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27.1 INTRODUCTION

Global industrialization has resulted in the release of large amounts of potentially 
elements into the biosphere — notably, arsenic, cadmium, lead, mercury, and nickel. C
most of these soils is necessary to minimize the entry of potentially toxic elements in
chain. Phytoremediation is an environmental cleanup strategy in which green plants are
to remove or contain environmentally toxic contaminants, or render them harmless [1]. Th
is rapidly expanding, highlighting the uses of plants beyond food fiber and fuel.

It is estimated that cleanup of toxic metal using conventional technologies will c
$200 billion in the U.S. [4]. The sources of metallic contaminants and pollutants are list
27.1. Lead is one of the most frequently encountered heavy metals in polluted environ
example, the primary sources of Pb include mining and smelting of metalliferous ores, 
leaded gasoline, disposal of municipal sewage, and industrial wastes enriched in Pb, as 
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of Pb-based paint [5]. The threat that heavy metals pose to human and animal health is 
by their long-term persistence in the environment. For instance, Pb, one of the more
metals, was estimated to have a soil retention time of 150 to 5000 years [6]. Also, t
biological half-life of cadmium has been estimated to be about 18 years [7].

Phytoremediation is an emerging low-cost technology that utilizes plants to remove,
or stabilize contaminants located in water, sediments, or soils. Vegetation growing on 
element-contaminated sites is expected to evolve a mechanism of tolerance to wit
inadequate environment. Therefore, a well adapted flora, tolerant to edaphic climax co
a prerequisite for successful phytoremediation [8,9]. 

Plants termed phytoremediators are capable of absorbing large amounts of heavy m
the soil and accumulating these metals in plant tissues [10,11]. Different biochemical
heavy metal transport in plants have been conducted [12]. Plants that accumulate and ex
trace elements can play an equally important role in phytoremediation technology. Plan
of growing on soils contaminated with toxic metals and accumulating extraordinarily 
of them are shown in Table 27.2. To date, over 450 different hyperaccumulator species
identified [8]. No one knows why some plants accumulate metals instead of keeping
Thus, it is possible to extract and recycle the metals from plants [13]. 

The ideal phytoextractor should: 

• Grow rapidly
• Produce high amount of biomass
• Tolerate and accumulate high concentrations of toxic metals
• Contain substances that deter herbivores from feeding, thus preventing the heav

transfer to the food chain

Sources of Trace Elements

Contaminant Major source
Aluminum (Al) Paper coating pretreatment sludge and drinking sludge
Arsenic (As) Production of pesticides and veterinary pharmaceuticals, and wood preservatives
Cadmium (Cd) Cd–Ni battery production, pigments for plastics and enamels, fumicides, and electroplatin

coatings
Chromium (Cr) Corrosion inhibitor, dyeing and tanning industries, plating operations, alloys, antiseptics

and photographic emulsions
Cobalt (Co) Steel and alloy production, paint and varnish drying agent, and pigment and glass manu
Copper (Cu) Textile mills, cosmetic manufacturing, and hardboard production sludge
Lead (Pb) Battery industry, fuel additives, manufacturing of ammunition, caulking compounds, solde

paints, herbicides, and insecticides
Mercury (Hg) Electrical apparatus manufacture, electrolytic production of Cl and caustic soda, pharma

paints, plastics, paper products, batteries, pesticides, and burning of coal and oil
Nickel (Ni) Production of stainless steel, alloys, storage batteries, spark plugs, magnets, and machin
Selenium (Se) Coal power plant fly ash
Silver (Ag) Photographic, electroplating, and mirror industries
Tin (Son) Can production
Zinc (Zn) Brass and bronze alloy production, galvanized metal production, pesticides, and ink

Note: Sources of trace elements as soil contaminants have been elaborately detailed in Thangavel, P. and S
C.V., Proc. Indian Natl. Sci. Acad., 70, 109, 2004; and Ross, S.M., Ed., Toxic Metals in Soil Plant Systems

& Sons, Chichester, U.K., 1994, 469.
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Potentially toxic trace elements are increasing in all compartments of the biosphere, inc
water, and soil, as a result of anthropogenic processes. For example, the metal conce
river water and sediments increased several thousand-fold by effluents from industrial a
wastes [14]. Published literature indicates that an array of bioresources (biodiversity)
tested in the field and laboratory. Remediation programs relying on these materials m
cessful [15–17].

The most successful monitoring methods for metals in the environment are based o
heavy metal biosensors, namely, gene-based biosensors and protein-based biosensors [18
liverworts, and ferns are also capable of growing on metal-enriched substrates. These pla
anatomical and physiological characteristics enabling them to occupy unique ecologica
natural metalliferous and manmade environments. For example, groups of specialized 
are found on Cu-enriched substrates — so-called “copper mosses” — and come fr
separated taxonomic groups.

Other bryophytes are associated with lead- and zinc-enriched substrates. Pteris vit
fern), a fast growing Pteridophytes (fern) plant, is reported to tolerate soils contaminated w
as 1500 ppm arsenic and its fronds concentrate the toxic metal to 22,630 ppm in 6 week
fern possesses three key features that are typical of metal/metalloid hyperaccumulator
efficient root uptake, an efficient root-to-shoot translocation, and a much enhanced toler
inside plant cells. After the discovery of this first As hyperaccumulator, several other fe
including Pityrogramma calomelanos, Pteris cretica, Pteris longifolia, and Pteris umbro
have recently been added to the list of As hyperaccumulators. The hyperaccumulation tr
ferns may be potentially exploitable in phytoremediation of As-contaminated soils.

27.2 METAL HYPERACCUMULATORS FOR PHYTOREMEDIATION 
HYPE

Metal accumulation in higher plants is a complex phenomenon involving (1) transpor
across the plasma membrane of root cells; (2) xylem loading and translocation; and (3

Plants That Hyperaccumulate Trace Elements in Their Tissues 

Trace element
Accumulation in plant 

tissues (mg/g DW)
Number of 

taxa
Number. of 

families Examples
Cd >0.1 1 1 Thlaspi caerulescens

Pb >1 14 6 Minuartia verna

Co >1 28 11 Aeollanthus biformif

Cu >1 37 15 Aeollanthus biformif

Ni >1 317 37 Alyssum 

bertolonii, Berkheya 

Mn >10 9 5 Macadamia neuroph

Zn >10 11 5 Sedum alfredii 

Thlaspi caerulescens

As >22 2 1 Pteris vittata, Pityrog

calomelanos

Sources: Francesconi, K. et al., Sci Total Environ., 284, 27, 2002; Brooks, R.R., Ed., Plants That Hypera

Heavy Metals and Their Role in Phytoremediation, Microbiology, Archeology, Mineral Exploration and Ph

CAB International, New York, 1998; Prasad, M.N.V., Ed., Heavy Metal Stress in Plants: from Molecules 

tems. Springer–Verlag, Heidelberg, 2004, 462, xiv; and Hossner, L.R. et al., Amarillo National Resource 
Plutonium. Amarillo, TX, 1998.
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biotechnological application [17,23]. Mine reclamation and biogeochemical prospecti
upon the correct selection of plant species and sampling. The selection of heavy me
species is a reliable tool to achieve success in phytoremediation. Table 27.3 shows 
belonging to 45 families are found to be metal tolerant and are capable of growing o
concentrations of toxic metals.

The use of metal-tolerant species and their metal indicator and accumulation is a f
immense use for biogeochemical prospecting [26,27]. Brassicaceae had the highest num
(i.e., 11 genera and 87 species that are established for hyperaccumulation of metals). In B
Ni hyperaccumulation is reported in seven genera and 72 species [28,29] and Zn in th
and 20 species [17].

The choice of phytoremediation strategy strongly depends on the risk presented b
metal-polluted soils. For this purpose, instead of chemical analyses, several authors r
use of plant-based bioassays for risk evaluation. Obviously, metal phytoextraction is n
approach for industrially polluted soils, where phytostabilization is more appropriate du
pollution level suppressing plant growth and productivity. Furthermore, the so-called 
studies should be conducted before the implementation of phytoextraction technolo
evaluation of the site suitability.

Also, the success of the phytoremediation depends on the nature of the target 
example, due to different degrees of soil pollution and solubility, the cases of Cd a
completely different. In many slightly Cd-contaminated agricultural soils, the phyt
approach should be more successful than on Pb-polluted soils, which need significan
immobilize Pb and to extract much higher metal content. Some crops produce bioma
added value. For example, crops for industrial products, chemicals, biodiesel and othe
compounds.

Certain areas, e.g., rhizosphere biotechnology (and its associated microbes, includ
rhizae) deserve a much more exhaustive treatment because this is where trace meta
contact with plant roots in unsterilized field soil conditions. Sources of heavy metal co
in soils (Table 27.1) include [30]:

• Metalliferous mining and smelting sites
• Metallurgical industries
• Sewage sludge applications
• Warfare and military training areas or shooting ranges
• Waste disposal sites
• Agrochemicals 
• Electronic industries

Once deposited on the soil, certain metals such as Pb and Cr may be virtually permane

27.3 MECHANISMS OF METAL UPTAKE BY PLANTS 

Following mobilization in the rhizosphere, which is controlled by the soil chemistry, 
must be taken up by the root cells. Transport proteins and intracellular high-affinity bi
mediate the uptake of metals across the plasma membrane [32]. Several studies have 
metal hyperaccumulation of Zn and Cd by T. caerulescens involves enhanced metal up
roots [33,34]. Several Zn transporter genes have been cloned recently from T. caerules
belong to the ZIP (Zn-regulated transporter/Fe-regulated transporter-like proteins) fa
These genes, named ZNTl and ZNT2, are highly expressed in the roots of T. caerulescen
expression is not responsive to the Zn status of the plant. Through functional complem
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TABLE 27.3

Plants That Accumulate Trace Elements

Species Max. Conc. mg/kg Ref.
Al

Hydrangea 

Miconia acinodendron

3,000
66,100

47
48

As
Pterir cretica 

P. umbrosa 

Pityrogramma calomelanos 

Pteris vittata L.

3,030
7,600
8,350

22,630

21
21
20
19

Au
Brassica juncea 57 49

Cd
Thlaspi caerulescens 2,130 50

Co
Hibiscus rhodanthus 

Cyanotis longifolia

Haumaniastrum robertii

1,527
4,197

10,232

51
52
51

Cr
Leptospermum scoparium

Dicoma niccolifera 

Sutera fodina

20,000
30,000
48,000

53
54
54

Cu
Ergrostis recemosa

Vigna dolomitica 

Pandiaka metallorum Haumanisatrum 

katangense 

Ipomea alpina Aeollanthus subcaulis

2,800
3,000
6,270
9,222

12,300
13,700

55
55
51
51

1
56

Hg
Lemna minor 25,800 57

Mn
Eugenia clusioides

Macadamia angustifolia 

Alyxia rubricaulis

Maytenus pancheriana

M. sebertiana

M. bureaviana 

M. neurophylla

10,880
11,500
14,000
16,370
22,500
33,750
55,200

58
58
58
58
58
58

1

Ni
Cardamine redisifolia

Alyssum singarense 

Thlaspi bulbosum

T. japonicum 

T. epirotum

Pseudosempervivum sempervium

1,050
1,280
2,000
2,440
3,000
3,140

59
60
50
61
50
62
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TABLE 27.3

Plants That Accumulate Trace Elements (continued)

Species Max. Conc. mg/kg Ref.

Ni
Alyssum tenium 

A. fallacinum

Thlaspi ochroleucum 

Alyssum alpestre

A. euboeum 

A. obovatum

A. condensatum 

Thlaspi cypricum 

Thlaspi montanum var. montanum 

Alyssum virgatum 

A. smolikanum 

A. murale 

A. oxycarpum

A. giosnanum

A. peltarioides subsp. 

virgatiforme

A. floribundum 

A. penjwinensis 

A. anatolicum 

A. akamasicum 

A. serpylifolium 

A. bertolonii subsp.scutarinum 

A. syriacum 

A. crenulatum 

A. callichroum 

Bornmulleria sp. 

Alyssum eriophyllum

A. discolor 

Thlaspi tymphaeum

Alyssum trapeziforme 

Thlaspi goesingense 

T. graecum 

Alyssum heldreichii 

A. robertianum 

A. bertolonii 

A. cilicium 

A. huber-morathii 

Thlaspi kovatsii 

Alyssum markgrafii 

Streptanthus polygaloides 

Thlaspi caerulescens 

Alyssum chondrogynum 

A. dubertretii 

A. carcium 

A. troodii 

Pseudosempervium aucheri 

Alyssum constellatum

Thlaspi rotundifolium var. corymbosum 

corymbosum

3,420
3,960
4,000
4,480
4,550
4,590
4,900
5,120
5,530
6,230
6,600
7,080
7,290
7,390
7,600
7,700
7,860
8,170
9,090

10,000
10,000
10,200
10,400
10,900
11,400
11,500
11,700
11,800
11,900
12,000
12,400
12,500
12,500
13,400
13,500
13,500
13,600
13,600
13,700
14,800
16,200
16,300
16,500
16,500
17,100
17,600
18,100

—
18,300

62
50
62
62
63
60
60
63
64
60
62
62
60
60
60
63
60
60
60
60
65
63
60
60
60
63
60
60
50
66
46
60
63
62
50
60
66
60
67
60
60
60
60
61
60
50
60
—
60
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TABLE 27.3

Plants That Accumulate Trace Elements (continued)

Species Max. Conc. mg/kg Ref.

Ni
Peltaria dumulosa

Alyssum samariferum

Bornmuellaria glabrescens 

Alyssum davisianum 

Alyssum cassium 

Thlaspi elegans 

T. rotundifolium var.corymbosum 

A. samariferum 

A. pinifolium 

Bornmuellera baldaccii 

Alyssum pterocarpum 

A. lesbiacum 

A. cypricum 

A. masmenaeum 

Thlaspi jaubertii 

T. caerulescens 

Alyssum argenteum 

Thlaspi sylvium 

Bornmuellaria tymphea 

Peltaria emarginata 

Thlaspi oxyceras

18,900
18,900
19,200
19,600
20,000
20,800
18,300
18,900
21,100
21,300
22,200
24,000
23,600
24,300
26,900
27,300
29,400
31,000
31,200
34,400
35,600

63
68
63
60
60
61
50
60
63
60
60
60
60
61
50
60
63
50
63
68
61

Pb
Polycarpaea synandra 

Acer pseudoplatanus

Thlaspi alpestre 

T. rotundifolium 

Agrostis tenuis

Minuartia verna 

1,044
1,955
2,740
8,200

13,490
20,000

69
70
71
1

72
70

Se
Acacia cana

Atriplex confertifolia Machaeranthera 

glabriuscula

Neptunia amplexicaulis Astragalus 

bisulcatus

Astragalus racemosus

Lecythis ollaria

1,121
1,734
1,800
4,334
8,840

14,900
18,200

73
74
74
73
74
75
76

Zn
Thlaspi idahoense 

T. caerulescens

Cochlearia pyrenaica

Thlaspi violascens 

T. montanum 

T. ochroleucum 

T. parvifolium 

T. liaceum

T. magellanicum 

T. bulbosum 

1,150
1,400
1,680
2,700
3,000
3,000
3,090
3,520
3,890

10,500

64
50
77
61
64
50

61, 64
61
50
50
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TABLE 27.3
yeast, it was shown that ZNT l mediates high-affinity uptake of Zn2+ and low-affinity upta
[36]. Specific alterations in Zn-responsive elements, such as transcriptional activators
an important role in Zn hyperaccumulation in T. caerulescens [36]. However, increased
Cd by T. caerulescens cannot be explained by the Zn transport pathway, but may be re
enhanced expression of the IRT l gene, which is essential for Fe uptake [22]. The IRT1
shown to be able to mediate high-affinity uptake of Cd2+ in A. thaliana [37,38].

Several classes of proteins have been implicated in transport in plants. These includ
P-type ATPases that are involved in overall ion homeostasis and tolerance in plan
resistance-associated macrophage protein (NRAMP) proteins, and cation diffusion facilit
proteins [39]. CPx type ATPases have been identified in a wide range of organisms and
implicated in the transport of potentially toxic metals like Cu, Cd, and Pb across cell m
[39]. These transporters use ATP to pump a variety of substrates across cell membrane

Arabidopsis P-type ATPase was the first CPx ATPase reported in plants [40]. Mos
ATPases identified so far have been implicated in Cu transport. The physiological role o
transporters in higher plants is not clearly known. Because Arabidopsis CPx ATPase
different substrates. They may be present in the membranes and function as efflux pu
may also be present at various intracellular membranes and be responsible for the comp
ization of metals, e.g., sequestration in the vacuoles, golgi, or endoplasmic reticulum.

Because cellular levels of metals must be carefully controlled, transporters repr
candidate for their regulation. How they may be regulated at the transcriptional leve
translational level as was observed in bacteria and yeast [39] mentioned earlier. In hig
three Nramp homologues have been identified in rice [41].

In Arabidopsis, two genes showing similarity to Nramps have also been identified [
results suggest that Arabidopsis Nramp homologues encode functional metal transpo
Northern analysis indicates that the rice Nramp gene OsNrampl is primarily expressed i
OsNramp2 in the leaves, and OsNramp3 in both tissues of rice [41]. This distinct 

Plants That Accumulate Trace Elements (continued)

Species Max. Conc. mg/kg Ref.

Zn

T. praecox 

Arabidopsis thaliana 

Thlaspi stenocarpum 

T. rotundifolium subsp.cepaeifolium

T. rotundifolium

Thlaspi taraense 

Rumex acetosa 

Thlaspi alpestre 

Arabidopsis halleri

Thlaspi calaminare

Thlaspi caerulescens

11,000
11,000
16,000
21,000
21,000
25,000
26,700
30,000
39,600
39,600
51,600

61
50
50
50
78
50
70
50
79
50
80

Note: The tabulation is based on ascending order of metal accumulation for a
given element.

Sources: Thangavel, P. and Subbhuraam, C.V., Proc. Indian Natl. Sci. Acad.,
70, 109, 2004; Prasad, M.N.V., Ed., Heavy Metal Stress in Plants: from Mole-

cules to Ecosystems. Springer–Verlag, Heidelberg, 2004, 462, xiv; and Palmer,
C.E. et al., Int. J. Phytoremed., 3, 245, 2001.
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expression could mean that they are regulated differently and have distinct functions in different
tissues or that they transport distinct but related ions in different parts of the plant.
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CDF proteins have been primarily implicated in the transport of Zn, Co, and Cd 
and some eukaryotes. Certain members of CDF have been implicated in Cu or Cd tr
related Zn transporter (ZAT1) from Arabidopsis was reported by Van der Zaal et al. [44]
transporter may have a role in Zn sequestration in plants. Enhanced Zn resistance was o
transgenic plants overexpressing ZAT1, expressed constitutively throughout the plant
exposure of these plants led to increased Zn content in the roots. Zinc transporter (ZI
have been found to be involved in Zn and Fe uptake [45].

In order to enhance metal uptake, the number of uptake sites could be increased, the
of the uptake proteins could be altered, and sequestration capacity could be enhanced b
ing the number of intracellular high-affinity binding sites or the rates of transp
organelles. A comprehensive understanding of the metal transport processes in plants 
for formulating effective strategies to develop genetically engineered plants that can a
specific metals.

27.4 PHYTOMASS OF ACCUMULATORS/HYPERACCUMULATORS 
OF METALS IS A VALUABLE RESOURCE FOR 
PHYTOEXTRACTION 

Plants are selected according to the application and the contaminants of concern. In
climates, phreatophytes (e.g., hybrid poplar, willow, cottonwood, aspen) are often select
of fast growth, a deep rooting ability down to the level of groundwater, large transpir
and the fact that they are natives of most of the countries. The idea of using plants to rem
from soils came from the discovery of different wild plants, often endemic to naturally m
soils that accumulate high concentrations of metals in their foliage [81] (Figure 27.1).

Ideal attributes for metal accumulators are [2]:

• No geographical preference and fast growth
• High bioproductivity
• Capable of producing multiple use products
• Robust and profuse root system
• Ability for metal hyperaccumulation
• High metal tolerance
• Rapid transport to harvestable plant parts
• Capable of accumulating multiple metals with stable properties
• Resistance to disease and pests

Metal hyperaccumulators usually have an antiherbivory function to minimize human h
through the trophic chain. 

27.5 ACCUMULATION OF METALS BY PLANTS 

27.5.1 ROOT UPTAKE

Roots can reduce soil-bound metal ions by specific plasma membrane bound metal reduc
roots can solubilize heavy metals by acidifying their soil environment with protons extr
the roots. All of these processes could also be preformed by mycorrhizal fungi or root
bacteria. Solubilized metal ions can enter the roots via extracellular (apoplastic) or i
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 transmem-

ely occurs
 the xylem,

e, transpire,
hytomass or
od. Chelates
eeds critical

ation
(symplastic) pathways. Nonessential heavy metals may effectively compete for the same
brane carriers used by essential heavy metals. 

27.5.2 TRANSPORT WITHIN PLANTS

Once in the root, metal ions can be stored or exported to the shoot. Metal transport lik
in the xylem, but metals may redistribute in the shoot via the phloem. For metals to enter

FIGURE 27.1 Phytoextraction consists of (1) planting a species that tends to accumulate and stor
or degrade the target contaminant; (2) letting the crop grow; and (3) harvesting it. Cofiring of p
incineration and composting are concentration methods. Liquid extraction is another separation meth
and soil-amending agents enhance the phytoextraction. The soil–rhizosphere–plant continuum n
study for successful phytoremediation [24].

SOIL RHIZOSPHERE PLANT

Microbial activity/absorption,

sorption  and desorption

increase/decrease of pH

and Eh, diffusion with

conc. gradient, complexes

with humus

Micorrhizae, metal chelatin

exudates and mucilage

reduced uptake and active

effiux from roots

Release of chelators, redu-

ctants, oxidants, trans-

locators, soil acidification,

root membrane damage

coprecipitation, with

oxides and carbonates

Metals and metalloids

Chelators like

ammonium thiocynate,

EDTA and NTA enhance

the mobility of metals

e.g., gold, lead and zincAccumulation

by roots

Exclusion

by roots

Soil amendments:

Crosslinked polyacrylates

and hydrogels prevent the

uptake of metals e.g., lead

Harvested biomass is

processed for metal recovery

Phytoextraction

Extraction Composting Inciner
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they must cross the casparian strip symplastically (intracellular) and this may be the ra
step in metal translocation to the shoot.

27.5.3 MULTIPLE METAL ACCUMULATION

Siedlecka [82] divided the metal-accumulating plants into three categories based on m
mulation in plant parts (Figure 27.2):

• Accumulate more in roots/rhizomes: Cd, Co, Cu, Fe, and Mo in beetroot, carrot
Jerusalem artichoke, and potato

• Accumulate more in shoots (stems/leaves): Ag, Cr, Pb, Sn, and V in cabbage, caul
tomato, rice, barley, oats, wheat, corn, pigeon pea, chick pea, soybean, peanut, b
lettuce, spinach, and amaranthus

• More or less uniform distribution in roots/shoots: Mn, Ni, and Zn in bush bean
bean, mung bean, and cucumber

Soils contaminated with multiple heavy metals can present a difficult challenge fo
traction. Although some hyperaccumulators appear to be capable of accumulating ele
centrations of several heavy metals simultaneously, there is still considerable specifici
hyperaccumulation [83]. However, phytoextraction using nontolerant cultivars of Bras
unlikely to succeed in soils contaminated with higher concentrations of Cu, Cd, and Zn

FIGURE 27.2 A generalized pattern of partitioning of metals in the root and shoot system. Silver
lead, tin, and vanadium accumulate more in shoot (stems and leaves) compared to roots an
Cadmium, cobalt, copper, iron, and molybdenum accumulate more in roots and rhizomes than in s
and leaves). Nickel, manganese, and zinc are distributed more or less uniformly in root and shoot
[82].
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usually much more bioavailable, and thus more phytotoxic, than Pb [84]. Generally, monocotyledon
species are usually more tolerant to metals than dicotyledon species [85].
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The distribution of metals in a contaminated soil is never uniform and, in most a
soils, the highest concentrations are usually found near the soil surface. Urban and indu
are usually more heterogenous with high metal concentration “hot spots” occurring at 
Kramer et al. [87] found that, depending on plant species and metal considered, the 
uptake and root-to-shoot translocation were the same in the Ni hyperaccumulator Thla
gense and the nonaccumulator Thlaspi arvense, as long as both species were unaffe
toxicity. Multiple metal hyperaccumulation is particularly advantageous for phytor
because soils are often contaminated with various metals such as Cu, Cd, and Zn [88
al. [83] reported that, apart from Zn hyperaccumulation, five British populations of T. ca
also had exceptionally high uptakes of Cd, Co, Mn, and Ni. They suggested that comm
anisms of uptake and translocation existed for several metals in this species. 

It is generally accepted that, under natural conditions, a majority of plants have m
[89], which have been shown to reduce or enhance metal uptake by plants [85]. Many 
mulators belong to the family Brassicaceae and do not have mycorrhizal associations. It i
unlikely that mycorrhizal fungi are directly involved in the enhanced acquisition of
Brassicaceous hyperaccumulator plants. In addition, arbuscular mycorrhizal fungi are
colonize ferns [90], suggesting a possible role of mycorrhizal associations in the recent
As hyperaccumulation [19]. The effect of mycorrhizal associations on metal root uptake 
and appears to be metal and plant specific [91].

The concept of using hyperaccumulator plants to take up and remove heavy m
contaminated soils was first proposed by Chaney [92]. However, it was not until the e
that field experiments were carried out to test the potential of phytoextraction of m
hyperaccumulator plants [10]. Hyperaccumulators take up a large quantity of toxic met
their roots and transport them to the stems or leaves. The word “hyperaccumulator” was
the late R.R. Brooks [93] and has been defined as metal accumulation exceeding a thres
of shoot metal concentration of 1% (Zn, Mn), 0.1% (Ni, Co, Cu, Pb), or 0.1% (Cd) 
weight shoot biomass [94].

Compared to nonaccumulator plants, metal concentrations in hyperaccumulator pla
to three orders of magnitude higher. Apart from these rather arbitrary criteria, hypera
plants usually have a shoot/root metal concentration ratio greater than one; nonhypera
plants generally have higher metal concentrations in roots than in shoots [95]. The bioacc
factor (shoot/soil concentration ratio) is more important than shoot concentration per se
considers the potential of phytoextraction for a given species. In metal excluder s
bioaccumulation factor is typically less than one, and in metal accumulator species, th
often greater than one [96].

Several studies indicate the extraction of the various heavy metals (Se, B, Zn, Cd, A
Ni, Hg, and Cr) used in different industrial processes and other anthropogenic activ
contaminated soils or mine drainage areas using selected hyperaccumulator species
remediation of other elements (Al, Cs, Sr, and U) from soils by hyperaccumulator cro
been documented, but is expected to be possible if creative research is applied [98]. T
growing nonaccumulator plants could be engineered so that they achieve some of the pr
hyperaccumulators. Al content of green gram leaves was greater than 1000 mg/kg; there
radiata is an Al hyperaccumulator per the definition [99]. 

Phytoextraction using forestry species in a forestation program is predicted to be a 
attractive option. Trees are potentially the lowest cost plant type used for phytoremedia
have the most massive root systems of all plants; these penetrate the soil for several met
than most herbaceous plants. In some tree species, above-ground biomass can be harv
trees will resprout without disturbance of the site. This coppicing shoot system would b
if periodic removal of pollutants sequestrated in plant tissue were desirable, as in the cas
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metals bound to wood often used in chemically enhanced phytoextraction [102]. However, other
plant species such as maize and pea (Pisum sativum L.) have also been used [103]. The high
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biomass crop plants, such as Indian mustard, corn, and sunflower, could accumulate 
amounts of Pb when induced through the addition of metal chelates. Simultaneous ac
of several metals (Pb, Cd, Cu, Ni, Zn) by Indian mustard plants after applying metal c
been reported [104]. Metal accumulation efficiency suggested the possibility of using the
Prosopis juliflora as a metalophyte for the biorecovery of metals from contaminated indu
[2,100].

27.6 STRATEGIES FOR ENHANCED UPTAKE OF TRACE ELEMENTS 
TO FACILITATE PHYTOEXTRACTION 

27.6.1 CHELATE-ASSISTED OR CHEMICALLY INDUCED PHYTOEXTRACTION 

This strategy of phytoextraction is based on the fact that the application of metal chel
soil significantly enhances metal accumulation by plants. The literature to date reports
of chelates that have been used for chelate-induced hyperaccumulation. These include ED
(trans-1,2-diaminocyclohexane-N,N,N ′,N′-tetraacetic acid), DTPA (diethylene triamine
acid), EGTA [ethyleneglycol-bis(β-aminoethyl ether),N,N,N′,N-tetraacetic acid], EDD
enediaminedi (o-hydroxyphenylacetic acid)], HEDTA (N-hydroxyethyl enediaminetria
HEIDA [N-(2-hydroxyethyl)iminodiacetic acid], and NTA (nitrilo-triacetic acid) [101].

For chemically enhanced phytoextraction, establishment of a high biomass crop 
before chelate application. Brassica sp. are to be directly related to the affinity of the appl
for the metal [105]. Therefore, it can be concluded that, for efficient phytoextraction
synthetic chelates having a high affinity for the metal of interest should be used: EDT
EGTA for cadmium [104], possibly citrate for uranium [106], etc. Also, adding ammo
cyanate to the substrate [49] showed that Brassica juncea can be induced to accumula
mg/kg gold. The mechanisms involved in metal-chelate induced plant uptake and trans
metals are not well understood. Chemically induced phytoextraction has been describe
step process in which plants first accumulate metals in their roots and then, by applic
inducing agent, enhanced transfer of the metals to the shoots occurs [105,107]. This tran
to disrupting the plant metabolism that regulates the transport of metal to the shoots. L
[84] reported that the application of EDTA alone increases metal mobility in soil and ac
in roots, but does not substantially increase the transfer of metals to shoots.

Apart from the addition of synthetic chelates, plants secrete to the rhizosphere nat
chelating molecules to mobilize soil-bound metals. Thus far, only phytosiderophores, iro
compounds, have been studied in detail. Some of these phytosiderophores include mu
deoxymugeneic acids from barley and corn, and avenic acid from oats [108]. It is als
that metal-chelating proteins, perhaps related to metalothioneins or phytochelatins, m
phytosiderophores [81].

Chelate-assisted phytoextraction in field conditions is likely to increase the risk 
environmental effects such as ground water pollution due to leaching of metal-laden seep
extended periods after chelate application. Wenzel et al. [109] hypothesize that free 
EDTA enters the roots, subsequently forming metal complexes that enhance metal t
shoots. However, the study of Vassil et al. [110] was conducted in hydroponic condition
EDTA in soil is expected to form complexes with Ca and other metals. Greman et al. [11
ethylenediaminedisuccinate (EDDS) as a promising new chelate for enhanced, enviro
safe phytoextraction of Pb-contaminated soils. It caused only minor leaching of P
significantly less toxic to plants and soil microbes. To avoid possible chelate-metal mov
ground water, the amount, time, and method of chelate application should be carefully 
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Due to the severe limitations of chelate-assisted phytoextraction, further efforts should focus on
natural, continuous technologies using high biomass perennial plants such as willows or poplar.
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27.6.2 RHIZOSPHERE-ASSISTED PROCESSES FOR METAL ACCUMULATION 
AND EXCLUSION

27.6.2.1 Bioavailability of Metals in Soils 

Heavy metal accumulation in soils is highly dependant on the availability of metals for pl
Soils consist of a heterogeneous mixture of different minerals (primary minerals, clay
and hydrous oxides of Al, Fe, and Mn); organic and organo–mineral substances, and 
components. The binding mechanisms for heavy metals are therefore complex and var
composition of the soil, soil acidity, and redox conditions. Heavy metal behavior (e.g
bioavailability) depends upon several factors (Table 27.2), which can be classified as [

• Geochemical characteristics of a metal 
• Plant capacity to take up a metal
• Soil chemical equilibria 
• Climatic and other environmental variables
• Agricultural or remedial soil management

Generally, the solubility of metal fractions is in the order [112]:

exchangeable > carbonate specifically adsorbed > Fe–Mn oxide > organic–sulfide >

Furthermore, only a fraction of soil metal is readily available (bioavailable) for pl
The bulk of soil metal is commonly found as insoluble compounds unavailable for tra
roots. With the exception of Hg, metal uptake into roots occurs from the aqueous pha
easily mobile metals such as Zn and Cd occur primarily as soluble or exchangeab
bioavailable forms. Cu and Mo predominate inorganically bound and exchangeable
Slightly mobile metals such as Ni and Cr are mainly bound in silicates (residual fraction
exchangeable, and chelated species of trace elements are the most mobile in soils and g
migration and phytoavailability [31]. Others, such as Pb, occur as insoluble precipitates (p
carbonates, and hydroxyoxides), which are largely unavailable for plant uptake [113]. B
immobilization within the soil matrix can significantly restrict the potential for metal ph
tion.

Despite the adverse effect on metal root uptake, soil inactivation with chemical am
has been proposed as a temporary solution for the remediation of metal-contaminated s
cially for Pb. Also, the effect of soil amendment on bioavailability is metal specific
mobility of metals can be stimulated by plant roots; this includes changes in pH, reducin
the amount and composition of exudates [114], and use of chelating agents. Soil amend
increase or decrease biological availability of the contaminant for plant uptake. Bioavail
metal uptake can often be increased by lowering soil pH, adding chelating agents, using a
fertilizers (containing ammonium), altering soil ion composition, soil microorganisms
erophores, and root exudates [2].

• Soil pH. The lower soil pH increases concentration of heavy metals in solu
decreasing their adsorption. Soil pH was adjusted using HNO3 and CaCo3 to p
range of pH before planting. Acidified treatments were leached to remove exces
before fertilizers were added. Chaney et al. [97] pointed out that, because so
known to affect plant uptake of most heavy metals from soils, studies neede
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conducted to evaluate the independent effect of soil pH and soil metal concentration on
hyperaccumulator yield and metal uptake. 
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• Chelate amendments. Chelate additions (EDTA, HEDTA, DTPA, EGTA, EDDHA
citrate, and hydroxylamine) are commonly used in soil washing technologies 
they cause metal desorption from clay minerals and dissolution of certain prec
such as Fe and Mn oxides. Artificial chelates, such as EDTA, have been tested to 
metal phytoavailability and subsequent uptake and translocation in shoots. Two st
have been proposed regarding the mode of chelate application. The chelates 
added at once a few days before harvest [103] or gradually during the growth
[115]. The type of chelate and its time of application are important conside
Pierzynski and Schwab [116] investigated the effect of chemical amendments
potential for phytoextraction of several toxic metals including Cd, Pb, and Z
showed that addition of limestone, cattle manure, and poultry litter to soil signi
reduced Zn bioavailability. Experiments indicate that biosurfactants have the p
to enhance metal bioavailability in contaminated soil and sediments [117]. 
amended soils increased Pb availability. Therefore, chelator application might po
to the environment [118]. If the metal availability could be locally improved by inc
reductase activity or the amount of chelating agents — e.g., phytosiderophores [
without harmful effects on the environment, hyperaccumulators might be used sa
phytoremediation. 

• Soil fertilizers. Fertilization with N, P, and K more than doubled annual biom
duction without reducing the shoot Ni concentration. This suggested that soil 
management will be important for commercial phytoextraction [120].

• Competition for sorption sites. Using the competition of metal ions in solu
sorption sites may also be a useful tool. For example, addition of phosphate to s
help to extract Cr, Se, and As on exchange sites by binding to the sites, thereby inc
bioavailability.

• Soil microorganisms. The soil microbes have been documented to catalyse redo
tions leading to changes in metal mobility in soils and propensity for uptake int
For example, chemolithotrophic bacteria have been shown to enhance enviro
mobility of metal contaminants via soil acidification or, in contrast, to decrea
solubility due to precipitation as sulfides [121]. Several strains of Bacillus and Pse
nas increased the total amount of Cd accumulated by Brassica juncea seedling
Furthermore, soil microorganisms have been shown to exude organic compounds
stimulate bioavailability and facilitate root absorption of a variety of metal ions, in
Fe2+ [123], Mn2+ [124], and possibly Cd2+ [122]. The microbial activity is stimu
adding carbon substrates such as agricultural wastes [125], water, and nutrients. 
of crops also provides these materials to the soil microbiota due to standard 
practices and the process of C loss from roots, called “rhizodeposition.” It is int
that rhizodeposition increases after clipping plants [126]; this could partly exp
enhanced Se removal after cutting treatments, plus the enhanced biomass produ

• Phytosiderophores. Plants possess highly specialized mechanisms to stimulat
bioavailability in the rhizosphere and to enhance uptake into roots [127]. Thus
naceous species (grass sp.) have been documented to exude a class of organic com
termed siderophores (mugineic and avenic acids) capable of enhancing the ava
of soil Fe for uptake into roots [128]. 

• Root exudates. It is well established that roots of many plant species release 
metal-chelating or reducing compounds into the rhizosphere to mobilize Fe and, p
Zn [85]. For Zn/Cd/Cu/Pb hyperaccumulators, there are no studies on the role
exudates in metal accumulation to date.
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27.6.2.2 Exclusion of Trace Elements to Foster Phytostabilization

The bioavailability of metal ions depends on their solubility in the soil solution, i.e., their general
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solubility and the stage of equilibrium between the metal cation in its bound form an
soluble cation. Because the concentration of heavy metal cations in forest soils is usua
that the solubility behavior of the metal salts will govern their concentration in the so
the dominating factor for the bioavailability of heavy metal cations in soils is their ad
soil structures. 

The capacity of a given soil to bind given heavy metals depends on the amount an
binding sites in the soil structures and the pH of the soil solution. Generally, it can be
the lower the pH value is, the more soluble are the metal cations, and the more bindin
are available in a given soil, the lower will be the solubility of the heavy metals. In 
cadmium ions, the increase in solubility with decreasing pH values starts at a pH of 
case of lead and mercury ions, it starts at a pH value of 4; ions of arsenic, chrome, 
copper start to dissolve at pH values between these two extremes [129]. Thus, the pH v
soil solution in principle is one of the main factors governing the solubility of heavy me
in the soil solution; its influence on plants under heavy metal stress is well established 
Unfortunately, the acid deposition prevalent all over Europe during recent decades has
the mobility of heavy metals considerably [139,140].

Thus, increasing the pH could be a measure to reduce the bioavailability of heavy m
has been shown by Walendzik [141] for spruce in the Western Sudety Mountains. Liming
may not always be a good solution because it may increase the rate of nitrogen mineral
thus aggravate the NO3 load in the groundwater [142–144]. The approach of using wast
such as fuel ash [145] or sewage sludge [146] to improve the growth of trees on mine 
not always be successful, as the authors cited previously have shown. Better results using
sewage sludge for establishing sagebrush vegetation on copper mine spoils were reporte
et al. [147]. The simple addition of inorganic fertilizer may not work at all [146].

Another way to decrease the bioavailability of heavy metals is to increase the bindi
heavy metal ions in the soil, e.g., by amendment with humic substances or zeolites [148] o
clay and porous ceramic material [149]. When organic substances are added to the soi
important to work with water-insoluble material, which is not available for rapid degr
microorganisms [150]. The authors found that an addition of hay to a soil contaminated 
metals increased the solubility of Cu, Cd, and Zn, but this effect was not observ
Amendment of the soil with peat had the opposite effect. 

Hüttermann and coworkers applied cross-linked polyacrylates, hydrogels, to meta
nated soils. When such a compound (Stockosorb K400) was applied to hydrocultures of
(Pinus sylvestris), which contained 1 μM of Pb, two effects were observed: (1) th
increased the nutrient efficiency of the plants; and (2) the detrimental effect of the h
was completely remediated. Determination of the heavy metal content of the roots re
the uptake of the lead was greatly inhibited by the hydrogel. Analysis of the fine roots
old spruce grown for one vegetation period in lead-contaminated soil, with and without am
with the hydrogel, showed that the amendment of the soil with the cross-linked acrylate
prevent the uptake of the lead into the stele of the fine roots. The hydrogel acts as a pro
that inhibits the entrance of the heavy metal into the plant root [151].

27.6.2.3 Metal Exclusion by Organic Acids 

Organic acids are natural products of root exudates, microbial secretions, and plant a
residue decomposition in soils [152] (Figure 27.3 and Figure 27.4). These biomolecules
implicated for altering the bioavailabilities and phytoremediation efficiencies of heavy
soils. Some researchers showed that amendment of contaminated soils with organic aci
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the bioavailability of heavy metals [153]. In contrast, Huang et al. [103] investigated th
organic acids amendment of uranium-contaminated soils and found that citric acid si
increased metal availability and enhanced uranium accumulation many folds in the
selected plants. The contradictory results may be tightly related to the concentration of h
in soil solution and may sequentially be the results of desorption behavior of heavy m
this soil.

In plants, organic acids may be implicated in detoxification, transport, and compartme
of heavy metals. Organic acids are low molecular weight compounds containing carbon,
and oxygen and are characterized by one or more carboxylic groups. The number and t
ation properties of the carboxylic groups determine the negative charges carried by the 
the number of metal cations that can be bound in solution or the number of anions t
displaced from the soil matrix [39]. The most stable ligand–meta1 complexes have t
number of carboxyl groups available for binding metal cations. Metal complexes w
(tricarboxylate) are more stable than those with ma1ate2–, oxalate2–, or malonate2– (dica
and acetate (monocarboxylate) [154].

In several plant species, organic acids participate in the metal exclusion mechanis
chelators excreted by the root apex outside the plant and in metal hyperaccumulatio
chelators inside the plant, with various degrees of metal retention within root and shoot
The total concentration of organic acids in the root is generally about 10 to 20 mM, bu
depending on the degree of cation–anion imbalance because organic acids often provide t
charges that balance excess cations [157]. Within the plant cell, organic acids are mainly s
in mitochondria through the tricarboxylic acid cycle, but the site of preferential sto
vacuole. Usually, root vacuoles contain two- to tenfold higher concentrations of malate 
than cytosol (5 mM) [157] and organometallic chelates can be found in the cell wall, 

FIGURE 27.3 A comprehensive model to explain the availability of substrates required for the 
and exudation of organics acids, namely, citrate and malate. These organic acids are present in
exchange between mitochondria and the cytosol. Organic acids can be accumulated in the vacuole
into the apoplast by specific carrier proteins, transported towards phloem, and directed to roots fo
Plants that exclude toxic trace metals would be the best for photostabilization.
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and vacuoles. The composition of root exudates varies greatly, depending on environm
species, and age [157–159].

Researchers have found that plant roots exude a variety of organic compounds. Roo
contain components that play important roles in nutrient solubilization (e.g., organic ac
siderophores, and phenolics), restricting the passage of toxic metals across the root (e
malate, small peptides) and attracting beneficial microorganisms (e.g., phenolics, organi
sugars). Often, the excretion of these organic molecules increases in response to soil s

27.7 ORGANIC ACIDS PLAY AN IMPORTANT ROLE IN ADAPTIVE 
PHYSIOLOGY 

Krotsky et al. [160] showed that a sorghum cultivar efficiently colonized by N2 fixing
bacteria released more malic, fumaric, and succinic acid than a less active cultivar [160,16
[161] reported that the addition of sugars and organic acids to maize inoculated with
Azospirillum brasilense promoted the incorporation of atmosphere-derived nitrogen in
Succinate and malate stimulated nitrogen fixation more than sucrose [162]. More rece
found that aluminum-tolerant wheat cultivars that produce high concentrations of low
dicarboxylic acids had higher associative nitrogen fixation rates than nontolerant cultivar

The adequacy of organic acids as carbon and energy sources has been demonstrated w
on other microbial species. Some Campylobacter sp. isolated from roots of Spartiana a
were found to metabolize amino and organic acids efficiently [164]. In legume–Rhizobi
osis, the preferred substrate taken up by the bacteroids from the host is malate, whi
oxidized to oxaloacetate by malate dehydrogenase or may be converted to acetyl CoA b

FIGURE 27.4 The ubiquity of organic acids mediating the response of plants to soil stress. O
are strong cation chelators, which act in important adaptive processes in the rhizosphere, such 
acquisition, Al tolerance, NH4 uptake and reduction, and microbial attraction.
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enzyme and pyruvate dehydrogenase. Further oxidation of acetyl CoA in the tricarboxylic acid
cycle can generate the large amount of energy required by the nitrogenase reaction.
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