their earliest attribution is to Archimedes, Kepler 

seems to have been the first since antiqnity to describe the whole set 

of thirteen in his Harmonices Mundi. He further noted the two infinite 

sets of regular prisms and antiprisms (examples below) which also have 
identical vertices and regular faces. 

Turn one octagonal cap of the rhombicuboctahedron by an eighth 

of a turn to obtain the pseudo-rhombicuboctahedron (below). Its 

vertices, while surrounded by the same regular polygons, are of two 
types relative to the polyhedron as a whole. 

There are fifty-three semi-regular non-convex polyhedra, one 

example being the dodecadodecahedron (below). Together with the 

Platonic and Archimedean Solids, and the Kepler-Poinsot Polyhedra, 

they form the set of seventy-five Uniform Polyhedra. 

heptagonal pris111 heptngo11al n11tipris111 
pseudo 

rl10111bicuboctahedro11 dodecndodecahedro11 
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FIVE TRUNCATIONS 
off with their corners! 

Truncate the Platonic Solids to produce the five equal-edged 

Archimedean polyhedra shown here. These truncated solids are the 

perfect demonstration of the Platonic Solids' vertex figures: triangular 

for the tetrahedron, cube and dodecahedron, square for the octahedron 

and pentagonal for the icosahedron. Each Archimedean Solid has one 

circumsphere and one midsphere. They have an insphere for each type 

of face, the larger faces having the smaller inspheres touching their 

centers. Each truncated solid therefore defines four concentric spheres. 

The five truncated solids can each sit neatly inside both their original 

Platonic Solid and that Platonic Solid's dual. For example the truncated 

cube can rest its octagonal faces within a cube or its triangular faces 
within an octahedron. 

The truncated octahedron is the only Archimedean Solid that can 

fill space with identical copies of itself, leaving no gaps. It also conceals 

a less obvious secret. Joining the ends of one of its edges to its center 

produces a central angle which is the same as the acute angle in the 

famous Pythagorean 3 :4:5 triangle, beloved of ancient Egyptian masons 

for defining a right angle. 





THE CUBOCTAHEDRON 
14 faces : 24 edges : 12 vertices 

The cuboctahedron combines the six square faces of the cube with the 

eight triangular faces of the octahedron. It has octahedral symmetry. 

Joining the edge midpoints of either the cube or the octahedron 

traces out a cuboctahedron (shown below as a stereogram pair). 

According to Heron of Alexandria (ro-75 AD), Archimedes ascribed 

the cuboctahedron to Plato. 

Q,jasiregular polyhedra such as the cuboctahedron are made of two 

types of regular polygon, each type being surrounded by polygons 

of the other type. The identical edges, in addition to defining the 

faces themselves, also define eqnatorial polygons. For example the 

cuboctahedron's edges define four regular hexagons (lower, opposite 
center). The radial projections of quasiregular polyhedra consist entirely 

of complete great circles (lower, opposite left). 
Twelve spheres pack around an identical thirteenth to produce 

a cuboctahedron (lower, opposite right). Greengrocers use this system 

to stack oranges in offset hexagonal layers. Known to chemists as 

hexagonal close packing each sphere is surrounded by twelve others, 

their centers defining a strong lattice of tetrahedra and octahedra. 
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A CUNNING TWIST 
and a structural wonder 

Picture a cuboctahedron made of rigid struts joined at flexible 

vertices. This structure was named the jitterbug by R. Buckminster 

Fuller (1895-1983), and is shown opposite with the rigid triangular 

faces filled in for clarity. The jitterbug can be slowly collapsed in 

on itself in two ways so that the square 'holes' become distorted. 

When the distance between the closing corners equals the edge length 

of the triangles, an icosahedron is defined. Continue collapsing the 

structure and it becomes an octahedron. If the top triangle is then 

given a twist, the structure flattens to form four triangles which close 

up to give the tetrahedron. 

Geodesic domes are another of Buckminster Fuller's structural 

discoveries. These are parts of geodesic spheres, which are formed 

by subdividing the faces of a triangular polyhedron, usually the 

icosahedron, into smaller triangles, and then projecting the new 

vertices outward to the same distance from the center as the original 

ones (below). A distant relative of the geodesic sphere is the popular 

Renaissance polyhedron of seventy-two sides known as Campanus' 

sphere (below right). 
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THE lCOSIDODECAHEDRON 
32 faces : 60 edges : 30 vertices 

The icosidodecahedron combines the twelve pentagonal faces of the 

dodecahedron with the twenty triangular faces of the icosahedron. 

Joining the edge midpoints of either the dodecahedron or the 

icosahedron traces out the quasiregular icosidodecahedron (both are 
shown below as a stereogram pair). Its edges form six equatorial decagons, 

giving a radial projection of six great circles (lower, opposite left). 
The earliest known depiction of the icosidodecahedron is by 

Leonardo Da Vinci (1452-1519) and appears in Fra Luca Pacioli's (1445-

1517) De Divina Proportione. Appropriately this work's main theme is 

the Golden Section, which is perfectly embodied by the ratio of the 

icosidodecahedron's edge to its circumradius. 

Defining the icosidodecahedron with thirty equal spheres leaves 

space for a large central sphere that is ~ 5 (see page 377) times as big as the 

others (lower, opposite right). 
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FOUR EXPLOSIONS 
expanding from the center 

Exploding the faces of the cube or the octahedron outwards until they 

are separated by an edge length (below) defines the rhombicuboctahedron 

(opposite top left). The same process applied to the dodecahedron or 

icosahedron gives the rhombicosidodecahedron (opposite top right). The 

octagonal faces of the truncated cube, or the hexagonal faces of the 

truncated octahedron, explode to give the great rhombicuboctahedron 

(/owe,; opposite left). The decagonal faces of the truncated dodecahedron, 

or the hexagonal faces of the truncated icosahedron, explode to give 

the great rhombicosidodecahedron (/owe,; opposite right). 
Kepler called the great rhombicuboctahedron a truncated 

cuboctahedron, and the great rhombicosidodecahedron a truncated 

icosidodecahedron. The two truncations he refers to, however, do not 

produce square faces, but ~2 and cJi rectangles respectively. 

These four polyhedra have face planes in common with either 

the cube, octahedron and rhombic dodecahedron (see page 179), or the 

icosahedron, dodecahedron, and rhombic triacontahedron (see page 179), 
hence the prefix 'rhombi-' in their names. 
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TURNING 
the snub cube and snub dodecahedron 

The name 'snub cube' is a loose translation of Kepler's name cubus 
simus, literally 'the squashed cube'. Both the snub cube and the snub 

dodecahedron are chiral, occurring in dextro and laevo versions. Both 

versions are illustrated opposite with the dextro versions on the right. 

The snub cube has octahedral symmetry, and the snub dodecahedron has 

icosahedral symmetry. Neither has any mirror planes. Of the Platonic 

and Archimedean Solids the snub dodecahedron is closest to the sphere. 

The rhombicuboctahedron (previous page) can be used to make a 

structure similar to the jitterbug (see page 169). Applying a twist to this 

new structure produces the snub cube (below). Twist one way to make 

the dextro version and the other to make the laevo. The corresponding 

relationship exists between the rhombicosidodecahedron and the 
snub dodecahedron. 

The five Platonic Solids have been truncated, combined, exploded 

and twisted into the thirteen Archimedean Solids. Three-dimensional 

space is revealing its order, complexity and subtlety. What other 
wonders await? 
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THE ARCHIMEDEAN DUALS 
everything has its opposite 

The duals of the Archimedean Solids were first described as a group by 

Eugene Catalan (1814-1894) and are positioned opposite to correspond 

with their partners on page 163. To create the dual of an Archimedean 

Solid, extend perpendicular lines from its edge midpoints, tangential to 

the Solid's midsphere. These lines are the dual's edges; the points where 

they first intersect each other are its vertices. Archimedean Solids have 

one type of vertex and different types of faces, their duals therefore 

have one type of face but different types of vertices. 

The two quasiregular Archimedean Solids, the cuboctahedron and 

the icosidodecahedron, both have rhombic duals which were discovered 

by Kepler. The Platonic dual pair compounds (pages 146, 166, and 170) 

define the face diagonals of these rhombic polyhedra, which are in 

the ratios ~2 for the rhombic dodecahedron and cJJ for the rhombic 

triacontahedron. Kepler noticed that bees terminate their hexagonal 

honeycomb cells with three such h rhombs. He also described the 

three dual pairs involving quasiregular solids (below), where the cube is 

seen as a rhombic solid, and the octahedron as a quasiregular solid. 



trinkistetrnJ1edro11 

I el rnkishexahedron rlro111bic dorfecnhcdro11 

trapezoidal icosiletrnhedro11 rf isdynkisdodecnl1cd ro11 

pe11 tnkisdodccnhed ro11 

trapezoidnl hexcco/llnhcdro11 d isdyakisf rinco11 f nhedro11 

177 

triakisoctnhedro11 

tf~ 
,J, .. 1--~;­\-l J/ ----<;y;:. 

peHtngonal icositctrahcdro11 

~ --,.,c/,v 
-..'"''-./?' 

f riakisicosn/Jerf ro11 

peutngo11al hexeco11tnhedro11 



MORE EXPLOSIONS 
and unseen dimensions 

Exploding the rhombic dodecahedron, or its dual the cnboctahedron, 

results in an equal-edged convex polyhedron of fifty faces (opposite top 
right). Meanwhile, the exploded rhombic triacontahedron, which is 

identical with an exploded icosidodecahedron, has one hundred and 

twenty-two faces (lower, opposite right). 

Ludwig Schlafi (1814-1895) proved that there are six regular four­

dimensional polytopes (generalisations of polyhedra): the 5-cell made 

of tetrahedra, the 8-cell or tesseract made of cubes, the 16-cell made 

of tetrahedra, the 24-cell made of octahedra, the I20-cell made of 

dodecahedra, and the 600-cell made of tetrahedra. 

The rhombic dodecahedron is a three-dimensional shadow of the four­

dimensional tesseract analogous to the hexagon as a two-dimensional 

shadow of the cube. In a cube two squares meet at every edge. In a tesseract 

three squares meet at every edge. Squares through the same edge define 

three cubes ~haded below, with an alternative tesseract projection). 
Schlafi also proved that in five or more dimensions the only regular 

polytopes are the simplex, or generalized tetrahedron, the hypercube, or 

generalized cube, and the orthoplex, or generalized octahedron. 
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HARMONOGRAPH 
A Visual Guide to the Mathematics of Music 

Anthony Ashton 
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INTRODUCTION 

Many of the drawings in this book were produced by a simple scientific 

instrun1ent known as a hartnonograph, an invention attributed to 

a Professor Blackburn in 1844. Towards the end of the nineteenth 

century there secn1s to have been a vogue for these instrun1ents. 

Victorian gentlen1en and ladies would attend soirees or co1111ersazio11es, 

gathering round the instruments and exclaiming in wonder as they 

watched the beautiful and mysterious drawings appear. A shop in 

London sold portable models that could be folded into a case and taken 

to a party. There may well be some of these instruments hidden in 

lofts throughout the country. 
From the moment I first saw drawings of this kind I was hooked: 

not only because of their strange beauty, but because they seemed to 

have a meaning-a meaning which became clearer and deeper as I 

found out how to make and operate a harmonograph. The instrument 

draws pictures of musical harmonies, linking sight and sound. 

However, before going any further I feel I should issue a health 

warning. If you too are tempted to follow this path, beware! It is both 

fascinating and tin1e-consun1ing. 

I should acknowledge my debt to a book called Har111011ic Vibratio11s. 

It was coming across this book in a library soon after the end of the 

second world war that introduced me to the harmonograph. Seeing 

that the book had been published by a firm of scientific instrument 

makers in Wigmore Street I went one day to see if they were still there. 

They were, though reduced merely to making and selling projectors. 



I went into the shop and held up my library copy of the book for the 

elderly man behind the counter to see. 

"Have you any copies of this book left?" I asked him. 

He stared at me as though I was some sort of ghost, and shuffled 

away without a word, returning in a few minutes with a dusty, unbound 

copy of the book. 
"That's 111arvelous," I said, "how 1nuch do you want for it?" 

"Take it", he said, "it's our last copy, and we're closing down 

to1norrow. " 
So I have always felt that someday I must write this book. 
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THE DISCOVERY OF HARMONY 
on passing a blacksmitlz 

To understand what the harrnonograph does we need first to glance at 

the elements of musical theory. 

Pythagoras, some 2,500 years ago, is credited with discovering that 

the pleasing experience of n1usical harn1ony co111es when the ratio of 

the frequencies consists of simple numbers. A widely recounted story 

tells how taking a walk he passed a blacksmith's shop. Hearing familiar 

harn1onies in the ringing tones of the han1n1ers on the anvil, he vvent in 

and was able to determine that it was the weights of the hammers which 

vvcrc responsible for the relative notes. 

A han1111er weighing half as 111uch as another sounded a note t1vice as 

high, an octalle (2:1). A pair weighing 3:2 sounded beautiful, a.fifth apart. 

Simple ratios made appealing sounds. 

The picture opposite shows experiments the philosopher went on to 

make (from Gafurio's Thearica M11sice, 1492), as he found that all simple 

n1usical instrun1ents work in 111uch the san1e way, whether they arc 

struck, plucked or blown. 

Deeply impressed by this link between music and number, Pythagoras 

drevv the 111etaphysical conclusion that all nature consists of harn1ony 

arising fro111 nu111ber, precursor to the 111odern physicist's assun1ptio11 that 

nature conforn1s to lavvs expressed in n1athen1atical forn1. Looking at the 

picture you will sec that in every example, hammers, bells, cups, weights 

or pipes, the same numbers appear: 16, 12, 9, 8, 6, and 4. These numbers 

can be paired in quite a few ways, all of them pleasant to the ear, and, as 

we shall sec, also pleasant to the eye. 
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THE MONOCHORD OF CREATION 
a singular string theory 

There are seven octaves in the keyboard of a piano and nearly eleven in 

the total range of sound heard by the average person. The highest note 

of each octave has a frequency twice that of the first so the frequencies 

increase expo11e11tially, on a scale beginning at 16 cycles per second 

(16 Hertz) with the lowest organ note and ending with about 20,000 per 

second. Below 16 Hz we experience rhythm. A range of ten octaves 

represents about a thousandfold increase in frequency (2 '° cs m'). 
There is a hint here of what we can think of as the 'great monochord' 

of the universe, also on a scale, this time stretching from a single 

quantum fluctuation at the bottom, to the observable universe at the top, 

passing through the various 'octaves' of aton1, 111olecule, quantities of 

soUd, liquid and gaseous n1atter, creatures great and sn1al1, planets, stars 

and galaxies. Here too the scale is exponential, but usually measured in 

powers of ten, and covering a range of 111ore than 10·1°. 

Robert Fludd's 17d, century engraving (opposite) tells a similar story: 

the musical scale follows the same exponential principle underlying the 

design of the universe. 
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OVERTONES AND INTERVALS 
harmonic ratios in and outside the octave 

How are musical scales constructed? Listen very carefully as you pluck 

a string, and you will hear not only the main note, or to11ic, but also a 

n1ultitude of other harn1onics, the overtones. 

The principle is one of harmonic resonance, and affects not only 

strings and ringing hammers, bnt columns of air and plates too. 

Touching a string with a feather at the halfway or third point, as shown 

below, encourages regularly spaced stationary points, called 11odes, and 

an overtone can be produced by bowing the shorter side. The first three 
overtones are shown opposite. 

Musicians, however, need notes with intervals a little closer together 

than the overtone series, which harn1onize t{)ithi11 an octave. The lower 

diagram opposite shows the overtone series on the left, and the intervals 

developing within the octave on the right, in order of increasing 
dissonance, or con1plexity. 

"All discord harmony not understood" wrote Alexander Pope. 

The brain seems to grasp easily the relationships implicit in simple 

harn1onies, an achieven1ent bringing pleasure; but with increasing 

complexity it falters and then fails, and failure is always unpleasant. For 

most people enjoyment fades as discord increases, towards the end of the 

series opposite. And, as we shall see, that is where the hannonograph 
drawings fade too. 

..-\ .l. 
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TONES AND HALFTONES 
the fourth and fifth get their names 

Pythagoras' hammers hide a set of relationships dominated by octaves 

(2:1), fifths (3=2) and fourths (4:3). The fifth and fourth combine to make 

an octave (3:2 x 4:3 = 2:1), and the difference between them (3:2 + 4:3) is 

called a tone, value 9:8. 

A natural pattern quickly evolves, producing seven discrete nodes (or 

notes) from the starting tone (or tonic), separated by two halftones and five 

tones, like the Sun, Moon and five planets of the ancient world. 

The interval of the fifth (3:2), the leap to the dominant, naturally 

divides into a major third and minor third (3:2 = 5:4 x 6:5), the major 

third essentially consisting of two tones, and the minor third of a tone 

and a halftone. The thirds can be placed major before minor (to gi11e the 
,najor scale slio11,11 in the third rou, opposite), or in other ways. 

Depending on your harmonic moves, or melody, different timings appear, 

for example two perfect tones (9:8 x 9:8 = 81 :64) are not in fact the perfect 

major third 5:4, but are slightly sharp as 81 :So (the sy11to11ic or synoptic comma, 
the Indian s/m1ti, or comma ,fDidymus), more of which later. 

Simple ratios, the octave and fifth, have given rise to a basic scale, a 

pattern of tones and halftones and, depending on where in the sequence 

you call home, seven modes are possible (see page 382). 

4 6 8 ;; 9 12 16 
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tliird ,1l1(1l'<' llh·Jiurl/J, ,1 H!i1hir lone ali1ll'<' tl1c·_!Utk T/1c dialoHi< scrcntli (1s:S) i:; 1! 11w_jor ton,· 
,i/JO\'C t/1,d, <1 l>lr!_JO!' t/1ird 1J/1(11·c t/1cfUiJ1 ,md 11 J1<11/to11c lidow tl1c od,ll',·. 
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DERIVING THE SCALE 
monochord, tetmclzord, and 1najor chord 

The pure ratios of fourth, fifth and octave make up the paradoxical 

trinity of the Pythagorean Tetrachord, simple yet curiously mystifying, 

in that here the two notes of the sounded octave becon1e as one. 1'hus 

a fifth up is a fourth down, and vice versa (see ill11stmtio11, page 194), and 

four notes, within the unity of the octave, become three. The reflexive 

relationship of these pure tones forms the basis of Western tonality, and 

from them is derived the major scale (opposite top). 

When the fourth is dropped an octave, the fundamental, or tonic, 

now becomes its fifth. This results in the circle of fifths, in which each 

nc,v tone is the second overtone (i.e., fifth) of its predecessor (!011;er, 

opposite). The fundamental, C, is flanked by the subdominant F, and 

don1inant, G. When tonic and fourth are sounded together, the tonic, I, 

is undermined by, and almost subsumed into the subdominant, IV. The 

three constituent elements of the Tetrachord, in their delicate balance, 

have defined the way we hear and understand music. 

Scales can be derived from various basic principles. The harmonic 

scale consists of the third octave of the overtone series, C D E P:: G A 

B, B C. In Indian music Saraswati, Goddess of music and science, has 

a ra'-r;a containing seven of these eight notes. Indian tunings, however, 

extend to 22 tones, or shrutis, to allo,v for the syntonic cornn1a, 81:80 (see 

page 194), Fron1 these tones, seven notes are chosen. The Persian gan1ut 

of 17 tones includes the seven white notes on a piano plus the black 

notes, which are split down the middle, for sharps are 1101 flats (l,elo111). 



Rislit; 11(riring (/J(' !lldJOI' ,;(,i/cfr,1u1 11 <..'ird,' 1f/ijtl1, 
rc,11nn·, ,;f,1rtn1g}nm1 tlic ,1d1.lomin,wt E \\

1
it/J ti 

(j)'<..'/l' l~j _/!ft)h /,cg1H1Jill_i! at (, /1riHgms t/Jl fir,t S(l'l'll 

note, ,l,1w1J i11!0 11 ,inglc od,n'l' k,1d~ toll p11r,' lyd:an 
mode: C [)Er:: L; :\ H C, b1t1wn t,1 ti1t' ant'h'llt t;r,,,{, 

,1' Syutt1lydr1111, ,w,I 1onti1i11i11g t/ic 'nH,e,l' .1f11, F::. 
l11t,T,''(1Hgly, l1r1llr t!Jt' /1,1f!IJ\11Jll ~,,de (llf'J'<1,it<') dn,1 
L_l'di,PJ mod,· .-ont,1i11 tih' d\{findt-,o[mding 'i1[1gJJ1,'JJlt'd 
j,1urtJ1: or trit,llh', t.J111w11 t,1 Hh',lin•a/ 11111,1,ol,1g1~t, ,1, 

t/it' 'd111h1/th JH JH1l.;J(1l'. 
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LiJt: U,;ing 11 111(lllllcl1ord wit Ii a 1Htll'd!1k 
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ARRANGING THE HARMONIES 
the power of silence 

The simple ratios of the primary overtones and undertones can be 

plotted on an ancient grid known as a la111bdo11w (opposite top), after the 

greek letter A. Some intervals have the same value (e.g., 8:4 = 6:3 = 4:2 = 

2:1), and if lines are drawn through these it quickly becomes apparent 

that the identities converge on the silent and mysterious ratio o:o, which 

is 'outside the diagran1'. 

A further contemplative device used by the Pythagoreans was 

the Tetraktys, a triangular arrangen1ent of ten elen1ents in four rows 

(r + 2 + 3 + 4 = 10). The basic form is given opposite lower left, the first 

three rows producing the simple intervals. In another lambdoma (lolller, 
opposite right), numbers are doubled down the left side and tripled down 

the right, creating tones horizontally separated from their neighbours by 

perfect fifths. After the trinity (1, 2 and 3) notice the numbers produced, 

4, 6, 8, 9, 12, and then look again at the picture on page 189. 

Below we see a fuller range of monochord positions, with the 

overtones on the right, and intervals on the left (see pages 193 a11d 195). 

~------~ 



,v 
1:6 

• 1:7 .;:6 3:s' 

1:8 2:7 '· 3:l, 8:1 . 
~'.c; 1:~) 2:S _..;;7 ~),'J 

J,'JQ 2:~) 3:$ 4·" ., . 
4~8 2:h) 3:~1 ~' ., 

l'ytl1dg(1r,'1ll1 ,m,I n1cd1n·1il trmi11g,, c,dkd 3-linut, n.·c,1g1ii:::,·d !!(l /rut' inkn,,d, ,·x,cpt J1r ri1/io,; 

1n1·(1/t•iflg J, 2 (lJld 3. Tl1c lmn/,d()ma f,cltiw rig/11 ,·xprc,~c, t!ii, 1J1ml!'l'icdlly <lj dll)' clcnicHt rd,itc~ 
l(l ,my nciglihtiur hy l'dlw:: 1)11/y inl'oll'ing 1, 2 and 3, ,owe c,111 mot\' 11n1w1d /iy 11d1B'cs !lml fUt/1,. 
S111uirc~ (·i"1·', !l=-3.,) ,wd <ul,rc ,,ofro11c, (S;c;J\ 27""3 1

) ,1ho <1/'J1t'ilr . .A,ld frfftl1cr 1',1w, (HJtl tire 
111011l,o·\/(1i- the I1ytl1,isorcr1n ,r,dc ,01111 app,·i1r, 1 9:S 6:i:.Sl ,i:3 3:1 27:lb 1{,/1 2:1. T/ii, ha, 

J,iurjifilr.; ,iniljn'f j(irJrth, /11d ,10 j1t'1J·d tlrin/:; (W ,i:,:t/1,. Tli6c cnmc l,1tcr a'1tJ1 tJic 1/ialtm1c .;c,ilc ,md 
1h rcrf~·d tliiri/, (b:S:·i) ,i- polyplwny mu/ d1,ird, ,/,1wly tool (l\'fr from rlaind1,wl ,m,l dnn1c. 
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LISSAJOUS FIGURES 
sound 1nadc shape 

In the n1id nineteenth century a French n1athe1natician,Julcs Lissajous, 

devised an experiment: He found that if a small mirror was placed at 

the tip of a tuning fork, and a light beam aimed at it, then the vibration 

could be thrown on to a dark screen. When the tuning fork was struck, 

a small vertical line was produced and if quickly cast sideways with 

another n1irror it produced a sine-wave (be/0111). 
Lissajous wondered what would happen if instead of casting the 

wave sideways he were to place another ttming fork at right angles to 

the first to give the lateral motion. He found that ttming forks with 

relative frequencies in simple ratios produced beautiful shapes, now 

knovvn as Lissajous figures. 

On the screen (opposite top), \Ve see the octave (2:1) as a figure of eight, 

and below it various phases of the major and minor third. These were 

some of the first fleeting pictures of harmony, which were doubtless 

familiar to Professor Blackburn when he devised the harmonograph. 

200 



201 



THE PENDULUM 
keeping tinze 

A fundamental law of physics (in one formulation) states that left to itself 

any closed system will always change towards a state of equilibrium 

from which no further change is possible. 

A pendulum is a good example. Pulled off center to start, it is in a state 

of extren1e disequilibriun1. Released, the 1110111cntun1 of its svving carries 

it through nearly to the same point on the other side. As it swings it loses 

energy in the form of heat from friction at the fulcrum and brushing 

against the air. Eventually the pendulum runs down, finally coming to 

rest in a state of equilibrium at the center of its swing. 

Going back 500 years, Galileo, watching a swinging lamp in the 

cathedral of Pisa, realized the frequency of a pendulum's beat depends 

on its length: the longer the pendulum the lower the frequency. So 

the frequency can be varied at will by fixing the weight at different 

heights. Most importantly, as the pendulum runs down, the frequency 
stays the same. 

Here, therefore, is a perfect way to represent a 111usical tone, slowed 

down by a factor of about a thousand to the level of human visual 

perception. For a simple harmonograph two pendulums arc used to 

represent a harmony, one with the weight kept at its lowest point, 

while the weight on the other is moved to wherever it will produce 

the required ratio. 

As we shall sec, the harmonograph combines these two vibrations 

into a single drawing, just as tvvo 111usical tones sounded together 

produce a single complex sound. 
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Th,· t/1,·or,·tic,il kn~~t/11:f tlh' v,iri,1/11.' 
rcn,l1d1m1 t/111! 11•i/l prt!,l11,,· c,1d1 /J,inJJ()IJ)' .-,m 

/t1' l<llt ulat,·,{. ,1,1r tilt! J'l'1jl(t'J1,y <'.{ d re11,l1d1m1 

l'dflt'' !11\',T,,'(V w1tl1 tl1c ~,JU10'\' ro,,t ,~f tf.; 

lcugt/1. T/J1, 1nc1111, t!iat w/11/c t!1t•ji·,·,p1,'1h)' 
d11u/Jln witl11n t/1e o,t,n·,·, t!1c lcngtlt ,1J t!ic 
pcHilrdro11 is ff,lu, ,·d /,y <1 _f,1t1,1r ,~{ f,1m: 

1\~lff!', ,o\' gircn J,ir 11 pc1i.lulwn Soou !t1J1g. 

,i c,1111•01i1·n! lc11gtl1 _lc1r r1 lr,inuo11,1gr11ph. 

TJ1c,c tlh',)J'd i.-lll n1<1r~er~ pr,ll'hk 1h,:frd 

\ig/11 ing ,lwt,'J,ir n1<1.;/ 1,.lf t lit' '111n11011ie,, N,1!,' 
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H'/1e11 ,i J't'11,lul1m1 r, J1Hllcd l•,ici ,11i,I tli,·n !'de,1,cd, 1J1,· 
!l'l'iglJt Irie, t,iJ1/I (,iw,ird~ 1J1,· t'OJ(,'!' o/ tl1c E,irt/1, 

,1.-cclcniting a, rt doc~ ,o. A, tile p,·ndulwll rw1, down, 
tilt' r<1t,' ,1/ ac(c/cr,1i1tln, ,md ,{1 Ilic ~J,c,,,I ,1/ tr,iwl. 1, 

r,·,fo,·cd, /,ut Ill ,·,11uil prop(ir/1011 t,1 !11,· di,ttincc 1:/ lnn't'I. 
T/1,· i-.·,;11/t is t/i,it the J1l'l'i(1,/ (tlil' time t,1~,·11jor two 
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tire l,:ft t/1c fr,',JHOJt"1c~ (i_j l1c<1!~ x ,md y are tl1c ~1!1Ht'. 
For tin· f't'HiiulwH/;1nnuld, ~,·,· p,1g<' ;S3. 
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Two HARMONOGRAPHS 
lateral and rotary 

In the si111plest version of the instrun1cnt tvvo pcndulun1s are suspended 

through holes in a table, swinging at right angles to each other. 

Projected above the table, the shaft of one pendulum carries a small 

platform with a piece of paper clipped to it, while the shaft of the other 
pendulun1 carries an ar111 ,.vith a pen. 

As the pendulums swing the pen makes a drawing that is the result 

of their combined motion (see left side opposite). Both pendulums begin 

with the same length, further drawings can be obtained as one is then 

shortened by sliding the weight upwards and securing it with a clamp 

at various points. The har111onic ratios can be displayed in turn. 

By using three pcndulun1s hovvever, tvvo circular, or rotary, 

n1ovcn1cnts can be con1bined, \Vitb fascinating results (see rig/it side 
opposite). Tvvo of the pcndulun1s svving at right angles as before, but arc 

now both connected by arms to the pen, which in all rotary designs 
describes a simple circle. 

Situated under the circling pen, the third and variable pendulum is 

n1ounted on gin1bals, a device £.1111iliar to anyone v.,rho has had to use a 

con1pass or cooking stove at sea. I-lere it acts as a rotary bearing, enabling 

the pendulum carrying the table to swing in a second circle under the pen. 

As the pen is lowered the two circles are combined on the paper. 

A further source of variation is also introduced here, for the t,vo 

circular n1otions can s\.ving in the san1c (concurrent) or opposite 

(countcrcurrent) directions, producing astonishing drawings vvith very 

different characteristics (sec apprndiccs 011 pages 384-385). 



A/1(11'<'; T1n1 /ian11(1J!\1g_r,1plh ,md ,time 1:/ tlie .;irnplc pt1lltT11, tlicy dr<1w. On tlic !,:ft liJ<' .;in1pl<' 
/,1tcr,d l'O',rtlJI <111t/ it,: patt(nh ((1po1 ,rnd tfti,,·d pli,1sd; 1111 Ille rig_lit tih' tln\\'·jlc'Jldulwn, rotiuy 
lr.inn,111og_r,1p!J ,md it, ,/n1wrng_, ((tlllCHITt'II/ and counl,'rCWTc'nl). Scc ftio the twrn·dl1pti1 

/1,1n1hlJ1(1g_ri111Ji dlii,lr,!lcd rn 1/1,' 1,llvt'f n:;_'11 .Ji,md f,in1er oj p,ig_,· 387. 
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SIMPLE UNISON 1:1 
and the arrow of tirne 

The simplest harmonograph drawing is produced when both pendulums 

are the same length and the table is stationary. With the pen held off 

the paper both pendulums are pulled back to their highest points. One 

is released, followed by the other when the first is at its mid-point. The 

pen is then lowered on to the paper to produce a circle developing into 

a single spiral. 

If the two pendulums are released together then the result will be a 

straight diagonal line across the paper, the 'closed' phase of the harmony, 

as opposed to the circular 'open' phase. At intermediate phase points 

elliptical forms appear (beloiv). 
The running-down ofharmonograph pendulums is an exact parallel 

to the fading of musical notes produced by plucked strings, and can 

also be thought of as graphically representing the 'arrow of time' (see 
opposite), with the unchanging ratios of the frequencies representing the 

eternal character of natural law. The characteristics of the drawings 

result from the meeting of the running-down process with the 'laws' 

represented by the various frequency ratios. We see that music, like the 

world, is formed from unchanging mathematical principles deployed in 

time, creating complexity, variety and beauty. 
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Tiie i11cx(1n1/1/c dircYli()!! ('.{ ch,111ge, linked l,l tlic· ,i:;ynJJnctry (:{ lime (l,cfon'·lltlll'·11J!,'r), w,1, 
vividly dc,cril1,·d liy tin· ,cic11ti~t Art/wr J:'ddi11gt(111 (1SS1~19,H) ,i:s 'the mTow of timt". 
TJ1nn1gJw11t t!Jc proc6., of (()llli11uing uHil'cnal ,kgn1d11ti01J, tlic dwindling ,!(1d, .. (:r 'u,,:Jid' 
c'n,·rgy ('ncowiten t1 J1i,T11rd1y tfjlx,·d p/1y.;i.11/ law, Ctl!((ormins to u1<1t/1c111atic,d J1nnul,ic, 
,md it i> from rl1c· inta11t'/i,H1 of tli,·ic 1md1m1ging lnws wit Ii t/ic i!J"J"tlw l'.f time tluit (()IIICS a 
dwnging world ,:(11~lom\hi11gt"on1ple:o:ity, 1'llrfr!y,m,I 11cnuty. Tlh' 11nhlulurn rmi.s ,/.lw11Jr,1m 
<1 .;talc <l{ di.;c,1ui/i/1riw11 tt1 Oil\' of c,1ui/il1ri11111, ,md !lie· '(lHh' i, !rt!t', we ,ire lllld, if t/1c 
rmivcT~,·, the rdti111atc 'do~c,l .;y~ton'. FJ'(ml ,1 ,tat,· (f ext r,·mc di,t•,p!tli!!J'imH it plwig,·d l'id tlic 
'Big Bm1g' tow,1r,/.; it, jritrO"C 11ltifll1!lc' >Ii!/(' t~f 111/t'rly d,1rl.,fi-c1::t'H c,p1ilil1ri111H. J:lctwccn t/ic 
l,,•gi,niing 1md t/11· emf t/ia,· i, a t",i11ti11wd, cw111d111il't' tr,m4onu,llit11J i:f 'H>t:Jid' c11c·,:,:y, 

Cdf111l1k (:J};irming tonpor,uy stnid11r<'> and t",111,ing n·,·11!5, into 'u~ck,,' cnc,gyji1r,·1,cr /oil. 
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NEAR UNISON 
lateral phases and beat frequencies 

A source of pleasing variety in harmonograph drawings comes from 

small departures from perfect harmonies. This seems to involve a 

principle widespread in nature as well as in the work of many artists. 

There is a particular charn1 in the near-n1iss. 

An example from music suggests itself here. When two notes are 

sounded in near unison, the slight difference in their frequencies can 

often add richness or character to the sound. The two reeds producing 

a single note in a piano accordion have slightly different frequencies, 

the small departure from unison causing 'beats', a subtle warbling or 

throbbing sound (see page 383). 

Set the weights for unison and then shorten the variable pendulum 

slightly. Swing the pendulums in open phase, producing a circle turning 

into an increasingly narrow ellipse and then a line. If the pen is allowed to 

continue, the line will change into a widening ellipse, a circle, and a line 

again at right angles to the first. And so on. The instrun1cnt is vvorking 

its way through the phases of unison shown on page 206. 

If the variable pendulum is then further shortened in stages, a series 

of drawings like those opposite will be produced. The repetitive pattern 

represents 'beats' with increasing frequency as the discrepancy between 

the notes widens. Eventually the series fades into a scribble that is a 

£1ir representation of discord, though even here there is a hint of son1e 

higher-nun1ber pattern. 

For most people this fading of visual harmony occurs at about the 

same point as the audible harmonies fade. 
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ROTARY UNISON 1:1 
eggs and shells 

At first this is disappointing: unison in contrary motion produces a 

straight line across the paper, like the closed phase of lateral unison. 

Fro111 concurrent n1otion there con1es a n1ere dot that turns into a line 

struggling towards the center, pen and paper going round together. 

However, changing to near-unison is richly revvarding. In contrary 

motion come a variety of beautiful, often shell-like, forms with fine 

cross hatchings. For best results lift the pen off the paper well before 

the pendulums reach equilibrium. 

Surprisingly, fro1n concurrent ncar-n1iss n1otion there con1e various 

spherical or egg-shaped forms. To produce an 'egg' the pen should 

be lowered when it is dawdling at the center. It then spirals its way 

outvvards, reaching a lin1it before returning as the pendulun1s run 
down. Because the lines toward the perimeter get closer together, the 

drawing appears three-dimensional. 
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THE LATERAL OCTAVE 2:1 
figures of eig/Jt and wings 

After unison the next harmony to try is the octave. Herc there is a 

technical difficulty, for the variable pendulum has to be very short, and 

because of the greater amount of friction involved runs down quickly. 

The trick is to add a weight to the top of the invariable pendulum, which 

slows it down (see page 183). The variable pendulum can then be longer. 

Unfortunately this means that for the octave, and other ratios where 

one pendulum is going much faster than the other, the theoretical markers 

have to be ignored, and the right point found by trial and error. 

With one pendulum beating twice as fast and at right angles to the 

other, the octave in open phase takes the form of a figure-of-eight (a 

coincidence), repeated in din1inishing size as the pendulun1 runs dovvn. 

If both pendulums are released at the same time to produce the 

closed phase, the result is a cup-shaped line that develops into a 

beautiful winged form with fine cross-hatchings and interference 

patterns. Small adjustments produce striking variations. 

The octave is the first overtone (see page 192). 
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THE ROTARY OCTAVE 2:1 
hearts and triangles 

Fro111 rotary 111otion with a 2:1 ratio con1e son1e of the 111ost beautiful 

of all harmonograph drawings: simple, graceful and often surprising. 

Remember, all that is happening here is that two circular motions, one 

almost exactly twice as fast as the other, are being added together. 

Contrary motion produces a trefoil shape with many fine variations 

(right lzand i111ages opposite). Starting with a smaller size or a111plitnde in the 

faster rotation produces a triangle, or pyramid. 

The octave in concurrent motion produces a heart-shaped form 

with a simple inner loop (below left and left hand colu11111 opposite). Here 

there is a link with the ancient tradition of the music of the spheres, for 

this is the shape an observer on Uranus would ascribe to the movement 

of Neptune, or vice-versa. This is because the planets orbit the Sun 

concurrently, Uranus in 84 years and Neptune in 165, approximately 

performing an octave. The planet Mercury sings a perfect octave all 

by itself, as one ofits days is two of its years (see BooK VI in this uolwne for 
111uch more 011 relationships such as these). 

Near-misses in the ratios of rotary drawings set the designs spinning 

(lou1e1~ opposite ro111). 
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THE LATERAL FIFTH 3:2 
and the second overtone 3:1 

Next to be tried is the harmony of the fifth, intermediate between 

the sin1plicity of unison and octave and the n1ore con1plex harn1onies 
that follow. 

It will be seen from the open phase drawing opposite that the fifth 

has three loops along the horizontal side and two along the vertical. 

The number ofloops on each side gives the ratio, 3:2. Looking back 

at the octave, there are tvvo loops to one, and with unison there is 

only one 'loop', however you look at it. This is the general rule for all 

lateral harmonograph ratios, and if a harmony appears unexpectedly 

during experiments, it can usually be identified by counting the loops 
on two adjacent sides. 

The fifth also appears as 3:1, the second overtone, a fifth above the 

octave (see open and closed phase dra11'i11<-c:s cf 3: 1 011 page 187). Drawing ratios 

outside the octave may require a twin-elliptic harmonograph (see page 
387). The phase-shifted pair below are stereographic; if you go cross­

eyed they will jump into 3-D. 
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THE ROTARY FIFTH 3:2 
encircled hearts and fives 

The 'loudness' of musical tones is represented on the harmonograph 

by a111plit11de, the relative sizes of the two circular motions. In rotary 

drawings this is much more important than phase, which simply orients 

the whole design on the page. 

The third drawing below shows a rotary fifth in contrary motion 

where the higher-frequency, faster moving, pendulum has much the 

wider swing. In the 'spiky' drawing to its right it is the other way round. 

At equal amplitude all lines pass through the center (see table 011 page 385). 

The top four dravvings opposite show rotary forn1s of 3 :2, concurrent 

on the left, and countercurrent on the right. The second row shows the 

effect of a near-111iss in the harn1011y, ,vhich 111akes the patterns spin. 

The lower two images opposite are from the 1908 book I-Iar111011ic 
Vibratio11s. They show the second overtone, 3:r, a fifth above the octave 

(3:r = 2:I x 3:2), concurrent on the left, countercurrent on the right. 
With concurrent pictures, the number of swirls in the middle is 

given by the difference between the two numbers of the ratio. So the 

concurrent patterns for the prin1.ary 111usical intervals 2:1, 3:2, 4:3, 5:4, 

and 5:6 all have a single heart at their center. 
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THE FOURTH 4:3 
with thirds, sixths, and sevenths 

By now it will be evident that each harmony displays its own distinct 

aesthetic character. Unison is simple and assertive. The octave 

introduces an emphatic flourish, and the fifth, while still fairly simple, 

has added elegance. 

With the fourth the pattern becomes more complicated, though 

the design is still recognisable without counting the loops. The upper 

diagram opposite shows the fourth in open phase, the lower in closed 

phase. An increasing sophistication becomes apparent, and some of the 

closed phase and near-miss variants have a strange exotic quality. 

Introducing the perfect thirds of diatonic tuning increases the 

complexity. The major third (5:4) is found below the fourth, the inter­

val between them, a diatonic halftone, working out as 4:3 + 5:4= 16:15. 

A fourth and a major third (4:3 x 5:4) produce the major sixth, 5:3, a 
minor third (6:5) below the octave and a minor tone (ro:9) above the 

fifth. Likewise, a fourth and a minor third (4:3 x 6:5) create the minor 
sixth (8:5), a major third (5:4) below the octave and a halftone (16:15) 

above the fifth. 

A fifth and a major third (3:2 x 5:4) produce the major se11enth, 15:8, 

while a fifth and a minor third (3:2 x 6:5) give the minor seventh, 9:5. 

These are the elements of the diatonic, or just, scale. 
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FURTHER HARMONICS 
seven limit and higher number ratios 

As the numbers in the ratios increase it becomes harder to distinguish 

the harmonies one from another at a glance: the loops have to be 

counted, and slight variations produce little of aesthetic value. A typical 

example, 7:5, is shown opposite top. 

Rotary motion produces a series of increasingly complex drawings, 

influenced by relative frequency, amplitude and direction. In contrary 

motion the total number ofloops equals the sum of the two numbers of the 

ratio. With concurrent motion the nodes turn inwards, and their number is 

equal to the difference between the two numbers of the ratio. 

The contrary drawings below show a fourth (4:3), another fourth, 

a major sixth (5:3) and a major third (5:4). The lower pictures opposite, 

drawn over a hundred years ago, show unequal amplitude drawings of 

the perfect eleventh 8:3 (an octave and a fourth) and the ratio 7:3 which 

is found in seven-limit jazz tuning (not covered in this book). 

Two octaves and a major third (4:r x 5:4) equal 5:r, the fourth 

overtone, which differs from four fifths (3:2)• as our friend 80:81, the 

syntonic comma (see page 194). In mean tone tuning, popular during the 

Renaissance, this misfit was ironed out and the fifths were flattened 

very slightly, to 5'" or r.4953, falling out of tune to please the thirds 

and sixths. 
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AMPLITUDE 
circles, polygons, flowers and another circle 

Much variation can be obtained from a rotary ratio by having unequal 

sizes in the two circular 111otions. Opposite we see two frequencies 

related by a major sixth (5 :3). A lower frequency note begins to be 

influenced by, combines with, and is then more or less replaced by a 

higher frequency one. When the two notes are at equal volume the 

lines all pass through the center (see pages 386-387). Notice that the 
sequence is not syn1n1etrical. 

Below we see the first three overtones. For the spikiest shapes simply 

invert the amplitudes. For polygons, square them first. 

If you have ever played with a 'Spirograph', the harmony is 

determined by the cogging ratio, and it is the amplitude which is 

adjusted when you change penholes on the wheel. 
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TUNING TROUBLES 
the Pythagorean comma 

Leaving the harmonograph drawings and returning to the principles of 

music, you may have noted that musical intervals do not always agree 

with one another. A famous example of this is the relationship between 

the octave and the perfect fifth (3:2). 

In the central picture opposite, a note is sounded in the middle at 

o, and moved up by perfect fifths to give the sequence c, G, n, A, E, etc. 

(numbered opposite, each turn of the spiral representing a pe,fect octave). After 

twelve fifths we have gone up seven octaves, but the picture shows 

that we have overshot the final octave slightly, and gone sharp. This is 

becanse (%)'""' 129.75, whereas (2)7 = 128. The difference is known as the 

Pythagorean comma, proportionally r.013643, approximately 74:73. 

If you kept on spiralling you wonld eventually discover, as the 

Chinese did long ago, that 53 perfect fifths (or La) almost exactly equal 

31 octaves. The first five fifths produce the pattern of the black notes on 

a piano, the Eastern pentatonic scale (see pages 272 and 380). 

The smaller pictures opposite show repeated progressions of the 

major third (5:4), the minor third (6:5), the fonrth (4:3), and the whole 

tone (9:8), all compared to an invariant octave. 

It's strange. With all this harmonious interplay of nnmbers you 

would have expected the whole system to be a precisely coherent 

whole. It isn't. There are echoes here from the scientific view of a 

world formed by broken symmetry, subject to quantum uncertainty 

and (so far) defying a precise comprehensive 'theory of everything'. Is 

this why the 'near miss' is so often more beautiful than perfection? 
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EQ!)AL TEMPERAMENT 
changing keys made easy 

Although early tunings enabled many pure harmonics to be played, it 

was hard to move into other keys, one could only really change ,node (see 
page 382). Mnsicians often had to retune their instruments, or use extra 

notes reserved for specific scales (classical Indian tuning uses 22 notes). 

In the sixteenth century a new tuning was developed which revo­

lutionized Western music and which predominates today. The octave 

is divided into twelve fixed equal intervals, each chromatic halftone being 

r.05946 times its neighbour (21-i', roughly 18:17). 

The twelve equally spaced notes are arranged in a circle below. 

Six (flat) wholetones now make an octave, as do four (very flat) minor 

thirds, or three (sharp) major thirds. The Pythagorean comma vanishes, 

as do all perfect intervals except the octave-it's a clever fudge which 

allows us to change key easily. It is slightly 'out of tune' and we hear 
it every day. 

Triads are chords of three notes. Opposite top we see major and minor 

triads involving the note c, in the key of c. Use the mastergrid (opposite, 
below) to navigate the equal-tempered sea, and perceive any 3-4-5 triad (a 

chord of three notes) in three distinct keys lpjier Malcolm Stewart). 
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THE l(ALEIDOPHONE 
squiggles from a vibrating rod 

Despite the invention of equal temperament, scientists continued to 

investigate pure ratio harmonics. An interesting nineteenth century 

precursor to the harmonograph was the kaleidophone, invented by Sir 

Charles Wheatstone in 1827. Like the harmonograph, it displayed 

images of harmonics. 

The simplest version of the device consists of a steel rod with one 

end firmly fixed into a heavy brass stand and the other fixed to a small 

silvered glass bead, so that when illuminated by a spotlight a bright 

spot oflight is thrown upon a screen placed in front of it. Depending 

on how the kaleidophone is first struck, and then subsequently stroked 

with a violin bow, a surprising number of patterns can be produced (a 
Jew are shown opposite). 

The kaleidophone does not behave like a string, as it is only fixed 

at one end. Like wind instruments, which are normally open at one 

end, the mathematics of its harmonics and overtones are slightly 

more complicated than the monochord or the harmonograph and the 

positions of the nodes are more variable (the lower images opposite show 
sonie early overtones). 

Other versions of the kaleidophone used steel rods with square or 

oval cross-sections to give further patterns. Wheatstone used to refer 

to his invention as a 'philosophical toy', and indeed, as we look at these 

patterns, it is easy to feel wonder at their simple beauty. 

To make your own kaleidophone, try fixing a knitting needle into 

a vice and sticking a silver bead or cake decoration ball to the free end. 

Use or make a bright point light source. 
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CHLADNI PATTERNS 
vibrating surfaces 

So far we have only considered vibrating strings and other simple 

systems, but surfaces also can be made to vibrate, and they too can 
display harmonic or resonant patterns. 

In 1787 Ernst Chladni found that if he scattered fine sand on to a 

square plate, and bowed or otherwise vibrated it, then certain notes, 

generally harmonics of each other, each gave rise to different patterns 

in the sand on the plate. As with the harmonograph, other disharmonic 

tones produced a chaotic mess. Sometimes he found that further patterns 

could be created by touching the side of the plate at harmonic divisions 

of its length (show11 below). This created a stationary node (like the feather on 
page 192). Later work revealed that circular plates gave circular patterns, 
triangular plates triangular patterns and so on. 

The six pictures opposite are from Hans Jenny's book Cymatics, 
one of the seminal texts on this snbject. The vibration picture appears 

gradnally, the sand finding its way to stationary parts of the plate as the 

volume steadily increases through the sequence. 
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RESONANCE PICTURES 
and how to sing a daisy 

A more complete set of Chladni figures is shown opposite, all two or 

fourfold because they were produced on a square plate. 

Below, however, we see some circular pictures. They were photo­

graphed by Margaret Watts Hughes, a keen singer, in the r88os on an 

ingenious device called an eidophone, which consisted of a hollow base 

with a membrane stretched across it and a tube attached to its base with 

a mouthpiece at the other end. As Mrs. Hughes sang diatonic scales 

down the tube, fine lycopodium powder scattered on the taut membrane 

suddenly came to life, bouncing away from some places and staying still 

at others, producing shapes which she likened to various flowers. 

Yet again, we see recognisable forms and shapes appearing from 

simple resonance and harmony. 
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INTRODUCTION 

Music is the art medium that communicates interiority, being only 
perceived by the ears, and received by the mind. A strict approach 
to understanding music will consequently always have something 

lacking as music theory, in essence, is primarily descriptive and not 
prescriptive. The tendencies and practices in music are only observed 
and cataloged upon analysis, after the fact. It is the hearts and minds 

of human beings that shape and weave melodies, harmonies, and 
rhythms together into meaningful tapestries, imbued with the interior 
landscapes of their immediate experiences. 

Much of the theory in this book is based upon the European 
classical tradition, starting around the early 18th century. The content 
is designed to get you started in understanding the relationships of the 

tones and rhythms, and in unpacking the inherent properties of sound 
in the process, and then, perhaps, music in general. 

For the purposes of this hook all principles are presented assuming 
equal temperament, the prevalent tuning system for over 300 years. 
The word 'tone' and 'note' may sometimes be used interchangeably, 
but generally 'tone' refers to the audible sound, and 'note' refers to the 
written symbol. Other terms can be consulted in the glossary. 

I hope this book will reveal how the underlying harmonic template 
of sound acts as an organizational framework from which the fabric of 
1nusic is woven, influencing our perception of accord, discord, tension 

and release, telling a story, making a journey. 



WHAT IS MUSIC? 
and all that jazz 

Music is ... a mother's lullaby. It gives sound to our feelings when we 
have no voice, words when we are silent. In it we praise, love, hope, 
and remember. In the breath of the soul, the contours of the path of a 

hummingbird in flight, and the wind that carries it; music shapes and 
shivers into endless colours, nuanced and diverse, and eternally creative. 

It is Spirit taking form. 
Music is carried by the vibrations of molecules of air, like waves 

upon an ocean. It perhaps uniquely captures and conveys the interior 
landscape of one human mind to another, holding our tears and sweat, 
pain and pleasure, packaged as paeans and preludes and etudes and 
nocturnes. It is the texturization of the deliquescence of time, the ebb 
and flow of mood and meaning. It ruminates, vacillates, contemplates, 

and stimulates. 
In music we organize and fantasize, arranging the elements of 

music-melody, rhythm, and harmony-into meaningful shapes and 
patterns. Its rhythms move our hands, feet and bodies to the pulses of 
the universe. Its harmonies breathe with the exploratory intricacies 

and curiosities of relationship and proportion, consonance, dissonance, 
assonance, and resonance. Its melodies flitter into flights of fancy, 

weaving woe and wonder. 
When music is married to language, then what is spoken becomes 

song, elevating the intentions and entreating us to listen more deeply, 
making the profane sacred. Music soothes the soul, and the savage 
beast. Orpheus mystifies creatures and trees, changing the course of 

rivers, outplaying the Sirens' song with his lyre. Radha and Krishna 

play the flute and dance jubilantly. 
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EPIGRAMS AND DIALECTICS 
ideas in sound 

When music parallels language, it often chooses devices that resemble 

epigrams or poetic devices. Take the epigram 'Live, Love, Learn.' This 
collection of words, when arranged together, takes on an emergent 
inter-associative meaning that transcends the individual parts. 
Notice the alliteration of'I:s, and the use of'learn' in the sequence to 
diffuse the rhyming scheme of the first two words, and close the set. 

Additionally, all three words are monosyllabic, and can be used both 
as conceptual infinitives (to live, to love, to learn) and as imperatives 

(Live! Love! Learn!). 
In both music and language the components of epigrams are often 

synthesized or unified through paradox, an essential quality for having an 
aesthetic response and remembering the phrase. In music notes rise and 
fall, are consonant and dissonant, staccato and legato, or push and pull 
one another, these fundamental dualities representing the paradoxical 

nature of reality itself. Small pieces of meaning are arranged from them 
into larger forms based on their structure, and, perceiving this unity 
of opposites, the listener is temporarily removed from the dualistic 
separated stream of everyday life into the realm of unification. 

The 'Happy Birthday' melody epigram (see opposite) undergoes 
various permutations and transformations but retains its fundamental 
characteristics, and thus stays satisfyingly recognizable to the end. 
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ACOUSTICS AND OVERTONES 
from one note to seven and beyond 

Any sound that can be perceived as a pitch or tone will have some 

periodicity in it, vibrating at a regular frequency with a specific 
mixture of overtone amplitudes (see opposite), creating a distinctive 
timbre. An oboe, sitar, or piano can all play the same tone, yet sound 
different. The vowels A, E, r, o and u are created by the trapping or 

releasing of overtones with the shape of the mouth and lips. 
The other component of sound, noise, has no periodicity-a 

hammer striking, a finger plucking, a bow scraping, the sound on a 
television with no signal. Bands of noise are named by colour (white 
noise, pink noise, gray noise), and are part of the musical sounds an 

instrument can produce. The noise component of a sound can be 
compared to the consonants in language, with drums as plosives, 
shakers as fricatives, and cymbals as sibilants. 

Essentially, musical sound can be described much in the way 
language sound can: a combination of tones that vary overtone content 
with a noise co1nponent that initiates the sound, sometimes continues 

it, and occasionally also closes it, the function of consonants, with an 

organizing rhythm and form. 
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UNDERSTANDING SCALES 
streets and stairways 

A scale is a collection of discrete tones that are a subset of the pitch 
continuum and that normally climb an octave in a certain number of 
steps, often seven. Most of the unique and beautifully diverse musical 

scales from around the world owe a large part of their heritage to the 
overtone series and use the fifth, the first tuned note, as the fundamental 
unit. Fifths are piled up, one atop another, and then transposed back 
down to a single octave. Thirds can also be prioritized to derive a scale 

(e.g. mean tone tuning) and a myriad of other methods all sculpt the 
different tuning systems that have emerged-each of them trying to 
solve the problem oflocking a fluid, infinite curve or spiral into a grid or 
circle. The scale becomes a playground for a melodic drama unfolding 
the relative tensions of these overtones with the tones between them. 

The basic stations are: r-3-5-r, the major chord consisting of root, 
third, and fifth, created by the overtones 2:r (the octave, the only note 
that when reached gives the distinctive impression of the fundamental 
tone below it, the same, yet different), then from 3:1, the fifth, which 

has the next quality of sameness, though it is in fact a different pitch 
entirely. Then 4:1, another octave, then 5:1, which becomes the third, 
generally conveying the major or minor quality of a chord, scale, 

or melody. Many 5-note and 7-note scales utilize this underlying 
structure, and in 111any variations, but the funda1nental structures are 

1-2-3-5-6 (pentatonic) and 1-2-3-4-5-6-7 (the major and various other 

scales). Seven is born from five. 
A 7-note scale in a 12-note environment means that 5 notes will 

always be missing. In Middle-Eastern systems 7 notes are chosen (in 
performance) from 17; in India 7 are chosen from 22. 
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MEET THE INTERVALS 
and the circle of fifths 

A musical interval is the distance between two tones, and although 
tuned slightly differently from culture to culture, the same intervals 

are broadly found all over the world. Intervals can be thought of in 
two ways: the first is as an ever-contracting series of simple frequency 
ratios, so that the first interval (the octave) is a 2:r relationship, the 

second (the fifth) is 3:2, and the third (the.fourtl,) is 4:3. Then follow 
the major third of 5:4, the minor third of 6:5, the second of 9:8 or ro:9, and 
yet smaller intervals, with names like the quarter tone, shruti, Ii, comma, 
apotome, and microtone, depending upon the era and culture. 

The second way of looking at this series is to compare intervals 
to the fundamental to which they all relate. This approach results 

in an octave (2:r), a fifth (3:r), another octave (4:r), a major third 
(5:r), another fifth (6:r), a seventh (7:r), another octave (8:r), a second 
(9:r), a third (ro:r), and a tritone (rr:r), etc. If the first view is relative, 
with each partial compared to its nearest neighbour, then the second 
view is absolute, as intervals take an absolute value compared to 

the fundamental. Both views are useful when taking an analytical 
approach to the construction of musical scales and the melodies that 

ultimately derive from them. 
Notice the octave, fifth, and major third appearing in both 

systems. All scales around the world broadly contain these intervals 
in some form, with their precise tuning revealing slight variations and 
nuances in instrument construction and cultural tastes. Those using 
the first approach tune their instruments and derive their scales by the 

relationship of each overtone to one another, while others using the 
second approach relate intervals to their fundamental. 
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BASIC RHYTHMS 
meter and the big beat 

Rhythm is the component of music that punctuates time, carrying us 
from one beat to the next, and it subdivides into simple ratios just like 
pitch. Even in seemingly complex rhythms an underlying structure 
based on groupings of divisions into 2 and 3 is often perceptible. The 
march and the waltz are thus nodes in the subdivision of rhythm, and 

the tensions created by polyrhythms and syncopation push and pull against 
the gravity of these nodes, just as individual musical notes do in a scale. 
All of this happens through time, creating a framework of epigrams, 
disclosing their plight or journey, existing within a system of rules. 

Rhythmic structures are organized into measures for the purpose of 
notation, which denote time parceled into groups of beats. In 4/4, each 
measure has four beats marked by quarter notes, which often show up 
in groups of four measures. Within most rhythms a pulse of strong and 

weak beats, or strong and weak parts of beats, also exists, and chords 
are placed in eacl1 n1easure at either the anacrusis or the ictus, 'between' 

or 'upon' the beats, to convey harmonic movement and reinforce the 
sense of tonality. The unfolding and varying of the resulting tensions 
and releases through time is responsible for much of the emotive and 
expressive power of rhythm. 

The rate at which events pass is also a crucial component of any 
rhythmic texture, often measured by beats per minute (BPM). A pulse's 

subdivisions are partly meaningless without knowing its rate or tempo. 

::\'1 ~ffl ,\, 

" It (-~~~ :~; ~·1~~· ,'l-;/~f-· ~iA,;!~ ·~,!,:,,.,:r ,., ' 
:j,p~,;':: 

~· ?, ;J 

hpn1: 40 /m~~o 60 adiigio 76 m1drmt~ 108 rno1/er,1to 120 alfrgw 168 pn->111 200 
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Triples 

Tribrach 111 
Dactyl -11 

Amphibrach I - I 
Anapest 11-

Bacchius I - -
Antibacchius - - I 
Amphimacer - I -
Molossus - - -



TONE TENDENCIES 
tension and release 

Because of the powerful gravity and stability of the stations of the 

scale, notes that deviate from these are perceived as transitional. Whole 
and half steps, and even minor and major thirds, all manifest varying 
degrees of tension, which is then released when a station is reached, or 
when transitional notes are traded for less dynamic transitional notes. 

Additionally, notes that are farther from a stopping point or station are 
less active or dramatic in relation to it than adjacent ones. Minor scales 
have basically the same set of tensions as major scales (see page 274). 

A further level of complexity occurs in music that has chord 
progressions and modulations, as the set of tensions can change. Here 

the initial root, third, and fifth of a chord (and scale) are the stations, with 
the rest of the tones intermediary, but as the chord changes, the root, 
third, and fifth of the new chord become the new stations, or secondary 
stations. However, without an actual modulation, the importance of 

the primary set of relations is not lost in memory, and a tiered set of 
relationships is created. Since chords can be constructed with any note 
of the scale as a root, they can both take on the same stable or transitional 
aspects as the roots npon which they are bnilt already possess, and 
contain their own subset of stations, forming two tiers of stability or 

instability working at any given moment. The genins of a good melody 
involves the understanding of these two tiers of relationships, and the 
skillful implementation of manipulating expectation and result against 
those natural tensions, based largely upon the utilization of memory, 
incorporating expectation and fulfillment. 
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BASIC HARMONIES 
triangles and triads 

The major triad, which occurs naturally in the harmonic series as a pair 

of thirds (a major, then a minor, adding to a fifth), is the foundation 

of tertial music (chords constructed in thirds) around the world, the 

perfect fifth and major third being, after the octave, the most stable 

and resonant intervals, derived from the overtones. 

Moving a note from the bottom to the top of a triad creates an 

inversion (below), with the same notes, but with a new bass. Notice 

l1ow n1ajor triads in first inversion l1ave two 1ninor intervals, giving 

them an opposite flavour. The same holds true of minor chords, which 

in their first inversion sound markedly major, since two of their three 

intervals are major. Diminished and augmented chords are often said 

to be rootless, as they have no stable fourth or fifth. 

Inversions conspire to strengthen or weaken the importance of the 

root. In root position the fundamental intervals are all in place as in 

the overtone series, the bottom note receiving the identity of the chord 

built upon it. In the first inversion, the third of the chord is in the 

bass but has no strong intervals above it to emphasize its importance. 

Instead, the root, now at the top, is supported by a perfect fourth just 

below it, another strong architectural interval. The same is true with 

the fifth in the bass, the second inversion, where a perfect fourth again 

supports the root. The combined notes thus always point to their root 

position, stacked in thirds . 

.6.J...0 AD* 0.6.0 )....6.0 .6.00 DJ...* J...J...·.': AffiO 83...lO Ab.<f/J ..6..::* ::.6.* 

~~=4==F~~·········,~~~~~~~3}~=ccc'[~~1 
root 1.!t 2111{ ro¢f LJt 211! root tst z,11( root 1.st zmf 

M<9or Minor Diminisbc,{ At1j1t1&1ttei 
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BASIC MELODY 
steps and leaps, contour and gesture 

A melody is created by the succession of tones through time. Step by 
step, note by note, an outline is formed, a path carved. Gestures appear, 
like the inflections used in speech, or the dialectic of rising and falling 
tones, or the contrast of high and low notes. A distant leap feels large 

and grandiose, a small one more fluid and gentle. Curved or jagged 
contours can be suggested. 

Melodies are normally a mixture of small steps and larger leaps, with a 
leap in one direction inducing a yearning for completion by a step in the 
opposite direction, leaving a gap to be filled in. The continuous nature 

of melody means that when notes stray far, the listener, following the 
path to find out where it leads, likes them to remain connected and 
return. This is often manifested by a rhythmic intertwining of tones 
in and out of the stations of the scale. 

The expressivity of a melody comes in part by the tension and release 
of the intermediary notes of the scale, their rhythmic placement on a 
strong or weak beat intensifying or diminishing their effect. Sometimes 
a melody can act as two melodies, by leaping up and down, thus 

alternately maintaining two independent threads, each on their own 
pitch level (or register). Other melodies rely on pitches predominantly 
rising or falling for their effect. 

Melodies in vocal music are either melismatic, with many pitches to 

one syllable, or syllabic, with one pitch per syllable. 
Silent pauses, or rests (caesura) are essential to melodies. They allow 

time for breath, reflection, and interaction with the music. Listeners 
wait for the next event, suspended, anticipating. A well-placed rest in 
a theme can be a powerful musical moment. 
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CHORD PROGRESSIONS 
tonic, dominant, and subdominant 

Chords take on the identity of the station upon which they are built, 

reinforced by the tone tendencies, so that as the chords move in a 

progression or snccession, they pnsh and pull on their neighbours, 

reinforcing the key. As notes in a chord collaborate to emphasize one 

pitch, all chords collaborate to strengthen or weaken the tonic. 

The strongest progressive motion a root can have is a fifth, either 

downward or upward, highlighting the close kinship and relative 

gravity of three consecutive pitches on the circle of fifths. The most 

basic chord movement then is tonic (1) to subdominant (1v) to dominant (v) 
and back to tonic (v), although other triads in the scale can substitute 

for these three basic functions without sacrificing wholly the function 

or temporal meaning of their placement (below). I and iii share 3 and 

5, so can substitute for each other. Likewise, ii and IV share two tones, 

as do vi and I, and v and vii0
• The more common tones, the smoother 

and more gradual the harmonic motion. 

There are essentially three states in tonal harmonic progression: 

starting, departing, and retnrning, which are repeated and cycled to 

reinforce the tonic. Chords with more symmetrical intervals (thirds) 

are unstable or require resolving, and have a dominant function, while 

harmonies having perfect fourths and fifths (the only asymmetric 

intervals) are more restful and are non-dominant. 

ii iii IV v vi vii° 
1-3-5 2-4-6 3-5-7 4-6-1 5-7-2 6-1-3 7-2-4 1-3-5 
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INSTRUMENTATION 
the textures of timbre 

Musicologists identify six basic types of musical instrument: 

membranophones (membranes), chordophones (strings), idiophones 
(struck), metallophones (metallic), aerophones (air), and electrophones 
(electronic). 

Wind instruments generally have an open end, and often a conical 
shape to release sound into the air. Wind can be moved through a 

narrow space to vibrate a reed, or two, or sound can be generated by 
the buzzing oflips (blowing through a tube), as with brass instruments. 
Strings can be either plucked or bowed, and can resonate in sympathetic 
accord with other strings. Percussion instruments move air quickly, 

abruptly, and noisily, and have membranes and means of striking them. 
They provide contrast to the smooth, sustained tones of melody and 
harmony, punctuating with shakes, sizzles, tingles, and rings. All 
cultures utilize percussion in their music, and many brass and stringed 
instruments reveal the algorithmic spiral or curvature of pitch. Some 
cultures also believe instruments contain animal souls that sing when 

the gut or skin vibrates. Many instruments resemble the structures of 
the ear, both being part of the vibration duality, instruments generating 

and the ear receiving. The voice can imitate most (the basic ranges of male 
and female voices are shown below). 
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MORE COMPLEX RHYTHMS 
dynamics, articulation, elocution, and syncopation 

Sounds evolve over time, and envelopes (below) use three basic phases 
(inception, continuation, and closure) to characterize different qualities 

of volume over time. Staccato notes have a short and detached quality, 

tenuto notes are slightly lengthened to connect them (in legato fashion) 
to those nearby, while an accent indicates a strong start to a tone, 
emphasizing its initiation. 

Piano and forte are soft and strong indications used to suggest volume 
or amplitude. The pianoforte (piano) was so named for its ability to 

play both loud and soft, in contrast to earlier keyboard instruments, 
the harpsichord and clavichord, which could not. 

Articulations and dynamics in music notation shape passages 
and contribute to the sense of character and mood, whether playful, 

doleful, whimsical, or aggressive. Articulations affect the presence of 
noise in the instru1nent, acting as consonants upon vowels. 

Opposite are shown dotted rhythms, used in triple notation. 
Notice the dot to the right of the note, rather than above or below it 

(as with staccato). Rhythms continue to complexify and subdivide in 
syncopation and polyrhythms (see too page 396). 
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FORM AND STRUCTURE 
where am I going and how did I get here? 

Musical structure tends to unfold in parts or sections. An idea, mood, 
or motif is first presented before something arrives that changes or 
contrasts it, while nevertheless relating to it, creating a sense of unity 

and, ultimately, arrival or return. This unfolding pattern also helps 
orient the listener in tin1e, so that, using their attention and 1ne1nory, 

they can tell where they are in the musical texture. Without it 
they would be adrift in a sea of unrelated ideas, and some music is 

intentionally composed this way for that very effect. 
Most people go through vicissitudes of emotion in their life, leaving 

home, going out into the world, having adventures, and ultimately 
returning home. A life's journey is like a musical composition, born 
into the world from nothing, living for a time in form and structure, 

dancing spontaneously on the edge of chaos and order, and then finally 
returning. In this respect Western music tends to be more linear, 
Eastern music more cyclical. 

Musical time can be visualized as a storyboard (below), each segment 
expressing the essence of a particular character, 111eaning, intention, 

and purpose of a section or movement. Frequently these sections 
are ordered with consideration for the attention span of the listener, 

in varying degrees of complexity and engagement, like a ceremony 
involving invocation, 111editation, and dance. 
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MORE COMPLEX HARMONIES 
sevenths and their inversions add suspense 

Continuing to stack thirds beyond the triad yields major, minor, or 
diminished sevenths, with their dynamic pull toward the tonic. As the 

root and fifth of a chord provide architectural structure, the third and 
seventh provide feeling and flavour, push and pull. Sometimes referred 
to as guide tones, they lead the movement of harmony from chord to 
chord, adding to the intensity of the forward drive. The presence of 

two guide tones in a chord 111axhnizes tl1is, e.g. the don1inant 71h, whose 
third and seventh often resolve to the tonic root and third. 

Hollow suspended chords, where the third is replaced with its junior 
or senior note, are shown below. Similarly add chords take on a colour 

without compromising any of the three basic notes of the triad, the 2, 

4, and 6 sweetening the overall sonority. 

If the lowest tone is kept constant, as chords move around it, 
then we are in the presence of a pedal point, so named because of the 
ability of the organ to sustain bass tones played with the feet while 

changing harmonies played with the hands on the keyboard, keeping 
a central bottom tone in place, which may or may not be the root of 
the chord. In fact, a pedal point doesn't have to belong to the chord at 
all, differentiating it from an inversion. 

F Fsus2 F Fsus4 F radd2 F padi.14 F padd6 
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dhml5, alw t!i,· ,1p.:n and cxp,mm·c,1ualil)' t()(h()rd., with n1,1r~ petJ"d ,md n1aji1r rnttTr1il>, ,md tlit Hl(Wc' c/o,;,•d and contrnd1w 

,p1<1/ity t,1 clwn.1, with d1111i111;/it'd m)(l lllin,1r mtal',ik The m,97. n1(ma7) mid nia;7~5 /Jaw th<' im,,t /mil' mlc'rl',lk Tl1c 7~5 mid 
m7 hal'c ,m t'!Jual !1ala1Ju, ,m,I (ii<' 7, 07, and n17&5 (a/wl.,wwu <1;;/wffdim11ml1c"d ,1) ,ire n1111/c 1JJ1 nw,tly,if5nl!lllcr 1ntern1k 

c11111 C7 C7#5 C1117 (07 cm(ma7) c11117#5 c1111bs 

3RD INV 4 B Bb Bb Bb Bbb B B Bb 
2 
1', 

2NDINV 4 G G 
3 

G# Gb Gb G G# Gb 
6 

:E :E :E :Eb :Eb Eb :E :Eb l5T INV 5 
' 
7 

RooT c c c c c c c c 
A./1[)\'C: Inwrt,·d ;cwntl1,;. '11i,·J(~w·cd !111,s notation (i<"<ond colim1n) 1ud1wfrs the 1Htaw1/11c plaan101t (if H\llc5 ,1/,ow t/i,: l1as,, 
whi.-11 mj.ict in,li,11tcs tlw 1nwncit111, tl101<._..:;li t/1c 1, 3. and:, arc 1h>Ht1h'd ,wd nut ,ilway; wnttn1. i\'C• sti/1 lwir tlic idwtity rmd 
thcn.:((,rcjimctwn ,f tlic dwnl ,1; t/1(1ugl1 it ll'a,· in root rosifi()n. Tl1c ham rtM.>cm!1/cs the notes 1JJt() their dMc,;/ f()m1at1m1, 

r,"g<1rdl,·,.1 ~f how t/i,· i11d1nd1wl 11ot<'.' 1ff,' voiad, cw11 whc!I >Jli!fd opo1/y acrMs (1ctavc, (;a fou pas.: 256 ). 



TONALITY AND MODULATION 
there's no place like home 

Tonality, or the sense of being in a particnlar key, is most easily created 
by sounding the 1-1v-v-1 pattern (see pages 260-261). 

The tonic chord has the same function as the tonic note of the scale. 
It is the place where things begin and end, and to which all things 
relate. In tonal music the leading tone is always used to point to the 
tonic, and, as with the circularity of the scale, all other stations of the 
scale and their chords serve either to strengthen or weaken the relative 
gravity of the tonic, departing or returning. 

The mighty tonic, however, can be destabilized. Chords other than 
the tonic can be strengthened by the introduction of their respective 
leading tones (the third of any dominant chord, a half step below a 

root). Notes outside of the key can make an appearance to point to 
other roots as possible tonics. The sense of a second key can emerge. 
If this happens within the appropriate time, and with the repetition of 
the r-rv-v-r chords of the new key, then a full modulation occurs, and 
a new tonic is forn1ed. Without these a-ffir1nations, the 1nove1nent is 
temporary, and only a tonicization has occurred. 

After a time, the ear may become accnstomed to the new key, but 
tonal music often retnrns to the first by reinstating the changed note, 
creating the sense that we never really left. Before long, a relationship 
of keys emerges, reflecting the relationships of chords, which in tnrn 
reflect the relationships of the individual tones in the scale. 

D<CCftivt ? Haff, 

lf=j i !@§;;.:::;:§~~ 
u- 6 
v 1v• v vi 

6 
IV J4 V 
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Ri,g/Jt; fo t/Jis l1asic I-IV-V-1 pmgressiou, not,: /ww 
t/Jc tritonc, ordirniJ11slrcdfi{thjiwmcd bd1wcu 
the wista/J/c kading fonc B aud uppi:r F ,;i G7, 
contracts illwanl to tlii: st1il1lc n)(lt and t/1in1, joined 
!1y t/Jc t1pwanl uw1'ouc11t cf tlic iloniimwt m tlic 
ba:,i:. '11iis 1Jll!Ximiu.1 !lie Jinality a!ld reality ,;f t/1c 
cl,ord m rih' I po,itioJJ l1cing f/1c true Jiom,·. 

Left: Cadc11as (,·nil mg>). A ca,lc!!Ct' i11 m1Nc 

work, 1m1c/i th,· smile 1vay as pwJauatimi ill 
lm1sw1gc. 'Die authentic wdcncc has !l stnmg 
1fogrec of.finality due to its l,·adiug tone mu/ its 
root rc.,;o/l'ing to tile tonic. Th,· plagal cadn1ce is 
rnbtlo; l1Kki11g the aa1w dnl'c of the domimmt, 
ti,,, i\-mcu' in 11111dJ European mn"<·d nmsic. A 
dcceptirc cadcJ1tc rcsolws som,·placc other than the 
expected rcsolt1tiou, tile tonic, often a swprisc. T/ic 
lwlf cado1ff i.> OJ't'II ,·micd, ending on the domimmt, 
somctin1es witl1 an n1terwniug tonic d)(Jrd iu 2nd 
invasion to /1cigliticn th<: (Xpcctatio11 .-f r~soltition. 

§ 

IV V7 

To Mo,M1Jtc from Ifie f<:J of X to Ifie k:J of Y 

fin! a pivot cborl that is in 6ot6 h..!)'s anl s116stitt1tt }or IV 

.So o,i tbt 1v6uC a6ove,, movi11j cCocftwist: 
Movins 1 cCith..: vi in X is ii in Y OR iii fo X is vi fo Y 

Movi,lj 2 ,Cick.5: iii in x is ii in Y 
(Movins 3 cCicfs or more requires 6orrowi11sfrom t6t paraCCeC minor) 

111 t6e h..!)' oj X: 1 - l'ivot - v - 1 
In X: 1 - l'ivot 
l11Y: l'ivot-V-1 

l:Xi111tfCc: to ,6a11se ft!)' jrom G to A 11111{ 6acft (use B111): 
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G-Bm-D7-G,, G-Bw-1:7-A 

A-B111-E7-A, A-BIII-D7-G 



MODAL, TONAL, DRONAL 
world systems and scales 

In every musical scale there is a much-used primary set of tones, 

and a smaller secondary set, used to colour the first. Basic primary 

pentatonic, five-note scales form the backbones of many scales around 

the world (below), the most simple deriving from four consecutive 

fifths. Other scales follow the gravitational forces of the stations, and 

use chro111atic alteration to co1nmunicate tension and e1notion. Scales 

with more half steps can be tighter, filled with introversion, chromatic 

complexity, and pathos, while more diatonic scales can be extroverted, 

simple, affirming, and expansive. 

There are essentially three kinds of pitch organization. Modal mnsic, 

which does not modulate, uses leading tones liberally, sometimes not at 

all; harmonic movement is possible, and chords can be borrowed from 

other scales. In tonal music, which does modulate, the five secondary 

tones not used in the major scale have a relatively fixed relationship to 

the primary set, determined by the circle of fifths, # 4, b 7, # 5, # I, , 3, 

each temporarily suggesting the scale to which the secondary tones act as 

leading tones. These accidentals only last for the measure in which they 

occur, and are restored in subsequent measures, sometimes followed by 

a courtesy accidental as a reminder. Drona/ music has no harmony, the 

scale itself being the harmonic universe, so the intervals all relate solely 

to the still point, the drone, with a full chromatic range available. 



MODAL 

' 

O) . ,. ~ 

) ' 
TONAL 

2 1 
4 5 

DRONAL 

2 

h------5 

(' 
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' 
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J11 m,l<i(ll U11<.>1c, the 1fonmumt dwni tk'<'d 1wt 
/,,. 1111901; t1r cwn u,d, mid bub1g tm1,•; c,m 
OiClff ill p,,sitiOJ!.'D!IJa t/11m iu tlic >tmuiard 

n1111or/n1m,,I'. \l'itl1gMd h,1m1,H11c mn,il•ility 
aJJ,/ ,r>(tci1cd /()!I('· fmd,·nc:1c;, thi; 1:, tli,• n1<>>t 

d)J!IJ!ltl!l typ,· of Jramwm( ;y;t<"m. 

Am D 

~ 
' 

'1im,ii Hlm1c 111\'(1/w; JU.it tw,l modrd1t1c,, 
11wJ,,,· ,md n111wr. '11ic J'O,tlwn, of t/1t' ha// 
,t,·p., ,ire 111,,;Jily o,g,u11.ud. '11J<' )mui11rmi 

d1tlrd 1.i ,1lw11y; !!l<IJM, p,witmg to tl1c r,,111c 
1v1th it> J'<lwn:J1d k,1d1ug 1,,11c (th,· tlunl ,if 

1/,; cl10nl, ,1b<1 the 7th ,i th,· ffalL'). 

Dnmril nmw, u1dm/ic ,·,1/110· tl1mJ 
!rarmm1u 111 1M/1m·, ha., 11/1 the nMe> <!! 

t/1,• ,calc ,i,:111nm1g 1•,1n11!i/c rdn, t,1ku1gmJ 
m1p,lrt,mu l,y 111/cn'f1l m1r/ r,·pctll1<>!l, all 1f 

f/i,:rn alway, rdatmg to tli,• Cc'>l(ra! 

p,>1!11, ,·c,tmg t,m~, or dn>nc. 



THE THREE MINORS 
natural, harmonic, and melodic 

The active role ofleading tones in harmonic music creates complexities 
for minor keys. The natural dominant chord in minor is not a major 
chord, and the need for a leading tone necessitates altering it, and the 

scale from which it is built. 
In the case of natural minor, we are in the presence of the Aeolian 

mode, which occurs naturally as the relative to any major scale, started 
a third lower. Raising the third in the dominant chord, the seventh of 
the scale, creates harmonic minor, altered for harmonic purposes. The 

scale that results from this, however, contains an audible gap between 
the flatted minor 6th and the natural major 7th, an augmented second, 
which does not always work melodically, sounding like an interval 
from non-Western music. To smooth out this melodic gap, the 6th 
scale degree is also altered, raised, so that the ascent in minor resembles 

a major scale in its upper four notes. This is melodic minor, which is 
sometimes said to have two forms: ascending and descending, raising 
and lowering the 6th and 7th accordingly. In fact, descending melodic 
minor is identical to natural minor. Triads of the three minors are 

shown below. 

N11t11r11C minor 

~-,,i~§='§==='§ . ,§~~====="§~! 
i ii0 III iv v YI VII i 

Harmonic minor 

~=.i=="-§=§~1l=====ll=====i.'§~==='§==__-jl 
i ii 0 ur iv v VI vii 0 j 

McCcaic minor (asce11din£ 
~=,1J==H~~,tl~§ !!===~§~§ I 

i ii III' IV V vi0 vii0 i 
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Am 
Dm 

IJ' 
c 

Gm 
Bo 

Re/;,rive 
Cm H l>!M11mC · 

M{1Uirs 
Ao 

1'111 
Do 

D#111 

Em 
G 

B111 
D 

A 1'#111 

E 
C#11t B 
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Oppo~itc page: T11esl' tlirtc. minor scales arc used 
intc_rc!Jangealily rfrptuding upon. tile composer's 
11ads, m1d adlicrc tO !1as1c rules al1out the rise of 

• d1roinaticim1 in the minor nwdc: Tlwsc S({ilts, 
!1kc m19or/l:mimi, can bi· ri,;cd as stiirting pOiut,; 
to gc11crt1tc otlicrs, s,1 ill fact tliac ar( S<'l'C!l modes 
of /1armo111c minm~ and scw,i 111odc:, of rncfodic, 

n!inor(s/Jown bdow). . 

Left; Natural min~t is idc~1tic~i to_.a_ma)m'.srnlc 
tl mii10;· third 11boi•c. So A minM rm(I C 11iajor 
are HJ Jut tlic same not'cs, shljlcd a t !rird !iparL 

-·Natural miiwr, !icing Aeolian, already _slwrcs the 
same pitches as_ifs rd11/iw m,tjoi; fo11i1iu, tliaq(wc 
tlie)' s/JJJrC tlic same key signatui·c (>c~ page 251 ). 



MORE INTERVALS 
the big get bigger and the small get smaller 

Just as chords are invertible, so too are their constituent intervals. 3rds 
invert to become 6ths, and 7ths become 2nds. Inverted major intervals 
beco1ne n1inor, inverted dilninished intervals beco1ne aug111ented, and 
vice versa. Inverted intervals have the same basic function as their 

non-inverted counterparts, but possess a greater sense of uncertainty. 
Composers play with them by further raising and lowering them. For 
example, extending a major 6th yields the interval of an augmented 
6th, identical in sound to a minor 7th, but functioning quite differently. 

Remember that spelling counts, and that a minor 7th tends to resolve 
inward, while an augmented 6th tends to resolve ontward-big gets 
bigger and small gets smaller. Similarly, contracting a minor 7th 
yields a diminished 7th, the same as a major 6th, but again functioning 
wholly differently. As a major 6th is likely to fall by a whole step to the 

5th, or rise to the major 7th, a diminished 7th almost always falls by a 
half step. Spelling and syntax indicate behavior and directionality. 

Shown below are the only three possible octatonic or diminished 
scales, since they are symmetrical. They fall into the repeating pattern 
of half-whole or whole-half. Also shown are the only two wholetone 

scales, built entirely of whole steps. They can evoke a mysterious sense 
of ambiguity and the unknown. 

Tb, t6rec li111i11iJ6el .rcafu 
anJ 

Tk two 1vfiok-ton, ;cafu 
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B;,, , 

' ' ' ' ,,.,/ 

/ 
--- _, ________ .-/ As 

-_ Le.fl; fa1hamwuici;m fr C!ir,mwiici>m . 
. Cvmbiuing tl1c ci,y/,: ,iffiftli; with the 

.,. · -. :.:,spind ~lfiftl1s pro,/11as all (f the pomHc 
·· "~--: 35 >Jidlmg>.f~r tJ1c 12 1wtc5. Rcmcml,a 

tli.·i-.· ore 7 mcn1lia., (:( tli<' SC(lfr, 
ABCDEFG, and 5 d,nmM (colm.r>) 

··:_J,1· tacli. Tin' ,1iitcrmc1>t ,1,ul imicmw>t 

\ sJ,dlmg, ,m· r,m·ly 1Jsrd ( Rx, Ex, J:!b, 

\ 
_~,-~·;lW). \V1Jcncwr ,i dmmw/1, alta,HwJJ 
· ~-::_;_ mu::t /,c n!(l,k l(>ll scak, an aaalo1tal 

- \ G x '.is CMYcspm1dmgly 11s,·d (a lm1•t1\•djl11t i> 

I d()u/,/cjlat, r1 r,wedJ/rit i,; 1Jllt1m1/, 

a /m1'<Tcd sharp i,; 1wtw·,1/, a ,w;cd 

-I
I natural r; s!imp, and a nrnd ,limp 

.. ~ I 
'/ 

/D" 
/ , 

15 ,fo1d,fr ;/1arp ) . 

Tin; d111gn1m 15 ~f ,·,1wvri/i•11c,· l•dwau 
>J1c1/mg, awl a5swnc;: C1j111d tc11ipcr,m1cnt. 

'- it ,Jimdd not !1<· cmifmcd w1t/1 a <",,nnnon 
" d111._~1wn dono11slrnt111g tim111gpn1/1/tni, ,- · 

cr,•afrd /ly t/1<' I'ytlJiig.ir,·an Cmnma 
- (n)\'Ch',I in BOOK JV ,:f tin, v.ilwui'). 
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FURTHER MELODIC ELEMENTS 
epigrammatic development 

Humans are fundamentally pattern-based beings, and artists world­
wide, visual and acoustic, have used this fact to manipulate audiences 
for centuries. An idea or epigram is articulated, before undergoing a 
series of transformations, being reinforced or denied. The unfolding 
of this drama of denial and acceptance is the narrativity of music, and 

is played out in three basic ways: 
Repetition, or thesis. The easiest thing for an epigram to do is to assert 

itself, and this is accomplished by repetition. Repetitions are helpful 
because they are highly orienting for the audience in the context of a 

given narrative. They are the anchors of time. 
Contrast, or antithesis. The drama begins. A new epigram is present­

ed, possibly seeming to contradict the previous one, and creating the 
tension of a new set of opposites. A completely contrasting epigram, 
witl1 no epigra1nmatic transference, is a denial. 

Variation, or synthesis. A reconciliation of the two poles of repetition 
and contrast, sometimes viewed as a fulcrum (below). 

Melodies, songs, and symphonies all use these three degrees of 
epigrammatic transference; from total (repetition), through partial or 

transformative (variation), to none (contrast). The mind absorbs the 
meaning of each new idea, comparing it to recent and distant events. 
Attempting to cognize the parts produces anticipation, which may be 
affirmed or denied. Narrative artists exploit this faculty to create their 

books and movies, melodies, and rhythms. 

~n = .............. ,··:aE .. rnn~-···· 



1st ,;j,ures: Note (lg1!iJJ;t note. Only c1m5Ml(l/JCC5 

11r,· panutt.·d. Carcj1il m·oidrmcc <1 para/ld 
lt'11ps or sfrJ>s, .:sJ1ff11illy to a p<'ifat intal'a/, 

cxupt at a t'adcnce. 

Thin/ Sj>ccic.,: Four (()r 01!'<'<') iwit',; r1g1m1,;t ,m,·. 
Pti,.mig to11cs, ucighl,our t11!!cS, aJJd iww 1•sc1ipc 
t(111t'S c,m /J(' HSCd, ,ull oi/hn-iug t,1 ({))!;"011/WCt',; 

011 stnmgl,,·,its. 

bid s]iafr,: Two notes ,1g,1inst (ll!C. P,1sm1g t'oucs 
nwkc thfir appcmm1a•, m d1sso11m1ccs 1v/1id1 art' 
pcnnitt!.'1/ oJJly 011 ·1wak /,,:1iti:. T/1c co11trnp1mtal 

line cm1 ,tart ()n ,i rest. 

f."ourt/1 Spu1cs: SusJ1t11si,n1s-,if{;ct 11(1tcs. Cousomrncc 1> 
pr,1,111",·d on a wwk l1cat, 1md wlio1 1/1c pit cl, m !lie c,rntu> 

jinm1,; d,m1gcs, a d1ssm1,ma is c1witcd by tlic sus(,w1,'II 
ton,· ,ma strong /,cat, am/ rc;olwd liy a step dowml'lml. 

A/,ow: Specie,; Ctnmlcrpoinl, a sy>tmi i!f mies for ivritiug pol>tlwmc m11;1c, d,itmg hick (o tl1t fotli uutiuy. Tl1e c,111J 11>.firnm,, or !,ott,JJJI 
Im!", 1sj,imt'd liyii new n1cfodi( /mcoi1 t,1p. jiftl, >j1u1t,; 1; lht' c,iml•111r1ti1m of the prn•iou;jt,m; bww11 ,isjlori,I w1mtc1poml. (()u11tapo111t 

1, fiif :,mmlt,m,·ity (f mcfo,lu;, cac/, /me rwmmg 1mlttmdwtly 11 tlic· ,1t/1a, /)(1nz,111t11lly. aud ali,g1m1g t,, mah' /11mno1iic srnsc vatic.illy 
(1~/icu ,it ;1rm1sJ'•U"ls cf tlJ<" mete,; to w11wy tile lwmJt>11icfnmi.'work). '111,·jo1ir·p,irt t,:1:t1u'c'(i ,,1Jnrn1(), alt1l, tmm; has., m c,mt1;1pwita/ 

HW>i( /iita !,a,mk' 1nd,ldy. !1,i,., /me, mid 'inua·i•oia;'. Tire !iig/w;t M1a/Jcrn111c 111,' mo>t wcfod1ml/y 1mportimt, tli,·,,thcr; t,1kmgon a 
nwrc mpportmg rok,·1,01ttw1lyh:wmingcl!or,l,, wit Ii ,i c,11/at1w ulmti!yof th<'itown ])H; n1orc Jwnu!plnm1c t,:i:l!n-t' 1; t!J,, 'n1dody 

mu( accm11p11niu1cnt' w!lh w!ud, 1w arc >o Jm11/im: '111a.: ar,· tluw type; ,if c,,11Uuprmt,il motwu: p,mi/ld, CNlilW)', imd oliliqu,·. 
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COMPLEX CHORD PROGRESSIONS 
getting out of the box 

To develop a richer harmonic palette and get out of the I-IV-V-1 box, a 

more complex structure can be developed by borrowing chords from a 

parallel scale, thus facilitating longer excursions. 

Because it is the root of a chord that imparts its functionality, we can 

freely substitute other chords built upon the same scale degree (opposite 
top) and still preserve the harmonic essence. So a major subdominant 

(1v) can be substituted for a minor one (iv), or a minor mediant (iii) can be 

replaced with a major mediant (, m) and its inflections(, m+). As long 

as basic cadences occasionally occur to reinforce a tonic, chords can be 

borrowed relatively freely. 
The dominant seventh chord is well-suited for substitution because of 

its symmetrical tritone (see below). When the root shifts by a tritone, the 

3rd and 7th of each chord exchange places. The spelling of this interval 

changes enharmonically to preserve the syntax, but the sound is the same. 

In fact, as we move around the circle of fifths with seventh chords, the 

3rd and 7th of each chord exchange places and slip and slide by steps, 

often referred to as step progressions or guide tones, a reciprocity that 

maximizes the forward drive of harmonic motion. In most chords, it 

is the root, 3rd and 7th that are sufficient to communicate the harmonic 

function, so when voicing chords, the 5th can frequently be omitted, since 

it only reinforces the tonic structurally. If, however, the 5th is altered(# or 

, , augmented or diminished), then its colour is included as well. 

G7 -.trilr11r,- Dh7 D11F <S> G7 <S> C111'91 DmM G7#5 C111'91 

~~~~II ,13~~,~ ~,; ~t_,,- #HtgggJ1 
tritcne Jr16stit11tfo11 Jllile to11cs aCtml st6J 
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AROUND THE WORLD 
in four songs 

Every system of musical notation is essentially a set of instructions 
for the implemention of sounds through time. In each case they are a 
kind of time-line, tracking sonic events, and in the case of songs, their 

marriage to words. Lines, dashes, slashes, curves, numbers, letters, dots, 
and circles all are used to mirror the up and down inflections, gestures, 
and shapes of melodies. 

Earlier in history, music was an entirely oral tradition, much like 
storytelling, another narrative art form. As humanity spread and grew, 

new methods were needed to communicate music to more people. 
Eventually, notation helped bring music into the homes of everyday 
musicians, and preserve it for future generations to enjoy. This parallels 
the development of the printing press, with the same advantages 
facilitated by that invention. Since we all have basically the same set 

of musical and linguistic sounds available to us, these various notation 
systems (four examples shown opposite) have a great deal in common. They 
all indicate the placement of rhythms, the association of notes with 
syllables of language, and the melodic contours, as well as the overall 

form of the composition. 
In India, because of the complexities of tuning, there are 22 possible 

tones, allowing for purer acoustic relationships, with simple whole­
number ratios between them. Scales are derived from the overall set, 

depending upon the raga desired. Each 7-note that or me/a has a distinct 
flavour, not unlike the Western modes with its swaras (Sa, Re, Ga, Ma, 
Pa, Da and Ni) born from the twenty-two shrutis. 
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B/iatkJumde notal'ion - l!idiau 
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'TI1is is r,scd to indicate tlie mg, tal, 
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lyricsfor Indian music. 
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/t~Oti-il"EG) Pd, ,), ,J,ll'J 7< ·'if t:.:k ll'J!J- 2. !! !!!}) 

4Lliuu12 - !Llil1 L\i u urw lLl 1.11 
fc;\:U\ltW)W '1!, 1\: ~ -!> -tt, tr.I: ~. it Mt; 

1uf]_QulLl.5·U!Ji.lG!Lll u u15-uu1 
. .:i.mn•r 11·i1t-1 ,., ff A')!.; 'f- m. '11i'l 1111~ if, iHr-

4 Ll Ll L? [ 1 - o !Lli']4 u fu oj:l,1 l -
7'{\:J(l<i'fl*) :.F;, {i X nf< lll 'f R if'J :.F;. 

]iaupu - Chinese 
18th ccntw)' 

This system uses mimbers con:espouding to pitc/ies 
of tlie scale and dots and lines to iudicatc durations 

and rests, wit/1 lyrics streaming w1den1eaUi. 
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Song of Scikilos - Greek 
ca. 200 llC - 100 :\/) 

Likely tlic olilest surviving 11wsic notation 
in t!ic wodd, t!iis exmup!c indicat,:s t)1e 

lyrics and the basic melodic otd liue. 

I. 

Mm11rr.t't.·m.-i1~ 

J!~_,_.,~I 
} \)lrlJll<PO!tlll'\c'~mu, 

' 
u• ·~. 

lvfedieva/ Europe 
13tl1 centwy 

A musical staff is !ised liere, mt1dJ like contemporary 
staves in \V61crn music, wit-Ii squares and liiics t'o indicate 

pitclJ mid rhythm, and lyric~ streami11g tmderncatli. 



ADVANCED HARMONIES 
rascals and spices 

Because the dominant chord is the chord of hope and anticipation, 

chromatic added tones are easily accommodated to add more intervallic 

complexity. This in turn strengthens the urge to resolve, which can 

either be fulfilled or denied for the manipulation of tension and release. 

Extensions can also be added to any of the four chord qualities: major, 

minor, diminished, or augmented. 
It is the non-chord tones or non-station notes that provide the 

colouring of the essential chord qualities. When they are voiced next 

to nearby stations, they are considered an 'added' effect. When these 

colour tones are transposed an octave higher, they become the 9ths, 

rrths, and 13ths, which are generally arrived at by stacking thirds. 

From the root, we pass through the 3rd, 5th, 7th, 9th, nth, 13th, and 

conceivably beyond (opposite top). These pitch arrangements can yield 

some startlingly complex harmonic structures, yet the bottom three 

members of the stack still retain their identity, and imbue the whole 

edifice with a basic flavour. Music since the end of the 19th century has 

explored these expanded harmonic possibilities, particularly jazz. 

Sixth chords are a category of harmonies with chromatic alterations 

that don't fit into the usual parallel major/minor borrowing structure, 

sometimes referred to as vagrants. They are alterations of the 

subdominant chord, decorating the dominant. 

An example of chord notation with extensions is shown below. 

Ml.STY (A) EG111'!f7 l B61119 E613 l A6111'!fl ( A61119 D613#11 

EG111'!f7 C7#9 ! '1'1117 B67 l G1117 C7G9 ( '1'1117 B6l3G9 



Left. Times can /,cstack<'fl ,m top,f11 d!ord l1qm1d t/1c root, 3rd, 
5th, 7th mrd octm·<'.jifft!Jcrr:ump/rc11ti,1gm1d rnric!mig its strnctim: 

and mtarnllic.flm·ow: Jhc l11S,her tlicsr: tone;, tlit' lcssf1mct1m111/ and 
morr: r:olowful t!i,·y baon1!'. As 1w ct111tinuc tiJ st,ick, 1w as.1wnc 
,·ad1 new note !,d()w is ind1Jdc1/, 5(11! 9111 c/J()r.l ind1ulc, r/1c 7th 
[f tlir: r'xfr11sal!J i,; 1iot st.icked, thm it 1,; '11ddcd' (sa page 268). 

Som,· crnmplcs ,U",' slrowu a!iow. 

D#07 E '£1107 G AP7 nb C 07 nb 

~~H~J1§@iH~lll--i~H~l:l=-1~~~ 
A bow: i\,fu/t iplc resolidi.1115 of th,· dimm1shcd 7th clwn/. lkc,msr• till' d1111ini,licd cl11ml is cmnplddy synl!!lc'U·ica/, cowprisl'li 

cntirdyef niin(lr t/iinl.i 11111/ tri!mrc,, anyand 111/ (f ils pitclics cm1Jimcti011 as potcJJtial roots. !JJ caclio;mnpk tli,· >1m1cJ11n-11of,:s 
m tach invasion yidd a slightly d![J!'rwt ,·iilwm1011i( q1diiug tj. tl1c ,mn,· d1mimsl1t•d d1on/, pr,·saving t/1c synt,u: (f tliink £11d1 
tone Ira., mi oppiJrUmity !,) ln· ti lcadi11g tiJnc, 11ml r<'solw upmml:, l1y a liaif stq1, ,md cm1 tha~f(irc rc:solw fojour j'()Ssi!,/c dwnk 

Tlicsc n·.mltmgJOw· t"()Ob tlicu1sdv,\> m tum >j1d/ ti11I a climiJJislicd d1[)11{, b11ilt.fi·on1 co11,cc1Jlll'<' minor t/11nl> (E-G-Jl!>-D) ). 

Al,ow: Resolutions ,y' (/i,· v111"io11s altatd t;t/1 dwnk 'I/Jc Italra11, F1n1d,, and G,·m1(m l'<T:-1m1s.Jimction like ,ao11dmy dm11mm1ts, 
w/J,;titirtmgfor t/1e dm11i111mt. Ju th,· Ita/11m, t!Jt• mJgnimt,·d sixtli rs ff,'11frll hctwan the A!, mu/ tJic T~, >ince tli,)• rcso/w tJul1wmk 

Jhc Go-nimi chord is in pM .. >cs,1ion oj,1 pc)ftt jiftli, while the tJ1m:a1a/.flm•11tu- ef tlic Frc11cli is 1/uc to tire misedjiJH1·t/1, maki1~~ a 
d1ord wit Ii tW() 1111yor- t!m,ls awl tw[) augmoitcdfimrt/is or Intones, a lwnuonically ,ug_~,·,;t1w symrndi·ic,il c/1ord. 

13 

11 

9 

Tlit' Nc11po1it,m wrnm1Jimctio11., /1/...c t/Jt'mbdiJmi11mit, nlMI tjim a HI c/Jord, populiirin miiim: 
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L~fl: Just iis tire intcrm,,dimy 1011($ 2, ,1, mJ1l 6 c\lm<' 111 

cert mu Jlar'11/J"5, tl1c'ir (()n·datc's, iiJi 011c <Jd,1w, t!ic 9th 
l ltli, mid 13th come in tire s1im<'j1m·o1ffi, /mwrcd, 

i111fim1/, or mis,·il. All !Ni,·., a/!ow tlir: octm'<' co1wsp(llul 
t<J tlic tm1r:,; witlwi tlic octaw, wit Ii scvm st,11.,mi1/cd. 



ADVANCED FORMS 
getting organized 

Musical forms are often mixed and matched, with historical hybrids 
commonplace. Molecular binary and ternary units can be combined 
and compounded to yield more complex structures, these storyboard 

squares being used flexibly as general templates. 
Attention tends to be highest at the outset of a composition, so 

music often contains the most intellectually demanding material at 
this time. An initial tempo will be lively (allegro), perhaps preceded 
by a slower introduction. Middle movements are often contemplative 

and reflective, a break from the first movement. Finales are generally 
light, playful, and dance-like. This common template derives from 
Baroque dance suites, which were an assemblage of these different 

moods, variously extroverted and introverted. 
There is a general format in the rhetorical unfolding of a complex 

form: exposition, contrast, development, and summation, and 
occasionally transformation. Often there is a climax, or a series of 
them with progressively higher peaks and summits, finally followed 

by a coming down, unraveling, or denouement. 
Sonata form reached its apex in the Classical era and is still in use 

today. It possesses a fixed relationship of keys and themes. After 
an introduction, a theme is presented, followed by a contrasting 
theme. The two themes are then deconstructed and combined in a 

development section, often tonally unstable or ambiguous, after which 
the two themes return, a recapitulation. However, the second theme, 
while first presented in the dominant (or at times another related key) 

now returns in the tonic key, tying together the journey of contrast 
and differentiation. 
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PUTTING IT ALL TOGETHER 
conceive, create, and compose 

Perceiving music as an unfolding of epigrams, molecules of meaning, 
unities of opposites, allows for a new appreciation of its narrative 
quality. It becomes possible to perceive or even measure the rate of 
transference as the music unfolds, and to appreciate more deeply the 
way in which the drama is reinforced or denied, by seeing the very 

mechanisms by which it accomplishes those things. Degrees of contrast 
and repetition can be measured, and most importantly variation and 
transformation can be understood as a kind of evolution. Like the 
stations of the scale and the pulse, epigrams also have gravity, and 

what happens in between them communicates part of the drama of 
the intentionality of the transference; its story, its plight. And in the 
most skillfnl hands, onr souls follow suit. 

In melody these nuances are most easily heard in the large variety of 
scales found around the world. Although they all possess some forms of 

fifths and thirds, it is the notes between that convey the real meaning, 
tension and release, the distances of those 'between' tones, and how 
they are rhythmically placed. Again, in rhythm, thongh there is often a 
predictable pulse, what happens in the spaces in between is much more 

complex, and can suggest tensions against the different beats, based 
on their relative distances from the pulse. These epigrams, melodic 
and rhythmic, can then be arranged into larger coherent structures, 
compositions, also unifying opposites, and so music is born. 

The music we love is the drama of the transference of epigrams, 
opposites in interplay, unfolding, repeating, contrasting, and most 
importantly, varying, through melody, harmony, and rhythm. 
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A/Jove::\ Clwpii1 Prdwfr_ Tlic kq 15 A, tire toup<J Amlmitmo, a lit1/cw11/kmgpact', t/Jr' n1cla )~, to 1'<' pl11ycd do/a 
(iwut/y). Ciwwd /ine5 (,hff,;) 1iid1C(llc tlic plm1,cs. 'l11c mdody h:gin., wit!i il p1cb!pon bcrit !lira, awl C(m1mo1ccs IJJ rlic 

Jirstcomplet<' n1ca.mre. An E7 choni ;;1isg6t> tl1c kty 4 A. Tiil' Ct rtJ mca.>lffC 1 i> ,m appos,gial!mi, along wi(/J its dotkd 
r/1ytlnnfollmwd l1y tluw repcdtcd cl1on/,, t/1,· pnn1mycpigrmnj(,r tliis littkpiac. Ou beat t/nwof mc<1sw·c 21, a pmr 

~f csrnp,: toncs,J,1/mwd by ll piiir tj' appos.~wflmi, in ll!<'l!SlffC 3. 111c Jwrmo11y pn1cud,; Jimn \I to I, wm}'lt:tiug 011-·jiil/ 
plmi,c. i\fra,;urt 5 ag,1i1J d1,do,c., t/1c.fir,t·cpigmm, wi!l1 the apposgi,1tim1 ,m !,cat/, d()u/1/t'd, iww witli a domin1mt 9t/i 

,/Jord, da/!m;itmg t/1c earlier don1ii1m1t 7th. 'I11c 3rd, G~, 1s now mis.,ing. TI1c ,ccond pl misc compkfr:< tire first 1,y m,•11sw·c 
8 . .i\framrc 9 bcgiiis thl'ji,·st plmisr·ag,iin, 11 lit.-ml repetition. iVfr1imrc 11 S(J[mi/s nmc/1 lib· mcawrc 3, vt11ad s/1gl1t~· 

higlia m r,mgc, but r6olws to tire m1prismgsccondmydnminm1t F~7, t/J,·dm5l'st c/J()rd 1u tire picu. Now it i., tim1' to li.:ad 
home. Ju mc,1.rnre I 3 t/Jer,· is a p1is.>ing tone on heat 1,Jallowcd by t!it'fa1/1ug 7t/J of B u1iiioi; and a voicing (:f tlu: domirnmt 

9th, t/iis time with tli,: third, G;, included (t/Jank J()ll, Chopin). TI1c /a{I plmis,: (:{the la51 IW() 11m·s is t!1c"{i1111lgc.,uir,·, 
widely spaecd, with tlic tonic at tJi,, (()j', letting us know (lie music !ias ii1dadjiuisl1l'li. 
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Climb 11p a hill at midday 011 yo11r birthday every year and look at 
the 51111. Each year Ve1111s will be three-eighths ef the way fi1rther 

ro1111d the S1111, drawi11g a peifect octagram 011er eight years. 
Now look at the diagram 011 page 43. 
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;\-1ERCUR Y VEA'U5 ,',1AR5 

CERE5 JUPITER SATURN 

1,!£f'TUr\1E PLUTO 

A useful set of glyJJlts for the planets drawn by calligraJJher Mark Mills, 

each made from Sun, Moon and Earth and used throughout this book. 



INTRODUCTION 

Biological life is now thought to have appeared on this planet not long 

after its formation. It seems that the bacterial seeds for the process may 

have flown in on the tail of a comet or meteor. Speculation is again rife 

about life under the surface of Mars, on Jupiter's icy moon Europa and 

indeed anywhere the sacred substance ofliquid water is known to exist. 

The latest plots of the universe depict a structure eerily resembling a 

vast neural network, suggesting the possibility of a cosmic mind, an 

ancient idea currently undergoing a renaissance. 

The science of the cosmos has changed immeasurably since the 

Greek and medieval visions of circles of planetary spheres. But despite 

all recent scientific advances the Earth remains a modern mystery. No 

convincing theory yet exists to explain the miracle of conscious life, nor 

the numerous cosmic coincidences which surround our planet. Perhaps 

the two things are related. This book is not just another pocket guide to 

our solar system, for it suggests there may be fundamental relationships 

between space, time, and life which have yet to be understood. 

These days we scan the skies listening for intelligent radio signals 

and looking for other planets similar to our own. Meanwhile, our 

closest planetary neighbours make the most exquisite patterns around 

us, in space and in time, and no scientist has yet explained exactly why. 

Is it really all just a coincidence? Why are the Sun and the Moon the same 

size in the sky? How come Venus plays the same numbers around us as 

plants display on Earth? Read on and see what you think. 
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GALACTIC DUST 
the well-tuned universe 

There's a lot going on in the universe. We can now see as 111.any stars 

within our space-time horizon-bubble as there are grains of sand on 

Earth. Our planet and we ourselves are made from reorganized smoky 

stardust, a fact long taught by ancient cultures. We now know that 

stardust itself is made simply from fizzballs, highly tuned flickering 

whirlpools oflight, long ago squeezed together deep inside stars. We 

ourselves live in between the little and the large, in a time and a place in 

the universe where things have condensed, crystallized, built up, tuned 

in, and settled down. 

Just how special are we and our Earth? Funnily enough, scientists 

are currently puzzling over the strange fact that the whole universe seems 

special. There is exactly enough material in the universe to stabilize it, 

and the ratios between the fundamental forces seem specifically organised 

to produce an amazingly complex, beautiful, and enduring universe. 

Fiddle with any of the constants, even slightly, and you get a universe of 

black holes, insubstantial fizzballs, or other lifeless set-ups. Is this design 

or coincidence? Perhaps our universe is the child of successful parents, 

who imparted this structure. Maybe the whole quantumly entangled 

show really is conscious, as Plato taught. 

The story of the search for order, pattern, and meaning in the cosmos 

is very old. The planets of our solar system have long been suspected 

of hiding secret relationships. In antiquity students of such things 

pondered the Music of the Spheres, today they similarly experiment with 

the simple precision of Kepler's, Newton's and Einstein's laws. 

Who can guess what will come next? 
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THE SOLAR SYSTEM 
spirals everywhere 

Our solar system seems to have condensed from the debris of an earlier 

version some five billion years ago. A Sun ignited in the center and 

remaining materials were attracted to each other to form small rocky 

asteroids. Lighter gases were blown out by the solar wind to condense 

as the four gas giants, Jupiter, Saturn, Neptune, and Uranus while in 

the inner solar system asteroids grew into planets, the final pieces flying 

into place with more and more energy as the sizes grew (many still have 

molten cores today from these collisions). Orbital resonances pushed 

and pulled planets into new orbits and our solar system eventually took 

the form of stable disk we see today. 

The plane of the solar system is tilted at roughly 30° to the plane 

of the galaxy and it corkscrews its way around the arm of the milky 

way. The picture (opposite top, after Windelius & Tucker) is schematic of 

the motions of the four inner planets. 

Another way to picture the solar system is by thinking of space-time 

as a rubber sheet with the Sun as a heavy ball and planetary marbles 

placed on it (lower, opposite, after Murchie). This is Einstein's model of the 

way matter curves space-time and helps visualize the force of gravity 

between masses. If we flick a tiny frictionless pea onto our sheet, it 

could easily be captured by one of the marbles, or be spun around a few 

times and spat out, or settle into a fast spinning elliptical orbit halfway 

down any one of the worm-holes. Like a planet, the further the pea 

gets down the funnel, the faster it must circle to stop itself going down 

the tube. Also, the faster it spins the heavier it gets and the slightly 

slower its clocks run. 





RETROGRADE MOTION 
running kissing around 

Ancient astronomers who watched the sky from Earth noticed that 

apart from the Sun and Moon there were five easily visible points of 

light which moved across the stars. These are the planets, which seem 

to move around the earth roughly following the Sun's yearly circle, 

the ecliptic or the stars of the zodiac. If only life was this simple! Watch 

planets for any length of time and, far from moving in any simple 

way, they lurch around like drunken bees, waltzing and whirling. As 

two planets pass, or kiss, each appears to the other to retrogress or go 

backwards against the stars for a certain length of time. 

The diagram below shows Mercury's pattern around a tracked 

Sun over a year as seen from Earth (after Schultz), and opposite we see 

Cassini's r8'" century sketch of the movements of Jupiter and Saturn as 

seen from Earth. In ancient times hugely complex systems of circles and 

wheels were called into play to try to mimic these planetary motions 

(opposite, below), culminating in the Ptolemaic system of 39 deferents and 

epicycles, used to model the motions of the seven heavenly bodies over 

two thousand years ago. 
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Until 400 years ago JJ/anetary motions 

were modelled using a 'deferent' (A) and 

an 'eJ)icyc/e' (B). Orher tricks refined 

the system - here a kind of crank (C) 

called a 'movable eccentric' JJTod11ces an 

egg-sha/)ed deferent for Mercury's dance. 
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CALENDARS 
synchronizing the Sun and Moon 

The Sun and Moon may appear perfectly balanced in the sky, but in 

practice they play a complex pattern which has vexed many cultures 

over many years. The 29.53 days that occur between full moons are 

modeled in the Chinese calendar by having alternating months of 29 

and 30 days. Similarly, at Stonehenge we find 29 full-width stones and 

one half-width stone in the sarsen circle to represent 29.5 days. 

Many devices hide calendrical themes. For instance a pack of 

playing cards can be viewed as four seasons, each of 1 + 2 + 3 + 4 + 5 + 6 + 7 + 

8 + 9 +ro+ II+ 12 + 13 = 91 days, 364 in all, with the joker as the 365'1, day. 

The Tarot likewise conceals secrets, as the Moon and Sun are assigned 

to the numbers 18 and 19, which, as we shall see on page 331, are indeed 

the two numbers which best define the calendar. 

Perhaps the most extraordinary system ever devised for marrying 

the heavenly cycles to earthly endeavours is the series of intermeshed 

calendars developed by the ancient Maya. By 900AD they had modeled 

most of the visible solar system with just three cycles: the 365-day Haab, 

260-day Tzolkin and enigmatic 819-day cycle. Geoff Stray's incredible 

diagram opposite is a testimony to just how far scientists are prepared 

to go to make it all make sense. 
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/AWORI<ING SCALFMODEL ... 

i iD(q·(,i,eter~:are-_nlea51),1:ed,·!1'. ~a)'s:' -T1i,c')1wnbCr,,_, 
\-_of'.f1l\'i1~/111!J4~i~Y:~·a.i:l?:fair.,O_f_tou,clj(ni, iVl1Ce~-- ,,,,,:>. 

\·_ fyef qre,l(n,ing.,t1p 9g~i'./'is 5!1-o)Vn'bes)qC flie relevJ1it r · 
'daK>i,mkers;,eg, it.tak.es 73.tzolkinsoi,52),aabs, 
bifOre-.tliese' n~o1Chi~fictars resynclkOniZC:,,; 

e·:·_< -·.- ::,1., ·· ... ,.-.: ·.:-·-.· ... _: .... -·,,. 

A s)'1todic ;;car _is .the_'q~erage time, !{ta~,cs Jor,'_a, 
planet tqpass Uel,ii,d th( S,m, seenJoinEa,:tl( . 
The eclipS~)i(ar is 'th?ti111e.i('F,;kes fo),tJ;~_Su.,1·:·; 
to travel backfo't1ieJez.1c~opn's.-.n~_dr{'.: ::.,:;·:.,: , , . 
A 13Jull-,noon whcel );asbee1i'aUaeiJ, 1vhile 
the 364-day computing year has been omitted 
(N.B. 260:364:780= 5:7=15, and364:819=4:9). 
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.• THlir1irEGRATEDCAiiNDRICAL 
. SOLARSYSTEM C>FTHE 
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THE SECRET OF SEVENS 
planets, metals and days of the week 

A short four hundred years ago the diagrams opposite still formed the 

cornerstone of cosmological scientific and magical thought across the 

western world, as they had done for many thousands of years. Today 

these emblems of the sevenfold system of antiquity appear as quaint 

reminders of an alchemical cosmology now buried beneath newly 

discovered planets and physical elements. 

There are seven clearly visible wandering heavenly bodies, and they 

may be arranged around a heptagon in order of their apparent speed 

against the fixed stars. The Moon appears to move fastest, followed by 

Mercury, Venus, the Sun, Mars, Jupiter, and Saturn (top left). Planets 

were assigned to days, still clear in many languages, and the order of the 

days was given by the primary heptagram shown (top right). In English, 

older names for some planets (or gods), were used, thus we have Wotan's 
day, Thor's day, and Freya's day. 

In antiquity the seven known metals were held to correspond with 

the seven planets, their compounds giving rise to colour associations. 

Venus, for example, was associated with the greens and blues of 

copper carbonates. Students of alchemy would often ponder these 

relationships as they forged ever more subtle things. Incredibly, the 

ancient system also gives the modern order by atomic number of these 

metals! Follow a more open heptagram to give Iron 26, Copper 29, Silver 
49, Tin 50, Gold 79, Mercury So, and Lead 82 (lower left after Critchlow & 

Hinze). The electrical conductivity sequence also appears round the 
outside starting with Lead. 
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Swrt tH the Moon and follow the arrows to 

give the 'Chaldean C)rder' of the spheres. 
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Start with Iron and follow the arrows to 

!{ive element, of incretising atomic 111011/Jer. 
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GEOCENTRIC OR HELIOCENTRIC 
Earth or Sun at the center 

The extraordinary Ptolemaic world of epicycles and deferents lasted a 

surprisingly long time. Despite its complexity it 'saved appearances' 

and was also said to save souls. Ellipses were in fact studied by early 

Greek mathematicians such as Appollonius, and as early as 250 BC 

Aristarchus of Samos was proposing a system of planets orbiting the 

Sun. However, it was not to be, and for one and a half thousand years 

the Earth remained in the center of the universe, just as we experience 

it, as the Ptolemaic system was handed down from the Greeks to the 

Arabs, and then back to the West again. 

Four early systems are shown opposite (efter Koestler), and each sphere 

of each diagram is to be understood as having its own attachment of 

epicycles and eccentrics. Copernicus, despite in 1543 placing the Sun 

in the center (top left), remained a devout epicycle man, increasing the 

number of invisible wheels from the Ptolemaic 39 up to an amazing 48. 

In the late sixteenth century Tycho de Brahe desperately tried to keep 

the Earth stationary in the center of the universe (bottom left), whilst 

an early Greek model by Herakleides, like a later version by Eriugina, 

attempted a compromise. 

During the 1600s the Sun became the center of the solar system and 

many people began to forget that planets sometimes move backwards. 

The modern model of the Solar System (lower, opposite) has the planets 

(including an asteroid, Ceres), orbiting the Sun in ellipses, each planet's 

ellipse slowly spinning to create a torus or orbital 'shell' over time. 

This basic model was first conceived by Johannes Kepler in 1596 and 

it is to his ideas that we now turn. 
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KEPLER'S VISIONS 
ellipses and nested solids 

Kepler noticed three things about planetary orbits. Firstly that they are 

ellipses (so that a+ b = constant, lower, opposite), with the Sun at one focus. 

Secondly, that the area of space swept out by a planet in a given time 

is constant. Thirdly, that the period T of a planet relates to R, its semi­

major axis (or 'average' orbit), so that T2/RJ is a constant throughout the 

entire solar system. 

Looking for a geometric or musical solution to the orbits, Kepler 

observed that six heliocentric planets meant five intervals. The famous 

geometric solution he tried was to fit the five Platonic Solids between 

their spheres (opposite, and detailed below). 
In recent years, far from diminishing Kepler's vision, Einstein's laws 

actually showed that the tiny space-time effects caused by Mercury's 

faster (and therefore heavier and time-slowed) motion when nearer to 

the Sun create a precessional rotation of the ellipses over thousands of 

years, thus reinforcing Kepler's shells. 
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THE MUSIC OF THE SPHERES 
planets playing in tune 

In ancient tiines the seven n1usical notes were assigned to the seven 

heavenly bodies in various symbolic arrangements (opposite top). With 

his accurate data, Kepler now set about precisely calculating these long 

imagined Harmoniae Mundi. He particularly noticed that the ratios 

between planets' extreme angular velocities were all harmonic intervals 

(opposite center, after Godwin). More recently, work by Molchanov has 

shown that the entire solar system can be viewed as a 'tuned' quantum 

structure, with Jupiter as the conductor of the orchestra. 

Music and Geometry are close bedfellows and Weizsacker's theory 

of the condensation of the planets (opposite after Murchie & Warshall) 
throws yet more dappled light on to these elusive orbits. It might 

appear fanciful were it not for the fact that two nested pentagons (below 
left) define Mercury's shell [99.4 %], the empty space between Mercury 

and Venus [99.2%], Earth and Mars' relative mean orbits [99.7%], 

and the space between Mars and Ceres [99.8 %], while three nested 

pentagons (below right) define the empty space between Venus and Mars 

[99.6%] and also Ceres and Jupiter's mean orbits [99.6%]. 
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BODE'S LAW AND SYNODS 
harmonics and rhythmic kisses 

There have been numerous attempts to discover patterns in the orbits 

and periods of the planets. A basic logarithmic graph (opposite top) shows 

clear underlying order (after 01Jendon & Roy). 
A famous system is the 1750 Titius & Bode Rule: To the series o, 3, 6, 

12, 24, 48, 96, 192 & 384, four is added, giving 4, 7, rn, 16, 28, 52, mo, 

196 & 388. These numbers fit the planetary orbital radii really quite 

well (except for Neptune). The formula predicted a missing planet 

at 28 units between Mars and Jupiter and on r" January r8or Piazzi 

discovered Ceres, the largest of the asteroids in the asteroid belt, in the 

correct orbit. 

The length of time it takes a planet to go once round the Sun is 

known as its period. Sometimes periods occur as simple ratios of each 

other, a famous example being the 2:5 ratio of Jupiter and Saturn [99.3%]. 

Uranus, Neptune and tiny Pluto are especially rhythmic and harmonic, 

displaying a r:2:3 ratio of periods, Uranus' and Neptune's adding to 

produce Pluto's [99.8%]. 

Like a whirlpool, inner planets orbit the Sun much faster than outer 

planets and the table (opposite, below) shows the number of days between 

two planets' kisses, passes or near approaches, properly called synods. 
Does Earth experience any harmonics? Well, we have two planetary 

neighbours, Venus sunside and Mars spaceside and the figures reveal 

that we kiss Mars three times for every four Venus kisses [99.8%]. So 

an ultraslow 3 against 4 polyrhythm or a deep musical fourth is being 

played around us all the time! 
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THE INNER PLANETS 
Mercury, Venus, Earth and Mars 

Our solar system can be thought of a series of thin rotating rings, each 

slowly settling down. Divided by an asteroid belt into two halves, the 

inner region sports four small rocky planets quickly orbiting the Sun, 

while the outer half has four slow huge gas and ice planets. 

The Sun has still not given up its secrets. Mostly Hydrogen and 

Helium, and an element factory, it is also a giant fluid geometric magnet, 

15 million°c at its core, 6,ooo0 c at the surface. It blows a particle wind 

through the entire solar system and its sunspots and huge solar flares 

affect electronics on Earth. 

Mercury is the first planet. Mostly solid iron, it is a cratered, 

atmosphereless world, 400°c in the sunshine, -170°c in the shade. 

Venus is second, a cloud-shrouded greenhouse world. On the 

surface the temperature is a staggering 480°c and the carbon-dioxide 

rich atmosphere is ninety times denser than Earth's. An apple here 

would be instantly incinerated by the heat, crushed by the atmosphere 

and finally dissolved in sulphuric acid rain. 

Earth is the third planet, the one with life and one moon. 

Mars is fourth, a rocky red world, just above freezing. Ice caps 

cover the poles under a thin atmosphere. River beds suggest that Mars 

may once have had oceans but they are long gone now, and today dust 

storms regularly envelop the planet for days. Huge dead volcanoes, one 

three times larger than Mount Everest, stand witness to a bygone age. 

Mars has two tiny moons. 
Beyond Mars is the Asteroid Belt, and, beyond that, the giants. 
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MAKING SENSE OF THE PICTURES 
a few tips on appearances 

Seen from Earth, day or night, the Sun moves slowly to the left against 

the stars (right in the southern hemisphere), taking a year to return to 

the same star. The Moon swiftly circles around in the same direction 

every month, taking 27.3 days to return to a star. Venns and Mercnry 

oscillate around the Sun, coming and going, as the Sun itself slowly 

trundles around its yearly circle. Imagine standing on Venus-the Sun 

moves faster against the stars and Mercury is closer, whirling round the 
Sun like a fairground waltzer. 

Every pair of planets creates a single dance. It doesn't matter which 

of the two you stand on, your partner's dance around you will be the 

same. It is a shared experience. Mercnry's evolving waltzes with Earth 

and Venus are shown (opposite top). Earth and Mercnry roughly kiss 

22 times in 7 years, though the ancient Greeks also knew of a more 

accurate 46 year, 145 synod cycle. Mercury and Venus are beautifully 
in tune after just 14 kisses. 

Shown lower, opposite is the Golden Section, <p or phi. It is found 

throughout every pentagram and in the Fibonacci series of numbers 

(opposite), which starts with 1, 2, 3, 5, 8 and 13, all numbers we will see 

in the inner planets. The Golden Section is essentially 0.618, but since 

one divided by it is r.618 (which is the same as adding one to it), and r.618 

times r.618 equals 2.618 (the same as adding one more), it often takes any 

of these values. The Golden Section is found throughout organic life 

forms; it is the signature oflife, and, as we shall see, highly accurately 
present in the inner solar system too. 
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MERCURY AND VENUS' ORBITS 
a very simple aide-memoire 

There are few things more simple than a circle. With Kepler's discovery 

of the ellipses, and Newton and Einstein setting them spinning, the 

planetary orbits can be thought of as orbital 'circles', centered on the 

Sun, with the eccentricity thickening the circle slightly, or giving the 

spheres a shell (see Kepler's diagram, page 307). 

One of the very first things you can do with circles is to put three 

of them together so that they all touch. Amazingly, the orbits of the 

first two planets of the solar system are hiding in this simple design. If 
Mercury's mean orbit passes through the centers of the three circles then 

Venus' encloses the figure [99.9%]. 

This is a simple trick to remember-you see it all around you all the 

time, in the home, in design, art, architecture and nature. Every time 

you pick up three glasses or push three balls together you create the first 

two planets' circular orbits, to an extraordinary degree of accuracy. 

There must be a reason for this beautiful fit between the ideal and 

the manifest, but none is yet known and these kinds of problems are 

currently out of fashion; perhaps a bright 21" century scientist will find 

an answer-until then it ren1ains a 'coincidence'. 

The triangle is one emblem of the musical octave 2:r, and Mercury 

performs a delightful solo on this theme, as one Mercury day is exactly 

two Mercury years, during which time the planet has spun on its own 

axis exactly three times. Thus the very first planet plays the very first 

harmonies and draws one of the very first geometrical shapes. We have 

started with one, heard a two, and seen a three. 
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THE KISS OF VENUS 
our most beautiful relationship 

Other than the Sun and Moon, the brightest point in the sky is Venus, 

morning and evening star. She is our closest neighbour, kissing us every 

584 days as she passes between us and the Sun. Each time one of these kisses 

occurs the Sun, Venus and the Earth line up two-fifths of a circle further 

around-so a pentagram of conjunctions is drawn, taking exactly eight years 

[99.9%], or thirteen Venusian-years [99.9%]. Notice the Fibonacci numbers 

again, 5, 8, and 13, which govern most plant growth on Earth. The periods 

ofEarth and Venus are also closely related as cp: I [99.6%]. 

Seen from Earth this harmony appears as Venus whirling around the 

trundling Sun drawing an astonishingly beautiful pattern. In the diagram 

(opposite top) four eight-year cycles are shown, so 32 years. The small loops 

are made when Venus in her closest dazzling kiss seems briefly to reverse 

direction against the background Stars (shown below, as seenjrom Earth). 

The fivefold nature of Venus and Earth's dance extends to their 

closest and furthest distances from each other, as Venus' perigee and apogee 

are defined by two pentagrams (lower, opposite). The body of space one 

draws around the other is thus sized r :cp' [99.98%]. 

All these diagrams also apply to Venus' experience of Earth. 
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THE PERFECT BEAUTY OF VENUS 
the things they don't teach you at school 

With the Sun in the center, let us look at the orbits of Venus and the 

Earth. Every couple of days a line is drawn between the two planets 

(below left). Because Venus orbits faster she completes a whole circuit in 

the same time that the Earth completes just over a half-circuit (below 
center). If we keep watching for exactly eight years (or 13 Venusian 

years) the pattern opposite emerges, the sun-centered version of the 
five-petaled flower on the previous page. 

The ratio between Earth's outer orbit and Venus' inner orbit, i.e. 

their home, is intriguingly given by a square (below right) (99.9%]. 

Venus rotates extremely slowly on her own axis in the opposite 

direction to most rotations in the solar system. Her rotation period 

is precisely two-thirds of an Earth year, a musical fifth. This closely 

harmonizes with the dance opposite so that every time Venus and Earth 

kiss, Venus does so with her same face pointing at the Earth. Paint a spot 

on Venus' surface as she passes in front of the Sun, and every time she 

lines up with the Sun again as seen from Earth the spot will be pointing 

at you again. Over the eight Earth years of the five kisses, Venus spins 

on her own axis twelve times in thirteen of her years (from Kollerstrom). 
All beautiful musical numbers. 

--------
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PHYLLOTAXIS 
the spiral of life 

Life on Earth uses one set of numbers above all others. Phyllotaxis is 

the study of the way leaves are arranged along a stem, and also describes 

other features of plants such as flowers, seed heads, and fruits. The 

key to phyllotaxis is the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 

and so on, where adjacent terms define the Golden Section increasingly 

well, present in pentagrams, which we have met before. 

It is a simple fact that most plants on Earth produce alternate leaves 

at Fibonacci fractions of a full rotation. For example, some plants 

produce leaves along a stem every Y, rotation, in hazel and beech trees 

the angle is Y:i, in apricots and oak trees it is %, in pear and poplar trees 

it is %, and in almond and willow trees it is Yi,. Pineapples display 5-, 

8- and 13-armed spirals. Count the number of buds along a sprig of 

pussy willow and you will find a spiral of 13 buds in 5 turns. 

Humans use the same numbers (in a fourfold manner). We have 5 

fingers/toes in each quarter, a pattern repeated in our mouths as 5 milk 

teeth in each quarter, replaced by 8 adult teeth, 13 in all per quarter. 

The most common number of petals in flowers is 5, and the most 

commonly used phyllotaxis numbers in plants are 5, 8, and 13. 

As above, so below-for these are also the numbers of Venus! 
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MERCURY AND EARTH 
yet more phives and eights 

Mercury and Earth's physical sizes are in the same relation as their mean 

orbits! Various five and eightfold overlays are shown opposite which 

proportion the orbits and sizes of these two planets. 

The diameter of Mercury's innermost orbit is suggested by the 

pentagram incircle (top left) [99.5 %] and also happens to be the distance 
between the mean orbits of the two planets [99.7%]. 

The diagram bottom right expands on the three touching circles of 

page 317. Eight circles centered on Venus' orbit produce Earth's mean 

orbit [99.99%]-the eight years of the five kisses perhaps? 

Mercury, Venus, and Earth display a peculiar coincidence: If we 

work in units of Mercury's orbital radius and period, then Venus' period 

times 2.618 is Earth's orbital radius squared [99.8%]. Mercury's dance 

around Earth also produces its synodic year of n5.9 days. Richard 

Heath recently discovered that this is 2.618 times a mnsical fifth times a 

full moon [99.9%]-a musical fifth is 3:2; 2.618 is<!>' (or 1.618 x 1.618), and 
there is a full moon every 29.53 days. 

Earth's and Saturn's relative orbits and sizes are given by a fifteen­

pointed star (below), which also produces the tilt of the Earth. 
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THE ALCHEMICAL WEDDING 
three to eleven all round 

From the surface of the Earth, the Sun and the Moon appear the same size. 
According to modern muggle cosmology this is 'just' a coincidence, but 

any good wizard will tell you the balance between these two primary 

bodies is clear proof of very ancient magic. 

The size of the Moon compared to the Earth is 3 to II [99.9%]. 

What this means is that if you draw down the Moon to the Earth, 

then the circle through the center of the heavenly Moon will have a 

circumference equal to the perimeter of a square enclosing the Earth. 

As we saw on page 78, this proportion is also present in every double 

rainbow you see. The ancients seem to have known about this, and 

hidden it in the definition of the mile (opposite, after Michell & Ward). 

The Earth-Moon proportion is also precisely invoked by our two 

neighbours, Venus and Mars (Venus shown dancing round Mars below). 

The closest :farthest distance ratio that each experiences of the other is, 

incredibly, pr [99.9%]. The Earth and the Moon sit in between them, 

perfectly echoing this beautiful local spacial ratio. 

3:n happens to be 27.3% and the Moon orbits the Earth every 27.3 

days, the same period as the average rotation period of a sunspot. 

The Sun and Moon do seem very much the unified couple. 
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CALENDAR MAGIC 
just three numbers do the trick 

Recent work by Robin Heath has revealed simple geometrical and 

mathematical tools which snggest order and form within the Sun­

Moon-Earth system. Imagine we want to discover the number of 

full moons in a year (somewhere between 12 and 13). Draw a circle, 

diameter thirteen with a pentagram inside. Its arms will then measure 

12.364, the number of full moons in a year [99.95%]. 

An even more accurate way of doing it is to draw the second 

Pythagorean triangle, which just happens to be made of 5, 12, and 13 

again, the numbers of the keyboard, and of Venus (page po). Dividing 

the 5 side into its harmonic 2:3 gives a new length, the square root of 

153, 12.369, the number of full moons in a year [99.999%]. 

The Moon seems to beckon us to look further. We all know that 

six circles fit around one on a flat surface (6 and 7). Twelve spheres pack 

perfectly around one in our familiar three-dimensional space (I2 and 

13 again). We seem to be moving up in sixes. Could eighteen time­

spheres fit around one in a fourth dimension of time? Incredibly, all of 

the current major time cycles of the Sun-Moon-Earth system turn out 

to be accurately defined as simple combinations of the numbers 18, 19, 

and the Golden Section. 

The Golden Section is evident in the pentagram, the icosahedron, 

the dodecahedron and all living things. The orbits of the four inner 

planets all display its presence. Its values 0.618, 1, r.618 and 2.618 added 

to the magic number 18 produce 18, 18.618, 19, 19.618, and 20.618, which 
then multiply together as shown opposite. 
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COSMIC FOOTBALL 
Mars, Earth and Venus spaced 

The next planet out from Earth is the fourth planet, Mars. Kepler 

had tried a dodecahedro11 spacing the orbits of Mars and Earth and an 

icosahedro11 spacing Earth from Venus (see page 306), and, coincidentally, 

it turns ont he was very close to the mark. 

The dodecahedron (made of twelve pentagons) and the icosahedron 

(made of of twenty equilateral triangles) are the last two of the five 

Platonic Solids (see BooK III of this volume). They form a pair, as each 

creates the other from the centers of its faces (below). Opposite, 

they appear in bubble form inside Mars' spherical mean orbit. The 

dodecahedron magically produces Venus' orbit as the bubble within 

(opposite top) [99.98%], while the icosahedron defines Earth's orbit through 

its bubble centers (lower, opposite) [99.9%]. 

In the ancient sciences the icosahedron was associated with the 

element of Water, so it is appropriate to see it emanating from our 

watery planet. The dodecahedron represented aether, the life force, here 

enveloping lively Earth, and defined by her two neighbours. 
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THE ASTEROID BELT 
through the looking glass 

We have reached the end of the inner solar system. Beyond Mars lies a 

particularly huge space, the other side of which is the enormous planet 

Jupiter. It is in this space that the Asteroid Belt is found, thousands of 

large and small tumbling rocks, silicaceous, metallic, carbonaceous, and 

others. There are spaces, Kirkwood Gaps, in the asteroid belt, cleared 

where orbital resonances with Jupiter occur. The largest gap is at the 

orbital distance which would correspond to a period of one third that 

of Jupiter. 

The largest of the asteroids by a very long way is Ceres, comprising 

over one third of the total mass of all of them. She is about the size of 

the British Isles and produces a perfect eighteenfold pattern with Earth 

(see page 403). 

Bode's Law predicted something at the distance of the asteroid belt 

(see page 310), but it was Alex Geddes who recently discovered the weird 

mathematical relationship between the four small inner planets and the 

four outer gas giants. Their orbital radii magically 'reflect' about the 

asteroid belt and multiply as shown below and opposite to produce two 

enigmatic constants. 

VexUr= r.204MexNe 

Me xNe = r.208 Ea xSa 

Ea xSa = r.206 Ma xju 

Ve xMa = 2.872 Me xEa 

Sa xNe = 2.876 Ju x Ur 
(Ve xMa xju x Ur= Me xEa xSa xNe) 

The asteroid belt is unlikely to be the remains of a small planet as no 

sizeable body could ever have formed so close to Jupiter. 
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THE OUTER PLANETS 
Jupite1~ Saturn, Uranus, Neptune, and beyond 

Beyond the Asteroid Belt we come to the realm of the gas and ice giants, 
Jupiter, Saturn, Uranus, and Neptune. 

Jupiter is the largest planet, and its magnetic field is the largest object 

in the solar system. Ninety percent hydrogen, it is nevertheless built 

around a rocky core like all the giant planets. Metallic hydrogen and 

then liquid hydrogen surrounds this core. The famous Red Spot is a 

storm, larger than Earth, which has raged now for hundreds of years. 

Jupiter's 1noons are nun1erous and fascinating: One, Io, is the 111ost 

volcanic body in the solar system; another, Europa, may have warm 
oceans of water beneath its icy surface. 

The next planet is Saturn, with its beautiful system of rings. 

Saturn's structure beneath its clouds is much the same hydrogen and 

helium mix as Jupiter. A large number of moons have been discovered, 

the largest of which is Titan, a world the size of Mercury with all the 
building blocks for life. 

Beyond Saturn is Uranus, which orbits on its side. Winds gust on 

the equator at six thousand times the speed of sound. 

Next is Neptune, like Uranus an ice world of water, ammonia and 

methane. The largest 1110011, Triton, has nitrogen ice caps and geysers 

which spew liquid nitrogen high into the atmosphere. 

Finally, tiny Pluto, and, beyond that, the primordial swarm of the 

Kuiper Belt. Then, stretching a third of the way to the nearest star, the 
sphere of icy debris and comets of the Oort Cloud. 
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FOURS 
Mars, Jupiter and massive moons 

An asteroid belt and 550 million km separate Mars' and Jupiter's orbits, 

further than Earth is from the Sun. Jupiter is the first and largest of 

the gas giants, the vacuum cleaner of the solar system. If Jupiter had 

gathered only slightly more material during its long and ongoing 

formation its internal pressures would have turned it into a star and we 

would have had a second Sun. 

The top diagram opposite shows a simple way to draw the orbits of 

Mars and Jupiter from four touching circles or a square [99.98%]. It is a 

proportion commonly seen in church windows and railway stations. 

Shown below, on this page, is a pattern from the same family, which 

accurately spaces Earth's and Mars' orbits [99.9%]. 

Jupiter has four particularly large moons. The two largest, Ganymede 

and Callisto, are the size of the planet Mercury and produce one of the 

most perfect space-time patterns in the solar system. An observer living 

on either moon would experience the motions of the other in space and 

time as the beautiful fourfold diagram shown opposite. 
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OUTER MOONS 
harmonic patterns 

Four groups of moons orbit Jupiter. The first two groups have four 

moons each and look very like a model of the whole solar system-four 

small inner bodies followed by four big outer bodies. The second group, 

of four particularly large moons, the Galileans, is further divided into 

two small rocky worlds, Io and Europa, then two gas and ice moons the 

size of planets, Ganymede and Callisto. 

The grouping into fours is striking. Each of the four groups has its 

own general moonsize, orbital plane, period and distance from Jupiter 

(the inclinations of the four orbital planes of the four groups even add 

up to 90°, a quarter of a circle [99.9%]). 

Saturn has over thirty moons, most shepherding and tuning the 

amazing rings with the larger bodies tending to be further out. Far 

beyond Saturn's rings, however, are three moons-the gigantic Titan, 

tiny Hyperion and, further out still, Iapetus. 

Opposite are shown some harmonic patterns: two from Jupiter's 

largest moons, two experienced by Saturn's giant moon Titan, and two 

experienced by Neptune, the outer planet of the solar system. 

Dischords are rare. The solar system seems to enjoy harmony. 
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JUPITER'S GIANT SEAL 
huge hexagrams and affinnatory asteroids 

Jupiter, the largest planet, was king of the ancient gods, Zeus to the 

Greeks. A delightful feature of its orbit is its pair of asteroid clusters. 

The Trojans are two groups of asteroids which move round Jupiter's 

orbit, 60° ahead of it and 60° behind (opposite). This partnership 

perpetually moves round the Sun as though held in place by the spokes 

of a wheel. The positions of the Trojan clusters are known as the 

Laplace Points, with Sun, Jupiter, and Trojans forming gravitationally 
balanced equilateral triangles. 

Just for the fun of it, if we now join the spokes as shown opposite 

then three hexagrams can be seen to produce Earth's mean orbit from 

Jupiter's (99.8 %]-a very easy trick to remember. Earth and Jupiter's 

orbits are thus lurking in every crystal. Another name for a six-pointed 

star made of two triangles is a Star of David or Seal of Solomon. 
Exactly the same Earth-Jupiter proportion may be created by 

spherically nesting three cubes, or three octahedra, or any threefold 

combination of them (e.g., below). If the outer sphere is Jupiter's mean 

orbit then the inner one is the sphere of Earth's mean orbit. By Jove! 
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THE GOLDEN CLOCI( 
Jupiter and Saturn seen from Earth 

Jupiter and Saturn are the two largest planets of the solar system and 

ruled the outer two spheres of the ancient system. In ancient mythology, 

Saturn was Chronos, the Lord of Time. 

The top two diagrams opposite show the close 5:2 ratio of their 

periods. Top left we see their dance; the beautiful threefold harmonic 

is immediately apparent, spinning slowly because of the slight miss 

in the harmony. From Earth, this pattern is seen as an important 

sequence of conjunctions and oppositions of Jupiter and Saturn, who 

kiss every 20 years. Top right we see the hexagram created by these 

positions-with conjunctions marked on the outside of the zodiac and 

oppositions marked inside. The planets move anticlockwise around the 

dashed circle of the ecliptic, starting at twelve o'clock, Jupiter moving 
faster than Saturn. 

The lower diagram shows the relative speeds of orbit of Earth, 

Jupiter and Saturn. We start with the three planets in a synodic line 

at twelve o'clock. Earth orbits much faster than the outer planets and 

makes a complete circuit of the Sun (365.242 days) and then a bit more 

before lining up with slowcoach Saturn again for a synod after 378. r 

days. Three weeks later it lines up again with Jupiter (after 398.9 days). 

Richard Heath recently discovered that the Golden Section is defined 

here in time and space to a stunning 99.99% accuracy! The two giants of 

our solar system thus focus the Golden Section on us, in space and time, 

reinforcing the geometry of life on Earth. 

Less importantly, Saturn takes the same number of years to go round 

the Sun as there are days between full Moons [99.8%]. 
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OCTAVES OUT THERE 
threes and eights again 

If you ever want to incorporate Jupiter, Saturn and Uranus' orbits 

into a window or floor design the diagram opposite might help. An 

equilateral triangle and an octagram proportion the outer, mean and 

inner orbits of the three largest planets. Tiny inaccnracies are visible but 

the fit is excellent overall, memorable, and adequate for many practical 

purposes. It is a spiky inversion of the touching circles solution for the 

first three planets (see page J25, lower right). 
One way of depicting the musical octave (a halving or doubling of 

frequency or wavelength) is by an equilateral triangle, as the inscribed 

circle has a diameter half that of the containing circle. 

Another rule of thumb is to remember that if Jupiter's orbit is 6, then 

Saturn's is II [99.9%], twice the Moon :Earth size ratio (page 326). 
Saturn's orbit also happens to invoke J1 or 'pi'-twice (below): Its 

radius is the circumference of Mars' orbit [99.9%] and its circumference 

is the diameter of Neptune's orbit [99.9%]. 





GALACTIC GEOMETRY 
to the stars and beyond 

As we move further out triangular geometries prevail (two shown below 

[99.9%]). Uranus and Neptune, like Saturn, both have mysterious ring 

systems with clear spaces at Kirkwood distances where particles orbit at 

periods harmonic with one or more moons. Uranus' bright outer ring 

has a diameter twice that of Uranus itself[99.9%], echoing the orbits of 

Uranus and Saturn, and Neptune's innermost ring is two-thirds the size 

of its outermost [99.9%]. These proportions beantifully invoke the local 

timing, as Neptnne's orbital period is twice that of Uranus, and Uranus' 

is two-thirds that of Pluto, an outer reflection of the inner harmonic 

r :2:3 we saw with Mercury. 

One of the most obvious symmetries of modern cosmology occurs 

in that the Milky Way, i.e. the plane of our own galaxy, is tilted at 

almost exactly 60° to the ecliptic or plane of our solar system (shown 

horizontal opposite) [99.7%]. What is more, every year the Sun crosses the 

galaxy through the galactic center, and being alive in these times means 

this happens on midwinter's day. Like many of the images in in these 

pages you may need to study this to get it! 





ICE HALOS 
rainbows where planets lie 

On certain still afternoons, if you are lucky, you will see a pair of 

rainbow spots left and right of the Sun. Known as 'Sun dogs', these 

are the first elements to appear of an ice halo-a thin rainbow circle 

around the Sun. Caused by light passing through ice crystals high in 

the atmosphere, Sun dogs appear 22.5° left and right of the Sun, just 

outside the bright 22° halo. Sometimes, a second larger halo appears 

46° from the Sun, with a distinctive arc on top, the whole arrangement 

looking strangely similar to the ancient glyph for Mercury. 

Amazingly, these two ice halos beautifully match the mean orbits of 

the inner two planets Mercury and Venus seen from the surface of the 

Earth. This means that when you look at a double ice halo, you really 

are seeing the spheres of the mean orbits of Mercury and Venus, hanging 

in the sky. There they are! The same two ice halos also function as a 
diagram of the relative orbits of Venus and Mars. 

This is an extraordinary coincidence. What is going on? Every 

circle fits. Sunlight and ice crystals paint rainbows for orbits. The Sun 

and Moon appear the same size in the sky. Our closest neighbour Venus 

dances 5-fold around us in 8 years or 13 of her years, while below on 

Earth plants also dance 5, 8 and 13. These coincidences are focused on 

us, here, and now, a planet of conscious observers. Perhaps Newton's 

and Einstein's laws are only part of the answer. Is consciousness also 

part of the equation? Do observers lense reality in some way? 

Plato writes that things are more perfectly organised than we can 

ever imagine. How do you balance a Sun and a Moon? Could we in 

fact be living in a conscious quantum holographic universe? 
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Above: The hvo circles we 1nost conunonly see around the Sun depict the 1ncan orbits of t1ie only 
hvo planets behveen us and the Sun. This incredible coincidence only 1vorks for observers on 

Earth, and suggests that tlie fact of these halos being observed front Earth ,nay have played sonte 
pa,t in the overaU quantuni holographic resonance of t11e solar syste111. Froni Flanunarion, 1885. 
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THE STARRY SIGNATURE 
circumstantial evidence for life on earth 

Despite all the scientific discoveries over recent centuries we are 

today possibly as far from understanding what we are doing here as 

the ancients were from being able to build a pocket calculator. The 

ancients, however, pondered consciousness deeply, and held that the 

soul was particularly nourished by the applied arts of geometry and 

music. Through these arts they carefully investigated the relationship 

between 'the One' and 'the Few', for in music there are only so many 

notes in tune, and in geometry only so many shapes that fit. 

This book has shown simple and beautiful examples of harmony 

and geometry in the solar system. The Golden Section, long associated 

with life, and conspicuously absent from modern equations, plays 

lovingly around Earth. Does this in some way have something to do 

with 'why we are here', and if so could these techniques be used to 

locate intelligent life in other solar systems? 

I hope you have enjoyed reading Q!Jadrivfrtm, and that the cosmos 

has been beautified or transmuted in some way as a result of what you 

have learned. If you ever need reminding that there may be a little 

more magic to our origins than modern cosmology can yet offer, then 

just remember the kiss of Venus and the words of John Donne: 

Man hath weav' d 0111 a net, and this net throwne 

upon the Heavens, and now they are his owne. 

Loth to goe up the Hill, or labour thus 
to goe to Heaven, we 1nake Heaven come to us. 
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EARLY NUMBER SYSTEMS 

The ancient systems below :ill use small se!s of cha1~1ctcrs to rcpn.:.,cm a limited range of numbers. Those from the 
ancient !'l!cditcn~mcan rep em marks Hkc a tally stick to make some numbers while the Chinese system combines the 
charartcrs for one m nine with clrnractcrs meaning JO, 100, 1,000 ;ind l0,000. In all these systems a number such as 
57 would be \\"rittcn as 1he character (or cha1~tc1CrsJ for 50 followed by tlic cha1~ictcr for 7 with no place ralue. 

! ~ $ f ci) -~ "' 
v 

J ~ -5 ~ E 

" 5 < c 
~ 8 5 ii c 8 0 ~ ·e ~ ~ ~ ~ 

.§ ii < ] u v "B 

I ?i ~ .B 
~ ·;:; ~ £:: " 

v > 0 

~ 
"gj e ~ 

~ 

:::: 6 D g; u 0 &i 

0 I ~ 
00 II II II II II II = I 

j "' Uf Ill Ill Ill Ill Ill = ~ -
l!lO Ill! 1111 Jiii 1111 IV - ~ 'JJ/ 
m , "' r !,J v v ;g fill Ji_ 0 " (, Iii l "' r, !,JI VI VI A fill * "' 1ili -7, 1111 r11 !)II VII VII + !fil --1:; "' 8 1111 ::; 1111 rm !,Jiii VIII VIII )( ~! A 1111 

9 Ill '-- 11111 r1111 !)1111 VIiii IX s !! :IL till 

10 " A • 0 x x -I !£!,ii --t 
20 "" ~ = M 00 xx xx =I IM .::.-t 
JO 1r x - ••• 000 xxx xxx =I iii 18 .£-t 
40 ~n ...,., = l!,l:,.!J.l:,. 0000 xxxx XL eel ~ ij 'JJl-t 
50 'lilP 1 = ,... 

' " L XI U] Ja li--t 
60 Rr.R J4 -- ,.... ,o 'l'X LX A I ~ Ii :k-t-
70 ~nor :,, - ,... .. ,oo 'l'XX I.XX + I !!Ha --b-t 
80 RRAR Ill === f!'AAA J>ooo 'f'XXX IXXX )( I ~~ ,~ A-t 
90 nnn "" === f!'l!.l!.l!.A J>oooo 'f'XXXX xc s I !! ffi :IL-t 
JOI) ' _. 0 H B * c -@ ill!!l -,;-
500 w ~ 000 [il f::t:f::f::l: A D X@ @!!l Ji_" 00 

1,000 I J. <) x n )8( M ? !Hi --t-
5,000 m -",,~ 000 

"' lir'iMli x ? ~~ Ji_f-!! 00 
10,000 .; {;) M !!l!:l -;;i; 
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PLACE VALUE NUMBER SYSTEMS 

Sy.stems tlf numer.1ls that use ixi'>ition or 'place \:tlue' to signify the m:1gnitude of a giwn digit an: few and far between. ·111c 
c:uiil'St such sy:m:m is Sumerian cuncifonn. Stylus impressions in clar arc rcpc:ucd to make gljl)S for 1 lo 'i9, with place 
\~1h1c denoting larger numlx:rs. bier the Babyloni:ms intn.xlured an 'empty plan:· marker clTcnlvdr 111:1king the first zem. 

T n rn 'f nm v w ffi < «<«<Z~ 
7 s ., 20 30 ·\0 59 

n 1¥ «<ffi 2 x 3,(;oo , 7 " 60 , 39 = 7.65'1 

1 7 39 •) 0 

The ~la1;1 indcpcndcmlr discm·crcd place \~!luc and the use of zero. Their b:isc 20 system is usuallr wlittcn 1·cnic1lly. 
Digits in the 3rd place arc not 20 but 18 times those in the second, proh:llily bemuse of the ca!cndrical use of .160. 

-- -- -- -- -- 12 >< )liO 
,j "7,2()0 

-- ' C, 7 
,, 10 ' -- 17 x :i,;o 

J x 2() ' ' -- h x 20 .... 
"""' -- ,., 

"""' ' -- -- -- -- -- -- -- -- " 
II " 13 ,,, 

" '" 17 JS " " 
.j .39~) 

.l5,0·lll 

Far l~t\tcrn rod m1me1~1ls alternate two versions of nine g!\plis_ '!11e small Indian zero w:t'> :uluptcd in the 18th century. 

II Ill 1111 11111 T lr irr llll =Le I~ 
" 

., =IJ_o 1101r-T 
- - - - J_ J_ _J_ ..L 

1 1 (;o 2 0 7 3 b 

Our own number system originate-~ in lndi:m Br:ihmi 11u111e1~tls. Fmm the 6th cemrny Olll\~irds 1~tri:uions of till' first 9 
Brnlimi digits wen.: used with a sma!! circular zero in a pbcc 1:1lue S}Stcm. '!11is S)c>t1cm w;L., p;L'>Sed IO Eun1pe br the A1:ib,. 

~ - + h ~ ~ ..., \st Century Numc1~1ls (from lk1h111i) 

' l ~ t a z 1 6'\ 0 8th Centul)' Nagari (Ccn1ral India) 

~ 1 1 t r v ,\ ~ 0 10th Century E,1stcrn Arabic(! !indi) 

" ; ,,. 
" b /' 8 ~ I !th Century Europe (from Ghubar) 

I ' ~ 't 'I ~ "' t .,, 0 Contcmpomry N:igari 

\ I r i 0 ' v A ' Comcmporary i\rabic (Hindi) 

I 2 3 4 5 6 7 8 9 0 Contcmpor:iry European/International 
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0 

0 0 

0 0 0 
0 0 0 0 

0 0 0 0 0 

Tri1mg111ar Numbers 
sum cif 11wnbcr> 
l 1 2 + 3 + 4. 
I, 3, 6, JO, 15 .. 

~
010 0 0 

~o o o 
0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

Square Nwnl,crs 
sum of odd nmul,ers 

1+3+5+7+9+ .. 
l, 4, 9, 16, 25 .. 

Pentagonal Numbers 
split, into three, 

1+4+7t-10+13+. 
l, 5, 12, 22, 35, .. 

T/Jc 3-4-5 Triangle 
area 6, perimeter 12 

enclosed circle di,miclcr 2 

PYTHAGOREAN NUMBERS 

Cn1tc1·cd Tri,wgular Nums 
trimJgfrs iucrease by 3 

1+3+6+9 .. 
1, 4, 10, 19 .. 

!~! 
Crntercd Sq1wre Nums 
squares increase /,y 4 
1+4+8+12+. 

l, 5, 13, 25 .. 

Ccnten/ Peut11gomil Nw11s 
up jive more 

1+5+10+15+ .. 
I, 6, 16,31, 61 .. 

Tlie 5-12-13 Triangle 
area 30, perimeter 30 

enclosed circle diamder 4 

0 

Tdm!Jcdml Nmubers 
sum of trim1gul1ir mm1s. 

1+3+6+10 .. 
I, 4, IO, 20 ... 

Cubic Number., 
lx1xl,2x2x2, 

3x3x3,4x4x4. 
1, S, 27, 64 .. 

0 

Sqiwrc Pyramidal Nums 
square by squllrc 
1+4+9·tl6+. 
1, 5, 14, 30, 55 .. 

The S-I5-171i-irmg1c 
1in:a 60, pcrimetcl' 40 

enclosed circfo diameter G 

0~~01~: 
O O 

0 0 0 o,,o O 

o o o o o', o 

Rt•ctaugul11r Numbers 
twice tri1wgular 1J1m1>. 

,1lso 2+4+6+8 .. 
2, 6, 12, 20 .. 

0 0 0 0 0 

o',p 0 0 0 

0 o',p 0 0 

0 0 0',0 0 

0 0 0 O·o 

Sqrrnrc N11m!,crs 
as sum cif two iuljaeeHt 
t rirmgu/11r IHHH!ias. 

here 10 + 15 "' 25 

Crnfrred Ho:11g01rnl Nwns 
ccnta 11nd six triangles 

1+6+12+18-1. 
1, 7, 19, 37, 61 .. 

T/1e 7-24-25 Triangle 
area 84, perimeter 56 

cuclosed cfrclc diameter 6 



EXAMPLES OF GEMATRIA 

Ancient Greek and Christi3n gcmatria: 

!HEOYE + XP!ETOE = l:l(JS 
(Jesus) 888 (Christ) 1480 

888 J.180 2.168 = 5 : 5 8 

KAI O APJ0MOE AYTOY XEE = J)68 
(,\ml his number is Mi6) --

TOAY!ON nNEYMA+ nAPA 0EOY = F-\6 
(1l1c I lolySpirit) J(WJ (from Go:IJ 666 

H llOEA TOY 0EOY !LP AHA = 17·l6 
(Glory of"lllc God of Israel) 

EPMH:E isto ZEYE 
(llcnncs) Yd {Zeus) 612 

as ZEYE isto AnOAAON 
(Zeus) 612 {Apollo) 1()61 

:l~ KAPnor isto ZOH 
(Life) Sli {FniitJ ·171 

088 -:\!B- -282-

/(J()l) 888 

HA!OI: (Sun)= 518 BJOE (Life)= 282 

]{)(XJ :l~ magnified Unity 

nAP0ENOE (Virgin)= 515 

EYAON {Cross)= 610 

0 0EOE IEPAHA 
(mc God of Jsr:1cl) = iO:\ 

!X00E (Fish)= 1219 

EOTHP (S~1·iot1r) = MOS 

The Divine l\mnc YJ-J\V!-1 as Tetranys: 

" ' " ' 
= JO 

,:cJ0+5=!5 

= 10+5+6=::2] 

;, 1 ;"I , =Hl+5+6+i=26 

;,,;, JfaYal!{l!cW:1s)=25 

;-J1il Ho\X'cll(!l('is}=i6 

;'l';'i' Yil!Yell(!lesh:illheJ=50 

Some Hebrew correspondences: 

= M= 
EKl!,\D (One) . ,\l!,\VAII (Love) 

and their sum = 26 = Y!l\\-1 ! 

Dlt\ ;-tin :ii :i" 
= 26 = 

AD:\.\1 - K!lA\VAll Yl!WH 

T1D 1" 
=70= 

YAYIN (1,ine) SOD (secret) 

or ill l'i110 i·elilas' 

I !ebrcw letter names and their totals; 

:,7N 11! AU\Pll 107 7-i !A\!ED 

n'J 4!2 BET 0'0 90 ~ID! 

7?.l~ i_') Gl~!MEL 1u 1 to ;,.u:,; 

n71 ·1}1 J)..\LET 7]1JO 120 SA.\1EKI! 

t-;,i llE l"!i' UO ,\Y!N 

1l 12 vov n::.1 85 PE 

1'1 67 z,w1:,; "l:i! !lfj TSADE 

n,n .,us 11ET :,,v l(}j QUF 

n•o '119 ·nrr iV'l SHI RESII 

11' 20 YOD rw 560 S!lli\ 

'1' 100 KOF 1n ,1()(1 T,W 

Eve1y 1111111/;er col/laim tbe seed of 1/Je 

ne.w so 1/Je rules of gemalria allou, a 

d1ffere11ce of I in co111parfso11s. 

Fmctiom1! pm·1s in geometric measures 

and ralfos can be rounded eflber ll'll.l' 
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Talisman with magic sum of 66, the 
abjad total for the Divine Name Allah: 

21 _2~[19 
20 2212·! 

25 18f2J 
- - - -

Some names of God in :ibj:id order: 

,JJi 66 ALl.i\l! 
'\ J. IB BAQI (El"erlasting) 

' \,. 
('.- j].j Jr\,\!I {Gatherer) 

.)~.) 61 DAYA,\" (lu<l_i:eJ 

'-f~'v, 20 J IADl (Guide) 

J, ,j(i \V,\U (Friend) 

0 .ii 7~\Kl (Puriricr) 

.}>- 108 IIAQ (Tni!h) 

_,,.11. 215 TAl!lR (Pure) 

"'"' !:10 YASSI;\ {Chiel) 

.;< Ill KAl'l (Sufficient} 

~ 129 IXIW (Subtle) 

ell. 90 ,\!AUK(Kin_i:) 

JY 2'i6 ;\liR (1.ight) 

r;:-- 180 SA,\ll (,\111 learing) 

Js- !IO 'AL! (,\lost lligh) 

c" ·i89 l'ATAI! (Re1·c::1ler) ,...,,, 
1}1 SA~!AD (Eternal} 

)~\; 50) Q,\DIR(Pm,errulJ 

'-!) 202 RAB(Lor<l) 

cf" ·160 SIL\lil (l!c::1ler) 

<--1Y 408 TAWAB (Oft Forgivin_i:) 

~\; 90:1 Tl IAlllT (StJbleJ 

J\;. ij] K!lA!.IQ (Creator) 
§\; 92] Dll,\KIR (Rememberer) 

).Co 1,001 DAR {Chastiser) 
_,,.11, 1,106 DIIAHIR (App:1renl) 

);.;, l,28'i GI IAFl'R {For_i:i1·in_i:) 



FURTHER MAGIC SQ!)ARES 

A magic square is 11011/1(/{ if it uses whule numbers from I 
to ihc square of its order, and simple if iis onlr pmpcny is 
rnw:;. columns and main diagonal'> adding to the nrngic sum. 
'l11e nomial magic square of rntler-3 Is unique ap:ut fmm 8 
JXA'>Siblc rcflcnions and rotations or a.lJX'C/s ('1 below). 

If the numbers in a magic square sum srmmcuit:dly alxiut the 
center, for example 2 + 8, 7 + 3 ... the square is ossociated 
(not simple), the number pair,; an: co111j)!e111e11tm1•. 

'l11cre arc 880 ordcr-1 nom1al magic squares.' To count 
magic squares mathematicians rotate/reflect them so the 1op­
lcft cell is tl'> small :L'> possible with the cell to its right Je:;s than 
the cell lxlow. Complcmenta1y numbers in nomml ordcr-'i 
squares fo1m 12 D11de11ey j)(1!/en1s (,J sholl'11 below). 

group! 

' H 
(5 I 

9 " 

,, (2 

group/II 

I 11 

JO " "' 2 

J " 

l ·1 Vi H 
1.'\ )(, ;\ 

group/I 

• ~;;~I~ 
(, l;\ ;\ 12 

group JV 

'Ilic ·i8 Group I squares arc Jx111dk(~'011al, the 6 broken 
di:igonab fonncd by opposite sides wrnpping round to meet 
C:!Ch mheral~o sum magical!r (be/011 1 left and center). 

Ordcr~l pandiagonal magic ~quarcs arc also most-pe1.fec1, 

11 l>iil! ,1: 

" L) (5 ( " !i) (I 

JJ I (, ,. (2 " l ' ' 
(I, " "' ., 

"' " l ,. ,, II ' 
,, 

'1,,:1,: I I•"' ',I ' i",I' 

any 2-br-2 square, including wr.1p around\ adds to the rn:1gic 
sum (a!xJl'e 1tqbt). Only nomrnl pandiagonal squares of 
doubly-even order(.\. 8, 12-.,) Gin be most-pcifott. 
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I 15 2·1 ll J7 

2.\ ., J(, 5 h 
f-.....f..-..--~-1.--

2011:\2216 

!2 21 10 !9 :\ 

l8 ll 2) 

111cn: arc 275.305,22·1 nom1al ordcr-5 magic squares. 
Ordcr-5 is the lowest order of magic squares that G\11 be lxlth 
pandiagonal and ;L'i\Cx:iatcd (one sho1cn /Jere). ·n1erc are 
36 essemiallr diffcrcm pandiagonal ordcr-5 magic squares. 
e:.tch pnxluces 99 \·;uiations by pennuting rows, columns and 
diagonals for a total of 3,600 pandiagonal order-5 squares. It 
is not known how many nom1al order-6 magic squares 1herc 
arc. Ordcr-(1 i~ the first oddly-even order, di\isiblc lw 2 but not 
by ·l, the hardest sql1ares to constn1ct. !t is im1xi~\ible for a 
normal order-Ci square to be pandiagonal or iL'i..'iOCiatcd. 

\,1 .l ,r,1' wr;;-r-1~~ 
I~ i-1,5! 1! l.'lil{~-1: 

~ie.::· 11, !O !l ;i:l ·I!, !i 

To constmct a magic square of doublr-cren order, place 
the numbers in sequence fium top Jef1 :L~ !X'.low. Using the 
pattcm shown exchange every numlX'.r on a marked diagonal 
with iL~ complement and )'OU lrnrc a magic square. 

To make a magic square of anr cxld order place I in the 
top middle cell and place numbers in sequence up and to 
the tight by one cell, wrnpping topAxmom and lighvlcft 
:Lo; necessary. When a prC\iously filltxl cell is reached more 
down one cell instead. '!11e cemml cell will comain the middle 
number of the sequence and the di;1go11als will add IO the 
m:igic sum (a/1en1alite fill Jx111en1 below 1igbt). 



Two magic squares combine to make a composition /Jl{lgic 
square with the miginal orders multiplied together. 

l l-1 ~ I! 
e- -1-+-
..1.2.f-2. _2_1i 
llJ 'i 16 ·' 
I\ ll 2 !;\ 

2 

9 

' 

7 6 

I 1 

,l 8 

, 16 % t!O 

!28 61 

48 .'12 112 

;\lake copies of the first square (kji) :l~ if each were a cell 
in the second square (a,11/er). Subtr:.in 1 fmm each cell in the 
second ~quarc and multiply by the numl~r of cdb in the first 
square (rigbl). Add these to e:ich cell in the brge square. 

,· " !.l 2!1 

;1 i .;o .. 
ll ~2 '" ;i\ Ti I'll 29 

.,. 11n;w1j11H 81 i 91 !)2 

1iihoo 

'"' Jl)J 

101! 10~ 

!O'i.l02 ')'i i 8) 11(, 

112'.'-fJ ,Xi 1 fl\ H;I 

'.M!1w -"~ I 91 " " 
!11! ,12 

Vi' 

ll 11.\, 121J] !Ni 121 

1r:w,1121:1rn 

l!J 11~J ,2;1]1l'i 

l'i 120 12.1i11-1!1.:, 

To make a bordered magic square add double the order, 
plus 2 to the cells of :i nomi:tl magic square and make a lxm.lcr 
of the highcs11lowest numbers in the new sequence. 

1,2,21~-j rn 2.l 

1,,qll 8 

l' 22 2 l :1 
border,•d square inlaid square 

--~=~= 2 JO l'J l l 20 

22 ) 21 lJ I\ 

r;, !'i n g 
w J3 5 

i11laiddim11oml 

A magic squ:ire \\i!hin anmher that doesn't follow the 
highesv1owcst number bonier m!e is an inlaid magic square. 
Also possible arc inlaid magic diamontl, and embedded 
magic squares (orders3 C- '1 in 01de1°7 below). 

9 1 ·18 :'·i· 26 Ii 

·19 HI 25 r I 111 2, 

H 22 }{i 11 :n ·12 Zil . .H +i " ·1.1 l' 6 

35 i6 }! 1 Zl '' ·30 
19 .-u 8 l 28 ·10 ·15 

41 ll 1) .W J2 ' ]4 
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A bimagic square L5 still magic if al! its numl:x:1-s arc 
squared. '!11is one kt5 a magic sum of 369. l~ich lbr-3 
section also ln5 this sum. '!lie 'squared' magic sum is 20,().19. 

In 3 dimensions we find the SUll)rising possibility of magic 
cubes. ·111erc are ·l order-3 nom1:~ magic cubes (2 shown 
lxilo1c) L~\Ch ln, ·18 :t'iJX'.Cts. All mws. columns, pillars and the 
four long diagonals from op1x1,ite veJtict:5 sum to ·12. 

Even more rem:lfk1bly magic figures in +dimensiuns, 
once considered imJXJssible, were fi1-st discnl'ered by John 
It Hendiicks who sketched a magic tesseract, or ·1-D rube, in 
!950. Below is one of 58 nonnal order-3 m:igic tesse1~1e1s. 



SOME NUMBERS OF THINGS 

One One (Unirersa(). 

2 
Two Forces (Taoist): Jkceptivc (J'il/), t\cti\·e (rang). 
Two Perspectives (l!nh'ersaf): Subject, Object. 
Two Polarities (Geograpl~i·): North, South. 
Two Polarities (Pl~)'Sics): Positive, Ncgati1•e. 
Two Pri11clples (Metapl~rsics): Essence, Substance. 
Two Regents (,\fcbemy): Queen, King. 
Two Sides Left, Right 
Two Tribal T;t1es (;\11/bropo!ogy): Senler, Nomad. 
Two Truths (l.ogic): Ana!rtic (a prion), Synthetic (ti JXJS/e1iori). 
Two \Vays of K110111i11g (Neligion): Esoteric, Exotcric. 

3 
The Great Triad (7(/oisl): Heaven, Man, Earth. 
T/Je Holy Trinity (Christian): Father, Son, Holr Ghost. 
11,ree ,1/c/Jemical Stages (Alcbemy): Bl:ickening 

(11Z~redo), \Vhitening (albedo), Reddening (r11bedo). 
Three Aspecls of K11owledge (Greek): TJ1e Knower, 

Knowing. The Known. 
Three Dfrtlectic Phases: Thesis, Antithesis, Synt!u:sis. 
Three Dime11sio11s (Pl.trsica[): Medial, Laternl. Vcnical. 
VJ1·ee Fales (Greek): Spinner (C!otbo), Measurer 

(/.acbesis), Cutter (Atropos). 
V,ree F1wies (Greek): A\'cnging Murder ('f'l:1·ipbo11e), 

Jealousy (Megaera), Unceasing Anger (Alecto). 
n,ree Ge11eratio11 of Quarlts (Pbysics): Up & Down, 

Chann & strange, Top & Bottom. 
n,ree Graces (Greek): Splendour (1\~faia), Minh 

(liupbrosyne), Good Cheer (111afia). 
11,ree G1111as (Hindu): Fire (rc'(l). \Vatcr (white), Earth (black). 
n,ree Ki11gtloms (Medie1•td): Animal, Vegetable, Minei;il. 
T/Jree il!otles (Astrolo,l{\'): Cardinal, Fixed, Mm:ible. 
11,ree Parts of /be ,1tom (20tb CJ: Proton, Neutron, Electron. 
Three Parts of a Syllogism (,\ristotle): Premise, Universal 

Principle, Conclusion. 
'fl,ree Prb11a1J' Colours (ligbt): Red, Green, Blue. 
T/Jree Principles (Alcbemy): Sulphur, Mernuy, S:1!1. 
n,ree Qualities (Cbristian): Faith, Hope, Love. 
Three Regular Tilings (Geo111et1y): Triangles, Squares, 

!-Jex:1gons. 
'fl,ree Revolutionary Virtues (Frencb): Libeny, Equalitr, 

Fraternity. 
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11Jree Stages (Hindu): Creating (lJrabma), Sustaining 
(Vl'.~b1111), Destroying (Sbiiea). 

11,ree Stages of the Soul (Jain): E.xtem:tl, lntemal, Supreme. 

4 
Four 1Jea11tiful Harmonies (,\fusic): Unison, Octa\'e, 

Fifth, Founh. All arise from r:nios involl'ing the first four 
numbers. 

Four Castes (Hindu): Holy (JJrabmin), lleroic (Ksbatn)•a), 

Business (\!ais:ra), Servant (Sbudra). 
Four Causes (Aristotle): Formal, Mmerial. Efficient, Final. 
Four Directfous (Common): Nonh, South, f~tst, West. 
Four Elements (\l"estern): Fire, Eanh, Air, \Vater. 
Four Forces (Modern): Electromagnetic, Strong Nuclear. 

\Veak Nuclear, Gml'itational. 
Fou,- Hu1110111·s (W'estern): Sanguine, Choleric, J>hlegnrntic, 

~lelancholic. 
Four Levels of Psycbe (/1111g): Ego, Shadow, ,\nim:1/AnimtL\ Self. 
Four Jfodes of Pysd,e (/111{1;): Feeling, 'Jhinking, Sensing. Intuiting. 
Four Noble Truths (JJuddbism): The Truth, Cause, 

Cessation and Pmh to cessation of suffering. 
Four Seasons (\l"es1en1): Spring, Summer, Autumn, Winter_ 
Four 1)pes of Literature (\\'ieslern): Romance, Trngedy. 

Irony, Comedy. 

s 
Five ,t11imals (Cbinese): Scaled, \Vinged, Naked, Fu1Ted, 

Shelled. 
Five Directions and Colours (Cbi11ese): falst (green), 

South (red), Cemer (yellow), \X1est (white), Nonh (black), 
Five E1e111e11ts (Cbinese): Fire, Earth, Metal, Wmer, \VO(x!. 
Five Elements (JJuddb!'.,t): Void, Water, I~1rth, Fire, Air. 
Five Notes (Chinese): Black keys on :1 piano. 
Five Orders of1t1'dJitect11re (\Vestern): TusGm, Doric, 

Ionic, Corimhian, Composite. 
Five Parts of the Persouality (f~[t_J1Jlian): Name, Shade, 

life force (Ka), Character (!Ja), Spirit (likb"' Ka+ /Ja). 
Five P/ato11ic Solids (Ullil'ersa[): Tetrahedron, Octahedron, 

Cube, Icosahedron, DO(!ernhedron. 
Five Poisons (/Juddbist): Confusion, Pride, Emy, Hatred. Desire. 
Five PreceJ;ts (/Juddb!'.,t): Respect for Life, Respect for 

Property, Chastit)', Sobtiely, Spe:1king the Truth. 
Five Senses (Common): Sight, He:iring, Touch, Smell, Taste. 
Five Sounds (Cbinese): Calling, bughing, Singing, 

!;unenting, Moaning. 



Five Smells (Cbinese): Go:uish, Burning. Fragr.m1, R.1nk, Hollen. 
Five Tastes (0Jinese): Sour, Bitter, Sweet, Spicy, Salty. 
Five Virtues (Buddbist): Kindness, Gtxxlness, Respcc!, 

Economy, A!tniism. 
Five Vil't11es (Cbfnese): Benen)lence, Propriety, Gtxid Faith, 

Righteousness, Kno\\'ledge. 

6 
Si:i: Days of Creatio11 (,\l;rahamic): Ught, Finnament, L:tnd & 

Vegetation, J learenl)' Btxlies, Fish & Birds, Animals & Man. 
SL\' Directions (Co111111011): Up, Down, Left, Right, Front. lbck. 
Si.t Ki11gtlo111s (.lfode111): Archaeb:1rteria & ll:ictc1ia (pro· 

kmyotes). Pr01is1:1, Fungi, Plarnae & Anlmalia (eukaryotes). 
Si.\' Pe1fectio11s {Buddbism): Giving, Morality, Patience, 

Energy, Meditation, \Visdom. 
Six Reactio11s (Cbe111ist1y): Synthesis & Decomposition, 

Combustion. Single & Double Displacement, Acid-Base. 
Sb: Realms (l li11d11 &- B11ddbist): G<Xls, I !db, I luman, 

I lungiy Ghosts, Demons, Animals. 
Si., Regular Polytopes ('i·IJfme11simwl Solids): Simplex, 

lesser.Kl, 16·Cdl, 24,Cell, 120 Cell, 600·cell. 

7 
Se11e11 Bortle1· Geometl'ies (Ullil'ersaf): !'here are seren 

JX>ssiblc kinds of border symmetry. 
Seven 01akras (//i11d11): Root (·1 J:k:!ab). San:11 (6), Solar 

Plextl) (JO), Heart (]2), ·nmxu (16), Brow (2), Crown (1000). 
Seven Deatfly Silu; a11tl t/Jeil' Seve11 Co11trary Virtues 

(Cbrislian). ! !umililj' against pride, Kindness :ig:iinst 
erny, Abstinence against gluttony, Chastity against lust, 
Patience against anger, !.ibemlity against envy, Diligence 
against sloth. 

Seven E11docri11e 6'la11tls (.\ledical): Pineal, Pituit:uy, 
Thyroid, Thymus, Adrenal, Pancreas, Gonads. 

Se11e11 IIeaveuly Bodies a,ul t/Jeil' Days (Ancienl): ~loon 
(Mon), Mercrny (Wed), Venus (Fri), Sun (Sun), ~Jars 
(J'ues), Jupiter ('Jlrnrs), Saturn {Sat). 

Seven Levels of Seif (:\nlbroposophy): PhysiL~il, Etheric, 
Asu:ll, Ego, Man:l\ Buddhi, Atm:i. 

Se11e11 Liberal ,h'ts (\\'.'es1en1): Logic, Rhetoric, and Gmmmar 
(7ifri11111): Number, Music. Geometry, Cosmology 
(Quadriri11111). 

Seven ,lfetals (Ancie/1/): Silver, Mercrny, Copper. Gold, Iron, 
Tin, I.cad. 

Se11e11 ,lfotles (G'reek): Ionian, Dorian, Phrygian, Lydian, 
Myxolydian, Aeolian, Lociian: using just the white kers on 
a piano, these refer 10 the se\'e!l·llOte scale stalling with C, 
D, E, F, G, A and B, respectively. 

Seve11 Stages of the Soul (Sufi): Compulsion, Conscience, 
Inspiration, Tr.mquility, Submission. Sen~mt, Pe1fecte<l. 

SeiJe11 Vil't11es {Cbristia11): Faith, !lope, Charity, Fortitude, 
Justice, Pnidence, Temper.mce. 

8 
Eight Se111i-Reg11la1· Tifh1gs ((ieomeh)'): In the plane. 
Eight Im111011als (Ttwist): Youth, Old Age, Poreoy, Wealth, 

The Populace, Nobility, The Masculine, The Feminine. 
Elgbt limbs ofJ'oga (Vedic): i\1omlit)' (l(m1a), Obsel\:mccs 

(N()rmu1), Ptl'ilt116 (A'iCllltlS), Bn:.uhing (Prttll((J'tlllltl), (,011· 

centration ([)/Jam11a), Demtion ([)f~rm1a), Union (Sa111adb1). 
Eig/Jt 1i•igrams (!·Ching): Cbi"en (!-le:wen, Cre:uire), 7id 

(A1tr.1Ction, achierement), /.i (A\\:!l"eness, beauty), Chen 
(Action, morement), S1111 (Following, Penetr.uion), K't111 
(Danger, Pelll), Ken (Stop, Rest),K'1111 (Eanh, Recepti\·e). 

Eigbtfoltl Path (B11ddbisl): Right View, Right Speech, Hight 
Action. Right Li1·e1ihood, Hight EIT011, Right i\lindfulness, 
Right Concemmtion. 

9 
Nine ,U11ses (Gl'l!rk): History (Clio), Astronomy (f!i1111ia), 

Tmgedy (Jlelpomene), Corned)' (71x1lia), Dance 
(Te11;sicbore), Songs to the Gcxb (Po(J'l~r11111it1), Epic Poetiy 
(Callioj)e), 11lre Poetry (Erato), Ly1ic Poelly (Eute,pe). 

Niue 0/'tlers of A11gels (\Ves1rr11): Angels, Arclrnngcb, 
Vinucs, Power$, P1incipalities, !){Jlllinations, Throne, 
Chernbim, Se1:1phim. 

Niue Persoualities (.\liddle-Hastern): Perfectionist, Girer, 
Achiel'er, T1:1gic Homantic, Obsc1ver, Contr.tdicwr, 
Enth11si:t,t, Le:1der, Jllediator. 

Ni11e Regular Polyhedra ({!uirersal): The fire Pfa1011ic 
Solid, plus the four stellated polyhed1:1 the gre:tt. the 
stellated, and the gre:l! swllated dodecahedra. and the 
gren icos:ihedron. 

Niue Se111i·Reg11(ar Tilings (fi11ire1:m/J: Although there 
:in: eight standard patterns. one of these has different 
left· :ind light·h:tnded versions, making nine in :11!. 

10 
Te11 Co111111a1u(me11/s (Cbrislia11i(r): Honour Mother. Father 

& Sabbath. No other gods, G1:1ren images, Blaspheming. 
Ki!!ing, Adultery, Stealing, False witness, Coreting. 

Te11 Levels (!111ddbis111):Joyous. Srninless, Light· 
maker, Radiant, Resilient, Turning toward, Far-going, 
Unshakeable, Good Mind, Cloud of Dham1a. 

Te11 OjJposites (l~)'tba,~o,.as): Limitetl:Unlimited, 
Odd:Even, Singularity:Plurnlity, Right:l.cfl, Jl!a!e:Female, 
Resting:Jllo\·ing, Strnight:Curved, l.ight:Dark, Good:Bad, 
Square:Oblong 

Te11 Sep/Jirotb (Kabba/ab): Ketbe1: Cbokmah, Binab, Cbesed. 
Geburah, Tipharetb. Nelzacb, I lod, 1-esod, J!alk111b. 



SELECT GLOSSARY OF NUMBER 

The !st triangular, square, pentagonal, hexagonal, 
tct1~ihcd1~d, octahedral, cubic, Fibonacci, Lucas num. 

2 The !st Cl'Cn (female) num. The planet Mcrcu1y's 
day is exactly two of its years. U1:mus orbital radius is 
two of Smurns. Ncpnmc's period is twice Umnus'. 

3 The !st Greek odd (m:isculinc) mun. I+ 2. There arc 
three regular tilings of the plane. After three rears the 
Moon closelr repeats its phases in the calcnd:ir. In 
engineering tri;mgulation creates stability. 

4 The 2nd square num. 22 = 2 x 2 = 2 + 2. Num of 
vcniccs and faces of a tct1~1hcdron. Every imcgcr is 
the sum of at most 4 squares. 

5 Sum of the 1st male and female nums. 12 + 22. Fire 
notes in the pentatonic scale. Five Platonic solids. 'Jl1e 
5th Fibonacci num and the 2nd pentagonal num. 

6 The 3rd triangular num as 6 = l + 2 + 3. The fanorial 
of 3, written 3! = 1 x 2 x 3. Area and scmi-pe1imeter 
of the 3-·i-5 triangle. The first perfect num. (sum of 
its factors). Edges 011 a tetrahedron, faces on a cube, 
vertices of :m octahedron. Six regular ·i-D polrtopes. 

7 There are seven frieze symmetries. Seven notes 
in the traditional scale. Sel'{~n endocrine gbnds in 
humans. Sum of spots on opposite sides of a dice. 
Seven tetrominos (Tetris) . .\th Lucas mini. 

8 The 2nd cube, 23 = 2 x 2 x 2 = 8. Faces on an 
ocrnhedron, venices on a cube. The 6th Fibonacci 
nurn. Eight semi-regular tilings. Bits in a Byte. 

9 The square of three. 32 = 3 x 3 = 1J + z3. There arc 
nine regular polyhedra and nine semi-regular tilings 
of the plane if you include the chiral pair. !n base JO, 
the digits of al! multiples of 9 eventuallr sum to 9. 

10 The 4th triangular and 3rd tetmhedral num. = t2 + 32. 
11 11 dimensions unify the four forces of physics. The 

5th Lucas num. Sunspm cycle in years. 
12 12 notes complete the equ:il-tempered scale. The 

3rd pentagon:il num. 12 spheres touch a centrnl 
one as the cuboctahedron. Num of vertices of an 
icosahedron, faces of a dodecahedron, edges of both 
cube and octahedron. Petals of the heart chakm. 

13 The 7th Fibonacci nurn. There are 13 Archimedean 
polyhedra. Appears as the ociave (13th note), and in 
the 5-12-13 triangle. Locusts swarm erery 13 years. 

14 The 3rd square pyramidal num = 12 + 22 + 32. Num 

of lines in :1 sonnet (octave, quartet, couplet). 
15 Triangular num. Sum in lines of a 3 x 3 m:igic square. 

Balls in a snooker triangle. 
16 2·1 ,md ,i2, Perimeter and area of a .j x ·i square. 

Petals of the throat cliakra. Also 52-32 which means 
!6 coins can be :1rrnngcd as a square 5 by 5. 

17 The number of 2-D symmetl)' groups. 1·1 + i 1• 

Syllables in Japanese Haiku (5 + 7 + 5). Tones in 
A1~1bic tuning. 

18 The number of yc~irs in a S:ll'os eclipse q'Cle before you 
get a eclipse of the same kind near the same place. 

19 The number of rears in the i\letonic cycle. After !9 
years full moons recur on the same calendar dates. 
The game of Go features a 19 by 19 grid. 

20 The sum of the first .j triangular numbers. Num of 
faces in an icosahedron, l'ertices in a dodecahedron. 
Dars in a May:1n month. Amino acids in human~. 

21 The 6th triangular ;md 8th Fibonacci num. 3 x 7. 
Letters in the Italian alphabet. 

22 i\hx. num. of pieces into which a G1ke Gm be cut 11ith 6 
slices. Channel~ in the K:tl}lxilah. l.eue1;; in the Hebrew 
:ilphalx:t. i\lajor Art:ma in Tarot. Tones in Indian tuning. 

23 Chromosome pairs nrnke a hum:m. 
24 Spheres can touch one in ,j.]), Letters in Greek :ilpha­

bet. 4!=lx2x3x·L 
25 52 = 32 + 42. 25 raised to any power ends in 25. 
26 The only number to sit between a square and a cube. 

Num of letters in tit in and English alphabets. 
27 35 = 3 x 3 x 3. The number of nakshatras imo which 

the ecliptic is divided in Hindu lunar cosmology. 
28 The 2nd perfect num, sum of its factors. Triangular. 

Num of letters in A1~1bic and Spanish alphabets. 
29 A Lucas num, the series goes I, 3, -l, 7, 11, 18, 29 ere. 

Letters in Norwegian alphabet. 
30 Edges on both dodernhedm and icosahedrJ. Area and 

perimeter of a P)thagore;m 5· t2- l3 triangle. The ,\loon 
orliits the l~111h at a distance of 30 l~inh diameters. 

31 Planes of existence in Buddhism. A Mersenne prime, 
of the form 211 -1, where n is prime. 

32 z5. The smallest 5th power besides I. Num of c1ysrnl 
cl:1sses. Num of Earth diameters to reach the Moon. 

33 l! + 2! + 3! + 4!. Num of veneb1~1e in the human 
spinal column, can)•ing 33 pairs of nerves. 12053 



sunrises in 33 )'Cars. l..:irgcst num which cannm be 
represcmcd as sum of distinct triangular nums. 

34 The sum in the lines of a ·I x 4 magic square. 
35 Sum of Pythagorean harmonic sequence 12:9:8:6. 

Also the sum of the first fi\·e triangular numbers. 
36 l·~ + 2.i + }'I. 8th 1riang11larand 6th square number. 

First number\\ hich is square ,md triangular. 
37 'l11c he:irtofthc 111,222 ... 666, T!i,SSSsequcncc. 57 

moons in 3 years. Stages of the Buddhist lx1dhis::tm~1. 
38 -18 can be written as the sum of two odd numbers in 

10 different ways. Each pair co mains a prime. !;1rgcs1 
number with this property. 

39 There arc 39 hand patterns when a deck of card is 
divided between four people, :is in bridge. 

40 The number of fingers and toes of a man ;md 
woman together. 40 Spheres can 1oud1 one in 'i 
dimensions. 

4 J The expression x2-x + ,j l produces a sequence or ·10 
consecuti\'C primes, from ·11 all the \\11)' t()168 l. 

42 The sum in the lines of a lD 3 x 3 x 3 magic square. 
45 Triangular. sum of 1 to 9. Sum of lines in Sudnku. 
46 Total number of chromosomes in human ccll nudcii, 

23 from mum, 23 from dad. 
50 Num of leuers in sanscri1 alphabet, petals of all 

cliakras excluding crown. 
52 Nurn of playing cards in a park. Num ofhum:1111ee1h 

over lifetime (·ix 'i) children's+ (4 x 8) adult. The 
~layan cdendar round w;1s 'i2 years, at which point 
the 260 day Tzolkin and the 56'i day ! la:1b re~et. 

55 Highest triangular & Fibonacci nurn (others 1, 3, 21). 
Also square pyramidal 1 t ·i + 9 + 16 + 2'i. 

56 Station stones :u Stonehenge. l iscful for eclipse pre· 
diction. 7 x 8. The product of 1 + 2 t ·i and 1 x 2 x ·i. 
Tct1:1hed1:1I. :\linor Arcana in Tarot. 

58 There is one stc!lation of a pentagon or hexagon, 1wo 
of a heptagon or octagon, three for an enneagon. 
There arc no stcllations of a tc1r.1hedron or cube. 
one of an octahedron, three of a dodecahedron . 
but there are 'iS stcllations of an ico~ahedron. 

59 There arc two fuH moons cvcq· 'i9 days. Prime. 
60 .') x ·l x 'i. Basis of Sumerian and Babylonian 

counting. Sm:1!1est number divisible by 1 through 6. 
61 Codons specify amino acids in human mRNA. 
64 Eight squared, four cubed and 26. Num of hexagrams 

in the !·Ching. squares on a chcss-bo:ird. 6-1 codons 
specify amino acids in human DNA. 

65 The sum ln the lines of a 5 x 5 magic square. The first 

365 

number that is the sum of two squares in two ways as 
65= 12+s2=.12+72, 

71 The Hindu Indra lives for71 cons. 
72 Spheres can touch one in 6 dimensions. 560/5. 72 

names of Gtxl in Kabbalah. ! lifetime = ! preccssional 
'Great Day' or 360th of a Great Year= 72 year.;. The 
Rule of 72: How long will it take for my money to 

double? If interest t~!le is 6%, then it will wke 72/3 = 
12 years. You cm also use 71 and 70. 

73 7.1 Tzo!kin = 'i2 Haab in the ,\\ayan calendar. 73 ls 
36'i/'i and appears in ancient year-clocks. 

76 Years between sightings of Halle)"s comet. 
78 Complete Tarot, 22 major and 'i6 minor Arcana. 

Triangular, sum of l to 12. Number of prcscms in 12 
Days !j'Cbris1111as. 

81 ·111c square of nine. 3·1. There arc SJ stable clements. 
89 Fibonacci number common in sunflowers. 
91 A quarter of a year. 7 x 15. Square pyrmadial, sum of 

first 6 squares. 
92 Elements can occur in namrc: all Others :1ppcar 

tleetingly under labor:noq' conditions. 
97 There arc 97 leap years e1·cq' ·iOO years in the 

Gregorian calendar Number of cards in the 
,\1inchiate Tarot. 7/l cards (sec 78) plus four virtues, 
four clements and 12 signs of zodiac. 

99 Names of Allah. 99 full moons occur in 8 years. 
100 10 x 10 in an\' base. 
I 08 11 x 22 x 5.i. · The Sun diameter b 109 times Earth's, 

and its distance from Eanh is 107 Sun diams. Num 
of !-lindu ;md Buddhbt pr.1ycr hc:1ds. 

111 The sum in the lines of a 6 x 6 magic square. Num of 
~loon diameters between Moon and Earth. 

120 ! x 2 x 3 x ·i x 'i. Triangular and tctrnhedr:11. 
l 21 The square of clc\'cn. 
125 The cuhe of five. 
128 f. The largest mun not the sum of distinct 

squares. 
144 The square of 12. Onlr square Fibonacci num. 
153 The number of fishes in the net in St. John's Gospel, 

XXl.11. = 13 + }1 t 'i3 = !! + 2! + 3! + .,i! + 'i! = 
the square of the number of full moons in a year. 
Archimedes' approximation for V5 was 26'i/155 

169 The square ofthinecn. 
175 The .,um in the lines of a 7 x 7 magic square. 
206 Bones in :m adult human body. 
216 Plaw 's nuptial number. The smallest cube that is the 

sum of three cubes, (iJ = 3J + .j3 + 'i3. Twice 108. 



219 
220 

235 
243 

256 
260 

284 
300 
343 
354 
360 
361 
364 

365 

369 
384 
400 

432 

486 
496 
504 
512 

540 
576 
584 
648 
666 

720 
729 

780 
873 
880 

1,000 
1,080 

1,225 
1,331 
1,461 

There arc 219 3-D symmct!)' groups. 
Member of the smallest ,m1icablc pair with 284, tlic 
factors of each summing to the other. 
The number of full moons in a 19-ycar !l!etonic q'clc. 
J'i. Appe,irs in the lcimma, the Pythagorean hafftonc 
256:243 between the third and fourth notes. 
28. In computers, the mm;imum v:1!ue of a byte. 
The Mayan Tzolkin, 20 x 13 = 260 days. ilfagic sum 
of 8 x 8 magic square. 
Amicable with 220, summing with it to 50,J. 
Babies arc born with 300 bones. 
The cube of 7. 
Days in 12 full moons. Lunar or Islamic year. 
3 x ,1 x 5 x 6. Degrees in a circle. Days in a Mayan Tun. 
The square of 19. A Chinese Go board is 19 by 19. 
The number of pips on a pack of plaring cards, 
countlngJ=ll, Q=12, K=l} Also= 4 x 7 x 13. 
The Mayan H:mb, consisted of 18 months of 20 dars 
each, plus five days added on (\Vayeb) to mnke 365. 
Magic sum of 9 x 9 magic square. 
Root number for Prthagorean musical scale. 
The Sun is ,JOO times larger tlian the 1110011, and ·lOO 
times further away. 
72 x 6. 108 x 4. Second note in Prtlrngorc:m scale, 
9/8 up from 3s,J. 
Pythagorean major third, two tones up from 38.\. 
The third perfect num. sum of its factors. 
7xSx9. 
29. Founh, 4:3 (or9/8 x 9/8 x 256/243) up from 384. 
The cube of 8. 
There are 540 double doors to Valh:1Ua. Half 1080. 
Perfect fifth, 3:2 up from 384. 242. 
Venus' synodic period in dars. = 8 x 73. 
Prtlrngorean sixth, 3:2 up from the second (432). 
Sum of numbers 1 to 36. Yang principle in gem:uria. 
The sum of the first six Roman numerals (l V XI.CD). 
6! = 1 x 2 x 3 x4 x 5 x 6 = S x9 x 10. 2 x 360. 
Pythagorean seventh, 3:2 up from the third ('186). The 
cube of 9. 36 or 272. Appears in P!ato'sRepuhlic. 
Mars' synodic period, in days. = 13 x 60. 
l! + 2! + 3! + 4! + 5! + 6!. 
Num of substantially different 4 x 4 magic squares. 
The cube of JO in :mv base. 
z3 x 33 x 5. Canonical. Yin principle in gematria. 
Radius of ll!oon in miles. 
The second triangular and square num. 352. 
Thecubeofll. 
There are 1,J61 days in 4 rears. 

1,540 
1,728 
1,746 
2,160 

2,187 
2,392 

2,920 

3,168 
3,600 
5,040 

5,913 
7,140 
7,200 
7,920 
8,128 

10,000 
20,736 
25, 770 

25,920 

26,000 
31,680 
40,320 
45,045 
86,400 

108,000 
142,857 
144,000 
248,832 
362,880 
365,242 
432,000 
864,000 

1,296,000 

1,728,000 

1,872,000 
3,628,800 
4,320,000 

39,916,800 

366 

One of only five triangular AND tetrahedral nums. 
The cube of 12. Cubic inches in a cubic foot. 
Canonical. The sum of 666 and 1080. 
720 x 3. Canonical. Diameter of Moon in miles. Yem"S 
in a precessional 'great month' or astrologici! age. 
J'. 
= 8 x 13 x 23. The Maya discovered that 3"1 = 81 full 
moons occur eve!)' 2392 days to astonishing accu1:1cy. 
= 584 x 5 = 365 x 8. The number of dars it takes 
Venus to drnw its pentagonal pattern around Earth. 
21 x 32 x 11. Canonical num. Factrn"S add w 6660. 
The square of 60. Seconds in an hour or degree. 
Radius of Earth in miles. 7! = 1 x 2 x 3 x ,j x 5 x 6 x 7 
= 7 x 8 x 9 x 10. Combined radii of Eanh and Moon. 
l! +2! + 3!+ 4! + 5! +6! + 7! 
brgest triangular :mcl tetrahedral num. 
Ma}~m Katun, or 20 Tuns of 360 days. 
Diameter of Eanh in miles. = 720 x 11. 
The fourth perfect number, sum of its factors. 
A my1iad. 
12 x 12 x 12 x 12. 
Current \~!lue for precession (seems to be slowing, 
sug__i:iesting the Sun forms a bina!)' system with Sitius). 
12 x 2160. Years in the ancient western count for the 
precessiona! cycle of astrological ages. 
Ma1~m precessional figure. 
Perimeter of a square dmwn around earth, in miles. 
8!= 1 x2 x3x4 x 5X6X7x8. 
The first triangular, pent:1gonal and hexagonal num. 
Number of seconds in a day. 
One season of a Kali Yuga. 
The rcpcming pan of al! divisions br se\'en. 
Days in a Mar,m Bak tun of 20 ~nuns. 
125. 
9!,also= 2! x 3! x31 x 7! 
Days in 1000 years. Feet in one equatorial degree. 
The Hindu final :md cormpt ~iii Yl1ga period, in years. 
The Hindu third pli:ise of creation, the semi-corrupt 
dwaparn yuga, in years. 
The Hindu seconda!)' Treta Yuga period, in years. = 
3 , 432000. 
The Hindu initiatory and highly spiritual Satya Yuga 
period, in years. = ,j x 432000. 
Years in the Mayan long count (ends Dec 2012). 
10!, also 6! x 7!, or 3! x 5! x 7! 
The Hindu Jl.laharuga, a complete crcle of Yugas, a 
Buddhist Kalpa. 
11!, also 5040 x 7920. 



FURTHER NUMBERS 

a § "' ! 2 E! ~1 ·e '9...i::; 

1~ 13 5 -g ] " " e• ] 
~ J ~ g, ~l"f a ~ B ~1:: ] !'J .§ l 5·'2! JJ ~ g~ 

dsr ~& ~ 6 , "" c5f.,,:· 3 ~ u~ u uu 

I I 
5 5 6 5 

6 12 10 IJ IJ 10 19 27 .'15 H 
10 16 22 19 2'i 25 12 20 ·H I>! 91 JO 

5 15 25 35 JI .,i ·ii 20 .'15 85 !25 189 55 11 
6 21 J6 51 ·16 ,,1 61 JO )() !·i6 216 .:HI 91 IS 
7 28 ·i9 70 6-1 85 85 .j2 81 231 JH 559 HO 1l 29 

J6 (l.i 92 85 1 IJ 113 56 !20 3+i 512 855 20-i 21 ·17 

·6 81 I 17 llW l-i'i !·i5 72 165 ·1b'9 T29 12-il 285 }i 76 
10 55 100 !-15 136 181 181 90 220 670 1000 1729 :185 55 123 

11 66 !21 176 166 221 221 110 286 89! 133! 2331 506 89 199 
12 78 j.j:1 210 199 265 265 152 3M 1156 1728 3059 650 l+i 322 
13 91 169 1·17 23') .'113 313 !56 ·i55 l·i69 2197 .i925 819 23.'I 521 
J.I 105 196 287 27-i 36'i 365 182 560 !S}i 27·i4 '!9-il !015 377 8-13 
15 120 225 330 316 ·121 ·121 !JO 680 2255 3375 6119 12·10 610 136·1 
16 136 2% 376 J61 -!81 ·181 2-10 816 27:16 ·10% 7·!71 l-196 987 2207 

17 153 289 ·i25 ·109 5-i'i 'j,j) 271 969 3281 '19!.i 9009 1785 1597 357! 
18 171 32·i ·lii ·160 613 61.) 306 1140 589-i 58.12 10745 2109 258-1 5778 
19 190 J61 532 51-i 685 685 .:H2 1330 ·i579 6859 12691 2,j/() 4!81 9}i9 
20 210 ·100 590 571 761 76! 380 l5·Hl 5}10 8000 H859 2870 6765 15127 
21 231 ·Hl 651 6.H 8-il 8·i! -120 1771 6181 9261 17261 33!1 109-i() 2·H76 
22 253 ·iB·i 715 69-1 925 925 ·i62 202-l 7106 106·i8 19909 5795 !77ll 39603 
23 276 529 782 760 1013 1013 506 2300 81!9 !2167 22815 ·i32·i 28657 &iO"i9 
2·1 JOO 576 852 829 1105 l l05 552 2600 9224 1.382·1 2599! ·1900 ·i6368 103682 
25 325 625 925 901 1201 1201 !illO 2925 JO-i25 15625 29·H9 5525 75025 167761 
26 .351 676 1001 976 130! 1301 650 3276 ll726 17576 53201 6201 121393 27J.i-i.) 

27 .378 729 1080 105-l 1-\05 J.105 702 .365-i 13131 !9683 37259 6930 196,\18 ·13920·1 
28 ·i06 78-l 1162 ll.35 151.3 151.3 756 ,i060 1-16-H 21952 ·ll635 77\·i .317811 7106-17 

29 ·!.35 SH 12-\7 1219 1625 1625 812 +!95 16269 2·i389 46_3.il 85'i'i 5J.i229 11·!985! 

JO ·165 900 1335 !.306 17·11 17,jJ 870 ·\960 18010 27000 51389 9·1"55 8320.iO 1860·198 
21 ·l% 961 l-126 1.396 1861 1861 9.30 5·i56 19871 29791 5679! !OH6 13'16269 3010}i9 

32 )28 102·1 1520 J.i89 1985 1985 992 598·1 21856 32768 62559 ll·i-10 2178.,09 -i8708-i7 

J3 561 1089 1617 1585 21!3 2113 1056 65·15 23969 .359.)7 68705 12529 .'52·1578 788!196 
}i 595 1156 17!7 !68,j 22·i5 2245 1122 7J.l0 26214 .39.30,j 752·11 13685 5702887 127520-13 

35 630 1225 1820 !786 2.381 2381 1190 7770 28595 ·!2875 82179 14910 9227-165 20(d.32.39 
36 666 1296 1926 189! 2521 2521 1260 8·1.36 3l\16 ·16656 895.31 !6206 14930352 .3.3385282 

~ 2.3 '5 7111317192.3293137-i.3 H5.3 596167717.J 79858997101103 107109113127 1.311.37 U9 H9151157163167 !73 li9 
E !81 19! 19.3 197 199 211 223 227 229 2.3.3 239 2·1 l 251 257 263 269 27! 277 281 283 293 307 .,1 ! .31.3 .317 .3.31 337 }17 }!9 .15.3 .359 367 a: 

mm~•m~a,ma1~1wlliWfflffl~W~mm•1a~umm~1wmwmm 

m~wm@1~mmme1M1mmffl~~mme®~m1mmm~mmmM1Mm 
787 i97 809 811 821 825 827 829 839 85.1857 859 86.3 877 881 885 887 907 911 919 929 937 94 ! 9·17 95.3 967 971 977 98.'1991 997 !009 
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RULER & COMPASS CONSTRUCTIONS 

The small selection of constructions shown here, 
taken from Ruler & Compass hr Andrew Sutton, arc 
given to assist the keen studcrn of Sacred Geometry. 
Thcy use a simplt: code. line ,w means draw tbe 
stra(qht line tbal passes tbrougb ,1 and 11. Segment 
is used in place of line for the scclion of a straight 
line defined by two endpoints. Circle r>-.1 means 
drc111• r1 circle ce11tered at o and passing tbro11gb ,i_ 

A 

BisecrinlJ an a11iJle: 
I.ArccenterO(A,B); 2.ArcsA-B,B-A 

(c), alternatives shown ,la.shed; 3. Linc OC; 
LAOC = LBOC = 1/1. LAOB 

,/c 

, ' 

' 
' ' ' ' " ' 

A 

Circle radius ,111 center o means drau' a circle of 
compass ope11i11g lengtb ,111 ce11tered at o. Arc is 
used in place of circle for drawing only pan of the 
circle. Sometimes, extra points an: given 10 help 
improve accurac)' when drawing, for exampk, /i11e 
,1c11, or circle 1i-,111. Newly found poims arc noted in 
brnckcts. Occasionally ;1 line made possible by new 
point~ is assumed drawn, and merely noted. 

61::i 
o 'A r 'c 

Copying au a119!e on a t1iveu !inc: 
r. Arc cc,ucr O (A, B); 2. Arc radius OA 

ceuicr P (c); 3. Arc radius AB center C (D); 
4. Line PD; LCPD ""LAOB 

' ' ; l w~ 
Perpendicular bisector 

011 a .[liven se.91111.'nt AB: 
I. Arcs of equal radius 
cciuers A, B (c, D); 

2. Line CD 

Perpc111lic11far rhroulJh a 
point P 011 a line: 

:r. Circle center P (A, B); 
2. Arcs of eq1rnl radius centers 
A, B (c, D); 3. Line CPD 

368 

Perpendicular tl1rou9h 
a point Pon a line: 

I. For au}' paint O not 011 tlte !inc, 
circle 0-P {A); 2. Line AO (B); 

Line PB is 11erpendicular to line AP 



A 

'" 
Parnlld 1hro11,gh a [liven poi111 P: 

I. Arc m11• suirnblc radius center P (A); 
1. Arc same radius ce111er A (B); 
3. Arc same radius center B (c); 

Linc PC is parallel co line AB 

A " 
l'arnUd !inc ma niven dista11ce: 

t. Arcs rn11ius equal to .9iveu disiance, 
centers any lwo poin!s A, B m1 lite 

liue; 2. Line wuchin[l arcs as 
shown is parn[[d to AB 

111center & i11circle of a triannle: 
I. Bisecl LCAB, LABC, LBCA (o); 

2. Perp.10 BC thro11t1lt O (D); 3· Circle 0-D 

,./~c 

( ,o 

A\ ; .. 
l'arnl!e! line lhrounh a Biven poi111 P: 

1. Arc 0-P an1• suitable center O (A, n); 
2. Arc radius AP cenier B (c); 
Line PC is parallel to line AB 

Tllll.!ICIII !O a circle: 
I. Linc OP (A); 2. Arc radius PA 

ceurero{n); 3.ArcB-O{lineCPD); 
Line CPD is ianneut 10 circle m P 

ciraunce11ter & circmncircle of a triannle: 
x. rerp. bisectors 011 AB, BC, CA (o); 

2. Circle 0-AilC 



' c 

Resu!ar octa3011 in a circle: 
I. Line 1hrou.9h cemero (A, B); 2. Arcs A-B, 
D-A (line CEFD); 3· Arcs A-0, E-0, B-0, 

F-0 (G, I-I, I, J); 4- Lines GI, HJ & complete 

Rei{u!ar dodecano11 in a circle: 

square in a circle; 
t. Line throu[lh center O 

(A, n); 2. Arcs A-B, B-A; 
J. Line CD & compleie 

t. Line 1hrou£1h ce111er O (A, B); 
2. Arcs A-B, B-A (line CEFD); 

3. Arcs A-0, E-0, B-0, F-0 & complete 

c 

D 

square around a circle: 
I. Line 1J1rout1h center O (A, n); 
2. Arcs A-B, B-A (line CED); 

3. Circle radiits AE center 
O &. complete 
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c 

square set orllwaoua!ly 
011 a 3iven line: 

I. circle cc111er O on rhe line 
(A, B); 2. Arcs A-B, B-A 

(line CEFD); 3- Arcs A-0, 
B-0, E-0, F-0 & complete 



A ------- I ,------ " ;,~ 
G··-.. ~/E 

x //\' 
F , ,' 0 D ~ 

------
_c 

Square OJI a nivell side: Donb!in£1 a square: Ha!vin£1 a square: 
I. Arcs A-B, ll-A (tine CED); 

2. Arc E-AB (F); 
3. Lines AF, BF & complete 

t. Extend CB, CD; 2. Arcs C-A (E., 1:); 
J. Arcs F-C, E-C (G) & compleic; 

To halve square GECF i11dm/e doited !ittes 

I. Arcs A-BD, B-AC, C-BD, 
D-AC (E IO H); 2. Lines 

EG, FH & com1iJete 

13 

A 

"\) ) ) ~ ~ ) \ \ D/) I i l I c H I 
; ; ' ' 
Root rectm1nles from a square: 

[. Ex/end AB, CD; 2, Arcs A-D, B-C (E, F &. j2 rectm1nle); 
3· Arcs A-F, B-E (G, H & JJ rectan[lle) ... and so on 

Dianoual & reciprocal of a rec!an[llc: 
I. Linc BC; 2. Find midpoint of AC (E); 3· 

Semicircle E-AC (r); 4. Linc AF (G); 5. 
Arc radi11S CG ceiuer A (line GH) 

J7I 

Root rectannles in a square: 
t, Lines AD, BC; 2. Arcs C-AD, D-BC 

(line El: & J2 rcct,m[lie); J. Lines ED, FC 
(!i11e GH & J3 recl!tll[lie) ... and SO OJI 



FLAT-PACKED POLYHEDRA 

If a polyhedron is 'undone' along son1c of its edges and folded flat, the result is kno\vn 

as its net. The earliest known exa111ples of polyhedra presented this way arc found in 

Albrecht Dtircr's Painter's Ma1111al, fro1n 1525. The nets belo,v are scaled such that if 
refolded the resulting polyhedra ,vould all have equal circu1nsphcrcs. 

tetrahedro11 

octahedro11 

c11be 

Q A4<-­
~ vvv---------

icosaliedro11 

truncated tetraltedro11 

tr1111cated octahedro11 

tr1111cated cube 

tr1111cated icosahedron 
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(Y}~\ ~~~ 
dodccahedro11 truncated dodecahedron 

v~~@ 
c11boctaliedro11 icosidodecahedro11 

rh om hin1 l10ct a 111:d ron rl10111bicosidodecahedro11 

great rhombic11l10ctaltedro11 ,~real rlw111bicosidodecahcdr011 

s1111b cube s1111b dodecaliedro11 
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ARCHIMEDEAN SYMMETRIES 

The diagra1ns below show the rotation synunetries of the Architnedcan Solids and the 
two Rho,nbic Archin1edean Duals. 

[)0@ 
tn111cated tetrahedron 

tr1111cated oc1ahedro11 tr1111cated icosahedro11 

8G)D 
tr1111cated cube truncated dodecahedro11 

cubocta!tedron icosidodecahedro11 

@@@ 
rlwm bi cu bocta lied ro11 rltombicosidodecahedro11 

great rhombic11boctahedro11 great rhombicosidodecahedron 
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s1111b c11be s1111b dodecahedron 

rhombic dodecahedron rhombic Iriaco11tahedro11 

THREE-DIMENSIONAL TESSELATIONS 

Of the Platonic Solids only the cube can fill space ,vith copies of itself and leave no gaps. 

The only other purely 'Platonic' space filling co,nbincs tetrahedra and octahedra. One 

Archi1nedean Solid, the truncated octahedron, and one Archilnedean Dual, the rho1nbic 

dodecahedron, are also space filling polyhedra. 

cubes tetrahedra & octahedra 

truncated octahedra rhombic dodecahedra 
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EACH EMBRACING EVERY OTHER 
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PLATONIC SOLIDS FORMUL!E 

A recurring theinc in the inetric properties of the Platonic Solids is the occurrence of the 

irrational nu1nbcrs C() (the Golden Section), and the square roots .J2, .J3, and .JS. They are 

surprisingly elegant \.vhcn expressed as continued fractions; 

Ci> = I + _L ~2 = I + .J -
1 

~3 = I + - 1- 1 t+J-1 2+;-;1 !+;-1 
1+ I - ;, J - I• I 

I• 1!,!
1
,, - !• 1,!,1 J• •.\!,!_,, 

Their dcci1nal expansions to twelve places, together ,vith that of Jt arc; 

<!)" 1.618033988750 ,2" 1.414213562373 13" L732050807569 

)5" 2.236067977500 TI" 3.141592653590 

The table bclo\.V gives volu1nes and surface areas for a sphere radius r, and Platonic Solids 

edge lengths. Also included are the proportional pathways joining each vertex to every 

other in the Platonic Solids. 

Vol11111e 

Sphere .±.n r3 
3 

Tetrahedron 'flsJ 
12 

Octalicdron ~-J 3. 

C11bc 5.l 

Icosahedron ~(J)25J 
6 

Dodecahedron :12cJ)4sJ 
2 

S111face Area 

4 Jt r 2 

,J3s 2 

2, 3s 2 

6s 2 

5,3, 2 

3)(25+10<5)s 2 

Number ef Pathways, Le11gth 

n/a 

6 edges, s 

12 edges, s 
3 axial diagonals, ,! 2 s 

12 edges, s 
12 foce diagonals (inscribed tetrahedra), ,! 2 s 
4 axial diagonals, ,! 3 s 

30 edges, s 
30 face diagonals, <J)s 
6 axial diagonals, ,,l(<l)2+1)s 

30 edges, s 
60 face diagonals (inscribed cubes), c!> s 
60 interior diagonals (inscr. tetrahedra}, ,,12 <l)s 
30 interior diagonals, <f)2 s 
10 axial diagonals, ,! 3 <!) s 
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POLYHEDRA Symmetry Vertices Edges Faces Faces 

DATA 
(total) (types) 

TABLE 
Tetrahedron Tctr. 4 6 4 4 triangles 

C11be Oct. 8 12 6 6 squares 

Octahedron Oct. 6 12 8 8 triangles 
Dodecaliedro11 Icos. 20 30 12 12 pentagons 

Icosahedron Icos. 12 30 20 20 triangles 

Stellated Dodecahedro11 Icos. 12 30 12 12 pcntagrains 

Great Dodecahedro11 leas. 12 30 12 12 pentagons 
Great Stellated Dodecahedron leas. 20 30 12 12 pcntagra111s 

Great Icosahedron Icos. 12 30 20 20 triangles 

C11boctahedro11 Oct. 12 24 14 8 triangles 
6 squares 

lcosidodecahedron leas. 30 60 32 20 triangles 
12 pentagons 

Tr1111cated Tetrahedron Tctr. 12 18 8 4 triangles 
4 hexagons 

Truncated Cube Oct. 24 36 14 8 triangles 
6 octagons 

Tr1111cated Octahedro11 Oct. 24 36 14 6 squares 
8 hexagons 

Tr1111cated Dodecahedron I cos. 60 90 32 20 triangles 
12 decagons 

Tr1111cated Icosahedro11 I cos. 60 90 32 12 pentagons 
20 hexagons 

R.ho,11 bici1boct ahedro11 Oct. 24 48 26 8 triangles 
18 squares 

Great R.lwmbic11boctahedro11 Oct. 48 72 26 12 squares 
8 hexagons 
6 octagons 

Rhombicosidodecahedro11 Icos. 60 120 62 20 triangles 
30 squares 
12 pentagons 

Great Rhombicosidodecahedro11 kos. 120 180 62 30 squares 
20 hexagons 
12 decagons 

S1111b Cube Oct.-
.. 24 60 38 32 triangles 

6 squares 

S1111b Dodecahedro11 Icos.-
.. 60 150 92 80 triangles 

12 pentagons 

Symmetries: 1t'tmhcdml: f x 3-fald axes, 3 x 2-fald, 6 mirror pl,mrs. Oc111/mlml: 3 x 4-fald 11.ws, 4 x 3-fald, 6 x 2-fald, 9 mirror plm1es. 
lwsahrdml: 6 x 5-:fold 11.,Ts, 10 x 3-fald, 15 x 2-fald, 15 mirr<>r pi'111es. .. The snub solids Im Fe 110 mirror plm1cs . 



I11radius 
... 

Midraditls 
... Edge Length ... Dihedral Central 

Cira1mradi11s Circ11mradi11s Circ11111radi11s Angles A11gle .... 

0.3333333333 0.5773502692 1.6329931619 70°31'44" 109°28'16" 

0.5773502692 0.8164965809 1.1547005384 90°00'00" 70°31'44" 
0.5773502692 0.7071067812 1.4142135624 109°28'16" 90°00'00" 

0. 7946544 723 0. 9341723590 0.7136441795 116°33'54" 41°48'37" 
0.7946544723 0.8506508084 1.0514622242 138°11'23" 63°26'06" 

0.4472135955 0.5257311121 !.7013016167 116°33'54" 116°33'54" 
0.4472135955 0.8506508084 1.0514622242 63°26'06 11 63°26'06" 
0.1875924741 0.3568220898 1.8683447179 63°26'06" 138°11'23" 
0.1875924741 0.5257311121 1.7013016167 41 °48 13711 116°33'54" 

0.8164965809 0.8660254038 1.0000000000 125°1515211 60°00'00" 
0.7071067812 
0.9341723590 0.9510565163 0.6180339887 142°37121 11 36°00'00" 
0.8506508084 
0.8703882798 0.9045340337 0.8528028654 70°31 14411 50°2814411 

0.5222329679 109°2811611 

0.9458621650 0.9596829823 0.5621692754 90°00100" 32°39'00" 
0.6785983445 125°15'52" 
0.8944271910 0.9486832981 0.6324555320 109°2s116" 36°5211211 

0.7745966692 125°15'52" 
0.9809163757 0.9857219193 0.3367628118 116°33'54" 19°23115" 
0.8385051474 142°37'21" 
0.9392336205 0.9794320855 0.4035482123 138°11'23'' 23°16'53" 
0.9149583817 142°37'21" 
0.9108680249 0.9339488311 0.7148134887 135°00'00" 41 °52'55" 
0.8628562095 144°44'08" 
0.9523198087 0.9764509762 0.4314788105 125°1515211 24°55'04" 
0.9021230715 135°00'00" 
0.8259425910 144°44'08" 
0.9659953695 0.9746077624 0.4478379596 148°16'57" 25°52'43" 
0.9485360199 159°05'41" 
0.9245941063 
0.9825566436 0.9913166895 0.2629921751 142°37'21" 15°06'44" 
0.9647979663 148°16'57" 
0.9049441875 159°05'41" 
0.9029870683 0.9281913780 0.7442063312 142°59'00" 43°41'2711 

0.8503402074 153°14'05" 
0.9634723304 0.9727328506 0.4638568806 152°55'48" 26°49'17" 
0.9188614921 164°10'31" 

.. , .... From the polyhcdrou's (enter, the iumdius is mlWHffd /() the 1wrfo11s Jue-cmtn-s,the midr,ulius 10 the edge midp()iUIS, &1/iedmmmulius /() a-rtices. 
**** lu Ard,imedc,m Solids the larger dihcdm/ aug!cs ,ire fmmd be/lt'l'CU smaller pairs ef Jices. 

***** The ceutml angle is the migle farmed at the ce/1/er ef a polybedron by joiuiug the cuds ef au edge to that ce11tcr. 



SOME FEATURED TUNINGS 

i)n I, !Jo 

hm1r h.ilftonc 2nd 111111 Jrd m;11.lrd ·itb trnonc 'i1h m111 6th maj 6th min 7111 m:ij 'ith octa1·L· 

Eq Trn1p. (L'llh O 

----9:8-------- _12:27 -------------- 9.8 ___________ 9:ll-------- 32:27 --------

Pe11tato11ic 1/1 9/8 'l(j 3/2 27/16 2/1 
(0) (203.9) (·1%.0) (70201 (91J'i.9) {l.2(M)) 

~'"''"''""·.l' I' Founhi, ·I 3 

----9!\~9.H-_2%:213..----9.il~'JB----------')8--------..,2%:2!.'l, 

Pythagorean 1/1 9/ll 81/64 41.l 3/2 27/16 2,13/128 2/1 
(0) (20.l.9) ( 10~ HJ H91l.OJ (1,1091\) (1.2ftrJ) 

_..-- <) H ------------ 10. 9 --...___,,.,. 16· ! 'i ~ 9 ll------ 10:9 --------------- 9:8 ----_,.., 16 1 'i "­
fi!ajOI' 

Diatonic l/l 9/8 5/cl ,j/3 3/2 )/3 15/8 2/l 
101 (20.19) ()li(,j) ('191ll)J ("021}) (l,0118:ll <Ul)f)J 

---- 9.11.............__ 16: l'i ~ !O <)-------....-- 9 H----..,,, 16 J'i ~ 9:8-------------- 10:9--....._ 

Mbior 1/1 9/B 6/5 41.l 3/2 8/5 9/5 2/1 
Diatonic 

(0) (203.9) 015.6) (i980) (02.0) (i,J;l.,J (l.OF.&J (1,200) 

\ti { ,(f l'a 
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l'crf F1fih.1, 5:2 

P. Founb.1, l j 

P. ~bi 3rd.s, 'ic! 

I'. ,\lin 3nb,(i:'i 

!'(rf 1'1fths, .l 2 

P. Founl1s, ·i :I 

!'. ,\\,1j .'\rd~,):·! 

P. Min .lnb. 6 'i 



SELECTED MUSICAL INTERVALS 

/11/ert'al Cents Name 6:) 315.6 Pe1fect .\li11or 1hird 
1:1 0 (i11is011 5:·i 386.J Pe1fect Major 1/Jird 
32805:32768 2.0 Scbisma 81:6.'J ·107.8 Pytbag. ,\/ajar 1'lJird 
20·18:2025 19.6 Diascbis111a ·i:3 -198.0 Pe1Ject Fourtb 
8L80 21.5 -~·)'11/01/ic Comma 7:) 582.5 Sej)ti111al 'li-fto11e 
)3 l·l·i 1 :52·1288 23.5 /)•tbagoremt Comma ·i5:32 590.2 Diatonic Trifone 
128:125 ·II.I Uiesis 729:512 611.7 Pytbag. Trifone 
25:2·1 70.7 .\li11or Dia1011ic I lalflo11e 3:2 702.0 Pe1fect Fiftb 
2)6:2·13 90.2 11:imma, r;·1hag llalfto11l' 128:81 792.2 l)•tb(tfI· ,\/i11orSi\'tb 
13):128 92.2 Jfajor C:broma 8:5 813.7 Uia1011ic Jlinor SL\'//J 
16:Fi 111.7 .\lajor /Jiato11fc f-laljto11e 5:3 88<\.4 Pe1Jec1 Jlajor Sixtb 
2187:20·18 113.7 :\jJotome 27:16 905.9 !)tbag. Jtajor s,:,·1/J 
27:25 133.2 U111;r:l.r:i111111a 7:·! 968.8 IIC11111011ic .W1•r:11tb 
10,9 182..J .l/iuorT011e 16:9 996.1 l)·thag. ,\li11or Se1'e111b 
% 203.9 .\lajor Tolle 9:5 1,017.6 Diatonic Minor Se/'entb 
8,7 231.2 Septimal Tone 15:8 1,088.J Diatonic Jlajor Sere111/; 
7:6 266.9 Septimal J/i11or 7hird 2·l3:128 1,109.8 l~rtb(lg Jlajor Se/.'elltb 
32:27 29·l.1 l~rtlxq.;. Minor Third 2:l 1,200 Octm•r: 

Like the ojf-ce11ter dil'isio11 of tbe octm·e into fl}ihs c111dfo11rtbs. sharps are 1101 }lats, 14il'i11g rise to fl1'e more notes. 
making se1•e11tee11 i11 a!f (jo1111d i11111iddfe-easter1111111iugs) . .\Jore co111pfo1eZ\', u·e may tbi11kof 1hes1:t·e11 notes of 
tbe scale as 11101•i11g across tll'eft:e 'regions' of the octa/'e,fa//i11g into the twe111y-111·0 positions of Indian t1111i11g 
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'.Modeni 
']{a mes 

'1011ia11 

'Dorian 

Lyd"ra11 

'.Myxo(ydian 

'Jleofian 
%m1rnf Mi,1or 

Locrian 

THE GREEK MODES 

'The Seven 'Modes ef "Antiquity 

~ ' cl cf 8 ,fo re mifa so (a ti Jo ' 2 3 4 5 

~ cl cf 8 0 

re mffa so la ti Jo ,., 
' 2 3s 4 5 

~ cf 8 a 6 ' 
mifa so lo ti Jo ,·c mf 1 2' 3; 4 5 6• 

~ f 8 a 6 ' Jo so la ti Jo ,·c mifa ' 2 3 4: 5 

~ 8 a 6 ' cl 
so la ti Jo re mifa so ' 2 3 4 5 

~ a 6 c cl cf 
lo ti Jo '"' mifa so lo ' 2 31, 4 5 GS 

~ 6 c ,1 cf 8 
ti Jo re mifa so la ,; ' 2' 3s 4 ss 6• 

a 
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6 ' 
6 71, 

cl 
7s 

cl 
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cf 
6 71, 

8 
7• 

0 

7S 

6 c 
7 8 

cl 
8 

c 
8 

cf 
7 8 

8 
8 

0 

8 

6 
2 

?l11cie11t 
§reek 'Names 

Lydian 

'Dorian 

Synto(yiia11 

'1011ia11 

'Myxo(ydian 

The white notes on a piano give the seven notes of the seven 111odes of ancient Greece. 

Medieval transcription errors have left us with modern nan1es which don't fit the 

ancient ones. Each n1ode, or scale, has its own pattern of tones and halftones, only two 
surviving as our 1najor and natural 111inor scales. 

Other scales include modal pentatonics which forbid halftones, the hannonic tninor 
with its tninor 3rd and 6th, 1 2 3b 4 5 6b 7 8, and n1any others. 
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HARMONIC CONSTANTS AND EQlJATIONS 

The ratios and intervals in this book concern frequencies, nonnally expressed as cycles 

per second, or Hertz. Classical tuning sets Cat 256 Hz. Modern tuning is higher, fixing 

A at 440 Hz. The period T of a wave is the reciprocal of its frequency f T = 1/f 
The speed of sound in dry air is roughly 331.4 + o.6Tc 111/s, where Tc is the 

tc1nperature in degrees cclsius. Its value at roon1 te1nperature, 20°c, is 343.4 111/s. 

Gravitational acceleration on earth,g, is 9.807111/s~. 

Frequency of a 
Pendulu,n. 

Fundainental frequency 

of a tensioned string. 

Resonant frequency 

Zn 
grauitational acceleration 

pe11d11lum length 

string tension 
2 x string length stri11g mass+ stri11g length 

area of ope11i11g 

of a cavity with an opening. 

speed ef sound 
Zn volume of cavity )( le11gth of ope11i11g 

Fundatnental frequency of 

an open pipe or cylinder. 

speed ef sound 
2 )( length of cylinder 

The beat frequency betweenf, and Ji is the difference between then1,Ji, "'f2 -J1 • 

The ratio a: b converts to cents (1.vhere a > b): (log(a)-log(b)) )( (1200 + log2). 

To convert cents into degrees n1ultiply by 0.3. 

Clapping in front of a rise of steps produces a series of echoes with a perceived 
frequency equal to v/2d, where vis the speed of sound, and dis the depth of each step. 

Clapping in a sn1all corridor width w produces a frequency v!w. 

The arithmetic and harmonic means are 6 8 9 12 

central to Pythagorean ntunber theory. 
The aritlunctic 1nean of two frequencies 'A. 

291.'B ?!+13 '1l 
?!+13 2 

separated by an octave produces the fifth 

bet\veen the111 (3 :2), the harmonic mean 'A. 
'1fannonic . 91.dtlimt.'tfc '1l 

'Mean ".Mean 

producing the fourth (4:3). 



TABLES OF HARMONOGRAPH PATTERNS 

Overtone and si1nplc ratio han11onics are sho\vn bclo"v and opposite, arranged in order of 

increasing dissonance down the page. Open phase dra ... vings display their ratio as the nun1ber 

of loops counted across and down. To find the ratio of a rotary drawing, draw both fonns, 

concurrent (both circles in the saine direction) and contrary (in opposite directions). Count the 

loops in each, add the two nu1nbcrs together and divide the total by two. This gives the larger 

ratio nu111ber. Subtract this front the contrary total to give the lower ratio nutnbcr. Rotary 

figures for the ratio a: b will have I, -a loops \vhcn both circles arc concurrent, and a+ b loops 

when they are contrary. The designs shown here were all 1nade with equal an1plitudes. 





BUILDING A HARMONOGRAPH 

ANYONE seriously interested in making a harrnonograph should nm­
sidcr going straight for the thrce-pemlu!um model. 

The table must be highlr rigid and firm on the floor, otherwise the 
movements of the weights will be dismncd. I suggest it should be abom 
90 cm above the floor, 60 x JO cm for two pendulums, 60 x 60 cm for 
three, and some 2 cm thick with an apron all round, :1bouc 8 cm deep. 

Legs should be about 6 cm square, splayed outwards and pointed at 

the bottom. One way of achieving the splay is to fix wood or metal 
bmckcts in the corners under the table each side of the diagonals and 
bolt the legs between them. After :idjus!lng the legs to give the correct 
splar they can then be fixed in position with screws through the apron. 

To save space, slice off 1he iablc as along the doued line. Three 
legs arc not quite so stable, but work fairly well. 

The pbtform carrying the paper should be light and rigid, fixed to the 
pendulum with a countersunk screw. A si:w of 22 x 16 cm will conve­
niently take half :m A4 sheet secured bra rubber band or small clip. 

A!I sizes suggested :trc maxima, but a scaled down version will still 
work if it is carefull)' made. 

If you arc 1cmpted to make a harmonogrnph, swn with the wdghts, 
for the instrument wil! only be satisfacrory if these arc really heavy and 
yet easy to :idjust. It is a good idea to make about ten of, say, two 
kilos each, so the loadings can be varied. They should be about 8cm in 
diameter, with a central hole, or better with a slot for easier handling. 
Either cast them rourse!f from lead or ready-mixed cement or have 
them made by a metal smallware dealer or friendlr plumber. 

The shafts should be made from wood dowel, nbout 1.5 cm in diameter 
(mernl rods arc liable to bend, distorting the drawings), marked off in cm. 

Clamps can be obtained from suppliers of laboratory equipment. 
For some of !he drawings top weights arc needed, held in place by 
clamps. Clamps can also be added to pendulum tops for 'fine tuning·, 
with one or more metal washers added. 

The simpler kind of bearing consists of bmss strips bolted into a slot 
in the pendulum and filed ro sharp edges to rest in grooves each side. 

In a bearing involving less friction the pendulum is enc;iscd at the 
fulcrum in a horizontal block of hardwood with vertical bolts each side 
filed !O sharp points and resting in dims in metal plates. lf drilling the 
large hole in the block is too difficult, it can be made in two halves, 
each hollowed out to take the shaft and bolted together. 

Rotary motion needs gimbals. Herc the grooves for the pendulum 
are filed in the upper side of a ring (e.g. a ker-ring) while the underside 
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has grooves at rightang!es to the upper ones. The lower grooves fit on 
two projecting sharp edges (brass strips), each enclosed between two 
pieces of wood fixed to the table, With the alternative be:11ing a brge flat 
washer should be used with depressions to take chc sharp points. 

Pen arms should be as light as possible to minimize 'top-hamper'. 
They arc easily made from balsa-wood strips sold by model-making 
shops, using bals;i cement and scotch tape. For two pendulums the 
arm can be fastened to the shaft with pinched-off needles, and the pen 
jammed into a hole at the other end. For three pendulums the side 
pieces on the arm should enclose its shaft firmly but not too tightl)' and 
be held gently with a thin rubber band. One of the arms holds the pen, 
while the other is held by protruding needles pushed in h:ickwards ,md 
secured (gently) at both ends by the rubber hands. 

There may well be better, more sophisticated ways of doing al! this. 
1\II suggestions welcomed. 

An additional fitting is needed to lock a rowry pendulum so that 
the instrument can be used with just the two single-axis pendulums. 
This can be done br mounting two brackets on the table near the 
rmary pendulum with holes to take a long horizomal bolt (slightly to 
one side) to which the shaft can be damped. 

Pens should be fine, light and free-flowing. ~lost stationers and 
shops selling draughtsmen's and artists' rna1erials offer a variety (avoid 
ball or thick fibre pens). For best 
results use shiny ·an' or 'irnit:nion 
an' paper, ordinary copy-paper for 
preliminary e.xperiments. 

If the pen is left on the paper to 

the end there is usuallr an unsightly 
blob. To avoid this, mount a shon 
pillar on the table with an adjustable 
!e\'er carrying a piece of thin dowel 
placed under the pen arm. By rais­
ing 1he dowel gently the pen is lifted 
off the p;iper without jogging il. 
Thb device should also be used 
before the pen is lowered to the 
paper. Bywatehing the pen you can 
see what pauern is being made, and 
nudge it one way or the other by 
pressure on the pendulums. 

For ratios outside the octare. such 
as ·l: l, you may need to U)' :mother 
hannonograph such a~ Goold's twin­
elliptic pendulum (right). 



GLOSSARY OF MUSICAL TERMS 

Accltfe11tal · Any of the fil'c symbols (bb, b, nm.#, .x) that 
lower or 1~iisc a pitch br one or two halftones, usuallr used to 
alter or restore a key. . · 

,\dtl · An intem1cdi:11y or non-chord tone added ma chord for 
flarnuring or colour, usually a 2nd, ·ith, 6th, 9th, I Ith, or 13th. 
Anacr11sis · A pickup or upbeat, preceding a metrically 
smmg downbeat. 
Appoggiatm·a -A dissonant tone that occurs on a strong 
beat. :md then resolves to a consonance or chord 10ne, it 
'leans' against the consonance and then rel:Lxcs into it. 
A11gme11te,l - rscd to dcsnibe ;m intc1Ta! or chord. \'fith 
intcrrals, it indicates a perfect or major interval rniscd one 
halftone, with chords, it indicates a major triad with a raised 
fifth. 
Binary Form - A basic A-B struc!llrc in musical form. ofien 
each cont1:1sting section repeats. 

Cadence -A ge.,ture or assembly of notes and rhrthms that 
suggest a sense of closure, pause, or finality to a musical 
phrase or section. 
Ct1es11ra · A pause or rest. 
Cambiata · A dissonance formula that is a double neighbour 
group, effectively a tone :ind its two fl:tnking wnes, above 
:md below. 
CIJorfl • Three or more tones sounding wgether as an indc­
pendem emity. They :ire often spelled largely in thirds, !he 
primary core being a triad. 
Cbi·omatic • colourful. used to indicate music using half­
tones. accidentals, or the entire 12-tone collection, contrasted 
with diatonic. 

Clef·,\ symbol placed at the beginning of the staff that indi­
rntes where pitches art to be placed on the lines and spaces of 
the staff, the three types being the G-clef. F-clef, and C.clef. 
Co11so11a11ce - The relative stability of a musical imer\'al. 
genemllr not requiring resolution, corHr.L~ted with dbsun:tnce. 
,\lost often ociaves, fifihs, fourths, thirds. and sixths. 

Cot111te1110i11t · The simultaneity of independent lines. 
which arc coherem horizontally and l'erticall)', adhering 
to strict rules :1bout consonance and dissonance, with 
historical variance. 

Cl'esce1ulo • A gradual increasing in l'Olume and intensitv, 
indicated by an expanding hairpin in mu~k~il notation. . 
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Dectesce1ulo • t\gmdu:11 decreasing in volume and intensity, 
indirntcd by a cont1~1cting hairpin in musical nmation. 
Diatonic· A scale comprised of sel'en different contiguous 
tones. with a specific relationship of whole :ind half step~. 
often used to describe major and minor. Contrasted with 
chromatic. Also describes music that adheres to this scale. 

Di111i11ishetl · Used to describe a musicil intcr,,.al or churd, 
either the lowering of a perfect in ten-al by one halftone, or a 
triad with a minor third and diminished fifth. 
Disso11a11ce · One or more musical intervals that suggest 
instability, most often seconds and seremhs. and tend to 
require some form of resolution w a consonance. 
Domi11a11t -The srnle degree a fifth above a ro01 or tonic of 
:1 key, also a powerful station of the scale, that ofien sugge,ts 
its own rcsolmion, back !O the tonic. Often it b prCSL'll! in 
a G!dence. 
Dro11al · ~!usic thm is primarily melodic and rhyihmic, 
lacking harmonic moremem, with all sc1lc tones relating to 
a drone or still point. ' 

Epigram· As used in this book. a musical motive or idea tha1 
11:L> just enough panicularity and individualitr to constitutt a 
recognizable shape and idcntilr, often functioning as a basic 
building block of an entire con;position. ' 
Escbappie · Escape tone, a dissonance on a weak part of 
the beat that is approached by step, followed bra leap w a 
consonance in the opposite direction. 
E-i:te11sio11 - Tones ahol"e the octave added to a chord to 
enrich its Ol'ernll colour without altering its function, always a 
9th, 11th. or 13th. Also known :is a 'tension.' 
Flat· A symbol used to indicue a lowering of a natural by one 
halfmne. Also used to describe a tonl' that is wned slightly 
under pitch. 

Fotte · A symbol in dynamics used to indicate musk to be 
played 'strongly' or Joudlr. comrasted with piano. 
Fricative • A friction-based consonant in spoken language, 
sud1 as F, V. !I. and Tl J. 
Guide Tone - Usu:illl' the Jrd and 7th of a chord. acting 
:ts leading tones that' maximize the forward motion of;! 
harmonic progression. 

Half SteJJ • Sec Halftone. 

IIar111011ic ,Ui11or · One of the three types uf minor scale~. 



in which the 6th scale degree is lowered and the 7th scale 
degri:e is 1~lised, to allow for the dominant chord to be majoL 
Thus it has the intef\~11 of an augmented second between !he 
6th and 7th. 
Jlar111011ics -Each of the component tones of 1he O\'Crtoncs 
~cries, which imbue the lowest tone, the fundamental, with 
timbre or colour. each being mathernatirnlly related to it 
in whole-number ratios, Ix, 2x, 3x, gradually increasing in 
frequency. Many string and wind instrnmems can be played 
in such a war to ren:al these softer upper tones. 
lltll'IIIOllJ' . The relationship of a \'Crtica! an~1ngcmem of 
tones when sounding together, also a chord, and the wa}' in 
which chords relate and are organized through time. 
Ictus· A metric accent or strong beat, often a downbeat. 
I11terval -The diswncc between two pitches. 
/1111ersio11 - With musictl intef\·a!s, it is the operation of tak­
ing the bottom note :ind placing it at the top, ~o a 2nd yields 
a 7d1, .)rd :16th, ·lth a 51h, and so on. In harmony, it indicates 
th:u a note other than the root of the chord is in the !n~s. 
Key. Acol!eni1m of pitches that reinforce one note as a tonic. 
There are !2 major ;md 12 minor keys in Western music. each 
buih upon one of the 12 notes, with sharps and fl;us added 
accordingly to prcscf\"e whole steps and half steps_ 
Key Signature · The global in~truction indicating which 
notes are to be rahed or lowered in a composition to pre­
serre and express a p:micular sc;de, placed at the beginning 
of a s1;1ff before the meter and after the clef. 
Leatf i11g Tone· The sere nth scale degree of any scale, most 
often a half step below the tonic. 
Legato - A musical in~truction to plar the nmes in ;1 con­
nected and smooth fashion, with no breaks in between. 
,Uajol' -!n describing musical intcf\·als, this indk~1tes the 2nd, 
.)rd, 6th. and Ith as they occur naturally in the major scile. 
ln de.~crihing chords, a triad that is made up of a perfect fifth, 
and in hcll\ecn a major third, placed abore the root. Con· 
tr.tsted with minor. Also de~cribes an over:11! scale or key 
flawrnr, al wars referring to the third of the scik. 
,Jleasure//Jar -A parcel of musical time, segmented by the 
meter, in which one complete grouping is delimited. ln 
notation, a me,burc is separ.ned bra line on either side. 
,Ueditmt • The third scale degree of :111y scile. 
,Uelismatlc - Vocal music that h:is two or more pitches 
assigned w one syllable. 
Jfelotlic Jfbwl' - One of the three minors, in this srnle the 
6th and 'iih srnlc degrees arc altered to appear :l'i they do 

in the major scale to heighten the upward morement to the 
tonic. Often a descending version also exists <L~ an unaltered 
\'ersion of the natural minor. 
,Uelotfy - The succession of tones in time. arranged in a 
meaningful pattern, which can be of r;i1y·ing lengths. 
,Heter - A paucrn of rhythmic groupings indicated by a 
fraction, in which the numerator indicates the number of 
heats per meisure. and thedcnominatorindkatcs the type of 
subdivisions to receive the beat (quarter, eighth, sixteenth). 
The t11·0 h;l\i( forms of meter arc duple and triple. 
i1lb101·. In describing musicil lntcrrals, this indicates a major 
interval lowered by :i halrwne or h;ilf step. !n harmony, a 
chord that is made up of a perfect fif1h, and in between a 
minor third, placed aborc the root. Contrasted with major. 
A!su describes an Ol'Cr:.111 srnlc or key flavuur. \Ve~tern mu­
sic identifies three type., of minors, natur:.1\. harmonic, and 
melodic. 
,J!odal · ,\lu;;ic that mi!izes .~cales other than major and 
minor, such ;ls PhiyJ~bn, Dorian, Lydian. etc. {see pp. 8~9). 
Often this type of music does 1101 modulate. 
Motl11fatio11 -1\ ch:mging of key or ~calc in which the ttmal 
center nHll"CS, and the accidentals required for one scale :ire 
introduced w alter the previous one. This is most easilr 
ronrcycd by;i l-J\l.\',J harmonic formula. 
N,1tural · An accidental that rnnrcb a ~haqi, flm, double sharp, 
or double fbt, corre~punding to the while nut cs on 1he piano. 
Nat,11·,II Minor . The Aculi:rn mode, thb is the minor scile 
without :mr alter.uions to its 6th or 7th scale degrees. 
Neig1Jbo111' To11e - A non-chord tone that exists aborc or 
below a chord tone a~ a tempor:11y·dissonancc and decoration, 
llSually on a weak beat. 
Octato11ic - An eight-note scale, lllO\l often referring to 

diminished scales . 
011erto11e Sel'ies -A nawr:d acoustic phenomenon occurring 
where\'er a ribrntiun of a st1ing or air through a pipe (Kcur:;. 
The length of the \·ib1wion increasingly subdivides, yielding 
vib1~Hions ur frequencies higher in sound than the largest 
vibration. These arrange together to form timbre, and 
comm1rnic:ue the idemity of the sound. Also respnn~ible for 
the vowels in spoken language. 
Passi11g Tone - An intermediary tone between twu chord 
tones, usually a dhsonancc, occurring on a wc:ik beat. 
Pe11tatonic - A fi\"t·note scale, most often referring to the 
first fi1e fifths when arr:.mged together, 1-2-3-5·6. Also the 
black notes on the piano. 



Perfect · A musical interval of an onave, 5th, ·hh, (and 
unison}, which most c!osel}' resemble the first acoustic 
inter,~ils of the oven one series. 
Piano . A musical instruction indicating music to be played 
'softly' or quieily. Contrasted with fone. 
Plosives · ,\n explosive sounding consonant in spoken 
language, often a B, P, D, G. orQ. 
Polyrbyt/Jms · The simult:incous use of two different 
rhythmic pauerns that do not directly rebtc w one-another, 
also l~tlled 'cross rhythms.' 
Register · A specific region of the emire pitd1 range of an 
instrument, voice, or piece of music. 
Rbytbm · The temporal arrnngement of movement, quite 
often possessing a pulse. 
Root . The bottommost pitch of a triad or chord, which 
conveys its function and identity in the com ext of a harmonic 
progression. This is ah\~1ys discoverable by arranging the 
notes into close Ir voiced thirds. 
Romuletl Bh1a1y · A musical structure in the form ABA, 
where the last A is a shorter, truncated version of the first. 
Halftone · A half step. the smallest interval in Western 
tr.1dilional music. Two :idjaccnt notes on the piano, whether 
white or black. 
Shmt> • A symbol used to indicate a raising of:! natural hr one 
halfwne. Also used to describe a tone that is tuned slightly 
:ibore pitch. 
Sibilants· A type of friGHive consonant in spoken language, 
at higher frequencies, often resembling a hissing sound, such 
as S, and Z. 
Sonata· As used in this !xmk, speciflrnllra formal procedure 
which presents two contrasting themes, the second being in 
a ker other than the wnk (often the dominant), followed 
by a modulatoty and free development seGion, am! then a 
reetpitulation in which the two themes are presented again, 
and the second theme is restored m the tonic key. 
Staccato· A musirnl instruction indirnting notes to be plared 
in a detached fashion, usually marked by a small dot abore 
or below the note. 
S11b,lomi11a11t · The fourth scale degree, a fifth below 
the tonic. and a whole step below the dominant. It often 
funC!ions as a departure from the tonic and a preparation 
for the dominant. 
S11bmetliant · The sixth scale degree of any scale, a third 
below the tonic. 
S11bto11ic · The seventh scale degree of anr srnle, most ofien 
a whole tone below the tonic (see Leading tone}. 
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S11perto11ic · The second scale degree of any scale. a step 
above the tonic. 
S11spe11sio11 ·Achord in which the third is held or suspended 
from resol\'ingas the rest of the tones resolre, prepared in the 
previous chord. In modern music, the suspension needs no 
preparation, nor resolution. 
Syllubic · Voc:11 music that has only one pitch :issigned to 
a syllable. 
Sy11copario11 -A rhrthmic procedure by which strong be;Hs 
are shifted to we:1k beats, temporarilr obscuring the sense of 
pulse or meter. The use of syncopation is one of the strongest 
indic:uors of music:11 styles around the world. 
Tempo · The rate or speed of a musicll performance 
through time. 
Te1111to · A musical instruciion indic:uing notes that are to be 
played in a suswined or extended fashion, usuallr mark eel by 
:i line or (l:l~h above or below the note. 
Ternary. A musirnl strncture in the form ABA, where the last 
A is gent.'t~illr a complete repetition of the first. 
Tonal · ~lusic using the principles of tonic-dominant 
relationships, predominantlr the major and minor systems 
prevalent in Western music. 
Tonic · The home or resting point of a scale, the strongest 
point of gravity to which all other tones in the scale rebte, 
the first scale degree. 
To11icizalio11 · :\ tempornt)' suppon of and pointing to a 
tonal cemer rnher than the tonic, but not firmlr confim1ed, 
which only occurs in a modulation. 
Tra11sposilio11 · A moving of the notes of a composition up 
or down from one key to anmher, while keeping the relative 
inter,-:ils i111ac1. 
Triad · A three-note struC!ure, arranged in thirds, and 
resulting in one of the four chord types: major, minor, 
diminished, or augmented. 
Tritone . A diminished 5th, or augmented 4th, made 
of three whole wnes, or six halftones. The largest 
symmetrical interval in the Western scale, it divides the 
octave perfectly' in half, and is its own inversion. Of1en 
utilized in a dominant 7th chord (represented by the 
fourth and seventh scale degrees of a major sc:ilc), it has n 
powerful forward dri\'e toward resolution by comraciion 
or expansion, ,md is in foci the liberating force that unlocks 
the puzzle of ton,llit)' by pushing and pulling into and out 
of one key into another. 
\V/Jole To11e · Also a whole step, comprised of two half steps 
or halftones. 



SOLFEGE & MNEMONICS 

50L'FEGE/50LMI~TION 

ut Re Mi 'Fa so( La .si ut 
Gamma-ut,, Ga11mt 

'1.Jt 511t.111t Caxis, ~rt Ji6r~i-m JUtorum 

j-mttCi tr1oro111, SiC-vt poCfoti, ~11tw11, 

5a-ncti: tcGmrntJ 
(8Ut CEN"IlJR'i l'.tAINS<)NG 'IO JOllN THE IlAPTl5T) 

111 t& wesi fflrre :J.Sft1ttl fuve n,o(wi aui arr i,, tlSt tel:!)': 

tJ:b:elDo: 
De Rt J,.fi 'l'a Sou Si Do 

Alva11f"J"' !"' for tlicse witli perjeet pit<li, 
a6softtti: sml'r ,111mes 

Dimlva11fflJtJ: "1:Y.!Y(Caf(c ca,t Eave ttf tc 5 s~mi& 
(66; 6, nBt, #., x) 

s,vm t!lf,rent ":)' !Y{C.l!fimo"" 
Mll'ln${, Do, cEromatic !Y{ialfu, 

DO Di Rt Ri Mi 'l'a IJ:i So Si Lil Li Ti Do ASCIND!NG 

DO Ti Te L4 Lt so St (Fii- Mi Mt Rt Ra Do D[5CEN!l1NC 

Aiv1mfuJU: 1Cfostmtrs tcnic-lominant De-So 
reCatw1ubips dimfy t6,w~6 1111!far a11I ramCCt( mi,wr,, 

i,nc !JTfa6i.fimtion Jor aCC scafu 
ntsailvn11~ts: o~scmrs rtCativc minor rt!'4tio,r.s6if, 6rMfs 

lonm with diromatic pwaJtsj i.e. no ar~3, tw aim4 

MDw16k Do, La minor,, c6roma& :1(Caffu: 
MAJOR: 

Do Di Rt Ri Mi !'.fa 'Fi 50 Si Lil Li Ti Do ASCl'.NlllNG 

Do Ti Tt La Lt So St ".Fa Mi Mt Rt Rl'I Do nr5C£NlllNG 

Mmon: 

La Li Ti Do Di Rt Ri Mi ".fa 'Ii so Si La ASC!NDING 

La Lt so Se 'Ill Mi Mt Re Rl'I Do Ti Te La nrscrNDJNG 

A!vatihlJfJ': ruvmCs tEe 1110/11{ 11nl EistoriCIIC 
1?Wivi!)' ef 11uJjor 11111( minor 

Dima'vmi~fJ': M~ fo11ic*lomfoant DP--So rtGifion.sEip, 
6rra&.s MWl1 in minor Chromatic f"H.flAfJ'J i.e. 1w m~5, d'im3, 

Jcveu l'!lferrnt 1110/i !YCGi6yiC11fio11S 
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MNEMONIC5 

ffor THIRDS: 

TREDLE CtE'fJ LINES: 

Evt.!)' Goo/ B_ry DOfJ' i:Ffot 
Ev'!)' GO{)! n,ry Ducrvu ".ftll~t 

Ekflxmts Got Di! Dir!J ".f&et 
En'f!J Gar6iye Bifort nm{ i:F{ips 

TREDLE CtE'fJ .S.l'ACES! 

'l'<A<C<E, 'l'Ufl Aiiv!!)'J Comu Ell:Y 

BA.SS CtE'fJ LINES! 

Great D~ D11nleCio1is i:Ff-l. AtV9" 
Goo/ D_rys Do i:Fi11t AAtiqs 

Goo! B_rys DeJITV( 'l'll~t ATtt19"J 
Great D~ Deer Jrom Al«sf:.a 
Great D~ n03s from America 

Gmn::rS DO{)ts Do11 't1:it Am1!J 

BASS CtE'fJ Sl'ACES: 

Aff cars Eat Gas 
Af{ caivs Eat Gnus 

Aff c6iUm1 Eat Gmn 

for ".fI'TI'HS AND ".fOURTH.S! 

Give Dorot§y An Easftr nasluti:For c6rist111as 
i:For c6risb11as Give norotfr, All Easfrr BaJket 

1:~nJ nirJs EJ9::J. A ne{~h!fuC Green Cotmf?X.sile 
n,n& E'!fa.J A n,C~6!fi1{ Grtm coimby.sile i:F5°11\j 

A lolua6ea'r11C 1111lj'f}l\j ef t6c tnnCve nofrJ ef 
r6e smfe wfiidj prsmies r6e triton, Oj'f.O.sifw11S 

'"''";,, tli, ci,& effift6,. 



BASIC MUSICAL NOTATION 

.str1{- t6e Caiiice or matrix t6at GoUs 
r.'\ 

'l'ermala - pfaw{ over a note or res(, indi, 

f 
notes anl rests in pface clllinJ 6111, stoppinJ momen/arib 
Tre6{e cCif- a{so lt1w1vn as G cCef, 

tr TriCC - an orna111en(, osei{Cati,~ repeatetl 
its inner spiraC meir&s G fy wit6 t6, note above or 6eCow 

~ 
BIJSS cCif- aCso l,.,wivn as '1' cCef, # TriCC - an onu1111en(, oseiCCan,~ once or 
its inner Sj'iraC eneir&s '1' twice 1vit6 t6e ,wte above or beCo,v -

~ Afro cCif- lso ft1J01V1t as C cz 
wherever t6e CoOfs meet is mil, c 

v up Boiv - for strin.JS, an 1pwarl 6oiv Ii< 
rec non 

a Tenor cCif- aCso lt_,, as c: l"1 
Doivn Bow - for stri,~s, a d'o,vmvarl bow 

111illCe c is a 3rl h~her t6an lo c(if direction 

3E :II Percussion c{if-Jor 6't6111ic notation, A MarteCCato - (very marltea) a slron.J 
m:cent or pnnc1t1a6on 

- - nonf 11:hei instru111e11ts 
.Staccato - a Grief, letaclie,C ar6mfa6on 

Le~er Lines - Cines lraivn a6ove aw{ Har,11onic - i,1,Cicates an overtone to 6e 
6eCow t6e steff to extetuC t6e pifrh rat~e 0 p0'e,{ in pfaee oJ t6e fim,CammtaC 

• coda - a ~npost inlica6,~ an tt1din.J, > Aceml/Mareato - a JetteraC Mmare«ticn, 
pweel in e score, awC al ilie m.r not as stro,~ as marteCCato 

* 
i- a 1,pos/ indicafinJ a return, ojten Ttt111/o - an indie«tic11 to maximize anl 
a t6e 6e.iimtin.J, as a n.s. (Da se.ino) connect t6e '1tra6on oJ t6e note 

IJ: :JI 
R1eal- {ilterren.t6esis, inftea61~ start a,u{ 8Va Bva/Bv6 - p~ notes a,i octave h~her or 
t1t oJ repeate 11111J1c 8"b Cower t6an ivrilttn ,wte 

Reftal - repeat previous 6ar 
15ma 1sva/1sv6 - p~ ,wtes /lvo octaves h~her 

;/. 15"" or Coiver t6an written note 
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*== 
nott,,fr,ote - alls 6alf the vaCue oj the pp PiaiiiSJimo, very soft 

" m,te to the ,wte 
stem p Piano) sift 

'F 
n0116Ce Doi - dis 6f the vaCuti the Mtzzo-pia,w, melium soft ,wte to the wte, an/ en 6alf oj al 111p 

~ ~ Arfl!Jianlo - the c6orl is to 6e roCCel 111/ Mezzo-Jorie, mclium strot~ 

~ Grace Nole - smaCCer, 111ttnc11Surel f !forte, str01~ Ccul 
-•'-

lccorative m,tt, can come in Jroups .fl lfortiSJimo, very stro'\j 

~ji TremoCo - inlicates a ,wte repeatiltj 
sfz efotzaitlo - aJoreefuC accent 

or vi6ratiltj rapi/b' 

~,": :;for - UJMo p6r<Ui1~ co1ttu:ctel Crescenlo - incrc<lli1'.J[y Cottier 

I notes. !for stritf 01u: 60,v lirection. ==-==- necresce,1/o - increasi,,jy softer 
6e11m !for wine& an/ nm: one 6reat6 

notebeil(( Tie - 1111ites t6e ,fttrations oj two notes %0. * Pela( - tisetr piano 1wtation, 
I_ 

-::p~~~~::111: loj<t6er illto one acroil a 6eat or 6arCille illlicatts to 'f.'i! an/ reCease 
j·====·,:::: t6e susrni1' p,laC 

Isl an/ 2nlEn,{i,~s - these are Jorm 
I. illaications that provilc far aCtertlllfr ~ 

nou6Ce Bar;:naO - inlicates 
enailtjS }or repeatel mu.lie t6c enli,~ o a .1core 

/ t(}'" :;Cas6 -,ten t1Sel in Ced ~ 
nou6Ce Bar - inlicates t6e 

s ts, illlicates e JCo,v ef 6eats e,u/l'\j ef a section 

~ Cttl Time/ ACCa Breve - inlieates 2/2 £: Common Time - inlicates 4/4 

j !/ :; 7 ~ 

i ~ ~ r r r 0 

si"!:f}otrlh tl,ir7srro11l sixteeut6 "J6tl, 11111rter 6,lf w6ofe U5 

6emilemisemi11111wr le111Um1~111wcr se111i11111vcr jllilVCf crclt&t 111ini111 st111i6me UK 
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MUSICAL SCALES 

lc11ia11/J,il!,Pr 

cP-- ' ' ' ' ' -
1!?~--u.........:....0----------u=o o 

Derian 

1;Ydfon 

~ ~> : 

Mi:xafytum 

~~ ' 
0 

AccCian/Miiror 

~.~ ~ 
Locrimr 

~ ' '' 
fo ., 

" 
Harmonic Miner 

0 

L«rim1 NM11rn{ 

'' 
Hanncnic M'!far 

t: 
Romanian 

u 

,, 
0 u~o= ·-j 

,, 
.;:::=:jlo=o = o= 

,, s 

,.-..~=o ~1 ===! 

'' '" 
,, 

" 
~o==-----"~o- ==j 

'' 
,, 

~ ,, 
Po==4o &=Po u=j 

'' ,o u 

4 ;I~ 7 R 

0 =ll2::::: 0-~==i 

Himfu 
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•• 
0 

01fo1taC 

~~ ~ ;;::~---~~--~~~1--~:::~~;~ --~~~c~ 
HrmJarimi J.!~r 

;~:; .;L: ··---~~~- :~=:~-~--. .,:.~~;~--- -~-~~J 
,, 

Hun.r1rim1 .Mi11er 

{f ~ ~-~;~~~:=~:~:~ 
~;1TcJi 

~-~~ --~:~. -- ~::_. -1~=-=;:c;~~~-:~~~~"J 
~5 ~6 B 

~o o~ 

nnG11cr: rtf~ 

t~.~-5:_;::~~~--~~---:'=ffi 
Japanm 

' ~·=,=:==,=,= 
' ~ ' 

·---0=1,n__ s¥J 

r>mian 

~~;;-~-,:~~.~-:1--~~--~~~~---~g 
£Nw111a& 

~~~~~=~:~:;~3~:J~;-~;=~@ ~· 
t) ... :.-
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SELECTED RHYTHMS 



HARMONIES 

C C+ Cm co Csm,-4 Csus2 C6 C(adtl9l 

~~~-ffii -l911.;gg~.i:i.=4zi===l~~-===="=i~I 
Ct)A) cs Cm6 cmcadd<Jl Cnt<}<> Cmaj7 C7 Cm7 

~~JgggJ~;gg,r::gii'='='=~li'~==1=.s1c11=-=-=~i~·i=;gg==t1i;~,ll:5=ggi=== 
C7(~5) Cmlma7J Cm71'5 co1 co(ma7J Cmaj7t~5J c1<bsi Cmaj7(l>5J 

~je!gg;J~!~~l:i~~ l~11¥lllit ~~·11 
C7sus C7(omiUJ C7(oinit5) Cm.ij9 C9 Cm9 C9(~5J Cmtma<JJ 

~:"cz>====:J,i=====J·~~,i I 
Cm<Jb5 com1a<J) Cmaj9(~5J C<Jll'SJ Cmaj9(li5J C9sus c1cl>'>l C7(~9l 

~~i>j;2£c_ ~l~~i£-I~ ~l~'lo-q===Jfill'£= ~I 

C/E C/0 A/C B/C 

~s==J-§;ggjl!s~1, -S w· 
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SUN & Pcrihclio11 ,Hw11 Orbit Aphelion Eccc11trici1y fodi11atitm Perihelion Orbital Tropical 

PLANETS 1:f Orbit Lo1witudc Period Year 
(10 1' km) (/0 1' km) (/0 6 km) (d(~rcc,i) (d(~W'S) (days) (d,1ys) 

77,c 51111 () 

1\!/crc11ry ~ 46.00 57.91 69.82 0.205631 7.0049 77.456 87.969 87.968 

Vc1111s 'i' 107.48 108.21 108.94 0.006773 3.3947 131.53 224.7111 224.695 

The Earth + 147.09 149.60 152.10 0.016710 0 102.95 365.256 365.242 
1\l/a1~, i'i 2116.62 227.92 249.23 0.093412 1.8506 336.04 686.980 686.973 

Ceres .f 446.60 413.94 381.28 0.0789 10.58 ??? 1680.1 1679.5 

Jupiter 4 740.52 778.57 816.62 0.048393 1.3053 14.753 4,332.6 4,330.6 

Sat11r11 +, 1,352.2 1,433.5 1,514.5 0.054151 2.4845 92.432 10,759.2 10,746.9 

Chiron ~ 
) 

1,266.2 2,050.1 2,833.9 0.38316 6.9352 339.58 18,518 18,512 

Urm111s ~ 2,741.3 2,872.46 3,0113.6 0.047168 0.76986 170.96 30,685 30.589 

Ncpt1111c 

"' 
4,444.4 4,495.1 4,545.7 0.11085859 1.7692 44.971 60, 190 59,800 

Pluto \l 4,435.0 5,869.7 7,304.3 0.24881 17.142 224.07 90,465 90,588 

MOONS 1\famc ~{ J\tlca11 Orbi111/ Orl,ital Eccentricity ludi11atio11 Diameter 1Hass 
(a sclcctmn) Satellite Radi11s (101 km) Period (d,1ys) ,if Orbit 1( Orbit !"! (mcm1) (kw) (/0 rn ~~I 

Eimh's + '/111: 1'10011 384.8 27.3217 0.0549 5.145 3,475 73,49/J 

klars' i.'i Plwlios 9,378 0.31891 0.0151 I.OS 22.4 0.0106 
Deimos 23,459 1.26244 0.0005 1.79 12.2 0.0024 

]11pitrr's + fo 421.6 1.7691 0.004 0.04 3,643 89,330 
E11rop11 670.9 3.5512 0.009 0.47 3,130 47,970 

Gauy111cdc 1,070 7.1546 0.002 0.21 5,268 148,200 
C111/isro 1,883 16.689 0.007 0.51 4,806 107,600 

Satum's +) Tclil)'s 29-l-.66 1.8878 dl.001 l.86 1,060 622 
Ditl/lc 377.40 2.7369 0.0022 0.02 1,120 \,JOO 
Rl1cll 527.04 4.5175 11.0010 0.35 1,528 2,3111 
Tita11 l,221.8 15.945 0.33 0.33 5,150 134,550 

li!pctus 3,561.3 79.330 0.11283 14.7 1,436 1,590 
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Rotatitm 
Period 

600 - 816 

1407.6 

-5832.5 

23.934 

24.623 

9.0744 

9.9250 

10.656 

5.8992 

-17.239 

16.11 

-153.29 

A11em,~e 
Day l.cHgth 

(/101m) 

4222.6 

2811.20 

24.000 

24.660 

9.0864 

9.9259 

10.656 

5.8992 

17.239 

16.11 

153.28 

MOONS 
(cnmiuucd) 

Urmws' i 

i\Jcptunc's :¥ 

0 
Pluto's T 

Equatorial 
Dia111r1er 

(km) 

1,392,000 

4,879.4 

12,103.6 

12,756.2 

6794 

960 

142,984 

120,536 

208 

51,118 

49,528 

23911 

Polar 
Diamclcr 

(km) 

1,392,000 

4,879.4 

12,103.6 

12,713.6 

6750 

932 

133,708 

108,728 

148 

49,946 

48,682 

2390 

Axial 
Ti/1 

i\rfoss Volume 

7.25 

0.01 

177.36 

1,989,100 1,412,000 

0.3302 

4.8685 

23.45 5.9736 

25.19 0.64185 

var. 0.00087 

3.13 1,898.6 

26.73 568.46 

?" 0.000006 

97.77 86.832 

28.32 102.43 

122.53 0.0125 

0.06083 

11.92843 

1.08321 

0.16318 

0.000443 

1,431.28 

827.13 

11.000024 

68.33 

62.54 

0.00715 

S11iface 
GraPity 

(111!}) 

274.0 

3.70 

8.87 

9.78 

3.69 

negl. 

23.12 

8.96 

neg!. 

8.69 

11.00 

0.58 

S11iface Temp. 
Pressure (meau) 

(b,m) 

0.000868 5505 

neg!. 167 

92 464 

1.014 

0.007 

neg I. 

100+ 

100+ 

neg!. 

JOO+ 

100+ 

neg\. 

15 

-65 

-90 

-110 

-140 

??? 

-195 

-215 

-223 

1\fmuc cif i\i!cm1 Radius OrbiMI Ecce111ricity lndi11atio11 Diameter }foss 
Satellite Odiit (WJ km) Period (,fays) 

,\Jirmufo 

Arid 

Umbriel 

Ti1m1i11 

Obcmn 

Pmtcus 

Triton 

1\lcreid 

Ch11ro11 

129.39 

191.02 

266.30 

435.91 

58152 

117.65 

354.76 

5,5413 

!9.6 

1.4135 

2.5204 

4.1442 

8.7059 

13.463 

1.1223 

-5.8769 

360.14 

6.3873 

(if Orbit (!f Orbit ('1) (111ea11) (km) 11orn k;(} 

0.0027 

0.0034 

0.0050 

0.0022 

0.0008 

0.0004 

0.000016 

0.7512 

'11.001 

4.22 

0.31 

0.36 

0.14 

0.10 

0.55 

157.35 

7.23 

,0.01 

235.7 

578.9 

584.7 

788.9 

761.4 

193 

2,705 

.140 

!, 186 

66 

1,340 

1,170 

3,520 

3,010 

3 

21,470 

20 

l,900 

Ou/}' tht major 11111011s ef th(' gas ,!!irmts arc .!!if!c11. lu 200 I there ll'l'ff 28 k11(1w11 1110011s aro1111d ]11pila, 

30 aro1111d Satum, 21 ar()l111d Ur,mus mu/ 8 arowul f'·kplllih'. There arl' 1m1bt1bl}' mml)' m11rc. 

'l11ac arl' 29.5306 da)•S lictwccu fidl 111M11s ()JI Earth. Cosuwfo,!!}' cm, seriously impmvc your ltcalrli. 
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PLANETARY TUNINGS 

MERCURY VENUS EARTH MARS Junrrn SATURN URANUS NEPTUNE PLIJTO MOON MooNSm DAY 

PERIOD (YE,\RS) 0.24085 0.6152 1.8809 ll.862 29.458 84.013 16.J..79 247.69 0.08085 0.07480 0.00274 

AuorntE FREQ. Hz q1.27 22l.2J 136.to 144.72 183-58 147.85 207.36 211.44 140.25 2!0 .. p 227.43 194.18 

OCTAVE No. JO )2 )2 JJ 36 37 39 40 40 29 29 2j 

AumatE Tm,E D A c, D f; D c, A c, c, A' G 

TuNJNG Pncu Hz 423.34 442.46 432.10 433.67 436.62 443.04 439.37 422.87 445.26 4.1-5.86 429.33 435.92 

V1srnrn FREQ. w'1 Hz 6.213 4.865 5.986 6.365 4.037 6.502 4.559 4.650 6.168 4.627 5.001 4.270 

LIGHT Ocr. No. 72 73 74 75 77 79 80 s, 8, 70 70 65 
\v',Wl:LENGT!l 0.483 o.6!6 0.501 0.471 0.743 0.461 0.685 0.645 0.486 0.648 0.599 0.702 

Co10R bl11e oriwge blitc-srm1 bl11e ,ed li!uc ~r.ingr-nJ or,mgc-ml bl11e ffJl\~-rd ydl-.w1:gt tri111gr-ml 

1u/11p1t'dfmm ll!e Cos111ic Of/m·e /J\' I/an, (.()11.1/n 

TABLE OF ANCIENT MEASURES 

/:}ilis/1 ASSYRIAN ]BERIAN Ro.1w1 Co~1.1iot-1 Et-1GLISH GREEK PERSIAN BELGtC SU.llER!AN fa;GLISl! ROYAL Ru»IAN 

"' 
EGnnAN ARCHAIC EGYPTIAN 

ASSYRIAN 0.9 63(6.j 15/16 9/w 7/S 617 
lllER!AN 0.91429 64f63 1oh1 14/i5 8/9 5/6 ¥5 
RoM,\N 0.96 16h5 21/zo 49/50 14h5 q./i5 7/8 

COMMON EGYPTJ,\N 0.97959 15/14 50/49 48/49 20/ii 617 
ENGLISH w/9 15h4 49/48 35/36 20h1 14/i5 9/io 7/S 617 

GREEK !.02857 S/7 9/8 151!4 11ho 36/J5 48/49 24h5 151!6 9/10 
PERSIAN 1.05 ,16 21ho 49/48 49/50 9/ro 
BHGIC 1.07143 151!4 2sf24 50/49 17h8 15h6 

SuM~mAN 1.09714 615 8/7 16/J5 14h5 
ENGLISH ARCHAIC J.11[11 10/9 2Sh7 35/36 2oh1 
RoYAL £GYPT!AN t.J.p86 sf, 7/6 8/7 w/9 16h5 25h4 36135 I 48/4? 

RUSSIAN 1.16667 7/6 w/9 21ho .[9/48 
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ANCIENT METROLOGY 

Gcomciry means 'Earth measure' and the mc:isurcs of 
antiquit}' form a single glob:11 system mned to the ~izc of 1hc 
E:1nh and ~loon. They are linked br fractions, both imernally 
as dil'isions and multiples of their mcasun:s (~l'l' table lxi/011•), 

and externally between tn(xlules (see w/Jle !~1·Job11 Nea/ !01re1: 
opposite). For cx:implc A\S\Tian and Greek me;t'iurcs arc in 
the ratio 9: 10, while Roman and Greek compare as 2-i:25, so 
!h:lt Assyrian and Roman are l'i:16. 'llli.: Belgic foot is 6:'i of 
the Assyrian and 9:8 of the Roman. The names of the various 
modules are often misleading as S)'Slcms were regularly used 
simul1:mcot1sly. Note the use of harmonic intcrr,ils. 

!t 11~1s Newton who reignited 1mxlern interest in ancient 
mctrology. Seeking an accur:ne v:1lue fur the size uf the l~irth 
he turned to the tradition that the Jewish \acred' cubit \\:t, a 
frnction of the l~mh's 1;1dius (it is the 10 millionth part). !n 1hc 
yea~ that followed. me1iculous su1,·eys of Egyptian and Greek 
sites by John Gre11·es, F1~1ncis l'enruse, and W1lliam Flindc~ 
Petrie revealed small hut regular \:lriation~ in the individual 
lll(Xiules. Perrie and, later, Uvio Stcchini noted that measures 
regularly 1~1ried around the 170th and ·i'iOth pans. Juhn Michell 
;ind John Ne:111:itcr refo1cd and explained these. 

The firs1 variation in l"a!ues results from the dirferencl' 

DJG!T INCi! PAL~! HAND 

Dien 3/4 1/, 3/J6 

INC!! 4/3 1/3 1/4 

PALM 3/4 

HAND 16/3 4/3 

SPAN 12 9 9/4 

Foor 16 12 4 

Cu1nr 24 18 6 9/z 

STEP 40 JO lO 15h 

YARD 48 36 12 

PACE So 60 20 15 

FATHOM 96 72 24 18 

SPA)! 

r/u 

1/9 

1/J 

,!9 

4/3 

w/3 

20/3 
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between the two values of 1T in the ancient world, 25/S 
:md 22(i. which works out :t~ li5/176. \litruvillS describes 
a Roman odometer as haring wheels four feet in diameter 
which mark a length of 12. 'i feet on each rel'olution. '111ll\. 

al!hough llll';l~ured in the shorter Roman foot, a tmcrdistance 
would hare been found in the same number of longer Roman 
feet. longer by 176/175. The fraction shows up elsewhere, for 
in~tance the sbaku, ortradiiionalJapanese foot, which to this 
day relates to the English as !75:176. 

The second rariation may be derired from the non· 
spherical shape of the Earth. The ancicms were a\\'are that 
till' equatorial 1~tdit1s exceeds 1hc polar r;1dius, meaning that 
degrees of btitude over the surface shorten towards the 
poles. The r;nio between polar:mtan:equ,norial l'alues was 
modelled in the ancient sul\·eyas 880:882:883, explaining the 
often nuted +i0:+1 I raria1ion in p:H"!kular units (sometimes 
ll'rmed the 'long' and '~hort' fom). The mean r;idius uccur:; 
around 5 )(l, knm\·n ,is the meridian degree. 

The:,e conrersion~ kepi linear mea~ures harmonic to 
angular ones, For instance one ,.,econd of arc at the Earth's 
surface at the meridian degree is 100 Greek feet. The English 
(and USJ mile is likewise grodetic (see page 327). 

Foor Cumr Snr YARD PACE FArno.11 

1/i6 1h4 i/40 i/48 J/So J/96 

1/12 1/is J/30 i/36 i/60 1/72 

1/4 1/6 1/io i/12 1ho i/24 

1/3 2!9 21!5 1/o 11!5 i/i8 

3/4 1/i 3/10 1/, 3ho 1/8 

2/3 2/5 1/3 1/5 ,/6 

3h 3/5 1/2 3/io i/4 

sh 5/3 5/6 1h 5h2 

6/5 3/5 1/z 

J0/3 s/3 5/6 

12/5 6/5 
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INDEX 

Key entries arc italicized, sequences with-, and 
occasional references O\'Cf various pages with -

:ibundant number, 34 
acoustics, 2·16 
aether, 7·1, 332 
:1.gc\ zodiac1l, ,12 
alchemy, 122, 30.J, 362; alchemical wedding, 328 
Allah, m11111Jcr of names of, ·12, 99 
alphabets, table of ancient ·19 
amplitude, 18·1, 21{ 218, 222, JJ.1, 2·16, 2(1'1, 38·1 
aperiodic sy1111nctrics, IO·l, 118; see also U symmct1ies 
archt:s, 11'1 
Archimedes, 16, 166, 365 
Archimcdcan solids, 138-39, 161-(d. 16·1-75, 372-75 
:irchitccturc, 26, 30, 90, 318; five orders of, 362 
arcs, 22, 88, 90, 11-i, l 50; in Celtic an, I !() 
Aristotle, .1(), 362 
asteroid belt, 298, 312,3I·i . .-U·i-36. 33S;see also Ceres 
asteroids, 298, 3'l2, 
atom, 22, 2(l, 1 JO, l·i8, 190, 362 
atomic numbei;; of mct.'.lls, j{}l 

Babylonfain, number system .. ,,,J-15, )6, 357, 365 
bars, measures of music, 253, 289, 3)9 
base, numeric, see number sy.,iems 
beat rrequencies, 208, 383 
beats, musltal 8·i, 252, 258, 265, 279, 288, 388, 389, 390; of 

pendulum, St 202 
binary form, 267, 388, 390 
binary star system, 366 
Bode's law, 312, 33,1 

c:1dence, in music,270--71, 279, 280, 388 
calendar,302; Aztec, ·iO; Chinese, 302; Islamic, ·i2; Mayan, 

·l2, 302, 357, 36"5; ~loon phases in, :'.>30, 36·'! 
carbon, 22 
cards; playing, )2; t:uut, 302, 36·i, 365 
cathedr:ll; Winchester, plan of. 112; windows in, 110 
cells; division in human body, 28; ln hunercomb, 176 
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Celtic an, 116, 100 
cems; number of c. in nmsic:11 interv:.i!s, 381, 383 
Ceres, 306, J 10, 312, J}I 
chakr.1s, 24, 93,363, 365 
chess, 52, 365 
China, 28, 34, ·l6; number systems, ,l6, 52, 283, 356 
Chladni patterns, 232-36 
chords. 228, 2·i8, 25·1-57, 268-71, 388; major, 196, 

228-29, 248, 256, 389; tonic, 260, 270-73; dominant, 
268-7·'1, 28.j, 388; subdominam, 260, 280, 390; minor, 
228--29, 256, 269-<'H. 389; inversirn1~ of, 256, 269; in 
den;lopment of polyphony, 199, 2,16, 279 

chromatic nmcs, 36, 228, 2·18-19, 251, 272, 275, 277, 
281, 28·i, 388, 391; ch. scale, see sr:i!c, l\\'dve nole; 
chrom:aicism in compo~ition, Z.i6, fff11s1ra1lo11. 388 

church modes, see modes, musical 
church windows, 108-110, 3.18 
churches. 78, l 12, 
circle. 11-}i, 6·1-73, 82--8·1; of fifths, 196, 250, 2(i0, 271, 

272, 277, 280, 391; great c.. 150, 166, 170; inclrclc, in 
pcrnag1~1m, 326; motion of h:mnonog1~1ph, 20-1-08, 
21{ 218, 22·1, 38·i; !csscrc., 150; from orbital ellipses. 
318; 1~1inbow c. around sun, 3)0; of halftones, 228, 270; 
see also squaring the circle, stone circles 

circling the square, 76 
circumference, 22, 32, ){ 76. 80, 328, }16 
circumraditb, JJi, 136, 170: drcumradii of polyhcd1~1. 

/able. 379 
circumsphere, I}i, 1-lS, 150. J6.-i, 372 
clock, ·golden', of Jupirer and Saturn, }i·'i 
colours, :is harmonics of plarn.:tary periods, :100 
comma, symonic, 19,J, 222, 381; Pythagorean, 226--28, 

277; in mtc~ica! interrals, 250 
cone. 16 
conjunction, of Sun, Venus and Eanh, 320; of Jupiter and 

Saturn, 3.J.l 
consciousness. 'L 29), 296, 350, 352 
constants, 296; harmonic, 383; in planetary orbits, 308, 3}l 
consu11ctions, square, j70; pentagon, 91; hexagon. 69-71; 

heptagon. 93: octagon, 370; cnneagon, 9); dodct~lgon, 



73, 370; spirals, 89; painters glids, 96; Islamic, 107; 
Celtic, 109; geornetlic, 368-369 

Copernicus, 306 
counterpoint, 279, 388 
counting hoards, 8, ·i6~i7 
C!)'St:lls, 22, 72, 136, 142, 350 
cube, 66-67, 74-75, 132-33, 136, 140-4/, 178; cubic 

numbers; Clght,26, 95, 199, 364; others, 199, 36-i-66 
cubit, 400 
cuboctahedron, 166-67 
Curwen hand signs, 2'55 

dances, of the planets, ,lQ2-·i04 
decagon, 30, 72 
deferents, and epicycles, see epicycles 
de!tahedra, 15,j 
demi-regular tilings, JOO 
Descanes, Rene, 1-i,i 
diatonic, musical definition, 388 
Didyrnus, comma of, see comma, srntonic 
diminished; intervals, 251, 269, 271, 276, 280, 388; chords. 

256, 268, 28,l, 388, 390; fifth, see iritone; scales, 276 
directions; two, 5,J; four, five, 362; six, 22, ·14, 140, 363 
discord, 208, 241 
dissonance, 192, 2,12, 245, 251, 259, 277, 279, 38,l, 388, 389 
DNA, 30, 365 
dodccagon, 72-3 
dodecahedron, 132-33, 142-43, 332-33, 391 
dome, geodesic, 168 
dominam,see chords 
doubling the cube, J,jQ 
duals, Platonic, f,j6,147; Archirnedean, 176-77 
duality, 14, 16; opposites in music; 244, 278, 288 

e, mathematical constant, 5,1 
Earth and Moon, relative sizes, 32-33, 328-29 
eccentticit)', of orbits, 306, 315, 318, 337 
eclipse, 42, 303, 329, 331 
ecliptic, 300, 344, 3'!8, 
Egypt; Great Pyramid, 32, 80; number srstems, 44; 

number, 34, 78, 362; geometry, 16·! 
Einstein, Alben, 66, 296, 298, 308, 318, 352 
electrieil conductivity sequence, 30:J 
clements, ancient, 18, 20, 74, 134, 136, 138, 267, 30,i, 362. 
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elements, chemical, 314, 365 
cnantiomorphs, 156 
enharmonic, equivalents in music, 257, 277, 280, 285 
enneagon, 94-95 
epicycles, ptolernaic, 300, 306 
equal temperament, 34,228, 240, 277 
equator, 92, 349, 366, 1l0l; galactic, 3'19 
equinoxes, 18; precession of,see precession 
Euclid, 5; Euclidean geomet1y, 116, 1'10; Elements, 136, 

J,j,J, 150 
Euler, Leonhard, 1·14 

Fibonacci series 32, 36, 38, ,Jo, 86, 96, 316, 320, 32·!, 364, 
365, 367 

fifth. division, 1'18 
fifth, musical, 16, 18, 28, 38, 82, 84, 187-188, 19·1, 196, 

198-226, 2,13, 246-47, 248, 250, 25,1-88, 322, 326, 
362, 366, 381-91; diminished, see tritone; see afso 
circle of fifths 

flms, in music, see sharps and flats 
forces, four in physics, 362, 36.J. 
fourth (musical), 18, 28, 194·98, 220-60, 362, 366, 381; 

augmented, see tritone; in plancrnry orbits, 312 
frnnals, 54, 10'/ 
frequenq1

, 38, 82, 84, 188, 346, 383; of audible tones, 
240; of pendulum, 202; of planets' orbital harmonics, 
400; spectrum throughout universe, 190; see also 
Ol'crtones, beat frequencies 

full moons, }I, ·l2, 331, 328, 329 
fundamental, tone, 248, 250, 256, 383, 389; see also drone, 

root, tonic 

Galileo, 202 
gal:Lxy, geometry of, 348 
games, 52 
gematria, 48-49, 50, 56,359, 366 
geometry, relationships to music, 84. 
glyphs, numerical, 36, 356-57, for planets, 24, 29,J 
gnomons, 40 
golden section, 54, 80-81, 86-.97, 88-90, 92, 96-97, 118, 

138, 152-53, 154, 170, 316-17, ]24, 330, 344-45, 352, 
377; rectangle, 88-90, 96-97, 138, 152; spiral, 41, 89 

gravit)', 298; in music; rhythmic, 252; tona!, 25·i, 260, 270, 
390; structural, 288 



Greac P}'ramid, 32, 80, 138: 
Greek modes, see modes, musical 
Greeks, ancient, 3-5, 40, ·!8, 5·1, 88, 134, 136, 198, 306, 

316, 342, 362, 363, 36,1; measures, ·IOO, ,iOl; musical 
instruments, 263 

grids, regular, 38, 98, 100, 102, 106; see also tilings 

haiku, 36, 52, 36·1 
halos, ice, 350 
halftone or half step, 3-1, 228, 245, 249, 251, 25·1, 257, 270· 

273, 276, 285, .l81, JBS, .l89, 390 
Harmoniae Mumli, 310see also music of the spheres 
J-larmonices illundi, Kepler, 162 
harmonics, in music, see orenones; in metrology, 401; in 

solar sysrcm, 310, 312, 330, }10, }H, }18, ·iOO 
harmonograph, 8·i, 188, 20·i-05; table of panerns, 38·1-

385; building, 386-87 
harmony, 3, 5, 10'1. 188, 192, 224, 234, 2'12, 259, 268, 280, 

320, }lO; rnble of, 397; definition, 389; of the spheres, 
3'10; see also music of the spheres 

heliocentric, model of solar system, 306 
heprngon, construction of, 92-93 
hexachords, see scales 
hexagon, 68-71 

icosahedron 74-5, 132-33, 13l·J-39, 3.12-33 
icosidodeGthedron, 170-171 
imagina,y numbers, i, 54 
instruments, musical 188, 262-63, 26.J, 389; ranges of, 2·i0 
intervals, musical, 16, 193, 198, 206-223, 218, 250, 

388-90; table of,38/; and overtones, 192, 247; in solar 
system, 308, 310, ,JOO; in metrology, 40! 

inversions, of chords, 256_. 269 
Islamic, de.signs, 100, 106-107; year, 331, 366 

Jesus, and disciples, 36, 72 
Jupiter, 338, }10, }12-47 

Kepler,Johannes, S, ll8, 158, 160, 162, 172-76, 296, 306; 
Kepler's Shells, 308, 310, 318, 332, 350 

Keplcr-Poinsot polyhedra, 28, 158-161, 162 
keyboard, musical 20, 24, ll, 190, 240, 249, 362, 363 
keys, musical, 228, 251, 260, 270, 289; changing key, 228, 

280, 286-87; minor keys, 274: key signatures, 251, 275; 

Kirkwood gaps, 334, }IS 
kiss, of Venus, 320; of other planets, 300, 312, 316, 3'14, 

402-40·1; .1·ee also synod 

lambda, 2, 2,13 
bmbdoma, 2, 40, 198-99, 2,13 
Leonardo Da Vinci, 76, 170, 325 
Li symmetries, 120 
light, 24, 110, 296; and sound waves, 200, 23-i 
line,.\, 5, 14, 26, 64, 131 
liquids, geometric structures in, 26, 124 
Lucas sequence, 32, 38, 36·1, 367 

magic squares, 28, 50-51, 52,360-61 
i\lars, j 14, 332, 338 
~!ercury, 82, 300, 310, 31-l, 316, 318, 326, 
metals, 24, 30, 30.J, 310, 369 
metrology, :mcient, ,iQl 
midwinter solstice, }18 
Milky \Vay, 298, }18 
mnenomics,391 
modal music, 272 
modes, music:ll, 211, 194, 196,2·19, 275, 282, 363,382, 389; 
modulation, musicd, 25·1, 270 
monochord, 190, 196, 198, 230, 2·13 
month, great 42, 366 
~loon and Earth, relatirc sizes, 32-33, 328-29 
~loon, phases of, 24, 36·1 
moons; of outer planets, }10; 1:tblc 398-99 
music, 38, 84, 188, 2·12; of the spheres, 21,J, 296, 310, ,JOO 

natm~il rninor,274, 382 
Newton, !sa:ic, 296, 318, 350, 352, ,iQJ 

node, harmonic, 192, 19,i, 222, 230, 232, 252; of Moon, 
303, 331 

notation, musical, 392-393 
number systems, 30, _16,356-57; China, 116; Indian, 56; 

i\layan, 44,357 
numbers, lists of 362-367; Pythagorean, 358 

ocrngon, 26, 76, 98 
oct:igmm, 292, 327, 346 
octahedron, 22, 26, 7·1-75, 82-H3, 132-33, 136-37 
octatonic scale, 276, 389 



Oct:l\'C U-38, 82-8'1, 154, 188-203, 212-28, 2·!0-57, 
269, 28·i, 318, 346, 362, 361, 381, 383, 387, 588, 390. 4011 

oppositions, of Jupiter and Saturn, }l·i 
orbits, periods of, .:313. elliptical 308 
outer planets. 336. J.iO, }l4 

ovenones, 18, 192, 198, 212-30,2·16, 2,!8, 250, 256, 265, 
38.J, 389, 390; overtone series, definition, 389; see also 
rrequcncy, harmonics 

partials; see overtones 
panides, fundamental, 18, }i 
pedal, note in music, 268 
pendulum, 202-03 
Penrose, staircase, J.l9; tiling, 118 
pcnrngon, 20, 86, 90, 118 
pentigram, S·l, 86, 91, l 12, 158, 160, 316, 320, 330, 324, 326 
pentatonic scale, see scales 
petfect. number. 22, l ·10; magic squares, 360 
period, of pendulum, 202-03; of musical notes, 240; of 

planets, 308, 312, 320-400; of wave, 383; petals, of 
flowers, 11, 103, 324; of chakras, 36,J, 365 

phase, of moon, 24, 364; of pendulum patterns, J8,J, 200, 
205-12, 216-20, 33,j 

phi, 20, 86, 118, 152, 316, 326; see also golden section 
phyllot:txis, JO{ 32,J 
pi, 54, 76, 3'16, 377; in the Great Pyramid, 80; in ancient 

metrology, 401 
pitch, pitches, M, 26, 243, 246, 2,Js, 252, 258, 260, 262, 

272, 275, 279, 283, 284, 285, 388, 389, 390; of planets' 
harmonics, 400; concerl pitch A, 383; ranges of 
instruments, see range; see also frequency 

plane, 5, 18, 6·1 
Plato, 2, 164, 366; cosmologr, 1118; number, 30, 365; 

gnomic growth, 40; lambda, 243 
platonic solids, 20, 28, 74, 132-43, 14,J-7·i, 308, 332, 

362-6.J, 375: formulae 377; 
poetry, form and rhythm in, 36, 52, 244, 253. 36:i 
Poinsot polyhedra, 160, 162 
point, single, 5, !2, 24, 63-68, 131, J.J,i; tonic as 'still 

point', 272-73, 388 
poles, north, south, galactic, ecliptic, }19 
polrhedron, 144, 160, 162, 168, 372-79; nets, 372-73; 

d:na table, 378-79; four dimensional, 178 
polyphonr. development of, 199, 246 

408 

precession, of equinoxes, ·l2, 365-66 
prime numbers. 36, 38,367 
prism, and anti-prism. 162 
proponion, 5, 40, 82-86, JO'!, 152, 170, 2·!2 
Ptolemaic, epicycles and deferents, 306, 300 
Ptolemaic srstem. 300, 306 
pyrnmid, l}i, 1·12, 21,l; pri~m1idal numbers, 36·!, 3()) 
Pythagorns,,), 5, 8, 188, 19.t 227, 2·i3, 363 
Prthagorean, tuning,see tuning; scale, 199, 366, 380; 

triangles, 358; numbers 358 
Prthagoreans, 2, 5, 1,J, 30, 142, 198 

quantt1m 190. 296, 310, 350: uncertainty, 226 
quarter, 18, .J.1, 84, 88, J,18, 324, }iO, 365: q. notes in 

music, 252, 265, 389; quarter tone, 250 

rabatment, 96; see also golden section 
rainbow, 32, 78, 328; chakras, 24; sun dogs, 350 
range, of musical instruments, 240; of human voice, 262 
rectangles, 11'1, proportional 
resolution, in music, 271, 281, 285, 388, 390 
resonance, ,JS, 192, 232,234, 2·12, 298, 334, 351 
retrogr~ide morion of planets, 300 
rhythm, 190, 2,12, 2,16,252, 258,264, 278. 288; rnble of, 

396; notation of, 2·13, 253, 264, 265, 282, 289; in solar 
srstem, 312, 400;see also tempo 

root, in music, 256, 260, 268, 271, 280, 388, 389; see also 
sa, do, drone, fundamental, tonic 

ruler and compass constructions, 368-71 

Sa, in Indian music, 255, 282; see also fundarnemal, root, 
mnic. 

Sandreckoner's diagram, 79 
Saturn, 298, 300, 312, 326, 336, 3'i0, 34.), 346, }18 
scale, table of, 39,i; fil'e note (pentatonic), 20, 22, 226, 

248, 272, 36.J, 380, 382, 389; six note (hexachord), 2'1.): 
seven note (diatonic etc), 2,1, 26, }i, 19·i-96, 199, 2,rn, 
251-60, 27·i-75, 282, 363, 366, 380-89; eight note 
(ociatonic), 276, 389; twcll'e note (chromatic), }i, 
36, 2·19, 277, 391; seventeen note (Ai~tbic), 248, 381: 
twernr-two note (Indian), 196, 228, 248, 282, 381 

second, musical intcn·al, 195, 250, 255, 27·!, 366, 389, 390 
seventh, musical interval, 125, 195, 220, 250 274, 366. 381, 

588-90; chord, 268. 280, diminished, 268 



sharps and flats, in music, 249, 251, 277, 381, 389-90 
solfege; do, re, mi... 255, 275,391 
solstice, alignment with gal;txy, }19 
.~pirn!, 88-89, 116, 152, 226, 277, 298, 32-i, 
square, numbcrs,358,367; rrnlt, 54, 377 
squaring the circle, 32, 76, 80, 328 
shruti, see comma, srmonic 
stone circles, -12, 7,i, 112, 302 
Swnehengc, -12, 56, 302 
siring length, divisions, of, 82, 8-i, 192, 198, 2-17, 383, 389 
subdorninanr, submedi:tnr, subronic, see chords 
substitution of chords, 260, 280, 281, 28) 
Sun and ;\loon, coincidence of sizes, 328, 350 
sun dogs, 350 
sunspot, rmation period, 328 
supertonic, 390; see also second, musical imer\'al 
suspension, musical, in general, 258, 268: suspended 

chords, 268, 279, 390 
symmetry, 10·1; Li. 120: Archimedean, 37-l; groups, 122 
sympathetic vibration, 2}1, 262; see also resonance 
.~yncopa!ion, 252, 26-l, 390 
synodic year, 30.l; Eanh, ;\lcrcury, 316, 326 
:.ynods, 312, 316; Eanh and Saturn, }H;Jupi1er and 

Saturn, }i5 

tempo, 2)2, 28.'$. 286, 289, 390; see also rhythm 
tension, :md release in music, 2,1 I, 25·1, 258, 272-88 
ternary form in music, 267, 286, 390 
tessellations, 98-101, 375.see also grids 
tessel~lct, 178 
tell~Khord 196 
teu~ihedron, 18, 22, 66-67, 7-l, 82, 132-33. JJi-35 
letl~lkty~, 30, 198 
third, musical interval, 20, 19·1-99, 220-28, 2-i8-7·i, 28·i, 

288-89, 366, 381, 388-90; minor. 200, 226, 228, 250, 
25·1-56, 268, 381, 388-89 

tiling, demi regular, 100; from blocks, 102; pemagonal. 
118; semi regular, 98: tessellation, 98; three 
dimensional, 375 

tilt, of J~1nh's axis, 78, 326; of planets' orbits, 315, 337, 
398-99; of galactic plane, 3-18 

timbre, 2·i6, 262, 389 
tonal, 390: tonal center, see 10nic 
tonality, 260, 270, 272. 277, 390 

tone, 12, 14, 19·1; major, minor, 381; tendencies, 273,2j4 
wnic, note, 192, 194, 2·15, 270, 289, 389, 390; chord 

260, 268-73, 280, 289; key, 286, 390;see also drone, 
fund:1memal, root 

trefoil, quatrefoil, 110, 214 
triad, 16, 28 362; in music, 228, 256-71, 388, 390; minor, 

27-i 
uianglc, 6i-68, 82, 8·1, 108, 256, 318; 1\thagorean, 3--i-5 

tri:mglc, 18, 22, 79, 80, 36-i, 378; 5· I 2· 13 triangle, 330, 
56·i 

uimgular numbers, -10, 358, 367 
tritone, /96, 250-51, 271-8), 381, 390, 391 
Trivium, 3, 38, 363 
Trojans, asteroids, 342 
truncations, 16·1 
1Uning, 16, 34, 19.J, 226, 2)0 380-81, 383; Arnbic, /96, 36·i; 

Diatonic, 195, 220, 228, 2·11, 380; Indian, 19G, 228, 282, 
36.J, 381; me:m tone, 222, 2,18; Pythagorean, 195, 380; 
three-limit, 199; 'tunings' of planets, ·iOO 

unison, 38, 8·i, 182, 203, 206-12, 216, 220, 251, 362. 381, 
590; near unison, 208 

unit:. of measure, mctrologi', ·i00-01 
Universe, 12, 30, 66; as design, 190, 295; amhropic; 296; 

geocentric vs hcliocemrir 306; quantum holog1~1phk, 
550; siabilitr of, 296 

Venus, -12. 310, 31-1-22, 326-50, 352; kiss of, 320 
\'esica, 16, 28, 68, 90, 110, 112 
vibration, 200, 202, 230, 232. 2-12-62, 389; see also 

srmpathctic vihi~uion 
Vitruvian man, 77 
voice, human, 2}1, 262 
rolume, of solids, 16, 142, 15:i; table of, 377; of tone, 22,1, 

232, 264 
\'OWelS, 2)-'i, 2·16, 26-1, 389 

wa\'elength, 346, ,JOO; see also frequency 
week, days of, 2·1, 93, 30·1 
whole-wne, scale, 276 
rear, 330; edip1ic, 305; greM, -i2; solar, -12; srnodic, JO). 

.)26; ecliptic, .)03; Venusian, 320, 322 

zero, -i6, 5·i, 57 
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