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Foreword

The Cryptoclub is a wonderful introduction to cryptography for middle-school
students. As a research mathematician with a long-standing interest in this
subject, I am very favorably impressed by the accuracy, clarity, and relevance
of the material presented. I believe that this book offers a great opportunity to
introduce students to applications of mathematics that are both exciting and
also play a major if sometimes hidden role in our daily activities. Encryption
of information is used not only by students and governments to keep com-
munications secret but also by banks and other businesses to secure sensitive
information. With the growing number of transactions taking place over the
Internet, cryptography is of ever-increasing importance.

Many people have the mistaken impression that mathematics is a static subject,
one in which everything has been known for hundreds of years. Cryptography
acts as a window to the open questions and evolving nature of mathematics
and, in particular, to number theory, often considered an amusing playground
for mathematicians with little relevance to the real world. In this book, we are
shown why this view now has been completely reversed.

By incorporating various mathematical skills (factoring, exponentiation, modu-
lar arithmetic, etc.) and using them in a concrete way, the authors motivate
students; by testing the efficiency of different encryption techniques, they
stimulate critical algorithmic thinking and a sense of practicality. I believe that
by telling a continuous story, the authors are able to engage the students and
keep their interest throughout the entire project.

Foreword



This book will without a doubt be a very attractive addition to the curriculum
for middle-school students.

It certainly would have benefited me when I was in middle school.

Ronald L. Graham
University of California at San Diego
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Preface

In the 1970s a new kind of code was discovered that changed the way people
could send secret messages. It meant they didn't need to agree in advance
about the details of the code they would use, This came at a good time because
people were just starting to use the Internet, and this new kind of code, called
a public key cipher, made it practical for businesses and for ordinary people to
communicate securely.

One kind of public key cipher uses prime numbers. We were excited by the
idea that kids could understand some of the topics involved in public key
cryptography. Middle-grade students learn about prime numbers and factoring,
so why not learn about how these topics are used today?

The more we thought about it, the more we realized there are many interesting
ciphers that involve the kinds of mathematics middle-grade students know. One
of these ciphers, which was used in battles long ago, involves nothing more
than addition and subtraction. Another, the Vigenére Cipher, which was used
during the Civil War and even into the twentieth century and was once believed
to be unbreakable, can actually be cracked by today's middle-grade students (as
long as the key isn't too long) by finding common factors of certain numbers.

We believe learning about cryptography will be an enjoyable way to explore
mathematics. It appeals to the natural curiosity that people of all ages have for
mysteries and secrets, and it comes with stories of how it has been used and
misused throughout history. Along with the mathematics, we have included
some of these stories—some tie in with what middle-grade students are learning
in social studies and others simply are interesting to us.

Preface
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We wrote this book so it could be used by teachers in classrooms and also by
kids who want to learn about secret codes on their own or with friends. We
tested it in Grades 5-8, in a variety of settings: reqular math classes, gifted
classes, remedial math classes, math clubs, after-school programs, a museum
camp, and a cross-curricular class that integrated social studies, math, and
language arts. Some students have read it on their own outside of school and
some in a home-school setting. We found that students of all abilities enjoy the
beginning chapters and advanced students and independent learners enjoy the
challenge of the chapters near the end of the book.

If you don't have a class to work with, you can still read and enjoy this book.
For class activities that involve sending messages to others or playing a game,
you can substitute a friend for a class and send messages to each other. In some
places, we give tips on how to modify the activities to do them alone, in case
you can't find a friend who wants to work together.

Workbook and Teacher’s Guide

A workbook is available to go along with this book. It contains the same
problems as the book, but it gives you space to write your answers. We suggest
using the workbook, since it avoids mistakes that might occur when you copy
long messages onto your own paper.

A teacher’s guide is available that contains suggestions for teaching and an
answer key. For information about ordering a workbook or teacher's quide,
contact the publisher, A K Peters, Ltd., at http://www.akpeters.com, or go to
the Cryptoclub website.

Website
As we developed the book, we also developed a website to go with it:
http://cryptoclub.math.uic.edu

You can use the tools on the website to encrypt and decrypt messages. You
can also collect data about the messages that will help you crack them. The
computer will do the tedious work, and you can do the thinking. As you read
a chapter, you should first solve the problems that are there. After you have
worked with the short messages in those problems, you are ready to work with
longer messages on the computer.

Preface



Besides tools for encrypting and decrypting, the website has an animated
treasure hunt, message boards for sending secret messages, and programs for
building factor trees and finding prime numbers. It will continue to grow, even
after the book is published, so you should check back later for more activities
and messages to crack.

The Cryptokids

The Cryptokids aren't exactly real kids, but some of the stories are based on
things that really happened. Janet Beissinger's children are named Jenny, Dan,
Tim, Abby, and Peter, and Vera Pless’s grandchildren are named Evie, Lilah, Becky,
and Jesse. A teacher really did read a note out loud to the class, to the dismay
of one of the kids. The great-grandfather of Abby and Jenny's mother really did
discover—and lose—silver along the Nipigon River (although he probably never
wrote a secret message about it). Tim really did try to find an example for which
2 + 2 is not always 4, after being told he just had to accept the fact that some
things are always true. And Jesse really did join the Cryptoclub after the rest of
the kids—he was born while we were writing Unit 3.

As you read the book, listen to the conversations of the Cryptokids. They
might ask each other some of the same things you are wondering about. You
might imagine yourself talking with friends in the same way about how to
solve problems. Their conversations reflect some of our own beliefs: that it is
interesting to think about different ways to solve math problems and fun to
look for ways to make problems easier. We enjoy working on a problem and
solving it piece by piece. We feel good when we finish. We hope you will too.

Preface
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Unit 1: Introduction to Cryptography



Caesar Ciphers

Abby wrote a note to her friend Evie. She folded it up tightly so no one
else could read it and passed it to Evie when she thought nobody was
looking. Unfortunately for the girls, their teacher was looking. She took
the note away and read it out loud to the whole class.

Abby was mortified. If only she had known how to use cryptography!
Then she could have sent the message in a secret code and avoided all of
this embarrassment.

What Is Cryptography?

Cryptography is the science of sending secret messages. People have
been sending secret messages for thousands of years. Soldiers send them
so the enemy won't know their plans; friends send them when they want
to keep their notes private; and, today, people shopping on the Internet
use them to keep their credit card numbers secret.

People often use the term “secret code” to mean a method for changing
a message into a secret message. A very simple secret code was used in
Boston in 1776 to send a message to Paul Revere about how the British
were coming. The code involved the number of lanterns hung in the
church bell tower: “One if by land, two if by sea.”

Chapter 1: Caesar Ciphers
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plaintext: | @

hli

jlk{limnjo|p

e
ciphertext: DI[E F'G H"

191
JIKIL

oo =<
YN

qr
MIN/o[PlQIR[SITIU[VIWIX]YIZIA

Caesar cipher with a shift of 3.

PROBLEMS
(Workbook page W1)

1. Try it yourself!
a. Encrypt “keep this
secret” using a Caesar cipher
with a shift of 3.
b. Encrypt your teacher’s
name with a shift of 3.

2. Decrypt the answers to the

following riddles. They were
encrypted using a Caesar
cipher with a shift of 3.

a. Riddle: What do you call
a sleeping bull?

Answer:

D EXDOGRCHU

b. Riddle: What's the
difference between a
teacher and a train?

Answer:

WKH WHDFKHU VDBV
“QR JXP DOORZHG.”
WKH wuDLQ VDBV
“FKHZ FKHZ."

In cryptography, the word cipher is used to mean
a particular type of secret code that changes each
letter of a message into another letter or symbol. One
of the oldest ciphers is named after Julius Caesar, who
used this type of cipher to exchange messages with
his Roman generals more than 2,000 years ago.

In a Caesar cipher, the alphabet is shifted a certain
number of places and each letter is replaced by the
corresponding shifted letter. For example, shifting the
alphabet 3 spaces to the left gives the Caesar cipher
shown above.

This cipher changes a to D, b to E, and so on. For
example, using this cipher, Abby’s name becomes
DEEB:

Abb@
DEER

Changing a message to a secret message is called
encrypting. Figuring out the original message from
the encrypted (secret) message is called decrypting.

A message beforeitis encryptedis called the plaintext.
An encrypted message is called the ciphertext. To
avoid confusion, we will write plaintext in lowercase
letters (except at the beginning of sentences or
names). We'll write ciphertext in uppercase letters.

%+ Do Problems 1 and 2 now.

Unit 1: Introduction to Cryptography



plaintext:|@ |b [ [d e [f g |h[i]]j|k[L[m]|n

0

~+
=

P

ciphertext:|E | F |G |H|T|J|K|L|M|/N[O|P|Q|R

S

oo =
L ]
o

qlr
TIUlV

Caesar cipher with a shift of 4.

To confuse anyone who might find your notes, you
can shift the alphabet any number of spaces. The
Caesar cipher above is a shift of 4 spaces.

% Do Problems 3 and 4 now.

CLASS ACTIVITY: Play Cipher Tag

Choose someone to be “It". “It" goes to the board,
writes an encrypted name or message, and tells the
class what shift was used for the encryption. The first
person to decrypt the name becomes the new “It”
and writes a new encrypted name or message on the
board.

PROBLEMS
(Workbook page W2)

3. Decrypt the following note Evie wrote to Abby.
She used a Caesar cipher with a shift of 4 like
the one above.

WSVVC. PIX'W YWI GMTLIVW JVsSQ RSA
SR.

4. Use a shift of 3 or 4 to encrypt someone’s name.
It could be someone in your class or school or
someone your class has learned about. (You'll
use this to play Cipher Tag.)

Y TIP

You can use graph paper to
write messages. Put one letter
in each box.

1S |

Ablbly
DIE|E[R |

m

Lined paper is good, too. Turn
it sideways, and the lines make
columns to write the letters in.

Chapter 1: Caesar Ciphers



¢ TIP: Using a Cipher Wheel

® Plaintext on outer wheel
(lowercase)

o (ipher text on inner wheel
(uppercase)

e Turn inner wheel
counterclockwise

PROBLEMS
(Workbook page W3)

5. Try it yourself!

a. Encrypt “private
information” using a cipher
wheel with a shift of 5.

b. Encrypt your school's
name using a cipher wheel
with a shift of 8.

Use your cipher wheel to
decrypt the answer to the
following riddle:

6. Riddle: What do you call a
dog at the beach?

Answer (shifted 4):
E LSX HSK.

Cipher Wheels

To be able to change a cipher quickly, you can use
a cipher wheel, like the one below. Then you can
easily shift the alphabet any amount by turning the
inner wheel.

ciphertext

(inner wheel)

A cipher wheel with a shift of 4.

CLASS ACTIVITY: Making a Cipher Wheel

Use the cipher wheel circles in the Workbook or on
page 199 of this book, or make a copy of the circles
on the inside back cover.

Cut out the circles to make a cipher wheel. Put the
small circle on top and fasten the two circles together
by putting a brad through their centers. (Make sure
the brad goes through the exact centers, or the wheel
might not work very well.)

=

% Do Problems 5-9 now.

Unit 1: Introduction to Cryptography



PROBLEMS

(Workbook pages W3-W4)

Use your cipher wheel to
decrypt the answers to the
following riddles:

7. Riddle: Three birds were
sitting on a fence. A hunter
shot one. How many were
left?

Answer (shifted 8):

VWVM. BPM WBPMZA
NTME TEIG.

8. Riddle: What animal keeps
the best time?

Answer (shifted 10):
K GKDMRNYQ

9. Write your own riddle and
encrypt the answer. Put your
riddle on the board or on a
sheet of paper that can be
shared with the class later
on. (Tell the shift.)

DO YOU KNOW?

Little Orphan Annie and Captain Midnight

In the late 1930s, kids gathered around
their radios after school to hear the
latest stories about Little Orphan
Bnnie, a red-headed orphan who had many
exciting adventures, accompanied by her
dog Sandy. The episodes continued from
one day to the next, and if you wanted
to know what would happen in the next
episode, you could decode clues using
the Little Orphan Annie decoder, which
she called a Code-0-Graph. This was
a cipher wheel, like the one in this
book, which you could get by sending in
labels from boxes of Ovaltine.

After Little Orphan Znnie went off the
air, the Ovaltine company sponsored a
radio show about the crime-fighting
Captain Midnight. Captain Midnight's
helper alsoc had a Code-0O-Graph, which
he used to send messages to Washington.
Listeners who sent away for the Code-
O-Graph became members of Captain
Midnight' s Secret Squadron of crime
fighters. They could decrypt messages
broadcast by the show' s announcer about
the next program.

Chapter 1: Caesar Ciphers
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Sending
Messages with
Numbers

alblc|d|e|flg|h|i|jlk|l|m|n|o|plqg|r|s|t]ulv

0[1/2|3|4(5[6/7|8[9/10{11{12[13/14(15/16|17|18/19|20|21

22

23124

Cipher strip.

Other kids in school sent secret messages. Jenny was one of them. She
liked to encrypt messages by changing letters to numbers. She let 0
represent a, 1 represent b, 2 represent ¢, etc.

Changing letters to numbers, Jenny encrypted her name like this:

Jeyuwg

9 4 13 1324

CLASS ACTIVITY: Pass the Hat

a. Use the number method to encrypt your teacher's name. Compare your
answer with the rest of the class.

b. Use the number method to encrypt your name. Put your encrypted name
in a “hat” that your teacher provides.

c. Pass the hat around and pull a name from it. Decrypt the name and
return it to its owner.

Chapter 2: Sending Messages with Numbers




k

Liminlo|plq|r|s|tiulv|w/x|y|z

4/516|7|8]/9/10/11|12

13]14/15 16|1? 18|19/20/21|22|23|24/25/0( 1| 2

using Jenny's method.

a. Riddle: What kind of
cookies do birds like?
Answer:

2,7,14,2,14,11,0,19, 4
2,7,8 17, 15

b. Riddle: What always
ends everything?

Answer:

19,7, 4

11, 4, 19,19, 4,17 6

. a. Encrypt “James Bond”

using the cipher strip on
page 9.

b. Encrypt “James Bond”
using the cipher strip above
that is shifted three places.

¢. Describe how you can
use arithmetic to get your
answer to 2b from your
answer to 2a.

Cipher strip with a shift of 3.

PROBLEMS
(Workbook page W5)

1. Decrypt the following riddles

“s Do Problem 1 now.

Jenny used her number method to encrypt messages
for a while, but then she realized it would be very
easy for someone else to figure out her method.
When she heard about Caesar ciphers, she decided to
combine them with her number method. She shifted
the numbers on her strip three places and got the
cipher shown above.

% Do Problem 2 now.

Jenny realized that she didn't need a cipher wheel to
use Caesar ciphers with numbers—all she needed was
arithmetic. To encrypt the letter j, she followed this
flowchart:

plaintext j

|9 |

add shift amount +3

| nun;ber

[shifted number| | 12 |

To encrypt her brother’s name, Daniel, with a shift of
4, Jenny changed letters to numbers and added 4:

paintet: P A wn [ e |
numberss 3 0 13 € |4 11
shifted numbers: 7 4 1_?_1:2 9__15

%2 Do Problem 3 now.

Unit 1: Introduction to Cryptography
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Numbers Greater than 25

Jenny started to use addition to encrypt her name
with a shift of 3, but the y gave her trouble. She saw
that y corresponds to 24, but 24 + 3 =27. “What do I
do now?" she wondered. “My strip doesn't have 27 on
it.” The cipher strip shifted 3 on page 10 shows that
y should be encrypted as 1.

“I get it,” said Jenny. “On the strip, the numbers only
go up to 25. Then they start again with 0, 1, and so
on. So 27 must be the same as 1."

It helped Jenny to think of the numbers as wrapping
around a circle:

241250, 7 %
2 @ o
A
¥ 3
gf o
o |o-
|
2\ p
P A
N /o
r4 /Q\'

Numbers that wrap around the circle to the same posi-
tion are equivalent, or congruent, to each other. So,
26 is equivalent to 0, 27 is equivalent to 1, and so on.

% Do Problems 4-6 now.

Xy
2324
wBA
01

PROBLEMS
(Workbook page W6)

3. Encrypt each word with the

4. What numbers between 0

5. Describe an arithmetic

6. Encrypt each word by adding

given shift.

a. Lincoln; shift 4

b. Luke; shift 5

¢. experiment; shift 3
What is different about
encrypting the letter x?

and 25 are equivalent to the
following numbers?

a.28 b.29 «c 30

d. 34 e 36 f. 52

pattern that tells how to
match a number greater
than 25 with an equivalent
number between 0 and 25.

the given amount. Your
numbers should end up
between 0 and 25.

a. x-ray; add 4
b. cryptography; add 10

Chapter 2: Sending Messages with Numbers
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PROBLEMS
(Workbook page W7)

7.

10.

11.

Here is how Jenny encrypted
the name of one of her friends
by adding 3:

14, 11, 14, 3, 10.

Decrypt to find the name.

Riddle: Why doesn't a bike
stand up by itself?

Answer (encrypted by adding 3):

11,22, “ 21 22,;25,17
22,11,20,7,6
Riddle: What do you call a

monkey who loves to eat
potato chips?

Answer (encrypted by adding 5):

5 7,12, 13,20
17, 19, 18, 15

Riddle: What is a witch's
favorite subject?

Answer (encrypted by adding 7):

25, 22, 11, 18, 18, 15, 20, 13
Challenge. This is a name that
was encrypted by adding 3:
22, 11, 15, 15, 1.

a. Decrypt by subtracting.

b. What happens to the 1?
What can you do to fix the
problem?

To decrypt her Caesar number messages, Jenny
only needed to subtract. If she added three to
encrypt, she could decrypt by subtracting three.
For example, she would decrypt 12as 12 -3 =9,
which corresponds to the letter j.

% Do Problems 7-11 now.

Negative Numbers

Abby encrypted her name by adding 6. (Encrypting
the y gave her 30, but she replaced that with 4,
which is equivalent to 30 when the numbers wrap
around.)

Y
2
7

tmo_}
MR
N R
=

Jenny started to decrypt Abby's numbers by
subtracting 6, but decrypting the number 4 gave
her trouble. She subtracted:

§-6=-2

“What do I do now?” she wondered. “What letter
matches -2?7"

12

Unit 1: Introduction to Cryptography



Working with ciphers involves the numbers from
0 to 25. Numbers outside this range wrap around
to match equivalent numbers between 0 and 25.
This was true for numbers greater than 25, and it
is also true for numbers less than 0.

Jenny knew that counting back two from 0 gives
-2. Since 0 is equivalent to 26, she counted
back two from 26 and saw that -2 is the same as
24, Since 24 matches y on the cipher strip, she
concluded that the 4 in Abby’s numbers decrypted
toy.

26 2
K\2500 7 /<@
AT %
e
) 2

~f il
ml o
L
2\ N

“x Do Problems 12-16 now.

PROBLEMS

(Workbook page W8)

12.

13.

14,

15.

16.

What numbers between 0 and
25 are equivalent on the circle
to the following numbers?

ao 25 b- 28 C. _1

do _2 E. —4 ft _10

Describe an arithmetic pattern
that tells how to match a
number less than 0 with an
equivalent number between 0
and 25.

Decrypt by subtracting.
Replace negative numbers with
equivalent numbers between 0
and 25.

a. 18,11, 2,2, 3 (subtract 3)
b. 3, 10, 7, 18 (subtract 10)
C. 7,4, 13 (subtract 15)

Riddle: What do you call a
chair that plays guitar?
Answer (encrypted by adding
10):

10 1, 24, 12, 20, 14, 1

Riddle: How do you make a
witch itch?

Answer (encrypted by adding
20):

13, 20, 4, 24 20, 16, 20, 18
1,24,11 16

Chapter 2: Sending Messages with Numbers
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Making Calculations Easier

Abby and Jenny both agreed that decrypting was
more of a bother when the subtraction gave negative
numbers. They decided to look for a clever way to
avoid this situation. They looked at the riddle from
Problem 16 for an example of a calculation that had
involved negative numbers.

Jenny reviewed the steps: “In the riddle about making
the witch itch, the answer was encrypted by adding
20. So we decrypted it by subtracting 20. For example,
to decrypt the number 13, we had to compute 13 - 20
=-7."

“I didn't like that,” said Abby, “because, after
subtracting, I had to do more work—I had to add 26
to get a number between 0 and 25.”

“Work isn't so bad,” said Jenny, “but I feel clever
when I look for shortcuts.”

“It might help to look at our numbers wrapped around
on the circle,” said Abby.

“Let’s see,” said Jenny. “We started at 13 and went
back 20—that’s counterclockwise—until we got to
-7, which was the same as 19.”

“I'm with you,” said Abby. “Subtracting is like going
counterclockwise around the circle.”

14
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“But we could also get from 13 to 19 by going the
other direction—clockwise—around the circle. That
is like adding.” Jenny liked this idea.

“You mean we have a choice? We could add or subtract?
How could that be?” asked Abby.

“It’s because we're on a circle, not the reqular number
line.”

“OK. So subtracting 20 is the same as adding 6—on
a circle with 26 numbers.” Abby was still a little
cautious. “Let’s try another example.”

“Let’s look at the word 1, 24, 11 in that ‘witch itch’
riddle,” suggested Jenny. “To decrypt it, we could
subtract 20 or add 6.”

“But which should we do?” Abby wondered. “If we
add 6, then it is easier to decrypt the 1 and 11, but it
is harder to decrypt the 24.”

“We don't have to do each letter the same way,” said
Jenny. “Decrypt the 1 and 11 by adding 6, but decrypt
the 24 by subtracting 20. Both ways give us the same
answer. For each letter we'll choose the method that
makes our calculation easier.”

% Do Problems 17-23 now.

CLASS ACTIVITY: Play Cipher Tag
(see directions on page 5)

This time use messages with numbers, and choose a
phrase or expression to encrypt instead of a name. For
example, “Quick as lightning” or “A penny saved is a
penny earned” would be good phrases to encrypt.

Chapter 2: Sending Messages with Numbers
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PROBLEMS

(Workbook page W9-W10)

17. a. To decrypt the riddle in Question 15, you could subtract 10.
What number could you add to get the same answer as subtracting
10?

b. Decrypt the riddle in Question 15 again, adding or subtracting as
necessary to avoid negative numbers and numbers greater than 25.

18. a. Suppose that you encrypted a message by adding 9. Tell two

different ways you could decrypt it.

b. This message was encrypted by adding 9. Decrypt by adding or
subtracting to avoid negative numbers and numbers greater than
25.

5,13 16,9, 4,13 14,23,3,22,12 9
1,116,723, 0, 2,11, 3,72

19. a. Suppose that you encrypted a message by adding 5. Tell two
different ways you could decrypt it.

b. In general, suppose that you encrypted a message by adding
an amount n. Tell two different ways you could decrypt it.

For Questions 20-23, add or subtract as necessary to make your
calculations simplest.

20, Riddle: Imagine that you're trapped in a haunted house with a
ghost chasing you. What should you do?
Answer (encrypted by adding 10):
2,3, 24,25 18,22, 10, 16, 18, 23, 18, 23, 16
21. Riddle: Why must a doctor control his temper?
Answer (encrypted by adding 11):
12, 15, 13, 11,5, 3, 15 18,15 14, 25,15, 3, 24, " 4
7,11,24, 4 4,25 22,25 3,15 18,19, 3
0, 11, 4, 19, 15, 24, 4, 3
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PROBLEMS

(Workbook page W11)

22. Riddle: What is the meaning of the word “coincide”?
Answer (encrypted by adding 7):
3,14,7,0 19,21,25 0 22 11,21, 22, 18,11 10, 21
3,14,11,20 15,0 24,7, 15, 20, 25

23. Abby was learning about life on the frontier. “Peter,” she said,
“Where is the frontier?”
Decrypt Peter’s reply (encrypted by adding 13):
6,20, 13, 6,5 13 5,21,24.24,. 11 3,7,17,5,;6,21;1,0.
11,1,7 1,0, 24,11 20,13,8,17 13 24,17,18,6
17,13, 4 13,0,16 13 4,6 21,19,20,6 17,13, 4.

Chapter 2: Sending Messages with Numbers
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DO YOU KNOW?

Beale Ciphers and a Buried Treasure

Legend has it that in 1817 Thomas J. Beale and 29
others discovered and mined a large guantity of gold
and silver nerth of Sante Fe, New Mexico. Beale buried
it for safekeeping near Bedford, Virginia. Foreseeing
the possibility that he might not return, he left a
locked iron box with a friend named Robert Morriss and
instructed Morriss to open it if he did not return
in ten years. Morriss waited twenty-three years, then
finally opened the box. He found a letter from Beale
in plain English and three pages of numbers believed
to be encrypted messages. The letter told how the
treasure was found and explained that the first page
of numbers describes the location where Beale buried
it, the second describes the treasure itself, and the
third tells the names of the relatives of the men who
should share the treasure.

Morriss tried for many years to decrypt the pages
of numbers. Finally, in 1862, at the age of 84, he
entrusted his secret to a friend. The friend then
spent much of his life and money trying to decrypt
the pages but he was only able to decrypt the second
page, the one that lists the contents of the treasure.
That page told of a first deposit that included 1014
pounds of gold and 3812 pounds of silver and a later
deposit that included 1907 pounds of gold, 1288
pounds of silver, and jewels that Beale had obtained
in exchange for some of the silver. Unfortunately,
Morriss's friend was unable to decrypt the page
telling the location of this treasure. After years of
frustration, he wrote an anonymous pamphlet describing

CONTINUED ON WEXT PAGE >
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the ciphers and his decryption of the second page
so that others could try to decrypt the remaining
pages.

The mystery of the Beale Ciphers has generated a lot
of interest over the years. Some people claim it is
a hoax, but many people, including some professional
cryptographers, think it is real.

Chapter 2: Sending Messages with Numbers
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Breaking
Caesar Ciphers

The idea of using ciphers to send messages spread around the school
quickly. The kids thought this was a great way to pass notes that no
one else would be able to read. Dan learned about Caesar ciphers and
encrypted a message to Tim by shifting 7. He wrote the number 7 at the
top of the note so that Tim would know how to decrypt the message.

Unfortunately, Evie found the note. She assumed
they had used a Caesar cipher and she figured out )
that 7 was the shift amount. She used it like a key APT

and unlocked their message. The boys realized they P OHCL H ZL)YLA
should keep their key secret. That way, someone who SLA'Z TLLA

guessed that they had used a Caesar cipher to encrypt KHU

a message, wouldn't be able to decrypt it.

The kids had discovered a basic idea of cryptography: Dan'’s note to Tim.
You might as well assume that anyone who finds your
secret message will be able to guess the method you
used to encrypt it. You need something else—a key—
to keep the message secret. A cipher system really has
two parts: the algorithm (method) for encrypting and
a key that tells an extra detail to use in the algorithm.
In a Caesar cipher system, the algorithm for encrypting 2. Decrypt Dan's second note
is to shift the letters (or add) a chosen number of to Tim.

places. The key is the specific number of places to

PROBLEMS

(Workbook page W13)

1. Decrypt Dan’s note to Tim,

Chapter 3: Breaking Caesar Ciphers 21



PROBLEMS
(Workbook page W14)

3. Decrypt the answers to the

following riddles by first
figuring out the keys. Let the
one-letter words help you.

a. Riddle: What do you call
a happy Lassie?

Answer:

E NSPPC GSPPMI

b. Riddle: Knock, knock.
Who's there?

Cash.

Cash who?

Answer:

0 QTKC EUA CKXK YUSK
QO0TJ UL TAZ

¢. Riddle: What's the
noisiest dessert?
Answer:

W GQFSOA

. Decrypt the following

quotation:

HS RSX ASVVC EFSYX
CSYV HMJIMGYPXMIW
MR QEXLIQEXMGW,

M EWWYVI CSY XLEX
QMRI EVI KVIEXIV.

—Albert Einstein

shift. When you think someone has figured out your
cipher system, you might not have to change your
system entirely—you can simply change your key.

Dan and Tim changed their key and, confident that
they could keep their messages private by keeping
their keys secret, Dan sent another note to Tim.

M PMO! 1ZMI,
FYX HSRX XIPP
LIV M WEMH WS.

Dan'’s second note to Tim.

Unfortunately for the boys, Evie was too clever for them.
Even though Dan didn't include the key with his mes-
sage, she was able to figure it out. She decrypted the
whole message, but gasped when she read what it said.

Can you think how she might have figured out their
key?

% Do Problems 1 and 2 now.

Breaking Caesar Ciphers

Evie realized that there were only a few letters that
could be the one-letter word in Dan's message. (What
letters can be one-letter words in English?) She
figured out what shifts would give those letters and
she tried those shifts as possible keys. When she got
a few words that made sense, she knew she must have
found the key.

% Do Problems 3 and 4 now.
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Tim and Dan were determined to send messages the girls couldn't
break, so they took out the spaces between the words:

EWWLHWLWJSFVEWLGFAYZ LSLGM]KWIUWLHDSUW.

AZSNWKGEWLZAFYWDKWLGLWDDRGM.

The girls found the note.

“There aren't any spaces between words,” said Lilah. “They took out

the clues.”

“Don’t give up,” said Evie. “We only have to match one letter—the
wheel will tell us the rest. Once we know the letters, we can figure
out where the spaces go.”

“Do we have to try every possible shift of the wheel?” Lilah

wondered.

“No. We can be more clever than that,” said Evie. “I once heard that

e is the most common letter in English. Let's find the most common

letter in the message and match it with e.”

She made a tally of the letters in the message (right).

A 1l [N\
B 0

C P

D ninfQ 1|
[E IR

F 0l {S
G M |T

H o [u I
I Vo
J 1L [W O
K It X |
LAWY |
M Itz Il

Evie's alphabet tally.

Chapter 3: Breaking Caesar Ciphers
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“W occurs most often,” she said. “Let’s turn the wheel
so e matches W.”

They did that and got the a-to-S wheel (left).

“Look! Here is the boys’ message!” Evie said.

Meetpeterandmetonightatoursecretplace.

havesomethingelsetotell you.

The a-to-S wheel. “We can read it even without the spaces.”

Evie's method works, but not always. If matching e
with the most common letter doesn't give a message
that makes sense, you can try matching it with other
common letters.

% Do Problems 5-10 now.

PROBLEMS
(Workbook page W15)
Decrypt each of the following quotations. Tell the key used to

encrypt.
5. PKB KXN KGKI DRO LOCD ZBSJO DRKD VSPO YPPOBC SC DRO

MRKXMO DY GYBU RKBN KD GYBU GYBDR NYSXQ.
—Theodore Roosevelt
6. JAJS NK DTZ'WJ TS YMJ WNLMY YWFHP, DTZ'QQ LJY WZS TAIW

NK DTZ 0ZXY XNY YMJIWJ.
—Will Rogers

24 Unit 1: Introduction to Cryptography



PROBLEMS

(Workbook pages W16-W17)

Decrypt each of the following quotations. Tell the key used to
encrypt.

7. RCAB JMKICAM AWUMBPQVD LWMAV'B LW EPIB GWC XTIVVML
QB BW LW LWMAV'B UMIV QB'A CAMTMAA.

—Thomas A. Edison

8. QBA'G JNYX ORUVAQ ZR, V ZNL ABG YRNQ. QBA'G JNYX VA
SEBAG BS ZR, V ZNL ABG SBYYBJ. WHFG JNYX ORFVQR ZR NAQ

OR ZL SEVRAQ.
—Albert Camus

9. OCPAQHNKHG'UHCKNWTGUCTGRGQRNGYJQFKFPQV
TGCNKBGJQYENQUGVIGAYGTGVQUWEEGUUYJGPVIGAICXGWR.
—Thomas Edison

10. Challenge.

16, 14, 23,18, 4,2 18,2 24,23,14 25,6 14,1

12, 14, 23,3 18, 23, 2, 25, 18, 1, 10, 3, 18, 24, 23

23,18, 23,14,3,8 23,1823, 14 25, 14, 1

12, 14, 23,3 25, 14, 1, 2, 25, 18, 1, 10, 3, 18, 24, 23.
—Thomas A. Edison

Chapter 3: Breaking Caesar Ciphers
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DO YOU KNOW?

Navajo Code Talkers

Navajo “Code Talkers” played an important role for the
United States during World War I1. A group of Navajo men
developed a secret code based on the Navajo language. They
first made up simple English words to represent military
words, and then translated those words into Navajo. This
way, “submarine” became “iron fish,” which was translated
to “besh-lo.” Other words were spelled out using words
instead of letters: the letter “a” could be represented
by the English word “ant,” then translated into “wol-la-
chee.” They used this code to communicate secret messages
by radic and telephone among American troops. The Navajo
language was only spoken by a few people besides the
small number of Navajos, so it worked well.

The Code Talkers ctock part in every assault the U.S.
Marines conducted in the Pacific from 1942 vo 1945. They
grew in number from 29 to 400. They were so valuable that
each was given a bodyguard for protectien. High-ranking
military officers have said that without the Navajos,
there would not have been a U.S5. victory at Iwo Jima
and World War II might have had a different ocutcome.
After the war, the Japanese said they had been able to
decipher the codes used by the U.S. Army and the Army
Bir Corps, but they were never able tc crack the code
used by the Marines.

Because of its potential for future use, the Navajo code
was kept secret until 1968. The code talkers received
little recognition at the time for the important role
they had played in World War II. However, their story
was finally made public. In 1982, the United States
Government designated August 14 “National Code Talkers
Day.” In July 2001, more than fifty years after the war
had ended, the twenty-nine Navajos who developed the
code were honored with the Congressional Gold Medal. It
was presented by the president of the United States to
four of the five living developers and to the families
of the others.

26
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Keyword Ciphers

Dan was very excited. He had heard that the Outdoor Club was planning
a ski trip. But he worried that if his sister Jenny and her friends signed
up first, there would not be enough spaces for his friends. He decided to
reserve a spot for his sister but not tell her about it until after his friends
had signed up.

In the meantime, he needed to send a message about the trip to his
friends. He wanted to encrypt it so Jenny couldn't read it. But what
cipher should he use? He remembered how Evie had broken his Caesar
cipher and decrypted the embarrassing message he had sent to Tim. All
she had to do was figure out one letter and she would know the size of
the shift. He decided that the addition pattern in Caesar ciphers made
them too easy to break.

“I want a cipher with no pattern at all,” said Dan. “I'll scramble up the
letters so no one can figure out my cipher.”

Dan made the table below, which has no obvious pattern. Itisa substitution
cipher. In a substitution cipher, each letter of the alphabet substitutes
for another letter. The Caesar cipher in Chapter 1 is also a substitution
cipher, but its shift pattern makes it easy to break.

alblc|d|e|[f|glh|i]jlk|l[m|n]o

[N -]
-
v
-+
(=

=

KIOICIWIGIYLIXAUIZBIMVIT

Chapter 4: Keyword Ciphers
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alblcld|e|f]|g
TIUVWIXY!ZIDIA
Keyword DAN, key letter h.

=~
—
m|3

z.—ln
(o v]
o
|3
et
o
o=
o
o
w

“The trouble with my substitution cipher is that it is too clumsy to use,”
said Dan. “How do I tell my friends what my substitutions are so they
can decrypt my messages? I would have to write the whole table out for
them.”

Then Dan read about keyword ciphers and realized they would help with
this problem. A keyword cipher is a type of substitution cipher whose
substitution table uses a keyword. It has a pattem that lets it be described
easily, but the pattern doesn't involve numbers so it is not as easy to
break as a Caesar cipher.

In a keyword cipher, the sender chooses a keyword and a key letter.
He writes the keyword under the alphabet, starting under the key letter.
Then he writes the unused letters, in alphabetical order, wrapping around
the alphabet until all letters are used. If a letter appears more than once
in the keyword, he only writes it the first time it appears.

For example, the table above shows a cipher with keyword DAN and key
letter h. The keyword DAN begins under the h. The rest of the alphabet
follows in order.

Sometimes Dan’s friends called him Danny. To use “Danny” as a keyword,
he would have to cross out the second n and use DANY—otherwise there
wouldn't be room in the table for all letters of the alphabet. The table
below shows a keyword cipher with keyword DANNY and keyletter h.

% Do Problems 1-7 now.

i [k[U[m

albjc/d/e|/fig|h]i n
BICIE

SITIUIVIWIXIZIDA
Keyword DANNY, key letter h.

=
-
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PROBLEMS
(Workbook pages W19-W20)

The following riddles were encrypted with keyword ciphers.
Decrypt the answers,
1. Keyword: DAN, Key letter: h

Riddle: What is worse than biting into an apple and finding a
worm?

Answer: YAFWAFZ DTCY T PGJE.
2. Keyword: HOUSE, Key letter: m
Riddle: Is it hard to spot a leopard?
Answer: 0U. CVQJ LAQ MUAD CVLC GLJ.
3. Keyword: MUSIC, Key letter: d
Riddle: What part of your body has the most rhythm?
Answer: VHPL UXLMLPFN
4. Keyword: FISH, Key letter: a
Riddle: What does Mother Earth use for fishing?
Answer: TDA MNQTD FMH RNUTD ONKAR
5. Keyword: ANIMAL, Key letter: g
Riddle: Why was the belt arrested?
Answer: ZEH NEBXIDA OF KNY FUDKJ.
6. Keyword: RABBIT, Key letter: f
Riddle: How do rabbits travel?
Answer: WS BVKZHDVFZ
7. Keyword: MISSISSIPPI, Key letter: d
Riddle: What ears cannot hear?
Answer: IXLN HS ZHLG

Chapter 4: Keyword Ciphers
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Dan told his friends about keyword ciphers. He told
them that he would use a keyword cipher to send
them a message when the trip details were finally

PROBLEMS

(Workbook pages W21-W22)

: announced. He called the park every day waiting for

s Pecrypt Dan's message. (It the announcement. Finally word of the trip came

is a long message, so you s

may want to share the work ’

with a group.) Dan encrypted the message below and passed it
9. Write a message to another around to his friends at school. As he handed it out,

group and encrypt it us'ing he told them the keyword was SKITRIP and the key

a keyword cipher. Tell them letter was p. He was pretty sure no one else knew

your keyword and key letter about keyword ciphers so they wouldn't know how to

so they can decrypt the decrypt the message, even if they knew the keys.

message. )

%2 Do Problems 8 and 9 now.

OLIL FIL ROL JLRFRWT ZM ROL ZPRJZZ! HWPS'T TVR
RIQRS: ROL RBZ-JFD RIRS RZ SRYL XZPYRFRY BRWW Gl

TFRPYFD FY) TPYJFR, ROL MEITR BLLVLY) Q@Y MLGIPFID,

ROL GPT BRWW WLFAL MIZX RCOL SFIV'T OLFJKPFIRLIT

FR LENOR FX FY) ILRPIY FR RLY SX TPYJFD.

ILNQTRIFREZLY MZIXT FIL JPL P YLCR MIQIFR SEHV

ROLX PS QY ROL SFIV ZMMa&HL.

ROL RIRS E&T WEXERL) RZL RCL MERITR F.‘_F-LYF_TJ BOL
TENY PSS, TZ SWLFTL OPIID Z1 RCOLIL XRNOR YZLR gl

LYZPNO TSFHL.
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DO YOU KNOW?

Dancing Men

Sir Arthur Conan Doyle, the author of the Sherlock
Holmes mysteries, was very interested in cryptography.
In fact, he put secret ciphers into several of his
stories. In "“The Adventure of the Dancing Men,” the
villain, Abe Slaney, uses a substitution cipher made
from stick figures of dancing men, with each man's
arms and legs positioned differently to represent a
different letter. He uses this cipher to send threatening
encrypted messages to his childhood sweetheart, Elsie.
The messages are brought te Heolmes, who figures out
the meaning of some of the dancing men.

Holmes is too late to prevent a murder but tricks
Slaney into returning to the scene of the crime, where
he is arrested, by sending him the following message:

AT KX A X

This is an example of a substitution cipher made by
using symbols instead of letters. You can decrypt
Holmes' s message if you know that the symbols correspond
to letters as shown below and that the flags are added
to indicate the end of words.

B T
£ od b X

o
I

Chapter 4: Keyword Ciphers
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Letter
Frequencies

Dan carelessly left his note in his pants pocket, and his mother found
it when she did the laundry. She left it next to the washing machine,
where Jenny found it later that day. Jenny knew immediately that it was
something she wanted to read, so she tried to crack the code. She figured
out that L occurs most often in Dan’s note and decided that the letter L
was probably the encryption of e. She set her Caesar wheel so e matched L,
but then the other letters didn't make sense. She tried a few other settings
for the wheel but got nowhere.

“This can't be a Caesar cipher,” Jenny said to herself. “It’s probably some
other kind of substitution cipher—maybe a keyword cipher. I'm deter-
mined to crack it.”

Even though most substitution ciphers are not as easy to crack as Caesar
ciphers, cryptographers can break them fairly easily. Jenny did some reading
and learned what to do. After some effort, she cracked Dan's cipher and read
about the ski trip. She got her friends to sign up before it was too late.

Dan and his friends were puzzled. How could Jenny have cracked Dan’s
message? The letters were all scrambled up. “OK, you win,” they told her.
“But tell us how you did it.”

“Tt wasn't as hard as you might think,” Jenny said. “I counted the number
of times each letter occurred in your message and then compared that
with data on how often letters occur in plain English.”

Chapter 5: Letter Frequencies



The boys realized that, to keep up with Jenny, they had better find out
how often letters occur in English.

The word frequency describes how many times something occurs. For
example, the frequency of the letter b in the expression abeb is 2. The
frequency of b in ababeacfaeghikvndswyq is also 2, but in this second
expression b is a lot less common than in the first. The relative frequency
of b is a ratio that compares or relates the number of occurrences of b to
the total number of letters.

number of occurrences
total number

relative frequency =

You can express relative frequency as a fraction, decimal, or percent. For
example, the relative frequency of b in abeb is % or Ye. This is the same
as 0.5 and 50%. It tells us that b occurs half, or 50%, of the time.

The relative frequency of b in ababcacfaeghikvndswaq is ?/z0 or /0. This
is the same as 0.1 and 10%.

You can use a calculator to convert to decimals. The relative frequency of

b in axqyyhib is Y/s. Use a calculator to divide.
L oo1:8=-0125
8
To change 0.125 to percent, we multiply by 100 and get 12.5%. (Do you

remember an easy way to multiply by 1007?)

Sometimes you may have to round an answer. For example, the relative
frequency of b in bghjiesrtasfgb is “/1.. We use a calculator to change
this to a decimal and then round:
2 =2+14
14
= 0.142657 14266

= 0.143
To change 0.143 to percent, multiply by 100 and get 14.3%.
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Dan and Peter decided to collect some data to learn about the relative
frequency of letters in English. To share the work, they asked several
friends to count letters in small samples of text and then combined it all
into one big table.

CLASS ACTIVITY: Finding Relative Frequencies of Letters in English
(Workbook pages W23-W24)

(Note: If you are working alone without a class, you can collect the data
yourself. Choose a larger sample—around 500 letters. Then skip Parts 1 and
2 and enter your data directly into the table of Part 3.)

Part 1. Collecting data from a small sample.
a. Choose about 100 letters from a newspaper or other English text.

b. Work with your group to count the As, Bs, etc., in your sample. | etter Frequency

¢. Enter your data in a letter frequency table. A 10

Part 2. Combining data to make a larger sample. B 2

a. Record your group’s data from Part 1 on your class’s Class Letter C 3
Frequencies table. (Your teacher will provide this table on the D 5
blackboard, overhead, or chart paper.) .

b. Your teacher will assign your group a few rows to add. Enter Sample letter frequencies.

your sums in the group table.

Class Letter Frequencies

ErouPIGmup Group | Group | Group | Group | Group | Group | Group | Group | Total for
1 2 3 4 516 |7 8 9 | 10 |all groups

10/|9 |6 | 5|8 | 81012 4|6 | 78

Letter

{ﬁﬁ:ﬂ-

O i S N i AT PN,
Sample class data for letter A.

Discuss:

e What was the most common letter in your combined class data?

e Was this letter the most common for every group’s data?

e What are other common letters? Do most groups have similar results?

Chapter 5: Letter Frequencies
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Relative Frequency | Part 3. tt_:mputing relative

Letter| Frequency | Fraction | Decimal | Percent (%) frequencies.

(to3 places) |(Womearesttenth)]  Enter your class’s combined data from
| 16 VIG/K0H] O 2 the “Total for all groups” column of
c Part 2 into the “Frequency” column
of the Relative Frequency table. Then
compute the relative frequencies for
Sample relative frequency of letter A (based on class the class data as fractions, decimals,
letter total 1059). and percents.

| A |
B

\,,.Jl__/\-,f\rv-— SN S AAS

“s Do Problems 1-4 now.

PROBLEMS

(Workbook page W25)

1. a. What percent of the letters in the class sample were the letter T?
b. About how many Ts would you expect in a sample of 100
letters?

c. If your sample was about 100 letters, was your answer to 1b
close to the number of Ts you found in your sample?

2. a. What percent of the letters in the class sample were the letter E?
b. About how many Es would you expect in a sample size of 100?
¢. About how many Es would you expect in a sample of 1000
letters?

3. Arrange the letters in your class table in order, from most common
to least common.

4, The table on the next page shows frequencies of letters in English
computed using a sample of about 100,000 letters. How is your
class data the same as the data in that table? How is it different?
Why might it be different?
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Letter | Relative
frequency (%)

12.7
9.1
8.2
7.5
7.0
6.7
6.3
6.1
6.0
4.3
4.0
2.8
2.8
2.4
2.4
2.2
2.0
2.0
1.9
1.5
1.0
0.8
0.2
0.1
0.1
0.1

Letters in English.

o | e |

N % |la|l—|x|ls|logol=s a3 |lelo|—|la]l=]|T|w |

1H. Beker and F. Piper. Cipher Systems: The
Protection of Communications. Northwood
Publications, London, 1982.

DO YOU KNOW?

Edgar Allen Poe Challenges

Edgar Allen Poe (1809-1849) is credited
as the first author to write a detec-
tive story. He was also very interested
in cryptography and wrote many articles
about ciphers for a Philadelphia
newspaper. Though he was not really
a cryptographer, he was the first
author to popularize the subject and,
through his writings, he inspired many
people to become interested in it. He
even challenged his readers to send
him messages encrypted by substitution
ciphers and promised he would decrypt
them all. He received hundreds of
replies to his challenge. Although
he needed nothing more than frequency
analysis to decrypt the messages sent
to him, the newspaper readers were
amazed that he could do it. He gained
the reputation as “the most skillful
cryptographer that ever lived.”

The most popular of his stories, "“The
Gold Bug,” involves cryptography. In
it, the main character decrypts a clue
that was encrypted with a substitu-
tion cipher and discovers the buried
treasure of the pirate Captain Kidd.
This story won Poe a $100 prize and
made people even more interested in
his work.

Chapter 5: Letter Frequencies
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Breaking

Substitution

Ciphers

“Now we know something about letter fre-
quencies in English,” said Dan. “I wonder
how Jenny used that information to crack
my cipher.” Dan and Peter were ready to lis-
ten.

“Here is the table I found giving the relative
frequencies of letters in English,” Jenny told
them.,

“We didn't know you had used someone else’s
table,” said Dan.

“We computed our own table!" exclaimed an
exhausted Peter.

“Well, I bet you got similar results,” Jenny
assured them. “It turns out that the letter
frequencies in most samples are about the
same. That is why we can use the frequen-
cies to break messages.”

“So show us how you did it,” Peter said.

Letter | Relative | Letter | Relative
| |frequency (%)| | | frequency (%)
| a | 82 | [ n 61
b [ 15 o | 75 |
¢ | 28 | P I_H_
_d ] 43 q 0.1
e 12.7 HEETE
f 22 | s | 63 |
g 20 | [ t] e1
h |61 | [ v | 28 |
i 7.0 v 10
i o2 | [w] 24|
k|08 L
L] 4o Y 2.0
m |_ 2.4 ¥ | 0.1

Relative frequencies of letters in English.

Chapter 6: Breaking Substitution Ciphers
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“Well, first I found the frequencies and relative frequencies of the letters
in your message,” Jenny said.

Relative Frequency
Letter| Frequency : [ Decimal Percent
Fraction | (103 places) (%)
Al 1 Ye | 003 0.3
B 6 Y% | 018 18
1 Jas | 003 0.3
| D - Y | 027 2i7
0 0 | .000 0.0
2% %o | 073 73 |
"5 6 s 018 1.8
By k. | s ! 0@ | AP . |
1 21 %o | 082 82 |
J 13 Vw040 4.0
K 1 g’f : 003 _ 03
L # Y | 125 12.5
M 9 | % | 02 | 27
| N |5 % | 015 1.5
0 18 Vs | 055 5.5
P 15 Yoo | 046 4.6
| Q| Yoo | 013 | 73
R | 31 Yo | 113 | 113
s 12 e | 037 3.7
T 18 B | 055 5.5
U 0 0 | .000 0.0
v 5 %a | 015 15 |
w 9 Ya | 027 27 |
X 8 Yw | 026 | 24 |
Y 18 Wes | 055 5.5
| 2 17 Yos | 052 5.2
Total 328

Frequencies of letters in Dan’s message (from page 32).
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“Next, I used the frequencies to put the Letters in Dan's Message Letters in English

letters of the message in order from the  |(etter| Relative [Letter | Relative
most common to the least common letter. | freueney (%)) || frequency (%)
Then I did the same for the letters of reqular ; . ﬁi common _: i _1% |
Enghsh (ﬂght). I E—: _a_—_ﬂ_ m
“I decided to decrypt the most common g g :: — !L:: 7.5 |
letters first since that would give me the | e |f— ;3
most progress. I figured a good first gquess o ] el
was to match L, the most common letter in Y 55 | T &1
the message, with e, the most common letter 7 | sz | !—,__F
in English. Another choice would havebeen | p | 46 | d | 43
to match R with e, since R is the second J 40 Ll 40 |
letter on the list. But the message hasalot | S | 37 _c | 28
of three-letter words that start with R—I : :; . - - % |
couldn't think of many three-letter words W ey | : I ==
that start with e, so I decided R wasn'ta |y | £ |
good match for e. B |
G
N
et
H
T
L c |
“I went with my first quess and wrote @ | K | 03
above all the Ls in the message—in pencil E
because I knew I might change my mind Y
later. Here are the first few lines: Comparing relative frequencies.

55, T 1 g 9 P T e - 1 8 0 T B
Ll E U ol | SUREEWT IZM RO (ZPRIZZ I IHWEQ T nvMa |

. - - - SN " - - L P . £
RURS : ROL IREZ - LED RIS RZ ISEYil XZPY.RELY L BQWW (6L

[

TERPLLEP EY ) \TPY LR . \ROLLME LY L@,

—

il
9l
=

’

MULG | PF.ID.
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“Next, I thought about t. If I match t with R, then the word ROL would be
t__e. That's possible. And if I match 0 with h, then ROL becomes the. That's
a word that makes sense. I wrote both those substitutions above the letters.

N LA LE 24l Lariid -
elL4.liL ELLILL SRIOIL JL R Eadd Zo ROILL PR LT 70 12 A% VR S R IRRY

£ L £

REZ-LFD. RIRS, RZ, SRY.L. XZPY.RERY . BEWW. Gl

¢
BoLi@is, i i L

#

£ £ Loliatl
BERPLLLULEDRLENIN TR G LER L ROl Fo NFSE: SRR TR IRV AR (0 I RT 0 ¢

lde
MLG L BF LB

“The whole time I was working on this, I was also keeping track of the
substitutions. I wrote the plaintext letters in the top row and the cipher-
text letters in the bottom row.

“Here are my substitutions so far:
[ ] [ T T T 1 Jel ] [hl

i t .
ABICIDIEIFIG/HIIIK LIMIN[OIP[Q[RIS

i
TI0[vIwW[X]Y][Z

“Next I looked at other short words in the message. Unfortunately, there
weren't any one-letter words. That was too bad because one-letter words
are usually either a or I, so that would have been a good clue. But there
was a two-letter word, RZ. I already knew that this was of the formt_ .1
thought this must be to, so I matched Z with o. Then I saw the two-letter
word ZM. If Z is o, then this word is o__. It must be on. So I matched M
with n and wrote these matches above the message.

B il £ooibahit £k hig

W ¢ 0 L Wi
QL L Elldl e iRi04L JLRESWD ZM o Ral, ZipR 22 HW PG 1T TaVia

ELHAL 4 g i bal £ : t £
RS B2 SRY.L X P REGY BRI G

0y =
7
.-a
N
=
v

E LSl RO

i Lonit ) L Lill it
BERBLLEDL B R TR ARl o Mot e LY e,
|
Wif
ML LiPELLD],
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“I went back to the frequencies. The next most common unmatched letter
was I. The first unmatched English letter in the list was a—the letters
I and a even have the same relative frequencies (8.2%) in the tables. It
seemed like a good match. But then the word FIL would be _ ae. That
didn’t look like a familiar word. Also, __ie didn't look right. So I skipped
I for a while.

“I decided to match F. The (relative) frequency of F is 7.3% in the
message. The frequency of a in English is 8.2%, and the frequency of i is
7.0%. So either a or i would be reasonable matches for F. Then the word
FIL would be either a_e ori_ e. I thought maybe a_ e was really are.
So I quessed that F was a and that I was r and got two guesses for the
price of one. I wrote those letters above the message and when I did that,
the word here appeared. That encouraged me.

1. ral

e.tia TR S VT AR T WS S W

¥ 2 tihe
l Elll LRIl JILURERWT, ZM RO ZiBR JZZ.L HWE.G. LT TIML G2

D =1
™~ ™~
e

aql Esnie 4 S 1 e £lo £ g ta 4
B LGS L RO e R B L L E DL LR LS R 7l SRl X PINIE RN B LG

Ret gt i h.te cles ik

TERPLLE R EY L TR E Pl ol e TR BV Y RY

[ 2.0
ML L BF LD,

“I noticed an apostrophe followed by one letter. That letter could be a t,
as in words like can't and don't, but I already matched t with R. It could
also be an s, because possessives end with ‘s. That suggested I match T
with s.

""!': - Wil 1 LinE a4 : ([ Eihit plels ool

OILILL Pt mioiL: L REGMT Zt RO (ZPR FZZ L HW PG e T s TV 6
1y Elhig EL lo a 19 1 £ £ L ta 1
Bliesi:l ROl iprz .l Fb RIS IRZl SEYIL (XTI PR Gy Beww ol
siglt, 1y a a 3 a Eihlel dni it t ALEL LK

EERPL L FE DL IEYL L ITIP Y] ) ERs RIoIL] IMRHITIR: (BIL LIVELY L @Y.

dby L0 ALK

MLG | PFID
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“I saw a word that looked familiar. The word sat r a_might be saturday.

If that were true, then P should be u, J should be d, and D should be y.
I filled in those letters.

Elllg gltip 3 t he £ alplY ’

RO LLREGIAET (M Rl (ZPR AL Z L W Po T 1 l
£ a £1) 5 £ piie. . tg 4
REBZ - JEB EBLES RZ SEYL (XZPYREY BREMWW (GL

a a

“But then I saw a problem. The letters saturday a_d su_day must be
saturday and sunday so n must be the match for Y. But I already matched
n with M when I thought the word ZM was on. I must have been wrong.
ZM could be of instead, so I erased the match of M with n. Instead I
matched M with f and Y with n. It's a good thing I used pencil.

fihged e tiat L iss toifi tbiklel Jopwits di aldil e Sheis
ol LI RIE QUM TL LM il iR L il SEEWLE G AT WM AL
Bl C uua".- | (A1) ol 2unte £
RiBZi - LED. RIS (R LSIRYL XNZPYIREGY, B&WM. Gl
Gtad Lsiwlnidin eipdel JfL tiisit AT i

EXL TR LEBLL ROLL iRl LITIR (Bl bell Y LGy
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“Everything fell into place. Fe_ruary was missing the letter b, so I
matched G with b and got February. MQITR was f_rst. That was probably
first, so I matched Q with i. BLLVLYJ had to be weekend, so I matched
B with w and V with k.

hioirie aire kel detiai p £ hiel lolaitidlpt ol v tZhb bl Lels
eittlit] IEMil rion | LILIR Fi@mn e iRioitl 7 piR bzl ) Hv o LTI TG
tirl ¥ [!!7.21 Ll i L plidme tipg fiw i -
i IS RO Rz ) EDL RIS IRl ISl NZ PR EGAGY BwWA Gl
SR kil L!ﬂ‘];s o g u.l*-dﬂ . higl 4 rs t -'t.‘ f:‘-.tl' ko
TFRP ! JFE _FY.I 1rer|?. RO METIR B CVILIY ) @Y

Fieiblr wialr s .

ML | PFLD,

“At this point I didn't need frequencies. I could see what the message

probably said. So I decided: W must be |, His ¢, Sis p, and X is m. Here

was the message:

‘hlsr: gliiai ibimeesadie:tigibille fl ibihiel lolwtidlpaotid JedLlgh LS JSili
il LlL Bl RIOIL LR FWT 24 RCil PR L Z HWP G T T:VL62
Hirlt tihie tiwio s diB . W SEiY Eip ,L\t' ot g i awiidl h.g
R1ms = o REBZ -\ L E DR RIS =z S6Y.L NZPYREAY BGEWW Gl
sntnnd % A d sundn#. higd iflidcisity (wie e R v d |l
TERP.I.] EY LTI LS, L Rioit | M@l Tind B i vILIYT L IR
:J-’|,'-.’-"i| i,

Ml GLLIPIE | B

“These are the substitutions I've used in these lines:

*w frd'ie]f'[huitps'|kl|no|

'A[BICID[E F I1J[K[LMIN[OIPIQ[RISITIUIVIW[X]Y|Z!

“This was just the first few lines of the message. I continued with the rest

of the message in a similar way.”
Chapter 6: Breaking Substitution Ciphers 47



7t TIP: Using Frequency

Analysis to Decrypt
Messages

* Match the most common
letters first—you'll make
faster progress.

* Use relative frequencies to
help, but don’t expect them
to match exactly.

* Once you know some letters
of a word, try to guess
others until you have a word
that makes sense.

® Look for familiar short
words. One-letter words are
usually a or I. Two and three
letter words such as in, of,
at, and, and the are helpful.

® Let punctuation help—for
example, what letters can
follow an apostrophe?

* Look for pairs of letters,
called digraphs, that often
occur together. Among the
digraphs most common in
English are TH, HE, IN, ER,
ED, AN, ND, AR, RE, and EN.
Common groups of three
letters, called trigraphs, are
THE, AND, ING, HER, THA,
ERE, GHT, and DTH.

Using the frequencies, Jenny was able to make some
intelligent guesses that helped to decrypt the message.
The box on the left shows some of the ideas she used.

After decrypting Dan’s message and learning that the
boys had tried to keep the information about the ski
trip secret from the girls, Jenny was mad. So when
she heard that a local radio station was giving away
tickets to the circus, she decided to tell only the girls.
She encrypted a message to tell her friends.

“The boys will have to do some work if they want to
figure out what I have written,” she said.

Here is Jenny's message:

—

Y XTNPR PNRYS EFNFYSWU JKLM
NMUUSQUPTR FXTL JYIl WYHT

NJNL VDTT PYPPGE FYPCTFE FsS
FXT VYDREF FJTUFL-VYHT ATSAIT
JXS PNl YU. YF ESGURE 1YCT
VGUW. ITF'E NIl PNl NUE WS

FEWTFXTD,

-—w—

% Do Problems 1 and 2 now.
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PROBLEMS

(Workbook pages W26-W28)

1. Use frequency analysis to decrypt Jenny’s message:
a. Find the number of occurrences (frequency) of each letter in the
message. Then compute the relative frequencies.
b. Arrange the letters in order from the most common to the least
common.
¢. Now decrypt using the frequencies to help you guess the correct
substitutions.
2. Here is another message to decrypt using il Mo
5 3 3 equency (%)
frequency analysis. The relative frequencies of [ 114 |
the letters in the message are shown in the I 6 | 98
table on the right. [ o } 8.3
T 7.8
Message 2: ¢ \ 6.7
BQGKNJIG SDKT CDQ MGVLQETD —H—:;
BQGKNSLK G CGKNSLJID KDW SCEQT - :_. g:
MLQ CES REQTCNGY. UKMLQTUKGTDIY, | s 52
I 3.6
ET CGN G SEZD MLUQTDDK ALIIGQ [v ] 36
J 3.1
GKN TCD RLY CGN G SEZD SEXTDDK = ¢
KDAH. CD NUTEMUIIY WaLTD cpQ, 28
“NDGQ BQGJJY, TCGKHS CDGOS. E'N : - ::
WQETD JLQD RUT E'J GII ACLHDN | :: |16
1.6
vo.” [0 [ 10
|z [ 10
- U —4 - 0’5
| X [ os
| F | 00
N P

Chapter 6: Breaking Substitution Ciphers
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DO YOU KNOW?

Poor Mary

If you want to send a secret message, you had better be
careful. Mary Queen of Scots was beheaded in 1587 because
her cipher was cracked and her messages revealed.

Mary was the Catholic Queen of Scotland and her cousin
Elizabeth was the Protestant Queen of England. Mary
had many troubles in Scotland and finally had to look
for a safe place elsewhere. To avoid danger, she went
to England, hoping that her cousin Elizabeth would
help her, but that was a mistake. Elizabeth was afraid
that Mary would try to become gueen of England — the
English Catholics believed Mary had more of a claim to
the throne than Elizabeth — so when Mary arrived in
England, Elizabeth promptly arrested her and kept her
imprisoned for eighteen years.

Catholics loyal to Mary sent her letters that described
a plot to free her, assassinate Elizabeth, and incite
rebellion. In desperation, Mary agreed to the plot,
but she made a mistake. She sent secret messages about
details of the plot using a cipher that was not complex
enough. The cipher that she used was not exactly a
substitution cipher, but was quite similar to one.
Elizabeth' s spies stole the messages and used frequency
analysis to decrypt them. Then, pretending to be Mary,
Elizabeth' s people sent a message that asked for the
names of the others involved in the plot. With this
trick, they were able to learn whom to arrest.

Elizabeth's advisors had suspected that Mary was plot-
ting to take over the English throne, but they could not
convince Elizabeth of this without proof. Unfortunately
for Mary, the decrypted messages gave just the proof
they needed. Elizabeth agreed to Mary s execution.

Unit 2: Substitution Ciphers
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Combining
Caesar Ciphers

Jenny and Abby found a box of their grandfather’s papers up in the
attic.

“What's this?” asked Abby, picking up one of the papers. “It looks like a
message but it is not written in any language I have ever seen.”

“Maybe it is encrypted!” Jenny exclaimed.

“Why would it be encrypted?” said Abby in disbelief. “What secret
messages would Grandfather want to send?”

“Who knows? But maybe it is important.”
“Let’s get to work and figure out what it says.”

The girls started working on the message. They tried all the ciphers they
knew, but couldn’t crack it. They tried frequency analysis but even that
got them nowhere.

“I thought when we learned about frequency analysis that we would be
able to crack anything,” said a discouraged Jenny. “Boy, was I wrong.”

“Iagree,” said Abby. “Let’s take this to the next meeting of the Cryptoclub.
Maybe somebody else will have an idea.” By now, cryptography had become
very popular in their school, so they had started a club for anyone who
wanted to learn more about it.

Chapter 7: Combining Caesar Ciphers
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Examine Grandfather's message.

* Do you agree with Jenny
and Abby that it has
unusual letter patterns?

* Do you think it could have
been encrypted with a
simple substitution cipher?
Why or why not?

GIAV GVDJRT! WG 00F AB 6Z3 uAZYK
ﬂuw HESRVFuU c-ggg GB 9zs A-A-DijoA-

GZSEW M‘!&# owys —v owijD FRLIEF 0AV

v._- . ,r:

i

Grandfather’s message.

The girls took their grandfather’s message to the very
next Cryptoclub meeting. Lilah brought a new club
member.

“Hey, everyone, thisis Jesse,” Lilah said. “He just moved
in next door to me. He leamed some cryptography in
his old school.”

“Welcome,” said Jenny. “You've come at just the right
time. We've tried and tried to crack this cipher with
frequency analysis but we're stuck. Maybe you have
an idea.”

Unit 3: Vigenére Ciphers



“There are ciphers that can't be cracked with frequency analysis. We
leamed about one called the Vigenére cipher. When Lewis and Clark
left in 1804 to explore the American West, President Thomas Jefferson
recommended that they use it to send him secret messages. For a long
time people thought it was impossible to crack.”

“Sounds like we ought to learn about it,” said Abby. “Maybe that is the
cipher used in Grandfather’s note.”

“Could be,” said Jesse. “It was still used for serious purposes in the early
1900s.”

The Vigenere Cipher

You can think of a Vigenére cipher as being made from different Caesar
ciphers, one for each letter of a keyword. (Note: This is not the same as
the keyword cipher in Chapter 4.)

To use a Vigenére cipher, write the keyword repeatedly above the letters
of the message. (Don't write anything above the spaces between words
or above punctuation or other symbols.) Then, for each letter of the
message, find the letter above it. Use the Caesar cipher that matches a
with that key letter to encrypt or decrypt.

For example, to encrypt the message “Welcome to the Cryptoclub, Jesse”
using the keyword DOG, first write the keyword again and again above the
message. (Note: Don't write anything above the spaces between words or
above punctuation.)

teywort: [D]101G[D[0G[D] [0[G/ [D[0[G] D0 G[D[0 G[D[0 6D [ [0]G[D0][G]
plaintext: (W e"l;c;c_m‘e tlo] jt'hle \r y'p‘ olc Uubl, [ [J]e[s]s]e]
ciphertest: | | | | | | | I J
Use the wheel that matches a with D (page 56) to encrypt all letters that
have D above them. The first letter is w and this wheel encrypts it as Z.

The other letters with D above them are encrypted as shown.
reywert:[D10 G D[0[G[D] [0]G] [Dl0]6! [plo/6/p/of6[p[o]6/n] | [o/6/n0]G!
paintea: W/ e[ [c [o|m[e| [tlo] [tThle] [Clr[y[p t]olc[ljulb],] |Jels]s]e
riphmexl:lz | F H W F S F [E[, ] lV |

Chapter 7: Combining Caesar Ciphers
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G

a-D wheel

N

Wheels for a Vigenére Cipher with keyword DOG.

Use the wheel that matches a with 0 to encrypt all letters that have 0
above them. This wheel encrypts the letter e as 8, and so on.

DlojG[p/0/G/D] [o0l6] [D[0]G] [D/0/G DI0'GIDIOIGID [0/6/Dj0G]
Wiell|colme [tlo] [t[hle] [Clriylp[tiojc[L ulb [J]efs]s[e]
[Z[S] [FIC[ H] [H] [ W[V {FIF] IS[H] {F|Z| [EL, 1 IX] [VIG] |

Use the wheel that matches a with G to encrypt all letters that have G
above them. This wheel encrypts the letter 1 as R, and the other letters
are encrypted as shown below.

D/0lG[p 0 |G Dl To 6| D[0]G! ID|01GD|0/G|D[0G[D] | [0/G/D]0/GI
Wie|l|c/ome| [t]o! tih[e" [Clrly[p[tiojc|L]ulb], | [I]e[s S'e‘
ZISIRIF'CISIH| [HIUI WIVIK| |FIFIE/SIHIUJF ZIAE], | XIKIVIGIK]

%2 Do Problems 1 and 2 now.

PROBLEMS (Workbook page W29)

1. Encrypt “hidden treasure” using a Vigenére cipher with keyword
DOG.

2. Encrypt the message “Meet me tonight at midnight” using a
Vigenére cipher with keyword CAT.

56
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Decrypting Vigenere Ciphers

Jesse liked the welcome note. He sent the following reply, using the same

keyword, DOG:

WVQRYY! JZq4a HU ES NHFK

“We can decrypt this by going backward,” said Lilah. She made a table like

the one below and got to work.

wwert:[010 6 [D]0]G] | [D[0]6D] [076] [D[0] |6[D0

(3]

plaintext: A I S U O Y O NN O N NN O (NN O (O O

amenex: |[WVIG|Q|Y[Y[T | [31Z1GIG] [H Ul TE|S| [N[HIF

She used the first wheel, the a-D wheel, to decrypt
the letters with D above them. She matched the
ciphertext letters on the inner wheel to the plaintext
letters on the outer wheel.

}P [o]c[p[o]c[ [ [pfoe[p[ 076! [ofo[ [6[p[0]6!
t| n Il e d | 'b’» | el *
(wvlclalyly[t| [37Zl6[6] [HIu[ [E[ST [N[H[FIK

She used the a-0 wheel to decrypt the letters with 0
above them.

QOGDOG'E_T plo[6/D] [ol6! [p[o] [6[D]o[G
tih| Inlk| [T] |g[l| [d] |ti I Ib]e] er
wivielaly[y[' [ [3(z]6[6[ [HIu[ [EJS[ [N[HIF]K

Finally, she used the a-G wheel to decrypt the rest of
the message.

[bfole[pjofe] | |plofe[b] [ol6] [pjo[ [6]plo]G
tihlain/kis/!| |gil|ald| [t o] |ble] |hier|e
wWviGlalY[Y]!| |3/Z]6]6] [HIUI [E[SI [NIHIFIK

% Do Problems 3 and 4 now.

=

PROBLEMS

(Workbook page W29)

3. Decrypt the Vigenére
message below using
keyword CAT.

QK, UWT PJEKG SACLE
YE FGEM?

4., Decrypt using a Vigenére
cipher with keyword LIE:

L TMP KEY BVLDIW
PEWNALG ECWYYL
XSM AZZPO ELTTI EPI
EZYEP MD XYEBMYO
SY QXD ALZMW.

—Mark Twain

Chapter 7: Combining Caesar Ciphers
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The Vigenéere Square

PROBLEMS

Sometimes I get mixed up using the wheels,” said
Becky. “I don't like it when the letters are upside-

down. Is there another way to encrypt?”

o

=)
m
=
(']
o
m
a
a
]
(=]
8
-
S
kS
=

prefer to use the Vigenére square. I'll show you how,

“T like the wheels,” said Jesse, “but some people
then you can choose the method you like best.

“The top row of the Vigenére square holds the plain-

text (in lower case, as usual). Each row shows a shift
of the plaintext alphabet, like a shift with a cipher
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Encrypting and Decrypting with the Yigenére Square

To encrypt or decrypt a Vigenére message using a
Vigenére square, begin as you did with cipher wheels:
write the keyword repeatedly above the message. For
each letter of the message, find the key letter above
it. Then encrypt or decrypt using the row that begins
with that key letter.

* To encrypt using a given row: Begin in the top row
with the plaintext letter to be encrypted. Follow
its column down to the letter where it meets the
given ciphertext row.

* To decrypt using a given row: Begin in the given
row with the ciphertext letter to be decrypted.
Follow its column up to the plaintext letter it
meets in the top row.

“For example, to encrypt t using row D,” said Jesse,
“find t in the top row and follow it down to W, the
letter where it meets row D.”

“I get it,” said Becky. “The plaintext a is encrypted
as D, b as E, and so on. Using row D of the Vigenére
square is like using the a-D wheel.”

A larger Vigenére square is on the inside back cover.

% Do Problems 5-10 now.

Place a ruler or a piece of paper under the row you
are using, to help line up the letters.

PROBLEMS

(Workbook page W31)

| 8. Use either the cipher-wheel
method or the Vigenére-
square method to decrypt the
following quotes from Mark
Twain. They were encrypted
with the Vigenére cipher
using the given keywords.

a. Keyword: CAR
CLNCYJ FO IKGYV.
TYKS NKLC IRRVIWA
SFOE GGOGNE RPD
RUTFPIJJ TYG RVUT.
b. Keyword: TWAIN

BB YWH MALT GAA
TZHMD YWH WKN'B
UTRE BB KAMMZUAR
TARPHQAZ.

¢. Keyword: NOT
PCNEOZR WL
ESLVGMNBVR HH SSTE,
ATFHXEM HS TXNF—
GBH TOGXAQX BT
YROK.
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CLASS ACTIVITY: Play Cipher Tag

PROBLEMS
(Workbook pages W32-W33) Play Cipher Tag using messages encrypted with a
Vigenére cipher.
9. Use either the cipher-wheel

method or the Vigenére © Do Problem 11 now.

10. Find a quote from a famous

square method to decrypt
the following quotes.

a. Keyword: WISE
DWFIOBQ MO BZ1
BQIWP KZELBWV EV
LLA JGSG WX AEAVSI
—Thomas Jefferson

b. Keyword: STONE

LAS ZEF PVB VWFCIIK
T ABYFMOVR TXUVRK
UM PEJKMVRY TKNC
KFOYP KMCAIK

—Chinese Proverb

person. Encrypt it using a
Vigeneére cipher. Use it to
play Cipher Tag.

PROBLEMS (Workbook page W34)

11. Challenge. Explore how to describe a Vigenére

cipher using numbers.

In Chapter 2, you worked with number mes-
sages. You described Caesar ciphers with arith-
metic—by adding to encrypt and subtracting to
decrypt. The Vigenére Cipher can be described
with arithmetic too. Instead of writing the
keyword repeatedly, change the letters of the
keyword to numbers and write the numbers
repeatedly. Then add to encrypt.

Example. The message “welcome” is encrypted
below using keyword DOG. First change the
message to numbers. Next, change DOG to num-
bers: 3, 14, 6. Write these key numbers repeat-
edly under the message numbers. Then add,
replacing any number greater than 25 with the
equivalent number between 0 and 25. Change
the numbers back to letters. Note that this
gives the same answer that the wheel method
and the Vigenére-square method would give.

Plaintext wle|l|c|o|m|e
Numbers 22| 4 |11 (2 |14(12) 4
Key numbers 3|24|6(3|14[6]|3
Shifted numbe:

R iy | 251817 | 5 (26,18 | 7
Cipher text Z|S|RIF|C|S|H

Encrypt and decrypt your own message with
this method.

60
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DO YOU KNOW?

The Civil War

Both the North and the South used cryptography during
the American Civil War. Unfortunately for the Scuth,
the North was better at it. Abraham Lincoln employed
three cryptographers in their early twenties who
were very good at cryptanalyzing the Confederate
correspondences. The South, on the other hand, did not
have good advisers and made several mistakes.

One mistake the South made was to let each commanding
officer choose his own codes and ciphers. This resulted
in at least one general choosing a Caesar cipher, which
was very easy to break. The most common cipher used was
the Vigenére cipher, but, although this seemed like a
good choice, it turned out to be a big failure. One
problem with the Vigenére cipher was that the messages
were often garbled. If one letter was omitted during
transmission, the keyword wouldn't match up and the
message wouldn' t make sense. Another problem was that
the South made the huge mistake of using the same three
keywords, MANCHESTER BLUFF, COMPLETE VICTORY, and COME
RETRIBUTION for most of the war. Once Lincoln’ s young
cryptographers figured them out, they were able to
easily decrypt other messages.

To use the Vigenére cipher, Confederate soldiers used
a cipher disk. It locked very similar toc your cipher
wheel except that it was made of brass.

Chapter 7: Combining Caesar Ciphers
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Cracking
Yigenere Ciphers
When You Know
the Key Length

“Maybe Grandfather’s note was encrypted using a Vigenére cipher. But
we don't know the keyword. So how can we decrypt his message?” Jenny
asked the rest of the Cryptoclub.

“We need to look at messages that somebody knows something about,”
said Abby.

“0K,” said Jesse. “Let’s send encrypted messages to each other and see if
we can break them. If we get stuck, we can give each other hints about
the keyword we used.”

“Good idea,” said Jenny. “We might notice something about how Vigenére
ciphers work that will help break Grandfather's code. Let’s make the
messages long enough to see patterns.”

So the boys got together and encrypted a message for the girls to work
on. And the girls prepared one for the boys to work on.

Chapter 8: Cracking Vigenére Ciphers When You Know the Key Length
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Cracking the Boys' Message
Here is the boys’ encrypted message.

KVX DOGRUX!I OM R PHRH-KVEMRZ VFBVWGLZCG
NSGK HH KVX VRZV CY KVX CODV OGU MXCZXU,
PHRH GLAUVF 99, VFAX SOVB. MHLF MZAX Zg NG.'
PNK HAV PHRH WZRG'K FXKIKE. "PHRH GLAUVF 99,
AV VHCZXISW RUTZE. "KVHNIE MF HAV RHTY
BDAXUWTKSEP CK Z'ZE TVTIUX PCN FJXIHEDS."
LFAXKVEBEU B] KKFBZ, SCL)," VB] OLJWLKOGK A
GTZR. "PV CGCM ARJX 75 SCTKG. MYSKV wL EC
GLAUVF 99. MYS FRBTXSK KVHLUAK THI ©
FFAXEH. 'UFOM EIFSSK 66," YS RVZEVR. 'TIS RFI

ARJBEU MICNSZX FIM KVXIST”

m

The girls tried for a while to decrypt it, but they got nowhere.

“Frequency analysis of the entire message would be useless,” said Lilah,
“since a Vigenére cipher encrypts the same letter in different ways
depending on which wheel is used.”
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“Yeah, but if we knew which letters were encrypted with which wheel,
it might help,” said Evie. “It would be like cracking several different
messages separately.”

“How would we know that?” asked Abby.

“We could figure out which letters go with which wheel if we knew how
long the boys’ keyword is,” said Evie.

“Our keyword has length 3,” said Tim. “Will that help?”

Evie took a pencil and wrote the number 1 under the first letter in the
message and under every third letter after that.

“The letters with the 1s are the letters that were encrypted with the first
wheel,” she said. “We don't know yet what kind of wheel it was, but we
can probably figure that out. I'll work on these letters.”

“Igetit,” exclaimed Abby. She wrote 2 under the second letter and under
every third letter after that. “The letters with the 2s were encrypted with
the second wheel. I'll get to work on those.”

“T'll work on the letters from the third wheel,” said Jenny. She wrote 3
under each of those letters.

Here are the first few lines.

KVX DOGRUXI OM R PHRH-KVEMRZ VFBVVGLZIL G
1253 231 23 1 T3 3d 123123

2 3 1231 % 2 = 23 1 xe 5 = b 23 212

NSGK HH KVX VRZV CY KVX CODV OGU MY CZXU,
12 23 123 1231 23 123 1 23 1 231 231231

=1

PNK HAV PHRH WZRG'K FXK
< 31 231 2312 21231 231

|
23 2

"PHRH qLAUVF 99 VFAX SOVE. MHLF MZAX Z& NG.
23212 112312377 3813928 12314 2312 3 23 1 2 B |

KE. "PHRH GLAUVE 99,
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Evie wrote down only the letters from the message with 1 underneath.
They were:

r:ﬁklkkkavz .

NKKVYVKCYUCU
RLVFSBLZZG
KVRZKKERLV
VCIRZVIFVT
PUKPZTIPFID
FKEJVFSJJIKK
ZVCRSKYVE

LVYRXKLK]I

FEFESYVVIF

REISFK) )

“These letters were all encrypted using the same wheel. Breaking
this part of the message is the same as breaking a Caesar cipher. It is
easier than breaking most substitution ciphers. I only have to figure
out one letter and I'l know how to turn the wheel,” she said.

“Let’s see which letter occurs most often in this list,” said Evie.
“Who wants to count?”

They made a tally of the letters in the list. Becky read the letters
one by one as Evie made tally marks (left).

66
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“V and K are the most common letters in this list. So either V or
K is probably the encryption of e, since e is the most common
letter in English. Let's turn the first wheel so e matches V. If
this doesn’t work, well try e with K.” What they got was the
a-R wheel (right).

They entered the letters from this wheel into the message. Here
are the first few lines:

The a-R cipher wheel.

t w  a v a a £ a 0 [ L
VXY DOORUXI OM R PHRH-KVBEMRERZLZ VFBVVGLLL
128 13a1t323f 23 1

w ot t L ¢ d L

fa u £ 0 b ke n L L
"PHRH GLAUVF 99 VFAX SCVE. MHLF MZAX Z4g
=34 318312 2433 L 23y 23172 2L 2y 13

t £ ] L t t wn a 7 ¢

t (A
NSGK HH KVX VRZV CY KVX CODV OGU MXCZXU,
1231 23 123 1231 23 123 1231 2 31 2312331

PNK HAY PHRH WZRG'K EXKIKE. "PHRH GLAUVE
2 3 23 2312 3123 25123 2312 32123132

4

< 231t 383123 12 3103123133

d

NG !

22
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AW T~ “T'll work on the part of the message that uses the s:eccnd wheel,”
EW/ oM I.L said Abby. “That is all the letters with 2 underneath.
C W P She read off just those letters while Lilah made a tally (left).
B & “8 is the letter occurring most often in this
£ M list, and H is the second most common letter.
F M| SN Il guess that the second wheel matches §
g lll |71 with e. It could be H with e, but Il only try
H L B UM || that if my first guess doesn’t work.”
L v
J I fwm Abby tumed the cipher wheel to match §
Ko X with e. This gave the a-0 wheel (right).
L A She used this wheel to decrypt the letters
ML 1Z W with 2 underneath.

The a-0 cipher wheel.

we t t th ed & o th la e

th wa a9 v a ab at en 0
EVXY DOGRUXI OM R PHEH-KVEMREZ VFEV
1 2% 12312331 23 b B T A . R

L
NSGK HH KYX
231 23 123

b ot UM ey o

“T'll figure out the letters for the third wheel,” said Jenny.

“Maybe I don't need to do a frequency analysis—1I see a pattern that
might make my job easier.

“Look at the message we have so far. The first word, KVX, is decrypted
asth_. There aren’t many three-letter words that start with th. I think
this word is the. That would mean X should be decrypted as e. I'l
match X and e on the wheel. That gives me the a-T wheel” (right).

/G LLL G
212 21 231 2123
a d Yy
YRZY €Y KyX CoRY ogu Mxezxu,

ba k Y ur L
"PHRH GLAUVE 99, VFAX SOVE. MHLE MZAX Zg NG
2312 = 2313 *r 3 2 123 2312 = 23 12 3

Lo

LL d

is P

The a-T cipher wheel.
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“We must have the correct

" she said.

Jenny started to substitute the letters on this wheel. “Look—we're

The girls finished decrypting the boys’ message:

getting a message that makes sense,

substitutions.”
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“The three wheels you used were the a-R wheel, the a-0 wheel, and the
a-T wheel. From your wheels, we know that your keyword was ROT. Yuck.
We wouldn't have guessed that.”

Cracking the Girls’ Message

“You were able to crack our message even though you only knew the length of
the keyword,” said Jesse. “Good job. Let’s see if we can crack your message.”

A “Okay,” said Abby. “Here it is. The key length is 4. Good luck.”

£F
v,/%
\ “//23 The boys wrote numbers under the letters of the message so they could

/ "‘\\?ﬂ
L 08 They found that H was by far the most common letter among the first
5%
[

¢(IIEI

wheel's encrypted letters, so they turned the wheel to match e with H. That
gave the a-D wheel (left). They used the a-D wheel to decrypt the letters
The a-D cipher wheel.  with 1 underneath. This meant that the first letter of the keyword was D.

L ( a b 0 m
WPRVH EMW D TUXWTER FrRGg ZEPMP
1 2341 23 4 1 234123 4 1 2 341 23

. t L [ £
MHAE | WPR FLO NSBA UR WPR
A2 4 1 413 3412 2 4 123

€ b 0 0 a Y S
RHESLEWD LRWP GRVEXDVFPE BREVMP
41 2 4 1 234123 41 2341 23 41 224123

i . m m h f £ o
LLWK. ESPMFMPME XKMK SI NV HL TMP
43 s 41224123 41323 £ E 23 413 3 4 1

0 b e " ¢ d
! OLRRD! EMFAHMZ E QRROCHT MRG I
2 241 23 4 1 2 341 2 3 4 1 23 41 2 = o4 1 =2
m 3 L L5 =

PMPM VIVAR EOEMCYV BASN BT

412 41 23 412341 23 41 234
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d 0

GWUR )
1 2341

t } .
GRTXIFBRQAH WMZ HRTXEUA.
23 4 1232 41T 93412

4 1 2341

Frequency of letters
with 2 underneath
in girls” message.

CLASS ACTIVITY: Finish Decrypting the Girls' Message
(Workbook pages W35-W38)

(You can do this activity by yourself if you are reading without a class—it

Jjust will take longer to count the letters.)

Your teacher will assign your group 3 or 4 lines of the message.

1. First wheel. The letters of the first wheel are already decrypted. What
letter was matched with a?

2. Second wheel.

a. Use the information in the table above to decide how to turn the
second wheel. Then decrypt the letters with 2 underneath in your
assigned lines.

b. What letter did you match with a?

72
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3. Third wheel.

a. Find the number of As, Bs,
Cs, etc., among the letters
with 3 underneath. To save
work, count the letters in your
assigned lines only. Then share
your data with the class to get
a combined total.

b. Use the class data from 3a
to decide how to turn the third
wheel. Then decrypt the letters
with 3 underneath in your
assigned lines.

¢. What letter did you match
with a?

. Fourth wheel.

a. Use the partly decrypted
message to guess how to
decrypt one of the letters with
4 underneath. Use this to figure
out what the fourth wheel must
be. Then decrypt the rest of
your assigned lines.

b. What letter did you match
with a?

5. What was the keyword?

DO YOU KENOW?

Lewis and Clark

In 1803, President Thomas Jefferson sent
Captain Meriwether Lewis and Captain
William Clark on an important mission
to explore the western portions of the
continent and send back information
about the terrain there. Jefferson knew
there were governments who would not
be happy about such an expedition. The
ownership of the western territories
was not yet determined, and England,
Spain, and the United States were all
trying to acquire them. In fact, Spain
and Clark's
caught up with

attempted to stop Lewis
expedition but never
them.

Jefferson was afraid that the valuable
information Lewis and Clark found would
be lost if they were captured, so he
asked them to send him regular reports.
He expected that Native Americans and
fur traders would be able to carry the
messages back to him. He asked them to
encrypt any messages that should be
kept secret from other governments. He
suggested they use the Vigenére cipher
and described it to them in a letter.
There is no evidence that Lewis and
Clark actually used the cipher, but
there is a sample message encrypted
by President Jefferson with keyword
ARTICHOKE.

Chapter 8: Cracking Vigenére Ciphers When You Know the Key Length
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Factoring

“Jesse, you learned about Vigenére ciphers in your old school, didn't
you?”" asked Abby. “Do you have any suggestions about how we can crack
Grandfather’s message?”

“We did crack some Vigenére messages, but that was quite a while ago
so I don't remember all the details,” admitted Jesse. “But I think we
looked for patterns in the messages. Then we found common factors of
some numbers related to the patterns. That helped us figure out the key
length.”

“It sounds like we should review what we know about factoring,” said
Jenny.

“That’s a good idea,” said Abby. “Then we'll be ready to look at the
message again.”

The factors of a number are the whole numbers that can be multiplied to
get that number. For example, 3 and 4 are factors of 12 since 3 x 4 = 12.
Other factors of 12 are 1, 2, 6, and 12.

The multiples of a number are the numbers you get when you multiply
it by whole numbers. The multiples of 3 are 3, 6, 9, 12, and so on. A
number is a multiple of each of its factors.

Chapter 9: Factoring



PROBLEMS

(Workbook page W39)

1. Find all factors of the
following numbers:

a. 15
b. 24
¢ 36
d. 60
e 23

2. List four multiples of 5.

3. List all prime numbers less
than 30.

4, List all composite numbers
from 30 to 40.

A prime number isa number that has only two factors:
1 and itself. The first few prime numbers are 2, 3, 5, 7,
and 11. A number that has more than two factors is a
composite number, The first few composite numbers
are 4, 6, 8, 9, and 10. The number 1 is unusual because
it is neither prime nor composite.

% Do Problems 1-4 now.

To factor a number means to break it into a product
of its factors. There is often more than one way
to do this. For example, 8 x 9 and 36 x 2 are both
factorizations of 72. However, there is only one way
to factor a number into prime factors, called its prime
factorization.

To find the prime factorization of a number, you can
start with any factorization, then factor any parts of
it that are not prime. One way to keep track of your
work when looking for a prime factorization is to use
a factor tree. Start with the number and break it into
two factors. Circle any factors that are prime.

A
@ 36

Factor each uncircled number into two factors: One
way to factor 36 is 12 x 3. Circle the 3 to show that
it is prime.
72
@ 3%
12 3

76
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Again factor any numbers that are not prime: One way to factor 12 is
4 x 3. Circle the 3 since it is prime.

o~
Pl

The final step is to factor 4 into 2 x 2 and circle the 2s.
72
,__,/ N
(2) 36
& R
2 3
4@
The prime factorization of 72 is the product of all the circled numbers in
thetree: 72=2x2x2x 3 x 3.

Here is another factor tree for 72. Although it is different, it gives the
same prime factorization.

72
8 9
pRORONE) PROBLEMS
@fli, (Workbook page W40)

5. Use a factor tree to find the
prime factorization of each
of the following numbers:

a. 24 b. 56 ¢ 90

% Do Problem 5 now.
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“A number like 72 is easy to factor,” said Becky. “1 already know that
72 = 8 x 9 since that’s one of the multiplication facts. But where do
I start with a larger number like 1350 that isnt in the multiplication
table? How do I know any of its factors?”

It helps if you can recognize when numbers are divisible by other
numbers. One way to check divisibility is to divide on a calculator. For
example, 299 is divisible by 23, since 299 + 23 is a whole number, 13,
with no remainder.

“I remember once learning about divisibility pattems,” said Evie.

“You can use these patterns to tell divisibility without a calculator. If
you know which numbers divide your number, you already know some of
its factors. Let's make a list of rules for divisibility.”

They all got to work and made a list.
“These divisibility rules will help us factor,” said Evie.

RULES FOR DIVISIBILITY

e A number is divisible by 2 if it ends in 0, 2, 4, 6, or 8.
Example: 148 is divisible by 2, but 147 is not.

e A number is divisible by 3 if the sum of its digits is divisible by 3.
Example: 93 is divisible by 3, since 9 + 3 = 12, which is divisible by 3.
However, 94 is not, since 9 + 4 = 13, which is not divisible by 3.

e A number is divisible by 4 if its last two digits form a number that is
divisible by 4.

Example: 13,548 is divisible by 4 since 48 is divisible by 4. But 13,510
is not divisible by 4 since 10 is not.

* A number is divisible by 5 if it ends in 0 or 5.

Example: 140 and 145 are both divisible by 5, but 146 is not.
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® A number is divisible by 6 if it passes the tests for
divisibility by 2 and by 3.
Example: 2358 is divisible by 6, because it is
divisible by 2 (since it ends in 8) and by 3 (since
2+3+5+8=18).

® A number is divisible by 9 if the sum of its digits is
divisible by 9.
Example: The number 387 is divisible by 9 since 3
+ 8 + 7 = 18, which is divisible by 9.

* A number is divisible by 10 if it ends in 0.

Example: Both 90 and 12,480 are divisible by 10,
but 105 is not.

% Do Problems 6-12 now.

“OK," said Becky. “Let’s try factoring a big number
like 1350. Where do we start?”

“You can see right off that 1350 is divisible by 10,”
said Evie, “so let’s start a factor tree.”
1350
LN\
10 135
“Factor the 10 as 5 x 2. As for the 135, I see that it is
divisible by 5, so I divide 135 by 5 and get 5 and 27

as factors. After these steps, I circle all the primes: 5,
2, and 5.

1350
0 13
(25 27

PROBLEMS
(Workbook pages W41-W42)

Use the rules for divisibility to

answer the following questions.

6. Which of the following are
divisible by 2? Why?
a. 284 b. 181
¢ 70 d. 5456

7. Which of the following are
divisible by 3? Why?

a. 585 b. 181
¢ 70 d. 6249
8. Which of the following are
divisible by 42 Why?
a. 348 b, 236
¢ 621 d. 8480
9. Which of the following are
divisible by 52 Why?
a. 80 b. 995
c 232 d. 444
10. Which of the following are
divisible by 62 Why?
a. 96 b, 367
¢ 642 d. 842
11. Which of the following are
divisible by 92 Why?
a. 333 b. 108
c. 348 d. 1125

12. Which of the following are
divisible by 10? Why?
a. 240 b. 1005
¢ 60 d. 9900
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“Next, I'll factor the 27 into 3 x 9 and, after that, the 9 factorsinto 3 x 3.

When I am done, I circle all the primes.
1350

10 135

525 2

“Now I multiply all the circled numbers to get the prime factorization of 1350:

1350=5x2x5x3x3x3.

“It is easier to read if we write the primes in increasing order:

1350=2x3x3x3x5x5.

If the same prime appears many times in a factorization, it helps to
use exponents. An exponent tells how many times to multiply a base

number. If the base is 3, then
3=3
P=3x%x3
P=3FIx3Ix3
3*=3%x3x3x3
P=3x3Ix3x3Ix3
etc.

Using exponents, the prime factorization of 1350 is

1350 =2 x 3¥x 52
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“Now it's your turn to find the prime factorization of a big number. How
about 1404?" Evie said to Becky.

“I'l try,” said Becky. “The last two digits are 04 so it is divisible by 4. I'll
use that to start the tree.
1404
/ \._‘
4 351

“I factor the 4 into 2 x 2 and circle the 2s because they are prime. I see
that 351 is divisible by 9 since 3 + 5 + 1 = 9, which is divisible by 9. I
divide 351 by 9 and get 39, so 351 factors into 9 x 39.

1406
4 351
329 39
“I factor 9 into 3 x 3, and I circle each 3. I see that 39 is divisible by 3,

since 3 + 9 = 12, which is divisible by 3. So I divide 39 by 3 and get 13.
Since these are prime numbers, I am done.

1404
A A PROBLEMS
@@ 9 19 (Workbook pages W43-W45)
333 1 13. Use a factor tree to find
the prime factorization
“I multiply all the primes together and get pf Caclyic} e ol g
R RERSe D g numbers. Write each
1404 = 22x 37 x 13." factorization using
exponents.

“ Do Prob 1 .
o Problem 13 now. a. 2430 b. 4680

¢ 357 d. 56,133
e. 14,625 f. 8550
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A common factor of two or more numbers is a number that is a factor of
each of them. For example, 3 is a common factor of 6, 9, and 15.

One way to find common factors is to list the factors of each number,
then find all numbers on both lists. This works if there are not a lot of
factors. For example, to find all common factors of 12 and 30, we could

make two lists:

The factors of 12 are 1, 2, 3, 4, 6, and 12.
The factors of 30 are 1, 2, 3, 5, 6, 10, 15, and 30.

The numbers in bold are all the common factors. The greatest common
factor is 6, the largest of all the common factors.

PROBLEMS

(Workbook pages W46-W47)

14, Find the common factors
of the following pairs of
numbers:

a. 10 and 25
b. 12 and 18
¢. 45 and 60

15. Find the greatest common
factor of each of the
following pairs of numbers:
a. 12 and 20
b. 50 and 75
¢. 30 and 45

16. For each list of numbers,
factor the numbers into
primes and then find all
common factors for the list.
a. 14, 22, 10
b. 66, 210, 180
¢. 30, 90, 210

A second way to find common factors is to find the
prime factorization of each number and multiply some
or all of the common prime factors. Let's use the same
numbers, 12 and 30, again.

The prime factorization of 12 is 2 x 2 x 3.
The prime factorization of 30 is 2 x 3 x 5.

The prime factorizations have 2 and 3 in common. If
we multiply all the common prime factors together,
we get the greatest common factor, 2 x 3 = 6. Other
common factors are 1, 2, and 3.

For numbers with several factors, the second method—
using the prime factorization—is usually quicker
than listing all the factors of both numbers. Here is
another example:

The prime factorization of 140is 2 x 2 x 5 x 7.
The prime factorization of 601is 2 x 2 x 3 x 5.

The common prime factors of 140 and 60 are 2, 2, and
5. We get the greatest common factor by multiplying
all the common prime factors, 2 x 2 x 5 = 20.

% Do Problems 14-16 now.
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DO YOU KNOW?

Cicadas

There are two types of cicadas, annual cicadas and
pericdical cicadas. Annual cicadas can be found
every year, but periodical cicadas all mature at the
same time, so they appear in cycles. Four species
of pericdical cicadas have 13-year life cycles and
three have 17-year life cycles. They are sometimes
called “13-year locusts” and “17-year locusts,” but
they aren't really locusts.

Cicadas stay underground for all but their last year
of life. Then they come to the surface to mate, sing,
lay their eggs, and then die. It is usually big news
when they appear because it seldom happens. But when
it does, they are hard to ignore because they are very
noisy and seem to be everywhere you look.

Both 13-year and 17-year cicadas can live in the same
area, but it would be very crowded if they all came up
at the same time. Fortunately, this rarely happens.
That’' s because the lengths of their life cycles don' t
have any factors in common — both 13 and 17 are prime
numbers. Since 13 x 17 = 221, they only come out of
the ground together once in every 221 years.

There are different types of cicadas in different parts
of the country, so the particular year they immerge is
different in different places. Illinois experienced a
“cicada invasion” in 1990. In 2004, 17-year cicadas
invaded Washington, D.C., and much of the Northeastern
United States.
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Using Common
Factors to Crack
Yigenere Ciphers

“Well, we have figured out how to crack a Vigenére cipher when we know
the key length. But if we don't know anything about the keyword, how
can we know its length?” said Jenny.

“We're stuck,” said Abby. “It looks like we'll never be able to decrypt
Grandfather’s message.”

“Don’t give up so easily,” said Jenny. “Maybe there are some patterns we
haven't seen yet. Let's take a look at the messages we just decrypted.”

“In the boys' message, KVX appears 4 times,” Evie observed. “It was
decrypted as the each time.” Evie underlined KVX each time it
occurred.

“And look,” said Abby, “GLAUVF 99 appears 3 times. It was decrypted
as number 99 each time.” She underlined GLAUVF 99 each place it
occurred.

“How could that be?” thought Lilah out loud. “I thought a Vigenére
cipher encrypted and decrypted the same letters differently.”

“Sometimes,” said Jenny, “but not if the same letters of the keyword are
above them. Let's look at an example.”
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ROT ROTROTR ©OT F OTRo TROTRO
Wepiniaie ey @t g loolaiti - rnwntnl
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GlLlAUNMIEL 19191, 1 VEAX  SOVE MHLE MZAX |
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REgSi AWl bjut ! biga,t di 4w

2 L Bl it VL PR E AL S G

In the boys" message (the first few lines are shown above), the word
the appears several times. Whenever the keyword letters ROT are above
the, the word the is encrypted as KVX. In the fifth line, however, the
keyword letters OTR are above the, so it is encrypted differently.

“Isn't it just a coincidence when the same keyword letters line up above
the same word?” asked Evie.

“Maybe it is more than a coincidence,” said Jenny. “Maybe we can find a
pattern.” Jenny was always on the lookout for patterns.

“Look at this,” said Abby. She divided the letters into blocks that had the
same keyword letters above them (facing page).

“The keyword ROT fits exactly 13 times, from the first the to the second
the. Since ROT has 3 letters, the first the and second the are 13 x 3 =
39 letters apart.” Abby didn't have to count the letters—she multiplied
instead.

“ROT fits exactly 3 times from the second the to the third the, so they
are encrypted the same way. They are 3 x 3 = 9 letters apart.”

86

Unit 3: Vigenére Ciphers



[RaT] [RoTlRoTIR 0Tl IR ETiRe TIROTRS
el Imanlalaelr, lait a, solait- rleiwith
kv [pogRrux|!l oM |k PHEH-KVEMRZ
HArotlee rleer] [Retle eT] [Ro1l [Re Tl or

wtloovele s slioolnl |w e tlol [t kel leidale Tof
MF BvivgLize g [Ms g HiHL I vix] [vrizlve ey
rROoTl [ReTIR TR oT[ROTR, o.T|rRO
bohel |Liakle mnld glelb L eld, biola.t
VX |eioplvi oGl mx|c. Z Xl B H[EH
rRoTRe | Tir o1 [RO T[R CTRO TJROT
wlwonsblelre (990 L ickomee] Lblatelk . iyelurl ltlimie
alaldvie 9.9, viEAax] [sove .| MHILE _MEAX

| i ;
RO TR o TR OTr._oTre. Tdror] &
ks, Wl ot kbl Lt kle biale t) (ol ldiwl 1L
NZg Nla 0L RN Hoalv. PIHRHL W Gl

“The distance between repetitions of ROT is a multiple of 3,” Jenny
noticed. “So the letters of ROT will line up the same way above a repeated
string of letters, such as the, if the distance between the strings is a

multiple of 3.”

“In other words,” said Abby, “the letters line up the same
way if 3 is a factor of the distance between the strings.”

They had discovered something that would help them:

When the letters of the keyword line up the
same way above a repeated string of letters, the
distance between occurrences of the string is a
multiple of the key length. In other words, the
key length is a factor of the distance between
occurrences of the string.

“The distance between the in the third line and the
in the fifth line is 49, which is not a multiple of 3.
So the blocks of 3 letters of ROT don't fit exactly
between these occurrences. This is why the in the
fifth line is encrypted differently from the rest.”

¥ TIP

To find the distance between
repeated strings of letters, count
the letters from the beginning
of the first string up to (but
not including) the beginning
of the second. (Don't count
punctuation or spaces.)

For example, in XYZABCDXYZ,
the strings XYZ are a distance of
7 letters apart as counted here:

XYZABCDXYZ
172134 567

Chapter 10: Using Common Factors to Crack Vigenére Ciphers
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“: Do Problems 1 and 2 now.

PROBLEMS
(Workbook pages W49-W50)

These problems involve entries Meriwether Lewis wrote in his
journal during the Lewis and Clark Expedition. (You might notice
that the spelling is not always the same as modern-day spelling,
but we show it as it originally was written.)

1. Sunday, May 20, 1804
“We set forward... to join my friend companion and fellow labourer
Capt. William Clark, who had previously arrived at that place with
the party destined for the discovery of the interior of the continent
of North America.... As I had determined to reach St. Charles this
evening and knowing that there was now no time to be lost I set
forward in the rain... and joined Capt Clark, found the party in
good health and sperits.”

a. Find all occurrences of the in the message above. Include
examples such as “there” in which the occurs as part of a word.

b. Find the distance between the last two occurrences of the in
the last sentence. (Don't count punctuation or spaces.)

¢. Choose a keyword from RED, BLUE, ARTICHOKES, and TOMATOES
that will encrypt in exactly the same way the last two occurrences
of the in the last sentence of the message. Use it to encrypt:

“the rain... and joined Capt Clark, found the party”

d. Choose a keyword from RED, BLUE, ARTICHOKES, TOMATOES that
will encrypt in different ways the two occurrences of the in the
phrase from 1c. Then use it to encrypt:

“the rain... and joined Capt Clark, found the party”

e. Of the keywords you have not used, which would encrypt the
two occurrences of the in the phrase in the same way? In different
ways? Give reasons for your answers.
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PROBLEMS
(Workbook pages W51-W52)

2. Wednesday, April 7, 1805

“We were now about to penentrate a country at least two thousand
miles [3,219 kilometers] in width, on which the foot of civilized
man had never trodden; the good or evil it had in store for us was
for experiment yet to determine, and these little vessells contained
every article by which we were to expect to subsist or defend
ourselves.... I could but esteem this moment of my departure as
among the most happy of my life.”

a. Find the occurrences of the in the above message.

b. Find the distance from the in the second line to the in the third
line. List all keyword lengths that would cause these words to be
encrypted the same way.

c. Find the distance from the in the third line to these in the
fourth line. List all keyword lengths that would cause the in these
strings to be encrypted the same way.

d. What keyword length(s) would cause all three occurrences of
the described in 2b and 2c to be encrypted the same way?

e. Choose the keyword from the following list that will cause all
three occurrences of the described in 2b and 2c to be encrypted
the same way:

PEAR, APPLE, CARROT, LETTUCE, CUCUMBER, ASPARAGUS,
WATERMELON, CAULIFLOWER

f. Copy the message beginning with the last the in the second

line and ending with these in the fourth line. Write your chosen
keyword above this part of the message. Encrypt each occurrence of
the (you don't have to encrypt the entire message).
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“So far we have only looked at repeated strings of plaintext to understand
what's going on,” said Jenny. “We need to look for patterns in ciphertext
if we are trying to crack a message.”

“Maybe we can look at the distances between repeated strings in the
message and work backward to figure out what the key length must be.
We can factor the distances to see what the possibilities are,” said Abby.

“Is the key length always a factor of the distance between repeated
strings of ciphertext?” asked Tim.

“Let’s look at another message and find out,” suggested Evie. “The
message we sent the boys had a different key length than theirs. Let's
take a look at that.”

“. Do Problem 3 now.

PROBLEMS

(Workbook pages W54-W55)

3. a. Find strings of letters that repeat in the girls’ message from
pages 70-72.
b. Complete a table like the one below. Include the strings shown
in the table as well as the strings you found in 3a.

Repeated Strings in the Girls' Message ‘
Keyword = TMME Key length=_4

String Distance between| 1s key lengtha N";';;T;L?; E:r:a
repetitions | factor of distance? |petween repetitions|
XKM 13¢ ye 4 |
B 5 ) |
XM 20 i
XM | 100 | 1
ETI TR ) ) I

¢. Is the key length always, usually, or sometimes a factor of the
distance between strings?
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Cracking Grandfather's Message

After looking at messages they had encrypted, the Cryptoclub members
wrote the following rule:

The distance between a pair of repeated strings in a Vigenére
message is usually a multiple of the key length.

“The word “usually’ in our rule bothers me a little,” said Abby. “Can't we
find a rule that works every time?”

“No, but with other clues from the message we will know if we are on
the right track.” said Jenny. “Let’s try to use this pattern to guess the
keyword length in Grandfather's message.”

First they looked for repeated strings of letters.

‘ggﬁms a,ysw&

-

Grandfather’s message.
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 String that Distarce GZS occurs five times. The distance between the first
repeats between and second occurrence is 30 letters, between the sec-
OCCUNENUES™ ond and third is 90 letters, between the third and
VNNS 162 fourth is 24 letters, and between the fourth and fifth
SGlav. | 105 is 51 letters.
GZS gg They expected that each of these distances is a mul-
(Gtimes) | 4 | tiple of the key length. That means the key length is a
- | 51 factor of each of the distances. To find the factors, they
| G | 76 wrote the prime factorization of each of the distances:
n 308 30=2x3x5 90=2x3x5
HUW 24=2x3 51=3x17
(4timesy | |
The only common factor is 3, so a good guess would
(31;;5""55) be that the key length is 3.
IEW “Wait,” said Tim. “Three is probably the key length,
T em — but we might as well look at the other strings we
T found just to see if they are also multiples of 3.”

In the table on the left are the strings they found and

ated strings in Grandfather” :
Rpentea Sang 1 Bl some of the distances between them.

message.
% Do Problem 4 now.

PROBLEMS

(Workbook pages W56-W57)

4. a. Find some of the strings that repeat in Grandfather's message.
Include at least two strings whose distances aren't in the table.
Then find the distances between occurrences of those strings.

b. For each distance in the table and the distances you found, tell
whether 3 is a factor.

¢. How did you determine whether 3 is a factor of a number?

d. Do you think 3 is a good guess for the key length of
Grandfather's message? Why or why not?
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The kids decided that 3 was a good guess for the key
length for Grandfather’s message. They divided the
letters of the message into three groups. Then they
divided up the work so that they each worked on
cracking the part of the message made from letters in
one of the groups. They used a different cipher wheel
to decrypt the letters in each group.

Wheel 1: the 1%, 4™, 7%, ... letter of the message
Wheel 2: the 2%, 5%, 8%, ... letter of the message
Wheel 3: the 3¢, 6, 9%, ... letter of the message

They counted the letters in each group to see which
letters were the most common. They made the table
on the right.

%2 Do Problem 5 now.

“I had swim team practice when you were figuring
all this out,” said Peter the next day. “Can somebody
explain how you figured out Grandfather's key
length?”

“Sure,” said Abby. “We found the distances between
strings of letters that repeat in the message. We
assumed that most of those distances were multiples
of the key length.”

“In other words,” said Jenny, “we assumed that the
key length was a factor of most of the distances.”

“Right,” said Tim. “So we factored each distance and
looked for common factors.”

% Do Problems 6-10 now.

PROBLEMS

(Workbook pages W58-W59)

5. Decrypt Grandfather’s
message. To save time, use
the information in the table
below. (It is a long message,
so you might want to share
the work.) What keyword
was used?

Most common. Letters

wheel1| W, G, Z,]

wheel 2| s, W, H, I

wheelz| G, A, =, V

| English| et a,i

A good guess for the length of
the keyword is a common factor
of distances between repeated
strings of letters.
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PROBLEMS

(Workbook page W6D0)

In Problems 6-8, Grandfather’s message is encrypted using a
different keyword each time. The goal is to find the key lengths.
(You don’t have to decrypt the message since you already know
it.) A table next to each message shows repeated strings and the
distances between some of them. For each message:

a. Find at least three pairs of repeated strings, including at least

two whose distances are not in the table. Then find the distances
between occurrences of those strings.

Factor the distances in the table and the new distances you found.

c. Make a reasonable guess about what the length of the keyword
might be. Explain why your answer is reasonable.

=

6.0 VLYK TZXTR DLRJIPU! OH HDY WY WNS

Strings that Distance
SLRZD EKVTQJ HSH ZFLGOBR SUGE RT HSH repeat n between
message 6 occurrences |
TWALMCY UQJPU GH EKK BZUZVPUT HTS Tk | sz |
UT WDQS DXVSCLUF. HKOZP KOYTQM, W ' ... 120
QRABO VUAP VNWYB YHZQKG. WDZSC L HSH _
HEZXMVE WNSX WU 0 XHZOW HDDPUZ HZ | EKK 0 ]
| (ocwrsahmes} ]
KGJP WNSX DVDCDOGPG. YICH KBZXMV, | WNSX 2% |
—
EKKM LUK GTOBSC—LT 0 GHXM AXXS QRXA. | DMV |
208 i
EKKFP PAGE EK AZUK—W HLRZ CHZICQ GBO LkZ
VZOVH G QWDOA.
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PROBLEMS

(Workbook pages W61-W62)

7. A LCMI YGYPU WBDZGI! MM OEU ZR MZI
JZPEK FGYMGV XJV XKSHKEK IGWV FR
MZI PZTBYSP IMOWVY CK XAW RQIXAWVP
KMI GJ NROX KYRVVBGV. YYMEW LKBMGY,
M HFYGV WQDI LZMPP WMGRGJ. PTLIT Z
FKGYIYX MZIO KS T EIVRP XPTGIX MG LCMI
MZIO RTIJEKJIW. KYTV IGGYIY, XAWC CII
LAPXVV—BF E XVVR HYTV JHJQ. VYIKW
QWJIX UW QQITI—B OMNC VXLYTE EGV WVROX
S GNRMF.

8.1 WPGI FDJYH SXAGIR! XI HES XC ELE
WXWPS QTSMNS ISI TGPOMNV EZWT DC
ELE CXAMGDC CMVTG LX TWT YSRIWPVN
IXA SF APVI SJEPVIDG. HLIAT SMKXCR,
M FDJYH SDBP WHXCJ WTDCPW. LPIPV I
QGZYGWI ELEB IZ E MTILP EMEPVT ID SEVT
ISIM PEAVAXHPH. SJGP INDJRL, TWTJ ERT
HTPVTG—TR A KTCC PJGP JOGB. ELEGT XYSI
QP QOGT—T AIAA CITIGY ENS HEEKT P
NPAXB.

Strings that Distance
repeat in between
message 7 occurrences

LCMI 162
MZL =
(occurs 4 times) | 2
XAW
(occurs 3 times) 114
ROX 162
MZI0
N— Yw NI
GYLY
X

Strings that Distance
repeat in between
message 8 occurrences

 PYH 105
ELE —  an
(occurs 4 times) | — _90
s1 | 130
| VTG 120
WT
PVI 135
PVT ]
J6P
EPV
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PROBLEMS

(Workbook pages W64-W66)

9. Here is another message encrypted with a Vigenére cipher. Collect
data to guess the key, then crack the message. Tell what keyword
you used. The workbook gives suggestions for sharing the work with
your class.

ECF DXS GHXM NOKJPU. ECF FXONNKR L YOUPQKFP
FODSHX. DPRVZP XYSO WU HSLTY EKGH HDY
WXSUGDLHZP. VU MZX YVZXRR MH BSCB VFZXJ. MZX
ICFOJ PP D YSNUKH LIJKBE. PGMMH ECF VNCFOJ
HCB ECFU YYTORG ZQ ZVP EKOWH IWAKKFD. QUPZGE
VLV IFLFQSO WNSX BKH, MXZ wWQ BUI OR, ECF
POUSW JWDFUJPU G HCHGGFUK KZUZV XLRZTRTG ZI
JCWOGFD.

10. Describe in your own words how to crack a Vigenére cipher when
you do not know anything about the keyword.

The Rest of the Story

“Mom! Mom!"” Jenny and Abby blurted out as soon as they got home.
“Grandfather found silver—we found a secret message he wrote, and we
cracked it!”

“Oh, that,” said their mother.
“What do you mean? Aren't you excited? Don't you believe us?”

“Oh, Ibelieve you. But there isn't much we can do about it. He found it but
lost it years ago. It's an old story that has been in the family for years.
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“The note was probably from Grandfather’s grandfather—he was quite
an adventurer. When he was a young man, he joined the Canadian Coast
Guard and was stationed on Lake Superior. Once, when he had shore
leave, he went hiking along the Nipigon River, at the northem tip of the
lake. There was a trading post there, but not much else at that time. He
climbed the ridge up behind the trading post, but night came quicker
than he expected and he couldn’t retum in the dark. So he spent the
night in a cave.

“The next morning, he noticed some strange-looking rocks in the cave.
He collected a few, then hurried back to his ship. When his ship arrived
in Montreal, he had the rocks appraised and was told they were extremely
valuable ore, very rich in silver. Everyone wanted to know where he had
gotten them, but he put them away and kept the secret, always planning
to return.

“Many years later, he returned with his son—my grandfather—to the
Nipigon River on vacation. They spent three weeks searching where he
remembered finding the silver—in the hills behind the trading post—
but they found nothing. On the last day of their vacation, they met an
old fisherman on the dock in front of the trading post, and Grandfather’s
grandfather mentioned he had been there 20 to 30 years before. The
fisherman said, ‘Oh, I guess you don't know about the fire. The trading
post used to be on the other side of the river, but it burned down several
years ago. They rebuilt it on this side of the river!

“So they had spent their entire vacation looking for silver on the wrong
side of the river! They didn't have time to go back and look again, and
they never had a chance to retum.

“The story stayed in the family, and when I was a little girl, my father
took us to the Nipigon area on vacation, only to find that a high dam has
been built there. All the landmarks are gone, and probably underwater.
So your great-great-grandfather’s treasure may never be found.”

Chapter 10: Using Common Factors to Crack Vigenére Ciphers
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DO YOU KNOW?

The Dne-Time-Pad and Atomic Spies

If the keyword of a Vigenére cipher is as long as or
longer than the message, there aren’ t any patterns, and
the cipher is impossible to break. But it is important
that the keyword be used only once, otherwise patterns
can be found and the cipher can be broken.

When German diplomats began using this system in the
1920s, they put their keys on pads of paper with
different keys on each sheet. When a sheet was used
for a message, it was torn off the pad and never used
again. The system became known as the cone-time pad. It
is still used today, since it is the only unbreakable
cipher system.

The type of pads used in one-time pad ciphers varies.
One Russian agent was captured with a booklet the
size of a postage stamp. Some pads have been found
in scroll form. Spies have had clever ways of hiding
their one-time pads: Scme spies have hidden several
scrolls in the base of a cigarette lighter.

If the one-time pad is unbreakable, why doesn’ t everyone
use it? One reason is that it is difficult to get the
keys to the users, since a user needs a new key every
time he or she sends a message. In wartime, hundreds
of thousands of words are encrypted each day. It would
be impossible to supply that many keys and to keep
track of which ones have been used. But the one-time
pad system is used by governments to communicate with
their spies.

During a period in the 1940s, the Russians didn't
follow the important rule that the keyword must be

CONTINUED CN NEXT PAGE >
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used only once. We don' t know exactly why — maybe they
had trouble getting new one-time pads to each other
during wartime and had to reuse their old pads. Or
maybe the manufacturer made a mistake and printed the
same pad twice. Whatever the reason, whether knowingly
or not, they sent out messages using the same keyword
more than once. This put just enough patterns into
their messages that American cryptanalysts were able
to break some of the messages. By breaking these
messages, the United States govermment learned the
names of some important American and British spies who
were giving atomic secrets to the Russians. The spies
were arrested. This code-breaking effort was part of
the VENONA program, which lasted from 1943 until 1980
and wasn’ t fully revealed to the public until 1985,
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Introduction
to Modular
Arithmetic

Tim was always asking questions. He wondered about the reasons
things are the way they are. He often asked, “Why?” Usually his teacher
encouraged his curiosity, but one busy day she just didnt have time.
When Tim asked another one of his questions, she answered him in a
frustrated way. “Tim,” she said, “some things are always true. You just
have to accept that.” Then she continued, “2 plus 2 is always 4, 4 plus 4
is always 8, and 8 plus 8 is always 16.”

Instead of accepting what his teacher said, Tim took her words as a
challenge. He was determined to think of an example to prove that the
things she had listed are not always true. He started thinking about
arithmetic, hoping to come up with an example. He was still thinking
about it as he got ready for bed that night. “It's 10 PM now,” he said.
“If T want to sleep for 8 hours, I should set my alarm to wake me up at
6 AM.”

“That’s it! In clock arithmetic, 10 PM + 8 hours = 6 AM. So 10 + 8 is not
always 18! My teacher said 8 plus 8 is always 16, but in clock arithmetic
8 + 8 =4.1 can't wait to tell her tomorrow!”
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Tim reported his example to his class the next day. They all agreed that
addition in clock arithmetic is pretty strange. When the sum is less than
12, clock addition is just like regular addition. For example, 6 + 3 = 9. But
when the sum is greater than 12, we start counting again with 13 equal
to 1. For example, 6 + 7 = 1 (in clock arithmetic).

“ Do Problems 1-6 now.

PROBLEMS

(Workbook page W67)

1. Lilah had a play rehearsal that started at 11:00 AM on Saturday
morning. The rehearsal lasted three hours. What time did it end?

2. Peter was traveling with his family to visit their grandmother and
their cousins, Marla and Bethany, near Pittsburgh. The car trip
would take 13 hours. If they left at 8:00 AM, at what time would
they arrive in Pittsburgh?

3. The trip to visit their other grandmother takes much longer. First they
drive for 12 hours, then stop at a hotel and sleep for about 8 hours.
Then they drive about 13 hours more. If they leave at 10:00 AM on
Saturday, when will they get to their grandmother’s house?

4, Use clock arithmetic to solve the following:
a 5+10=_ b. 8+11=__
C.7+3=__ d. 9+8+8= _

5. Jenny's family is planning a 5-hour car trip. They want to arrive at
2 PM. At what time should they leave?

6. In Problem 5, we moved backward around the clock. This is the
same as subtracting in clock arithmetic. Solve the following
subtraction problems using clock arithmetic. Use the clock, if you
like, to help you:
ai3-7=__ b.5-6=__

Coi2=3=_ d.5-10=__
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24-Hour Time

Peter asked Abby one of his favorite old riddles. “What
time is it when the clock strikes thirteen?” Abby
thought about it, but had no idea of the answer—all
of the clocks in her house only went up to twelve. “It
is time to get a new clock,” he said.

Peter's riddle assumes that a clock that has a 13 on
it must be broken. But actually, there are clocks that
have numbers for all of the 24 hours in the day.

On a 24-hour clock, a different number is used for
every hour. The hours before noon are numbered from
1 to 12 as usual, but the afternoon and evening hours
are different—they are numbered from 13 to 24. So,
13:00 hours means 1 PM, 14:00 hours means 2 PM, and
so on, up to 24:00 hours. Midnight can be numbered
either 0 or 24.

oS 24 hour

16 1}' 18 19 20 21 22 23 24

ight

With a 24-hour clock, you don't need to say AM or
PM—you can tell whether the time is AM or PM simply
by whether it is less than or greater than 12.
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It is not hard to convert between 12-hour and 24-hour time. Morning
hours are the same in both systems. To convert afternoon and evening
hours, you just have to add or subtract 12.

For example, to convert 9 PM to 24-hour time, add: 9 + 12 = 21. So, 9 PM
is the same as 21:00 hours.

To find 16:00 hours in 12-hour time, subtract: 16 - 12 = 4. So, 16:00
hours is the same as 4 PM.

The 24-hour system is widely used in Europe and is becoming increasingly
common in the United States. It is often used for train and bus schedules
to avoid confusion. Sometimes it is called “military time” because it is
the system used by military agencies.

“. Do Problems 7-11 now.

PROBLEMS
(Workbook pages W68-W69)
7. Write the following 12-hour times using the 24-hour system:
a. 3PM b. 9 AM C 11:15 PM
d. 4:30 aM e. 6:45 PM f. 8:30 P
8. Write the following 24-hour times as 12-hour times, using AM or
PM.
a. 13:00 b. 5:00 ¢ 19:15
d. 21:00 e. 11:45 f. 15:30
9. Use clock arithmetic on a 24-hour clock to solve the following:
da. 20+6=_ b. 11+I?=_
€. 22-8=___  d.B8-12=
10. Solve the following on a 10-hour clock:
a.8+4=__  b.5+8=__ @ T+7=___
d. 10+15=__ e 6-8=__  f.3+5=
11. Challenge: Is 2 + 2 always 4? Find a clock for which this is not true.
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Modular Arithmetic

Tim wrote down the answers to some of his clock
arithmetic problems. Abby saw his calculations.

“What has happened to you?” she said. “These answers
are all wrong!”

“The answers aren't wrong,” said Tim defensively. “I'm
not using reqular arithmetic. There must be some way
to write these problems to make it clear that I did
them in clock arithmetic.”

Their teacher showed them a way. She told them
that another term for clock arithmetic is modular
arithmetic. The word “modulus,” or the shorter word
“mod,” is used to show which size clock to use. For
example, the expression “mod 12" means use a 12-
hour clock, “mod 10" means use a 10-hour clock,
and so on. We could write the answer to the problem
8+4=__  asB+4 =2 (mod 10) to make it clear
that we used clock arithmetic.

To understand modular arithmetic, it helps to
understand which numbers have the same position on
your clock. For example, 2, e,

14, 26, and 38 all have # :: 3?

the same position on ¥ g 2

the 12-hour clock. ke B # O\
[ % A112 1\, 20
10 2 ‘\\
4533219 . 3jj15 27139
\ I"-‘B % / |
/16, /
W\ N 6 3/ %
18 X :
$—p Yy
g

% Do Problems 12-14 now.

PROBLEMS

(Workbook page W70)

12. a. The figure shows
numbers wrapped around
a 12-hour clock. List all
numbers between 1 and
48 that have the same
position on a 12-hour clock
as 3.

b. If the number wrapping
continues, what numbers
between 49 and 72 would
have the same position on
a 12-hour clock as 3?

13. a. List all numbers
between 1 and 48 that
have the same position on
a 12-hour clock as 8.

b. If the number wrapping
continues, what numbers
between 49 and 72 would
have the same position on
a 12-hour clock as 8?

14. a. How can you use
arithmetic to describe
numbers that have the
same position on a 12-hour
clock as 5?

b. What numbers between
49 and 72 have the same
position on the 12-hour
clock as 5?
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There is a special term in modular arithmetic to describe numbers that
have the same position on a clock. Two numbers are equivalent mod n
if they differ by a multiple of n—in other words, if they have the same
position on a clock of size n. For example, 37 and 13 are equivalent mod
12 because their difference, 37 - 13 = 24, is a multiple of 12.

The symbol “=" means “is equivalent to.” Using this notation,
37 =13 (mod 12).

This notation includes mod 12 in parentheses to tell us what clock the
numbers are on.

The symbol “=" reminds us of the equal sign “=" but it is a little different.
Equivalent numbers are alike because they have the same position on the
clock, but they don't have to be equal, so we use a slightly different symbol.

PROBLEMS

(Workbook page W71)

15, List three numbers equivalent
to each number,

a. 6 mod 12

b. 9 mod 12
16. List three numbers eqmva[ent

to each number. ==

a. 2 mod 10

b. 9 mod 10

¢. 0 mod 10
17. List three numbers equivalent

to each number. -

a. 1 mod5

b. 3 mod 5

¢ 2mod5

Another term for “equivalent mod n” is congruent
mod n. You may have learned the word “congruent”
in geometry. Congruent triangles are alike because
they have the same size and shape. In both
geometry and modular arithmetic, “congruent”
means things are alike in certain specific ways.

You can find numbers equivalent, or congruent,
to another number by adding multiples of the
modulus. For example, 13, 25, 37, and 49 are all
equivalent mod 12 to 1 since they are all 1 plus a
multiple of 12.

1+1x12=13
1+2x12=25
1+3x12=37
1+4x12=49

“s Do Problems 15-17 now.
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Reducing mod n

When we work mod n, we often use only the numbers from 0 to n - 1. If
another number comes up, we reduce mod n, which means we replace it
with the number between 0 and n - 1 that is equivalent mod n to it. This
is the remainder when we divide by n.

For example, 37 is equivalent mod 12 to the numbers 1, 13, 25, and so
on. Of these, the number in the range from 0 to 11 is 1, so reducing 37
mod 12 gives 1.

It is useful to have a notation that means reduce, or find the remainder.
We will use mod n without parentheses for this. So 37 mod 12 means the
remainder when we divide 37 by 12. Also, when we reduce, we use the
equal sign and not the equivalence symbol. We write

37 mod 12 = 1.

Abby thought she understood modular arithmetic, but she wasn't sure
she understood reducing.

Jesse said, “Let’s work out a problem. Let's reduce 40 mod 12.

“Since we're working mod 12, we need to find the number from 0 to 11
that is equivalent to 40 mod 12. One way to do that is to subtract 12
repeatedly until we get a number between 0 and 11.”

40
- 12
28
= 12
16
=12

4
“We stop when we get to a number less than 12, in this case 4.”

“Hmm,” said Abby, “wouldn't it be faster to subtract a multiple of 12? The
greatest multiple of 12 less than 40is 3 x 12 = 36, and 40 - 36 = 4.”
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“Yes,"” said Jesse, “and another way is to divide and find the remainder:

12)40

“All these methods lead to the same answer: 40 mod 12 = 4.”

Negative numbers work in modular arithmetic, too, if you think about
going backward on a clock. For example, -3 mod 12 = 9. We get this by
counting back 3 hours from 12 on a 12-hour clock. Another way is to add

12 until we get a number between 0 and 11:
-3+12=9.

“+ Do Problems 18-24 now.

PROBLEMS

(Workbook pages W72-W73)

18. Reduce each number.
a. 8 mod 5 b. 13 mod 5

19, Reduce each number.
a. 18 mod 12 b, 26 mod 12

20. Reduce each number.
a. 8 mod 3 b. 13 mod 6

21, Reduce each number.

a. -4 mod 12 b. -1 mod 12
22. Reduce each number.

a. -4 mod 10 b. -1 mod 10
23. Reduce each number.

a. -3mod5 b. -1mod5

24, Reduce each number.
a. -2 mod 24 b. 23 mod 20

¢. 6 mod>5 d. 4 mod 5

¢. 36 mod 12 d. 8 mod 12

¢ 16 mod 11 d. 22 mod 7

¢. 6modi12 d. -2 mod 12

¢. -6mod 10 d. -2 mod 10

c. 8mod5 d. 7 mod 5

¢ 16mod11 d

-3 mod 20
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CLASS ACTIVITY: The Mod Game

¢ Divide the class into teams. (Four to seven teams is a good number.)
Each team sends a representative to stand in a line facing the class.

* One of the teams chooses a number between 10 and 30. Students in
the line “count off” 1, 2, 3,... up to that number.

® The student who calls out the last number wins a point for his team.

Sample: Suppose there are four teams, T1, T2, T3, and T4. If the
number 11 is chosen, then the counting stops at T3 as shown below.
Team 3 wins a point.

M T2 T3 T4

9 10 11

e Another team chooses a number, and the counting is repeated.

o After you have played for a while, divide the class into a different
number of teams and play again.

Chapter 11: Introduction to Modular Arithmetic
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DO YOU KNOW?

How the United States Entered World War |

When war broke out in Europe in 1914, the United
States did not immediately get involved. Hoping to
keep it that way, Germany' s foreign minister, Arthur
Zimmermann, came up with a plan to make sure that the
United States was too busy at home to get involved with
a war in Europe. He decided to convince the president
of Mexico to invade the United States and reclaim
the “lost” Mexican territories, including Texas, New
Mexico, and Arizona.

Zimmermann described his plan in a secret message to
the German ambassador in Washington, who was to pass
it on to the Mexican president. Unfortunately for the
Germans, he had to send the message through cables
that touched Great Britain, and the British government
intercepted it. They saw immediately that the message
was encrypted at a level used only for top-secret
communications, so they knew they had to decrypt it.

After British cryptographers decrypted the message,
they wanted the Americans to know what it said so the
Americans would join the war on their side. However,
they didn' t want the Germans to know they had broken
the German code, so they devised a clever plan. The
British knew the message would need to be decrypted
before it was given to the Mexican president, so they
sent a special agent to steal the message again, but
this time, after it had been decrypted. This version
of the telegram was given to the United States, and
the British never had to tell anyone that they knew
how to decrypt German messages. To make sure no one
suspected them of intercepting the encrypted message

CONTINUED ON NEXT PAGE >
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and breaking the code, the British even planted a
newspaper story criticizing their secret service for
not intercepting the Zimmermann telegram!

When President Woodrow Wilson read Zimmermann' s
message, he saw that Germany was enccouraging direct
aggression against the United States. On April 2,
1917, President Wilson asked Congress to declare war
on Germany, and four days later they did.
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Applications

of Modular
Arithmetic

“I think we've been using modular arithmetic in our
ciphers without knowing it,” said Tim.

“I think you're right,” agreed Lilah. “When we used
Caesar ciphers, we wrote the letters as numbers and | 4. Reduce the following

PROBLEMS

(Workbook page W75)

then added to encrypt. But if the sums were greater numbers mod 26:
than 25, we substituted 0 for 26, 1 for 27, and so on. 229 b33 ci12
That’s just like reducing mod 26.” d. 40 e -4 f 52
Tim and Lilah were right. Using modular arithmetic, g.-10 h. -7
they could write Use multiplication to make a
cipher. The rule for encrypting
26 mod 26 = 0 is given in the table below.

27 mod 26 =1

28 mod 26 = 2, and so on. 2. Encrypt the name “Jack”

using the times-5 cipher.

To reduce a negative number mod 26, you add 26 to The first two letters are
get a number in the range 0 to 25. done for you.
-1 mod 26 = 25 Times-5 Cipher J]lalc|k
-2 mod 26 = 24 o 9] 0
-3 mod 26 = 23, and so on. iy by 5 45| 0
. reduce 910
% Do Problems 1-3 now. i -
change rumbers to letters | T | A
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PROBLEMS

(Workbook page W75)

3. Encrypt “cryptography” using the times-3 cipher as described in the
table below. The first two letters are done for you.

elylpltlolalr]|alp|bh]|y]
17

Times-3 Cipher c
change letters to numbers
_{use cipher strig) 2
multiply by 3 6 |51
6
G

reduce mod 26 25

1

change rumbers to latters

154 Tim and his friends decided to use what they called the times-11 cipher.
=26 They changed letters to numbers, multiplied by 11, and reduced mod 26.
128 But multiplying by 11 gave some pretty large numbers. They had to figure
- 26 out how to reduce these numbers mod 26. For example, to encrypt the
102 letter m, which corresponds to 14, they computed 11 x 14 = 154. Then
%g they needed to reduce 154 mod 26. How would you solve this problem?
- 26 Dan decided to subtract 26 over and over (left), until he got an answer
50 less than 26,
=26
2 Jenny decided to divide by 26, since the remainder is the desired answer.

154 mod 26 = 24,  In this method, 154 + 26 = 5 R 24, so 154 mod 26 = 24. You can divide
using long division or using a calculator. (For tips on how to use a calcu-
lator to find the remainder, see the next section.)

Lilah decided to subtract a multiple of 26 from 154. Multiples of 26 are
26, 52, 78, 104, 130, 156, .... In this problem, 130 is the largest multiple
you can subtract from 154. Since 154 - 130 = 24, 154 mod 26 = 24.
(If you subtract a smaller multiple of 26, for example, 104 instead of
130, you would have to keep subtracting until you get a number less
than 26.)
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Jesse decided to estimate the number of times 26
goes into 154 and subtract that many 26s from 154.
He guessed 26 goes into 154 about 5 times, since
he knew that 5 x 30 is 150. He calculated 5 x 26 =
130 and subtracted this from 154. If his quess had

PROBLEMS

(Workbook page W76)

4. Reduce each number.

been too low, he could have subtracted more until his a. 175 mod 26
answer was less than 26. b. 106 mod 26
¢ 78 mod 26

All of their methods gave the same answer, 154 mod

26 = 24, which corresponds to the letter Y. In the d. 150 mod 26
times-11 cipher, m is encrypted as Y. 5. Reduce each number. (Hint:
= Try subtracting multiples of
» Do Problems 4 and 5 now. 26 such as 10 x 26 = 250-)

a. 586 mod 26

Using a Calculator to Find Remainders b. 792 mod 26

To find 154 mod 26, Tim and Abby wanted to divide G St mod <0

d. 364 mod 26

and find the remainder. They could do this using
long division, but instead they chose to use their
calculators. With their calculators, they found that

154 + 26 = 59230769

The calculator expressed the remainder as a decimal,
but they wanted it expressed as a whole number. Tim
and Abby used two different methods to find the whole
number remainder from the decimal remainder.

Tim thought, “The calculator answer tells that there
are 5 groups of 26 in 154, plus some left over. (The
leftover amount is the decimal 0.9230769.) The 5
groups of 26 are 5 x 26 = 130. This leaves 154 - 130 =
24 left over. Therefore 154 + 26 = 5 R 24. So 154 mod
26=24."
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PROBLEMS

(Workbook pages W76-W77)

6. Use a calculator to help you
reduce the following.

a. 254 mod 24
b. 500 mod 5
¢. 827 mod 26
d. 1500 mod 26
e. 700 mod 9
f. 120 mod 11

7. Reduce each number.
a. 500 mod 7
b. 1000 mod 24
¢. 25,000 mod 5280
d. 10,000 mod 365

8. Choose one of the numbers
you reduced in Problem 6.
Write how you would explain

to a friend the way you
reduced your number.

Abby thought, “The calculator answer is 5.9230769.
To get the decimal remainder, I'll subtract off the 5.”
(This is better than retyping the decimal part, since
it saves the extra places stored in the calculator that
help prevent round-off error.)

5.9230769 - 5 = 0.9230769

“I know that a decimal remainder is computed by
dividing the remainder R by the divisor. In this case,
the divisor is 26, so

2 0.9230769.
26

“To solve this, I'll multiply both sides by 26:
26 x£ = 0.9230769 x 26.
26
“This gives
R=24"

Abby discovered that when she found remainders this
way she didn't always get whole number answers for
R. She knew that was because of calculator round-off
during division. This didn't happen often, but when
it did, she adjusted her answer by rounding it to the
nearest whole number.

%= Do Problems 6-8 now.
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Shortcut for Multiplying mod 26

Tim wanted to encrypt his name using the times-11 Multiplying modulo 26
cipher. He started to multiply by 11 and reduce modulo
26, but working with these numbers turned out to be If the multiplication is messy,
very tedious. For example, to encrypt ¥, he multiplied subtract 26 to get a number
24 x 11 = 264, To reduce this he could divide 264 by | that (1) is congruent mod 26
26 and find the remainder, but this was more work | to your number and (2) might
than he wanted to do. He thought of a shorter way: | be easier to work with.

He realized that 24 = -2 (mod 26). Multiplying by
congruent numbers gives the same answer in modular
arithmetic, so

¢ TIP: Tim's Shortcut for

PROBLEMS

(Workbook page W77)

11 x 24 =11 x (-2) (mod 26)
=-22 (mod 26) 9. Encrypt “trick,” using the
=4 (mod 26). times-11 cipher. Use Tim's
2 shortcut when it makes your
% Do Problem 9 now. work casier.
Times-11 Cipher tlr]ilec]|k

Calendar Applications For Modular Arithmetic change letter o rumber

The kids' teacher told them that modular arithmetic is oin ol
useful for solving problems that involve cycles, such
as calendar problems. She asked them, “If today is
Sunday, what day of the week will it be in 50 days?”

reduce mod 26

change numbers to letters

Suppose you think of Sunday as Day 0, Monday as
Day 1, etc. Then the numbers 0 to 6 represent the
seven days of the week. Day 7 is Sunday again. Every
day whose number is 0 mod 7 is Sunday. Every day
whose number is 1 mod 7 is Monday, and so on. Since
50 mod 7 = 1 (why?), the fiftieth day is Monday.

% Do Problems 10-15 now.
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PROBLEMS

(Workbook page W78-W80)

10.

11,

Leap Years. There are 365 days in a year, except for leap years. In a
leap year, an extra day (February 29) is added, making 366 days. Leap
years occur in years divisible by 4, except at the beginning of some
centuries. Years that begin new centuries are not leap years unless
they are divisible by 400. So 1900 was not a leap year but 2000 was.

12

13. If the Fourth of July is on Tuesday this year, on what day of the

14,

15,

Astronauts left on a Sunday for a mission into space. On what day
of the week would they return if they were gone for

a. 4 days? b. 15 days?  c. 100 days?  d. 1000 days?

If today is Wednesday, what day of the week will it be in
a. 3 days? b. 75 days? ¢ 300 days?

a. 2004 was a leap year. What are the next two leap years?
b. Which of the following century years are leap years?
1800, 2100, 2400

¢. Which of the following years were leap years?
1996, 1776, 1890

week will it be next year? (Assume that next year is not a leap
year.) Explain how you got your answer.

a. What is today’s day and date?

b. What day of the week will it be on today's date next year? Your
answer will depend on whether or not a leap year is involved.
Explain how you got your answer.

a. On what day and date will your next birthday be? (You may use
a calendar.)

b. On what day of the week will your twenty-first birthday be?
Answer without using a calendar. Don’t forget about leap years.
Explain how you got your answer.
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DO YOU KNOW?

Non-Secret Codes

Not all codes are secret codes. For example, the Inter-
naticnal Standard Book Numbers (ISBNs) on books and
Universal Product Codes (UPCs) on other products are
designed to store information in a form easily under-
stood by a computer. But this information is not meant
to be secret.

Codes often store more information than just the name
of the product. For books published before 2007, the
ISBN is a 10-digit number divided into four parts.
The first part tells the country or language area in
which a book is published (0 or 1 represents English-
speaking countries such as the United States, the United
Kingdom, RAustralia, etc.). The second part identifies
the publisher, and the third part is assigned by the
publisher to identify the book itself. The last part,
the tenth digit, is a special digit, called the check
digit. It can help to check whether a mistake is made
in typing or sending the number. It is not surprising
that mistakes are sometimes made, but it might surprise
you that the codes are designed to detect mistakes.

After the first nine digits of a bock's ISBN are
assigned, the check digit is chosen sc that the sum
of 10 times the first digit, plus 9 times the second
digit, plus eight times the third, and so on, up to 1
times the tenth digit is equivalent te 0 mod 11. In
other words, that sum is a multiple of 11. The number
on the back of this bock is ISBN 1-56881-223-X. The X
stands for 10 (the check digit must be only one digit,
so X is used in place of 10). You can check that

(10 = 1) + (9 x 5) + (B x 6) + (7T = B) + (6 x B)
+ (5 x1) + (4 x2) + (3x2) + (2x3) + (1 x10)
= 242 = 0 mod 11.

CONTINUED ON NEXT PAGE >
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DO YOU KNOW? (CONTINUED)

Non-5ecret Codes

Suppose someone tried to order this book but made
a mistake and typed ISBN 1-56881-223-6 instead. The
computer would calculate

(10 x 1) + (9 x5) + (B xB) + (7T xB) + (6 x8) +
(5% 1) +# (4x2) + (3 x2) + (2x3) + (1L x6) =238,

Since this is not a multiple of 11, the computer would
warn that the number typed is incorrect — it couldn’ t
possibly be the ISBN for a bock.

Beginning in 2007, the ISBNs will be 13-digit numbers.
This is because 10-digit numbers are running out. A
three-digit prefix will be added to the front, the
way area codes are added to phone numbers. Future
printings of this book will have 978 added to the
front, and the check digit will change. Instead of
multiplying the first digit by 10, the second by &,
and so on, the new check digit will be determined by
multiplying the first digit by 1, the second by 3, the
third by 1, the fourth by 3, and so on, alternating 1
and 3. The check digit will be the number needed to
make the sum a multiple of 10 (instead of 11, as in the
old scheme). Thus the number of this book will become
ISBN 978-1-56881-223-6 because

(1 x9) + (3 x7) + (1 x8) +# (3 x1) + (1x5)
+ (3 x6) + (1 x8) + (3 x8) +# (1 x1) + (3 x2)
+ (1 x2) # (3 =3) + (1 xe8) =120,

which is a multiple of 10.

The ISBN code can detect errors, but some codes are so
sophisticated that they can do more than that. Some
codes can actually correct the errors. There is an
entire field of mathematics devoted to the study of
error-correcting codes.
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Multiplicative
Ciphers

“I especially liked the ciphers we used that involved numbers,” said
Peter. “In the Caesar cipher we added numbers to encrypt. We've made a
few ciphers by multiplying. Will that always work?”

“Let’s make some tables,” said Lilah, “and see what happens.”

They built a times-3 cipher that multiplies the numbers by 3. As an
example, they encrypted the letter ¢. The number for ¢ on the cipher
strip is 2, so they multiplied 2 times 3 and got 6. Since 6 is the number
for g, they encrypted ¢ as g. They encrypted the letter i as Y because the
number for i is 8, 3 x 8 = 24, and 24 corresponds to Y.

FaY Fa.y
alb

P

?d'effghi jlkTUm[nlolplq]r]s tuvwx?}zl
o[1]2)3]4 51@ 7@9101112;131415161?!18192021???4 25

u
x3 %3

They started to make a table for the times-3 cipher. The table on the next
page shows that the letter a is encrypted as A, b is encrypted as D, c as
G, and so on.

“s Do Problems 1-4 now.
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paintext: @ [b [c |d[e[f[g[h[i[j k[ U[m[n]op]q|r]s|[t]ulviw]x]y[z]
numbers: | 0 (123 |4 |56 |7]8]9/10/11112[1314[15/16)17|18/19/20/21122|2324/25|

x3(mod26):| 0|3 |6 |9 12151182124/ 1[4 |7 |
ciphertext: | A |D |G |[J [M|P|S|V|YIB|EH

Times-3 cipher.

PROBLEMS
(Workbook pages W81-W83)

1. a. Complete the times-3 cipher table. (Tip: You can use patterns
such as counting by 3s to multiply quickly.)
b. Decrypt the following message Evie wrote with the times-3 cipher.
JAN. Y ENQO OVAF UQI 0ZQFM.
¢. What has one foot on each end and one foot in the middle? (It
was encrypted using the times-3 cipher.)
A UAZICFYGE

2. a. Make a times-2 cipher table.

b. Use the times-2 cipher to encrypt the words ant and nag. Is
there anything unusual about your answers?

c. Make a list of pairs of letters that are encrypted the same way
using a times-2 cipher. For example, a and n are both encrypted as
A, b and o are both encrypted as C.

d. Make a list of several pairs of words that are encrypted the same
way using the times-2 cipher.
e. Decrypt KOI in more than one way to get different English words.
f. Does multiplying by 2 give a good cipher? Why or why not?

3. a. Make a times-5 cipher table.
Use the times-5 cipher table to decrypt the next two quotations.
b. FU MWHU QSW XWR QSWH ZUUR ON RJU HOEJR

XDAKU, RJUN MRANP ZOHI.

—Abraham Lincoln
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PROBLEMS

(Workbook pages W83-W84)

3. ¢. RJU OIXSHRANR RJONE OM NSR RS MRSX CWUMROSNONE.
—Albert Einstein

4. a. Make a times-13 cipher table.
b. Encrypt input and alter using the times-13 cipher.
¢. Does multiplying by 13 give a good cipher? Why or why not?

“When we multiply numbers by 3, every product is different,” said Lilah.
“But when we multiply by 2, some letters have the same encryption. So
multiplying by 2 doesn't give a good cipher.”

In a multiplicative cipher, the number by which you multiply determines
the cipher. Therefore, this is the key. We'll call a number a good key if it
encrypts every letter differently. The number 3 is a good key, but 2 is not.

“I wonder what makes some numbers good keys and some numbers bad
keys,” said Dan. “Let’s see if we can figure out a pattern.”

CLASS ACTIVITY
Workbook pages W85-W86

Work in groups to determine which numbers from 1 to 25 make good keys
for multiplicative ciphers. Your group should:

a. Choose one even number and one odd number between 4 and 25 to
investigate. One number should be large, the other small. (Groups that
finish early can work on the numbers not yet chosen.)

b. Make cipher tables using your numbers as multiplicative keys. Decide
which of your numbers make good multiplicative keys (that is, which
numbers encrypt every letter differently).

¢. Pool your information with the rest of the class. Describe a pattern
that tells which numbers give good keys.

Chapter 13: Multiplicative Ciphers
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The kids combined efforts and found which numbers made good keys and
which made bad keys. Their pattern involved the factors each number
had in common with 26.

“Since our pattern involves common factors, it reminds me of the term
relatively prime that we leamed in math class,” Dan remembered. “This
might be a place to use that term.”

Numbers that do not have any common factors except 1 are said to be
relatively prime to each other. For example 15 and 26 are relatively prime,
but 15 and 20 are not, since 5 is a common factor. Note that numbers can
be relatively prime to each other even if they aren't prime numbers.

“0K,"” said Lilah, “using that term, we would say that a number is a good
key if it is relatively prime to 26.”

You might wonder why multiplying by a key that has a factor in common
with 26 causes the alphabet to repeat. Let's take a closer look. Let's try
multiplying by 10:

10x0=0

10x1=10

10x2=20

10 x 3 = 30 = 4 (mod 26)

It seems OK so far, but when we reach 13 (a factor of 26), we start to
repeat:

10x13=5x2x13=5x 26 =0 (mod 26)

So 0 and 13 are encrypted the same. That's because one of the factors of
26 (in this case 13) combined with one of the factors of 10 to get 26. But
that is not all. The numbers continue to repeat, with 14 encrypted like
1, 15 encrypted like 2, and so on:

10 x 14 =10 x (13 + 1) = (10 x 13) + (10 x 1) = 0 + 10 (mod 26) = 10 (mod 26)
10 x 15=10 x (13 +2) = (10 x 13) + (10 x 2) = 0 + 20 (mod 26) = 20 (mod 26)
10 % 16 =10 x (13 + 3) = (10 x 13) + (10 x 3) = 0+ 30 (mod 26) = 4 (mod 26)

128

Unit 5: Multiplicative and Affine Ciphers



This cannot be good, since a cipher must encrypt every letter (number)
differently. The whole problem arose because 10 and 26 shared a factor.

“I've been thinking,” said Jesse. “My grandfather is from Russia. He said
there are 33 letters in the Russian alphabet. If we made a multiplicative
cipher for a message in Russian, would the same numbers be good keys
as in English?”

“Idon’t think so,” said Dan. “For example, 13 would be a good key for Russian
because 13 is relatively prime to 33. But 13 is a bad key for English.”

Dan was right. Not all languages have 26 letters in their alphabets.
For alphabets of different sizes, the numbers that make good keys are
different. The general rule is

A number is a good key for a multiplicative cipher
if it is relatively prime to the size of the alphabet.

“We don't even have to go to different languages to need different keys,”
said Lilah. “Sometimes I like to include symbols for punctuation in my
messages. So if I include a period (.), comma (,), question mark (?), and
blank space ( ) in my encryption table, along with the 26 English letters,
I would have an ‘alphabet’ of 30 letters to encrypt. My good keys would
be different from those for the 26-letter alphabet.

% Do Problems 5-9 now.

PROBLEMS
(Workbook page W87)

5. Which of the following pairs of numbers are relatively prime?
a. 3and 12 b. 13and 26 ¢ 10 and 21
d. 15 and 22 e. 8and20 f. 2and 14

6. a. List 3 numbers that are relatively prime to 26.
b. List 3 numbers that are relatively prime to 24.
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PROBLEMS

(Workbook pages W87-W91)

7. Which numbers make good multiplicative keys for each of the
following alphabets?
a. Russian; 33 letters

b. Lilah's “alphabet”, which consists of the 26 English letters and
the period, comma, question mark, and blank space

¢. Korean; 24 letters

d. Arabic; 28 letters. This alphabet is used to write about 100
languages, including Arabic, Kurdish, Persian, and Urdu (the main
language of Pakistan).

e. Portuguese; 23 letters
8. Compute the table for each cipher, then decrypt the quote.
a. Times-7 cipher
UKP OXAPAODCP EW YXAD YC VU YXCN YC DXENS NU
UNC EW ZUUSENQ.
—H. Jackson Brown, Jr.
b. Times-9 cipher
PLK EWGP KZLAYGPUNC PLUNC UN VUTK UG JKUNC
UNGUNSKXK.
—Anne Morrow Lindbergh
c. Times-11 cipher
IS GNYI IZAB IS AFS, LMB NYB IZAB IS CAE LS.
—William Shakespeare
d. Times-25 cipher (Hint: 25 = -1 (mod 26).)
HTW ZWUSNNSNU ST HTW OMIH SOLMJHANH LAJH
MV HTW EMJQ.
—Plato
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PROBLEMS

(Workbook page W92)

9, Look at your cipher tables
from Problem 8.

a. How was a encrypted?
Will this be the same in all
multiplicative ciphers? Give
a reason for your answer.

b. How was n encrypted?
Challenge: Show that this
will be the same in all
multiplicative ciphers. Hint:
Since all multiplicative keys
are odd numbers, every key
can be written as an even
number plus 1.

DO YOU KNOW? Passwords

Many pecple use the Internet to pay their
bills. If you do this, you must use a pass-
word to gain access to your bank account.
You wouldn' t want just anyone to be able to
get inte your account — they might take out
your money without your permission.

Did you ever wonder what would happen if
someone stole the file of passwords of all
the banks' customers? Would that person be
able to use those passwords to get access
to all the accounts? Don' t worry — the
bank isn't careless encugh to store the
passwords in a way that anyone else can
use them. It encrypts the passwords and
stores only the encrypted form.

When you type your password to access your
account, the computer encrypts what you
type and compares it to the encrypted form
of your password that it has stored. If
it matches, you are allowed access. But if
somecne steals the file of passwords, he only
has your encrypted password. When he types
it, the computer encrypts what he types.
But it worf t match what is stored (since he
didn’ t start with your plaintext), sc the
hacker won’ t gain access to your account.

You donft have to worry about somecne
stealing your stored password, but you do
have to be careful to chocose a good pass-
word. If you choose something cbvious like
your birthday, someone might guess it. If
you use a regular word like “BIRD”, then
a hacker might find it by trying all words
in the dicticnary until he finds a match
— computers can do this quickly. To avoid
this, it is a good idea to mix numbers
and letters in your password, for example,
1B2I3R4D. That wor' t be in the dicticnary.

Chapter 13: Multiplicative Ciphers
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Using Inverses
to Decrypt

Each meeting of the Cryptoclub began with a short treasure hunt. Today
it was Tim's tumn to hide the treasure. He found two good places before
the others arrived and put a surprise in each place. He wrote DYS DAS
and FQT CVMHP on the board as clues about where to look.

“I used a multiplicative cipher with key 3,” he explained as the others
arrived. “I challenge you all to crack it without using your times-3 cipher
tables.”

Abby started thinking. “When we used addition to encrypt, we subtracted
to decrypt,” she reasoned. “So if Tim used multiplication to encrypt,
maybe we can divide to decrypt.”

“Let’s decrypt DYS DAS first,” Abby suggested. She changed the letters
to numbers and got 3, 24, 18 3, 0, 18.

“Now we divide each number by 3 and see what we get.” Abby did this
and her answerwas 1, 8,6 1,0, 6.

Abby changed the numbers back to letters and got big bag. And there in
the corner of the room she saw the big bag. She looked inside and found
the treasure Tim had hidden there.

“That wasn't hard. Now let’s try Tim's second clue,” said Evie. She started
to work on FQT CVMHP. She began with F, the first letter.

Chapter 14: Using Inverses to Decrypt 133



“F corresponds to 5. Tim multiplied some number by 3 to get 5 mod 26,
so I'll divide 5 by 3 to get back that number,” Evie explained.

“But how can you do that?” asked Becky. “5 = 3 isn't even a whole
number.”

“That's a problem,” agreed Evie. “In mod 26, we only have the whole
numbers from 0 to 25.”

“Then how can we divide in mod 26?” asked Becky.
That wasn't so obvious.

“There is more to think about than I realized,” said Evie. But she was
determined to figure it out.

Inverses

In regular arithmetic, the way to undo multiplication by 3 is to divide by 3.
We can show this with arrows,

5 > 15 255,
or as an equation,
(5x3)+3=5.

Another way is to multiply by /5, since multiplying by /s is the same
as dividing by 3. The arrows show that we start and end with the same
number:

5 3515 L5 5
We can also show this as an equation:
(5x3)x¥=5

Multiplying first by 3 and then by s gives us back what we started with!
That's because, from the Associative Property, you can multiply in any order.

(5x3)xY3=5x(3x1s)
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Multiplying 5 x (3 x Y3) is the same as multiplying

5x1,since3xz=1. PROBLEMS

(Workbook page W93)

The multiplicative inverse of 3 is the number n that

solves 1. Compute the following in
regular arithmetic.
3xn=1.
. . . a. 2x
The multiplicative inverse of 3 is '3, since 3 x 13 = 1.
The multiplicative inverse of s is 5 because /s x 5= 1. b. Vx4
c7xY

In regular arithmetic, the multiplicative inverse of a
number is its reciprocal. To find the reciprocal (and 2. Complete:

therefore the inverse) of a fraction you turn the 2. 32622y 2
fraction upside down. For example, if you write 3 as b. 6 > 18 M 2
the fraction 3, you can tum it upside down to get its

*5 52
reciprocal, ¥s. fd =rils 2

de 425526 2

%2 Do Problems 1 and 2 now.

“Tim multiplied by 3 and reduced mod 26 to encrypt his clue,” reviewed
Becky. “Since dividing gave us problems, we could multiply by the inverse
of 3 to get back what he started with.”

“But we don't have /3 in modular arithmetic,” said Abby. “We only have
whole numbers.”

“Maybe there is another number that acts like an inverse,” said Becky, “a
number that gives 1 mod 26 when you multiply it by 3.”

The mod 26 inverse of 3 is the number from 0 to 25 that solves
3xn=1 (mod 26).
Abby started multiplying to see whether there is such a number:

3x1=3
3x2=6
3x3=9
3x4=12

Chapter 14: Using Inverses to Decrypt 135



PROBLEMS
(Workbook pages W93-W94)

3. Test Abby's theory that if
you multiply by 3 and then
by 9 (and reduce mod 26)
you get back what you
started with:

2 62>18 "% 162 = 2
(mod 26)

x3 x9 s
b 2 s pw 2

(mod 26)
c 1022 59 3539
(mod 26)

4. Where was Tim's second
treasure hidden? Finish
decrypting his clue to find
out.

3x5=15
3x6=18
Ix7=21
3Ix8=24
3x9=27=1 (mod 26)

“That's it,” exclaimed Abby. “3 times 9 is 1 mod 26. So
9 is the mod 26 inverse of 3.”

“Let’s test 9 to see if it works like an inverse,” said
Becky cautiously.

They multiplied 4 by 3, then multiplied the answer
by 9 and reduced mod 26. They got back the number
they started with!

4 2> 12 *> 108 = 4 (mod 26)

“We found the inverse—we can use it to decrypt Tim's
clues.”

Abby and Becky had realized this important fact:

If a message is encrypted by multiplying by a
key, then it can be decrypted by multiplying
by the mod 26 inverse of the key.

The girls took another look at Tim's second clue, FQT
CVMHP. The first letter, F, matched the number 5. Tim
had multiplied by 3 to encrypt, so the girls multiplied
by 9 to decrypt, since 9 is the mod 26 inverse of 3.
They computed

5 x 9 =45 =19 (mod 26).

Then they changed 19 to the letter t. They had
decrypted the first letter of Tim's clue.

% Do Problems 3 and 4 now.
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plaintext: | |b | C dje f
345
91215

glhli[jlk[UIm[n]o|p[q]r]s]t]u]v[w]x[y]|z]
6|7]8]9|10111/1213(14/15{16/17|18/19(2021|2223/24|25
18[21|24{1 | 4| 7]10/13|16/19/22]25 2 | 5| 8|11/1417]20/23

Times-3 cipher.

=y
[a%

numbers: | 0
x3 (mod 26):| 0 | 3

o

Finding Modular Inverses

PROBLEMS

Finding inverses in modular arithmetic is not as easy (Workbook page W95)
as it is in reqular arithmetic, but there are ways to do

it—some easy and some not. Since you have already 5. Look at the tables of
computed many tables for multiplicative ciphers, you multiplicative ciphers you
can use your tables to help find mod 26 inverses. have already worked out.

Find the column that has 1
For example, at the top of this page is the multiplication in the product row and use
table for the times-3 cipher. The bottom row gives the this to find other pairs of
products of 3 times the numbers in the second row. numbers that are inverses
This table shows that 9 x 3 =1 (mod 26). This tells us mod 26. Save these for later.
that 3 and 9 are inverses mod 26.

% Do Problem 5 now.

PROBLEMS
(Workbook page W95)
of 3 without listing all the products of 3. She already

Abby noticed that she could have found the inverse
knew that 27 = 1 (mod 26), so she could have factored | 6. Since 5 x 21 = 105 = 1 (mod

27 = 3 x 9 to discover that 3 and 9 are inverses. To 26), 5 and 21 are inverses of
find other inverse pairs, she listed other numbers each other (mod 26). Find
that were congruent to 1 mod 26 and looked for their another way to factor 105.
factors. Here is her list of some numbers that are Use this to find another pair

of mod 26 inverses.

7. The following was encrypted
27,53, 79, 105, 131 by multiplying by 21.
Multiply to decrypt. (Hint:
See Problem 6 for the
inverse of 21.)

A UMXX BMNLO A UAK.
—Orison Swett Marden

congruent to 1 mod 26:

She couldn’t factor 53 or 79, because they are prime
numbers, but she could factor 105. She found inverse
pairs from its factors.

%2 Do Problems 6 and 7 now.
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PROBLEMS

(Workbook pages W96-W97)

8.

10.

11.

Find another inverse pair
by looking at the negatives
of the inverses we have
already found.

What is the inverse of 25
mod 267 (Hint: 25 = -1
(mad 26).)

a. Make a list of all the
pairs of inverses you

and your classmates

have found. (Keep this
list to help you decrypt
messages.)

b. What numbers are

not on your list? (Not all
numbers have inverses mod
26.)

c. Describe a pattern
that tells which numbers
between 1 and 25 have
inverses mod 26.
Challenge. Explain why
even numbers do not have
inverses mod 26.

You can find more inverses by looking at the negatives
of the inverse pairs you already know. For example, -3
=23 (mod 26) and -9 = 17 (mod 26). So 23 and 17 are
inverses because

23 x 17 = (-3) x (-9) (mod 26)
=+ (3 % 9) (mod 26)
=1 (mod 26) (since 3 and 9 are inverses).

“. Do Problems 8-11 now.

CLASS ACTIVITY: Play Cipher Tag Again

Play Cipher Tag. Encrypt a name or short message
using a multiplicative cipher. Be sure to use a “good”
key. Tell the class the key you used. They will have
to decide how to decrypt. (Note: this time, encrypt
and decrypt by multiplying, not by using the cipher
tables.)

% Do Problems 12-14 now.

Cracking a Multiplicative Cipher

“I found this note that Evie sent to Abby,” said Dan.
“She probably used a multiplicative cipher since that's
what we've been working on lately. The problem is I
don't know the key.”

IUUR U AR RJU POFHAH®

Unit 5: Multiplicative and Affine Ciphers



“Let’s see if we can crack it. A challenge is always
fun,” said Tim.
“A multiplicative cipher is a type of substitution

cipher. If we do a frequency analysis, we might not
need the key,” said Dan.

“OK, let’s look at the letter frequencies,” agreed Tim.
“The most common letter is U, so let’s replace U
with e. The next most common letter is R. A good
guess is that R is t.” He wrote his guesses above the
message.

eet ¢ t t.&
IUUR U AR R)U DOFHAH®

“That is a good start, but the message isn't long
enough to get enough information to guess all the
letters,” said Tim.

“Well, the word t_e is probably the and _eet could be
meet. So let's try replacing J with h and I with m,”
said Dan.

This is what they got:

meet we t the
IUMR UL AR T€'__]I.{ DPCFHAHR

PROBLEMS
(Workbook pages W98-W99)

Solve problems 12 and 13 by
multiplying by the inverse.

12. What word is pronounced
wrong by the best of
scholars?

Answer (encrypted with a
times-9 cipher):
16, 23, 22, 13, 2

13. What's the best way to
catch a squirrel?
Answer (encrypted with a
times-15 cipher):
4,9,16, 24,15 0
25,21,8,8 0,13,19
0,425 9,16,20,8
0 13, 14, 25.

14. Challenge: Investigate
inverses for one of the al-
phabets listed below. Find
all pairs of numbers that
are inverses of each other.
a. Russian; 33 letters
b. The English alphabet,
and the period, comma,
question mark, and blank
space; 30 “letters”

c. Korean; 24 letters
(Note: There is something
unusual about the inverses
for this alphabet.)

Chapter 14: Using Inverses to Decrypt

139



% TIP

Beware of even numbers and
13—they can trick you. For
example, suppose that you
have a message in which you
figure out that plaintext e
encrypts as Y. Then, since
e corresponds to 4 and Y
corresponds to 24, you know
that

key x 4 = 24 (mod 26).
You might think that 6 is the
key since it is a solution to the
equivalence, but 6 can't be a
key for a multiplicative cipher
since it is not relatively prime
to 26. In this case, there is
another solution, 19. (Check
that 19 x 4 = 24 (mod 26).)
This is the only solution that
could be a key.
To avoid this problem,
choose a plaintext letter that
corresponds to an odd number
(except 13) when you write
your equivalence.

“Maybe A is a, because then the message would begin
meet me at the,” said Tim.

“In fact, we know A must be a if it is a multiplicative
cipher,” agreed Dan. “But we just don't have enough
information to figure out the last word.”

“If it is a multiplicative cipher,” said Tim. “We could
use algebra to figure out the key Evie multiplied by.
We guessed that when the plaintext is m, the cipher
text is I. Since m corresponds to 12 and I corresponds
to 8, multiplying the key times 12 gives 8 (mod 26):

key x 12 = 8 (mod 26).

“We could find the key by multiplying both sides by
the inverse of 12.”

“But 12 is an even number, so it doesn't have an
inverse mod 26." Dan thought for a minute that Tim's
method wouldn't work.

“0K, try another letter,” said Tim. “We also guessed
that plaintext t is encrypted as ciphertext R. Since t
corresponds to 19 and R corresponds to 17,

key x 19 = 17 (mod 26).

“We can solve this because 19 does have an inverse—
the inverse of 19 mod 26 is 11. We'll multiply both
sides by 11 and use the fact that 19 x 11 mod 26 = 1.

key x 19 x 11 = 17 x 11 (mod 26)
key x 1 =187 (mod 26)
key = 5 (mod 26)
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“That means the encryption key is 5. To decrypt DOFHAHQ, we can
multiply by the inverse of 5, which is 21. The first letter D corresponds
to 3. Multiply by 21 to decrypt:

21 x 3 =63 =11 (mod 26).
“Since 11 corresponds to the letter 1, we'll decrypt D as L.”

% Do Problems 15-17 now.

PROBLEMS
(Workbook pages W100-W102)

15. Where did Evies note say to meet? Finish decrypting to find out.

16. The following messages were encrypted with multiplicative
ciphers. A few letters in each message have been decrypted. For
each message, write an equivalence that involves the key. Then
solve the equivalence to find the key. Use the inverse of the key
to help decrypt. Show your work.

ite it e tt te e
QXUPK UP WN IWYX LKAXP PLAP KHKXI
i te et i te e

BAI UG PLK JKGP BAI UN PLK IKAX.

—Ralph Waldo Emerson
b.

the e t t  hee e
ZBI PIKZ SAW ZC EBIIV WCOVKIJX OR QK

t t t hee e ee e
ZC ZVW ZC EBIIV KCYICNI IJKI OR.

—Mark Twain

Chapter 14: Using Inverses to Decrypt
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PROBLEMS

(Workbook pages W103-W104)

17. For each of the following, find the most common letters in the
message. Use this information or other reasoning to guess a few
letters of the message. Then find the encryption key by solving an
equivalence. Use the inverse of the key to help decrypt.

a. A HOYYCQCYV YOOY VFO RCLLCUSTVG CN

OPOBG KHHKBVSNCVG; AN KHVCQCYV YOOY VFO
KHHKBVSNCVG CN OPOBG RCLLCUSTVG.

—Winston Churchill

b. JTGAJ A SAN A0 RG MO, ANL RG UMXX TGSAMN
AOD RG MO. JTGAJ A SAN AO RG QIEXL VG, ANL RG
UMXX VGQISG URAJ RG ORIEXL VG.

—Ralph Waldo Emerson

DO YOU KNOW?

The German Enigma Cipher

The skill of British cryptographers helped to win World
War II. The British were able to figure out Germany' s
secret code — the Enigma cipher — without the Germans
ever knowing. This enabled them to learn the location
of German submarines. With this information, American
ships carrying supplies to the British avoided the
German submarines and reached Great Britain without
being torpedoed.

CONTINUED ON NEXT PAGE >
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To encode their messages, the Germans used an electro-
mechanical machine called the Enigma. The Enigma locked
somewhat like a typewriter, but had wheels and wires
that worked together in a systematic and complicated
way to encrypt the messages typed inte it. In the
1930s Polish mathematicians, notably Marian Rejewski,
analyzed German messages and learned to decrypt early
versions of the Enigma cipher. Just before the Germans
invaded Poland, the Poles sent the information they had
about the Enigma to the British. British mathematician
Alan Turing and others were able to build on the work
of the Polish mathematicians and crack the new version
of the cipher. The computations they used to decrypt
the Enigma messages led to the building of the first
electronic computer, the Colossus.

The capture of German submarines during the war
greatly helped the effort to break the Enigma. One of
the submarines captured by the Americans can be seen
at the Museum of Science and Industry in Chicago,
along with the Enigma machine and codebocks that were
onbocard at the time. On a tour of the submarine,
you can see that the Enigma machine was kept in an
important communications room, right across from the
skipper’' s bed. Codebooks for encrypting and decrypting
were locked in cabinets above his bed. The crew didn' t
have time to destroy the codebooks before capture, so
the books and the machine were captured along with the
sub. These books gave additional important information
that helped the British break the cipher.
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Affine Ciphers

Dan and Tim decided they should change their cipher
frequently to avoid having other people figure out
their messages. They wondered how many different
ciphers they could get by changing the keys in their
additive (Caesar) and multiplicative ciphers.

% Do Problems 1 and 2 now.

Dan and Tim decided that, even if they changed their
keys every day, they wouldn't have many different
ciphers—not even two months’ worth. They wondered
how many ciphers they could get if they combined
multiplication and addition.

An affine cipher is a cipher that combines multipli-
cation and addition. First you need to choose a good
multiplicative key m (that is, an m that is relatively
prime to 26) and an additive key b. Then the cipher
is called an (m, b)-affine cipher, and the pair (m, b)
1s its key.

To encrypt with an (m, b)-affine cipher, multiply by
m and add b. Then reduce mod 26.

. How many different

multiplicative ciphers are
possible? That is, how many
different numbers make
good keys for multiplicative
ciphers? Explain how you
got your answer.

PROBLEMS
(Workbook page W105)

1. How many different additive
ciphers are possible? That
is, how many different
numbers can be keys for
additive ciphers? Explain
how you got your answer.

Chapter 15: Affine Ciphers



PROBLEMS
(Workbook pages W106-W107)

3. Encrypt the word “secret”

using the (3, 7)-affine
cipher.

. Encrypt the word “secret”
using the (5, 8)-affine
cipher.

. Some affine ciphers are the
same as other ciphers we
have already explored.

a. What other cipher is the
same as the (3, 0)-affine
cipher?

b. What other cipher is the
same as the (1, 8)-affine
cipher?

Suppose that Dan and Tim
changed their key to get

a different affine cipher
each day. Would they have
enough ciphers to have one
for each day of the year?
Explain.

To encrypt the letter s with a (3, 7)-affine cipher, first
change s to 18. Then multiply by 3 and add 7. This
gives 3 x 18 + 7 = 61. Reducing mod 26 gives 9, which
corresponds to J.

We can use a mathematical formula to describe an
affine cipher. After translating the letters to their
corresponding numbers, we encrypt the plaintext
number x with the ciphertext number ¥ using the
formula

Y= (mx + b) mod 26

Without the “mod 26,” you might recognize this as
the equation for a line in reqular arithmetic. “Affine”
is a mathematical term used for equations of this
form, so that is where this cipher got its name.

In the (3, 7)-affine cipher, m = 3 and b = 7. The
encryption formula is ¥ = (3x + 7) mod 26. We can use
this formula to encrypt 18 (the number corresponding
to s). Substituting x = 18, we have

Y=(3x18+7) mod 26
= (54 + 7) mod 26
=61 mod 26
=9 mod 26

Since 9 corresponds to the letter J, s is encrypted
as .

“. Do Problems 3-6 now.
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Decrypting Affine Ciphers PROBLEMS
How would you decrypt a message that was encrypted (Workbook page W107)
with an affine cipher?

You could just “undo” the encryption steps, starting L ';‘i:zzst?nsects LR

with the last step and going backwards. To undo
addition, we subtract. To undo multiplication, we
multiply by the inverse of the multiplicative key.

Answer (encrypted with a
(3, 7)-affine cipher):

To decrypt an (m, b)-affine cipher, first subtract b, BN
then multiply by the mod 26 inverse of m.

Let's look at the (3, 7)-cipher we saw before and see
if we can decrypt. We encrypted s by first multiplying
by 3 and then adding 7. The answer was J. Let’s start
with J and go backward. First change J to 9. Then
subtract 7 and multiply by 9, the mod 26 inverse of
3. This gives (9 - 7) x 9 = 18. Reducing mod 26 still

gives 18, which corresponds to s. suYCawar ll"l\l
nSeatea ik FQFCL CPR HWNAS'O
% Do Problem 7 now. HWCML ZGJTS,

It was the end of the school year. The weather was
nice. Lilah and Becky decided to have a party for
the girls on their basketball team. After practice, HS TLW FCM(,'IZZKIJP
they made an announcement. “We're having a party. OC"JMS'

As soon as we know the final plans, well post an
encrypted invitation on Lilah's locker. Well use an
affine cipher with key (5, 2). Remember the key but
don't tell anyone else.”

After finalizing their plans, they posted this sign on
Lilah's locker (right).

KWWT CT TLW ZGDAFQUP

_ PROBLEMS
“ Do Problem 8 now. (Workbook page W108)

8. Decrypt the girls’ invitation.
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Cracking the Cipher by Solving Equations

The boys had heard about the party. When they saw the encrypted
invitation on Lilah's locker, they were determined to decrypt it. The
Cryptoclub had been talking about affine ciphers lately so they figured
that's what Lilah had used. But no one had talked about breaking affine
ciphers yet. They decided to try.

“OK, we know that an affine cipher is of the form ¥ = (mx + b) mod 26.
If we can figure out m and b, we'll know the cipher they used and we'll
be able to decrypt,” said Tim.

“Can we figure out any part of the message?” Peter wondered.

“Maybe,” said Tim. “Look at the number. It says ‘2 ZK. Since 2 is the only
number in the message, that might be the starting time. They couldn’t
start a party at 2 AM, so it must be 2 PM. So p must be encrypted as Z and
m as K. Aha! That is useful information. Maybe we can use it to break
the affine cipher.

“The number for Z is 25 and the number for p is 15, Tim continued.
“Since we know that 25 is the encryption of 15, we know that

25=m x 15 + b (mod 26).”

“We also have the clue that the letter m is encrypted as K,” said Peter.
“This tells us that the number 12 is encrypted as 10, so we also have

10=m x 12 + b (mod 26).

“We have two linear equivalences and two unknowns—we learned how to
solve linear equations in math. Maybe equivalences work the same. Let's try."

The boys knew a couple of ways to solve a problem with two equations and
two unknowns. They liked the method where they subtracted one equation
from the other, so they tried that method with the equivalences.

25=15m + b (mod 26)
- (10=12m + b (mod 26))
15=3m + 0 (mod 26)
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Therefore,
15 = 3m (mod 26).
They multiplied both sides by 9 (since 9 is the inverse of 3).

9 x 15= (9 x 3)m (mod 26)
135 = 1m (mod 26) since 9 x 3 = 1 (mod 26).

Since 135 = 5 (mod 26), they concluded that
5=m.

They substituted 5 = m in the first equivalence. (They could have used
the second equivalence and gotten the same answer.)

25=5x 15+ b (mod 26)
25=75 + b (mod 26)
-50 = b (mod 26)
2=Db (mod 26)

“We did it,” said Tim. “We figured out their encryption key—it is m = 5
and b = 2. So the girls’ cipher must have been ¥ = (5x + 2) mod 26. We'll
decrypt by subtracting 2 and multiplying by the mod 26 inverse of 5,
which is 21. Let's get busy and decrypt their message.”

After cracking the girls' cipher, Peter and Tim encrypted
their own message in a note to the girls. They posted
their note (right) on Lilah's locker and waited to see

whether the girls would figure it out. UC UYZZ WAID
You can use Peter and Tim's method to crack other TAA ERF NEYRG
affine ciphers. If you figure out two letters of the

message, you can get two equivalences. Solve them like E WEROD.

you solve equations in regular arithmetic, but don't

divide. Instead, multiply by the modular inverses. JOTOE ERF TYI

Sometimes you can figure out a few letters by looking
at one-letter words or words with double letters.
Sometimes you can guess words in the message such
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as names. Other times you can do a frequency analysis to guess a few
letters.

The method usually works pretty well, but a few problems could come up.
You might guess letter substitutions that are incorrect and use them to
write your equivalences. You could solve your equivalences correctly but
get a value for m that isn't relatively prime to 26, so it couldn't be a key.
This tells you to try a different letter substitution.

You might make a correct letter guess, but end up with an equivalence
you can't solve because the coefficient doesn't have an inverse. (This
situation also came up when cracking multiplicative ciphers.) You will
avoid this problem if you choose one plaintext letter that corresponds to
an odd number and one that corresponds to an even number when you
write your equivalences (Peter and Tim used p and m, which correspond
to 15 and 12). Then you will end up solving an equivalence that involves
m times an odd number. You can solve this with inverses as long as the
odd number is not 13.

% Do Problems 9-11 now.

PROBLEMS

(Workbook page W109)

9. Each of the following was encrypted with an affine cipher. A few
letters have been decrypted. For each message, write equivalences
involving the encryption key (m, b). Solve the equivalences to find
m and b. Then decrypt the message.

a.
e [y g e
MCZRN HZYJWDMI MPYAEN RY ICRWIVK MIMZK

n nee n ee n ee
GCP'I PMMD, LAR PYR MIMZK GCP'I EZMMD.

—Mahatma Gandhi
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PROBLEMS

(Workbook pages W110-W113)

t a a i a a

9. b.
ia a
S GY G UKWWMUU PORGQ BMWGKUM S XGR G

i i i a i
HZSMTR AX0 BMDSMFMR ST YM GTR S

1L e a t att £
RSRT'P XGFM PXM XMGZP PO DMP XSY ROAT.
—Abraham Lincoln

10. a. Guess a few letters of Peter and Tim's note on page 149, then
solve two equivalences to find m and b.

b. Decrypt Peter and Tim's note.

11. Each of the following was encrypted with an affine cipher. Use
letter frequencies or any other information to figure out a few
of the letters. Write equivalences using the letter substitutions.
Solve the equivalences to find the key (m, b). Then decrypt.

a. BOIOINOB RAT ARZM TA KEM TPO BYGPT TPYRG YR TPO
BYGPT JZEWO, NCT XEB IABO FYXXYWCZT KTYZZ, TA ZOELO
CRKEYF TPO UBARG TPYRG ET TPO TOIJTYRG IAIORT.
—Benjamin Franklin

b. RY XDP CBEJ BO BSSKJ BOU R CBEJ BO BSSKJ BOU T3
JIFCBONJ ACJLJ BSSKJIL ACJO XDP BOU R TRKK LARKK
JBFC CBEJ DOJ BSSKJ. QPA RY XDP CBEJ BO RUJB BOU R
CBEJ BO RUJB BOU TJ JIFCBONJ ACJLI RUJBL. ACJO JBFC
DY PL TRKK CBEJ ATD RUJBL.

—George Bernard Shaw
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DO YOU KNOW?

Atbash

A very early form of substitution cccurs in the Hebrew
Bible. It consists of interchanging the first letter,
¥ (aleph), with the last letter, N (tav), the second
letter, 1 (beth), with the next to the last letter W
(shin), and so on. In English, that would mean that a
is interchanged with Z, b is interchanged with ¥, and
so on. You get the substitution table by writing the
alphabet backward:

alblc|d|e|f
LIY|X[W{V]|U

hliljlk|[lim|n|o
S{RIQJP|O|NIM|L

glrisf{tjulv|w]|x
JII[H|GIFIE|D|C

z
A

g
T

P L
K B

The name Atbash itself describes the cipher. It tells
how the letters are interchanged: aleph-tav-beth-shin.
The sounds of these letters give us A-T-B-5h, which is
why we call it Atbash. If we gave the cipher a name
in English by showing how the English letters are
interchanged, it would be AZBY.

Biblical scholars think that Atbash was used in the
bible to convey mystery, not to keep words secret.
However, it inspired European monks in the Middle
Bges to invent substitution ciphers, and that led to a
renewed interest in cryptography in Europe.
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Finding Prime
Numbers

The Cryptoclub had a planning meeting to talk about what to work on next.

“I think we should learn something more modern,” said Jesse. “The
ciphers we have worked with so far have been around for centuries.”

“Iagree,” said Becky. “They were fun to learn about, but ciphers have to be
more complicated today. Computers make the old ones too easy to crack.”

Fortunately, Tim had been reading a bit about modern-day ciphers.
“Well, the RSA cipher is probably the most widely known modern cipher,”
explained Tim. “It is named after Ronald Rivest, Adi Shamir, and Leonard
Adleman, who invented it in 1977. It uses prime numbers—very large
prime numbers—and it involves raising numbers to powers in modular
arithmetic.”

“Do we know enough math to learn about RSA?” wondered Jenny.

“I think we ought to review what we know about prime numbers,” Tim
said. “Especially larger prime numbers than we usually work with. Then
we ought to practice raising numbers to powers in modular arithmetic.
That is trickier than you might think, even with a calculator.”

“OK, that sounds like plenty to do for the next few meetings,” said
Jenny. “When we're ready, we'll take a look at the details of RSA. Let's
start with prime numbers.”
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The club members remembered some things about primes, and they knew
some small prime numbers like 2 and 3, but Tim explained that to use
RSA they would have to be able to find larger primes.

“I can't always tell whether a number is prime,” said Peter. “I've been
tricked by numbers that look prime but are not. My favorite example is
91. It looks prime to me and to most people 1 ask, but it turns out not to
be prime: 91 =7 x 13.”

“You can tell whether a number is prime by testing whether it is divisible
by any of the numbers that are smaller than it,” said Becky.

“Sure, but that can be a lot of work if the number is large,” said Peter. “Take
113, for example. It looks prime. But do I really have to test all the num-
bers up to 113 to find whether it has any factors besides itself and 1?”

“Why don’t we check a few numbers and see what happens?” said Jenny.
She got out her calculator.

“113 is not divisible by 2 since 113 + 2 is not a whole number.
Besides, it isn't an even number so it can't be divisible by 2.

113 is not divisible by 3 since 113 + 3 is not a whole number. Also,
the sum of its digits is not divisible by 3.

“113 is not divisible by 4 since...."

“Wait—we don't have to test 4,” Peter interrupted. “If 113 were divisible
by 4, then it also would be divisible by 2. So we don't even have to check 4.”

Jenny continued:

“113 is not divisible by 5 since 113 + 5 isn't a whole number.
Besides, multiples of 5 always end with 0 or 5, so that's another
reason I know 113 cannot be a multiple of 5.

“We don't have to check 6. If 113 were divisible by 6, it would have
been divisible by 2 and 3. We already know it isn't.”

“I see,” Peter observed. “We only have to check the prime numbers to
see if they divide 113. If 113 isn't divisible by a prime then it couldn’t

156

Unit 6: Math for Modern Cryptography



be divisible by any multiple of that prime either. That is a pretty good
shortcut.

“So to check whether 113 is prime,” Peter continued, “Let's test every
prime number less than 113. The next prime is 7.”

“113 is not divisible by 7 since 113 + 7 is not a whole number.”

“Wait,” said Jenny. “Let’s think before we do anymore calculations.” Both
Jenny and Peter had learned that thinking first often helps to cut the
work. They liked math, but they liked to avoid extra work even more.

“The next prime is 11,” Jenny thought out loud. “And 11 x 11 = 121,
which is greater than 113.”

“If the product of two numbers is 113,” reasoned Peter, “at least one
of them must be less than 11. If they both were 11 or more, then their
product would be 121 or more.”

“But we already showed that none of the primes less than 11 is a factor
of 113," said Jenny. “So we don't have to check anything else. It must be
that 113 is prime.”

“To find that 113 is a prime number, we only had to check four primes.
That was pretty quick.” Peter was impressed. “But is there a pattern
here?” he wondered.

“Well, 11 is the first prime number whose square is greater than 113.”
Jenny saw a pattern. “We didn't have to check anything greater than
4113

"

PRIME TESTING SHORTCUT

1. Check only prime numbers as possible divisors of your number.

2. Find the first prime number p whose square is greater than the number
you are testing. You don’t have to check anything greater than p.

(In other words, you only have to check primes up to the square root
of your number.)
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“If we want to find whether 343 is a prime number, what is the largest
prime we have to test to see whether it divides 343?” Jenny wondered.

Peter started multiplying primes. He skipped the first few because he
knew they were too small.

11x11=121

13 x 13 =169

17 x 17 = 289

19 x 19 =361

“0K,"” said Peter, “We see that 19 is the first prime number whose square
is greater than 343. By our rule, we only have to test primes less than 19
to see whether they are divisors of 343.” (This is Problem 1a.)

Jenny decided to try a larger number. “Is 1019 prime?” she wondered.

“40 x 40 = 1600. That is more than 1019, so I don't have to check for
prime divisors greater than 40.

“30 x 30 = 900. That is less than 1019—I have to check primes greater
than 30.

“31 x 31 = 961. Still less than 1019. I have to go higher.
“37 x 37 = 1369.

“To test whether 1019 is a prime number, I have to
test only the primes less than 37,” Jenny concluded.
“Since 31 is the last prime before 37, I only have to
PROBLEMS check through 31.”

(Workbook page W115)

“I did it another way,” said Jesse. “I used the square

1. Find whether the following root key on my calculator. When we look for divisors
are prime numbers. Explain of 1019, we only have to test prime numbers whose
how you know. squares are less than 1019. These are the primes
a. 343 b, 1019 that are less than +/1019. My calculator says 1019
¢ 1369 d. 2417 ~ 31.92. Since /1019 is between 31 and 32, we don't
e. 2573 F. 1007 have to check any numbers higher than 31.

% Do Problem 1 now.
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The Sieve of Eratosthenes

One method for finding prime numbers is called the Sieve of Eratosthenes
(air-uh-TAHS-thuh-neez). It is named after a Greek mathematician who
lived in North Africa around 230 Bc.

“What is a sieve?” asked Evie.

“I know,” said Abby. “It is a strainer, like the one my parents use to sepa-
rate the spaghetti from the water.”

The Sieve of Eratosthenes is a way of separating the prime numbers from
the composite numbers. It involves crossing out all numbers that are
divisible by 2, then all numbers divisible by 3, then numbers divisible
by the next number not yet crossed out, and so on. The numbers that
survive are the ones that are not divisible by other numbers (except 1),
so the numbers that survive are prime.

THE SIEVE OF ERATOSTHENES

A. Cross out 1 since it is not prime.

B. Circle 2 since it is prime. Then cross out all remaining multiples of 2,
since they can't be prime. (Why not?)

C. Circle 3, the next prime. Cross out all remaining multiples of 3, since
they can't be prime.

D. Circle the next number that hasn’t been crossed out. It is prime.
(Why?) Cross out all remaining multiples of that number.

E. Repeat Step D until all numbers are either circled or crossed out.

“I'll try the sieve method on the numbers from 1 to 50 to see how it
works,” said Lilah. “Then I'l try it again and watch more closely for a
pattem.”

%= Do Problems 2-5 now.
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PROBLEMS

(Workbook pages W116-W118)

2. Follow the steps in the Sieve of Eratosthenes to find all prime
numbers from 1 to 50.

3. As you followed the steps in Problem 2, you probably found that
multiples of the larger prime numbers had already been crossed
out. What was the largest prime whose multiples were not already
crossed out by smaller numbers?

4, a. Use the Sieve of Eratosthenes to find all primes between 1 and
130. Each time you work with a new prime, make a note telling the
first of its multiples not already crossed out by a smaller prime.
(For example, when the prime is 3, the first multiple to consider
is 6 but that has already been crossed out. Therefore, 9 is the first
multiple of 3 not already crossed out by a smaller prime.)

b. Look at your notes from 4a. Describe a pattern that tells, for
any prime number, its first multiple not already crossed out by
smaller prime numbers.

¢. When sieving for primes between 1 and 130, what was the
largest prime that had multiples that were not already crossed out
by smaller numbers?

d. After you had crossed out the multiples of enough primes, you
could stop because only prime numbers were left. When did this
happen?

5. a. Suppose that you used the sieve method to find the primes
between 1 and 200. List the primes whose multiples you would
have to cross out before only primes were left. Explain why.

b. Suppose that you used the sieve method to find the primes
between 1 and 1000. List the primes whose multiples you would
have to cross out before only primes were left.
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Counting Primes Kionher gf
Peter used the sieve to find all primes between 1 and | primes
100. But he didn't stop there. He found all primes nkerval | in interval
between 1 and 1000. He made the table at the right. 1tp 100 : 25
Peter noticed that the number of primes in an interval fOI 200 | 22!
seemed to be going down as the numbers increased. S0 % 200 ; 16
He wondered whether this pattem continued. He 301 tp 400 | fe
decided to go to the library to see if he could find 401t0 500 | 17
out more. He found a book there that gave a list of 501 to 600 | 14
primes. He counted the primes in the list and added 601 to 700 | 1¢
these lines to his table (below right). F01 tp 00 14
“There seem to be fewer and fewer primes as the g01 to 900 I 15
numbers get larger,” he observed. “I wonder if you gettotoco | 14
ever run out of primes. Wow. That would mean there
. : G
is a largest prime number! Nocsilier of
“No,” said Lilah, “It doesn't matter how large a prime primes
number you find. There will always be one that is Interval in interval
larger. This is how I know: 1tp 1000 168
“Suppose you have a list of all the primes there | ~00L t0 2000 135

£ 2 9001 to 10,000 =7
are. Multiply them all together. You get a really big |-/ Z 72

number, N=2 x 3 x 5 x 7 x ... . That number N is
divisible by every prime on your list, right?”

“0f course it is, since it is a multiple of every prime on
my list. I'm with you so far,” said Peter.

“Good. Now add 1,” Lilah continued. “You get N + 1,
which cannot be divisible by 2.”

“Let me think about that,” said Peter. “T get multiples
of two by counting by 2s, so the first number after N
that is divisible by 2 is N + 2. So, I agree, N + 1 can't
be divisible by 2.”
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“OK,"” said Lilah, “and N + 1 also cannot be divisible by 3, since the first
number after N that is divisible by 3 is N+ 3.”

“I see.” Peter was following this reasoning. “And for a similar reason,
N + 1 can't be divisible by any of the primes on my list.”

“Right—and that means that either N + 1 is a prime number or it is
divisible by a prime number not on your list. Either way, it must be that
there is another prime.”

“But how could that be, since you told me I had a list of all the prime
numbers there are?” Peter was confused.

“It must be you didn't really have a list of all the primes. We can always
find another prime—we'll never run out of primes.”

Peter was disappointed—he had liked the idea that there might be a
largest prime number. But Lilah was delighted to have convinced him
otherwise.

What Lilah had explained was known to the Greeks more than 2000 years
ago. It is called Euclid's Theorem. Here it is:

Euclid's Theorem: There are infinitely many prime numbers.

Formulas for Finding Primes

The Cryptokids wondered whether they could find a formula to generate
all the prime numbers, but there is no such formula. They discovered,
however, that there are formulas to describe some primes.

Twin primes are primes of the form p and p + 2. The numbers 3 and 5
are twin primes, as are 11 and 13. No one knows whether or not there are
infinitely many pairs of twin primes.

Mersenne numbers are numbers of the form 2" - 1. A monk named
Father Marin Mersenne worked with these numbers in the 1600s. The
first Mersenne number is 2! - 1 = 1. The second is 22 - 1 = 3. If the
exponent n is composite, then the corresponding Mersenne number is
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composite. However, if the exponent n is prime, the
corresponding Mersenne number can be either prime
or composite.

For example, 4 is composite, and 24 - 1 =64 - 1=63,
which is also composite (63 = 37 x 7). The number 3 is
prime, and 23 - 1 =8 - 1 =7, which is prime.

Many of the largest known primes are Mersenne
primes. In fact, one way people have found very large
prime numbers is to test large Mersenne numbers to
see whether they are prime.

A Sophie Germaine prime is a prime p such that
2p + lisalso prime. For example, 2, 3, and 5 are Sophie
Germaine primes, but 7 is not, since 2 x 7 + 1 = 15,
which is not prime. These primes were named after
a French mathematician who lived about 200 years
ago. No one knows whether or not there are infinitely
many Sophie Germaine primes.

“How are these special numbers going to be useful to
us?” Peter asked Tim.

“Well, we need large prime numbers for keys in the
RSA cipher, or otherwise our ciphers will be too easy
to break,” Tim replied. “We can check numbers that
might be Mersenne primes, Sophie Germaine primes,
and twin primes—or other special primes. That's
easier than checking all numbers.”

“That’s a good idea,” said Evie. “Since most numbers
are not prime, it would waste time to check every
number.”

% Do Problems 6-10 now.

PROBLEMS
(Workbook pages W119-W120)

6.

10.

a. One attempt at a
formula to generate prime
numbers is n? - n + 41.
Evaluate the formula for
n=0,1,2,3,4,5. Doyou
always get a prime?

b. Challenge. Find an n
less than 50 for which the
formula does not generate
a prime.

Look back at your list of
primes. Find all pairs of
twin primes between 1 and
100.

Find the Mersenne numbers
forn=5, 6, 7, and 11.
Which of these are prime?

Find at least three Sophie
Germaine primes other
than 2, 3, and 5.

Challenge. Find a large
prime number. (You decide
whether it is large enough
to please you.) Explain
how you chose the number
and how you know it is
prime.
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Peter came to the next meeting of the Cryptoclub
very excited.

“You know what I read? Regular people have found
new prime numbers. In 1978, two high school kids
found a new Mersenne prime. At the time, it was the
largest known prime number. This news made the
front page of the New York Times. Now people can join
the Great Internet Mersenne Prime Search to hunt
for Mersenne primes. In 2005, a volunteer found a
Mersenne prime with 7,816,230 digits!”

“That is huge!” said Tim. “The largest number I knew
about before was a googol. A googol is 10'%. You write
it as 1 followed by 100 zeros. So a googol has only 101
digits. It's tiny compared to the largest known prime
numbers.”

“I am surprised people are still discovering new
things about math,” said Abby. “I thought all math
was discovered a long time ago.”

Abby didn't realize that mathematics is a changing

PROBLEMS subject, not one that was completely figured out
(Workbook page W121) hundreds of years ago. Some mathematicians work
on new problems such as how to find fast methods
11. a, Test the Goldbach for computers to factor numbers. Others work on
Conjecture: Pick several problems that were posed long ago but have not yet
even numbers greater than been solved. For example, a very famous statement

2 and e each as t[';e ) about primes was made by Christian Goldbach (1690-
f::i inmyzulirlw;i. (sir?:eti 1764). It is called the Goldbach Comnjecture. It says

is not prime.) ' that every even number greater than 2 is the sum of

b Find-a imber that cah two primes. For example, 8 = 3 + 5. Even though the

Y Goldbach conjecture is simple to state, no one knows

be writt th of =
twow:rig:sai; erseuEan yet whether it is true or false.

one way. % Do Problem 11 now.
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DO YOU KNOW?

The Great Internet Mersenne Prime Search

The Great Internet Mersenne Prime Search (GIMPS) is
a project of wvoclunteers who work together to find
Mersenne primes using special software available for
free on the Internet. The search is responsible for
the discovery of eight Mersenne primes, each of which
was the largest known prime when it was discovered.
GIMPS was founded by George Waltmann in 1997.

The exciting thing about the GIMPS project is that
anycne can participate in the research. Sometimes
entire school classrooms have participated. When you
sign up, you receive a program that uses your computer
to search for primes. Your computer runs the program
while you are doing other things, like sleeping. It
will let you and the GIMPS project know if it finds
anything.

In February 2005, a new largest-known prime number was
found by Dr. Martin Nowak, an eye surgecn in Michelfeld,
Germany. It is 2%%9%%31 - 1 and has 7,816,230 digits.
The previous largest prime was found by Josh Findley
about a year before that.

To read more about the GIMPS project you can visit
their website, http://www.mersenne.org/.
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Raising to
Powers

The next topic the Cryptoclub members planned to explore was raising
numbers to powers in modular arithmetic. Tim had wamed them that
this might be trickier than they expected. To get started, Tim asked
them to compute

m = 182 mod 55.

“This will be easy,” Jesse said. “Both 18 and 23 are pretty small, so my
calculator can handle that with no trouble.”

But he was surprised when his calculator window showed him
74347713614 E28

That is his answer in scientific notation. It means 7.4347713614 x 10%,
To change his answer in scientific notation to standard notation, he
moved the decimal point 28 places to the right—and added enough zeros
to create all those places. So, according to his calculator,

188 = 74,347,713,614,000,000,000,000,000,000.

“That is a huge number,” Jesse said. The calculator didn't have enough
places to show it all, so it had to round the answer and report only the
first 11 significant digits.
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Dan tried a different calculator. It reported that 1823 was
74346 28

Dan’s calculator also reported the answer in scientific notation, although
it didn't use the “E” in the notation that Jesse’s calculator used, and it
only reported five significant digits. The notation on Dan's calculator
also meant that he had to move the decimal 28 places to the right and
add enough zeros to do that. So according to Dan's calculator,

187 = 74,348,000,000,000,000,000,000,000,000.

Both calculators rounded the number because it had too many digits to
display in their windows. That works for many uses of numbers, but not
for modular arithmetic.

“This doesn't help,” said a frustrated Jesse. “To reduce a number mod 55,
I need the exact number so I can figure out the remainder. The rounded
answer gives me an idea of the size of the number, but that means
nothing to me mod 55.”

Peter had not heard the first part of this conversation. But when he
heard that the others were stuck, he wanted to figure out a solution.

“What is the problem?” asked Peter.
“My numbers are way too big to work with,” Jesse explained.

“But you're working in modular arithmetic—the numbers are small. In
your example, you're working mod 55, so aren’t the numbers less than
557" Peter wondered.

“Yes, to start with, but when I raise them to a power, they get bigger
before I can reduce them.” Jesse was discouraged.

“Maybe you can raise the numbers to small powers first and then reduce
the answers right away before they get too big,” Peter suggested.

That was a great idea, so they worked out some examples.
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181=18
182 = 18 x 18 = 324 = 49 (mod 55)

18°=18 x 187  Now substitute 49 for 182
=18 x 49 (mod 55)
= 882 (mod 55)
=2 (mod 55)

184=18 x 18°  Next substitute 2 for 183, from the last line.
=18 x 2 (mod 55)
=36 (mod 55)

PROBLEMS
€. Do Problem 1 now. (Workbook page W123)
“0K, so we have to multiply in small steps. But that 1. Compute the following.
means we can't use the exponent button on the Reduce before your numbers
calculator to calculate exponents. To compute 18%, do get too large.
we have to multiply 23 times? That's a lot of work.” a. 482%mod 1000

Dan was still discouraged. b. 3575 mod 1000

“Well, it is actually only 22 multiplications, but it's ¢. 993% mod 1000
still a lot of work,” agreed Jenny. “And what if we d. 8885 mod 1000
have even larger exponents? That would be way too

much work.”

There is a quicker way to compute powers. It involves combining smaller
powers to compute bigger powers. The simplest case is when the exponent
is a power of 2, such as 2, 4, 8, 16, and so on. In that case, you compute
bigger powers by repeatedly squaring smaller powers. For example, to
compute 18'¢ you first compute 18%

187 = 49 (mod 55). (We computed this before.)
Next, you get 18“ by squaring 18? and substituting 18% = 49 (mod 55).

18¢ = (182)?
=492 (mod 55)
= 2401 (mod 55)
=36 (mod 55)
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PROBLEMS

(Workbook pages W124-W126)

2. a. How many multiplications
would it take to compute
18% mod 55 using the
method of repeated
squaring?

b. How many multiplications
would it take to compute
182 mod 55 by multiplying
18 by itself over and over?
¢. Compute 18% mod 55
using the method from 2a
or 2b that uses the fewest
multiplications. (You can
reuse calculations from this
chapter.)

Use the method of repeated
squaring to compute each
number.

a. 6°mod 26

b. 32 mod 5

€. 9 mod 11

d. 4'%mod 9

3

You get 18 by squaring 18%. Substitute 18%= 36 (mod
55).

188 = (18%)?
= 362 (mod 55)
= 1296 (mod 55)
= 31 (mod 55)

Square this to get 181,

186 = (188 )2
=317 (mod 55)
=961 (mod 55)
= 26 (mod 55)

We computed 18 in only 4 multiplications. Notice
that this method is a lot faster than multiplying
18 by itself over and over. It would have taken 15
multiplications to compute 18 that way.

% Do Problems 2-3 now.

“I see that repeated squaring helps to compute powers
when the exponent is a power of 2, like 2, 4, 8, 16,
and so on, but what do I do when I have exponents
that are not powers of 2?” Jesse asked.

“We can combine powers of 2 to get other exponents,”
said Tim. “Look at 18'."

180=18x 18 x 18 x 18 x 18 x 18 x 18 x 18 x 18 x 18
e

18% 187

1810 =18 x 182
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“By repeated squaring, we know 18%= 31 (mod 55) and
18? = 49 (mod 55). Substituting these values, we get

1810 =188 x 187
=31 x 49 (mod 55)
= 1519 (mod 55)
= 34 (mod 55).

“We still want to know 18%,” said Tim. “It does not
come up in the squaring method. But we can write 23
as 16 + 4 + 2 + 1—those numbers are all powers of 2.
Then we can combine our earlier calculations to get
what we are looking for.”

187 = 1816 18¢x 182 x 18!
=26 x 36 x 49 x 18 (mod 55)
= 936 x 49 x 18 (mod 55)

Now reduce the first part: 936 mod 55 = 1.

182 =1 x 49 x 18 (mod 55)
= 882 (mod 55)
= 2 (mod 55)

“Wow. That huge number reduces to 2 mod 55.” Jesse
was impressed.

Tim summarized what they had learned. “A lot of
calculations can be easier if we think about better
ways to do them,” he said.

% Do Problems 4-6 now.

.

PROBLEMS
(Workbook pages W127-W129)

4. Use some of the powers

already computed in this
chapter to find each value.

a. 18° mod 55
b. 18 mod 55
¢ 18%mod 55

. a. Make a list of the values

9" mod 55 forn=1, 2, 4,
8, and 16. Reduce each
expression.

b. Combine your answers
from 5a to compute

9" mod 55.

¢. Combine your answers
from 5a to compute
9% mod 55.

a. Make a list of the values
7"mod 31, forn=1, 2,

4, 8, and 16. Reduce each
expression.

b. Combine your answers
from 6a to compute
78mod 31.

¢. Combine your answers
from 6a to compute
7% mod 31.
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DO YOU KNOW?

Dead Men Can't Tell Passwords

When the man in charge of archiving electronic copies
of more than 11,000 of Norway s important historical
documents died in 1993, so did access to the database
that describes them, because he never told anyone else
the password to the catalogue. Employees of the Ivar
Rasen Center of Language and Culture that houses the
documents tried to crack the password but were unable
to do it. A team of computer technicians was hired to
do it but could not.

In 2002, the director of the document center broadcast
an appeal on national radio, asking computer hackers
to crack the system and discover the password. About
25,000 people from all over the world responded and
one of them suggested the password in less than an
hour! It was the deceased man's last name, spelled
backward.

Employees of the center now keep their passwords on
papers stored in the center’ s safe.
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The RSA
Cryptosystem

Dan was going to visit his grandmother for a few weeks. He planned to
send lots of e-mail messages to Jesse.

“You'd better encrypt your messages if they contain anything you don't
want my sister to read,” said Jesse.

“But how will you know what key I used? I can't send the key by e-mail
because she might read that too,” said Dan.

Jesse thought about this for a while. “Sending keys must be a problem
for anyone who uses cryptography,” he realized. “If spies are able to get
messages, they could get the keys too. How can governments, businesses,
and even reqular people with important messages send their keys?”

This is a very important question. Until the 1970s, the problem of how
to send keys secretly was a fundamental problem with all cipher systems.
In 1975, however, Whitfield Diffie had an idea that changed the field of
cryptography; it eliminated the need to keep keys secret.

In all the cipher systems known until that time and in all the ciphers
we have learned about so far, the encryption key must be kept secret
because if you know how to encrypt, you know how to decrypt. For
example, if you learn that the sender added 3, then you know to subtract
3 to decrypt a message. Diffie realized that if there were a cipher system
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in which the decryption key couldn't be figured out from the encryption
key, then the encryption key wouldn’t have to be secret.

A system in which it is very difficult to figure out the decryption key
from the encryption key is called a public key system. In such a system,
the encryption key could be known by anyone. The idea of public key
cryptography was revolutionary when it was first announced, but at first
no one had an example of a cipher system that worked that way. Then, in
1977, Ronald Rivest, Adi Shamir, and Leonard Adleman invented the RSA
cipher, which was the first example of a workable public key system. It
is still in use today.

In the RSA system, the receiver chooses both the encryption key and
the matching decryption key. This is different from classical systems
in which the sender usually chooses the encryption key and lets the
receiver know what it is. After the receiver chooses his keys, he can list
his encryption key in a directory—Ilike a phone book—so anyone can
use it to send him messages. But he is the only one who knows how to
decrypt these messages.

Tim did some research into the RSA cipher system and came to the next
meeting of the Cryptoclub prepared to teach it to his friends.

“To use RSA, we first need to choose an encryption key,” said Tim, “We'll
need two prime numbers p and g. I'l choose p = 5 and ¢ = 11 for an
example.”

RSA works best with very large prime numbers, but Tim decided to start
with small ones until everyone understood the system.

“We also need a special number, e,” Tim continued. “We have to choose e
to be relatively prime to (p - 1) x (g - 1)."

He calculated (5 - 1) x (11 - 1) = 4 x 10 = 40. Then he chose the number
e =7, since it is relatively prime to 40. He could have chosen a different
number for e, as long as it was relatively prime to 40.

“The first part of the key is the product of p and ¢. This product is often
called n, so in our example, n=p x g=5x11=55.
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“The encryption key is the pair (n, e).

“Our encryption key is (n, e) = (55, 7),” announced Tim. “This is our
public key. Anyone can use this to send us a message.”

Tim went on to explain how to encrypt.

“To use RSA, you must first change your message to numbers. To encrypt
a number message m with key (n, ), compute

C=m*® mod n.

“So to send us a message using our encryption key (55, 7), someone
would compute

C=m’ mod 55.

Tim showed his friends how to encrypt the letter j. “First you change
the letter to a number,” he said, “like we've been doing for a while.” He
converted j to 9.

“Next you compute € = 9’ mod 55.”
“We know how to do that!” exclaimed Dan.

C=19" mod 55
= 4,783,969 mod 55
=4,

“80," said Dan, “j becomes 4, right?”
“Right,” said Tim. “Let’s summarize.”

CHODSING AN RSA ENCRYPTION KEY
® Choose two prime numbers p and . Compute the product n=p x q.
® Choose a number e that is relatively prime to (p - 1) x (g - 1).

The encryption key is the pair (n, e). It is also called the public key.
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There are different ways to
change a letter-message to a
number-message. Since Tim's
friends were familiar with let-
tinga=0,b=1,¢c=2, and so
on, he suggested they use that
method. Serious RSA users who
want to be sure no one can
break their messages use more
complicated methods—they
change a block of letters to a
many-digit number—but for
our purposes, we will use Tim's
method since that is what we
are familiar with.

PROBLEMS
(Workbook page W131)

1. Use Tim's RSA public
encryption key (55, 7)
to encrypt the word fig.
(First change the letters to
numbers usinga=0, b=1,
c=2, etc)

ENCRYPTING USING RSA
* First change your message to a number message.

* To encrypt a number message m with key (n, e),
compute
C=m*mod n.

% Do Problem 1 now.

“Now that we know how to encrypt using the RSA
system,” said Dan, “are you going to tell us how to
decrypt?”

“Sure,” said Tim. “It is very similar to encrypting. To
decrypt 4, we have to calculate 49 mod 55, where d is
my decryption key.”

“Well,” said Abby, “if you don't tell us the value of d,
we can't decrypt.”

“Exactly!” said Tim. “That's the beauty of RSA. I tell
you my encryption key so you can send me a coded
message, but I keep the decryption key a secret. That
way no one can decrypt but me. But since I'm showing
you how to use RSA, I'll show you how to find d.

“Remember that my encryption key is (n, ) = (55, 7).
Well,” explained Tim, “to calculate d, you need to know
the factors of n = 55, which we do—they are p=5
and g = 11—and we need the value of e = 7. Then, d
is the inverse of e mod (p - 1)(g - 1). Remember, the
inverse d satisfies

ed=1(mod (p - 1)(g - 1)).
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“That looks pretty complicated,” said Abby.

“It's not too bad when you substitute numbers,”
assured Tim. “We substitute the values of e, p, and q.
So we want d such that

7d=1(mod (5 - 1)(11-1))
=1 (mod 4 x 10)
=1 (mod 40).

“So we're looking for a number whose product with 7
reduces to 1 mod 40, right?” asked Abby.

“Right,” said Tim.
They got to work looking for a number that fit this

description. They decided to try all products until
they found the one that worked (right).

They finally found it: d = 23 is the number they
were looking for. (Tim wondered whether there was
a shorter way to find his d than to multiply all those
numbers, but he decided to worry about shortcuts
later.)

Tim's public key is (55, 7) and his private key is d = 23.
To decrypt the message 4 that he had encrypted with
his public key, Tim must compute m = 4?* mod 55.

This is a bit messy and gives numbers too large for
a calculator. He used repeated squaring to make the
job easier, and he reduced as he went along to avoid
calculator problems. He got the answer

43 mod 55 =9.

"

“See,” said Tim. “Decrypting 4 gives the number
9, and 9 corresponds to j. That is the plaintext we
started with.”

TR L]
Tx2=14
7x3=21
T x4=28
7x5=35
7 x 6 =42 =2 (mod 40)
7 x 7=49 =9 (mod 40)
7 x 8=56 = 16 (mod 40)

7 x 22 = 154 = 34 (mod 40)
7 x 23 =161 =1 (mod 40)
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Let's summarize.
PROBLEMS
QUGG ENEEREARAAEPIl  FINDING THE RSA DECRYPTION KEY

Problem 2.)

2. Review: Show that

decryption key d = 23 to

t these numbe
f’;fg;’ck S ?Hfﬂi DECRYPTING WITH RSA

You can use your result from ® To decrypt C with RSA keys (n, e) and d, compute

o If the encryption key is (n, €), where n = pg, then
the decryption key (also called the private key) is

23 =
4% mod 55 = 9. a number d such that
3. an encrypted a w?rd ed = 1(mod (p - 1)(q - 1))
with Tim's encryption key i X
(n, e) = (55, 7). He got the In other words, d is the inverse of
numbers 4, 0, 8. Use Tim’s emod (p - 1)(g - 1).

m=C'modn

% Do Problems 2 and 3 now.

“The decryption formula looks a lot like the encryption formula,” said
Abby, a bit puzzled.

“It is similar,” said Tim. “They both involve raising numbers to a power
and reducing mod n. Decrypting isn't any harder than encrypting, if you
know the decryption key.”

“Then why can't everyone decrypt?” asked Evie.

“Because they don't know my d,” reminded Tim. “They don't even know
my p and g since I only told them the product n = p x g. When I said the
public key was (n, e), I never mentioned p and g. It is important to keep
p and g secret. Otherwise, d can be figured out.”

“But can't anyone figure out p and g by factoring n?” asked Dan.

“Sometimes,” agreed Tim. “Our example, n = 55, is easy to factor. But if
p and q are large enough, it is very hard to factor their product, so the
numbers p and g remain secret.”
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Tim was right. Factoring is not
always easy. The numbers we have
been working with have been tiny
compared to the ones used in real-
life applications of RSA. To keep
messages secure, some people use
prime numbers with more than
200 digits. These primes and their
products are huge numbers.

It would take such a long time to
factor these numbers—thousands
of years—that the messages are
safe now. But as computers get
faster and as new methods of
factoring are discovered, it might
someday be possible to factor
even these huge numbers in a
reasonable amount of time. When
that happens, RSA will no longer
be a secure cipher. But by then,
people might have thought of
other public key systems.

DO YOU KNOW? Modern Uses of Cryptography

Up until about 30 years ago, the most
important uses of cryptography were
military and diplomatic. There are many
examples of battles won during wartime
because one side was able to decrypt
the messages sent secretly by the other
side, and there have been many situa-
tions in which leaders of some countries
needed to communicate with each other
without leaders of other countries know-
ing what they were saying. Today, how-
ever, cryptography has become important
in many situations in the lives of ordi-
nary pecple. For example, cryptography
is used in automated-teller machines at
banks, in cellular telephones, and on
the Internet to ensure that important
information, such as credit card num-
bers, travels securely. While users are
not always aware of the encryption their
computers are doing for them, cryptog-
raphy is important to everyone.
Cryptography is used not only to keep
messages secret, but also to make sure
that the receiver knows who sent the mes-
sage. If a person withdraws money from
a bank, there has to be a way that the
bank can prove that the person sending
the message really is the owner of the
account. In this situaticn, the ability
of the bank to verify the identity of
the person who sent the request is more
important than secrecy.

Another application of cryptography is
in e-mail. Some people want to send pri-
vate e-mail messages. These messages
are encrypted by their computers before
being sent — without the sender having
to do extra work each time.
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Revisiting
Inverses in
Modular Arithmetic

“We know just about everything we need to be able to use RSA, right?”
said Evie.
“Not exactly,” said Jenny. “To find the decryption key d, we have to find

a modular inverse. That isn't so easy to do. Lets learn more about how
to do that.”

“Didn't we already find inverses in mod 26 when we worked with
multiplicative ciphers?” Abby thought that all this sounded familiar.

“That's true,” said Jenny, “but for RSA we have to find inverses in different
mods, not just mod 26.”

“I know a website on the Intemet that helps us find inverses in modular
arithmetic,” said Tim. “We can always use that, but maybe we can learn
to find them ourselves.”

Finding Inverses in Modular Arithmetic
The Cryptokids reviewed what they knew about inverses.

The inverse of a number e is a number d such that ed = 1.
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In regular arithmetic, you can find an inverse easily. For example, the
inverse of 5 is s, since 5 x s = 1. But in modular arithmetic, fractions
don't exist, so inverses are different.

“Let’s practice by finding the inverse of 5 mod 7,” suggested Jenny.

“If we work mod 7, we are only working with the numbers 0, 1, 2, 3, 4,
5, and 6. If one of these numbers satisfies 5 x d = 1 mod 7, then that
number is the mod 7 inverse of 5.

“The inverse of 5 can't be 0, since 5 x 0 = 0. (In fact, 0 can't ever be an
inverse, since 0 times any number is always 0.) Also, the inverse can't be
1 since 5 x 1= 5. So let’s look at other products involving 5.

5x2=10=3 (mod 7)
5x3=15=1 (mod 7)

“That’s it! 5 times 3 is equivalent to 1 mod 7, so 3 is the inverse of 5
mod 7.”

It turns out that not all numbers have inverses in modular arithmetic.
In fact,

The only numbers that have inverses mod n are the numbers
relatively prime to n.

“Let’s try finding the inverse of 5 mod 18,” said Jesse.

“The only numbers that have inverses mod 18 are the numbers that are
relatively prime to 18, which are 1, 5, 7, 11, 13, and 17. We just have to
check those to find the mod 18 inverse of 5. The inverse can't be 1 since
5 x 1= 5. Let's check the other numbers on the list:

5 x 5=25=7 (mod 18)
5 x 7=35=17 (mod 18)
5x 11=55=1 (mod 18)
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“So 11 is the inverse of 5 mod 18. We only had to test a few numbers to
find that out.”

“This is fun!” said Jenny. “Let’s find the inverse of 7 mod 180.”
Remember that the inverse of 7 mod 180 is the number d such that
7 xd=1 (mod 180).

Jenny started to look for d, listing the products of 7 and all numbers
relatively prime to 180.

Since 180 = 2? x 3? x 5, numbers less than 180 that are relatively prime
to 180 are numbers not divisible by 2, 3, or 5. These are 1, 7, 11, 13, 17,
19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 77, and so on.

Jenny planned to try all the numbers from the list until she got the right
one.

Tx7=49
T 11=77
7x13=91
7x17=119
7 x19=133
7 x23=161
7 x 29 = 203 = 23 (mod 180)
7 x 31= 217 = 37 (mod 180)

Evie thought Jenny’s method was taking too much time, so she tried to
find a faster way.

Instead of multiplying 7 and all possible numbers to see if any products
were congruent to 1 (mod 180), she started with a list of numbers
congruent to 1 (mod 180). Then she checked whether anything on that
list was a multiple of 7.

Chapter 19: Revisiting Inverses in Modular Arithmetic 185



PROBLEMS
(Workbook pages W133-W135)

1. For each of the following,
determine whether the
inverse exists in the given
modulus. If it exists, use
either Jenny's method or
Evie's method to find it.

a. 10 (mod 13)

b. 10 (mod 15)

¢. 7 (mod 21)

d. 7 (mod 18)

e. 11 (mod 24)

f. 11 (mod 22)

Find the inverse of each of

the following numbers in
the given modulus.

a. 11 (mod 180)
b. 9 (mod 100)
¢. 7 (mod 150)

2

Numbers congruent to 1 (mod 180):

180 + 1 =181 Not divisible by 7, since
181 + 7 is not a whole number,
50 181 couldn't be 7 x d.

2x180+1=361 Not divisible by 7, for the same
reason, so 361 couldn't be
7 xd.

3 x 180+ 1=>541 Not divisible by 7, so not 7 x d.

4 x180+1=721 When we divide this by 7, we
get 103,50 7 x 103 =721 =
1 (mod 180). That means the
inverse of 7 mod 180 is 103.

Jenny’s method and Evie's method show two ways to
find the inverse of a number in modular arithmetic.
There is a more direct way to find inverses, called
the Extended Euclidean Algorithm, but trial and error
works well enough for small numbers.

% Do Problems 1 and 2 now.
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DO YOU KNOW?

Jefferson and Madison: But Where Is the Key?

Did you ever forget something important? Maybe you
forgot to bring your homework to school. Or maybe you
left something at school that you needed at home. You
are not the only one. James Madison once forgot to
bring his cipher key and that meant that he could not
decrypt a secret message from Thomas Jefferson.

After the Revolutionary War, the Founding Fathers of
the new nation needed a way to send secret messages
to each other. In 1781, the Secretary of Foreign
Affairs, Robert A. Livingston, printed up forms with
the numbers 1 to 1700 on one side and a list of words
and syllables that might be used in messages on the
other side. Government officials could easily create
codes that assigned numbers to words on the list. The
key to the code was the list that told what number
each word corresponded to.

James Madison and Thomas Jefferson agreed on a code in
1785 and used it to encipher messages to each other
until at least 1793. In 1793, Madison, who was away on
vacation, received a partially encoded message from

Jefferson.
“We have decided unanimously to 130... interest if
they do not 510... to the 636. Its consequences you

will readily seize, but 145... though the 15..."

All Madison needed to do to understand this message was
replace the numbers with the matching words according
to his key. It was then that Madison discovered he had
left his key in Philadelphia.
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Sending RSA
Messages

“Enough practice,” said Jenny. “Let’s choose our RSA keys and start

sending messages.”

“Let's make a directory of everyone's public keys,” Lilah said. “Then we can
send messages to anyone. We'll post the directory on the message board.”

CLASS ACTIVITY (Workbook page W137)

A. With your group, choose an RSA key. You need two
parts, the encryption key and the matching decryp-
tion key. Here is a summary of what you need. (If you
want to check the details, go back to Chapter 18.)
¢ Prime numbers p and g.

s A number e relatively prime to the product (p - 1)(g - 1).

o A number d such that ed =1 mod (p - 1)(g - 1). (In
other words, d is the inverse of e mod (p — 1)(g - 1).)

B. Write your encryption key on the board, along with
your group’s name. Be sure to keep your decryption
key secret.

C. To test your encryption and decryption keys, ask
another group to encrypt a short message to you
using your encryption key. Use your decryption key
to decrypt it.

¢ TIP: Choosing your Key

* Depending on your p and g,

you probably have several
choices for e—it can be any
number that doesn’t have
any factors in common with
(p-1)(g - 1). But whatever
you choose, you have to be
able to find the matching
decryption key d. If that is

difficult, then pick another e.

Keep your primes small (less
than 20) for now. You can
change them later when you
want to make your messages
more secure.
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In practice, the RSA system takes a lot of time to implement—so much
time that it is impractical to use for transmitting large amounts of data.
So instead of encrypting entire messages with RSA, businesses sometimes
use RSA to encrypt a keyword that is then used with a different, quicker
cipher.

Dan prepared a message to send to Tim. He encrypted it with a Vigenére
cipher using the keyword CRYPTO. He even took out the spaces in his mes-
sage so as not to give extra clues. But Tim wasn't expecting the message,
so he didn‘t know in advance what Vigenére keyword Dan had used.

Dan had to get the keyword to Tim, so he looked up Tim'’s public key in the
club directory. He encrypted his keyword using RSA and Tim's public key.

First, he assigned letters to numbers usinga=0, b =1, ¢=2, and so on,
since that is the system they were used to. This changed his keyword
CRYPTO to the numbers, 2, 17, 24, 15, 19, 14.

Then, he used Tim's public key, (55, 7), and substituted each of those
numbers for m in the expression m’ mod 55.

Here are Dan's calculations:

27 mod 55 = 128 mod 55
=18

177 mod 55 = 410,338,673 mod 55
=8

247 mod 55 = 4,586,471,424 mod 55
=29

15" mod 55 = 170,859,375 mod 55
=5

197 mod 55 = 893,871,739 mod 55
=24

147 mod 55 = 105,413,504 mod 55
=9
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So Dan’s encryption of CRYPTO was: 18, 8, 29, 5, 24, 9.
He sent this note to Tim:

Time,

Here is a Vigewtre message. | enerypted the
o

kReyword with your RSA public key. This is

o o o
what [ got: 18, g, 29, 5, 24, 9. UsE Your RSA
decy u]:ti(‘v-. key to find the keyword. Then use

o o o
the kReyword to floure put the vigendre wmessage.
o =

KWWDNRCEPTTRVYGHMVGEWDBNOTVTT
KMFVRTKAKECS. PSJRTTESCILTWONF
RHBBEVRWXTKIRIWOANCHMOTKCSES
CILXGUECSMIMETPNIHUTRMNWE,

— Dawn

When Tim received Dan’s message, he used his decryption key d = 23 to
decrypt the keyword. He substituted each of Dan’s numbers for C in the
expression €% mod 55.

Dan’s first number was C = 18, so Tim needed to compute 18% mod 55. This
was not as easy as the calculations Dan had done because 18% is too big
for his calculator and had to be rounded. Luckily, however, Tim had already
computed that 18% mod 55 = 2 (see Chapter 17). Using repeated squaring
and reducing as he went along, he computed the rest of the numbers:

8% mod 55 = 17
2923 mod 55 = 24
5% mod 55 = 15
2423 mod 55 = 19
923 mod 55 = 14.
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PROBLEMS

(Workbook pages W137-W140)

1. Use Dan’s keyword CRYPTO
to decrypt his Vigenére
message to Tim.

2. a. Dan’s RSA decryption key
is d = 5. Use it to find the
keyword that Tim encrypted.
b. Use the keyword you found
in 2a to decrypt the Vigenére
message Tim sent to Dan.

3. Combine RSA with the
Vigenére cipher.

a. Encrypt a message using
the Vigenére cipher with a
Vigenére keyword you choose.
b. Encrypt your Vigenére
keyword using RSA and the
RSA encryption key of the
person to whom you are
sending the message.

C. Ask the person to decrypt
your keyword using their RSA
decryption key and to use it
to decrypt your message.

If your messages are long or

if you want to use a modular
calculator, you can use the tools
on the Cryptoclub website.

Tim learned that the numbers for Dan’s keyword were
2,17, 24, 15, 19, 14. He changed these back to letters
and got CRYPTO. Then he got out his Vigenére Square
and decrypted Dan's message.

Tim wrote a reply to Dan and encrypted it with a
Vigenére cipher.

“I'll use RSA to encrypt my Vigenére keyword like Dan
did,” he said. He looked up Dan’s public key in the
club directory and found that it was (n, e) = (221, 77).
He used that to encrypt his keyword, and sent a note
to Dan.

Daw,

Here is my reply. It is @ vigentre
o o B
message. | used your RSA public kRey
o (&) o
to encrypt my vigentre keyword. This
o o ™ o
is what | got: 32, 209, 165, 140. You

kwnow what te do with Lt.

ACXETSUMIVW,

MCAGQIVSURKBHHCBGTTCXHVER.

—Tim

——mﬁ

. Do Problems 1-3 now.
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DO YOU KNOW?

The British Public-Key Ciphers

It was a great achievement in 1976 when Whitfield Diffie,
an independent cryptography enthusiast, teamed up
with Stanford professor Martin Hellman and developed
the ideas of public-key cryptography. In fact, it is
considered the most important cryptographic discovery
in the twentieth century. A year later, MIT professors
Ronald Rivest, Adi Shamir, and Leonard Adleman
developed RSA, the first workable system to implement
the Diffie-Hellman ideas. They all published their
work and were considered superstars. But there is more
to the story.

When government agencies develop new secret codes, their
work is usually kept secret. Nothing is published and
the developers receive little public recognition. This
was the case with public-key cryptography. According
to the British government, public-key cryptography
was invented by British cryptographers James Ellis,
Malcolm Williamson, and Clifford Cocks at the British
Government Communication Headquarters (GCHQ) in the
early 1970s — several years before the Americans’
work — but no one knew about it because all their
work was secret. By 1975, Ellis, Williamson, and
Cocks had discovered all the essentials of public-key
cryptography, including the RSA cipher, but had to
remain silent and watch as Diffie, Hellman, Rivest,
Shamir, and Adelman rediscovered what they already
knew. It was not until 1997 — one month after James
Ellis died — that the British government finally broke
its silence and revealed their work.

CONTINUED ON NEXT PAGE >
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DO YOU KNOW? (CONTINUED)

The British Public-Key Ciphers

It is fortunate that the Americans discovered public-
key cryptography, even if they were not the first. Since
they didn't work for any government, they were free
to publicize their discovery, and this made private
communication on the Internet possible for businesses
and ordinary people. But it is unfortunate that the
British cryptographers had to wait so long to receive
the public reccgnition they deserved for making such

an important discovery.
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Make Your
Own Cipher
Wheel

Cut out the circles and fasten with
a brad (paper fastener). Make sure
the brad goes through the exact
centers, or the wheel might not
work very well.

TIP: To make a sturdy wheel, paste
the circles onto posterboard or
cardstock before cutting.

Plaintext = Outer wheel
Ciphertext = Inner wheel

Make Your Own Cipher Wheel



