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Praise for The Myth of Junk DNA

"JONATHAN WELLS HAS CLEARLY DONE HIS HOMEWORK. IN THE MytH
of Junk DNA, he cites hundreds of research articles as he describes the ex-
panding story of non-coding DNA—the supposed * junk DNA. It is quite
possibly the most thorough review of the subject available. Dr. Wells makes
it clear that our early understanding of DNA was incomplete, and genom-
ics research is now revealing levels of control and complexity inside our cells
that were undreamed of in the 1980s. Far from providing evidence for Dar-
winism, the story of non-coding DNA rather serves to increase our appre-
ciation for the design of life.”

Ralph Seelke, Ph.D.
Professor of Microbial Genetics and Cell Biology
University of Wisconsin-Superior

“CITING HUNDREDS OF PEER-REVIEWED ARTICLES WHICH SHOW THAT
more and more of the genome is functional, Jonachan Wells delivers a
powerful and carefully researched broadside against the ‘junk DNA hy-
pothesis.” Even biologists who firmly reject the notion of intelligent design
must surely acknowledge on the evidence presented in this timely book that
appealing to ‘junk DNA' to defend the Darwinian framework no longer
makes any sense.”

Michael Denton, Ph.D.
Medical Geneticist and Author of Nature’s Destiny

“THIS 1S AN EXCELLENT AND IN-DEPTH DISCUSSION OF SEVERAL KEY
points of the subject of ‘junk-DNA.’ The author shows for many prime ex-
amples still advanced by leading neo-Darwinians that the ‘Darwin-of-the-
gaps' approach doesn't function or is at least doubtful.”

Wolf-Ekkehard Lonnig, Ph.D.
Senior Scientist, Department of Molecular Plant Genetics
Max Planck Institute for Plant Breeding Research (retired)

“THERE IS A BOX IN THE BIOLOGICAL SCIENCES INTO WHICH ALL EVI-
dence must be placed. That box is called Darwinian evolution. In The Myth
of Junk DNA Jonathan Wells tells che intriguing story of ‘junk’ DNA—the




lea that non-protein coding DNA, which accounts for the majority of the
DNA in the genome, is non-functional and without purpose; the result of
the unguided purposeless process of random mutation and natural selec-
tion that produced it. In recent years, however, numerous researchers—not
necessarily opponents of Darwinian evolution or advocates of intelligent
design—have discovered many functions for non-protein coding DNA,
which are thoroughly reviewed by Wells in this book. Unfortunately, in
their effort to keep the ‘junk’ label attached to non-protein coding DNA so
that it remains in the box of Darwinian evolution, a number of prominent
Darwinists continue to insist, in spite of the recent results to the contrary,
that it is largely lef-over waste from the evolutionary process. As Wells
clearly demonstrates in his book, this dogmatic commitment inhibits the
scientific process. Science needs to be guided by objective evaluation of the
evidence, and scientists should not allow their thinking to be arbitrarily re-
stricted by dogmatic ideas. We need scientists who think outside the Dar-
winian box. Wells's book not only informs its readers of very recent research
results, but also encourages them to think objectively and clearly about a
key discovery in biology and to approach biological research with more cre-
ativity. It is a great read.”
Russell W. Carlson, Ph.D.
Professor of Biochemistry and Molecular Biology
University of Georgia

“For YEARS, DARWINISTS HAVE CLAIMED THAT MOST DNA 1S LEFT-OVER
detritus from failed evolutionary experiments. This ‘junk DNA'’ has been
offered as evidence for Darwinism and evidence against intelligent design.
The only problem with the claim, as Jonathan Wells shows in this fascinat-
ing book, is that it's not true. Careful scientists have known for some time
that the non-coding regions of DNA have all manner of function, so it is
surprising to see prominent Darwinian scientists and their spokesmen con-
tinue to push the party line. Now that the evidence against the junk DNA
story is indisputable, its defenders will want to beat a hasty retreat. The
Myth of Junk DNA will make it hard for them to cover their tracks.”

Jay Richards, Ph.D.
Co-Author, The Privileged Planet, and Editor, God and Evolution
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PREFACE

THE DISCOVERY IN THE 1970S THAT ONLY A TINY PERCENTAGE OF
our DNA codes for proteins prompted some prominent biologists
at the time to suggest that most of our DNA is functionless junk. Al-
though other biologists predicted that non-protein-coding DNA would
turn out to be functional, the idea that most of our DNA is junk became
the dominant view among biologists.

That view has turned out to be spectacularly wrong.

Since 1990—and especially after completion of the Human Ge-
nome Project in 2003—many hundreds of articles have appeared in the
scientific literature documenting the various functions of non-protein-
coding DNA, and more are being published every week.

Ironically, even after evidence for the functionality of non-protein-
coding DNA began flooding into the scientific literature, some lead-
ing apologists for Darwinian evolution ratcheted up claims that “junk
DNA” provides evidence for their theory and evidence against intelligent
design. Since 2004, biologists Richard Dawkins, Douglas Futuyma,
Kenneth Miller, Jerry Coyne and John Avise have published books us-
ing this argument. So have philosopher of science Philip Kitcher and
historian of science Michael Shermer. So has Francis Collins, former
head of the Human Genome Project and present director of the Na-
tional Institutes of Health, despite the fact that he co-authored some of
the scientific articles providing evidence against “junk DNA."

These authors claim to speak for “science,” but they have actually
been promoting an anti-scientific myth that ignores the evidence and re-
lies on theological speculations instead. For the sake of science, it's time
to expose the myth for what it is.

Far from consisting mainly of junk that provides evidence against
intelligent design, our genome is increasingly revealing itself to be a mul-
tidimensional, integrated system in which non-protein-coding DNA

performs a wide variety of functions. If anything, it provides evidence
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for intelligent design. Even apart from possible implications for intelli-
gent design, however, the demise of the myth of junk DNA promises to
stimulate more research into the mysteries of the genome. These are ex-
citing times for scientists willing to follow the evidence wherever it leads.

I have tried to make this book as non-technical as possible, but some
technical details are needed to make the case. To make things easier for
non-biologists, I have included a glossary of basic technical terms at the
end, and Chapter 9 contains brief summaries of the preceding chapters.
Since the vitamin C pseudogene story is a detour from the main argu-
ment, [ have omitted it from the main text but added it as an appendix.

My friends and colleagues Richard Sternberg and Paul Nelson have
helped me enormously, though if this book contains errors they are mine
alone. I am also grateful to my wife Lucy and my colleagues John West,
Jay Richards and Casey Luskin for helping me to make the book more
readable, to Ray Braun for doing the illustrations, and to the Center for
Science & Culture at the Discovery Institute for its encouragement and
financial support.

Seattle, 2011




L.

THE CONTROVERSY OVER
DARWINIAN EVOLUTION

‘ i JHY 1s DARWINIAN EVOLUTION STILL S0 CONTROVERSIAL: Ac-
cording to its defenders, there hasn’t been any scientific contro-

versy about it for years: The evidence for the theory is supposedly so

overwhelming that it can now be regarded as a scientific fact.

Of course, if evolution meant only change over time, or minor
changes within existing species, there would be no controversy. No sane
person doubts the fact of change over time. And, indeed, there is over-
whelming evidence for changes within existing species. Breeders have
been observing or producing them for centuries.

But Darwinian evolution means much more than changes within
existing species. Charles Darwin did not write a book titled How Exist-
ing Species Change Over Time; he wrote a book titled The Origin of Species
by Means of Natural Selection. In fact, he argued that all living things
are descendants of common ancestors that have been modified by un-
guided processes such as random variation and natural selection. (In the
modern version of his theory—neo-Darwinism—variations are due to
differences in genes, and new variations originate in genetic mutations.)
According to Darwin, the same processes we now observe within species,
if given enough time, produce new species, organs, and body plans.

Nevertheless, in 1937—almost eighty years after Darwin published
The Origin of Species—neo-Darwinist Theodosius Dobzhansky noted
that there was as yet no hard evidence to connect small-scale changes
within existing species (which Dobzhansky called “microevolution”) to
the origin of new species or the large-scale changes we see in the fos-
sil record (which he called “macroevolution”). But since “chere is no way
toward an understanding of the mechanisms of macroevolutionary
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changes, which require time on a geological scale, other than through
a full comprehension of the microevolutionary processes observable
within the span of a human lifetime,” Dobzhansky concluded, “we are
compelled at the present level of knowledge reluctantly to put a sign of
equality between the mechanisms of macro- and microevolution, and
proceeding on this assumption, to push our investigations as far ahead
as this working hypothesis will permit.”

Sixty years after Dobzhansky wrote this, biologists had still not ob-
served the origin of a new species (“speciation”) by natural selection. In
1997, evolutionary biologist Keith Stewart Thomson wrote: “A matter
of unfinished business for biologists is the identification of evolution’s
smoking gun,” and “the smoking gun of evolution is speciation, not local
adaprarion and differentiation of populations.”

British bacteriologist Alan H. Linton looked for evidence of specia-
tion and concluded in 2001: “None exists in the literature claiming that
one species has been shown to evolve into another. Bacteria, the simplest
form of independent life, are ideal for this kind of study, with genera-
tion times of twenty to thirty minutes, and populations achieved after
eighteen hours. But throughout 150 years of the science of bacteriology,
there is no evidence that one species of bacteria has changed into anoth-
er... Since there is no evidence for species changes between the simplest
forms of unicellular life, it is not surprising that there is no evidence for
evolution from prokaryotic [e.g, bacterial] to eukaryotic [e.g, plant and
animal] cells, let alone throughout the whole array of higher multicel-
lular organisms.”

Of course, even if scientists eventually observe the origin of a new
species by natural selection, the observation would not mean that natu-
ral selection can also explain the origin of significantly new organs or
body plans. Bur the fact that scientists have not observed even the first
step in macroevolution means that “evolution’s smoking gun” is still
missing,

Despite the lack of direct evidence for speciation by natural selec-

tion,” Darwin’s followers still assume that he was essencially correct and



1. The Controversy Over Darwinian Evolution t 13

regard changes within existing species as evidence for their theory. Thus
generations of biology students have been taught about a shift in the
relative proportions of light- and dark-colored peppered moths during
the industrial revolution, about an increase in the proportion of large-
beaked finches after a drought on the Galapagos Islands, and about the
spread of antibioric resistance among disease-causing bacteria. Indeed,
pictures of peppered moths and Galdpagos finches are so common in
biology textbooks that I have called them “icons of evolution.”

Darwin believed that all living things are related in a “great Tree of
Life,” with the universal common ancestor at the base of the trunk and
modern species at the tips of the branches.® Like peppered moths and
the Galdpagos finches, Darwin's Tree of Life is an icon of evolution, ap-
pearing in most modern biology textbooks.

Yet the evidence for Darwin's Tree of Life is far from overwhelm-
ing. The fossil record is fragmentary, and one of its most prominent fea-
tures—the geologically abrupt appearance of major animal body plans
in the Cambrian Explosion—contradicts Darwin’s theory that major
differences should arise only after millions of years of evolution, during
which “the number of intermediate and transitional links” would have
been “inconceivably great.”” Darwin himself considered the absence of
such links a serious problem, and subsequent fossil discoveries have ag-
gravated it.5-1°

Modern biologists have tried to overcome the problem by recon-
structing evolutionary histories with comparisons of molecules in liv-
ing species, but the molecular evidence is plagued with inconsistencies.
Analyses of different molecules—or even the same molecule analyzed
by two different laboratories—can yield different evolutionary trees. In-
deed, molecular analyses have now persuaded even some evolutionary
biologists to reject the hypothesis of a universal common ancestor. 11>

Many biology textbooks use drawings of the bones in vertebrate
limbs (yet another icon of evolution) to illustrate “homology”—similar-
ity of structure and position—which according to Darwin provides evi-
dence for common ancestry. But most biologists before Darwin regarded
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homology as a result of common design. To establish that homology is
due to common ancestry, neo-Darwinists have tried to explain it by the
inheritance of similar genes, but developmental biologists know that
this is not generally true.!* Darwin’s followers also tried to finesse the
problem by re-defining homology to mean similarity due to common
ancestry—but this means that homology can no longer be used as “evi-
dence” for common ancestry without arguing in a circle: Similarity due
to common ancestry is due to common ancestry."”

Darwin himself thought that the best evidence for his Tree of
Life came from embryology, which he considered “by far the strongest
single class of facts” in his favor.'® He believed that vertebrate embryos
are most similar in their earliest stages and become dissimilar as they
develop, and that early embryos resemble the common ancestor of the
whole group. German Darwinist Ernst Haeckel made drawings to il-
lustrate this belief, and although his contemporaries pointed out that
he had misrepresented the evidence, Haeckel’s embryo drawings—an-
other icon of evolution—were reprinted in biology textbooks for over
a century. The truch is that vertebrate embryos start out looking very
different from each other, then they converge somewhat in appearance
midway through development before diverging again as they mature.'”-*?

So microevolution is a fact, supported by overwhelming evidence,
but macroevolution remains an assumption, illustrated with icons that
misrepresent the evidence or rely on circular reasoning. The icons are not
science, but myth.

This may be one reason why—despite the Darwinists’ near-monop-
oly over science education—most Americans still reject the doctrine
that human beings evolved from ape-like ancestors by unguided pro-
cesses such as random variation and survival of the fittest. To complicate
matters, Darwin’s defenders now face a new adversary: intelligent design.

According o intelligent design (ID), it is possible to infer from ev-
idence in nature that some features of the world, and of living things,
are better explained by an intelligent cause than by unguided natural
processes. ID does not imply that design must be optimal or perfect;
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indeed, as human artifacts show, something can be designed and yet be
far from perfect. Unlike creationism, ID is not based on the Bible, but
on evidence and logic; and unlike natural theology, ID does not argue
for the existence of an omnipotent God (though it is consistent with
God’s existence). Nevertheless, Darwinists try to discredit ID as a form
of religious fundamentalism—though their real objection is that it con-
tradicts the Darwinian view that all features of living things can be ex-
plained by unguided natural processes.

So the old icons of evolution have failed to persuade most people
that Darwinism is true, and intelligent design presents it with a new
challenge. Accordingly, some of Darwin’s defenders have turned to

“junk DNA” to support their theory and refute ID.

In the 1950s, neo-Darwinists equated genes with DNA sequences
and assumed that their biological significance lay in the proteins they en-
coded. But when molecular biologists discovered in the 1970s that most
of our DNA does not code for proteins, neo-Darwinists called non-
protein-coding DNA “junk” and attributed it to molecular accidents
that have accumulated in the course of evolution. Like peppered moths,
Gal4pagos finches, Darwin’s Tree of Life, homology in vertebrate limbs,
and Haeckel's embryos, “junk DNA” has become an icon of evolution.
But is it science, or myth?
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JUNK DNA: THE LAST
IcoN oF EVvoLUTION?

NE SATURDAY MORNING IN 1953, AT THE Cavenpisu Lasora-
O tory in Cambridge, England, James Watson and Francis Crick con-
cluded months of work by deciphering the molecular structure of deoxy-
ribonucleic acid (DNA). They went to celebrate over drinks at a nearby
pub, where Crick announced: “We have discovered the secret of life!™

A century earlier, Charles Darwin had proposed his theory of evolu-
tion by natural selection to explain how all living things are descended
with modification from a common ancestor. Darwin’s theory conflicted
with the traditional and widespread notion that living things were de-
signed. “There seems to be no more design in the variability of organic
beings, and in the action of natural selection,” Darwin wrote, “than in the
course which the wind blows.”? Although “I cannot look at the universe
as the result of blind chance,” he explained, “yet I can see no evidence of
beneficent design, or indeed of design of any kind, in the details.”? So he
was “inclined to look at everything as resulting from designed laws, with
the details, whether good or bad, left to the working out of what we may
call chance.™

But Darwin did not know how traits are passed from generation
to generation, much less how new traits originate. His contemporary
Gregor Mendel performed experiments showing that several features of
pea plants are determined by discrete factors that are inherited accord-
ing to a few simple rules. (The factors were later named “genes” by Dan-
ish botanist Wilhelm Johannsen.) Mendel found Darwin's theory un-
persuasive, and Darwinists ignored his ideas for halfa century.”~® It was
not until the 1930s that Darwinian evolution and Mendelian genetics

were combined in what became known as the neo-Darwinian synthesis.
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According to neo-Darwinism, traits are passed on by genes that reside
on microscopic thread-like structures in the cell called chromosomes,
and new traits arise from accidental genetic mutations.

In the 1940s biochemists discovered that the active ingredient in
chromosomes is DNA, and Watson and Crick’s 1953 discovery that
DNA consists of two complementary strands suggested a possible copy-
ing mechanism.”® DNA consists of subunits called “nucleotides,” each
containing a sugar molecule attached to a phosphate group and one of
four bases: adenine (A), thymine (T), cytosine (C) or guanine (G). In
a DNA molecule, the nucleotides in each strand are attached by their
phosphate groups, and the two strands wind around each other in a
double helix. Since the A's and T’s in one strand pair with T's and A’s
in the other, while the C's and G's pair with G's and Cs, the nucleotide
sequence in one strand is opposite and complementary to the sequence
in the other strand. (Figure 2.1)

Figure 2.1 The DNA double helix. Idealized drawings of DNA in two
dimensions (left) and three dimensions (right). Each nucleotide consists
of a sugar group (pentagon) attached to a phosphate group (P) and one
of four bases (A, T, C, G). The nucleotides are chemically connected only
through their phosphate groups on the outside of the molecule. On the
inside of the molecule che bases attract each other electrostatically, but

because of their particular shapes the A's pair with T's and the C's pair
with G's.
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In 1958, Crick argued that “the main function of the genetic mate-
rial” is to control the synthesis of proteins. According to Crick’s “Se-
quence Hyporthesis,” the specificity of a segment of DNA “is expressed
solely by the sequence of bases,” and “this sequence is a (simple) code for
the amino acid sequence of a particular protein.” Crick further proposed
that the sequence information in DNA is first transcribed into another
molecule, ribonucleic acid (RNA), which is then translated into protein.’

As evidence for the copying mechanism and the process of pro-
tein synthesis accumulated, many biologists equated neo-Darwinian
genes with DNA sequences. “With that,” said French molecular biol-
ogist Jacques Monod in 1970, “and the understanding of the random
physical basis of mutation that molecular biology has also provided, the
mechanism of Darwinism is at last securely founded.” As a consequence,
Monod concluded, “Man has to understand that he is a mere accident.”

Following Monod’s lead, and for the sake of simplicity, I will use

“Darwinism” in the rest of this book to mean both Darwin’s theory and
neo-Darwinism.

In 1976, Oxford University professor and Darwinist Richard
Dawkins wrote that the only “purpose” of DNA is to ensure its own
survival. Dawkins considered the most important quality of successful
genes to be “ruthless selfishness.” It follows that “we, and all other ani-
mals, are machines created by our genes. Like successful Chicago gang-
sters, our genes have survived, in some cases for millions of years, in a
highly competitive world.” A body is simply “the genes’ way of preserv-
ing the genes unaltered.” Thus natural selection favors genes “which are
good at building survival machines, genes which are skilled in the art
of controlling embryonic development.” And genes control embryonic
development by encoding proteins.!

Junk DNA and Intelligent Design
YeT BY 1970 biologists already knew that much of our DNA does not en-
code proteins. Although some suggested that non-protein-coding DNA
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might help to regulate the production of proteins from DNA templates,
the dominant view was that non-protein-coding regions had no function.

In 1972, biologist Susumu Ohno (at the City of Hope National
Medical Center in Los Angeles) published an article wondering why
there is “so much ‘junk’ DNA in our genome.”? The same year, his City
of Hope colleague David Comings wrote that only about 20% of the
human genome appears to be used; the remaining 80% seemed to be
“junk”—though Comings did not necessarily think it was entirely use-
less.”?

“The amount of DNA in organisms,” Dawkins wrote in 1976, “is
more than is strictly necessary for building them: A large fraction of the
DNA is never translated into protein. From the point of view of the in-
dividual organism this seems paradoxical. If the ‘purpose’ of DNA is to
supervise the building of bodies, it is surprising to find a large quantity
of DNA which does no such thing. Biologists are racking their brains
trying to think what useful task this apparently surplus DNA is doing,
But from the point of view of the selfish genes themselves, there is no
paradox. The true ‘purpose’ of DNA is to survive, no more and no less.
The simplest way to explain the surplus DNA is to suppose that it is a
parasite, or at best a harmless but useless passenger, hitching a ride in
the survival machines created by the other DNA.*

Tn 1980, two papers appeared back to back in the journal Nature:
“Selfish genes, the phenotype paradigm and genome evolution,” by W.
Ford Doolittle and Carmen Sapienza, and “Selfish DNA: The ultimate
parasite,” by Leslie Orgel and Francis Crick. The first paper argued that
many organisms contain “DNAs whose only ‘function’ is survival within
genomes,” and that “the search for other explanations may prove, if not
intellectually sterile, ultimately futile.””® The second argued similarly
that “much DNA in higher organisms is little better than junk,” and its
accumulation in the course of evolution “can be compared to the spread
of 2 not-too-harmful parasite within its host.” Since it is unlikely that
such DNA has a function, Orgel and Crick concluded, “it would be folly

in such cases to hunt obsessively for one."'
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Two biologists wrote to Nature expressing their disagreement.
Thomas Cavalier-Smith considered it “premature” to dismiss non-pro-
tein-coding DNA as junk,” and Gabriel Dover wrote that “we should
not abandon all hope of arriving at an understanding of the manner in
which some sequences might affect the biology of organisms in com-
pletely novel and somewhat unconventional ways.”* So some biologists
were skeptical of the notion of “junk DNA” from the very beginning—
though most accepted it.

This does not mean that skeptics of “junk DNA” such as Cavalier-
Smith and Dover were also skeptics of Darwinian evolution. In 1980,
the most prominent opposition to Darwinism came from biblical cre-
ationists. A few years later, however, a new form of opposition appeared:
intelligent design. In 1984, chemist Charles B. Thaxton, materials sci-
entist Walter L. Bradley and geochemist Roger L. Olsen published The
Mystery of Life’s Origin, which criticized the idea that unguided natural
processes produced the first living cells and which proposed thar DNA
had an intelligent cause at the beginning"® The following year, molecular
biologist Michael Denton published Evolution: A Theory in Crisis, which
critically analyzed the evidence for Darwin's theory and defended the
view that design could be inferred from living things.”’

In 1991, Berkeley law professor Phillip E. Johnson published Dar-
win on Trial, which concluded: “Darwinist scientists believe that the
cosmos is a closed system of material causes and effects, and they be-
lieve that science must be able to provide a naturalistic explanation for
the wonders of biology that appear to have been designed for a purpose.
Without assuming those beliefs they could not deduce that common an-
cestors once existed for all the major groups of the biological world, or
that random mutations and natural selection can substitute for an intel-
ligent designer.”

In 1994, Brown University biologist (and co-author of some widely
used high school biology textbooks) Kenneth R. Miller defended Dat-
winian evolution against the idea that living things are intelligently de-

signed. He wrote: “The human genome is littered with pseudogenes,
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gene fragments, ‘orphaned’ genes, ‘junk’ DNA, and so many repeated
copies of pointless DNA sequences that it cannot be attributed to any-
thing that resembles intelligent design. If the DNA of a human being
or any other organism resembled a carefully constructed computer pro-
gram, with neatly arranged and logically structured modules each writ-
ten to fulfill a specific function, the evidence of intelligent design would
be overwhelming. In fact, the genome resembles nothing so much as a
hodgepodge of borrowed, copied, mutated, and discarded sequences and
commands that has been cobbled together by millions of years of trial
and error against the relentless test of survival. It works, and it works
brilliantly; not because of intelligent design, but because of the great
blind power of natural selection to innovate, to test, and to discard what
fails in favor of what succeeds.” Indeed, Miller wrote, intelligent design
theory “requires that we pretend to know less than we do about living
organisms” and “requires a retreat back into an unknowledge of biology

that is unworthy of the scientific spirit of this century.”*

Using Junk DNA as Evidence for Darwinism
and Against Intelligent Design

SevERAL RECENT books have likewise used junk DNA as evidence for
Darwinism and evidence against design or a creator. In 2004, Richard
Dawkins wrote: “Genomes are littered with nonfunctional pseudogenes,
faulty duplicates of functional genes that do nothing, while their func-
tional cousins (the word doesn't even need scare quotes) get on with their
business in a different part of the genome. And there’s lots more DNA
that doesn't even deserve the name pseudogene. It too is derived by du-
plication, but not duplication of functional genes. It consists of multiple
copies of junk, ‘tandem repeats, and other nonsense which may be useful
for forensic detectives but which doesn't seem to be used in the body it-
self. Once again, creationists might spend some earnest time speculating
on why the Creator should bother to litter genomes with untranslated
pseudogenes and junk tandem repeat DNA."
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is "hard to reconcile with beneficent intelligent design,”2#

In 2006, Skeptic Magazine publisher Michae] Shermer wrote: “We
have to wonder why the Intelligent Designer added to our genome junk
DNA, repeated copies of useless DNA, orphan genes, gene fragments,
tandem repeats, and pseudogenes, none of which are involved directly
in the making of 2 human being. In fact, of the entire human genome, i
appears that only a tiny percentage is actively involved in usefu] protein
production. Rather than being intelligently designed, the human ge-
nome looks more and more ike 5 mosaic of mutations, fragment copies,
borrowed sequences, and discarded strings of DN A that were jerry-buile
over millions of years of evolution."2s

The same year Francis S, Collins, former head of the Human
Genome Project and now Director of the U.S. National Institutes of
Health, wrote that “junk DNA” provides evidence for Darwin’s theory
of evolution, According to Collins, moveable segments of DNA known
as “ancient repetitive elements” (AREs) have no function other than
their own survival. “Some might argue,” Collins wrote, “that these are
actually functional elemens placed there by the Creator for a good rea-
son, and our discounting of them as’ Junk DNA’just betrays our currene
level of ignorance. And indeed, some small fraction of them may play

dulity of that explanation. The process of transposition often damages
the jumping gene. There are AREs throughout the human and mouse
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genomes that were truncated when they landed, removing any possibil-
ity of their functioning, In many instances, one can identify a decapi-
tated and utterly defunct ARE in parallel positions in the human and
the mouse genome.” This provides compelling support for Darwinian
evolution, Collins argued, “unless one is willing to take the position that
God has placed these decapitated AREs in these precise positions to
confuse and mislead us."*®
In 2007, Columbia University philosophy professor Philip Kitcher
argued that “if you were designing the genomes of organisms, you would
certainly not fill them up with junk.” Yet “the most striking feature of
the genome analyses we now have is how much apparently nonfunction-
al DNA there is.” According to Kitcher, “From the Darwinian perspec-
tive all this is explicable—the molecular equivalent of tinkering that is
pervasive in the history of life at the anatomical level... Over the history
of life, the residues of past tinkering accumulate in the genome, the once-
functional sequences, the degraded remains of genes, the long repeats.”
Junk DNA is also evidence against intelligent design (ID): “Why does
Intelligence not eliminate the accumulations of junk and structures that
have lost their original functions?” Kitcher argued that ID “would com-
mit Intelligence to a whimsical tolerance of bungled designs.””’
The following year, Kenneth R. Miller reaffirmed his view that
pseudogenes provide evidence for Darwinian evolution and evidence
against intelligent design. Humans lack a functional gene for an enzyme
(abbreviated GLO) that is needed to synthesize vitamin C. As a resul,
we must include vitamin C in our diets, otherwise we suffer from scurvy.
“But the interesting part of the story,” Miller wrote, “is that we aren't
exactly missing the GLO gene. In fact, it’s right there on chromosome
8, in pretty much the same relative position in our genome where it is
found in other mammals.” (The names of genes are customarily itali-
cized, while the names of their protein products are not.) Miller contin-
ued: “The problem is that our copy of the GLO gene has accumulated so
many mutations, in the form of changes in the DNA base sequence, that

it no longer works... If the designer wanted us to be dependent on vita-
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min C, why didn't he just leave out the GLO gene from the plan for our
genome? Why is its corpse still there?” According to Miller, the presence
of the GLO pseudogene is consistent with an evolutionary explanation
but inconsistent with intelligent design.?

In 2009, University of Chicago geneticist Jerry A. Coyne compared
predictions based on intelligent design with those based on Darwinian
evolution. “If organisms were built from scratch by a designer,” he ar-
gued, they would not have imperfections. “Perfect design would truly
be the sign of a skilled and intelligent designer. Imperfect design is the
mark of evolution; in fact, it's precisely what we expect from evolution.”
According to Coyne, “when a trait is no longer used, or becomes reduced,
the genes that make it don't instantly disappear from the genome: Evo-
lution stops their action by inactivating them, not snipping them out of
the DNA. From this we can make a prediction. We expect to find, in
the genomes of many species, silenced, or ‘dead, genes: genes that once
were useful but are no longer intact or expressed. In other words, there
should be vestigial genes.” In contrast, creation by design predicts that
no such genes would exist.

“Thirty years ago we couldn't test this prediction,” Coyne continued,
“because we had no way to read the DNA code. Now, however, it's quite
easy to sequence the complete genome of species, and it’s been done for
many of them, including humans. This gives us a unique tool to study
evolution when we realize that the normal function of a gene is to make a
protein—a protein whose sequence of amino acids is determined by the
sequence of nucleotide bases that make up the DNA. And once we have
the DNA sequence of a given gene, we can usually tell if it is expressed
normally—that is, whether it makes a functional protein—or whether
it is silenced and makes nothing. We can see, for example, whether mu-
tations have changed the gene so thart a usable protein can no longer be
made, or whether the ‘control’ regions responsible for turning on a gene
have been inactivated. A gene that doesn't function is called a pseudogene.”

According to Coyne, “the evolutionary prediction that we'll find
pseudogenes has been fulfilled—amply. Virtually every species harbors
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dead genes, many of them still active in its relatives. This implies that
those genes were also active in a common ancestor, and were killed off
in some descendants but not in others. Out of about thirty thousand
genes, for example, we humans carry more than two thousand pseudo-
genes. Our genome—and that of other species—are truly well popu-
lated graveyards of dead genes.”

Richard Dawkins continued to rely on junk DNA in his 2009 book
The Greatest Show on Earth: The Evidence for Evolution. “It is a remark-
able fact,” Dawkins wrote, “that the greater part (95 per cent in the case
of humans) of the genome might as well not be there, for all the dif
ference it makes.” In particular, pseudogenes “are genes that once did
something useful but have now been sidelined and are never transcribed
or translated.” Dawkins concluded: “What pseudogenes are useful for
is embarrassing creationists. It stretches even their creative ingenuity to
make up a convincing reason why an intelligent designer should have
created a pseudogene... unless he was deliberately setting out to fool
us.”

In 2010, University of California Distinguished Professor of Ecol-
ogy & Evolutionary Biology John C. Avise published a book titled Inside
the Human Genome: A Case for Non-Intelligent Design, in which he wrote
that “noncoding repetitive sequences— junk DNA'—comprise the vast
bulk (at least 50%, and probably much more) of the human genome.”
Avise argued that pseudogenes, in particular, are evidence against in-
telligent design. For example, “pseudogenes hardly seem like genomic
features that would be designed by a wise engineer. Most of them lie
scattered along the chromosomes like useless molecular cadavers.” To
be sure, “several instances are known or suspected in which a pseudo-
gene formerly assumed to be genomic ‘junk’ was later deemed to have
a functional role in cells. But such cases are almost certainly exceptions
rather than the rule. And in any event, such examples hardly provide
solid evidence for intelligent design; instead, they seem to point toward
the kind of idiosyncratic tinkering for which nonsentient evolutionary

processes are notorious.””!
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Avise also published an article in Proceedings of the National Acad-
emy of Sciences USA titled “Footprints of nonsentient design inside the
human genome,” in which he repeated the same argument. “Several out-
landish features of the human genome,” he wrote, “defy notions of ID
by a caring cognitive agent,” but they are “consistent with the notion of
nonsentient contrivance by evolutionary forces.” For example, “the vast
majority of human DNA exists not as functional gene regions of any
sort but, instead, consists of various classes of repetitive DNA sequences,
including the decomposing corpses of deceased structural genes.”*?

But Is It True?

Tue arcumENTS by Dawkins, Miller, Shermer, Collins, Kitcher, Coyne
and Avise rest on the premise that most non-protein-coding DNA is
junk, without any significant biological function. Yet a virtual flood of
recent evidence shows that they are mistaken: Much of the DNA they
claim to be “junk” actually performs important functions in living cells.

The following chapters cite hundreds of scientific articles (many of
them freely accessible on the Interner) that testify to those functions—
and those articles are only a small sample of a large and growing body of
literature on the subject. This does not mean that the authors of those
articles are critics of evolution or supporters of intelligent design. Indeed,
most of them interpret the evidence within an evolutionary framework.
But many of them explicitly point out that the evidence refures the myth
of junk DNA.
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3.

MosTt DNA Is TRANSCRIBED
INTO RNA

WHEN Francrs Crick PROPOSED IN 1958 THAT DNA coNTROLS
protein synthesis through the intermediary of RNA, he argued
that “the transfer of information from nucleic acid to nucleic acid, or
from nucleic acid to protein may be possible, but transfer from protein
to protein, or from protein to nucleic acid, is impossible.” Under some
circumstances RNA might transfer sequence information to DNA, but
the order of causation is normally “DNA makes RNA makes protein.”
Crick called this the “Central Dogma” of molecular biology.!

If DNA makes RNA makes protein, and one assumes that only
protein-coding regions of DNA matter to the organism, it makes sense
also to assume that only protein-coding regions are transcribed into
RNA. Why would an organism struggling to survive waste precious in-
ternal resources on transcribing “junk”? Yet it turns out that organisms
do transcribe most of their DNA into RNA—including DNA long re-
garded as junk. As we shall see, this calls into question arguments based
on so-called “junk DNA.”

DNA Makes RNA Makes Protein

THE GENERAL mechanism by which DNA makes RNA makes protein
is now well understood. An enzyme called RNA polymerase moves
along the DNA, transcribing the sequence of nucleotide subunits into
messenger RNA—a process called “transcription.” A large molecular
machine called a ribosome then moves along the messenger RNA and
translates it into a protein—a process called “translation.” The process
by which a DNA sequence yields a functional product (in this case a
protein) is called “gene expression.” (Figure 3.1)
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Figure 3.1 Gene expression. An idealized drawing to illustrate how DNA
makes RNA makes protein. Transcription. (On the top) RNA poly-
merase moves along the DNA from left to right, producing a messenger
RNA transcript (single line curving upward and to the right). Transla-
tion. (On the bottom) The bell-shaped ribosome moves along the mes-
senger RNA transcript from left to right, translating it into a protein
(curly line to the left).
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As we saw in Chapter 2, many biologists in the 1970s equated Dar-
winian genes with DNA sequences. An organism’s genes constitute its
“genotype,” while its morphology, physiology, development and behavior
constitute its “phenotype.” Each gene consists of a “promoter” section
to which the RNA polymerase attaches, an “initiation sequence” and
a “termination sequence.” The actual protein-coding region is called an
“open reading frame.” (Figure 3.2)

Figure 3.2 Structure of an idealized gene. The light gray block at the left
is the “promoter,” a sequence that responds to signals chat turn the gene
on or off. The black block on the left is the “initiation” sequence to which
RNA polymerase attaches to begin making an RNA transcripe (see Fig-
ure 3.1). The black block on the righe is the “termination” sequence that
releases the RNA polymerase and ends transcription. The long stretch
between che initiation and terminarion sequences is the “open reading
frame"—the DNA sequence that encodes the RNA sequence in the
transcript,

Non-Protein-Coding DNA
IN THE mid-1970s, Richard Roberts and Phillip Sharp (studying viruses
that cause respirarory infections) and David Glover and David Hogness
(studying fruit flies) found evidence that open reading frames in eukary-
otic genes are discontinuous: Protein-coding segments are separated by
non-protein-coding segments.>* (A eukaryote is a cell with a nucleus, as
in animals and plants; a prokaryore is a cell without a nucleus, as in bac-
teria.) In 1978, Walter Gilbert called the protein-coding regions “exons”
(EXpressed regiONS) and the non-protein-coding regions “introns”
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(INTRagenic regiONS).’ It soon became clear that most eukaryotic

genes contain introns. (Figure 3.3)

Figure 3.3 Structure of an idealized eukaryotic gene. The promorter, initia-
tion site and termination site are similar to those in Figure 3.2, but the
open reading frame is broken up into “exons” (white areas) and “introns”
(gray areas berween exons). The entire open reading frame is transcribed

into RNA, but the RNA segments transcribed from introns are edited

out; they are not translared into protein. Only the RNA segments cor-

responding to exons are translated into protein.

Non-protein-coding DNA in eukaryotes occurs not only within
genes, but also between them. The two complementary strands of DNA
can be separated in a test tube. Under appropriate conditions, the two
strands will re-associate, though it takes some time for the complemen-
tary nucleotides on the two strands to align propetly. In the 1960s, Roy
Britten and others found that about 10% of mouse DNA re-associated
extremely rapidly. When the researchers centrifuged the DNA to sepa-
rate it into fractions of different densities, the fraction that re-associated
rapidly ended up in “satellite” bands. These bands were found to consist
of millions of short, repeated nucleotide sequences that do not code for
proteins. Subsequent experiments showed that non-protein-coding re-
petitive sequences are common in animal DNA.5-#

In fact, only about 1.5% of human DNA codes for protein.” Eukary-
otic chromosomes contain vast stretches of non-protein-coding DNA.

(Figure 3.4) It was this preponderance of non-protein-coding regions
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that fueled the notion of “junk DNA” in the 1970s. The preponder-
ance of non-protein-coding DNA also meant that the classical notion
of genotype did not encompass all of an organism’s DNA, and the word
“genome” (which originally meant the same as genotype) was expanded
to mean the complete DNA of an organism, including its non-protein-
coding portions.!0

Figure 3.4 Regions of protein-coding and non-protein-coding DNA. (Top)
The eukaryotic gene shown in Figure 3.3, with protein-coding exons
(white) separated by non-coding introns (dark gray). (Bottom) A portion
of an idealized eukaryotic chromosome, showing bands called euchro-
matin (white) that have a high concentration of protein-coding genes
and bands called heterochromatin (black) that have a low concentration
of genes. Even the euchromarin contains long stretches of non-protein-
coding DNA between genes. The dotred lines indicate the position of
the idealized gene in one band of euchromatin.

Genome Sequencing Projects

Tue Human Genome Project started in 1990 with the goal of catalog-
ing the entire sequence of nucleotides (a little over three billion of them)
in our DNA." Sequences from humans and many other organisms are
now catalogued at GenBank, a division of the National Center for Bio-
technology Information in the United States; at the European Molecu-
lar Biology Laboratory (EMBL) Nucleotide Sequence Database in the
United Kingdom;" and at the DNA Data Bank of Japan (DDBJ).1
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The Human Genome Project was completed in 2003, but the mere
catalog of nucleotide sequences failed to explain how our DNA func-
tions."” Looking at the sequence of the human genome is a bit like holding
up a strip of videotape with its magnetic domains made visible: Knowing
the coded information doesn't enable us to watch the movie. So a second
project (called ENCODE, for ENCyclopedia Of DNA Elements) set
out to identify all the functional elements in the human genome.* A
similar project was undertaken by the FANTOM (Functional ANno-
Tation Of the Mammalian Genome) Consortium of the Riken Institute
in Japan, which had been founded in 1998.7** By cataloging the func-
tional products of the genome, both projects hoped to bring us closer to
being able to watch the “movie” it encodes.

Even before completion of the Human Genome Project there had
been reports of widespread transcription of RNA from non-protein-
coding DNA. Despite the assumption that only protein-coding DNA
matters to the organism and thus would be transcribed, American
scientists estimated in 2001 that human DNA produces over 65,000
RNAs, with only about 4% of these coming from exons.'® In 2002, the
FANTOM Consortium identified 11,665 non-protein-coding RNAs
and concluded that “non-coding RNA is a major component of the
transcriptome.” (An organism’s transcriptome is the entirety of its
RNA.) Other scientists reported that transcription of two human chro-
mosomes resulted in ten times more RNA than could be attributed to

protein-coding exons.*!

A few years after the start of the ENCODE Project it had become ob-
vious that most of the mammalian genome is transcribed into RNA.>*-#
Preliminary data provided “convincing evidence that the genome is per-
vasively transcribed, such that the majority of its bases can be found in
primary transcripts, including non-protein-coding transcripts.”*

Even more surprising than the sheer number of transcripts was
the complexity of the transcriptome. Molecular biologists originally
thought that only one strand of the double-stranded DNA molecule

(called the “sense” strand) carries information that is transcribed into
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RNA. The other (“antisense”) strand was thought to function only in
DNA replication: The two strands separate before cell division, a new
antisense strand is synthesized with a sequence complementary to that
on the sense strand, and a new sense strand is synthesized with a se-

quence complementary to that on the antisense strand. (Figure 3.5)

Figure 3.5 DNA replication. (Left) Double-stranded DNA. Because of
their molecular structures, A's pair with T’s and G's pair with C's. The
sequence of nucleotides on one strand is thus complemented by the se-
quence of nucleotides on the other strand. (Middle) During replication
the strands separate. (Right) New strands are synthesized by matching
up complementary nucleotides. The result is two double-stranded DNA
molecules with identical sequences (unless disrupted by mutations).

The ENCODE Project and FANTOM Consortium showed that
RNAs are transcribed from both strands of DNA, and that “antisense”
RNA is a major component of the transcriptome.?-?’

Not only is RNA transcribed from the antisense strand, but RNAs
can also be transcribed from multiple start sites within an open reading
frame. As a result, a single open reading frame can generate, in addition

to the primary protein-coding messenger RNA, several non-protein-
coding RNAs.*-* (Figure 3.6)
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Figure 3.6 Sense and antisense transcription. (Top) The sense strand of
DNA. (Bottom) The antisense strand, previously thought to function
only as a template for the replication of the sense strand. It is now known
that both strands are transcribed into RNA, starting from multiple sites
(arrows).

Probable Function in Non-Protein-Coding RNAs
WIDESPREAD TRANSCRIPTION of non-protein-coding DNA suggests
that the RNAs produced from such DNA might serve biological func-
tions. Ironically, the suggestion that much non-protein-coding DNA
might be functional also comes from evolutionary theory. If two lineages
diverge from a common ancestor that possesses regions of non-protein-
coding DNA, and those regions are really nonfunctional, then they
will accumulate random mutations that are not weeded out by natural
selection. Many generations later, the sequences of the corresponding
non-protein-coding regions in the two descendant lineages will probably
be very different. On the other hand, if the original non-protein-coding
DNA was functional, then natural selection will tend to weed out mu-
tations affecting that function. Many generations later, the sequences
of the corresponding non-protein-coding regions in the two descendant
lineages will still be similar. (In evolutionary terminology, the sequences
will be “conserved.”) Turning the logic around, Darwinian theory im-

plies that if evolutionarily divergent organisms share similar non-pro-

tein-coding DNA sequences, those sequences are probably functional.
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In 2004 and 2005, several groups of scientists identified non-coding
regions of DNA hundreds of nucleotides long that were 100% identical
in humans and mice. They called these “ultra-conserved regions (UCRs)”
and noted that they clustered around genes involved in early develop-
ment. The researchers concluded that the long non-coding UCRs act as
regulators of developmentally important genes. >3

In 2006, as part of a team studying endothelial cells (which line the
inside of human blood vessels), Francis Collins co-authored a report
that “conserved non-coding sequences’—some within introns—were
enriched in sequences that “may play a key role in the regulation of en-
dothelial gene expression.”” In 2007, other scientists reported a cluster-
ing of highly conserved non-coding elements around developmentally
important genes in worms and fies.*

Oxford geneticists comparing large non-coding RNAs in humans,
rats and mice reported conserved sequences that “possess the imprint
of purifying selection, thereby indicating their functionality."“ And in
2009, a team of American scientists found “over a thousand highly con-
served large non-coding RNAs in mammals” that are “implicated in di-
verse biological processes.”

Specific Functions in Non-Protein-Coding RNAs
EVEN aPART from sequence conservation, there is growing evidence for
specific functions of non-protein-coding RNAs. In 2003, Polish scien-
tists reported that ‘non-protein-coding RNAs are known to play sig-
nificant roles,” primarily involving the regulation of gene expression. For
example, non-protein-coding RNAs are involved in "controlling whether
a gene is transcribed and to what extent,” or ‘regulating the fate of the
transcribed RNA molecules.?

In 2006, Australian molecular biologists noted thar although ex-
ploring the functions of non-protein-coding RNAs had just begun,
‘these RNAs (including those derived from introns) appear to comprise a
hidden layer of internal signals that control various levels of gene expres-
sion in physiology and development.” Indeed, they wrote, “/RNA regu-




38 / Tue MyrH of JuNnk DNA /

latory networks may determine most of our complex characteristics.™
Spanish scientists reported that small non-protein-coding RNAs “regu-
late virtually all aspects of the gene expression pathway, with profound
biological consequences.™

In 2007, a team of American and Israeli scientists published evi-
dence that developmental genes in humans produce, in addition to pro-
teins, non-protein-coding RNAs that are spatially expressed in a devel-
oping embryo. The results, they wrote, “have broad implications for gene
regulation in development. By 2008, the scientific literature contained
abundant data regarding the functions of non-protein-coding RNA.*!
One group of molecular biologists in Japan noted that since “research in
the recent few years has identified an unexpectedly rich variety of mech-
anisms by which non-coding RNAs act,” it is likely “that we have identi-
fied probably only a few of the many potential functional mechanisms”
of the mammalian transcriptome.”

One recently identified function for non-protein-coding RNAs in-
volves domains inside the nuclei of mammalian cells called “paraspeck-
les.”* Paraspeckles play a role in gene expression by retaining certain
RNAs within the nucleus,’*** and several non-protein-coding RNAs
are known to be essential constituents of them.**~” The RNAs serve a
structural function, binding to specific proteins to form ribonucleopro-
teins that stabilize the paraspeckles and enable them to persist through
cell division even though they are not bounded by membranes.”*

Evidence for important biological functions of non-protein-coding
RNAs has continued to accumulate.®"% As the next chapter demon-
strates, this includes evidence from introns, the non-protein-coding seg-

ments that separate protein-coding exons in a gene.
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INTRONS AND THE SpLicING CODE

HEN A EUKARYOTIC GENE IS TRANSCRIBED INTO RNA, r1s 1n-
Wtrons as well as its exons are included in the transcript, so the
initial RNA transcript consists of protein-coding segments separated
by non-protein-coding segments. The latter are removed, and the pro-
tein-coding segments are then spliced together before being translated
into protein. In the great majority of cases (80-95%), the protein-coding
segments can be “alternatively spliced,” which means that the resulting
transcripts can lack some exons or contain duplicates of others.'” (Fig-
ure 4.1) In this way, a single gene can give rise to hundreds—or even

thousands—of different proteins.®-10
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Figure 4.1 Alternative RNA splicing. (Top line) A eukaryotic gene. (Sec-
ond line) The RNA transcribed from it. The transcript consists of pro-
tein-coding exons (numbers) separated by non-protein coding introns
(dashes). (Third line) The RNA produced if the introns are simply re-
moved. (Fourth and fifth lines) Exons can be duplicated or deleted ro
produce these or other RNAs. In this way a single gene can give rise to
hundreds of different proteins.
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Alternative Splicing Produces Tissue- and

Stage-Specific RNAs and Proteins
ALTERNATIVE SPLICING plays an essential role in the differentiation of
cells and tissues at the proper times during embryo development.'**
For example, in 2007 a British medical researcher reported that genes
involved in triggering labor contractions are “both temporally and spa-
tially regulated” by alternative splicing.'* Two other British researchers
reported that a crucial cell-cell signaling mechanism in animal embryos
is mediated by alternative splicing in a “tissue- and stage-specific’ man-
ner.'®

In 2009, Italian biologists found that a mammalian insulin-receptor
gene is alternatively spliced into two proteins; one is predominantly ac-
tive in fetuses and the other one in adults.'® The same year, a team that
included Francis Collins studied alternative splicing in various types of
human cells (pancreas, colon, liver, blood, muscle, and fat) and reported
that splicing is tissue-specific.””

In 2010, medical researchers published evidence that alternative
splicing plays an essential role in brain development by producing vari-
ant forms of neurotransmitters'® and proteins involved in intracellular
transport.”” German scientists showed that alternatively spliced forms of
a gene involved in mouse mammary gland development were expressed
in different tissues,”® and Australian biologists reported that a wide va-
riety of alternatively spliced RNAs occur in “a developmental-stage- and
tissue-specific manner.””’ American and Canadian scientists found that
alternative splicing is regulated, at least in part, by non-protein-coding
RNAs.?

But what about introns? They make alternative splicing possible, but
are they just biologically inert spacers? Apparently not; there is growing
evidence that introns perform various functions—including the regula-

tion of alternative splicing.
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Evidence That Introns Help to Regulate Alternative Splicing
As wE saw in Chapter 3, evolutionary theory suggests that regions of
non-protein-coding DNA that are similar between distant species were
probably “conserved” by natural selection because they have some func-
tion; otherwise, mutations would have accumulated in the course of
evolution and made them very different. In 2003, Israeli scientists com-
pared alternatively spliced exons in humans and mice and found that
over three-quarters of them were flanked by introns with sequences that
were 80—88% conserved—suggesting that the introns function in the
regulation of alternative splicing.??

In 2005, biologists at Lawrence Berkeley National Laboratory re-
ported that a particular sequence of six nucleotides in introns that is
“frequently located adjacent to tissue-specific alternative exons in the
human genome” is “highly conserved” in species as distantly related
as humans, mice, rats, dogs and chickens. The Berkeley scientists con-
cluded that the sequence specificity, genomic location, and evolutionary
conservation of this intronic element “mark it as a critical component of
splicing switch mechanism(s) designed to activate a limited repertoire of
splicing events in cell type-specific patterns.”** In 2006, another group
of California scientists identified intron sequences in brain and muscle
tissues that were highly conserved among mammals, implicating them
in splicing regulation.”

Sequence conservation suggests function in general, but there is
also specific evidence that introns contain codes that regulate alternative
splicing.**® The mammalian thyroid hormone receptor gene produces
two variant proteins with opposite effects, and the alternative splicing
of those variants is regulated by an intron.?” An intronic element plays a
critical role in the alternative splicing of tissue-specific RNAs in mice,*
and regulatory elements in introns control the alternative splicing of
growth factor receptors in mammalian cells.”

In 2007, Italian biologists reported that intronic sequences regulate
the alternative splicing of a gene involved in human blood clotting.*? In

2008, American scientists summarized some of the splicing regulatory
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elements known to be located in introns,”® and Scottish and French sci-
entists reviewed intronic non-protein-coding RNAs that are involved in
alternative splicing in plants as well as animals.*

In 2010, two American researchers identified splicing regulatory el-
ements from the same intron that can have opposite effects in different
tissues,” and another two reported “genome-wide evidence for exons be-
ing defined through the combinatorial activity of motifs located in flank-
ing intronic regions.”*® A ream of Canadian and British scientists study-
ing splicing codes in mouse embryonic and adult tissues—including the
central nervous system, muscles, and the digestive system—found that
introns are rich in splicing-factor recognition sites. It had previously
been assumed that most such sites are close to the affected exons—Ieav-
ing long stretches of DNA not involved in the process of alternative
splicing—but the team concluded that their results suggested “regula-

tory elements that are deeper into introns than previously appreciated.””

Other Coding Functions of Introns
InTRONS ARE also involved in gene regulation in ways other than alter-
native splicing. In 2007, European biologists found eleven sequences
in the introns of a gene involved in organ development that were con-
served from pufferfish to humans. Those sequences were part of larger
conserved non-protein-coding elements that—when put into cultured
human cells—acted as “cell type-specific enhancers of gene transcrip-
tion.””® In 2008, Brazilian researchers compared non-protein-coding
RNAs from introns in humans and mice. The researchers found that
not only the sequences but also the tissue-specific expression patterns
were evolutionarily conserved; they concluded thar such RNAs were
“likely to be involved in the fine tuning of gene expression regulation in
different mammalian tissues.””® And a multinational group of scientists
reported in 2009 that numerous small non-protein-coding RNAs in-
volved in gene regulation in mammals and chickens showed “evolution-
arily stable associations” with their host genes that suggested a role in

regulating the expression of those genes.”
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Short non-protein-coding RNAs are known to regulate gene ex-
pression,” and in 2004 British scientists identified such RNAs with-
in the introns of 90 protein-coding genes.” In 2005, M.LT, scientists
described short RNAs that originate within the introns of the genes
whose splicing they regulate.” In 2007, Korean biologists reported that
in humans a “majority” of short non-protein-coding RNAs originate
“within intronic regions."** One of these, according to American medical
researchers, is involved in regulating cholesterol levels.*s

As we saw in Chapter 3, messenger RNAS are translated into pro-
teins by complex molecular machines called “ribosomes,” which them-
selves are made up of proteins and long RNAs. Introns encode many
of the small RNAs essential for the processing of ribosomal RNAs, as
well as the regulatory elements associated with such RNA-coding se-
quences.*0*

Enhancers are DNA sequences involved in gene regulation thar may
be tens of thousands of nucleotides away from the genes they regulate.”
In 2007, biologists determined that an enhancer of a gene involved in
development in fishes and humans is encoded in sequences distributed
throughout the gene’s introns.”® The following year, researchers studying
a human gene involved in cartilage production likewise discovered an
enhancer in one of the gene’s introns.* In 2009, biologists reported find-
ing an enhancer in an intron of a gene involved in chloride transport,*
and in 2010 an enhancer was identified in an intron of a gene involved in
milk production.>

Chromatin—the material of chromosomes—consists of a complex
combination of DNA, RNA and proteins. If the DNA in a human cell
were straightened out it would be about 3 meters long. To be contained
within a cell, the DNA must be compacted in chromatin, and the first
level of compaction involves winding the DNA around small spools
made of proteins called “histones.” These are then stacked together to
produce the three-dimensional structure of the chromosome itself. (Fig-
ure 4.2)
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Figure 4.2 Histones and chromatin. The first level of structure in chro-
matin, with the long DNA molecule wrapped around small spools com-
posed of proteins called histones.

Chromatin organization profoundly affects gene expression.*~>’

Non-protein-coding RNAs are essential for chromatin organiza-
tion,**~** and non-protein-coding RNAs have been shown to affect gene
expression by modifying chromatin structure.***” Yet a recent study of
chromatin-associated RNAs in some human cells revealed that almost
two-thirds of them are derived from introns.”®

The timing of gene expression is crucial for a living organism, and in-
trons contain codes that affect this timing. In 2007, biologists reported
that in fruit flies the heat-sensitive splicing of an intron “is critical for
temperature-induced adjustments in the timing of evening activity.” In
2009, Chinese scientists reported that the developmental timing of a set
of cells in roundworm:s is regulated by an intronic element.®’

Yet introns can be thousands of nucleotides long, and documented
coding functions account for only a fraction of those nucleotides. Is the

remaining DNA non-functional, or might it function in some other way?
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Intron Length Might Affect Gene Expression

In 1986, British biologist David Gubb suggested that the time needed
to transcribe eukaryotic genes is a factor in regulating the quantity of
protein they produce. He proposed that the sheer length of introns
in some genes “would affect both the spatial and temporal pattern of
expression of their gene products.” In 1992, American biologist Carl
Thummel likewise argued that “the physical arrangement and lengths of
transcription units can play an important role in controlling their tim-
ing of expression.” For example, the very long introns in certain key de-
velopmental genes could delay their transcription, “consistent with the
observation that they function later in development” than genes with
shorter introns.®

In 2008, Harvard systems biologists Ian Swinburne and Pamela
Silver summarized circumstantial empirical evidence that intron length
has significant effects on the timing of transcription. “Developmentally
regulated gene networks,” they wrote, “where timing and dynamic pat-
terns of expression are critical, may be particularly sensitive to intron
delays."

So introns might have a function in gene regulation that is indepen-
dent of exact nucleotide sequence. Although this remains to be demon-
strated directly, there is already evidence that non-protein-coding DNA
might also function in other ways that are independent of the precise
order of its subunits. Chapter 7 will survey some of that evidence. First,
however, we turn to a form of so-called “junk DNA” known as pseudo-

genes.
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5.

PSEUDOGENES—NoOT So
PSEUDO AFTER ALL

IN THE 1970S, MOLECULAR BIOLOGISTS FOUND A REGION oF DNA IN

frogs that contained apparently inactive copies of a sequence that else-
where (or in other organisms) coded for protein. They called the non-
protein-coding copies “pseudogenes,” and thousands of other pseudo-
genes have since been found in humans and other eukaryotes.>* Indeed,
the mammalian genomes studied so far have almost as many pseudo-
genes as they have protein-coding genes.®

As we saw in Chapter 2, pseudogenes are popular with writers trying
to prove that Darwinian evolution is true and intelligent design is false.
Kenneth Miller called them “discarded sequences” that are “consistent
with an evolutionary explanation but inconsistent with intelligent de-
sign.”® Douglas Futuyma wrote that only Darwinian evolution “can ex-
plain why the genome is full of ‘fossil’ genes: pseudogenes that have lost
their function”—a phenomenon that he argues is “hard to reconcile with
beneficent intelligent design.”” According to Jerry Coyne, “the evolution-
ary prediction thar we'll find pseudogenes has been fulfilled—amply,”
since “our genome—and that of other species—are truly well populated
graveyards of dead genes.”

Richard Dawkins called pseudogenes “genes that once did some-
thing useful but have now been sidelined and are never transcribed or
translated,” and he concluded: “W hat pseudogenes are useful for is em-
barrassing creationists. It stretches even their creative ingenuity to make
up a convincing reason why an intelligent designer should have created
a pseudogene... unless he was deliberately setting out to fool us”® And
John Avise wrote, “pseudogenes hardly seem like genomic features that

would be designed by a wise engineer. Most of them lie scactered along
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the chromosomes like useless molecular cadavers” and “point toward the
kind of idiosyncratic tinkering for which nonsentient evolutionary pro-
cesses are notorious.”

Yet there is growing evidence that many pseudogenes are not func-

tionless, after all.

Types of Pseudogenes
PseunoGeNEs ARE divided into three categories. (1) Disabled (or unitary)
pseudogenes are single sequences that may have once coded for protein
but have apparently been inactivated by nucleotide changes or deletions.
(2) Duplicated pseudogenes are copies of still-functioning genes, though
unlike the functioning originals they have characteristics that prevent
them from encoding proteins. (3) Processed pseudogenes have sequences
similar to those of functioning genes, except that they lack promoter

sequences and are usually missing introns.! (Figure 5.1)

Figure 5.1 A processed pseudogene. (Top) Structure of an idealized eu-

karyotic gene like that shown in Figure 3.3, with a promoter (light gray

box at far left), initiation and termination sites (black boxes), exons

(white boxes) and introns (gray boxes separating exons). (Bottom) An

idealized processed pseudogene, with a protein-coding sequence similar

to the one in the gene above burt lacking a promoter and introns.

Since introns are edited out of messenger RNA sequences before
the latter are translated into proteins, the absence of introns in pro-
cessed pseudogenes suggests that they were “reverse transcribed” from
messenger RNA back into DNA—a process called “retrotransposi-
tion.”? (More about this in Chapter 6.) The majority of pseudogenes fall

into this third category, processed pseudogenes.
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Transcribed Pseudogenes

EviDENCE THAT many pseudogenes are transcribed into RNA began ac-
cumulating in the 1990s. Specific examples in humans include pseudo-
genes corresponding to genes involved in carbohydrate and lipid metabo-
lism,*-* a gene involved in regulating estrogen levels,"” a gene involved
in the process of protein synthesis,'*"” and a gene involved in muscle
movements.”® Examples in cows include pseudogenes that correspond
to a gene involved in basic metabolism'® and a gene involved in estrogen
synthesis.2” Examples in plants include pseudogenes corresponding to
protein components of ribosomes, the molecular machines that trans-
late RN As into proteins.”

Since 2000, evidence for pseudogene transcription has been accu-
mulating rapidly. In one study, biologists working with the ENCODE
Project sampled 201 pseudogenes and found that at least one-fifth of
them are transcribed in one or more tissues.” >

Some pseudogene-encoded RNAs have characteristics suggesting
that they may be capable of being translated into protein. Examples in
humans include pseudogenes corresponding to genes for a molecule in-
volved in the immune system, a neurotransmitter,”” a neurotransmitter
receptor,”® a DNA-binding protein,? and a membrane protein involved
in cell-cell communication.”

In fact, it is now known that a few pseudogene-derived RNAs actu-

ally are translated into proteins.

“Pseudogenes” That Encode Proteins
In 1988, Swiss scientists found a human gene lacking introns and con-
cluded that it was a pseudogene.” A few years later, however, American
scientists discovered that the gene encodes a messenger RNA that is
translated into protein.”
In 1991, British biologists studying an enzyme that detoxifies alco-
hol found intron-lacking genes for it in two species of fruit fly and con-

cluded that they were processed pseudogenes.” Two years later, however,
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American biologists reported that the putative pseudogenes produce a
functional protein and thus are not pseudogenes after all.**

In 1996, biologists identified a gene in fruit flies that contained pre-
mature transcription termination sites, and they proposed that it “may
be a pseudogene.”” The following year, however, other biologists report-
ed that it encodes a functional enzyme.*

In 1997, University of Michigan researchers identified a human
gene “with the typical features of a processed pseudogene.” When they
were unable to find any expression of the gene they concluded that it was,
indeed, a pseudogene.” In 2002, however, biologists at the University of
Chicago and University of Cincinnati found evidence that the gene “is
encoding a functional protein.”**

In 2000, French biologists reported that a presumed pseudogene in
cultured human melanoma cells actually produces functional protein.”
It seems that in the case of pseudogenes (with apologies to Mark Twain),
reports of their death have been greatly exaggerated.

To be sure, only a relatively small proportion of known pseudogenes
have been shown to encode proteins. But there is growing evidence that

RNAs transcribed from pseudogenes perform essential functions in the

cell.
RNA Interference

In THE 1990s, molecular biologists discovered that the antisense strands
of some pseudogenes are transcribed into RNA, and they suggested that
such RNA might play a role in regulating gene expression."*"!

Since the sequence of DNA in a processed pseudogene is very simi-
lar to the sequence of the protein-coding segments (exons) of the com-
plete gene (Figure 5.2), its RNA mirrors a messenger RNA transcribed
from the functional gene, minus its introns. So (in the absence of alter-
native splicing) the RNA transcribed from one strand of the pseudogene
is complementary to the messenger RNA transcribed from the opposite

strand of the functional gene.



5. Pseudogenes—Not So Pseudo after All + 51

SME_?I’EAND
# = =] :
e 0B TGETAGAATTE y*"/
N / CCATCTTAAL
> et - B ad |:
; ANTISENSE STRAND
CCAUCUUAAC
GGUACAAVUG
SENSE WMD
GENE ._Er& 'AC;A ” 1.
DA / T ™™ '
/ CCATEGTTAAC
ANTISENSE STRAMD

Figure 5.2 RNA interference. (Top) The double-stranded DNA of a

pseudogene, showing the complementary nucleotide sequences in the

sense and antisense strands. (Bottom) The equivalent portion of the
corresponding gene. (Middle) RNAs transcribed from the pseudogene

and the corresponding gene. (In RNA, U takes the place of T.) The two

RNAs are not completely complementary (note that they both have a

C in the fourth position from left), but they are close enough to being

complementary that they bind to each other, forming a double-stranded

RNA that interferes with the process of translation and reduces the

amount of protein produced from the gene.

The two RNAs could bind together, much as the two complemen-
tary strands of DNA bind to each other. The result would be double-
stranded RNA. But double-stranded RNA is not translated; instead,
it interferes with translation and thereby reduces gene expression.*-%
Cells make good use of RNA interference to regulate the amount of
protein they produce.

In the 1990s, biologists in England found that the expression of
a gene in the central nervous system of snails was “substantially sup-
pressed” by antisense transcripts from a corresponding pseudogene.
The pseudogene RNAs formed “duplex molecules” with the messenger

RNAs from the gene itself, leading the biologists to suggest that tran-
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scribed pseudogenes “are a potential source of a new class of regulatory
gene in the nervous system.™

A 2008 article in Nature reported that RNAs produced from pseu-
dogenes regulate gene expression in mouse eggs by “RNA interference,’
in which double-stranded RNAs “suppress specific transcripts in a se-
quence-dependent manner."” The authors of an accompanying article
concluded that their findings “indicate a function for pseudogenes in
regulating gene expression by means of the RNA interference path-
Way‘”48

RNA that regulates gene expression can also be generated from a
duplicated pseudogene (as opposed to a processed pseudogene). In 2009,
biologists reported that small antisense RNAs derived from pseudo-
genes in rice were produced in specific developmental stages or physi-
ological conditions, and they suggested that these “small interfering

RNAs" probably had important roles in regulating gene expression.*

Pseudogene Enhancement of Gene Expression
PseunoGENE-ENCODED RNA may also enbance the expression of a
protein-coding gene. In 2003, a team of Japanese and American biolo-
gists reported some experiments on the pseudogene corresponding to a
mouse gene that encodes an enzyme called Makorin-1. They found that
reducing the transcription of the pseudogene also reduced the expres-
sion of the gene itself, and they inferred thar the pseudogene-derived
RNA served to protect the Makorin-1-derived messenger RNA from
degradation.’*->

Cells contain enzymes that degrade messenger RNAs to regulate
the amount of protein transcribed from them. The longer a messenger
RNA escapes degradation, the more protein molecules can be translated
from it. The researchers in 2003 suggested that the pseudogene-derived
RNA might provide an alternate target for the enzyme(s) that would
normally degrade the Makorin-1 messenger RNA, thus allowing contin-

ued translation of the latter.
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Another possibility, suggested at the time by Harvard geneticist Jean-
nie Lee, was that the pseudogene-derived RNA functioned by blocking
a repressor of the Makorin-1 gene.” (Other biologists later challenged
the Makorin-1 pseudogene results, which remain controversial.)**-*

In 2007, European biologists reported that the expression of a plant
pseudogene increased the expression of a protein-coding gene involved
in phosphorus metabolism. They found that the pseudogene produced
an RNA that provided an alternative target for a molecule that would
normally have repressed translation of the messenger RNA from the
protein-coding gene, and they coined the term “target mimicry” to de-
scribe the process.”

In 2008, a team of Norwegian and German biologists suppressed
transcription of the pseudogene corresponding to a gene involved in
transporting molecules across membranes, and they found that the
expression of the functional gene was reduced as well. In other words,
normal expression of the protein-coding gene depended somehow on
transcription of the pseudogene. The team concluded that this provided
evidence “for a regulatory interdependence of a transcribed pseudogene
and its protein coding counterpart in the human genome,” though they
did not know the exact mechanism.”’

In 2010, American biologists reported that the expression of two
human genes is increased by transcription of their related pseudogenes.
They traced the effect to pseudogene-derived RNA transcripts that
serve as “perfect decoys” for molecules that would otherwise repress the
protein-coding genes, and they concluded that “pseudogenes have an in-

trinsic biological activity” in regulating gene expression.”*

The Vitamin C Pseudogene
ONE PARTICULAR pseudogene plays a prominent role in the arguments
of Kenneth Miller and Jerry Coyne: the vitamin C pseudogene. Vita-
min C is essential for many biochemical reactions in living cells, and
its synthesis requires four enzymes. The human genome has only three

of these; it also contains a segment of DNA very similar to the gene
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for the fourth enzyme, but this segment of DNA is not translated into
protein.*~® In other words, the human genome contains a vitamin C
pseudogene.

As we saw in Chapter 2, Miller and Coyne both argue that the vita-
min C pseudogene provides evidence for Darwinian evolution—in par-
ticular, for the common ancestry of humans and other primates—and
evidence against intelligent design or creation. The evidence is not as
straightforward as Miller and Coyne make it out to be, however, and
their argument is ultimately circular. In any case, common ancestry and
intelligent design are two different issues, and the vitamin C story would
take us on a detour from the issue of junk DNA that is the focus of this

book, so the details are omitted here and included in an appendix.

Sequence Conservation
As we saw in Chapter 3, Darwinian theory predicts that nonfunction-
al DNA will accumulate damaging mutations over time. Thus similar
(“conserved”) sequences in the non-protein-coding DNA of evolution-
arily distant organisms imply that such DNA is functional. This same
logic has been applied to pseudogenes.!

In 2003, Evgeniy Balakirev and Francisco Ayala reviewed sequence
data from humans, mice, chickens and fruit flies and reported “pseudo-
gene features that would be unexpected if pseudogenes were nonfunc-
tional sequences of genome DNA (‘junk’ DNA)." In particular, they
found that “pseudogenes are often extremely conserved,” implying that
they are subject to natural selection and not free to accumulate random
mutations. Balakirev and Ayala regarded this (along with widespread
transcription) as evidence that many pseudogenes are not functionless,
after all.®?

In 2009, Canadian biologists Amit Khachane and Paul Harrison
compared pseudogenes in humans, monkeys, mice, rats, dogs and cows
and found significant sequence similarity, implying that the pseudogenes

had been conserved by natural selection. They concluded that “through
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evolutionary analysis, we have identified candidate sequences for func-
tional human transcribed pseudogenes.” '

How odd! As we saw in Chapter 2, Kenneth Miller, Richard
Dawkins, Douglas Futuyma, Michael Shermer, Jerry Coyne and John
Avise argue that pseudogenes confirm Darwinism because they are non-
functional. But if we assume that Darwinism is true and then compare
the DNA of unrelated organisms, sequence similarities imply that many
of their pseudogenes are functional. So nonfunction supposedly implies
Darwinism, but Darwinism plus sequence conservation implies func-
tion. When it comes to conserved pseudogenes, it seems, Darwinism
saws off the very branch on which it sits.

In the next chapter, we turn to one of the most commonly cited
sources of evidence for so-called “junk DNA"—repetitive DNA.
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6.

JUMPING GENES AND
REPETITIVE DNA

ALARGE PROPORTION OF NON-PROTEIN-CODING DNA cONSISTS OF
movable and repetitive sequences. As we saw in Chapter 2, Ken-
neth Miller wrote thar “the human genome is littered” with “so many
repeated copies of pointless DNA sequences that it cannot be attributed
to anything that resembles intelligent design.” According to Richard
Dawkins, much of DNA “consists of multiple copies of junk, ‘tandem
repeats,” and other nonsense,” which “doesn’t seem to be used in the
body itself.” Francis Collins acknowledged in 2006 that some repetitive
elements may be functional, but he argued that most have no function
other than their own survival and thus provide compelling support for
Darwinian evolution. John Avise wrote that “several outlandish features
of the human genome defy notions of ID by a caring cognitive agent,” but
they are “consistent with the notion of nonsentient contrivance by evo-
lutionary forces.” For example, “the vast majority of human DNA exists
not as functional gene regions of any sort bur, instead, consists of various
classes of repetitive DNA sequences.” Yet there is growing evidence that
a great deal of repetitive DNA is transcribed into functional RNAs.

Jumping Genes
Even BeForRE Watson and Crick discovered the structure of DNA in
1953, Barbara McClintock had discovered “ jumping genes” in corn. The
varied colors of the kernels in a single ear of maize, she found, are due
to mobile genetic elements called “transposons,” which move from one
place in the genome to another.'*> Some of these are segments of DNA
that have been moved by a “cut and paste” process called “transposition.”

(Figure 6.1)
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Figure 6.1 Cut-and-paste transposition. (Top left) Double-stranded DNA
containing a simplified transposon (box). Actual transposons are much
longer. (Top right) After the transposon is cut out, the DNA is shorter.
(Bottom left) The segment of DNA into which the transposon will be
pasted, which may be on the same DNA molecule or a different one.
(Bottom right) The recipient DNA after the transposon has been pasted
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Figure 6.2 Copy-and-paste retrotransposition. (Top left) Double-stranded
DNA containing a simplified retrotransposon (box). Actual retrotrans-
posons are much longer. (Middle left) Single-stranded RNA copied
(transcribed) from the retrotransposon (with U replacing T). This RNA
is then reverse-transcribed into single-stranded DNA. (Middle right)
The nucleotides in the single-stranded DNA pair with complementary
nucleotides to make double-stranded DNA. (Bottom right) The new
double-stranded DNA is then pasted into the recipient, which may be
on the same DNA molecule or a different one. The recipient DNA is
longer after pasting, but the length of the donor DNA (Top right) has
not changed.
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Other transposons (like processed pseudogenes) use RNA as an
intermediary. In 1970, David Baltimore and Howard Temin indepen-
dently discovered that RNA sequences can be transferred to DNA in a
process called “reverse transcription.~* After an enzyme nicks the or-
ganism's DNA, the newly “reverse transcribed” DNA is then inserted
into that location in a “copy and paste” process called “retrotransposi-
tion.” (Figure 6.2) Transposons that use RNA as an intermediate are

called “retrotransposons,” and they are a major component of repetitive

DNA.

Types of Repetitive DNA
As we saw in Chapter 3, repetitive non-protein-coding DNA was dis-
covered in the 1960s.5® Repetitive DNA makes up about half of the
human genome, and about two-thirds of repetitive DNA consists of
retrotransposons that fall into two classes: Long Interspersed Nuclear
Elements (LINEs) and Short Interspersed Nuclear Elements (SINEs).”
(Table I)

TasiLe I. Some Major CompoNeNTS oF THE HuMmAN GENOME
Approximate percentages of several types of DNA in the human genome.’’

Oren ReapinG FramEes (“Genes”) 27%
Exons (Protein-coding regions) 2%
Introns (Non-protein-coding regions) 25%

RepeTITIVE NON-PROTEIN-CODING DNA 50%
LINEs 21%
SINEs 13%
Retroviral-like elements 8%
Simple sequence repeats 5%
DNA-only transposons 3%

Ot1Her Non-ProTEIN-CoDING DNA 23%

LINEs can be more than 5,000 nucleotides long, and some in-
clude DNA sequences encoding enzymes that enable them to reinsert

themselves into DNA. Many LINE:s also contain sense and antisense
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promoters. Mammalian genomes contain tens of thousands of LINEs,
which fall into several groups; the most common is designated L1.
SINEs tend to be fewer than 500 nucleotides long and depend on
other mobile genetic elements for their retrotransposition. The human
genome contains over a million of them. The most common SINEs
in primates are called Aly sequences because they are recognized by
an enzyme from the bacterium Arthrobacter luteus (which is also why
Aly, unlike the names of other repetitive DNA elements, is customarily
italicized). Alus consist of about 300 nucleotides in a characteristic se-
quence."" The mouse genome contains SINEs with different sequences,
designated B1, B2 and B4. The rat genome has a major SINE designated
ID. It may be that every mammalian species has its own repertoire of

SINEs.

Many LINEs and SINEs Are Functional

As we saw in Chapter 3, most human DNA is transcribed; this includes
repetitive DNA.>""? Such widespread transcription suggests that re-
petitive DNA might be functional. Indeed, plant molecular biologists
reported in 2000 that “retrotransposons are central players in the struc-
ture, evolution and function of plant genomes’; they “are certainly not
junk.""*

As in the case of pseudogenes, the functionality of repetitive DNA
has been inferred from evolutionary analyses. In 2006, scientists identi-
fied a family of SINEs that were “highly conserved” in mammals and
concluded that they are functional.®

In 2007, biologists in California found that “the majority of con-
served and, by extension, functional sequence in the human genome”
seems to be outside of protein-coding exons and to consist of “mobile
elements” of “clear repetitive origins.”® Biologists in New York exam-
ined SINEs in humans and mice and reported in 2009 “that Alu and
B1 elements have been selectively retained in the upstream [ahead of the
promoter] and intronic regions of genes belonging to specific functional

classes.” Furthermore, “Alu and B1 elements show similar biases in their
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distribution across functional classes,” strengthening the inference that
they serve important biological functions.”

Widespread transcription and sequence conservation are not the
only grounds for inferring the functionality of repetitive DNA. There is
also a large and growing body of experimental evidence for specific func-
tions of LINEs and SINEs, such as regulating the expression of other
RNAs and the protein-coding regions of DNA.

Some Specific Functions of LINEs and SINEs

IN MaMMALS, males have a Y chromosome and an X chromosome,
while females have two X chromosomes. In order for a female embryo

to develop normally, one of the two X chromosomes must be inactivac-
ed.”® In 2000, American biologists found evidence that X chromosomes

are enriched in L1 LINE elements, and they suggested that LINEs

are involved in the process of inactivation.”® In 2010, British research-
ers reported that X chromosome inactivation depends on non-protein-
coding RNAs that act more efficiently in L1-rich domains.” The same

year, French biologists concluded that LINEs function at two differ-
ent levels in X chromosome inactivation: First, LINE DNA produces

a re-arrangement in the chromarin that inactivates some genes; second,
RNAs transcribed from LINEs coat and silence other portions of the

chromosome.?!

In 2002, a team of American biologists reported that LINEs partici-
patein repairing DNA breaks in cultured hamster cells.2 Two members
of that team, together with some other American scientists, reported
in 2007 that human L1 sequences also function by mobilizing various
RNAs in the cell.?? The same year, British biologists showed that L1 ele-
ments are responsible for silencing a gene that is expressed in the liver in
human fetuses but not in adulrs.2*

In 2008, an Italian biologist reviewed the evidence and concluded
that human L1 “regulates fundamental biological processes.”? In 2009,
Australian scientists reported that RNA transcribed from LINEs is an

“essential structural and functional component” of “neocentromeres”2—
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features of chromosomes that will be discussed in more detail in Chap-
ter 7.

There is also abundant evidence for the functionality of SINEs. In
a few cases, the protein-coding regions of active genes consist almost
entirely of DNA sequences derived from mobile elements. Research-
ers found in 1985 that the protein-coding portion of one mouse gene
is more than 90% similar to B2.”7 In 2004, Roy Britten reported that
99% of the coding sequence of one human gene expressed in brain cells
consists of Alu sequences.”®

In 1986, Russian scientists reported that B2 elements help to regu-
late the transcription of rat ribosomal RNA, an essential part of the cel-
lular machinery that translates RNAs into proteins.” In 1999 and 2001,
American scientists found that SINE RNAs in silkworms play “a role in
the cell stress response” to heat or toxic chemicals.**' Other research-
ers reported that Bl elements provide platforms for enzymes that regu-
late gene expression by chemically modifying (though not changing the
sequence of ) certain segments of DNA.*? In 2004, American scientists
showed that a B2 element in mice regulates transcription by blocking
RNA polymerase.”**

Aly elements contain functional binding sites for transcription fac-
tors.® RNAs derived from Alu sequences repress transcription during
the cellular response to elevated temperatures.’® Alus are also involved
in the editing and alternative spicing of RNAs and in the translation
of RNAs into proteins.”~* In 2009, Colorado researchers studying the
biological functions of B2 and Alu SINEs reported that both types of
repetitive DNA are cranscribed into RNAs. The RNAs, in turn, help
to control gene expression by controlling the transcription of messenger
RNAs and by editing other RNAs. According to the researchers, “find-
ing... that these SINE-encoded RNAs indeed have biological functions
has refuted the historical notion that SINEs are merely 'junk DNA."™

SINEs can also influence transcription by affecting chromatin.
When stained with appropriate chemicals and viewed under a light mi-

croscope, chromatin exhibits banding that is characteristic of a particu-
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lar chromosome. The pattern resembles a bar code, like the lower part of
Figure 3.4, and it includes two types of bands. One (called heterochro-
matin) is tightly packed and rich in the nucleotides A and T: it also has
a low concentration of protein-coding sequences and a high density of
L1 LINEs. The other (called euchromatin) is loosely packed and rich in
the nucleotides G and C; it has a high concentration of protein-coding
sequences and a high density of SINEs such as Alus or Bls and B2s.%-%5

Swiss biologists who fed fruit flies a DNA-binding compound that
targets repetitive sequences reported in 2000 that such sequences regu-
late gene expression by maintaining chromatin integrity.*~" American
biologists studying fruit flies demonstrated that transposable elements
are responsible for maintaining “telomeres”—the repetitive sequences at
the ends of chromosomes that protect the latter from deterioration. -5

In 2004, a team of French and American scientists studying a small
fowering plant commonly called rock cress or thale cress (Arabidopsis
thaliana) reported that its chromatin structure “is determined by trans-
posable elements and related tandem repeats” that thereby contribute
to gene regulation.” This regulation is due in part to RNA interference
(Chapter 5).5

SINEs also help to regulate gene expression in mammalian develop-
ment by establishing functional chromatin domains. In 2007, biologists
reported thar tissue-specific transcription of B2s is required for gene ac-
tivation in developing mice. Their data suggested that “transcription of
interspersed repetitive sequences may represent a developmental strat-
egy for the establishment of functionally distinct domains within the
mammalian genome to control gene activation.”

In 2010, biologists in India wrote that repetitive non-protein-coding
DNA plays “a regulatory role by contributing to the packaging of the ge-
nome during cellular differentiation.”** And Japanese biologists showed
that untranscribed repeated copies of the DNA that codes for ribosomal
RNA contribute to the cohesion of duplicated chromosomes before they
separate during cell division.>®

_‘r =
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Argonaute, Piwi and RNA Silencing

In THE 19905, botanists found an Arabidopsis mutant that produces
leaves resembling the tentacles of the small octopus Argonauta argo, and
they named the mutant “argonaute.” The effect was traced to a gene
product that resembles proteins with unknown functions in animals
ranging from worms to humans5®

Biologists soon discovered that the product of the gene affected by
the argonaute mutation is involved in RNA interference. The argonaute
protein is part of an “RNA-induced silencing complex” that regulates
the expression of other genes by cutting up the messenger RNAs they
produce’™% Other components of the complex were given colorful
names such as “Dicer” and “Slicer."63-64

In 1997, biologists used transposons called P elements to produce
a mutation that abolished germline stem cell divisions in fruit flies, and
they named the affected gene “piwi” (for “P element-induced wimpy tes-
tis”).®>~% Similar genes were found in worms, humans, and plants. It
turned out that the Piwi protein is part of the RNA-induced silencing
complex.*®-70

The Argonaute and Piwi proteins find their targets with the help of
small non-protein-coding RNAs that are complementary to the target
sequences. Many of those small RNAs are derived from repetitive DNA,
including retrotransposons. This is true not only in fruit flies,””* but
also in mammals.”*75

In 2010, a team of French and American biologists reported that
Piwi-associated RNAs and proteins act together to promote the timely
decay of specific messenger RNAs in fruit fly embryos. Impairing this
function of Piwi RNAs led to defects in head development. Because the
Piwi RNAs “are produced from transposable elements,” the team con-
cluded, “this identifies a direct developmental function for transposable
elements in the regulation of gene expression.””
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Endogenous Retroviruses

MosT viruses consist of DNA surrounded by a coat of protein that
is encoded by that DNA. The virus infects a living cell by injecting its
DNA into it; the cell’s molecular machinery then makes copies of the
vital DNA and synthesizes new protein coats; the replicated viruses
are subsequently released to infect other cells. Some viruses, however,
contain RNA instead of DNA. They inject their RNA into a living cell,
and the cell then reverse transcribes the viral RNA into DNA. This
virus-encoded DNA may be inserted into the cell’s DNA, where it may
then be transcribed into new viral RNA and new protein coats to make
new viruses. Because RNA viruses are reverse transcribed inside the cell,
they are called “retroviruses.”77-7

In the early 1970, biologists studying some chicken and quail cells
that had not been infected with a particular retrovirus found thar the
cells nevertheless contained DNA sequences complementary to that vi-
russ RNA.%-8 Scientists assumed that the virus had infected the birds’
ancestors, and that the viral DNA was then passed down from genera-
tion to generation as an “endogenous retrovirus” (ERV).®2

DNA that is reverse transcribed from retroviral RNA is character-
istically flanked by sequences that are repeated hundreds or thousands
of times, called “long terminal repeats” (LTRs).#-% The LTR on one
end of an ERV is in the same orientation as the LTR on the other end;
thus endogenous retroviruses differ from DNA-only (“cut and paste”)
transposons, which are flanked by short inverted repeats.

At first glance, ERVs might seem to be a perfect example of “selfish
DNA"— molecular parasites that hitch a ride in an organism’s genome
but perform no useful functions. It turns out, however, that many ERVs
do perform useful functions. In the 1990s, French researchers reported
that the transcription of a human gene involved in the production of
blood cells* is regulated by the LTRs of an endogenous retrovirus.® A
few years later, Canadian biologists reported that the LTRs of retroviral

elements contain promoters that help to regulate the expression of hu-
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man genes involved in fat metabolism and cell signaling in the liver and
placenta.®”-%

Subsequent research showed that ERVs contain promoters thar reg-
ulate the expression of genes in mouse oocytes and early embryos®~
and in primate embryonic and blood-producing cells.”* Human ERVs
contain promoters that regulate genes involved in bicarbonate trans-
port®® as well as gene expression in the gastrointestinal tract, mammary
glands, and testes.”~* Biologists from Asia, the U.S. and Europe have
recently published additional evidence that promoters in the LTRs of
human endogenous retroviruses contribute to cell-specific and tissue-

specific gene expression.”** The best-studied example is the placenta.

ERVs and Placentas
In THE 1990s, British biologists studying the envelope protein of a hu-
man endogenous retrovirus discovered that it was both evolutionarily
conserved and abundantly expressed in cells of the placenta. They con-
cluded that the ERV has “a biological function.””

The placenta, which supplies nutrients to the embryo and serves as
the interface between it and the mother, develops from “trophoblasts”—
cells that are derived from the embryo and form a layer around it but
are not incorporated into the fetus. In order for the placenta to function
propetly, some trophoblast cells must fuse into one giant, multinucle-
ated cell, or “syncytium” (pronounced sin-SISH-um). (Figure 6.3)

In 2000, evidence suggested that the ERV envelope protein that is
highly expressed in the placenta might be involved in the fusion of tro-
phoblast cells, and the protein was named “syncytin” (pronounced sin-
SIGHT-in).1%*-1%! Subsequent research confirmed the role of syncytin in

102-104 S ome

the fusion of trophoblast cells during placental development.
women suffering from placental dysfunction were found to have reduced
levels of syncytin.'® On the other hand, people suffering from multiple
sclerosis were found to have abnormally high expression of syncytin in

cells that normally protect nerves.'*®
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Figure 6.3 Embryo implantation in mammals. (Left) The early embryo

contacts the inner wall of the uterus. (Middle) Outer cells from the em-

bryo (“trophoblasts”) migrate into the uterine lining. (Right) The tro-
phoblast cells become a “syncytium,” a single multi-nucleated cell that
facilitates the transport of nutrients from the mother to the embryo.

In 2003, a team of French biologists reported finding a second ERV
envelope protein involved in placenta development. They named it syn-
cytin-2 and renamed the first syncytin-1.11 French biologists also
discovered two additional forms of the ERV envelope protein in mice
and named them syncytin-A and syncytin-B./*1" And in 2009, French
biologists discovered another form of syncytin in rabbits.""" Surprisingly,
although all the syncytins serve similar functions, syncytin-A and syn-
cytin-B are unrelated to syncytin-1 and syncytin-2, and rabbit syncytin
is unrelated to either the mouse or the human forms.

A British virologist in 2009 noted that it used to be “an open ques-
tion” whether ERVs “simply represented junk or selfish DNA,” but he
called the work on syncytin-A and syncytin-B “compelling evidence”
that at least some ERVs are making “a specific contribution to normal
physiology.""?

In addition to the part that encodes the protein, there are non-pro-
tein-coding parts of the syncytin ERV that are functional as well. In
2004, researchers determined that the long terminal repeat (LTR) of the

ERV containing the syncytin gene contains the gene’s promoter.!*-11%
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Francis Collins and Repetitive Elements

As we saw in Chapter 2, Francis Collins claimed in his 2006 book The
Language of God that “ancient repetitive elements (AREs)” provide “com-
pelling” evidence for Darwinian evolution, “with roughly 45 percent of
the human genome made up of such flotsam and jetsam.” The term “an-
cient repetitive element” is rarely used in the scientific literature, and
Collins did not define precisely what he meant by it, but the “roughly
45 percent of the human genome” that he called repetitive “flotsam and
jetsam” presumably included LINEs, SINEs, and ERVs—which, as we
saw above, perform many biological functions.

Of course, there is much repetitive DNA for which functions have
not yet been discovered, but when Collins published his book in 2006
there was already considerable evidence for the functionality of repeti-
tive DNA. Indeed, a single review article published in 2005, titled “Why
repetitive DNA is essential to genome function,” described more than
80 known functions and cited over 200 scientific articles."'®

Collins made particular use of repetitive elements as evidence for
the common ancestry of humans and mice. “In many instances,” he
wrote, “one can identify a decapitated and utterly defunct ARE in paral-
lel positions in the human and the mouse genome.” These provide com-
pelling support for Darwinian evolution, Collins argued, “unless one is
willing to take the position that God has placed these decapitated AREs
in these precise positions to confuse and mislead us.”"’

Collins’s argument rests on the assumption that those repetitive ele-
ments (which he does not specifically identify) are nonfunctional. Yet
their similar positions in the human and mouse genomes could mean
that they are performing some function in both. Given the rate at which
functions are being discovered, Collins's assumption seems foolhardy,
and his argument could eventually collapse in the face of new scientific
discoveries.

So far we have considered functions of so-called “junk DNA” that
depend on the exact sequence of nucleotides in DNA or RNA. As we
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shall see in the next chapter, however, non-protein-coding DNA also
functions in ways that are independent of its sequence.
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7.

FUNCTIONS INDEPENDENT

OF EXACT SEQUENCE

AVERY SMALL PERCENTAGE OF OUR DNA FUNCTIONS BY ENCODING
proteins; a much larger percentage functions by encoding RNAs
with sequences that regulate gene expression and perform other roles in
cells. But some of our DNA has functions that are independent of the
exact sequence of nucleotide subunits.

Chapters 3—6 dealt mostly with sequence-dependent functions,
though there were occasional hints of sequence-independent roles. For
example, Chapter 4 cited biologists who think that introns regulate the
timing of transcription, in part, simply by their length.'~> Chapter 6 list-
ed some of the evidence that long and short repetitive elements (LINEs
and SINEs) affect the large-scale organization of chromatin, which in

turn affects gene expression.”

SROOCRCEISOONCO000RCA00000 500K e d

Figure 7.1 The hierarchical structure of the genome. (Top) The DNA mol-
ccule itself. (Middle) The chromatin (DNA, RNA, and protein) that
makes up the chromosome. (Bottom) The position of the chromosome
within the nucleus.
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The genome functions in a hierarchical fashion. The DNA molecule
is only the first level; chromatin organization is a second level; and the
position of chromosomes within the nucleus is a third level.** (Figure
7.1) As we shall see, there is evidence at all three levels that non-protein-
coding DNA performs functions that are independent of its exact se-

quence.

The First Level: The DNA Molecule

JusT as introns might regulate the timing of transcription simply by
their length, so the long stretches of non-protein-coding DNA between
genes might affect their expression. In 1997, molecular biologist Emile
Zuckerkand] emphasized that DNA may function in ways that do not
depend on its particular nucleotide sequence. “Along noncoding se-
quences,” he wrote, “nucleotides tend to fill functions collectively, rather
than individually.” Sequences that are nonfunctional at the level of indi-
vidual nucleotides may function at higher levels involving physical inter-
actions.”’

Because the distance between enhancers and promoters is a factor
in gene regulation, Zuckerkandl wrote in 2002, “genomic distance per
se—and, therefore, the mass of intervening nucleotides—can have func-
tional effects.” He concluded: “Given the scale dependence of nucleo-
tide function, large amounts of ‘junk DNA,’ contrary to common belief,
must be assumed to contribute to the complexity of gene interaction
systems and of organisms.”"" In 2007, Zuckerkandl (with Giacomo Ca-
valli) wrote that “SINEs and LINEs, which have been considered ‘junk
DNA, are among the repeat sequences that would appear liable to have
teleregulatory effects on the function of a nearby promoter, through
changes in their numbers and distribution.”?

Since enhancers can be tens of thousands of nucleotides away from
the genes they regulate, bringing together enhancers and promoters
that are on the same chromosome requires chromosome “looping.”*~"
The farther away an enhancer is from its promoter, the larger the loop

must be, and the size of a loop depends on the length of the DNA. For
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physical reasons, a loop consisting only of DNA must be at least 500
nucleotides long, while a loop consisting of chromatin (because of jts
greater stiffness) must be ar Jeast 10,000 nucleotides long"® In such cases
it is the sheer length of the DNA that matters, not whether it encodes
RNAs. .

In 2010, an international team of scientists reported thar 4 long
fon-protein-coding RNA called HOTAIR® provides 2 “scaffold” for
two molecular complexes involved in embryo development. HOTAIR
consists of 2,146 RNA subunits; 300 at one end bind to the first com-
Plex, and 646 at the other end bind to the second, The intervening non-
Protein-coding subunits (all encoded by DNA) function by tethering
the two complexes together at the proper distance from each other.20

The Second Level: Chromatin Organization
Because DNA s packaged into chromatin, and because RNA poly-
Mmerase must have access to the DNA to transcribe it, the structure of
chromatin is all-important in gene regulation. In many cases, various
proteins and RNAs mediate the attachment of RNA polymerase to the
DNA by interacting with specific sequences of nucleotides, but in some
cases a mere change in the conformation (j.e,, the three-dimensional
shape) of chromatin can activate transcription by exposing the DNA to
RNA polymerase.2!
In 2007, scientists in Massachusetts produced a genome-scale, high-
tesolution three-dimensional map of DNA and found similar confor-
mations that were independent of the underlying nucleotide sequences.
They concluded that “considerably different DNA sequences can share 2
tommon structure,” and they proposed that Some transcription factors
may be "conformation—speciﬁc. .« rather than DNA sequence-specific,”22
Two years later, scientists reported that functional non-protein-cod-
ing regions of the human genome are correlated with “local DNA topog-
raphy” that can be independent of the underlying sequence, “Although
similar sequences often adopt similar structures,” they wrote, “diver-
gent nucleotide sequences can have similar loca] structures,” suggesting
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that “they may perform similar biological functions.” The authors of the
report concluded that “some of the functional information in the non-
coding portion of the genome is conferred by DNA structure as well as
by the nucleotide sequence.””

Non-protein-coding RNAs contribute to chromatin structure. In
many cases they do this by interacting with the DNA in a sequence-
specific manner, but some RNAs may serve a mechanical role. In 2007,
Spanish molecular biologists reported a “general structural role for RNA
in eukaryotic chromatin.” They found that RNA constitutes 2%-5% of
purified chromatin and “contributes to its structural organization.”*

The clearest example of a chromatin-level function that is indepen-
dent of the exact DNA sequence is the “centromere,” a special region
on a eukaryotic chromosome that serves as the chromosome’s point of

attachment to other structures in the cell.

Centromeres
Berork A eukaryotic cell divides it makes a duplicate of each chromo-
some, and the duplicate copies of each chromosome are joined together
at their centromeres. On the outward-facing surface of each centromere
is a “kinetochore,” which provides the point of attachment for microtu-
bules that pull the duplicate chromosomes apart when the cell divides.
(Figure 7.2)

The kinetochore is not simply a point of attachment. It is a complex
structure composed of scores of different molecules, and it actively par-
ticipates in moving chromosomes apart during cell division.”"*" Yet it
can form only on the foundation provided by the centromere.

Centromeres, in turn, can form only on the foundation provided
by the chromosome. Yet centromeres are built upon long stretches of
repetitive DNA that some biologists have regarded as junk.”* Although
much of the DNA that underlies centromeres is now known to be tran-

32-51 it turns out

scribed into RNAs that perform a variety of functions,
that centromere formation is to a great extent independent of the exact

DNA sequence.
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CENTROMERES.

KINETOCHORE
MICRGTUBULES

Figure 7.2 Centromeres and kinetochores. During cell division, duplicared
chromosomes are joined by their centromeres. The gray bulge on the
outward-facing surface of each centromere is a kinetochore, the attach-
ment site for microtubules extending between the chromosome and a
pole of the cell division apparatus. As the cell divides the duplicate chro-

mosomes separate and are pulled to opposite poles by their kinetochore
microtubules.

‘The DNA sequences of centromere regions vary significantly from
species to species, though all centromeres function similarly.? If the
chromosome region containing a centromere is artificially deleted and
replaced by synthetic repetitive DNA, a functional centromere can form
again at the same site.”” Extra centromeres (called “neocentromeres”) can
also form abnormally elsewhere on a chromosome that already has one,
or on a chromosome fragment that has separated from the part bearing
a centromere.”*> It seems that centromeres (and their accompanying
kinetochores) can form at many different places on a chromosome, re-
gardless of the underlying DNA sequence. Yet the underlying chroma-
tin must have certain characteristics that make centromere formation
possible.

In the 1980s, biologists identified several proteins associated with
centromeres and called them CENPs (for CENtromere Proteins).*6-7
Subsequent research revealed that one of these, CENP-A, takes the
place of some of the histones in chromatin5*-% The incorporation of
CENP-A makes chromatin stiffer and provides a foundation for assem-
bling the other components of centromeres and kinetochores.**-%* In fact,

centromeres in all organisms are associated with CENP-A, which must
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be present for a centromere and kinetochore to form, though CENP-A
by itself is not sufficient.8-%4

The modification of chromatin by CENP-A and other centromere-
specific proteins can be passed down from generation to generation.
Indeed, the location of a centromere on a particular chromosome can
persist for thousands of generations. This sort of inheritance is called

“epigenetic,” meaning “on top of the genes,” because it does not involve
changes in the DNA sequence itself. From the perspective of the Cen-
tral Dogma that DNA sequences determine the essential features of or-
ganisms by encoding proteins, centromeres are an enigma because they
show that a cell can impose an essential but heritable structure on its
DNA that is independent of the nucleotide sequence.

Although centromeric DNA sequences can vary significantly from
species to species, there is evidence that some aspects of the DNA se-
quence are conserved.®* In humans and other primates, centromere
activity is normally associated with repeated blocks of 171 nucleotide
subunits termed alpha-satellite DNA. (As we saw in Chapter 3, re-
searchers in the 1960s discovered that a fraction of DNA consisting
of millions of short, repeated nucleotide sequences produced “satellire”
bands when DNA was centrifuged to separate it into fractions with dif-
ferent densities.) Every normal human centromere is located on alpha-
satellite DNA.-7

In 2002 and 2003, American biologists used alpha-satellite DNA
from three different sources to make human artificial chromosomes and
found that the results varied. They concluded “that centromere specifi-
cation is at least partly dependent on DNA sequence.””'7* Centromeres
in the plant Arabidopsis (Chapter 5) are based on blocks of 178 nucleo-
tide subunits with sequences that are completely different from alpha-
satellice DNA, yet they are organized in the same way.>7

But human neocentromeres form on parts of a chromosome that do
not consist of alpha-satellite DNA, though the neocentromere DNA still

has special characteristics—most notably, an unusually high proportion

of LINEs.® These retrotransposons apparently play a role in localizing
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the CENP-A that is required for the formation of the centromere and
kinetochore.””-7¢ So centromere DNA must have certain characteristics,
but it does not need to have a specific nucleotide sequence.

The Third Level: Chromosome Arrangement in the Nucleus
BeTWEEN cELL divisions, chromosomes are not randomly distributed in
the nucleus. Instead, they occupy distinct domains™-#2 that affect gene
regulation—in part, by bringing together specific regions of the chro-
mosomes and facilitating interactions among them.®-* Different cell
and tissue types in the same animal can have different three-dimension-
al patterns of chromosomes in their nuclei, which account for at least
some differences in gene expression.®-9

One notable feature of nuclear domains s their radial arrange-
ment.”' In 1998, biologists in New York reported that chromatin local-
ized to the periphery of the nucleus in yeast cells tends to be “transcrip-
tionally silent.”* In 2001, British biologists wrote that “most gene-rich
chromosomes concentrate at the centre of the nucleus, whereas the more
gene-poor chromosomes are located towards the nuclear periphery.”® In
2008, Dutch biologists reported that human chromosome domains as-
sociated with the periphery of the nucleus ‘represent a repressive chro-
matin environment.”* The same year, several teams of researchers re-
ported independently that they could suppress the expression of specific
genes by relocating them to the nuclear periphery.®>-97

These data are consistent with the observation that in most nuclei
the gene-rich euchromatin is concentrated near the center while the
gene-poor heterochromatin is situated more peripherally. Many factors
might be involved in producing this radial arrangement, though bio-
physicists have proposed that one factor may be a tendency to establish
a minimum-energy conformation thar is independent of the exact se-
quence of nucleotides 8-

Until recently, the only known exceptions to this radial arrangement
occurred in some single-celled organisms," but another newly discov-
ered exception points to an Important function of non-protein-coding
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DNA that operates at the level of nuclear organization but is unrelated

to the precise DNA sequence.

Non-Protein-Coding DNA Can Function as a Lens
TrE RETINA of the vertebrate eye contains several different kinds of light-
sensing cells. Cone cells detect colors and function best in bright light;
rod cells are more numerous and more sensitive to low light. Nocturnal
animals such as mice need to see under conditions of almost no light, so
they need exceptionally sensitive rod cells. In 1979, medical researchers
examined mouse retinas with an electron microscope and found that
the heterochromatin in cone cells was located near the periphery of the
nucleus (like most other eukaryoric cells), but in rod cells the hetero-

chromatin was concentrated in “one large, central clump.”" (Figure 7.3)

Figure 7.3 Chromatin arrangement in the nucleus. (Left) A simplified view
of the arrangement of chromatin in most eukaryotic nuclei. Gene-poor
heterochromatin (black) is on the periphery, and the gene content of the
chromatin increases toward the center, which consists of gene-rich eu-
chromatin (white). (Right) A simplified view of the inverted chromatin
arrangement found in the nuclei of rod cells in the rerinas of nocturnal
mammals. Gene-rich euchromatin is on the periphery, while gene-poor
heterochromatin is in the center. The centrally located heterochroma-
tin acts as a liquid-crystal lens that focuses the few photons available at
night onto the light-sensitive outer segments of the rod cells.

Another team of medical researchers used mice to study the generic
mutation responsible for an inherited human disease that causes nerve
degeneration.'” The team found that the mutation causes blindness in

mice by altering the arrangement of the chromatin in rod cells. Instead

of containing “a single, large clump of heterochromatin surrounded by a
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spare rim of euchromatin,” the rods cell in mutant mice “showed a dra-
matic chromatin decondensation” and “resembled cone nuclej.”*?

Clearly, the unique localization of heterochromatin in the center of
rod cell nuclei in the mouse retina is essential for normal vision in these
animals. In 2009, European scientists called the unusual pattern of cen-
trally located heterochromatin “inverted,” and they reported finding an
inverted pattern in the rod cell nuclei of various other animals that are
primarily nocturnal (including cats, rats, foxes, opossums, rabbits and
several species of bats) but not of animals that are primarily active in
daylight (such as cows, pigs, donkeys, horses, squitrels and chipmunks).
These scientists observed that the centrally located heterochromatin had
a high refractive index—a characteristic of optical lenses—and by using
a two-dimensional computer simulation they showed that a main con-
sequence of the inverted patrern was to focus light on the light-sensitive
segments of rod cells./04-1%

In 2010, molecular biologists in France reported that the organiza-
tion of the central heterochromatin in the rod nuclei of nocturnal mam-
mals is consistent with a “liquid crystal model,” and British biophysi-
cists improved upon the 2009 study by using a new computer simulation
to show that “the focusing of light by inverted nuclei” in three dimen-
sions is “at least three times as strong” as it is in two.!””

So at all three levels of the genomic hierarchy, there is evidence for
functions that are independent of the exact DNA (or RNA) sequence.
Like the evidence for sequence-dependent functions, the evidence for
sequence-independent functions is almost certain to grow as scientists
continue to expand their research horizon beyond the limits of the Cen-
tral Dogma. There is a lot more to the genome (not to mention the living
cell) than the protein-coding sequences in DNA.

Unfortunately, as we shall see in the next chapter, this fact has not

prevented some recent apologists for Darwinism from trying to breathe
new life into the myth of junk DNA.
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8.

SOME RECENT DEFENDERS
OF JUNK DNA

AWKINS, MILLER, FuTuyma, CoLrins, COYNE, AND AVISE ARE
Dnot the only biologists who still defend the notion of junk DNA.
Since 2006 a number of other biologists have risen to its defense.

As we saw in Chapter 5, a team of Japanese and American biologists
reported in 2003 that RNAs transcribed from a pseudogene increased
the expression of the corresponding gene by serving as decoys for mol-
ecules that would otherwise degrade messenger RNAs transcribed from
the gene itself.' In 2006, American biologists Todd Gray, Alison Wilson,
Patrick Fortin and Robert Nicholls published a study that they claimed
invalidated the 2003 report. If they had stopped with that claim, their
article would simply have been a normal part of the scientific enterprise,
in which all conclusions are subject to testing and, potentially, invalida-
tion. But Gray and his colleagues went much further. After pointing out
that ID advocates had written in a lay periodical that the 2003 report at-
tested to “a purpose for junk DNA” and “even intelligent design,” Gray
and his colleagues wrote: “Each of these unlikely scenarios is now shown
by our work to be incorrect.” They concluded: “Our work reestablishes
the evolutionary paradigm supported by overwhelming evidence that
mammalian pseudogenes are indeed inactive gene relics.”

Yet even if the results published by Gray and his colleagues were
valid, their conclusion would not logically follow. Invalidating a report of
one function in one pseudogene cannot exclude other possible functions
in that pseudogene, much less possible functions in other pseudogenes.
Indeed, as we saw in Chapter 5, widespread transcription and sequence
conservation imply that many pseudogenes are functional, and there

is good evidence for specific functions in several cases—including two
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cases that are very similar to the one reported in 2003.%-* The sweeping
pro-Darwin, anti-ID conclusion by Gray and his colleagues was obvi-
ously motivated by something other than evidence or logic—that is, by

something other than science.

Genomic Dark Matter

IN 2009, University of Toronto biologist Timothy Hughes and his post-
doctoral researcher Harm van Bakel published a scientific article chal-
lenging the notion that much of our DNA is transcribed into functional
RNAs. Others had already used the term “dark matter” (borrowed
from physics) to refer to non-protein-coding DNA®” and the RNAs
transcribed from it.* Hughes and van Bakel suggested that “the toral
volume of ‘dark matter’ transcription compared to the total transcrip-
tional output of the genome may be smaller than initially estimated,”
and that “the functional role of most ‘dark matter’ non-coding RNAs
remains unclear.”

In 2010, Hughes and van Bakel joined with two other University
of Toronto researchers to publish an article concluding that “most ‘dark
matter’ transcripts are associated with known genes” and that “the ge-
nome is not as pervasively transcribed as previously reported.”’ Hughes
and his colleagues thereby directly contradicted a 2007 report that the
ENCODE Project had found “convincing evidence that the genome is
pervasively transcribed, such that the majority of its bases can be found
in primary transcripts, including non-protein-coding transcripts.”"!

In a commentary based on the 2010 article by Hughes and his col-
leagues, science writer Richard Robinson concluded that their work
“shows that most dark matter transcripts are likely to be by-products
of transcription of known genes and that many of the rest of them are
likely not messages of great import, but simple background noise.”"* And
science writer Carl Zimmer reported on a blog affiliated with Discover
Magazine that Hughes and his colleagues “used new methods to survey
the RNA produced by the genome and compared their results to the

ones from older methods. They found that most of their RNA came
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from regions of the genome that are already known to be protein-coding
genes. Very lictle RNA came from elsewhere in the genome. They ar-
gue that the older methods were crude, so studies based on them were
loaded with false positives.”*

But Robinson and Zimmer should have checked the “Materials and
Methods” section of the article. Hughes and his colleagues considered
only “singleton” RNAs that “could be unequivocally mapped to unique
positions in the genome,” and they used a software program called
‘RepeatMasker” to discard the rest. They thereby biased their sample
against most transcripts from repetitive DNA. Yet as we saw in Chap-
ter 6, about half of our genome consists of repetitive DNA. Indeed, the
official description of RepeatMasker states: “On average, almost 50%
of a human genomic DNA sequence currently will be masked by the
program.”**

In the fraction they did analyze, Hughes and his colleagues based
their results “primarily on analysis of PolyA* enriched RNA"—sequenc-
es that have a long tail consisting of many repeats of the DNA subunit
containing adenine (A). Yet molecular biologists reported in 2005 that
transcripts lacking the long tail (called PolyA- sequences) are twice as
abundant in humans as PolyA* transcripts.”® So Hughes and his col-
leagues not only excluded half of the human genome with RepeatMask-
er, but they also ignored two thirds of the RNA in the remaining half. It
is no wonder that they found far fewer transcripts than have been found
by the hundreds of other scientists who have been studying the human
genome.

Ignoring their obvious methodological bias, Darwinian biologist
(and outspoken atheist) P. Z. Myers praised the work of Hughes and
his colleagues. According to Myers, “creationists” liked earlier reports of
widespread functions in non-protein-coding DNA because “they detest
the idea of junk DNA—that the gods would scatter wasteful garbage
throughout our precious genome by intent was unthinkable, so any hint
that it mighr actually do something useful is enthusiastically seized upon

as evidence of purposeful design.” Confessing that he himself falls “into




84 / Tue MyrtH oF Junk DNA /

the ‘it’s all junk’ end of the spectrum,” Myers welcomed the Toronto re-
searchers’ conclusions: “Well, score one for the more cautious scientists,
and give the creationists another big fat zero... A new paper has come
out that analyzes transcripts from the human genome using a new tech-
nique, and, uh-oh, it looks like most of the early reports of ubiquitous
transcription were wrong.” The bottom line, Myers concluded, is that
“the genome is mostly dead, transcriptionally. The junk is still junk.”¢

So Myers, like Robinson and Zimmer, did not bother to look at the
methodology used by Hughes and his colleagues—a methodology guat-
anteeing that their results would appear to support the myth of junk
DNA.

Following publication of the 2010 article by Hughes and his col-
leagues, an international team of scientists reaffirmed earlier reports
that RNAs “whose function and/or structure we do not understand (the
so called ‘dark matter’ RNAs)” can constitute the majority of nuclear
DNA-encoded, non-ribosomal RNA in a cell, and “a significant fraction
arises from numerous very long, intergenic transcribed regions.” The
team sharply criticized Hughes and his colleagues for focusing “only
on PolyA-selected RNA, a method that enriches for protein coding
RNAs and at the same time discards the vast majority of RNA prior to
analysis"—a method that is “certain to leave gaping holes in [our] under-
standing of the transcriptome.””

Despite this rebuttal of Hughes and his colleagues, Scottish evolu-
tionary biologist Mark Blaxter perpetuated the myth of junk DNA in
a December 2010 commentary in Science. Blaxter wrote: “Only 1% of
the human genome is transcribed into protein-coding messenger RNA
(mRNA) and non—protein-coding RNA (ncRNA), and DNA elements
that control the expression of genes occupy another ~0.5%, suggesting
that the remaining ‘dark genome’ is nonfunctional padding.*® Blaxter
did not cite any evidence for his 1% claim, which clearly contradicts the
findings of many genome researchers.'** Blaxter also contradicted an

essay published in Science the week before, which surveyed the work of
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some of those genome researchers and reported that “about 80% of the
cell's DNA showed signs of being transcribed into RNA."2!

The Onion Test

IN 2007, Canadian biologist T. Ryan Gregory wrote: “Some non-coding
DNA is proving to be functional, but this is still a minority of the non-
coding DNA, and there is always the issue of the onjon test when con-
sidering all non-coding DNA to be functional.”? The “onion test,” ac-
cording to Gregory, “is a simple reality check for anyone who thinks they
have come up with a universal function for non-coding DNA. Whatever
your proposed function, ask yourself this question: Can I explain why an
onion needs about five times more non-coding DNA for this function
than a human?"?

The difference between the DNA content of an onion cell and that
of a human cell is one piece of a larger puzzle called the “C-value para-
dox” or “C-value enigma.”?4-30 Biologists have long known that the DNA
content (the “C-value”) of eukaryotic cells varies by a factor of several
thousand, with no apparent correlation to organismal complexity or to
the number of protein-coding genes. There is a strong positive correla-
tion, however, between the amount of DNA and the volume of a cell and
its nucleus—which affects the rate of cell growth and division.*»32 Fur-
thermore, in mammals there is a negative correlation between genome
size and the rate of metabolism.?> Bats have very high metabolic rates
and relatively small genomes.*-* In birds, there is a negative correlation
between C-value and resting metabolic rate.’*-” In salamanders, there
is also a negative correlation between genome size and the rate of limb
regeneration.*®

Gregory has written extensively on the C-value enigma,’®* and
various hypotheses have been proposed to explain it.*~* One of those
hypotheses attempts to explain the enigma by the accumulation of
“junk DNA” or “selish DNA,” but—as Gregory himself has pointed
out—that explanation cannot make sense of the correlations noted

above.” “Under the traditional junk DNA and selfish DNA theorties,”




86 / Tue MyTh oF Junk DNA /

Gregory wrote in 2005, “the relationship between genome size and cell
size is considered purely coincidental.” Since this approach is incapable
of explaining the correlation between C-value and cell size, “the strictly
coincidental interpretation has been rejected.””

But if Gregory rejects the accumulation of “junk DNA” as an expla-
nation for the C-value enigma, why does he use the “onion test” to defend
the notion that most non-protein-coding DNA is nonfunctional? Some-
thing peculiar is going on here. Let's take a closer look at his reasoning.

First, Gregory directs his challenge to “anyone who thinks they have
come up with a universal function for non-coding DNA." Yet there
probably is no such person. As we have seen, scientists know of many
functions for non-protein-coding DNA. Nobody claims that there is “a
universal function” that applies both to mammals and to onions. Based
on the evidence, scientists have proposed that non-protein-coding in-
tronic DNA helps to regulate alternative splicing in brain cells, and that
non-protein-coding repetitive DNA plays a role in placental develop-
ment. Why should those scientists justify their proposals by referring to
onions, which have neither brains nor placentas?

Second, Gregory makes it clear that his true goal is to defend Dar-
winian evolution and attack intelligent design. One way he does this is
by misrepresenting the latter. The same year he proposed the onion test
he wrote that in order for ID to be considered scientific its proponents
must “specify the basis for assuming that all non-coding DNA must

be functional.”

But ID proponents do not assume that all non-coding
DNA must be functional. They infer that it is unlikely that most of our
DNA would be nonfunctional; therefore, scientists should continue
looking for functions.’*-*?

Gregory misrepresents not only ID but also the logic of the argu-
ment. In 2007 he wrote: “It is commonly suggested by anti-evolutionists
that recent discoveries of function in non-coding DNA support intelli-
gent design and refute ‘Darwinism.”** But Dawkins, Futuyma, Shermer,
Collins, Kitcher, Miller, Coyne, and Avise argue exactly the opposite:

They all claim that non-protein-coding DNA supports Darwinism and
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refutes intelligent design. It is their claim that is the issue here—and
‘recent discoveries of function in non-coding DNA” refue it. Gregory
stands the debate on its head.

So the onion test is a red herring. Why onion cells have five times
as much DNA as human cells is an interesting question, but it poses no
challenge to the growing evidence against the myth of junk DNA.
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9.

SUMMARY OF THE CASE FOR
FUNCTIONALITY IN JuNk DNA

Mosr OF oUR DNA DOES NOT CODE FOR PROTEINS; ON THAT, EV-

eryone agrees. The question here is whether non-protein-coding
DNA is nonfunctional “junk” that provides evidence for Darwinian
evolution and against intelligent design.

Evidence for the functionality of non-protein-coding DNA falls into
two broad categories: The first consists of evidence suggesting that such
DNA is probably functional. This evidence comes from two sources; the
first source is the transcription of most non-protein-coding DNA into
various RNAs. If only protein-coding regions of DNA were functional,
then organisms that are struggling to survive probably wouldn’t waste
precious energy transcribing non-protein-coding regions into useless
RNAGs. Yet as we saw in Chapter 3, organisms transcribe most of their
DNA into RNA, suggesting that non-protein-coding DNA is probably
functional.

A second source of evidence in the first category comes from com-
parisons of DNA sequences in different organisms. According to evo-
lutionary theory, different lineages inherit their DNA from a common
ancestor. If two lineages inherit non-protein-coding DNA that is non-
functional, it will be unaffected by natural selection and tend to accu-
mulate mutations in a random manner. Many generations later, the
non-protein-coding DNA in the two descendant lineages will be very
different. On the other hand, if the non-protein-coding DNA is func-
tional, natural selection will tend to weed our mutations. In evolution-
ary terminology, the descendants’ non-protein-coding sequences will be
“conserved.”
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Turning the logic around, evolutionary theory implies that if evo-
lutionarily divergent organisms share similar non-protein-coding DNA
sequences, those sequences are probably functional. As we have seen,
many non-protein-coding DNA sequences are conserved, suggesting
that they serve biological functions.

So in the first category, widespread transcription and sequence
conservation suggest that much “junk” DNA is probably functional,
though they do not tell us what the precise functions are. The second
broad category consists of evidence for specific biological functions of
non-protein-coding DNA. The first category was discussed in Chapter
3, and the second category was discussed in Chapters 4-7.

Chapter 3
RNAs TRANSCRIBED from non-protein-coding DNA play significant
roles in controlling whether, where, and to what extent the protein-
coding regions are transcribed. Non-protein-coding RNAs are also in-
volved in regulating the translation of RNAs into proteins. The process
by which a DNA sequence yields a functional product (such as a protein)
is called “gene expression.”

In 2006, Spanish scientists reported that non-protein-coding RNAs

“regulate virtually all aspects of the gene expression pathway, with pro-
found biological consequences.” In 2009, biologists in Japan noted that
since “research in the recent few years has identified an unexpectedly
rich variety of mechanisms by which non-coding RNAs act,” it is likely

“that we have identified probably only a few of the many potential func-
tional mechanisms” of non-protein-coding RNAs.?

Recent discoveries show that non-protein-coding RNAs are essen-
tial constituents of “paraspeckles,” domains within the nucleus that play
a role in gene expression. By binding to certain proteins, the non-pro-
tein-coding RNAs help to stabilize the structure of paraspeckles so they
can persist through cell divisions even though they are not bounded by

membranes.
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Chapter 4
GENEs 1N eukaryotes (cells with nuclei) are divided into protein-coding
“exons” and non-protein-coding “introns.” Exons and introns are both
transcribed, but the latter are then cut out and the former are spliced
together in alternative ways. As a result, a single protein-coding region of
DNA can give rise to hundreds or thousands of different proteins.

Yet introns are not just passive spacers: A team of Canadian and
British scientists studying splicing codes in mouse tissues reported in
2010 that introns are rich in splicing-factor recognition sites. It had
previously been assumed that such sites tend to be close to the affected
exons, but the team concluded that their results suggested “regularory
elements that are deeper into introns than previously appreciated.”

In humans, introns also encode a majority of the small RNAs in-
volved in the molecular machinery that translates messenger RNAs into
proteins. In addition, non-protein-coding RNAs from introns influence
gene expression by modifying chromatin—the complex combination of
DNA, RNAs and proteins that makes up chromosomes.

Chapter 5
A psEUDOGENE is a DNA sequence that appears to be an inactive copy
of a sequence that elsewhere (or in another organism) codes for protein.
But some presumed pseudogenes have turned out to produce functional
proteins, and thus are not pseudogenes at all.

Some other pseudogenes produce RNAs that suppress the expres-
sion of their corresponding functional genes. DNA consists of two
complementary strands; biologists use to think that only one (the “sense
strand”) is transcribed into RNA, while the second (“the antisense
strand”) functions only as a copying template during DNA replication.
It is now known, however, that RNAs are produced from both strands.
Thus pseudogene DNA can be transcribed into a non-protein-coding
RNA that is complementary to the protein-coding RNA from the func-
tional gene. The former can bind to the latter and thereby inactivate

it—a process known as “RNA interference.”
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Still other pseudogenes produce RNAs that increase the expression
of their corresponding functional genes. The cell contains molecules
that control the level of gene expression by degrading protein-coding
RNAs after they have been translated into protein. Although the RNA
transcribed from the pseudogene does not code for protein, it is other-
wise very similar to the RNA transcribed from the protein-coding gene.
Thus the former can take the place of the latter in the presence of RNA-
degrading molecules, leaving the protein-coding RNA free to continue
making protein. In the words of some American biologists who studied
this phenomenon, pseudogene RNAs serve as “perfect decoys.™

Chapter 6
ABouT HALF of the human genome consists of repetitive non-protein-
coding DNA. Most of this repetitive DNA consists of Long Interspersed
Nuclear Elements (“LINEs”) and Short Interspersed Nuclear Elements
("SINEs”). Some other repetitive DNA elements look as though they
were derived from RNA viruses and thus are called “endogenous retro-
viruses” (“ERVSs”"). There is growing evidence that these (and other) cate-
gories of repetitive non-protein-coding DNA perform various functions.

For example, female mammals have two X chromosomes, one of
which must be inactivated for an embryo to develop normally. In 2010,
biologists reported that LINEs function at two different levels to pro-
duce X chromosome inactivation: First, LINE DNA produces a rear-
rangement in the chromatin that inactivates some genes; second, RNAs
transcribed from LINEs coat and silence other portions of the X chro-
mosome. LINEs also participate in repairing DNA breaks, mobilizing
various other RNAs within the cell, and regulating genes thar are ex-
pressed differently in fetuses and adults.

SINEs help to regulate the transcription of DNA into RNAs, the
alternative splicing of RNAs, and the translation of RNAs into proteins.
In 2009, Colorado scientists reported evidence that “SINE-encoded
RNAs indeed have biological functions,” and they concluded that the
evidence “has refuted the historical notion that SINEs are merely ‘junk
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DNA" SINE: also influence transcription by affecting chromatin. In
2007, biologists provided evidence from mouse embryos suggesting that
tissue-specific transcription of SINEs ‘may represent a developmental
strategy for the establishment of functionally distinct domains within
the mammalian genome to control gene activation.”

ERVs help to regulate human genes involved in producing blood
cells, transporting bicarbonate, and metabolizing fat. ERVs also regu-
late gene expression in the gastrointestinal tract, mammary glands, and
testes. Probably the best-studied function of ERVs, however, is in the
placenta. When an early mammalian embryo implanes itself in the wall
of the urerus, cells from the embryo migrate into the uterine wall and
then fuse into a single multinucleated cell to facilitate rapid transfer of
nutrients from the mother to the fetus. The all-important fusion of those
cells requires an ERV-derived protein called “syncytin” (pronounced sin-
SIGHT-in). In 2009, a British scientist wrote that it used to be “an open
question” whether ERVs “simply represented junk or selfish DNA,” but
he called syncytin “compelling evidence” that at least some ERVs are
making “a specific contribution to normal physiology.”

Chapter 7
CHaPTERS 3-6 describe functions of so-called “junk DNA” that de-
pend on RNAs with sequences that regulate gene expression or perform
other important roles in living cells. There remain vast stretches of DNA
for which no sequence-dependent functions have been identified, but
some of those vast stretches have other roles.

‘The genome is hierarchical, and it functions at three levels: the DNA
molecule itself; the DNA-RNA-protein complex that makes up chro-
matin; and the three-dimensional arrangement of chromosomes in the
nucleus. At all three of these levels, DNA can function in ways that are
independent of its exact nucleotide sequence.

At the first level, some biologists have argued that DNA sequences
can affect gene expression simply by their length. Molecular biologist
Emile Zuckerkandl wrote in 2002 that “genomic distance per se—and,
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therefore, the mass of intervening nucleotides—can have functional ef-
fects.” Thus “large amounts of ‘junk DNA,’ contrary to common belief,
must be assumed to contribute to the complexity of gene interaction sys-
tems and of organisms.” For example, the sheer length of introns could
affect the rate of transcription. Length could also affect the size of loops
that enable distant parts of the DNA to interact, or the size of non-
protein-coding RNAs that tether regulatory molecules at appropriate
distances from each other.

At the second level, chromatin structure profoundly affects gene ex-
pression, but chromatin structure is in some places independent of the
underlying DNA sequence. In 2009, scientists reported that “divergent
nucleotide sequences can have similar local structures,” suggesting that

“they may perform similar biological functions.” The scientists concluded
that “some of the functional information in the non-coding portion of
the genome is conferred by DNA structure as well as by the nucleotide
sequence.”

The best-studied examples of sequence-independent chromatin
function, however, are centromeres. A centromere is a special region on
a eukaryotic chromosome that serves as the chromosome’s point of at-
tachment to other structures in the cell. The centromere also provides
the foundation for the kinetochore, a complex molecular apparatus that
moves chromosomes apart during cell division. Centromeres function
similarly in all organisms, yet the DNA sequences underlying them dif-
fer significantly. What matters is not so much the nucleotide sequence
as a set of centromere-specific molecules that the cell uses to package the
chromatin in a particular way.

At the third level, the position of a chromosome inside the nucleus
is important for gene regulation. In most cells, the gene-rich portions
of chromosomes tend to be concentrated near the center of the nucleus,
and a gene can be inactivated by artificially moving it to the periphery.
In some cases, however, the pattern is inverted: Rod cells in the retinas

of nocturnal mammals contain nuclei in which the non-protein-coding
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parts of chromosomes are concentrated near the center of the nucleus,
where they form a liquid crystal that serves to focus dim rays of light.

Chapter 8

ALTHOUGH SCIENTISTS have discovered many functions for so-called
“junk DNA,” a few biologists (in addition to those cited in Chapter 2)
have recently come to the defense of the notion. In 2007, Canadian biol-
ogist T. Ryan Gregory wrote: “Some non-coding DNA is proving to be
functional, but this is still 2 minority of the non-coding DNA, and there
is always the issue of the onion test when considering all non-coding
DNA to be functional.”® ‘The onion test, according to Gregory, “is a sim-
ple reality check for anyone who thinks they have come up with a uni-
versal function for non-coding DNA. Whatever your proposed function,
ask yourself this question: Can I explain why an onion needs about five
times more non-coding DNA for this function than a human?"!!

Yet no one claims to have come up with “a universal function for
non-coding DNA.” Instead, scientists have discovered many different
functions for non-protein-coding DNA. Those functions include regu-
lating alternative splicing in brain cells and playing an essential role in
placental development. Why should the scientists who discovered those
functions have to justify their work by referring to onions, which have
neither brains nor placentas?

In 2010, some University of Toronto researchers reported that “the
genome is not as pervasively transcribed as previously reported.”? Ac-
cording to Darwinist (and atheist) P. Z. Myers, “creationists” liked earli-
er reports of widespread functions in non-protein-coding DNA because

‘they detest the idea of junk DNA—that the gods would scatter wasteful
garbage throughout our precious genome by intent was unthinkable, so
any hint that it might actually do something useful is enthusiastically
seized upon as evidence of purposeful design.” Myers welcomed the To-
ronto researchers’ conclusions: “Well, score one for the more cautious
scientists, and give the creationists another big fat zero... A new paper
has come out that analyzes transcripts from the human genome using
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a new technique, and, uh-oh, it looks like most of the early reports of
ubiquitous transcription were wrong.” The bottom line, Myers conclud-
ed, is that “the genome is mostly dead, transcriptionally. The junk is still
junk.™?

But the Toronto researchers used methods that virtually guaran-
teed their results. They began by using a software program that excludes
most repetitive DNA (which makes up half of the human genome), then
they threw out about two-thirds of the RNAs from the remaining half.
A reburtal subsequently published by genome biologists criticized the
Toronto researchers for discarding “the vast majority of RNA prior to
analysis”—a method that is “certain to leave gaping holes in [our] under-
standing of the transcriptome.”*

Given the abundant and growing evidence for functionality in non-
protein-coding DNA, it seems that recent defenders of the myth of junk
DNA—TIike the authors cited in Chapter 2—are motivated by some-

thing other than the scientific evidence.
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published articles by over 1,000 scientists on 5 continents, but they are
just asmall sample. Anyone with a computer and an Internet connection
can go to PubMed*—a freely accessible database of scientific articles
maintained by the U. S. National Institutes of Health—and find hun-
dreds of additional articles about the functions of non-protein-coding
DNA. More are coming out every week.

Shermer and Kitcher are not scientists; perhaps they were just par-
roting what they heard from their scientific colleagues. But Shermer and
Kitcher are scholars who presumably have computers and access to the
Internet, so one might wonder why they didn't check the facts for them-
selves before buying into the myth of junk DNA.

Dawkins studied bird behavior in the 1960s, but since then he has
spent his career writing popular books and articles defending Darwin-
ism and preaching atheism. Obviously, he is out of touch with recent ge-
nomics research. Yet from 1995 to 2008 he was Professor for the Public
Understanding of Science at Oxford. As such, he should have made at
least some effort to familiarize himself with the evidence. Yet even now,
he continues to defend the myth.

Coyne and Avise are professors of genetics at major universities, so
they cannot claim ignorance of the genomic evidence without thereby
admitting negligence or incompetence. In fact, one of Coyne’s colleagues
at the University of Chicago is James Shapiro, co-author of the 2005
article cited in Chapter 6 that listed over 80 known functions for non-
protein-coding repetitive DNA.® But if Coyne and Avise were not igno-
rant of the evidence, then they misrepresented it—and they continue
to do so. Like Dawkins, Shermer and Kitcher, they have forfeited any
claim they might have had to be speaking for science.

Collins was head of the Human Genome Project from 1993 to 2007,
so even before he published his Language of God in 2006 he should have
been aware of the enormous amount of evidence being published on the
functions of non-protein-coding DNA. In Collins’s defense, however, it
should be noted that he (unlike the others) subsequently recanted his
belief in the myth of junk DNA. In 2007, he was a co-author of the EN-
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CODE Project’s landmark announcement that “the genome is pervasive-
ly transcribed.” He was also director of the National Human Genome
Research Institure, which issued a press release at the time stating that
the ENCODE Project’s announcement “challenges the long-standing
view that the human genome consists of a relatively small se of discrete
genes, along with a vast amount of so-called junk DNA that is not bio.
logically active.”” Collins then declared in an interview for Wired maga-
zine’s blog that “I've stopped using the term” junk DNA_#

In 2010 Collins published another book, The Language of Life, in
which he wrote that the “discoveries of the past decade, little known
to most of the public, have completely overturned much of what used
to be taughe in high school biology. If you thought the DNA molecule
comprised thousands of genes but far more ‘junk DNA,’ think again.”
Although he continued to maintain that our genome is “liccered with
repetitive sequences,” of which only “a small fraction” are known to be
useful, Collins acknowledged that “some DNA we used ro call * junk’ is

Indeed, he concluded, “only about 1.5 percent of the human genome
is involved in coding for protein,” but “that doesn’t mean the rest is ‘junk
DNA. A number of exciting new discoveries about the human genome
should remind us not to become complacent in our understanding of
this marvelous instruction book. For instance, it has recently become
clear that there is a whole family of RNA molecules that do not code
for protein. These so-called non-coding RNAs are capable of carrying
out a host of important functions, including modifying the efﬁciency
by which other RNAs are translated. In addition, our understanding of
how genes are regulated is undergoing dramaric revision, as the signals
embedded in the DNA molecule and the proteins that bind to them are
rapidly being elucidated. The complexity of this network of regulatory
information is truly mind-blowing."0

Apparently, however, Collins’s followers have not gotten the memo.
In 2007, Collins founded The BioLogos Foundation to promote his view

that “once life arose, the Process of evolution and natural selection per-
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mitted the development of biological diversity and complexity over very
long periods of time. Once evolution got under way, no special super-
natural intervention was required.””! When he was appointed Director
of the U. S. National Institutes of Health in 2009, Collins handed over
the leadership of the foundation to biologist Darrel Falk and science and
religion scholar Karl Giberson,'? both of whom still rely on junk DNA
to argue against intelligent design.

In March 2010, after claiming (falsely, as we saw in Chapter 8) that
ID “predicts that the DNA in the human genome (and other organisms)
is fully functional,” Falk wrote that although “plenty of magnificent
‘sense’ is scattered throughout the genome, coding for absolutely marvel-
ous things,” yet “this still doesn't negate the fact that almost certainly
much, if not most, of the DNA plays no role.””’ The same month, Gib-
erson wrote, “If we say that an intelligent agent has produced certain
strings of DNA,” then “what about DNA strings that look like gibber-
ish? Why did our intelligent agent produce an information-rich string
and sandwich it between two pieces of nonsense?”** If Collins has repu-
diated the myth of junk DNA, why do his followers at The BioLogos

Foundation continue to promote it?

How Darwinists Might Respond
AvrrHoucH THE tide of evidence is running against the myth of junk
DNA, some biologists (as we saw in Chapter 8) have made scientific
claims that seem at first glance to support it. Now, in response to this
book, some Darwinists might fall back on a tactic they used a few years
ago—one that is based on misrepresentation and intimidation.

The National Center for Science Education (NCSE) is a pro-
Darwin lobby group that aggressively opposes creationism, intelligent
design, and even scientific criticisms of Darwinism in biology class-
rooms. In 2002, the pro-ID Discovery Institute published summaries
of 44 articles in scientific journals and books that “represent dissent-
ing viewpoints that challenge one or another aspect of neo-Darwinism

(the prevailing theory of evolution taught in biology textbooks), discuss
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problems that evolutionary theory faces, or suggest important new lines
of evidence tha biology must consider when explaining origins.”* The
NCSE then contacted the authors of the articles to ask whether they
“considered their work to provide scientific evidence for intelligent design”
or “considered their work to provide scientific evidence against evolu-
tion.16-17

Of course, the Discovery Institute never claimed that the 44 ar-
ticles provided “scientific evidence for intelligent design” or “scientific
evidence against evolution” (which, as we saw in Chapter 1, can mean
many things). Nevertheless, the NCSE's misleading questionnaire
evoked angry responses from some of the articles’ authors, who were
understandably indignant at the suggestion that they were pro-ID or
anti-evolution.’®

It’s possible that the NCSE or others might resort to the same de-
ceptive and intimidating tactic again in response to this book. So I want
to make myself very clear: I am not claiming that the authors of articles
[ cite in this book on the functions of non-protein-coding DNA are
pro-ID or anti-evolution. I argue only tha their work provides evidence
against the notion that most of our DNA is “junk.”

Theology Masquerading as Science?

APART FROM the growing evidence for functions in non-protein-DNA,
there is another problem with the arguments of Dawkins, Miller, Fu-
tuyma, Shermer, Collins, Kitcher, Coyne and Avise. In the books cited
above, all eight of these authors rely on speculations about why a creator
or designer would or would not have done certain things.

Dawkins and Collins (and Coyne, in his discussion of the vitamin
C pseudogene; see the Appendix) explicitly mention a “Creator.” Miller,
Futuyma, Shermer and Coyne refer to a “designer” (whom Futuyma
also calls “God”). Kitcher mentions an “Intelligence” whom ID commits
to “a whimsical tolerance of bungled designs,” and Avise refers to a “wise
engineer” and a “caring cognitive agent.” Regardless of the exact words

they use, all eight authors speculate on the motives of this entity.
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Intelligent design does not rely on such speculations. According
to ID, it is possible to infer from evidence in nature that some features
of the world, and of living things, are better explained by an intelligent
cause than by unguided natural processes. If the evidence shows that a
feature has characteristics (such as specified or irreducible complexity)
that in our experience invariably originate in intelligence, then a design
inference is warranted. Although design implies a designer—an intel-
ligent agent—ID does not tell us whether the designer is “beneficent,”

“wise,” “caring,” or “whimsical"—much less a Creator (which classically
means a supernatural being who creates from nothing).

Normally, science tests theories against evidence from nature. Why
are these eight supposed spokesmen for science defending Darwinism
with speculations about the motives of a designer? Actually, they are fol-
lowing in the footsteps of Charles Darwin himself. He called The Origin
of Species “one long argument,”® and it took this general form: The facts
of nature are “inexplicable on the theory of creation,” but make sense on
his theory of descent with modification.?**! Yet there is something odd
about this manner of reasoning. Would a geologist argue for continental
drift by asking, “Why, on the theory of creation, should the eastern con-
tour of the Americas resemble the western contour of Europe and Af
rica?” Or would a physicist argue for a theory of gravity on the grounds
that the fall of an apple is “inexplicable on the theory of creation?”

In 1979, Georgia State University historian Neal C. Gillespie noted
that The Origin of Species was “significantly dependent on theology” for
the force of its argument. “Darwin’s theological defense of descent with
modification” rested on his conception of the creator, and The Origin of
Species “not only has numerous references to such a creator, but theo-
logical arguments based on such a conception had some importance in
its overall logic."””* According to biophysicist Cornelius G. Hunter, the
essence of Darwin’s “one long argument” was that “evolution is true be-
cause divine creation is false.” Darwin started with an idea of “how God

would go about creating the world” and found that it did not match the
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facts of nature, “but the mismatch depends every bit as much on the
theology as on the science.””

Philosopher of biology Paul A. Nelson has observed that “the use by
many biologists and philosophers of theological arguments for evolution”
is a “remarkable bur little studied aspect of current evolutionary theo-
ry.”?* Historian of science Gregory Radick summarizes the Darwinists’
principal argument as follows: “No Designer worth His salt would have
created” the features that we actually find in nature. “It would be hard to
exaggerate the importance of this argument,” Radick wrote, “from Dar-
win’s day to our own, as a means of disqualifying the Designer explana-
tion and making room for Darwinian descent with modification.””*~%

Do arguments based on speculations about a creator or designer
have a legitimate place in science? Not according to Canadian biologist
Steven Scadding, who once wrote that although he accepted evolution-
ary theory, he objected to defending it on the grounds that a creator
would or would not do certain things. “Whatever the validity of this
theological claim,” Scadding concluded, “it certainly cannot be defended
as a scientific statement, and thus should be given no place in a scientific

discussion of evolution.”?®

The Logic of the Argument
Ir wE ignore their theological speculations, we can state the argument of
our eight authors in the following simplified form:
+  If most human DNA is junk, then Darwinism is true and ID

is false;
+  Most human DNA is junk;
+ Therefore Darwinism is true and ID is false.

By the rules of classical logic, affirming the antecedent (“most hu-
man DNA is junk”) establishes the truth of the consequent (“Darwin-
ism is true and ID is false”). So if it were true that most human DNA
is junk, this argument would logically establish the truth of Darwinism
and the falsity of ID. It is not true, however, that most human DNA is
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junk. In light of the evidence, the argument of our eight authors logically
tells us nothing about the truth or falsity of Darwinism or ID. All it tells
us is that the writers have put their faith in a failed argument.

It would not help their argument to point out (correctly) that there
is still much of our DNA for which no function is known, and that some
of this might indeed turn out to be “junk.” Saying that some of our DNA
might be junk is very different from claiming that most of our DNA is
junk—and that the latter provides evidence for Darwinism and against
ID. Indeed, holding out for the nonfunctionality of large amounts of our
DNA hardly seems like a promising strategy, given the rate at which new
functions are being reported in the scientific literature. Junk DNA ad-
vocates have to retreat every time a new function is found. In effect, they
are relying on an argument from ignorance—a sort of “Darwin of the

Gaps"—that becomes less tenable with each new scientific discovery.”’

Can the Genome Support a Design Inference?
Tue MyTH of junk DNA is effectively dead. But most of the scientists
whose work helped to bury it are not advocates of intelligent design, and
refuting the myth of junk DNA is not the same as arguing that ID is
true. So the question remains: Can recent genome evidence lead to an
inference of design?

In 1994 Kenneth Miller wrote: “If the DNA of a human being or
any other organism resembled a carefully constructed computer pro-
gram, with neatly arranged and logically structured modules each writ-
ten to fulfill a specific function, the evidence of intelligent design would
be overwhelming.”® Only a year later, computer programmer and Mi-
crosoft chairman Bill Gates wrote: “DNA is like a computer program
but far, far more advanced than any software ever created.”

In 2004, ID theorist Stephen C. Meyer expanded upon Gates's
statement. “Like meaningful sentences or lines of computer code,” Mey-
er wrote, “genes and proteins are also specified with respect to function.
Just as the meaning of a sentence depends upon the specific arrangement

of the letters in a sentence, so too does the function of a gene sequence
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depend upon the specific arrangement of the nucleotide bases in a gene.”
DNA thereby “conveys information.” Meyer expanded this argument
further in his 2009 book Signature in the Cell?®
As we have seen, however, there is growing evidence that protein-
coding genes are not the only parts of DNA thar function by virtue of
specific nucleotide sequences. Much of what used to be considered junk
also carries sequence-dependent biological information. As design theo-
rist William A. Dembski wrote in 2004: “For years now evolutionary
biologists have told us that the bulk of genomes is junk and thar this is
due to the sloppiness of the evolutionary process. That is now changing,
For instance, researchers at the University of California at San Diego
are finding that long stretches of seemingly barren DNA sequences may
form a new class of noncoding RNA genes scattered, perhaps densely,
throughout animal genomes. Design theorists should be at the forefront
in unpacking the information contained within biological systems.”*
Information theorists have written extensively about sequence-de-
pendent information in linear DNA sequences.”" Yet sequence-depen-
dent biological information is not straightforwardly linear. Since a single
protein-coding segment of DNA can be transcribed from multiple sites,
and both the sense and antisense strands can be transcribed (Figure
3.6), some genes contain multiple codes. In 2007, an international team
of genome researchers identified 40 human genes that probably have
“overlapping coding regions,” a feature that the researchers concluded “is
nearly impossible by chance.”*® The same year, Israeli scientists noted
that although many regulatory elements reside in non-protein-coding
regions of the genome, genes also carry—in addition to the code for a
protein—"parallel codes” that include “binding sequences for regulatory
and structural proteins, signals for splicing, and RNA secondary struc-
ture.” The Israeli scientists concluded that the specification of amino ac-
ids by three-nucleotide “codons” in DNA is “nearly optimal for allowing
additional information within protein-coding sequences.”*’
Commenting on the Israelis’ work, American scientists noted that

embedding multiple codes in a single gene is like “sending secret mes-
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sages that are camouflaged’ in unsuspicious looking communications
(steganography)”—a form of cryptography. The simultaneous commu-
nication of two written messages, one of which is embedded in the other,
“is similar to that of providing a template for an amino acid sequence
together with noncoding information in a nucleotide sequence."’
Three years earlier, Dembski had listed “biosteganography” as one
possible source of evidence for intelligent design in biological systems.
“If these systems are designed,” he wrote in 2004, “we can expect the in-
formation to be densely packed and multilayered.” Thus “dense, multi-
layered embedding of information is a prediction of intelligent design."
In 2010, biologists reported the embedding of complex information pro-
cessing networks—a characteristic of very large scale integrated comput-
er circuits—in the nervous systems of both humans and roundworms.*
Not all biological information is sequence-dependent. As we saw
in Chapter 7, the genome functions at three levels (the DNA molecule,
the organization of chromatin, and the position of chromosomes within
the nucleus). At all three levels, there is evidence for functions that are
independent of the specific nucleotide sequence. Do we need a broader
concept of biological information to understand sequence-independent
functions? And might those functions support a design inference?
Genome researcher Richard von Sternberg thinks so. He has ana-
lyzed the genome-as-computer metaphor in the light of recent evidence
and concluded that we need a new model of the genome that goes far
beyond the limitations of the Central Dogma and neo-Darwinian the-

#-4% Sternberg gives several reasons for this. First, the information

ory.
carried by nucleotide sequences—both protein-coding and non-protein-
coding—is bidirectional, multilayered, and interleaved, rather than sim-
ply linear. Second, repetitive elements format and punctuate the genome
at different scales, producing a multidimensional filing system.* Third,
cells can write codes onto non-protein-coding DNA, as they do in the
case of centromeres—so the phenotype is not reducible to the genotype.

Thus the Central Dogma (“DNA makes RNA makes protein makes

us”) is untenable. The genome is actually a multilevel computational de-
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vice in which many of the operations occur as interactions among com-
ponents—whar Sternberg calls “metaprogramming.” And contrary to
neo-Darwinism, the DNA sequence is not simply a linear code that can
be mutated indefinitely to generate new information. Instead, it is highly
specified to function as one component of a multidimensional system.
Sternberg argues that intelligent design suggests the following hy-
pothesis: The organization of DNA strings along the genome is opti-
mized for the establishment of multidimensional codes at all scales, and
each species has a unique and elaborately ordered arrangement of chro-
mosome regions that maximizes the information its genome can carry.
"The hypothesis is scientific, because it entails two predictions that can
be empirically falsified: The first is that the genome of one species can-
not be transformed into the genome of another species by random re-ar-
rangements, since this would compromise the formatting, indexing, and
punctuation of DNA files. The second is that any observed chromosome
changes that result in normal fitness will be those that maintain genomic

optimization.

Where Do We Go From Here?

SCIENTISTS MAKE progress by testing hypotheses against the evidence.
But when scientists ignore the evidence and cling to a hypothesis for
philosophical or theological reasons, the hypothesis becomes a myth.
Junk DNA is such a myth, and it’s time to leave it behind—along with
other discarded myths from the past.

As recent discoveries have demonstrated, we are just beginning to
unravel the mysteries of the genome. Indeed, the same can be said of liv-
ing organisms in general. But assuming that any feature of an organism
has no function discourages further investigation. In this respect, the
myth of junk DNA has been a science-stopper.

Not any more. For scientists willing to follow the evidence wherever

it leads, these are exciting times.



108 / Tue Mvro or Junk DNA 7



APPENDIX:
THE VITAMIN C PSEUDOGENE

VITAMIN C (ASCORBIC ACID) IS ESSENTIAL FOR MANY BIOCHEMICAL
reactions in living cells. Yet we are unable to synthesize it in our
bodies, so we need to supplement our diets with it. Guinea pigs, chim-
panzees and several species of monkeys are also unable to synthesize
their own vitamin C;'2 so are some (but not all) species of bats,™> some
(but not all) species of birds,**-” and some (but not all) species of fish-
=

Vitamin C synthesis requires four enzymes, of which we have three;
our cells also contain a segment of DNA very similar to the gene for
the fourth enzyme, L-gulonolactone y-oxidase (abbreviated GULO or
GLO), but this segment of DNA is not translated into protein."-!! In
other words, the human genome includes a vitamin C pseudogene, GLO.
(Gene names and abbreviations are customarily italicized, while the cor-
responding proteins are not.)

As we saw in Chapter 2, Brown University biologist Kenneth R.
Miller and University of Chicago geneticist Jerry A. Coyne have argued
that the GLO pseudogene provides evidence for Darwinian evolution—
in particular, for the common ancestry of humans and other primates—

and evidence against intelligent design or creation.

Kenneth Miller’s Argument
‘I THE designer wanted us to be dependent on vitamin C,” wrote Miller
in 2008, “why didn't he just leave out the GLO gene from the plan for our
genome? Why is its corpse still there?” Miller concedes that proponents
of intelligent design could argue that the designer originally gave us a
functional GLO gene, but it was later inactivated by mutations; the in-
active pseudogene would then have been inherited by all living humans

from their common ancestor.!?
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“But in that simple conclusion lies the undoing of any claim for our
separate ancestry as a species,” Miller continued, because humans are
not the only species in which the GLO gene is broken. A vitamin C
pseudogene is also found in “a certain group of primates, the very ones
that happen to be our closest evolutionary relatives. Orangutans, goril-
las, and chimps require vitamin C, as do some other primates, such as
macaques. But more distantly related primates, including those known
as prosimians, have fully functional GLO genes. That means that the
common ancestor in which the capacity to make vitamin C was origi-
nally lost wasn't human, but a primate—an ancestor that, according to
the advocates of intelligent design, we're not supposed to have.”"?

Yet intelligent design and common ancestry are two different issues.
Major ID proponents pointed this out before Miller wrote his book.'*-#
Indeed, Lehigh University biochemist and prominent ID advocate Mi-
chael J. Behe wrote in 1996 that “the simplest possible design scenario
posits a single cell—formed billions of years ago—that already con-
tained all information to produce descendant organisms.”® As we saw
in Chapter 1, intelligent design states that we can infer from evidence in
nature that some features of the world, and of living things, are better ex-
plained by an intelligent cause than by unguided natural processes. Al-
though some ID proponents (including me) question universal common
ancestry on empirical grounds (as do some evolutionary biologists),?-!
intelligent design is not necessarily inconsistent with common ancestry.

In addition to mischaracterizing ID, Miller went well beyond the
published scientific evidence available at the time. For example, as of
2008 (when Miller’s book appeared), there were no published data on
the gorilla’s need for dietary vitamin C.? Indeed, the most authorita-
tive review of the vitamin C requirements of non-human primates, pub-
lished by the U. S. National Academy of Sciences in 2003, did not even
mention gorillas.”? Furthermore, when Miller published his book the se-
quencing of the gorilla genome had not been completed, and no vitamin

C pseudogene had been reported.” It wasn't until October 2010 that a
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sequence was published for a gorilla vitamin C pseudogene.® For Miller,

apparently, it was conclusion first and evidence later.

Jerry Coyne’s Argument

In 2009, University of Chicago geneticist Jerry A. Coyne also argued
that the vitamin C pseudogene provides evidence for common ancestry.
He began by pointing out that the GLO pseudogene “doesn’t work be-
cause a single nucleotide in the gene’s DNA sequence is missing. And it’s
exactly the same nucleotide missing in other primates. This shows that
the mutation thar destroyed our ability to make vitamin C was present
in the ancestor of all primates, and was passed on to its descendants.
The inactivation of GLO in guinea pigs happened independently, since it
involves different mutations.”?

Coyne then argued that this is evidence against creation by design.
“If you believe that primates and guinea pigs were specially created,” he
wrote, “these facts don't make any sense. Why would a creator put a
pathway for making vitamin C in all these species, and then inactivate
it? Wouldn't it be easier simply to omit the whole pathway from the be-
ginning? Why would the same inactivating mechanism be present in all
primates, and a different one in guinea pigs? Why would the sequences
of the dead gene exactly mirror the pattern of resemblance predicted
from the known ancestry of these species?”2

Yet other aspects of the genome do not mirror the partern Coyne
predicted. For example, the human Y chromosome (which determines
male sexual characteristics) contains about 60 million nucleotide sub-
units. If humans and chimps were recently descended from a common
ancestor, one would expect their Y chromosomes to be very similar.
Genome researchers recently reported, however, that the male-specific
portions of the human and chimp Y chromosomes “differ radically in
sequence structure and gene content.”” If similarities in the vitamin C
pseudogene are evidence for common ancestry, then differences in the Y

chromosome are presumably evidence against i,
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Furthermore, Coyne’s argument—like Miller's—went well beyond
the scientific evidence. For example, Coyne claimed that “all primates”
not only need vitamin C in their diets, but also have “the same inactivat-
ing mechanism”—namely, a single missing nucleotide. Yet prosimians
(the lemurs and lorises) are primates that synthesize their own vitamin
C, as Miller pointed out. And the need for dietary vitamin C has been
established for only nine of the over 260 known species of monkeys.>**?*
It is quite possible that some—or even many—monkeys can make their
own vitamin C. After scientists reported in 1976 that 34 of the over 800
known species of bats lacked the ability to make their own vitamin C,*
it was assumed for decades that all bats were alike in this respect—yet
scientists recently discovered that some bats (not included in the original
study) can make their own vitamin C.?

So Coyne didn't have the evidence to justify his claim that all pri-
mates need vitamin C in their diets, and he was even less justified in
claiming that they are all missing the same nucleotide in their GLO gene.
In fact, the only primates for which GLO pseudogene sequences have
been published are rhesus macaques, orangutans, chimpanzees, humans,
and (more recently) gorillas.> * Furthermore, the inactivation of the
GLO gene might have been due to something other than the deletion
of a single nucleotide. The same scientists who first detected the missing
nucleotide in 1999* concluded in 2003 that “it is not possible at present
to decide what was the primary change responsible for the functional

loss of the gene.”

Assumptions Masquerading as Evidence?
In ApDITION to going well beyond the scientific evidence, the vitamin C
arguments of Miller and Coyne rely on speculations about the motives
of the designer or creator that have no legitimate place in natural science.
As we saw in Chapter 10, such speculations are common in Darwin’s
writing and the literature defending his theory. But the normal practice
in science is to test hypotheses against evidence from nature, not specu-

lations based on theological assumptions.
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Central to the vitamin C arguments of Miller and Coyne is their
assumption that the GLO pseudogene is completely nonfunctional. T
be sure, there is general agreement that the pseudogene does not pro-
duce a functional enzyme, but this does not necessarily mean thar it is
completely withour function, Indeed, as we saw in Chapter 5, there is

assumption that the GLO pseudogene is completely nonfunctional, In
fact, they cannot. The strongest statement that could be warranted by
the evidence would be that we do not currently know of 2 function for
the vitamin C pseudogene,

ties in primate vitamin C pseudogenes suggest functionality rather than
common ancestry?

The difference is that the organisms analyzed by Balakirey and
Ayala (humans, mice, chickens and fruit flies) and Khachane and Har-
rison (humans, monkeys, mice, rats, dogs and cows)—unlike humans
and chimps—are not thought to share a recent common ancestor. In
other words, if organisms are not though to be closely related through
common descent, then pseudogene similarities imply function, but if or-
ganisms are though to be closely related through common descent, then
pseudogene similarities imply that they are closely related through com-
mon descent. The second form (used by Miller and Coyne) is a circular
argument, because the conclusion is already stated in the premises.
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To break the circle, Miller and Coyne would either have to establish

the recent common ancestry of humans and chimps on other grounds
(burt then, why bother invoking the vitamin C pseudogene at all?), or
they would first have to establish that the vitamin C pseudogene has no
function whatsoever (but this is impossible). So their argument not only
fails to refute ID, but it also fails to establish that humans and chimps
are descended from a common ancestor.
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GLOSSARY

Adenine: One of the four bases in the nucl

eotides in DNA and RNA.

Alu sequence: A retrotransposon in the SINE family,
first identified with an enzyme from the bacter
Alus are the most common SINEs in primates.

so named because it was
ium Arthrobacter luteus,

Amino acid: A molecule with an amine group (NH
group (COOH) at the other, and a side group t
other amino acids. Protejns consist of chains of
amine group of one combines with the carboxy]

amino acids are known to be encoded by DNA
living things,

,) at one end, a carboxyl
hat distinguishes it from
amino acids in which the

Ancient repetitive elements:

A term that rarely occurs in the scientific litera-
ture but is used by Franci

s Collins to refer to repetitive DNA.

takes the place of some of the hi
tural foundation for the centromere.

Chromatin; The combination of DNA,
chromosome., It includes histones,
the DNA molecule is wound.

proteins and RNA that makes up a
special protein spools around which

Chromosome: A microscopic thread-

like structure in living cells that consists
of chromatin,

Chromosome loop: A segment of chromatin that loops out from the body of
the chromosome so thar two distant parts of the DNA (such as an en-
hancer and promoter) can interact directly with each other a¢ the ends of
the loop.

Codon: A sequence of three adjacent nucleotides in DNA that specifies an
amino acid in a protein or

ignals a ribosome to stop translation.
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Cone cell: A photoreceptor cell in the retina that is involved in color percep-
tion and functions best in relatively bright light.

Conserved sequences: DNA or RNA sequences that are similar in different
organisms. According to evolutionary theory, if two lineages diverge from
a common ancestor that possesses DNA sequences that are nonfunction—
al, those sequences will accumulate mutations that render them different
(“divergent”) in the two descendant lineages. But if the original sequences
are functional, then natural selection will tend to weed out mutations, and
the corresponding sequences in the two descendant lineages will remain
similar (“conserved”).

Creationism: The religious view that the world was divinely created. In the
modern controversies over Darwinian evolution it takes two general
forms: young-Earth creationism and old-Earth creationism. After the
first edition of The Origin of Species, Darwin added the statement that life
was “originally breathed by the Creator into a few forms or into one,” so
broadly speaking Darwin might be called a creationist. But he believed
that the evolution of living things after their initial creation could be ex-
plained without God's further involvement, and “creationist” is often used
to describe someone who rejects this aspect of Darwin's view.

C-value paradox: Also known as the C-value enigma, this refers to the fact
that the DNA content (the “C-value”) of eukaryotic cells varies by a factor
of several thousand, with no apparent correlation to organismal complex-
ity or to the number of protein-coding segments (“genes”).

Cytosine: One of the four bases in the nucleotides in DNA and RNA.

Dark matter: A term borrowed from physics, used in some junk DNA argu-
ments to mean non-protein-coding DNA or RNA.

Darwinism: The theory of biological evolution according to which all living
things have descended with modification from one or a few common an-
cestors by unguided processes—primarily random variations and natural
selection. (As used in this book, “Darwinism” includes “neo-Darwinism.”)

DNA: DeoxyriboNucleic Acid, which consists of nucleotides containing one
of four bases (adenine, cytosine, guanine and thymine). In living cells,
DNA occurs as a double helix composed of two complementary strands;
during replication the two strands separate and serve as templates for the
synthesis of new strands.

ENCODE Project: ENCyclopedia Of DNA Elements, a project of the U.S.
National Institutes of Health to identify all the functional elements in the
human genome.




Euchromatin: A Ioosely Packed form, of chromatip, rich in protein-coding
A sequences,

in the history of ife ("macroevolurfon’
of Macroevolution,

Exon: A protefn«.:oding Segment of 4 oPen reading frame in DNA, Exons

Gene: Originaﬂy, an abstraction denoring the carrier of 2 Mendelia, trait;
ater, the part of 5 chmmosome Carrying 5 Mendelfan trait; Japer still, 4

D
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Gene expression: The process in which the DNA sequence of an open reading
frame encodes the synthesis of an RNA and/or protein. Expression can
be regulated to produce varying amounts of the resulting RNA or protein.

Genome: Commonly used to mean the entirety of an organism’s DNA, in-
cluding the non-protein-coding portions.

Genotype: The set of an organism'’s genes—the protein-coding regions of its
DNA. To be distinguished from “phenotype,” the organism’s anatomy,
physiology and behavior.

GLO: L-GulonoLactone Oxidase (also abbreviated GULO), an enzyme that
catalyzes the last step in the biosynthesis of ascorbic acid (vitamin C).

Guanine: One of the four bases in the nucleotides in DNA and RNA.

Heterochromatin: A tightly packed form of chromatin, poor in protein-cod-
ing DNA sequences but rich in non-protein-coding DNA.

Histones: Special proteins in the nuclei of eukaryotic cells that serve as spools
around which DNA is wound in chromatin.

Homology: Originally, similarity of the structure and position of anatomical
features in different organisms (such as bones in the forelimbs of verte-
brates). Pre-Darwin biologists attributed homology to construction on
a common design, but Darwin attributed it to inheritance from a com-
mon ancestor. Darwin’s followers re-defined homology to mean similarity
due to common ancestry, but the original meaning is still used, leading to
ambiguity. The ambiguity persists in modern molecular biology, where
homology can mean both similarity of nucleotide or amino acid sequence
and similarity due to common ancestry.

Initiation sequence: A DINA sequence that signals the beginning of an open

reading frame, where RNA polymerase starts transcribing DNA into
RNA.

ID: Intelligent design, the idea that it is possible to infer from evidence in nature
that some features of the world and/or living things are better explained
by an intelligent cause than by unguided natural processes. Though often
confused with them, ID is not the same as creationism or natural theology.

Intron: A non-protein-coding segment of an open reading frame in DNA. In-
trons are transcribed into RNA burt removed before the RNA is translat-
ed into protein—though they contain codes that affect alternative splicing
of the exons.

Inverted nucleus: A nucleus in which heterochromatin (normally locared at
the periphery) is concentrated in the center. The centrally located hetero-
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chromatin in the rod cells of a nocturnal animal serves as a lens to focus
scarce rays of lighr.

Jumping gene: A segment of DNA that can move from one place to another in
the genome. Such mobile genetic elements are called “transposons.”

Junk DNA: DNA that is thought to perform no function in a living cell. Peo-
ple who assume that the only essential function of DNA is to code for
proteins regard non-protein-coding DNA (about 98% of the human ge-
nome) as junk.

Kinetochore: A complex molecular structure that forms on a centromere and
participates actively in moving chromosomes to the daughter cells during
the process of cell division.

LINE: Long Interspersed Nuclear Element, a retrotransposon and one type
of repetitive DNA. LINE: tend to be more than 5,000 nucleotides long
and include a DNA sequence encoding an enzyme that enables them
to reinsert themselves into DNA. Mammalian genomes contain tens of
thousands of LINEs that fall into several groups; the most common of
these is called L1.

LTR: Long Terminal Repeat, a sequence that flanks an endogenous retrovirus
and is repeated hundreds or thousands of times,

Macroevolution: Large-scale changes in living things, such as the origin of
new species, organs and body plans.

Mendelian genetics: The theory proposed by Gregor Mendel that the features
of living things are determined by discrete heritable factors that were later
called “genes.”

Microevolution: Minor changes within existing species.

Microtubules: Microscopic tubules within eukaryotic cells that serve as struc-
tural supports and tracks for intracellular transport. Microtubules also
move chromosomes during cell division.

Natural theology: A discipline that infers the existence and attributes of God
from evidence in nature. Not to be confused with creationism or intel-
ligent design.

NCSE: National Center for Science Education, a California-based organiza-
tion dedicated (in its own words) “to keeping evolution in the science class-
room and creationism out.” By “evolution,” the NCSE means Darwinism,
and by “creationism,” it means intelligent design as well as all forms of
creationism. The NCSE also opposes the inclusion of evidence-based
criticisms of Darwinian theory in science classes.
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Neocentromere: An extra centromere that forms abnormally, either else-
where on a chromosome that already has one, or on a chromosome frag-
ment that has separated from the part bearing a normal centromere.

Neo-Darwinism: Darwinian theory combined with Mendelian and molecu-
lar genetics. Mendelian traits are carried by “genes” that program embryo
development, and genes are equated with DNA sequences. Natural selec-
tion produces changes in gene frequencies (i.e., the relative proportions
of variant DNA sequences), and new variations originate through genetic
mutations (i.e., changes in DNA sequences due to replication errors or
recombination).

Nucleotide: A subunit of the nucleic acids DNA and RNA. DNA consists of
nucleotides containing the four bases adenine (A), thymine (T), cytosine
(C), and guanine (G). RNA contains A, C, and G, but uracil (U) takes
the place of thymine (T). RNAs may also contain other nucleotides in
addition to these four.

Open reading frame: A segment of DNA that can be transcribed into RNA.
All protein-coding genes are open reading frames—but not all open read-
ing frames are genes, since their RNAs might not be translated into pro-
teins.

Onion test: A challenge posed by biologist T. Ryan Gregory to anyone who
proposes a universal function for non-protein-coding DNA. The chal-
lenge is to explain why an onion cell has five times as much non-protein-
coding DNA as a human cell—an example of the C-value paradox.

Paraspeckle: A compartment in the nucleus that functions in gene regulation
and is dependent for its stability on non-protein-coding RNAs.

Phenotype: The observable characteristics of an organism, including its devel-
opment, anatomy, physiology and behavior.

Poly-A tail: A long tail attached to some RNASs that consists of many repeats
of the nucleotide containing adenine (A) and is involved in the stability
and translation of the RNA.

Primate: An omnivorous mammal with inward-closing fingers, fingernails,
opposable thumbs, and a relatively large brain, belonging to a biological
order that includes lemurs, monkeys, apes and humans.

Prokaryote: A cell without a membrane-bound nucleus, as in bacteria.

Promoter: A DNA sequence that provides a site for the attachment of RNA
polymerase, which can then transcribe the nearby DNA into RNA.

Protein: A molecule consisting of a linear chain of amino acids that folds into
a characteristic three-dimensional shape.
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Retrotransposon: A mobile genetic element (transposon) that uses RNA a5
an intermediate in whar amounts to a “copy and Paste” process. The DNA
element s firse transcribed into RNA, then an enzyme called reverse trap.
scriptase copies the RNA sequence back into DNA that j inserted into 5
different place in the genome,

Reverse transcription: A process in which the nucleotide sequence in a strand
of RNA is copied into DNA; catalyzed by an enzyme called reverse trap.
scriptase,

Ribonucleoprotein; A combination of one or more RNAs and proteins, such
as a ribosome. Other ribop ucleoproteins occur elsewhere in the cell, such
as paraspeckles,

Ribosome: A large complex assemblage of RNAs and Proteins that translates
the nucleotide sequence of an RNA molecyle Into an amino acid sequence
in a protein,

RNA: RiboNucleic Acid, which consists of four principal nucleotides (adenine,
cytosine, guanine and uracil) and a number of less common nucleotides,
RNA is normally single-stranded; some RNAs serve a5 templates for pro-

tein synthesis, but most RNAs perform 2 variety of other functions in
the cell.

RNA interference: A process in which 5 fon-protein-coding RNA reduces
the expression of 4 gene by binding to—and thereby inactivating— the
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protein-coding RNA derived from that gene. RNA interference is one
type of RNA silencing.

RNA polymerase: A large enzyme that synthesizes RNA with a sequence
that matches a DNA template in the process of transcription.

RNA silencing: A process in which a non-protein-coding RNA reduces the
expression of a gene. The most common form of RNA silencing is RNA
interference, but silencing can also occur through the action of RNA-
induced silencing complexes that cut up RNAs that might otherwise be
translated into proteins.

Rod cell: A cell in the retina that is more sensitive to light than a cone cell and
functions mainly in peripheral and night vision.

Satellite DNA: A fraction of DNA consisting of millions of short, repeated
nucleotide sequences that produce “satellite” bands when DNA is centri-
fuged to separate it into fractions with different densities. Every normal
human centromere is located on satellice DNA.

Selfish DNA: Junk DNA that appears to serve no other function than its own
survival and persists as a parasite in its host cell.

Sequence Hypothesis: As formulated by Francis Crick, the idea that the
specificity of a segment of DNA is expressed solely by the sequence of
bases, and this sequence is a simple code for the amino acid sequence of a
particular protein.

SINE: Short Interspersed Nuclear Element, a retrotransposon and one type
of repetitive DNA. SINE:s tend to be less than 500 nucleotides long and
depend on other mobile genetic elements for their retrotransposition. The

most common SINEs in primates are called Alus; rodent genomes con-
tain different SINE:s called Bl and B2.

Splicing: The process in which the exons in an RNA transcript are put back
together after the introns are cut out. In alternative splicing, some exons
may be omitted while others may be duplicated.

Syncytin: A protein derived from an endogenous retrovirus that plays an es-
sential role in placenta development by contributing to the fusion of tro-
phoblasts.

Tandem repeat: A form of repetitive DNA in which (usually short) sequences
of nucleotides are repeated adjacent to each other. Satellite DNA consists
of tandem repeats.

Target mimicry: A phenomenon in which a non-protein-coding RNA in-
creases the expression of a gene by taking the place of that gene’s protein-
coding RNA in the process of RNA degradation.
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Telomere: A segment of repetitive DNA ar the end of a chromosome that pro-
tects the latter from degradation.

Termination sequence: A DNA sequence that signals the end of an open
reading frame and Stops transcription into RNA.

Thymine: One of the four bases in the nucleorides in DNA; in RNA it is re-
placed by uracil (U).

Transcription: A process that uses a DNA Sequence as a template to synthe-
size (“transcribe”) an RNA molecule (“transcript”) with 2 matching se-
quence—except that uracil takes the place of thymine in the RNA.

Transcriptome: The entirety of an organism’s RNA.

Translation: The process b which a ribosome converts the nucleotide se-
P Y
quence of a messenger RNA into the amino acid sequence of 2 protein.

Transposon: A mobile genetic element (known colloquially as 2 “ Jjumping
gene”) that can move from one place in the genome to another, in whar
amounts to a “cut and paste” process.

Trophoblasts: Cells thar are detived from a mammalian embryo and form a
layer around it but are not incorporated into the ferys. Instead, they be-
come part of the placenta, which supplies nutrients to the embryo and
serves as the interface between it and the mother. In order for che placenta
to function properly, some trophoblast cells must fuse into one giant, mul-
tinucleated cell (a “syncytium”) called a “syncytiotrophoblast.”

Uracil: The base in a nucleotide that takes the place of thymine in RNA.

X & Y chromosomes: Sex-determining chromosomes. In most mammals,
each egg carries an X chromosome while each Sperm carries either an X
or a Y. If the egg is fertilized by a sperm carrying a Y chromosome the
offspring is male (XY); if the egg is fertilized by a sperm carrying an X
chromosome the offspring is female (XX). In order for the female to de-
velop normally, one of its two X chromosomes must be inactivated.
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