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book, I am making LEXSTATS available under the GNU General Public Li­
cense. LEXSTATS is a suite of programs written in C including a graphical
user interface written in Tcl/Tk. Updates can be obtained from the author by
e-mail atbaayen@mpi.nl. LEXSTATS is supported for LINUX only. It should
run without problems on UNIX platforms, and the individual C-programs will
probably run on other platforms as well. All C-programs require input and
produce output that is in the data frame format of R and Splus, so that the
user is not limited to the functionality provided by the graphical user inter­
face. Finally, Appendix D summarizes the frequency distributions of the main
data sets analyzed in this book.

I am indebted to Stefan Evert, Estate Khmaladze, Anke Luedeling, Richard
Sproat, Arjuna Tuzzi, and especially Kyo Kageura for their careful reading of
the manuscript and their detailed comments and suggestions for improve­
ment. Most of all, I am indebted to Fiona Tweedie, with whom I have had
the opportunity to collaborate on various issues discussed in this book. With­
out this wonderful collaboration, the chapter on mixture distributions would
not exist. I remember with gratitude my friendship with Rezo Chitashvili,
to whom this book is dedicated. It is a pleasure to be able to write that the
Yule-Simon model, which he developed, emerges from the present study as
an excellent model for word frequency distributions. The idea of writing a
book along the present lines was born in the year before his untimely death.
Thanks are also due to Antoinette Renouf, who kindly provided the data sets
from her large longitudinal corpus of British newspapers, to Stephen Tweedie,
who introduced me to the LINUX operating system, and to Jom Baayen, who
has been an excellent LINUX system administrator. And thanks to Tineke for
making it all worthwhile.

Chapter 1

Word Frequencies

This chapter introduces two fundamental issues in lexical statistics. The first
issue concerns the role of the sample size, the number of words in a text or cor­
pus. The sample size crucially determines a great many measures that have
been proposed as characteristic text constants. However, the values of these
measures change systematically as a function of the sample size. Similarly, the
parameters of many models for word frequency distribution are highly depen­
dent on the sample size. This property sets lexical statistics apart from most
other areas in statistics, where an increase in the sample size leads to enhanced
accuracy and not to systematic changes in basic measures and parameters.

The second issue concerns the theoretical assumption underlying all the­
oretical models and tests used in lexical statistics, namely that words occur
randomly in texts. This assumption is an obvious simplification that, how­
ever, offers the possibility of deriving useful formulae for text characteristics.
The crucial question, however, is to what extent this Simplifying assumption
affects the reliability of theseformulae when applied to actual texts and cor­
pora.

Section 1.1 illustrates these two issues by means of an exploratory investi­
gation of word frequencies in Lewis Carroll's Alice's Adventures in Wonderland,
henceforth Alice in Wonderland. Although this is a small book with only 26505
words, it is large enough to reveal the kind of phenomena that emerge, of­
ten more strongly, in larger novels and text corpora. Section 1.2 intreduces
the fundamental concept of the frequency spectrum. Sections 1.3-1.5 review
Zipf's rank-frequency model and the lognormal model, as well as a series of
statistics that have been proposed as characteristic size-invariant textual con­
stants.

A first objective of this chapter is to show that these statistics and many
model parameters are seriously affected by changes in sample size as well
as by the non-random organization of discourse. Another equally important
objective is to familiarize the reader with some fundamental concepts and no­
tational conventions.
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2 CHAPTER 1. WORD FREQUENCIES

1.1 Introduction

Consider the first sentence of Alice in Wonderland:

Alice was beginning to get very tired of sitting by her sister on the
bank, and of having nothing to do: once or twice she had peeped
into the book her sister was reading, but it had no pictures or con­
versations in it, 'and what is the use of a book: thought Alice 'with­
out pictures or conversation?'

This sentence contains 57 instances of words, some of which are used more
than once. The function words of, or and the occur three times, Alice and nine
other words occur twice, the remaining 28 words occur only once. In all, this
sentence with 57 word instances or word tokens contains 41 distinct letter
strings or word types.'

Obviously, these frequency counts are strictly bound to this particular sen­
tence. In larger fragments of Alice in Wonderland, the frequency counts for
these words are quite different. For instance, by the end of the book, Alice
has been mentioned 398 times. While sister occurs twice in the first sentence
just as Alice does, it appears only eight times in the complete text. Conversely,
the determiner the, which appears three times in the first sentence,. has a fre­
quency count of 1631 in the novel as a whole. These counts illustrate a simple
fact: word frequency depends on sample size. Denoting the sample size, the
number of word tokens in the sample, by N,

Definition 1.1 N: sample size in word tokens,

I will make the dependency on the sample size of the frequency of the i-th
word (Wi) in a list of word types explicit in my notation:

DefinitIon 1.2 f(i, N): frequency of Wi in a sample of N tokens.

Table 1.1 presents part of the word frequency list of the complete text of Alice
in Wonderland. For each word Wi, the frequency f(i, N) is specified.

When we increase the size of OUI sample, for instance, from the 57 tokens
of the first sentence to the 26505 tokens in the complete text of Alice in Wonder­
land, we not only find that the frequencies of the words we have already seen
increase, we also encounter new types. The number of different types V(N)
we count in a sample of N tokens, the vocabulary size, is a non-decreasing
function of N.

DefinitIon 1.3 V(N): number of types in a sample of N tokens.

The solid line in panel A of Figure 1.1 plots the development of the vocabulary
size V (N) in Alice in Wonderland as a function of the sample size N, measured
at twenty equally-spaced intervals.

Clearly, the growth curve of the vocabulary size YeN) is not a linear func­
tion of N. Initially, the vocabulary size increases quickly, but the rate at which

IThis is a string-based definition of types and tokens. Alternatively, inflectional variants such
as conversation and conversations can be classified as two tokens of the same type, instead of treat­
ing them as tokens of MO different types.
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Table 1.1: Part of the word frequency list for Alice in Wonderland. i: arbitrary
index for the word types; Wi: the i-th word type; f(i, 26505): thefrequency of the i-th
word type in thefull text of26505 word tokens.

Wi f(i,26505) Wi f(i,26505)
1 a 629 23 of 510
2 alice 386 24 on 194
3 alice's 12 25 once 34
4 and 866 26 one 102
5 bank 3 27 or 77
6 beginning 14 28 peeped 3
7 book 7 29 pictures 4
8 but 170 30 reading 3
9 by 57 31 she 540

10 conversation 10 32 sister 8
11 conversations 1 33 sitting 10
12 do 81 34 the 1631
13 get 46 35 thought 74
14 had 177 36 tired 7
15 having 10 37 to 726
16 her 247 38 twice 5
17 in 365 39 use 18
18 into 67 40 very 144
19 is 108 41 was 356
20 it 528 42 what 136
21 no 90 43 without 26
22 nothing 34 44

the vocabulary size increases as we proceed through the text decreases. By
the end of the novel the vocabulary growth curve has not flattened out to a
horizontal line. A horizontal line would have implied that no new words are
added as N increases, which would have indicated that the full set of words
judged by Carroll to be appropriate for this kind of story had been used. in­
stead, it is clear that if the story had continued, more new words would have
appeared. Although we can regard Alice in Wonderland as the statistical popu­
lation when we focus on this story as a literary unit, we can equally well view
Alice in Wonderland as a sample of Carroll's language use. From the latter per­
spective, the shape of the growth curve V(N) reveals that we have only just
begun to sample Carroll's vocabulary.

Suppose that we want to compare Alice in Wonderland with Through the
looking-glass and what Alice found there, henceforth Through the looking-glass.
The latter is Carroll's second story about Alice. We might hypothesize that
Carroll benefited from his experience in writing Alice in Wonderland, and that
his greater experience as a writer might have lead to a more abundant use
of the lexical resources of English. In other words, Through the looking-glass
might be characterized by the greater vocabulary richness. Comparing V(N)
for the two books, we find that Through the looking-glass (V(29028) =2877) has
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pies. Apart from the magnitude of the deviations, there usually is no system­
atic pattern to the changes in the sample means as the sample size is increased.
In the domain of lexical statistics, however, mean frequencies behave surpris­
ingly differently, revealing a non-linear increase with N. In fact, panel B of
Figure 1.1 seems a flat contradiction of the fact that the sample mean should
become an increasingly accurate estimate of the population mean as the sam­
ple size increases. As we shall see, this is due to two factors. One factor is
that we are dealing with counts of types instead of with properties of types.
A second factor is the large numbers of extremely low-probability words that
are present in lexical frequency distributions, distributions that belong to the

. class of Large Number of Rare Events (LNRE) distributions.
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Table 1.2: Sample size N, vocabulary size V(N), mean NjV(N), standard deviation
(stdev) and median word frequency for Through the looking-glass and Alice in
Wonderland, as well as for the first 26505 words in Through the looking-glass.

The dependency of the sample mean on the sample size implies that we
have to correct for the difference in sample size before comparing the sample
means. Table 1.2 shows that when we compare an equal number of tokens
of the two texts, for instance, by selecting the first 26505 words of Through
the looking-glass, we find that mean frequency for this text has decreased from
10.09 to 9.71, a change in the direction of our original hypothesis. Normally;
fluctuations in the value of a mean are due to sampling error and should not
be assigned significance. But we have seen that for our lexical data the sample
mean increases as a function of the sample size. In our example, the smaller
mean frequency observed for N = 26505 is not due to sampling error, it is a
systematic change in the expected direction. From this point of view, we un­
derestimate the difference in vocabulary richness between the MO texts when
we use the means of the complete texts. But if we adjust for sample size, we
might as well compare the vocabulary sizes directly, instead of focusing on
mean frequency. Carroll's second book contains 80 more types among its first
26505 tokens than his first, 3% of the vocabulary size of Alice in Wonderland.
This suggests that Through the looking-glass displays the greater vocabulary
richness. In section 3.6, I will introduce a technique for testing whether this
difference in vocabulary size is statistically Significant.

A second fundamental issue in lexical statistics concerns the non-random
use of words in actual texts. However, to construct probabilistic models for
word frequency distributions, models that, for instance, yield expressions for
V(N) as a function of N, it is convenient to assume that words occur randomly
in texts. This is an obvious simplification. In a random rearrangement of all
the words of Alice in Wonderland, the first 57 words are:

Figure 1.1: Vocabulary size V(N) (panel A) and mean word frequency NjV(N)
(panel B) as afunction of sample size N in Alice in Wonderland, measured at 20
equally-spaced intervals.

226 more types than Alice in Wonderland (V(26505) ; 2651). However, since
Alice in Wonderland is shorter than Through the looking-glass, we cannot sim­
piy compare their respective vocabuiary sizes. 11 Alice in Wonderland had been
longer, it would have contained more different words, possibly even more
than Through the looking-glass.

To adjust for the difference in text size, it seems reasonabie at first sight to
consider the mean token frequency of the word types, henceforth the mean
word frequency. A greater vocabulary ridm€ss, one would think, should be
reflected in a lower mean word frequency NjV(N). For Alice in Wonderland,
the mean word frequency is 10.00, for Through the looking-glass, the mean fre­
quency equals 10.09. These numbers suggest that our hypothesis is wrong,
and that Carroll did not exploit the lexical resources of English more fully in
his second book.

Interestingly, this conclusion is unjustified. To see this, consider Panel B of
Figure 1.1, which plots the mean word frequency N jV(N) for Alice in Wonder­
land at twenty equally-spaced measurement points. The solid line shows the
development of the mean through sampling time. Instead of randomly fluc­
tuating around some fixed value, the mean word frequency increases non­
linearly with the sample size in a similar way as the vocabulary size V(N).
Not only the mean, but also the median changes. For the first six measurement
points, the median frequency equals 1, for the remaining measurement points,
it equals 2. Apparently, simple statistics such as mean and median do not con­
verge to their population values within the sample. This observation holds
not only for a small book such as Alice in Wonderland, it generalizes to large
novels and even to text corpora with tens of millions of words. Normally, in­
dividual sample means fluctuate randomly around the theoretical mean, with
larger deviations for smaller samples and smaller deviations for larger sam-

Through the looking-glass

Alice in Wonderland

N
29028
26505
26505

V(N)
2877
2731
2651

NjV(N)
10.09
9.71

10.00

stdev
50.91
47.31
51.14

median
2
2
2
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Figure 1.2 plots the sample relative frequencies p(i, N) of the definite and
indefinite article in Alice in Wonderland using large dots.

Definition 1.4 p(i, N) = f(';.,N) : sample relative frequency of Wi'

If the articles are used randomly throughout the text, their sample relative fre­
quencies should be approximately the same for any sample size N, i.e., their
sample relative frequencies should show up as a horizontal line in a graph
of p(i,N) as a function of N. Figure 1.2, however, reveals that the observed
sample relative frequencies do not show up as horizontal lines. Instead, they
reveal non-random developmental profiles. The indefinite article a (panel A)
is used more intensively in the central sections of the book than in the be­
ginning or end. The definite article the (panel B) shows a more or less linear
increase in relative sample frequency.

These developmental profiles might be due to chance. What is the prob­
ability that a random re-ordering of the words of Alice in Wonderland would
lead to a similar pattern? We can approach this question by calculating the
mean sample relative frequencies at twenty equally-spaced intervals for a
large number of random permutations of the order of the words in Alice in
Wonderland. As we shall see in more detail in Chapter 5, in a random permu­
tation of the text the effects of cohesion in word use at the levels of sentence
and discourse is eliminated. If the values actually observed for the text are
more extreme than those observed for 95% of the permutation runs, then we
know that the probability that the observed pattern arose by chance is less
then 0.05.

Panels A and B of Figure 1.2 show the result of this randomization test for
a total of 5000 permutations runs. For both articles, the average proportion
or Monte Carlo mean, represented by a solid line, is constant, exactly what
we expect when the tokens of a word are equally spread out over the text.
The dotted lines mark the two-tailed 95% Monte Carlo confidence interval.
Panel A shows that for measurement points 8-10, 13-14, and 16-19 the ob­
served values for p(a, N) fan outside this confidence interval. Apparently, a
tends to be slightly overrepresented in the second half of the text. Turning
to panel B, we find that with the exception of the final measurement point
(the full text), all observed relative sample frequencies of the are well below
the lower 95% confidence llmit. Again we may conclude that the observed
pattern for the is far from random.

The empirical developmental profiles of the articles are possibly linked
with narrative development in Alice in Wonderland in the following way. In
the initial sections of the book, new participants and new scenes are intro­
duced, but as one continuous reading, Alice re-encounters participants and
revisits places where she had been before. Since the indefinite article typically
introduces new information and the definite article given information, the in­
crease in the use of the and the decrease in the use of a in the second half of
the text might be the consequence of thematic development in the narrative.
Note, however, that this leaves the increase in the relative frequency of a in the
first half of the text unexplained.

Summing up, in statistical analyses of textual data it is important to realize
that the values of simple statistics such as means and proportions are heavily
influenced by the sample size, for two reasons. First, the law of large num­
bers cannot be relled on when dealing with words and their frequencies of
use. Second, authors do not use words at random. Word usage reflects lexical
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Figure 1.2: The sample relative frequency of the article a p(a, N) (panel A) and the
sample relative frequency of the article the p(the, N) (panel B) as a function of the
sample size N in Alice in Wonderland, measured at 20 equally-spaced intervals.
The large dots represent the empirical values, the solid line the Monte Carlo mean,
and the dotted lines the 95% Monte Carlo confidence interval, based on a total of
5000 permutation runs.

More find likely a somebody a you're lost again was you invent
waited a on to time passion so pariner about and with panting
back-somersault queen as was were the open obliged ask the Alice
much a do your as on if face come crab best not rapped gryphon I
affair I to it see unlocking low.

Unlike the first sentence of Alice in Wonderland, this sequence of words is not
semantically coherent. Moreover, sequences of words occur that are ruled
out by the rules of syntax (the Alice, a you're, was were, I to it see). However, the
methodological point at issue here is not whether the randomness assumption
is wrong, but to what extent the simplifying assumption of random word use
affects the accuracy of theoretical models. Are the effects of non-randomness
visible at higher levels of abstraction? Do they introduce significant deviation
between theoretically predicted and empirically observed values for statis­
tics such as the vocabulary size V(N)? Are effects of non-randomness visibly
present in the frequencies of individual words?

I
I
I
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cohesion both at the level of the sentence and at the level of discourse. These
two factors should always be kept in mind when comparing the quantitative
properties of textual materials.

1.2 The frequency spectrum

We have seen that statistics such as the sample mean and median increase
when the sample size is increased. The variability of the sample mean has se­
vere consequences for the comparison of texts. As illustrated for Alice in Won­
derland and Through the looking-glass, it is possible to adjust for differences in
sample size by considering a subset of the word tokens in the larger set. Such
a procedure, however, has some obvious drawbacks. First, data in the larger
sample have to be discarded, which implies a loss of information. Second,
there are no good criteria available for deciding which tokens in the larger
text should be discarded. Especially for novels and cohesive texts in general,
the removal of any part of the text is completely arbitrary. Not surprisingly,
considerable effort has been spent on the development of quantitative mea­
sures that characterize textual properties independently of sample size. This
chapter reviews a series of such statistics. Unfortunately, the main thrust of
the argument is a negative one: Almost all 'constants' proposed in the litera­
ture reveal specific developmental profiles in sampling time just as the sample
mean and median. Before discussing a number of measures that have been put
forward as text constants, I should first introduce the concept of the grouped
frequency distribution or frequency spectrum.

Word frequencies in Alice in Wonderland range from 1 to 1631. The most
frequent word is the, and this is the only word with this particular token fre­
quency. Conversely, the lowest token frequency, 1, is represented by 1176 dif­
ferent words. The words which occur once only in a text are known as hapax
legomena, from Greek hapax, 'once', and legomenon, 'read'. Typically, 1 is the
frequency that is represented by the greatest number of words. The number
of words that occur twice in Alice in Wonderland, 402, the so-called dis legom­
ena, is substantially smaller, but in its tum almost twice the number of words
that occur three times, 233. I will use the index m to denote these frequency
classes. The number of word types in a given frequency class for a sample
of size N will be denoted by V(m, N). Thus, V(I, N) denotes the number of
hapax legomena, V(2, N) the number of dis legomena, etc.

Definition 1.5 m: index for frequency class.

Definition 1.6 V(m, N) = L:Y:!i") 1[J(i.N)=ml' the number oftypes
with frequency m in a sample of N tokens.

The identity operator 1[.] that appears in the definition of V(m, N) yields the
value 1 if the expression", is true, and zero otherwise. Note that Nand V(N)
can be expressed in terms of m and V(m, N):

Table 1.3: The frequency spectrum V(m, N) ofAlice in Wonderland.

m V(m,N) m V(m,N) m V(m,N) m V(m,N)
1 1176 31 3 62 1 144 1
2 402 32 4 63 1 145 1
3 233 33 4 67 2 148 1
4 154 34 3 68 4 151 1
5 99 35 4 73 1 153 1
6 57 37 1 74 1 170 1
7 65 38 4 75 1 177 1
8 52 39 4 77 2 179 1
9 32 40 4 79 1 182 1

10 36 41 2 80 1 194 1
11 23 42 2 81 1 211 1
12 20 43 2 82 2 247 1
13 34 44 1 83 2 263 1
14 20 45 4 85 1 280 1
15 12 46 1 87 1 356 1
16 9 47 1 88 2 364 1
17 9 48 1 90 1 365 1
18 10 49 4 93 1 386 1
19 8 50 2 94 1 410 1
20 5 51 4 % 2 460 1
21 6 52 3 98 1 510 1
22 3 53 1 102 2 528 1
23 3 54 3 108 1 540 1
24 6 55 3 113 1 629 1
25 9 56 1 114 1 726 1
26 4 57 2 121 1 866 1
27 6 58 2 128 1 1631 1
28 3 59 1 131 1
29 6 60 2 133 1
30 6 61 3 136 1

N= 2: mV(m,N)
m

(1.1)
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Figure 1.3: The frequency spectrum of Alice in Wonderland 1m: frequency class;
V (m, N) : number of types with frequency m).

Figure 1.4: The empirical structural type distribution ofAlice in Wonderland 1m:
frequency class; gem, N) : number of types occurring m or more times).

Table 1.3 lists V(m, N) for the N = 26505 tokens of Alice in Wonderland, and
Figure 1.3 visualizes this grouped frequency distribution or frequency spec­
trum. The horizontal axis plots the frequency classes m using a logarithmic
scale. The vertical axis plots V(m, N). Note that V(m, N) is a rapidly decreas­
ing function of m with a long tail of high frequencies m that are instantiated
by very few types.

The curve of the frequency spectrum is smooth enough to suggest that in
theory V(m, N) might be a monotonically decreasing function of m for which
the inequality

Table 1.4 presents the empirical structural type distribution of Alice in Won­
derland, and Figure 1.4 plots the corresponding empirical structural type dis­
tribution, again using a logarithmic scale for the horizontal axis. Note that
g(I,N) is equal to V(N), and that for the, the highest-frequency word in the
text, g(1631, N) = 1.

The grouped frequency distribution and the empirical structural type dis­
tribution are related by the following expressions:

YeN) = 2: V(m, N). (1.2)

V(m,N)

g(m,N)

gem, N) - g(m + I, N),

2: V(w,N).
w2: m

(1.4)

(1.5)

V(m, N) > V(m + I, N) (1.3)

holds. The irregularities observed from m = 6 onwards (see also Table 1.3)
would then be due to sampling error. Highly skewed frequency spectra of
this kind are typical in lexical statistics.

Closely related to the grouped frequency distribution V(m, N) is the so­
called empirical structural type distributiong(m, N), which specifies thenum­
ber of different word types which occur m or more times in a sample of N
tokens.

Definition 1.7 g(m, N) = L:;,;f) l[f(i,N)<:mj: the number of types
with a frequency m or more in a sample of N tokens.

i
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1.3 Zipf

1.3. ZIPF 13

Among the earliest studies on word frequency distributions the work by Zipf
(1935, 1949) figures prominently. Zipf ordered the words in his texts by de­
creasing frequency, and considered the relation between rank order and fre­
quency. Consider Table 1.5, which lists the twenty most frequent words in

Table 1.4: The empirical structural type distribution g(m, N) of Alice in Wonder-
Table 1.5: The twenty mostfrequent words in Alice in Wonderland ordered accord-
ing to decreasing frequency.

land.

Z Iz(z, N) word Z Iz(z,N) word
g(m,N) g(m,N) g(m,N) g(m,N)m m m m

1 1631 the 11 365 in1 2651 31 143 62 67 144 27
2 1475 32 140 63 66 145 26 2 866 and 12 364 you

3 1073 33 136 67 65 148 25 3 726 to 13 356 was
4 840 34 132 68 63 151 24 4 629 a 14 280 that
5 686 35 129 73 59 153 23 5 540 she 15 263 as
6 587 37 125 74 58 170 22 6 528 it 16 247 her
7 530 38 124 75 57 177 21 7 510 of 17 211 at
8 465 39 120 77 56 179 20 8 460 said 18 194 on
9 413 40 116 79 54 182 19 9 410 I 19 182 all

10 381 41 112 80 53 194 18 10 386 Alice 20 179 with
11 345 42 110 81 52 211 17
12 322 43 108 82 51 247 16

Alice in Wonderland in their Zipfian rank order. The most frequent word, the,13 302 44 106 83 49 263 15
14 268 45 lOS 85 47 280 14 is assigned the Zipf rank z := 1, the next most frequent word, and, is assigned

15 248 46 101 87 46 356 13 rank z := 2, and so on. Words with the same frequency are arranged in some
16 236 47 100 88 45 364 12 arbitrary order and they receive successively larger Zipf ranks. For instance,.
17 227 48 99 90 43 365 11 the 1176 hapax legomena in Alice in Wonderland are assigned the Zipf ranks
18 218 49 98 93 42 386 10 1476,1477,1478, ... , 2651. (This implies that the actual Zipf rank of a hapax
19 208 50 94 94 41 410 9 legomenon is not of interest, but rather the ranks at which the first and last
20 200 51 92 96 40 460 8 hapax legomenon are observed.) I will use the notation Iz (z, N) for the fre-
21 195 52 88 98 38 510 7 quency of a word with Zipfrank z. Thus 1.(1, N) is the frequency of the word
22 189 53 85 102 37 528 6 with Zipf rank 1, the subscript indicating that the frequency is to be under-
23 186 54 84 108 35 540 5
24 183 55 81 113 34 629 4 stood as with respect to a Zipfian ranking.

25 177 56 78 114 33 726 3 Definition 1.8 z: Zipf rank in a word list ordered by decreasing
26 168 57 77 121 32 866 2

frequency.
27 164 58 75 128 31 1631 1
28 158 59 73 131 30 Definition 1.9 Iz(z, N): frequency in a sample of N tokens of a
29 155 60 72 133 29

word with Zipf rank z·
30 149 61 70 136 28

The Zipfian rank-frequency distribution is the inverse of the empirical struc-
tural type distribution:

9(m, N) = z ¢'> Iz(z, N) = m. (1.6)

For instance, for the highest-frequency word in Alice in Wonderland, the, we
have

9(1631, N) = 1,
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Definition 1.11 *z: the probability of word W z estimated from its
sample relative frequency: rr, = f,(z, N)jN.

ThIs inverse relation between log Zipf rank and log frequency is known as
Zipf's law.

Thus far, we have considered Zipf's law in terms of the absolute sample
frequencies of words and their Zipf ranks. Absolute sample frequencies, how­
ever, are subject to sampling error, and will therefore diverge slightly from
Zipt's law. Theoretically, the frequency of a word is expected to be N"i, with
"i the population probability of Wi (see section 2.2). Underlying the observed
frequencies, there is a distribution of probabilities for which Zipt's law should
also be valid. Let's therefore reformulate Zipt's law in terms of the probabil­
ities of words. Instead of focusing on I,(z, N), we first consider the corre­
sponding relative sample frequencies 1,(z,N)jN. Assume furthermore, for
the sake of the argument, that these sample relative frequencies are reliable
estimates of the population probabilities.

Definition 1.10 7r,: probability of the word w, with Zipf rank z.

but at the same time
1,(I,N) = 1631.

Similarly, at the low-frequency end of the frequency spectrum we have:

g(I,N) = 2651,

1,(2651, N) = 1.

In general, if a word with frequency m has Zipf rank z, then the frequency
orderIng underlyIng the Zipf ranking implies that there are z words with at
least frequency m, which in tum implies that gem, N) = z.
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We can now reformulate Zipf's law as

C
'if;: = zU- (1.8)

Figure 1.5: Word frequency I,(z, N) as afunction of Zipfrank z in the double loga­
rithmic plane for N = 13250 (panel A) and for N = 26505 (panel B).

In both (1.7) and (1.8), 0 is a normalizing constant. Its function in (1.8) is to
ensure that the probabilities sum up to unity:

L7r,=1.

In (1.7), a is the free parameter of the model that determines the slope of the
regression lines in Figure 1.5, G is a normalizing constant. Taking logarithms
at both sides, the linear relation between log I, (z, N) and log z follows imme­
diately:

PaneI A of Figure 1.5 is a points plot oflog f, (z, N) againsllog z for the first
13250 tokens of Alice in Wonderland. The solid line is the corresponding least
squares regression line. Note that the highest frequencies appear as individual
points at the left hand edge of the plot, and that the large numbers of hapax
legomena and dis legomena appear as horizontal line segments at the right­
hand edge of the plot. The corresponding plot in panel B for the complete text
reveals a highly similar pallern. Zipf observed such roughly linear plots for
many different kinds of texts. ThIs led him to formulate the following relation
between f,(z,N) and z:

o
1,(z,N) =-;;.

z

10g/,(z,N)
o= log­
z'

= 10gO-ologz.

(1.7)

In (1.7), it ensures that the frequencies f,(z, N) sum up to N:

L f,(z, N) = N.

(Note that this implies that the value of the normalizing constant in (1.7) is N
tbnes that in (1.8). Going from frequencies to estimated probabilities therefore
implies a leftward shift by log N in the double logarithmic plane.)

The probability distribution (1.8) is known as the zeta distribution, which
owes its name to the Riemann Zeta function (after the German mathematician
G.F.B. Riemann)

((a) = 1+ G)" + G)" +. + (~)" +

Apart from the (normalizing) constant Or the successive terms of ~he Rie­
mann Zeta function spell out the probabilities of the words with Zlpf rank
z = 1,2, .... In other words, the probability of a word with the n-th rank is
given by the n-th term in the expansion of (a). Thus we can restate the zeta
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Since the number of hapax legomena tends to be roughiy half the vocabulary
size, the normalizing constant C is often taken to be V(N):

function in terms of the Zipf probabilities (1.8):

V(N)
V(m,N)= ( )"mm+l

(1.10)

Zipf often took a to equal unity, in which case the zeta function reduces to the
so-called harmonic series

1L:; (z = 1,2,3, ...).
z

Zipf (1935) refers to the corresponding probability distribution

C
71";:: =­

Z

as the standard harmonic distribution.2

Given the standard harmonic distribution, V(m,N) can be expressed as a
function of m:

z
fr m+1 .

m

(1.9)

Zipf (1935:47) hoped that the standard harmonic distribution would pro­
vide

Figure 1.6: The rank-frequency distribution as a step function in the double logarith­
mic plane and .the relation with the elements of the frequency spectrum: V(m, N) =
Z2 - Zl·

... Dynamic Philology with a standard curve of distribution in refer­
ence to which the frequency distribution of any other language can
be described. If the curve of the frequency distribution of a given
language conforms at any point with the standard harmonic curve
or if it deviates at any point either slightly or seriously above or
below, these facts may shed welcome light on significant factors in
the structure of language.

Zip!'s hopes have been partially fulfilled. It is clear that in panel A of Fig­
ure 1.5 the frequencies of the lowest ranks deviate substantially from their the­
oretical values according to (1.7). Subsequent research by Mande1brot (1953)
has suggested that this deviation can be captured by introducing a second
free parameter in the model, a proposal to which we discuss in more detail
in section 3.2.3. Finally, the words occurring with the highest Zipf ranks are
typically function words such as the, a, for, and she that have properties that
differ fundamentally from content words such as sister, white, and rabbit.

The usefulness of Zipf's model, however, is severely limited because its
parameters are highly dependent on the sample size N. To see this, con­
sider again the graphs shown in Figure 1.5. Panel B plots the Zipfian curve

z2

z
zl1

V(m,N) cc ( )
m m+1

To see this, consider two Zipf ranks z, and z, such that fz (z\, N) = m + 1
and fz(Z21 N) = m, with m > 0, where we choose Zl such that there is no
Z > Zl for which fz(z, N) =: m + 1, and similarly Zz such that there is no
z > z, for which fz (z, N) = m. In other words, we focus on the jumps in
the rank-frequency step function, as illustrated graphically in Figure 1.6, and
numerically for m = 1,2,3 in Alice in Wonderland in Table 1.6. Crucially, we
can write

v
1 '" 1

log(V) + 'Y L- i =: 1,
i=l

for V --l- 00, with "I =: 0.57723 (Euler's constant), we have that

v

L T- log(V) '" -y
i=l

V(m, N) = z, - z,.

Since fz(Z2l N) = *= m we have Z2 = ~. Likewise, Zl = m~l' and hence

which allows us to use the harmonic distribution as an approximation for a probability distribu­
tion for sufficiently large V.

c c C
V(m N) = z, - z, = - - -- = --,~,....,-;-

, m m+1 m(m+1)
----,,--------

2The harmonic distribution does not converge. Because the probabilities 1r z do not sum up to
unity, it is not a proper probability distribution. I Iowever, since
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Thus far, we have considered Zipf's law as formulated for the rank-fre­
quency distribution. Zipf also proposed to analyze the frequen~y spectrum
itself in terms of the zeta distribution. When we plot V(m, N) agamst m m the
double logarithmic plane, as shown for Alice in Wond~rland in the left panel
of Figure 1.8, we again lind a roughly linear relatIOn. Zlpf (1935:40-44) pomts
out that a model of the form

is accurate primarily for the smaIler values of m. This point is highlighted by
the dashed line, which represents a linear fit 10g(V(m,N») = a+b log(m) based
on the first 15 ranks. For these first 15 ranks, the fit seems quite reasonable,
but it clearly does not capture the pattern among the higher-frequency ranks,
which tend to have higher values than expected. When we base ~ lmear ~t on
the full spectrum, the regression line, represented by a dotted lme, deVIates
considerably from the observed lowest-frequency ranks.

r- 18 CHAPTER 1. WORD FREQUENCIES

Thble 1.6: The relation between the Zipf rank, the empirical structural type distribu­
tion, and the spectrum elements, illustrated for m = 1,2,3 in Alice in Wonderland
(N = 26505).

Zipfrank Number of spectrum elements
841

233 tris legomena = g(3, N) - g(4, N)
1073 = g(3, N)
1074

402 dis legomena = g(2, N) - g(3, N)
1475 = g(2, N)
1476

1176 hapax legomena = g(I,N) - g(2,N)
2651 = g(l, N)

po

1
V(m,N) ex----.

m
(1.11)

Figure 1.7: The dependency of the two parameters of Zipfs zeta distribution, the
intercept (panel A) and the slope (panel B) on the sample size N, plotted at 20 equally­
spaced intervals for Alice in Wonderland (compare 1.5).
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Figure 1.8: The frequency spectrum of Alice's Adventures in Wonderland in the
double logarithmic plane. Left panel: the integer-valued spectrum w,th lmear fits for
m = 1 ... 15 (dashed line) and for the complete range ofm (dotted lme). R'ght panel:
the same spectrum elements after transformation into fractional values for htgher­
frequency ranks, with linear fits for m = 1 ... 15 (dashed line) and for the complete'
range ofm (dotted line).
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for N =26505, twice the sample size of panel A. The general shapes of the
two curves are highly similar, although the divergence from linearity at the
left hand side seems to have increased somewhat for the fuIl text (panel B).
More disconcert.ing ~s the observation that the slope increases from -1.119 for
N =13250 to -1.205 for N =26505, and that the changes in the parameters of
the model as a function of N are systematic, as shown in Figure 1.7. Panel A
plots the intercept as a function of the sample size N, and panel B the slope.
The intercept is an increasing function of N, the slope is a decreasing function
of the sample size. Clearly, the parameters of the zeta distribution are subject
to the same kind of systematic variation as the sample mean frequency. A way
to take this variability into account in a principled way will be presented in
Chapter 3.

I

, !



In part, the problem that We are dealing with is a discretization problem.
Word frequencies are integers, yet the power model

The discrepancy for V(N), however, is easily solved by defining V,(m, N) for
zero ranks as well. Let mo denote a rank for which V(m,N) = 0, and let pm

21

(1.14)

(1.13)

1.3. ZIPF

v. ( N)
_ V,(mp,N) + V,(mf,N)

r mo, - ,
mf-mp

the average of the nonzero spectrum elements surrounding mo. With the
addition of V,(mo, N), the discrepancy between V(N) and Lm v,.(m, N) is
removed. To see why this is so, consider a spectrum element m with k =
mf - m. - 2 surrounding zero spectrum elements. The V(m, N) types of
rank m are reset to 2V(m, N)(k + 2), leaving kV(m, N)(k + 2) fractional
types which we divide equally among each of the k empty ranks. In this way,
all V(m, N) types are still present in the distribution, but now divided over
k + 1 ranks instead of being concentrated in one rank m only. An empty rank
mo therefore receives V(mp, N)(k + 2) fractional types from its nearest left
nonzero rank, and likewise V(mf, N)(k + 2) fractional types from its nearest
right nonzero rank, which immediately leads to (1.13). There is no guarantee,
however, that Lm m V, (m, N) will equal N. For our present example of Alice's
Adventures in Wonderland, L m mV,(m,N) = 26893.61 instead of 26505, even
though L m V,(m, N) is now identical to V(N). This implies thatthe values of
V,(m, N) are slightly too high.

Figure 1.8 illustrates that fitting a straight line to the real-valued approxi­
mate spectrum elements may not do justice to the slight downward curvature
at the head of the spectrum. The left panel of Figure 1.9 shows that this curva­
ture is handled in a more principled way when we smooth the spectrum using
(1.10), with V(26505) = 2651:

2651
V~(m,N)= ( )m m+l

Evaluating the goodness of fit in terms of the mean squared error (MSE) for
the first 40 ranks,

_ L:-"-l(V(mi,N) - V~(mi,N)}2
MSE(40) - 40

we find that using (1.10) instead of a simple linear fit reduces the MSE from
30641.48 to 648.23. Although qualitatively and quantitatively a substantial
improvement, the MSE remains quite high, and the left panel of Figure 1.9
shows that the curve of V~(m,N) tends to be too low for the higher ranks
(m> 20).

A more flexible Zipfian smoother has been proposed by Naranan and Bal­
asubrahmanyan (1998),

denote the greatest nonzero rank smaller than mo and fm the smallest nonzero
rank greater than mo. Then

which shares the term l(mO with the simple Zipfian power function (1.11),
but adds the term e-"Im to handle the downward curvature at the head of the
frequency spectrum. The right panel of Figure 1.9 plots the fit of this model

(1.12)

if m = 1
if 1 < m < max(m),

if m = max(m).

mm

{

V(I,N)
V. ( N) _ 2V(m,N)

T m, - m,-mp
2V(rn.,N)
2m-m p
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LV,(m,N) < LV(m,N) = V,
m m

LmV,(m,N) < LmV(m,N) =N.

When zero ranks intervene between m and mp or mf' the difference mf - m
will be greater than 2, so that V,(m, N) < V(m, N), otherwise V,(m, N) will
be the same as V(~, N) The right-hand panel of Figure 1.8 plots the resulting
V,(m, N) for AlIce s Adventures zn Wonderland in the bi-logarithmic plane us­
mg cucles, which now approximately follow a straight line. The downward
curvature in the observed values for the lowest frequency ranks is not elimi­
nated, ~owever, as shown by the dashed line, a least squares regression line
to the first 15 ranks. In contrast to the dotted line in the left panel, the dotted
Ime m the nght panel, the least-squares regression line using all observations,
seems reasonable for all but the first two and last two ranks.

Definitio~ (1.12) of v,,(m, N) sets V,(m, N) to zero whenever V(m,N) = O.
Thus, followmg Church and Gale (1991), the right-hand panel of Figure 1.8
plots exactly the same number of points as the left panel of Figure 1.8. But be­
cause some integer-valued spectrum elements have been replaced by smaller
real-valued spectrum elements, we have that

V(m,N) = am'

whic~ yields the straight line log(V(m,N») = log(a) + blog(m) in the bi­
logarIthmic plane, expects words to have real-valued frequencies. Instead
of. havmg sparsely populated high-frequency ranks m with words occuring
wlthmteger frequencies, the model assumes that all ranks are populated with
fractlonal numbers of types that become smaller as m increases. By itself, this
neednotbe ~ problem, as long as there is a way to transform an integer-valued
dIstrIbution mto a real-valued distribution.

. Churc~ and Gale (1991) and Gale and Sampson (1995) propose the follow­
mg technIque to obtain fractional spectrum elements for the sparsely popu­
lated higher frequency ranks m. Let mp and mf denote the ranks for which
V(m,N) > Othatimmediatelyprecedeandfollowrankm.IfV(m_I,N) > 0,
wehavethatmp =m-l, otherwise, mp < m-I. Likewise,ifV(m+l,N) > 0,
then mf = m + I, otherwise, it will be greater than m + 1 due to intervening
zero ranks. We can now define the real-valued V,(m, N) as follows:
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R(m,n) =V(m,N)/V(n,N).
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To see why the parameters of Naranan-Balasubralunanyan Zipfian model
change systematically as a function of N, consider the ratio of any MO spec­
trum elements,

Figure 1.10: The dependency ofthe three parameters ofthe Naranan-Balasubrahman­
yan Zipfian model as afunction ofthe sample size N in Max Havelaar by Multatuli.
The upper right panel plots C as afunction of N, the lower left panel" as afunction
of N, and the lower right panel 'Y as afunction ofN. The upper left panel plots V(N)
(upper circles), V(l, N) (central circles), and V(2, N) (lower circles) as afunction
of Nat 20 equally-spaced intervals_

Given Naranan and Balasubrahmanyan'5 model, we have that

Note that C disappears in Rn" which leaves us with two parameters to ac­
count for the kind of changes in the empirical values of these ratios illustrated

'" '"z Z
E E
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0
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to the data. Evaluated in terms of the MSE for the first 40 ranks, 77.37, we
observe a substantial improvement in goodness of fit. (For details on how the
parameters of (1.14) can be estimated, see section 3.4 in Chapter 3.)

Figure 1.9: The real-valued approximatefrequency spectrum ofAlice's Adventures
in Wonderland in the double logarithmic plane with a simple Zipfian fit (left panel)
and a Naranan-Balasubrahmanyan Zipfian fit (right panel).

Although the Naranan-Balasubralunanyan Zipfian model generally pro­
vides very good fits to empirical spectra, it suffers from the same problem
as observed in Figure 1.7 for the parameters of Zipf's rank-frequency distri­
bution, namely, systematic changes as a function of the sample size N. Fig­
ure 1.10 illustrates this systematic variability for a Dutch text, Max Havelaar,
by Multatuli, the pseudonym of Eduard Douwes Dekker (1820-1887). The
words of this text were Ie-arranged in a random order to eliminate possible
effects of non-randorrmess in word use (see Chapter 5 for detailed discussion
of the randomness assumption). The upper left panel plots V(N) (upper cir­
cles), V(I, N) (central circles), and V(2, N) (bottom circles) as a function of
N at 20 equally-spaced intervals. The remaining panels plot C (upper right),
J1. (lower left) and 'Y (lower right) as a function of N. Throughout the text,
C appears to increase with N. During the first 8 measurement points, f.L in­
creases, after which it becomes more or less stable. From measurement point
9/ f emerges as a decreasing function of N. Thus, at least two parameters have
to be adjusted to accommodate a change in sample size.
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lor Alice's Adventures in Wonderland and Max Havelaar in Figure I.I1. The cir­
cles represent R(2, I), the triangles R(3, 2), and the solid lines the correspond­
ing expected values (using binomial interpolation, see section 2.6). Because
the empirical ratios change systematically with N, the parameters J.L and "(
have to be adjusted continuously.

inal book, The Statistical Study of Literary Vocabulary. In this comprehensive
study 01 the Irequency distributions 01 a great number 01 dillerent texts, all
compiled by hand on individual slips of paper, Yule proposed a quantitative
textual measure that, apart from sampling fluctuations, should be indepen­
dent of sample size. His so-called characteristic constant K,

is a measure of the rate at which words are repeated in a text. To see this, it is
convenient to write K as follows:

K= 10000 {pV(m,N):::;:::;1 - ~}.

The lactor 10000 is a scale lactor, introduced only to avoid overly small val­
ues 01 K that might otherwise be dilficult to read. The proportion miN is the
sample estbnate 01 the probability 01 sampling a word with token Irequency
m. Hence, m' / N' is the probability of sampling such a word twice in a row, as­
suming that the word probabilities are constant (sampling with replacement).

A closely related measure has been proposed by Simpson (1949):

(1.17)

(1.15)

(1.16)

R= V(N)
-IN '

~ m m-I
D = L.., Vim, N) N . N _ 1-

m

K =10000 Lm m'V~":, N) - N,

Consider a word Wi with frequencym in a sampling situation without replace­
ment. The probability that the very first word sampled is precisely Wi equals
miN. The probability that the next token sampled represents this same type
is given by (m - I)/(N - I): the number of remaining tokens of Wi divided by
the total number 01 remaining tokens. Thus N';)=i estimates the likelihood
that two tokens of the same type are sampled in succession. The value of D is
obtained by summation of this likelihood for all V(N) types.

Both K and D are measures of the repeat rate_ In Chapter 2, we shall
see that they can also be viewed as weighted average probabilities. Both are
heavily inliuenced by the highest frequency words, lor which the probability
01 repeated use is greatest. The large dots in panels A and B 01 Figure 1.12
show that in Alice in Wonderland K and D reveal highly sbnilar developmental
pattems. Apparently, the repeat rate in this text is high in the initial sections,
decreases first, and then slowly increases again.

Doubts concerning the stability of K and D lor varying sample sizes have
led to the lormulation 01 other text constants. Recall that the mean frequency
N/V(N) varies with the sample size N. Would it be possible to elbninate this
variation by considering sbnple functions 01 Nand V(N)? Guiraud (1954)
proposed a measure in which the square root of the sample size replaces the
sample size in what is known as the type-token ratio, V(N)/N, the inverse 01
the mean type frequency, as follows:

Alice in Wonderland Max Havelaar

to to
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Figure I.I1: The spectrum ratios V2/VI (R(2, I), circles) and V3/V2 (R(3,2),
triangles) for Alice's Adventures in Wonderland left panel) and Max Havelaar
(right panel) for 20 equally spaced sample sizes N. The solid lines represent the cor­
responding expected values.

We have seen that lexical measures such as mean frequency and vocabulary
size, as well as the parameters of the zeta distribution and the Naranan-Ba­
lasubrahrnanyan Ziplian model all depend on the sample size. This state 01
allairs leads to severe problems when texts 01 dillerent lengths have to be
compared. Not surprisingly, a great many measures have been proposed as
text constants, measures that do not vary with the size 01 the sample.

The oldest 01 these measures was developed by Yule (1944), in his sem-

1.4 The quest for characteristic constants
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Figure 1.12: The characteristic constants K (panel A) and D (panel B) as afunction
of the sample size N in Alice in Wonderland. The large dots represent the empirical
values, the solid line the Monte Carlo mean, and the dotted lines the 95% Monte Carlo
confidence interval, based on 5000 permutation runs.

Figure 1.13: The text characteristics R (panel A) and W (panel B) as afunction of
the sample size N in Alice in Wonderland. The large dots represent the empirical
values; the solid line the Monte Carlo mean; and the dotted lines the 95% Monte Carlo
confidence interval; based on 5000 permutation runs.

If R and Ware truly constants, then V(N) reduces to very simple functions
ofN:

But are Rand W truly constant and independent of N? The large dots in
Figure 1.13, which plot the observed values of R and W for 20 equally-spaced
values of N in Alice in Wonderland, show that this is not the case. In this novel,
R and Ware increasing functions of the sample size N. Unlike K and D,
Rand W have no probabilistic interpretation. The value of the parameter
a in the expression for W, for instance, has no sensible interpretation and is
usually fixed at 0.17, a heuristic value that has been found to produce the
desired result of producing a rougWy constant relation between Nand V(N).

It is easy to see why R and W change with N when we consider a pop­
ulation with a fixed number of types, for instance, a distribution of 10000
tokens sampled from a population with 50 equiprobable types, as shown in
Figure 1.14. Each panel displays 40 measurement points that are 250 tokens
apart. The upper left panel shows that all 50 types already appear in the sam­
ple once 250 tokens have been sampled. The upper right panel shows the
linear increase of the average token frequency in the interval N = [250,10000].
The lower left panel shows that R decreases as N is increased. Because V is
fixed, the plot effectively shows the function y = 50x- I !'. The lower right

and Brunet (1978) suggested a power relation between N and V(N),

W = NV(N)-'.

(1.19)S = V(2, N)jV(N).

panel shows that W increases as a power function, y = NO. 514, a straight line
in the double logarithmic plane. This example shows that once all types have
been sampled; the constants systematically change when the sample size is
increased. Because actual texts do not use all types that are available in the
language, the changing magnitude of V affects the values of Rand W. This is
most clearly visible in the case of R. The left panel of Figure 1.13 shows that
in Alice's Adventures in Wonderland R reveals the same downward curvature
visible in Figure 1.14, but only after the first quarter of the text has been seen.
Even for larger sample sizes; the appearance of new types slows down the
rate at which R decreases, and gaurantees that its value stays well above 1.0
throughout the text.

The next MO measures focus on the low-frequency words in the frequency
spectrum. Sichel (1975) observed that the proportion S of dis legomena V (2, N)
of the vocabulary size V(N) is more or less constant:

The proportion of hapax legomena on the vocabulary V(l, N)jV(N) piays a
key role in a measure proposed by Honore (1979):

H = 100 log N . (1.20)
1- vet'))

VN

The idea underlying (1.20) is that V (1, N) jV(N) is a linear function of log N:

V(I,N)
V(N) =a-blogN

(see panels A and B of Figure 1.15). Since for N = 1 the number of hapaxes is
equal to the number of lypes, a must be equal to 1 and hence b = 100jH. It

(1.18)

RvN, ,

(
log(W))-O = (1 W)-~
10g(N) ogN .

V(N)

V(N)
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1.4. THE QUEST FOR CHARACTERISTIC CONSTANTS

Figure 1.15: The text characteristics H (panel C) and S (panel 0) as afunction of
the sample size N in Alice in Wonderland. The large dots represent the empirical
values, the solid line the Monte Carlo mean, and the dotted lines the 95% Monte
Carlo confidence interval, based on 5000 permutation runs. Panels A and B show the
roughly linear dependency of the relative number of hapax legomena on log N tlwt
underlies H.

follows Immediately that H = 100/b. Honore does not consider the propor­
tion V(I, N)/V(N) by itself because this proportion generally decreases with
increasing sample size (see panel B of Figure 1.15). The large dots in panel C
of Figure 1.15 suggests that H is more or less constant for N > 5000 and con­
verges rapidly to its final value of 1850. With respect to Sichel's constant S,
the large dots in panel D reveal a slightly decreasing pattern with relatively
large local fluctuations.

Herdan (1964) proposed a constant that is based on the observation that
the growth curve of the vocabulary appears as roughly a straight line in the
double logarithmic plane, as shown in panel A of Figure 1.16 for Alice in Won­
derland by means of large dots. This suggests that a power model for V(N)
would be appropriate:

V(N) =aNc

10gV(N) = loga + ClogN

with loga as intercept and C as slope. For sample size N = 1, YIN) must
also equal unity, and since 10g(l) = 0, we have that a = 1. The remaining

Applying logarithms to both sides, we again obtain the equation for a straight
line
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Figure 1.14: V, N IV, R, and W as a function of N in a random sample of 10000
tokens from a population with 50 equiprobable types.



1.5 The lognormal distribution

Unfortunately, it is not generally true that logarithmically transformed
word frequencies are normally distributed. Figure 1.18 illustrates this point

Figure 1.18: The lognormal hypothesis. Panel A shows the estimated probability den­
sity function for logfrequency in Alice in Wonderland (dashed and dotted line) and
the estimated density function ofa lognormal random variable with the same mean
and standard deViation. Panel B plots the corresponding quantiles of the standard
normal distribution.
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Figure 1.19: The parameters of the lognormal model as afunction of the sample size
N for Alice in Wonderland.
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An important model for word frequency distributions is the lognormal model.
A random variable X is lognormally distributed if Y = 10g(X) follows a
nonnal distribution. The lognormal model is sometimes used for skewed
distributions with sloWly decreasing right tails. Word frequency distribu­
tions are heaVily skewed in this sense. Herdan (1960) and Carroll (1967) have
therefore considered the possibility that word frequencies are lognormally dis­
tributed. The lognormal hypOtheSis is of special interest because many statis­
tical tests presuppose nonnality. Word frequency distributions are decidedly
non-normal. However, if they can be transformed into normal distributions by
conSidering log frequency instead of absolute frequency, then these statistical
tests can nevertheless be used after applying a simple logarithmic transforma­tion.

looking-glass, it is in this very same text that K displays its greatest variability.
In addition, the two texts reveal reasonably similar values for K for the first
ten thousand tokens. Although Through the looking-glass has the lower overall
repeat rate - note that this ties in nicely with its slightly higher lexical rich­
ness - the variability in the repeat rate itself within Through the looking-glass is
so large that it becomes difficult to argue on the basis of K alone that Through
the looking-glass differs from Alice in Wonderland. Texts are complex entities,
and by using simple summary statistics one runs the risk of opting for too
coarse a measure to identify similarities and differences behveen texts.



1.6 Discussion

a discrete distribution, we again run into the problem that the parameters of
the lognormal model change when the sample size is changed. Figure 1.19
illustrates this by now familiar phenomenon for Alice in Wonderland. Panel A
plots the mean log frequency for twenty equally-spaced intervals, and panel B
the corresponding standard deviations. Both the mean and the standard devi­
ation appear as increasing functions of N. In chapter 3, we will show how the
hypothesis of lognormality can be adjusted to avoid these problems.

The main thrust of this chapter has been to show that for word frequency dis­
tributions the sample mean frequency and many other summary measures
change in a highly systematic way as a function of the sample size. The pa­
rameters of the zeta (Zip£) and lognormal distributions are subject to exactly
the same kind of systematic dependency on the sample size.

An additional complicating factor is that words are not randomly dis­
tributed in texts. Randomization tests show that the articles a and the are not
uniformly distributed in Alice in Wonderland. Non-randoIlUless in word us­
age similarly affects the measures that have been proposed as invariant with
respect to sample size. Consequently, measures such as K and D, which in
theory are true constants, nevertheless may reveal significantly non-random
developmental profiles.

The prominent role of the sample size in shaping word frequency distribu­
tions, combined with the non-random way in which authors use their words
in discourse, raises MO important issues. First, when comparing texts or cor­
pora, the characteristic constants that have been proposed as independent of
the sample size should be interpreted with caution. They may reveal differ­
ences between authors~ genre~ or register, but when substantial differences in
sample size are involved, the extent to which their values vary with sample
size should be carefully considered. In addition, to gauge the importance of a
difference in the value of a text characteristic for two or more texts, one should
weigh the intertextual differences with respect to the intratextual variability
of the text characteristic. It is only when the intertextual differences are larger
than the intratextual differences that one may have some confidence that the
differences are reliable.

Second, the law of large numbers does not appear to hold for word fre­
quency distributions. Is the non-randomness in word use illustrated for the
articles the and a in Alice in Wonderland to be held responsible? Or are lexi­
cal samples, even when encompassing tens of thousands or even millions of
words, too small to allow the theoretical probabilities of words to be estimated
from their sample relative frequencies? These issues are addressed in detail in
the next chapters.

351.7. BIBLIOGRAPHICAL COMMENTS

1.7 Bibliographical Comments

5. Figure 1.21 plots the frequency spectrum of Through the looking-glass for
N = 14514 and N = 29028. Does the curve with the greater number
of hapax legomena (V(l, N» represent the larger sample or the smaller
one?

1. Show, using definition 1.2, that the ratio N jV(N) represents the mean
token frequency.

2. How might non-randomness in word usage affect the accuracy of theo­
retical estimates for V(N)?

3. Figure 1.20 plots the relative sample frequencies of a and the in Through
the looking-glass. Offer an explanation for the developmental profiles.

4. Interpret the expression V(O, N). What does Figure 1.3 suggest about its
magnitude, when we view Alice in Wonderland as a sample of Carroll's
word use?

gem, N) > 2g(m + 1, N) - gem + 2, N)

in terms of the frequency spectrum V (m, N).

6. Rewrite

An elementary introduction to lexical statistics is Muller (1977). Muller (1979b)
provides a useful collection of papers in the French tradition of lexical statis­
tics. Other important studies in this tradition are Guiraud (1954), Brunet
(1978), Honore (1979), and Menard (1983). A more recent textbook is Lebart
and Salem (1994).

In the Anglo-Saxon tradition, classic studies are Zipf (1935), Zipf (1949),
Yule (1944), Carroll (1967), and Herdan (1960), Herdan (1964), Herdan (1966).
Important technical papers are Good (1953), Good and Toulmin (1956), and
Efron and Thisted (1976).

In the Eastern-European tradition, Orlov (1983a) and Orlov (1983b) are ac­
cessible studies. Guiter and Arapov (1983) is a useful collection of studies on
Zip!'s law. The concept of structural distributions is developed in Khrnaladze
and Chitashvili (1989) (in Russian), part of which has appeared in English
in Khmaladze (1987). A review article in English is Chitashvili and Baayen
(1993).

For Monte Carlo methods, see Hammersley and Handscomb (1964) and
Meyer (1956). A review of lexical constants is Tweedie and Baayen (1998), for
non-randomness in the use of function words, see Darnerau (1975).

Important journals are Computers and the Humanities, Literary and Linguis­
tic Computing~ Journal ofQuantitative Linguistics, Computational Linguistics~ and
the book series Glottometrika. A number of important technical papers can be
found in Biometrika.

1.8 Questions
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371.8. QUESTIONS
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Express V(m, N) as a function of m and the parameters of the Zipf­
Mandelbrot distribution.

8. Mandelbrot (1953) enriched Zipf's zeta distribution with a second free
parameter b to enhance the model's accuracy for the high-frequency
ranks:

7. Figure 1.22 shows the error function of Zipi's zeta function for Alice in
Wonderland at N = 13250, i.e., for each Zipf rank z it plots the differ­
ence between the observed frequency f,(z, 13250) and the expected fre­
quency given by (1.7). What is the source of the striations at the right­
hand side of the plot? Comment on the error pattern and its relevance
for interpreting the high correlation (r = -0.986, t(1827) = -250.02,p =
0) between Zipf rank and frequency.
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Figure 1.20: The sample relative frequency of the article a p(a, N) (panel A) and the
sample relativefrequency ofthe article the p(the, N) (panel B) as a[unction ofsample
size N in Through the looking-glass, measured at 20 equally-spaced intervals. The
large dots represent the empirical values, the solid line the Monte Carlo mean, and
the dotted lines the 95% Monte Carlo confidence interval, based on a total of5000
permutation runs.

9. Figure 1.7 shows that the intercept is an increasing function of Nand
that the slope is a decreasing function of N. Offer an explanation for this
pattern.

10. Rewrite K (1.15) in terms of the word frequencies f(i,N) instead of in
terms of the frequencyspechum V(m, N).

11. The randomized version of Alice in Wonderland reveals higher values for
C than the original non-randomized version. fs the direction of the dif-
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Chapter 2

Non-parametric models
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This chapter presents a range of statistical techniques that are available for
the analysis of word frequency distributions. Section 2.1 introduces some ba­
sic probabilistic concepts. Section 2.2 discusses the urn model, according to
which word use is viewed as random selection from a population with fixed
probabilities for words to occur. The binomial model and the Poisson approx­
imation to the binomial model are defined here. Section 2.3 is concerned with
the structural type distribution, which allows us to restate the Poisson model
in integral form. Section 2.4 introduces the concept of the LNRE zone, the
range of sample sizes where the sample relative frequencies are not good esti­
mates of the corresponding population probabilities. The next section (2.5) fo­
cuses on the Good-Turing estimates, which adjust sample relative frequencies
for the non-negligible frequency weight of the unseen words. Methods for
calculating the frequency spectrum for any sample size given the frequency
spectrum for a given sample size are presented in sections 2.6 and 3.2.

2.1 Basic concepts

1 5 10 50 100
z

500 1000 SUMMARY This section briefly presents the definitions of the expectation, variance,
and covariance ofa random variable, in combination with a summary of some basic
properties of these operators. The Bernouilli distribution is also introduced, and the
distinction between permutations and combinations is outlined.

!

Figure 1.22: The error function of Zipfs zeta function for Alice in Wonderland at
N = 13250.

In this section a summary review is presented of the main definitions and
basic properties that we will need in the course of this chapter. For detailed
discussion and proofs, the reader is referred to textbooks such as, e.g., Ross
(1988).

Definition 2.1 The expectation E[X] of a random variable X is
given by

E[X] = LxPr(X = x).
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