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PREFACE

This book constitutes an in-depth treatment of the subject of multicomponent
distillation. It begins with first principles and goes to the frontiers of the subject.
Each topic is introduced in an elementary and fundamental manner which makes
the book suitable for the undergraduate student, the graduate student, and the
practicing engineer. The subject matter is presented in the order of increasing
difficulty and complexity.

The gap between the treatment of binary and multicomponent mixtures is
closed in Chap. 1. This chapter is initiated by presenting the fundamental
relationships and techniques needed for making bubble-point and dew-point
calculations, and it is concluded by the presentation of techniques for solving
a variety of special types of problems such as the separation of a multicomponent
mixture by a single-stage flash process and the separation of a multicomponent
mixture by use of multiple stages at the operating condition of total reflux.

In Chaps. 2 through 5, the theta methods and variations of the Newton-
Raphson method are applied to all types of single columns and systems of
columns in the service of separating both ideal and nonideal solutions. Applica-
tions of the techniques presented in Chaps. 2 through 5 to systems of azeotropic
and extractive distillation columns are presented in Chap. 6. An extension of
these same techniques as required for the solution of problems involving energy
exchange between recycle streams is presented in Chap. 7. Special types of
separations wherein the distillation process is accompanied by chemical reactions
are treated in Chap. 8.

In Chap. 9, all of the techniques developed in Chaps. 1 through 8 are brought
to bear in the design and operation of conventional and complex distillation
columns. To complete the in-depth treatment of multicomponent distillation,
the special topics of total reflux, minimum reflux, design of valve and sieve
trays, plate efficiencies, design of packed columns, thermodynamic relationships,
and selected numerical methods are presented in Chaps. 10 through 15. A Solu-
tions Manual may be obtained (without cost) by Faculty members by writing
directly to me or to McGraw-Hill.

xiii
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CHAPTER

ONE

INTRODUCTION TO
THE FUNDAMENTALS OF DISTILLATION

In this chapter, the fundamental principles and relationships involved in making
multicomponent distillation calculations are developed from first principles. To
enhance the visualization of the application of the fundamental principles to this
separation process, a variety of special cases are considered which include the
determination of bubble-point and dew-point temperatures, single-stage flash sep-
arations, multiple-stage separation of binary mixtures, and multiple-stage sepa-
ration of multicomponent mixtures at the operating conditions of total reflux.
The general objective of distillation is the separation of compounds that
have different vapor pressures at any given temperature. The word distillation as
used herein refers to the physical separation of a mixture into two or more

fractions that have different boiling points. e

+"If a liquid mixture of two volatile materials is heated, the vapor that comes
off will have a higher concentration of the lower boiling material than the liquid
from which it was evolved. Conversely, if a warm vapor is cooled, the higher
boiling material has a tendency to condense in a greater proportion than the
lower boiling material. The early distillers of alcohol for beverages applied these
fundamental prirciples. Although distillation was known and practiced in an-
tiquity and a commercial still had been developed by Coffey in 1832, the theory of
distillation was not studied until the work of Sorel'* in 1893. Other early wor-
kers were Lofd Rayleigh'! and Lewis.® Present-day technology has permitted
the large-scale separation by distillation of ethylbenzene and p-xylene, which
have only a 3.9°F difference in boiling points (Ref. 1).

>
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i Clear or
fvopor-free liquid

Figure 1-1 Interior of a column equipped with sieve trays.

A distillation column consists of a space for contacting vapor and liquid
streams for the purpose of effecting mass transfer between the two phases.
Although the contacting of two phases is generally effected by a series of plates
(or trays), packed columns are becoming more widely used as discussed in
Chap. 13. However, in the development of the fundamentals of the various calcu-
lational procedures in this and subsequent chapters, it is supposed that the
column is equipped with plates.

In normal operation, there is a certain amount of liquid on each plate, and
some arrangement is made for ascending vapors to pass through the liquid and
make contact with it. The descending liquid flows down from the plate above
through a downcomer, across the next plate, and then over a weir and into
another downcomer to the next lower plate as shown in Fig. 1-1. For many
years, bubble caps were used for contacting the vapor with the liquid. A variety

N _of designs of bubble caps are shown in Fig. 1-2. These contacting devices pro-
mote the production of small bubbles of vapor with relatively large surface areas.

Over the past 20 years, most of the bubble-cap trays have been replaced by
other types of contacting devices. New columns are usually equipped with either
valve trays (see Fig. 1-3) or sievé’ Zr{gis_ (see Fig. 1-1), sometimes called perforated
trays. In valve trays, the valve opens wider as the vapor velocity increases and
closes as the vapor velocity decreases. This feature of opening and closing allows
the valve to remain immersed in liquid and thereby preserve a liquid seal over
wide ranges of liquid and vapor flow rates. 02

Distillation columns have been built as high as 338 feet. Diameters as large
as 50 feet have been used. Operating pressures for distillation columns have been
reported which range from 15 mmHg to 500 Ib/in? abs. A typical commercial in-
stallation is shown in Fig. 1-4. i
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i
Figure 1-3 Portion of a Glitsch V-1 ballast tray. (By courtesy of Glitsch, Inc.)
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.
i
i
i
!

Figure 1-4 Typical view of distillation columns at the Gulf refinery at Alliance, Louisiana. (By courtesy
Gulf Oil Corporation and Glitsch. | nc.)
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As indicated in Fig. 1-5, the overhead vapor V,, upon leaving the top plate,
enters the condenser where it is either partially or totally condensed. The liquid
formed is collected in an accumulator from which the liquid stream L, (called
reflux) and the top product stream D (called the distillate) are withdrawn. When
the overhead vapor V, is totally condensed to the liquid state and the distillate D
is withdrawn as a liquid, the condenser is called a total condenser. If V, is
partially condensed to the liquid state to provide the reflux L, and the distillate
D is withdrawn as a vapor, the condenser is called a partial condenser. The

Qc

Condenser

-

Accumulator DXpj
A=t
=L X (Distillate)

Ly xqi

- Veyj+,i JLexji
o
Ly
.
j=f=1
FXj } Vr *L'

(Feed) *Vs |'-s

j=f (Feed plate)

by,

VsYj+1,i [LsXsi
ST

it
i=N-1
Q Reboiler
i=N
] Bxg _

Figure 1-5 Sketch of a conventional column in which the total-flow rates are constant within the
rectifying and stripping sections.
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amount of liquid reflux is commonly expressed in terms of the reflux ratio, L, /D.
Although the internal liquid-to-vapor ratio L/V is sometimes referred to as the
internal reflux ratio, the term reflux ratio will be reserved herein to mean L,/D.

The liquid that leaves the bottom plate of the column enters the reboiler,
where it is partially vaporized. The vapor produced is allowed to flow back up
through the column, and the liquid is withdrawn from the reboiler and called the
bottoms or bottom product B. In practice, the reboiler is generally located ex-
ternally from the column.

1-1 FUNDAMENTAL PRINCIPLES INVOLVED
IN DISTILLATION

To compute the composition of the top product D and the bottom product B
which may be expected by use of a given distillation column operated at a given
set of conditions, it is necessary to obtain a solution to equations of the follow-

ing types:

1. Equilibrium relationships

2. Component-material balances
3. Total-material balances

4. Energy balances

Consider first the subject of equilibrium relationships.

Physical Equilibrium

A two-phase mixture is said to be in physical equilibrium if the following condi-
tions are satisfied (Ref. 3).

1. The temperature T" of the vapor phase is equal to the temperature

T*" of the liquid phase.
2. The total pressure P' throughout the vapor phase is equal to the

total pressure P” throughout the liquid phase. (1-1)
3. The terdency of each component to escape from the liquid phase to

the vapor phase is exactly equal to its tendency to escape from the

vapor phase to the liquid phase.

In the following analysis it is supposed that a state of equilibrium exists,
T"=T“=T, P"= P'= P, and the escaping tendencies are equal.

Now consider the special case where the third condition may be represented
by Raoult’s law

Py, = P;x; (1-2)
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where x; and y; are the mole fractions of component i in the liquid and vapor
phases, respectively, and P; is the vapor pressure of pure component i at the
temperature T of the system.

The separation of a binary mixture by distillation may be represented in
two-dimensional space while n-dimensional space is required to represent the
separation of a multicomponent mixture (i > 2). The graphical method proposed
by McCabe and Thiele® for the solution of problems involving binary mixtures
is presented in a subsequent section. The McCabe-Thiele method makes use of
an equilibrium curve which may be obtained from the *boiling-point diagram.”

Construction and Interpretation of the Boiling-Point Diagram
for Binary Mixtures

When a state of equilibrium exists between a vapor and a liquid phase composed
of two components A and B, the system is described by the following set of
independent equations

Py,=P,x,
Equilibrium Pyp= Pgxy
relationships - (1-3)

XA+xB=1

g
where it is understood that Raoult’s law is obeyed. Since the vapor pressures P 4
and Py depend upon T alone, Eq. (1-3) consists of four equations in six un-
knowns. Thus, to obtain a solution to this set of equations, two variables must be
fixed. [Observe that this result is in agreement with the Gibbs phase rule:
P+ ¥ = c + 2. For the above case, the number of phases 2 = 2, the number of
components ¢ = 2, and thus the number of degrees of freedom ¥~ =2, that is,
the number of variables which must be fixed is equal to 2.] In the construction of
the boiling-point diagram for a binary mixture, the total pressure P is fixed and
a solution is obtained for each of several temperatures lying between the boiling-
point temperature T, of pure 4 and the boiling-point temperature Ty of pure B
at the total pressure P. That is, when T = T, P, = P and when T = Tj, Pg=P.
The solution of the set of equations [Eq. (1-3)] for x, in terms of P4, P,
and P is effected as follows. Addition of the first two equations followed by the
elimination of the sum of the y’s by use of the third expression yields

P=P,x,+ Ppxy (1-4)

Elimination of x, by use of the fourth equation of the set given by Eq. (1-3)
followed by rearrangement of the result so obtained yields

x=t=Fs (1-5)
PA—PB
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Tg P=1atm
Vapor
Toho - p F
e
=3 . .
8 T ~ Vapor D Liquid E
] 2f -
a
€
T
[t
Liquid
-t - —-

00 x5 Xy X4 Y2 Y1 1.0

Mole fraction of A

Figure 1-6 The boiling-point diagram.

From the definition of a mole fraction (0 < x, < 1), Eq. (1-5) has a meaningful
solution at a given P for every T lying between the boiling-point temperatures
T, and Ty of pure A and pure B, respectively. After x, has been computed by use
of Eq. (1-5) at the specified P and T, the corresponding value of y, which is in
equilibrium with the value of x, so obtained is computed by use of the first
expression of Eq. (1-3), namely,

Ya= (%)XA (1-6)
By plotting T versus x, and T versus Y, the lower and upper curves, respec-
tively, of Fig. 1-6 are typical of those obtained when comprnent 4 is more
volatile than B. Component 4 is said to be more volatile than component B, if
for all T in the closed interval T, < T < T, the vapor pressure of A4 is greater
than the vapor pressure of B, that is, P, > P,. The horizontal lines such as CE
that join equilibrium_pairs (x, y), computed at a given T and P by use of
Egs. (1-5) and (1-6), are commonly called tie lines.

Example 1-1 (Taken from Ref. 6 by courtesy Instrument Society of America).
By use of the following vapor pressures for benzene and toluene [taken
from The Chemical Engineer’s Handbook, 2d ed., J. H. Perry (ed.) McGraw-
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Hill, New York, 1941], compute the three equilibrium pairs (x, y) on a
boiling-point diagram which correspond to the temperatures T = 80.02°C,
T = 100°C, and T = 110.4°C. The total pressure is fixed at P = 1 atm.
Given:

Temperature P, (benzene) P (toluene)

(°C) (mmHg) (mmHg)
80.02 760 300.0
840 852 3330
880 957 379.5
920 1078 4320
96.0 1204 492.5

1000 1344 559.0

1040 1495 625.5

108.0 1659 704.5+

1104 1748 760.0

t In the more recent editions, the vapor pressure
of 704.5 mm for toluene at 108°C is inaccurately listed
as 740.5 or 741 mm.

SorutioN At T = 80.02°C, P, = 760, Py = 300, and P = 760. Then Eq. (1-5)

gives

= P—Py 760—300
A" P,— Py 760 —300

1
Thus

Ya=—5x4=1

P

Therefore at the temperature T = 80.02°C, the curves T versus x, and T
versus y, coincide at (1, 80.02).
At T =1104°C, P, = 1748, P5= 760, and P = 760. Then by Eq. (1-5)

760 — 760

4= T8 =760~ °
and thus
1748
= |— = 0
o= (a0 J0)-
Hence, the curves T versus x4 and T versus y , again coincide at the point (0,
110.4).

At any temperature between T, and Tg, say T = 100°C, the calculations
are carried out as follows

760 — 559 201

= 1344 _559 ~ 785 ~ 026

Xa
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and

1344
= |—— J(0. =0.453
va= (70 J0259)
These results give the point (0.256, 100) on the T versus x , curve and the
point (0.453, 100) on the T versus y , curve. Other points on these curves for
temperatures lying between T, and Ty are located in the same manner.

A boiling-point diagram is a most convenient aid in the visualization of
phase behavior. For definiteness, suppose P is fixed at 1 atm. Consider first the
case of the liquid mixture of 4 and B at a temperature Ty, at a pressure of 1 atm,
and with the composition x, = x;, Xz = 1 — x,. As indicated by Fig. 1-6, such a
mixture is in the single-phase region. Suppose the pressure is held fixed at 1 atm
throughout the course of the following changes. First, suppose the mixture is
heated to the temperature T,. At this temperature, the first evidence of a vapor
phase, a “bubble of vapor,” may be observed. The temperature T, is called the
bubble-point temperature of a liquid with the composition x,. The mole fraction
of A in the vapor in equilibrium with this liquid is seen to be y1- As the mixture
is heated from T, to T,. vaporization continues. Since A has a greater escaping
tendency than B, the liquid becomes leaner in 4 (x, < x,). The relative amounts
of A and B vaporized also depend on their relative amounts in the liquid phase.
As the liquid phase becomes richer in B, the vapor phase also becomes richer in
B (y, < y,). Point D (the intersection of the horizontal line passing through T,
and the vertical line passing through x,) is seen to lie in the two-phase region. As
outlined in Prob. 1-22. it can be shown that the ratio of the moles of vapor to
the moles of liquid formed from a feed of composition x, at T, is equal to the
ratio of CD/DE. Also, note that all initial liquid mixtures (at the temperature T)
with the mole fraction of A lying between x, and y, will have the same equilib-
rium composition (x,. v,) at the temperature T, and pressure P = 1 atm. If the
particular mixture x, = x, at T, is heated until point F is reached, the equili-
brium mixture (x3, y3) at Ty is obtained. The temperature T; is called the dew-
point temperature. At F. the last point in the two-phase region, all of the liquid is
vaporized with the exception of, say, one drop. Thus, the dew-point temperature
is seen to be that temperature at which the first drop of liquid is formed when a
vapor with the composition y; = x, is cooled from a temperature greater than
its dew-point temperature to its dew-point temperature, T;.

Generalized Equilibrium Relationships

Unfortunately, the phase behavior of many mixtures is not adequately described
by Raoult’s law. A more precise statement of the third condition cf Eq. (1-1) is
that the partial molar-free energy of each component in the vapor phase is equal
to its partial molar-free energy in the liquid phase (see Chap. 14). From this
condition the following alternative but equivalent statement may be deduced

jiy=f!' (1'7)
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where f! and '} are the fugacities of component i in the vapor and liquid phases
respectively, evaluated at the compositions of the respective phases and at the p
and T of the system. Equation (1-7) may be restated in the following equivalent
form

v STye= vl S (1-8)

where [, ¥ = fugacities of pure component i in the liquid and vapor states,

respectively, evaluated at the total pressure P and temperature T
of the system

X;, y; = mole fractions of component i in the liquid and vapor phases,
respectively

-, y¢ = activity coefficients of component i in the liquid and vapor
phases, respectively. y- = y4(P, T, xy, ..., x.); y{ =y/(P, T, yi,
ERRE] yc)

If it may be assumed that the vapor forms an ideal solution, then y} = 1 for each
i, and Eq. (1-8) reduces to
yi = yKix; (1-9)

where K; = fl/f}, the ideal solution K value. The expression given by Eq. (1-9)
is recognized as one form of Henry’s law. If the liquid phase also forms an ideal
solution (/- = 1 for all i), then Eq. (1-9) reduces to

yi=Kx; (1'10)

In some of the literature, the activity coefficients y! and - are absorbed in K;,
that is, the product y*K;/y! is called K; and an equation of the form of Eq. (1-10)
is obtained which is applicable to systems described by Eq. (1-8).

If the effect of total pressure on the liquid fugacity is negligible in the
neighborhood of the vapor pressure of pure component i, then

I (1-11)

=t

P, T

=ft

P, T

pPi, T

where P; is the vapor pressure of pure component i at the temperature T. If in
addition to the assumptions required to obtain Egs. (1-10) and (1-11), one also
assumes that the vapor phase obeys the perfect gas law (Pv= RT), then
Eq. (1-10) reduces to Raoult’s law, Eq. (1-2).

Determination of the Bubble-Point and Dew-Point Temperatures
of Multicomponent Mixtures

In the interest of simplicity, the equilibrium relationship given by Eq. (1-10) is
used in the following developments. The state of equilibrium for a two-phase
(vapor and liquid) system is described by the following equations where any
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number of components ¢ are distributed between the two phases

yi=K;x;

Equilibrium < Yyi=1 (i=1,2..,¢) (1-12)

relationships

Since K; is a function of the total pressure P and the temperature T
[Ki= K{P, T)], it is evident that the expressions represented by Eq. (1-12) con-
sists of ¢ + 2 equations in 2¢ + 2 unknowns. Thus, to obtain a solution to these
equations, ¢ variables must be fixed.

For the particular case where ¢ — 1 values of x; and the total pressure P are
fixed, the temperature T required to satisfy these equations is called the bubble-
point temperature. The cth mole fraction may be found by use of the (c — 1) fixed
values of x; and the last expression given by Eq. (1-12). When the first expression
is summed over all components and the sum of the yi’s eliminated by use of the
second expression given by Eq. (i-12), the following result is obtained

Y Kix; =1 (1-13)
i=1

Equation (1-13) consists of one equation in one unknown, the temperature. The
form of the implicit function K(T) generally requires that the solution of
Eq. (1-13) for the bubble-point temperature be effected by a trial-and-error
procedure. Of the many numerical methods for solving such a problem, only
Newton’s method?® 5 is presented. In the application of this method, it is con-
venient to restate Eq. (1-13) in functional form as follows

()= ¥ Kixi— 1 (1-14)

Thus, the bubble-point temperature is that T that makes f(T)=0. In the solu-
tion of this problem by use of Newton’s method, an expression for f*(T) is
needed. Term-by-term differentiation of Eq. (1-14) yields

<

(e © . 4K
S(1)= i; XigT (1-15)

Newton’s method is initiated by the selection of an assumed value for T, say T,.
Then the values of f(T,) and f '(T,) are determined. The improved value of T,
denoted by T, ., is found by application of Newton’s formula (see Prob. 1-6)

T,

_ . f(T) .
ver =T~ e (1-16)

The value so obtained for T,,, becomes the assumed value for the next trial.
This procedure is repeated until | f(t)| is less than some small preassigned
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positive number .

[(T)=

Observe that when the T has been found that makes
0, each term K;x; of the summation in Eq. (1-14) is equal to y;. In

illustrative Example 1-2 as well as those which follow, synthetic functions for the
K values and the enthalpies were selected in order to keep the arithmetic simple.

Example 1-2 (a) If for a three-component mixture, the following informa-
tion is available, compute the bubble-point temperature at the specified
pressure of P =1 atm by use of Newton's method. Take the first assumed
value of T, to be equal to 100°F.

(b) Find the composition of the vapor in equilibrium with the liquid

K, =C,exp (—E;/T), T in °R

Component C; E; X;
1 4 x 10%/P+ 4.6447 x 10° 1/3
2 8 x 103/P 46447 x 10° 1/3
3 12 x 10%/P 46447 x 103 13
+ P is in atm.

SoLuTION (a) The formula for f*(T) which is needed in Newton’s method is

obtained as follows

df (T) dK 2 - l./l E,
dT ,-Z id T ; (Tz )
= Z (Kixi)(Ei/Tz)
i=1
Trial 1. Assume T = 100°F = 560°R
K; @ S60°R

Component and 1 atm K;x; E,/T? (Kix;(E,/T?)
1 1 1/3 00148 0.00493

2 2 2/3 0.0148 0.00986

3 3 3/3 00148 00148

6/3=2 0.0296
Thus

f(560)=iK,-x,.—1=2—1=1

Sf'(560) = Z x, dT

= 0.0296
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Then

f(Tl) 1 o
=T =Fm) =% ~ 0296

Trial 2. Assume T = 526°R

K; @ 526°R
Component and | atm K;x; E,/T? (K;x;WE./T?)
1 0.585 0.195 00168  0.00328
2 1.170 0390 00168  0.00655
3 1.755 0.585 00168  0.00993

1.170 00197

Thus
f(526)=1.17—-1=0.17
S'(526) = 0.0197
Then
0.17)
T = - = 17.4°R
3= 526 (0.0197) 3

Trial 3. Assume T =5174°R and repeat the steps shown above. Tjie
results so obtained are as follows

f(517.4) = 1.0102 — 1 = 00102
/'(517.4) = 00175
Then
(0.0102)
(0.0175)
Trial 4. Assume T = 516.8°R -~
f(516.8) =0.999 — 1 = —0.001

which is within the desired accuracy of the calculations. Thus, the bubble-
point temperature is 516.8°R = 56.8°F.
(b) At equilibrium y; = K;x;. Thus

T,=5174 - = 516.8°R

K; « 5168°R
Component 1 atm yi=K;x;
1 0.5 0.167
2 10 0.133
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When the {y;} and P are fixed rather than the {x;} and P, the solution
temperature of the expressions given by Eq. (1-12) is called the dew-point temper-
ature. By rearranging the first expression of Eq. (1-12) to the form x; = y,/K; and
carrying out steps analogous to those described above, the dew-point function
F(T) is obtained

F(T) = zl % 1 (1-17)

The dew-point temperature is that T that makes F(T) = 0. In this case

' Sy dK;
F(T)=- Y Lo (1-18)

i=1

When the T is found that makes F(T) = 0, each term y;/K; of the summation in
Eq. (1-17) is equal to x;.

Now observe that if after the bubble-point temperature has been determined
for a given set of x;’s, the set of y’s so obtained are used to determine the
dew-peiut temperature at the same pressure, it will be found that these two
temperatures are equal. For a binary mixture, this result is displayed graphically
in Fig. 1-6. For example, a bubble-point temperature calculation on the basis of
the {x,;} yields the bubble-point temperature T, and the composition of the
vapor {y,;}. Then a dew-point temperature on the set {y,;} yields the dew-point
temperature T, and the original set of x,;s.

Use of the K, Method for the Determination of Bubble-Point
and Dew-Point Temperatures

Robinson and Gilliland'? pointed out that if the relative values of the K;'s or
P;s are independent of temperature, the expressions given by Eq. (1-12) may be
rearranged in a manner such that trial-and-error calculations are avoided in the
determination of the bubble-point and dew-point temperatures. The ratio K; /K,
is called the relative volatility «; of component i with respect to component b,
that is,

K.
=t 1-19
“= (1-19)

where K; and K, are evaluated at the same temperature and pressure. Compo-
nent b may or may not be a member of the given mixture under consideration.

When the {x;} and the pressure P are given and it is desired to determine the
bubble-point temperature, the formula needed may be developed by first rewrit-
ing the first expression of Eq. (1-12) as follows

yi= (ﬁ)K,,xi= o; Ky x; (1-20)
K,
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Summation of the members of Eq. (1-20) over all components i, followed by

rearrangement yields

Ky=—" (1-21)

¢
Z o X
i=1

Since the ;s are independent of temperature, they may be computed by use of
the values of K; and K, evaluated at any arbitrary value of T and at the specified
pressure. After K, has been evaluated by use of Eq. (1-21), the desired bubble-
point temperature is found from the known relationship between K, and T.

If the y/’s are known instead of the x;s, then the desired formula for the
determination of the dew-point temperature is found by first rearranging
Eq. (1-20) to the following form

Vi

Kyx; =

and then summing over all components to obtain
K, = Z o (1-22)
i=1 & .
This equation is used to determine the dew-point temperature in a manner
analogous to that described for the determination of the bubble-point tempera-
ture by use of Eq. (1-21).

Many families of compounds are characterized by the fact that their vapor
pressures may be approximated by the Clausius-Clapeyron equation, and by the
fact that their latent heats of vaporization are approximately equal. The loga-
rithm of the vapor pressures of the members of such families of compounds fall
on parallel lines when plotted against the reciprocal of the absolute temperature.
For any two members i and b of such a mixture, it is readily shown that «; is
independent of temperature.

Although there exists many systems whose ;s are very nearly constant and
Egs. (1-21) and (1-22) are applicable for the determination of the bubble-point
and dew-point temperatures, respectively, the greatest use of these relationships
lies in their application in the iterative procedures for solving multicomponent
distillation problems as described in Chap. 2.

Example 1-3 Use the K, method to solve Example 1-2.

SoLuTiON Since K, may be selected arbitrarily, take K, = K,. Assume
T = 100°F = 560°R.

K; «@ 560°R i
Component X i @ 560 o= X o x;
1 atm K,
1 1/3 1 1 1/3
2 1/3 2 2 2/3
3 13 3 3 3/3

6/3=2
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Thus
| 1
Kb = P = i = Kl
Y o
i=1
Since K, = C,e” "V it follows that
E, 46447 x 10°

= 516.8°R

T = =
InC,/K, In8 x10°

1-2 SEPARATION OF MULTICOMPONENT MIXTURES
BY USE OF ONE EQUILIBRIUM STAGE

Each of the separation processes considered in Secs. 1-2 and 1-3 consist of
special cases of the general separation problem in which a multicomponent
mixture is to be separated into two or more parts through the use of any number
of plates.

The boiling-point diagram (Fig. 1-6) is useful for the visualization of the
necessary conditions required for a flash to occur. Suppose that feed to be
flashed has the composition X; = x,; (x,, , and x,_ ), and further suppose that
this liquid mixture at the temperature T, and the pressure P = 1 atm is to be
flashed by raising the temperature to the specified flash temperature 7, = T, at
the specified flash pressure P = 1 atm. First observe that the bubble-point tem-
perature of the feed Typ at P =1 atm is T,. The dew-point temperature, T, of
the feed at the pressure P =1 atm is seen to be T,. Then it is obvious from
Fig. 1-6 that a necessary condition for a flash to occur at the specified pressure
is that

Tye < T < Tpp (1-23)

In practice, the flash process is generally carried out by reducing the pressure on
the feed stream rather than by heating the feed at constant pressure as described
above.

To determine whether the feed will flash at a given T, and P, the above
inequality may be used by determining the bubble-point and dew-point tempera-
tures of the feed at the specified pressure P. In the determination of the bubble-
point temperature of the feed at the specified P of the flash, the {x;} in Eq. (1-14)
are replaced by the {X} of the feed, and in the determination of the dew-point
temperature at the specified pressure, the {y;} in Eq. (1-17) are replaced by the
{X}. Alternatively, the inequality given by Eq. (1-23) is satisfied if at the specified
T and P

f(Tr)>0
F(T,) >0 (1-24)
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Figure 1-7 The flash process.
where
f(Tl) = Z KiiXi—1
i=1
< X.
FT)=3 & -1 (1-25)
=1 K

The symbol K ,; represents the K value of component i evaluated at T, and P.
The two types of flash calculations which are commonly made are generally
referred to as isothermal and adiabatic flashes.

Isothermal Flash Process

The name “isothermal flash™ is commonly given to the single-stage separation
process shown in Fig. 1-7 for which the flash temperature T, and pressure P are
specified as well as the total flow rate F and composition {X;} of the feed. The
name *“isothermal flash™ originated, no doubt, from the fact that the tempera-
ture of the contents of the flash drum as well as the vapor and liquid streams
formed by the flash is fixed at T,. The flash temperature T, is not necessarily
equal to the feed temperature prior to its flashing.

For the set of specifications stated above, the problem is to find the total
flow rates ¥, and L, and the respective compositions {y,;} and {x;} of the vapor
and liquid streams formed by the flash process.

In addition to the ¢ + 2 equations required to describe the state of equilib-
rium between the vapor and liquid phases [see Eq. (1-12)], ¢ additional
component-material balances which enclose the flash chamber are required to
describe the isothermal flash process. Thus, the independent equations required
to describe this flash process are as follows
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Vi = Kpixp (i=1,2..7¢)
<
o =1
Equilibrium < Z Yei

relationships . (1-26)

Y xp=1

Material balances FX;=Veyp+ Lpxy; (i=1,2..7¢

Equation (1-26) is seen to represent 2c + 2 equations in 2¢ + 2 unknowns [V,
Ly, e {xril)-

This system of nonlinear equations is readily reduced to one equation in one
unknown (say V;) in the following manner. First observe that the total material
balance expression (a dependent equation) may be obtained by summing each
member of the third expression of Eq. (1-26) over all components to give

Z Xz or  F=V.+ L, (1-27)

i=1

F Z X = Vlz Yeit Ly

i=1 i=1
The relationships given by Eq. (1-26) may be reduced to one equation in one
unknown in a variety of ways, and a variety of forms of the flash function may
be obtained. One form of the flash function is developed below and a different
form is developed in Chap. 4 in the formulation of multiple-stage problems.

Elimination of the y;’s from the last expression given by Eq. (1-26) by use of the
first expression, followed by rearrangement, yields

X.

="t 1-28
T LF + ViKilF (2%
Elimination of L, from Eq. (1-28) by use of Eq. (1-27) yields
X,
= ——— 1-29
¥ - Kp) ()
where
Ve
¥=F

When each side of Eq. (1-29) is summed over all components i and the result
so obtained is restated in functional form, the following expression of the flash
function is obtained

c X,
P("P) = 'Z:l mm -1 (1'30)
and
J X1 — Kp)

)= L - wi - K (30
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A graph of the branch of the function P(¥) which contains the positive root is
presented in Fig. 1-8. An examination of this curve shows that Newton’s method
always converges to the desired root when ¥ = 1 is taken to be the first assumed
value of the root. After the positive root that makes P(¥) =0 has been found,
both V. and L, may be calculated by use of the fact that ¥ = V,./F and the total
material balance given by Eq. (1-27). Also, a comparison of Egs. (1-29) and
(1-30) shows that each term in the summation of P(¥) = 0 is one of the solution
values of xp;. After the solution set of x;;’s has been computed, the correspond-
ing set of y,;s is found by using the first expression of Eq. (1-26), y,; = K X

Example 1-4 (Taken from Ref. 6 by courtesy Instrument Society of America.)
It is proposed to flash the following feed at a specified temperature
T, = 100°F and a pressure P = 1 atm.

Component K; X;
10727+
1 = 1/3
to3p /
2 x 1072T
2 K, = -=x0 7 1/3
- P
7x1072T
3 K,= —p 1/3

+ Tis in °F and P is in atm.

If the feed rate to the flash drum is F = 100 mol/h, compute the vapor and
liquid rates V; and L, leaving the flash as well as the respective mole
fractions {yy;} and {x,;} of these streams.

SoLuTiON First, the specified value of T will be checked to determine
whether or not it lies between the bubble-point and dew-point temperatures
of the feed.

Component KrupP=1 X KnX X
p T, = 100°F i Fili Kn
1 1,3 1/3 1/9 1
2 1/3 23 1/6
3 7:2 1/3 /6 221

194 1.262




INTRODUCTION TO THE FUNDAMENTALS OF DISTILLATION 21
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wre 1-8 Graphical representation of the flash function P('P).

Thus

f(T)= Y KuX;—1=194—1=094>0
i=1

—-1=1262-1=0262>0

M-

F(Tr) =

i

X;
1 Kl"i

and thus Tgp < 100 < Tpp.
Trial 1. Assume ¥ = 1.

; 1-Fy Y(1-Kg) 1—\P(1—Kn‘)4k
1 1/3 2/3 2/3 1/3

2 2 -1 -1 2
3 72 -=5/2 -5/2 72

Component K




22 FUNDAMENTALS OF MULTICOMPONENT DISTILLATION

X; X; X{1-K)
Components = 5
1- ‘l‘(l - KFi) [1 - "P(l - KF:')] [1 - (1 - KFi)]
1 1.0000 3.0000 2.0000
2 0.1667 0.0833 —0.0833
3 0.0952 0.0272 —0.0680
1.2619 1.8487

P(1) = 1.2619 — 1 = 02619

P'(1) = 1.8487
0.2619
=1~ ["2]=1-0.1417 = 0.8583
¥ (1.8487) -0 085

Trial 2. Assume ¥ = 0.8583 and repeat the steps shown in the first trial.
The results so obtained are as follows

P(0.8583) = 1.0651 — 1 = 0.0651
P'(0.8583) = 10358

0.0651

¥, =08583 — [——_
3= 08583 (1.0358

) =0.7955

Continuation of this procedure gives the solution value of ¥ = 0.787. Thus,
Ve =787, Ly = 21.3, and the solution sets {x,;} and {y,;} are as follows

Compo- _ X; k.
pent 1~ Kn WI-Kn) 1-¥(-Kn) xn=igrTes dn= Kee
1 0.667 0.525 0475 0.701 0.234
2 -1.000 -0.787 1.787 0.187 0.374
3 —2500 —1.968 2968 0.112 0.392

Up to this point no mention has been made of the manner of satisfying the
energy requirement of the flash. The specification of T, implies that the feed
either possesses precisely the correct amount of energy for the flash to occur at
T at the specified P or that energy is to be added or withdrawn at the flash
drum as required. It is common practice to adjust the heat content of the feed
before it reaches the flash drum such that the flash occurs adiabatically; that is,
the heat Q added at the flash drum is equal to zero.

After the solution [Vi, Lr, {yr), {xr}] has been found for a given isothermal
flash problem, the heat content H that the feed must possess in order for the
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flash to occur adiabatically [Q = O at the flash drum] may be found by use of the
enthalpy balance which encloses the entire process

FH=V.H,+ L., (1-32)

When the vapor V. and liquid L, form ideal solutions, the enthalpies H, and h,
of the vapor and liquid streams, respectively, may be computed as follows

Hy= Y H;;y,;  and hy=Y hyixg (1-33)

i=1 i=1

The above procedure may also be used in the solution of adiabatic flash
problems as described below.

Example 1-5 (Holland,® by courtesy Instrument Society of America.) On the
basis of the solution to Example 1-4, compute the enthalpy H which the feed
must possess in order for the flash to occur adiabatically.

Given:
h H;
Component (Btu/Ib mol) (Btu/lb mol)
1 h, = 10,000 + 30T+ H, =17,000 + 30T+
2 h, = 8,000+ 20T H, = 13,000 + 20T
3 hy= 500+ T Hy= 800+T
+ T is in °F.

Sorution Calculation of the enthalpy H of the feed:

Component  xy; Yri hy; @ T,=100°F  hpxp  Hp @ Te=100F  Hpye

1 0.701 0234 13,000 9,113 20,000 4,680
0.187 0374 10,000 1,870 15,000 5,610

3 0.112  0.392 600 67 900 353
11,050 10,643

Then h; = 11,050 Btu/lb mol and H = 10,643 Btu/Ib mol, and thus

VeHp | Lehg
F + F

= 10,730 Btu/lb mol

H=

= (0.787)(10,643) + (0.213)(11,050)
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Adiabatic Flash Process

The term adiabatic flash is used to describe the problem wherein the following
specifications are made: P, Q = 0 [no heat is added at the flash drum], H, (X3,
and F. In this case there are 2c + 3 unknowns [Ty, Vi, Ly, {yri} {xs}]- The
independent equations are also 2¢ + 3 in number, the 2¢ + 2 given by Eq. (1-26)
plus the enthalpy balance given by Eq. (1-32), that is,

Vri = KpiXg; (i=12..., c)
Equilibrium Yyri=1
ionshi =t (1-34)
relationships .
Z xp=1
i=1

Material balances: FX;= Viypi + Lpxg; (i=12..7¢)
Enthalpy balance: FH =V Hp+ Lh,

One relatively simple method for solving an adiabatic flash problem consists
of the repeated use of the procedure described above whereby an H,, is computed
for each assumed T, where n denotes the trial number. The problem then
reduces to finding a T, such that the resulting H, is equal to the specified value
H; that is, it is desired to find the Ty, such that §(T},) = 0, where

5(Ty) = 6,= H,— H (1-35)

One numerical method for solving such a problein is called interpolation regula
falsi (see Probs. 1-7 and 1-8). This method consists of the linear interpolation
between the most recent pair of points (Tg,, 8,) and (Tg, n+ 1, 0,4 1) by use of the
following formula

TF.n+1 61: - TFn 6n+l
1)

(1-36)

TF,n+2= 6
n~ Ynt+1

To initiate this interpolation procedure, it is necessary to evaluate é for each of
two assumed temperatures Ty, and Ty,. Then Eq. (1-36) is applied to obtain
Tr; . After 85 has been obtained, the new temperature Tg, is found by interpola-
tion between the points (T, , 8,) and (T;3, 63). When |5 | has been reduced to a
value less than some arbitrarily small, preassigned positive number, the desired
solution is said to have been obtained.

It should be pointed out that the equations required to describe the adiaba-
tic flash are of precisely the same form as those required to describe the separa-
tion process which occurs on the plate of a distillation column in the process of
separating a multicomponent mixture.

Other methods for solving the adiabatic flash problems are presented in
Chaps. 4 and 5. The method presented in Chap. 5 is recommended for the solu-
tion of problems involving highly nonideal solutions.
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1-3 MULTIPLE-STAGE SEPARATION OF BINARY MIXTURES

Although all of the separation problems involving binary mixtures may be
solved by use of the general methods presented in subsequent chapters for multi-
component mixtures, it is, nevertheless, rewarding to consider the special case of
the separation of binary mixtures because this separation may be represented
graphically in two-dimensional space. Many of the concepts of distillation may
be illustrated by the graphical method of design proposed by McCabe and
Thiele.?

The McCabe-Thiele Method

In the description of this process, the following symbols are used in addition to
those explained above. The mole fraction of the most volatile component in the
feed is represented by X, in the distillate by X ,, and in the bottoms by x. The
subscript j is used as the counting integer for the number of the stages. Since
the distillate is withdrawn from the accumulator (j = 1) and the bottoms is
withdrawn from the reboiler (j = N), the mole fractions in the distillate and
bottoms have double representation; that is, X j = xy; (for a column having a
total condenser) and xy = xy;. For the case where the column has a partial
condenser (D is withdrawn as a vapor), X ; = yy;.

The rectifying section consists of the partial or total condenser and all plates
down to the feed plate. The stripping section consists of the feed plate and all
plates below it including the reboiler. When the total molar flow rates do not
vary from plate to plate within each section of the column, they are denoted by
¥, (vapor) and L, (liquid), in the rectifying section and by V; and L, in the
stripping section. The feed rate F, distillate rate D, bottoms rate B, and reflux
rate L, are all expressed on a molar basis.

The design method of McCabe and Thiele® is best described by solving the
following numerical example.

Example 1-6 It is desired to find the minimum number of perfect plates
required to separate an equal molar mixture of benzene and toluene into a
distillate product containing 96 percent benzene (X , = 0.96) and a bottom
product containing no more than 5 percent benzene (xg = 0.05) at the fol-
lowing operating conditions: (1) the column pressure is 1 atm, and a total
condenser is to be used (D is a liquid), (2) the thermal condition of the feed
is such that the rate L; at which liquid leaves the feed plate is given by
L,=L,+ 0.6F, and (3) a reflux ratio L, /D =22 is to be employed. The
equilibrium sets {x,, y 4} of benzene used to construct the equilibrium curve
shown in Fig. 1-9 were found by solving Prob. 1-1.

This set of specifications fixes the system; that is, the number of independent
equations that describe the system is equal to the number of unknowns. Before
solving this problem, the equations needed are developed. First, the equilibrium
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Figure 1-9 Graphical solution of Example 1-6 by the McCabe-Thiele method.

pairs {x, y} satisfying the equilibrium relationship y = Kx may be read from a
boiling-point diagram (see part (a) of Prob. 1-1) and plotted in the form of y
versus x to give the equilibrium curve; see Fig. 1-9. Observe that the equilibrium
pairs {x, y} are those mole fractions connected by the tie lines of the boiling-
point diagram; see Fig. 1-6.

A component-material balance enclosing the top of the column and plate j
(see Fig. 1-5) is given by

L, DX,
Vi+1= v xj+7'

Similarly, for the stripping section, the component-material balance (see
Fig. 1-5) is given by

(1-37)

L Bx
) | -8 (1-38)

Yj+1=(vsx v

s
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The component-material balance enclosing the entire column is given by
FX =DX,+ Bxy (1-39)

The total molar flow rates within each section of the column are related by the
following defining equation for ¢, namely

L,=L,+qF (1-40)

By means of a total material balance enclosing plates f— 1 and f, it is readily
shown through the use of Eq. (1-40) that

V= V,=(1-qF (1-41)

By means of energy balances, it can be shown that g is approximately equal to
the heat required to vaporize one mole of feed divided by the latent heat of
vaporization of the feed (see Prob. 1-22).

Since Egs. (1-37) and (1-38) are straight lines, they intersect at some point
(x1, y1), provided of course they are not parallel. When the point of intersection
is substituted into Egs. (1-37) and (1-38) and L,, V;, L,, V;, x5, and X, are
eliminated by use of Egs. (1-37) through (1-41), the following equation for the g

line is obtained
q 1
= — _ X -
Y (l—q)x'+(1—q) (1-42)

SoLUTION OF EXAMPLE 1-6 With the aid of the above equations, the number
of plates required to effect the specified separation may be determined. To
plot the operating line [Eq. (1-37)] for the rectifying section, the y intercept
(DX p/V,) is computed in the following manner. Since V, =L, + D, and
L, =L,, it follows that

D .
X, Xp _09 _ .,

v, (L/D)+1 32

Since y, = X, (for a total condenser), the point (y,, X ) lies on the 45°
diagonal. The y intercept and the point (y,, X p) locate the operating line for
the rectifying section as shown in Fig. 1-9.

When x, = X is substituted in Eq. (1-42), the result y, = X is obtained,
and hence the g line passes through point (X, X) which in this case is the
point (0.5, 0.5). Since g = 0.6, the y intercept of the g line [Eq. (1-42)] is
computed as follows

X 0.5
1—q (1-06) 1.25

Since the operating line for the stripping section [Eq. (1-38)] passes
through the point (x,, x5) = (0.05, 0.05) and the intersection of the g line
with the operating line for the rectifying section, it may be constructed by
connecting these two points as shown in Fig. 1-9.
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The number of perfect plates required to effect the specified separation
may be determined graphically as indicated in Fig. 1-11. It is readily
confirmed that the construction shown in Fig. 1-11 gives the desired solu-
tion. Since y, = X, = x, (for a total condenser) and since y, is in equilib-
rium with x,, the desired value of X, is determined by the point of
intersection of line 1 and the equilibrium curve as shown in Fig. 1-9. Line 1
also represents plate 1. When x, is substituted into Eq. (1-37), the value of
Y3 is obtained. Since (x,, y,) lies on the operating line for the rectifying
section, this point is located by passing a vertical line through (x,, y,). The
ordinate y, obtained is displayed graphically in Fig. 1-9. When the first
opportunity to change operating lines is taken, the minimum number of
total plates needed to effect the specified separation at the specified operat-
ing conditions is obtained. When the feed is introduced on stage number 8,
atotal of 14 stagesare required, 12 plates plus the reboiler and a total condenser
(see Fig. 1-9).

It should be noted taat if the operating line for the rectifying section is used
indefinitely instead of changing to the operating line for the stripping section, the
specified value of x; = 0.05 can never be attained even though infinitely many
plates are employed.

Minimum Reflux Ratio

As the specified value of the reflux ratio (L, /D) is decreased, the intersection of
the two operating lines moves closer to the equilibrium curve and the minimum
number of plates required to effect the specified separation (xz= 005, X, =
0.96) increases. On the other hand, as L, /D is decreased, the condenser and
reboiler duties decrease. The minimum reflux ratio is the smallest one which can
be used to effect the specified separation. This reflux ratio requires infinitely
many plates in each section as demonstrated in Fig. 1-10. It should be noted that
for this case, the plates at and adjacent to the feed plate have the same composi-
tion. (In the case of multicomponent systems, these limiting conditions do not
necessarily occur at and adjacent to the feed plate as discussed in Chap. 11). From
the standpoint of construction costs, this reflux ratio is unacceptable because
infinitely many plates are required, which demands a column of infinite height.

Total Reflux

At total reflux, the operating lines coincide with the 45° line. This gives the
smallest number of plates needed to effect the separation. As pointed out by
Robinson and Gilliland.'? two physical interpretations of total reflux are
possible. From a laboratory or plant operational point of view, total reflux is
attained by introducing an appropriate quantity of feed to the column and then



INTRODUCTION TO THE FUNDAMENTALS OF DISTILLATION 29

09 |-

08

06

05|

y, Mole fraction of benzene in vapor

03

02t

00 L 1 1 1 1 1 1 1 I
00 Xg Ol 02 03 04 05 06 07 08 09 %10

X
x,Mole fraction of benzene in liquid

Figure 1-10 At the minimum reflux ratio (L,/D), infinitely many plates arc required to effect the
specified separation (X ,, x,).

operating so that F = D = B = 0. From the standpoint of design, total reflux can
be thought of as a column of infinite diameter operating at infinitely large vapor
and liquid rates, and with a feed that enters at a finite rate F and with distillate
and bottoms that leave at the rates D and B, where F = D + B. Thus, infinite
condenser and reboiler duties are required as well as a column having an
infinitely large diameter. At total reflux, six plates, a total condenser, and a reboiler
are required to effect the specified separation as shown in Fig. 1-11. A graph of the
total costs per year versus the reflux rate L, at a fixed set of specifications is shown
in Fig. 1-12 for reflux rates over the range from minimum to total reflux.

The set of equations required to describe a distillation column in the process
of separating a binary mixture is merely an extension of the sets stated
previously for the boiling-point diagram [Eq. ( 1-3)], bubble-point and dew-point
temperatures [Eq. 1-12)], and the flash process [Eq. (1-26)]. The complete set of
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Figure 1-11 Determination of the total number of plates required to effect the specified separation at
total reflux.

equations solved above by the McCabe-Thiele method are as follows

(ke (203w
egep e 2
.-ixﬁ: 1 (i=12..,N) (1-43)
(V.35e1.0= L+ DX (;:ti,..-,f—l)
Vs |t (TRE )

FXi=DXD,'+Bx5i (i=l’2)
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Specified - F, X, Xp, Xg

———total reflux minimum _—"|
reflux ratio

TOTAL COSTS PER MOLE OF PRODUCT D

0.0

(total reflux) 0/L,

Figure 1-12 Total costs (capital plus operating costs) per mole of product D (or B) for a specified
separation.

The counting integer j for stage number takes on only integral values. Examina-
tion of Eq. (1-43) shows that it consists of 6N independent equations. This result
could have been obtained as follows. Since a single-equilibrium stage [Eq. (1-26)]
is represented by 2c + 2 independent equations and since the column repre-
sented by Eq. (1-43) has N equilibrium stages [the condenser j = 1, plates j = 2,
3, ..., N — 1, and the reboiler j = NJ, then one would expect to obtain (2¢ + 2)N
‘independent equations for a distillation column. Thus, a column in the service of
separating a binary mixture is represented by 6N equations. Also, in the
McCabe-Thiele method as presented above, it is assumed that the behavior on
the feed plate may be represented by model 1, Fig. 1-13.

/\/l/vry;/\_/
f
l Figure 1-13 Model 1. Assumed in

ViVig i LoXy,
e ! the McCabe-Thiele method.

FX,
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For the case where the total flow rates V; and L; vary throughout each
section of the column, these flow rates may be determined by solving the
enthalpy balances simultaneously with the above set of equations. For binary
mixtures, the desired solution may be found by use of either graphical methods
(Refs. 10, 13) or the numerical methods proposed in subsequent chapters for the
solution of problems involving the separation of multicomponent mixtures.

1-4 SEPARATION OF MULTICOMPONENT MIXTURES
AT TOTAL REFLUX

The topic of total reflux is considered briefly in this chapter for the purpose of
developing the well-known Fenske equation (Ref. 4) which is needed in Chaps. 2
and 3. A more general treatment of the subject area of total reflux is presented in
Chap. 7.

Development of the Fenske Equation*

From the standpoint of design, the most useful definition of total reflux consists
of the one in which the total flow rates [L; (=12 .. N-1) viij=2, ...,
N)] are unbounded while the feed and product rates are finite. More precisely

. L;
lim L =1—- lim =1
Vier=oo Yj+1 Vi+1~ o Vf"’l
and
F=D+B (1-44)

where F, D, and B are all nonzero, finite, and positive. The corresponding
component-material balances are given by
. L; . D
yj+ 1,i — .\'j,': llm 2 ' + XDI’ llm l = xj,- (1“45)
Vi

+1—*00 V;’+1’ le+1—0w j+1‘

As a consequence of the results given by Eqgs. (1-44) and (1-45) it follows that the
component-material balance is given by

Yi+1,i = Xji (1-46)
By repeated use of Eq. (1-46) and the equilibrium relationship

Vi = Kjixj; (1-47)
the Fenske equation*

b, B/D

- (1-48)
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[for a column having a total condenser] is obtained. An abbreviated develop-
ment of this equation follows. The component-material balance enclosing the
condenser-accumulator section (stage 1) is given by

Vai = Xy (1-49)
for component i, and for the case of a total condenser
Yai= Xpi (1-50)
The equilibrium relationship for stage 2 is
Vai = Kypixy; (1-51)
Elimination of y,; from Egs. (1-50) and (1-51) gives
Xai = %’ (1-52)

For stage 3, the component-material balance and equilibrium relationship for
component i are as follows

Y3i = X (1-53)
Vai = Kjix3; (1-54)
Elimination of x,; and yj; from Egs. (1-52) through (1-54) gives

X,
X3 = K ID<'
2i K3

(1-55)

Continuation of this procedure for stages j = 4 through N (the reboiler) yields

KKy Ky- 1, iKni

(1-56)

X Ni

Since xy; = xg, it is evident that Eq. (1-48) is obtained upon multiplication of
both sides of Eq. (1-56) by B/D. The steps of this derivation (which consist of the
alternative use of material balances and equilibrium relationships) are seen to be
the same as those involved in the graphical solution for a binary mixture (see
Fig. 1-11).

An alternative form of Eq. (1-48) which reduces to an exact solution when
the relative volatilities are constant is obtained as follows. First, state Eq. (1-48)
for the base component b, then divide the members of Eq. (1-48) by the corre-
sponding members for component b and rearrange the result so obtained to give

b bd

d; a0yt oy 1, i%Ni

(1-57)

where

0;=K;/K; di=DXy and  b,=Bxy
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If the o;;’s are independent of temperature, then Eq. (1-57) reduces to

bi_bb —(N-1) -

474 o (1-58)
For the case of a partial condenser (y; = X)), the appropriate expression for
bi/d; is obtained by replacing the exponent (N — 1) in the above expression by
the exponent N; that is, the partial condenser counts as an additional equilib-
rium stage.

At a fixed number of stages N, the set of b;/d;’s relative to b,/d, may be
computed for a given system by use of Eq. (1-58). Then for any specified value
of b,/d,, the corresponding set of d’s and D may be computed by use of
Egs. (1-60) and (1-61), respectively. These formulas are obtained by first solving
the component-material balance

Fx;=d;+b;=d[1 + b;/d)] (1-59)
for d;
Fx;
.= h——-‘ 1'60
d 1+ b;/d; (1-60)
and then summing over all components
i Fx;
= — 1-61
b i; 1+ b;/d; ( )

In summary, Eq. (1-58) may be used to compute the best possible separation
(the lightest possible distillate and heaviest bottoms) which may be achieved
with a fixed number of plates at the limiting condition of total reflux; provided,
of course, that the a;’s are constant throughout the column. At this limiting
condition of total reflux, the column diameter as well as the reboiler and conden-
ser duties become infinite. Equation (1-58) may be used to compute the compo-
sition of the distillate and bottoms of a column operating at total reflux as may
be demonstrated by solving Prob. 1-24. Examination of Eq. (1-58) shows that at
a given N, a set of b;/d’s may be found for every specified value of b,/d,.
Furthermore, the natural logarithm of b, /d; versus the natural logarithm of «;
plots as a straight line for each choice of the intercept b, /d,. This characteristic
of the Fenske equation forms the basis of the proof of the proposition that the 6
method constitutes an exact solution of certain problems involving columns at
total reflux as demonstrated in the next chapter.

Determination of Bubble-Point and Dew-Point Temperatures of
Mixtures Containing Inert Gases and Inert Liquids

In many industrial applications, the mixtures contain inert gases and liquids.
Modificaticns needed to make bubble-point, dew-point and flash calculations
are presented in this section. An “inert gas” component is one which appears in
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the gas phase alone because it is insoluble in the liquid phase. An “inert liquid
component is one which appears in the liquid phase alone. The inert liquid is
miscible in the liquid phase and does not exhibit a detectable vapor pressure.
More precisely, an inert gas (denoted by the subscript L) is defined as a compo-
nent for which 1/K, =0 and x, =0 while an inert liquid (denoted by the sub-
script H) is defined as a component for which K,; =0 and y, = 0.

Components which appear in both phases are called “ volatile” components.
Volatile components are defined more precisely as those components having K
values which are nonzero, finite, and positive. The bubble-point and dew-point
functions are given in Prob. 1-11.

When a feed which contains both inert gases and an inert liquid is flashed at
a specified temperature and pressure, the expression given by Eq. (1-30) for the
flash function reduces to the expression given in Prob. 1-17.

NOTATION

molar flow rate of component i in the bottoms

B total molar flow rate of bottoms

c total number of components

d; molar flow rate of component i in the distillate

D total molar flow rate of the distillate

fEfY fugacities of components i in the liquid and vapor phases (composed

of any number of components), respectively; evaluated at the total
pressure and temperature of the two-phase system and at the com-
positions of the respective phases, atm

fEfY fugacities of pure component i in the liquid and vapor phases, re-
spectively; evaluated at the total pressure and temperature of the
two-phase system, atm

f(T) bubble-point function; defined by Eq. (1-14)
F(T) dew-point function; defined by Eq. (1-17)
F total molar flow rate of the feed

hgiy Hy; enthalpies of pure component i; evaluated at the temperature Ty
and pressure P of the flash, Btu/lb mol
[4

; Y. hjixj;, for an ideal solution; evaluated at the temperature Tj,
i=1

pressure and composition of the liquid leaving the jth plate

(4
H; Y Hjyj;, for an ideal solution; evaluated at the temperature T},
1

pressure, and composition of the vapor leaving the jth plate
enthalpy per mole of feed, regardless of state
ji equilibrium vaporization constant; evaluated at the temperature
and pressure of the liquid leaving the jth stage
L; total flow rate of liquid leaving any stage of j (j=1,2, ..., N— 1,
N), mal/h

X T
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zZerE

n-Sa g

X i

Yji
Vi

Greek Letters

Subscripts

/
F

H

i
J

=~

total-flow rate of liquid leaving stages j = 1,2, ..., f — 2, f — |
total-flow rate of liquid leaving stages j= f, f +1,..., N— I, N
total number of stages

vapor pressure of component i, atm

total pressure, atm

flash function; defined by Eq. (1-30)

a factor related to the thermal condition of the feed; defined by
Eq. (1-40)

condenser duty, Btu/h

reboiler duty, Btu/h

temperature. Ty, = bubble-point temperature, and Tp,p = dew-point
temperature

flash temperature

total-flow rate of vapor leaving the jth stage (j = 2, 3, ..., N), mol/h
total-flow rate of the vapor leaving stages j = 2, 3, ..oy f = 1,f, mol/h
total-flow rate of vapor leaving stagesj = f + i, f+2,..,N—1LN,
mol/h

mole fraction of component i in the liquid lezving a flash process
mole fraction of component i in the liquid leaving the jth stage
mole fraction of component i in the bottoms

abscissa of the point of intersection of the operating lines for a
binary mixture

total mole fraction of component i in the feed (regardless of state)
total mole fraction of component i in the distillate (regardless of
state)

mole fraction of component i in the vapor leaving plate j

ordinate of the point of intersection of the operating lines for a
binary mixture

relative volatility, a;; = K;i /K

function of T;; defined by Eq. (1-35)

activity coefficients for component i in the liquid and vapor phases,
respectively

moles of vapor formed per mole of feed by the flash process;
Y =V,./F

feed plate

variables associated with a partially vaporized feed

inert liquid components

component number, i= 1,2, ..., ¢

stage number; j = 1 for the accumulator; for the top plate j = 2, for
the feed plate j = f; for the bottom plate j = N, and for the reboiler
J=Njthatis,j+1,2,....f,..., N=1, N, or (i=12...,N)
trial number

inert gas components
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trial number

n
N total number of stages
r rectifying section
s stripping section
Superscripts
L liquid phase
|4 vapor phase
Mathematical Symbols
exp (x) e
c
Y x sum over all values x;,i=1,2,..., ¢
i=1
{x;} set of all values x; belonging to the particular set under
consideration

n1 (I +x;) product of the factors (1 + x;) from j = 1 through j = ¢
i=

PROBLEMS

1-1 (a) Calculate the equilibrium pairs {x, y} for each of the temperatures given in Example 1-1.

(b) From the plot obtained in part (a), construct the equilibrium curve; that is, construct a
graph in which the y’s of the equilibrium pairs {x, y} are plotted on the ordinate and the correspond-
ing x’s are plotted on the abscissa.

1-2 (a) Repeat Example 1-2 for the case where the first assumed value of T, is taken to be equal to
40°F.

Answer: 56.8°F.

(b) After the bubble-point temperature has been determined, compute the corresponding values
of y;’s which are in equilibrium with the x;’s.

Answer: y, = 1/6,y,=1/3, y; = 1/2.
1-3 Repeat Prob. 1-2 where the following vapor compositions are known instead of the liquid
compositions. In this case determine the dew-point temperature at a specified total pressure of
P =1 atm. For the first trial, assume T = 560°R. Use the K values given in Example 1-2.

Given: y, = 1/6, y, = 1/3, and y; = 1/2. After the dew-point temperature has been determined,
compute the corresponding x;’s which are in equilibrium with the y;’s.

Answer: Tpp = 568°F, x, = 1/3, x, = 1/3, x5 = 1/3.
1-4 If the a/s are not independent of temperature, then the temperature found at the end of the first
trial by use of the K, method depends upon the component selected as the base component as well as
the tempe.ature assumed to evaluate the a;s. These facts are illustrated by solving the following
problems.

K;=C;exp (—E;/T), Tis in °R

Component C; E; X;

1 40 x 10%/P+ 4.6 x 10? 1/3
2 6.0 x 103/P 47 x 103 1/3
3 120 x 10%/P 48 x 103 1/3

+ P is in atm.
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(a) Find the correct bubble-point temperature by use of the Newton-Raphson method at a
specified total pressure of 1 atm. Assume an initial temperature of 520°R.

Answer: 531.52°R.

(b) Make one trial by use of the K, method. Evaluate the a/s at an assumed temperature of
100°F and P = 1 atm. Take component 1 as the base component.

Answer: 530.7°R.

(c) Repeat part (b) for the case where component 2 is selected as the base component.

Answer: 531.3°R.

(d) Repeat part (b) for the case where the a's are evaluated at an assumed temperature of 50°F
rather than 100°F.

Answer: 532°R.
1-5 Any iterative process in which the calculated values of the variables are used without alteration
to make the next trial calculation is referred to herein as direct iteration. This calculational procedure
is known by a variety of names such as iteration, successive iteration, and successive substitution.

(a) Suppose that it is required to find the x which satisfies the following equation

x—4x-2=0

Although x = 4 is seen to be the correct answer, solve this problem by direct iteration by rearranging
it to the following form
X1 = 3%+ 2

where the subscript k denotes the trial number. To initiate the procedure, let x, = 1. Then
X414 = 5/2. For the next trial take x, = 5/2. Continue the process and show that the calculational
procedure converges to the solution value x = 4. Prepare a graph of x,, , versus x,. Use the 45° line
to transfer the calculated values of x from the ordinate to the abscissa.

(b) Repeat part (a) for the case where the original equation is solved as follows

Xepq =2%x,—4
Begin with x, = 3 and also with x, = 5.

(c) Let the right-hand sides of the expressions given in parts (a) and (b) be denoted by f(x).
Then describe the convergence characteristics of a function for which

df (x)
dx

<1

and a function for which
df (x)

>1
dx

1-6 (a) Show that the formula for Newton’s method given by Eq. (1-16) may be obtained by equat-
ing the derivative of the function f(x) at x,, denoted by f(x,), to the slope of the tangent line at x,,
namely,

S(x) =0

X = X4y

where x, ., , is the point of intersection of the tangent line and the x axis.
(b) Use Newton’s method to find the positive x that makes f(x) =0

f(x)=x>—4x—4

Begin with x = 3. Prepare a graph of f(x) versus x, and on this graph show the path of the
calculational procedure. [Hint: Newton’s method may be regarded as a linear extension of the
function from the point (x,. f(x,)) to the point (x,, ;, 0). The slope of this line is f*(x,)].

1-7 For any two assumed values of x denoted by x, and x,,,, the corresponding values of the
function, f(x,) and f(x, ., ,) are readily computed. Let these two points (x,, f(x,)) and (x,, , f(xc+ D)
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be connected by a straight line. The equation of this line may be represented by the equation

S(x) = f(x) _ Sx) =S (%)

X — X X = Xi+1

(A)

Extend this straight line until it intersects that x axis at the point (x4, 0). [This procedure amounts
to the assumption that the function is linear over the range of the extrapolation.] Show that at
X = X,,, and f(x) = 0, Eq. (A) may be solved to give the interpolation regula falsi formula

X S (1) = X n S (x4

Moz = S(xiay) = S(x)

1-8 (a) Repeat Prob. 1-6 for the case where the positive value of x is found by interpolation regula
falsi (see Prob. 1-7). Take the first assumed value of x to be x, =2 and x,,, = 6.5. After the first
trial, find the new assumed value of x by applying the method of interpolation regula falsi to the
most recent pair of x values and their corresponding functional values.

(b) Produce a graph of f(x) versus x, and on this graph indicate the path followed by the
method of interpolation regula falsi in the solution of this problem.
1-9 Solve Example 1-2 by use of the method of interpolation regula falsi. Take T, = 580°R and
Ti+y = 680°R.

1-10 (a) For mixtures which contain all volatile components, show that after K, has been
determined by use of the bubble-point formula [Eq. (1-21)], the y;s which are in eqilibrium with x/s
are given by

o; X;
<

> X
i=1

(b) Similarly, show that after K, has been found by use of the dew-point formula [Eq. (1-22)],
the following expression may be used to compute the x;’s which are in equilibrium with the y;’s

Yi=

Wil
3

}: Vil
i=1

1-11 Consider a mixture which contains both inert liquid components H and inert vapors L. For an
inert vapor, 1/K , = 0, and for an inert liquid, K ,, = 0. For convenience, suppose that component 1 of
a given mixture is an inert liquid, components 2 through ¢ — 1 are volatile, and component c is an
inert gas. The equilibrium relationships for this mixture are as follows

yu=y =K x;=Kyxy

y2=Kyx,

Veer =Ko Xy
Vo=y.=Kx.=K;x,

Xy+ Xy +x3+ -+ x_ +x,=1
Yutyrtysto+y +ty.=1

{a) Show that the bubble-point function is given by

M= F Kexi=(1-)

il L
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(b) Show that the dew-point function is given by

Fn= § %0

i=1 i
i#H, L

1-12 For the case where inert gases L and inert liquids H are present in addition to volatile
components (i=2, 3, ..., c — 2, ¢ — 1), show that the following formulas for K, apply instead of
those given by Egs. (1-21) and (1-22)
c=1
1—y : Vil
K, = — L K, = i=2

< 1 —x,

Y ax;

i=2

1-13 Find the bubble-point temperature of the following mixture.

Component X; K; Other specifications
1 1/4 0.0 P=1atm

2 1/4 001 T/Pt  ys=02

3 1/4 002 T/P

4 1/4 003 T/P

5 0 I/Ks=0

t Tisin °F and P is in atm.

Answer: 53.33°F.
1-14 Find the dew-point temperature of the following mixture.

Component Vi K; Other specifications
r 0.0 P=1atm

2 0.1333 001 T/P+  x,=025

3 0.2667 0.02 T/P

4 0.4000 0.03 T/P

5 0.2000 1/Ks=0

t Tisin °F and P is in atm.

Answer: 53.33°F.

1-15 Show that by elimination of the Xg; from the component-material balance FX i=Veypi+ Lexg
by use of the equilibrium relationship yp; = K, xy;, the following form of the flash function may be
obtained

< X.-
W= X o wky !

where = L, /F.
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1-16 A feed having the composition given in Example 1-4 and the enthalpies given in Example 1-5 is
to be flashed adiabatically at a pressure of 1 atm. The enthalpy of the feed is 10,730 Btu/lb mol.
Make one complete trial by use of the procedure described in the text [see Eqs. (1-35) and (1-36)).
For the first trial take T, = 95°F and T, = 105°F.

1-17 For the case where the feed to be flashed contains both inert gases (K, — 00) and inert liquids
(K ¢ = 0), show that the flash function given by Eq. (1-30) takes the following form

-

X.

R T R

+

1-18 Repeat Example 1-4 for the case where 25 moles per hour of an inert liquid component are
added to the given feed of 100 moles per hour.
(a) Show that the maximum value of ¥ = V,./F which is physically possible is equal to 0.8.
(b) Find the solution to this problem by use of Newton’s method.
1-19 Find the minimum reflux ratio (L, /D) required to effect the following separation of an equimo-
lar mixture of 4 and B. The feed is 50 percent vaporized, and the specified values of the product mole
fractions for component A are as follows

X, =095
Xy =006

Given the following equilibrium data for component A.

x y
0.1 043
02 0.63
0.3 0.79
05 0.905
09 0.995

Answer: (L/D), = 0.418

1-20 Find the minimum total number of stages required to effect the separation of Prob. 1-19 for the
following conditions

1. Column pressure = 1 atm.
2. Total condenser.
3. Use an operating reflux ratio L,/D equal to twice the minimum reflux ratio found in Prob. 1-19.

Answer: Four plates plus the reboiler. The feed plate is the stage 3.

1-21 For the case where the distillate is withdrawn as a vapor, the partial condenser represents an
additional separation stage. In this case

Xp=y1=K;x,

where y, is the mole fraction of the vapor in equilibrium with the liquid reflux having the mole
fraction x, in the accumulator. The material balance enclosing the condenser-accumulator section is

represented by
L, D
= (5 5 )
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EQUILIBRIUM STAGE CORRESPONDING
TO THE PARTIAL CONDENSER

yo*Xo— — — — — - | —
o= — — — — _l |
I
y OPERATING
LINE FOR [
RECTIFYING. |
SECTION |
| .
| l
| |
| |
X| Xp= Y
X

Figure P1-21 Graphical representation for a partial condenser.

The graphical representation on a McCabe-Thiele diagram is given in Fig. P1-21.

Repeat Prob. 1-20 for the case where a partial condenser rather than a total condenser is used
and the distillate is withdrawn as a vapor with the vapor composition X ;, = 0.95 rather than as a
liquid with this same composition.

Answer: Three plates plus the reboiler plus the partial condenser. The feed plate is stage 2.
1-22 (a) On the basis of the following assumptions, show that q is approximately equal to the heat
required to vaporize one mole of feed divided by the latent heat of vaporization of the feed.

1. Assume model 1 of Fig. 1-13 for the behavior of the feed plate.

2. Assume H, = H, h, = h,. where these are the vapor and liquid enthalpies which appear in the
enthalpy balance enclosing the feed plate and any number of plates above or below it.
VH,+ FH+Lh —V,H —Lh =0
The total heat content of the feed regardless of state is denoted by H.

3. The latent heat of vaporization of the feed is equal to H, — h, = 4,.

(b) Use the boiling-point diagram (Fig. 1-6) and the component-material balance
FX = Vpyp+ L;x, to show that the ratio of the moles of vapor V¥, to the moles of liquid L, formed
from the flash of the feed F at the flash temperature T, is given
Vi X —x;

Ly yr—X
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where X is the mole fraction of a given component in the feed and x, and y, are the mole fractions in
the liquid and vapor formed by the flash.

1-23 Show that for a column possessing a partial condenser, the Fenske equation becomes

b, b,
o by N

4, dy "

1-24 A given column has two plates, a reboiler, a partial condenser, and a feed F of 100 moles per
hour. The composition of the feed and the relative volatilities which are independent of temperature
are as follows:

Component X; o
1 1/3 1
2 1/3 2
3 1/3 3

Find the distillate rates D which must be employed for the above column in order to achieve the
following separations of the base component (component 1)

(a) by/d, =16

(b) bb/db =8
at total reflux. Also find the set of b, /d’s at each D.
Answer:
(@)  Component  b/d; (b)  Component  b;/d;

1 16.0000 1 8.0000
2 1.0000 2 0.5000
3 0.1975 3 0.09875
D = 46.4632 D = 56.2629

1-25 (a) By use of the logarithmic form of Eq. (1-58) and a variety of choices of b,/d, (or D), show
that for a given mixture and a fixed value for (N — 1), a family of parallel straight lines is obtained.

(b) Show that the ratio of each b;/d; found in part (b) of Prob. 1-24 to the corresponding value
found in part (a) is equal to 0.5.
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CHAPTER

TWO

DEVELOPMENT AND APPLICATION OF
THE THETA METHOD OF CONVERGENCE TO
CONVENTIONAL DISTILLATION COLUMNS

Three general methods for solving distillation problems are presented in this
book. The first of these, called the “# method of convergence” (Refs. 11, 12) is
recommended for solving problems involving any type of distillation column;
provided that the mixtures do not deviaie too widely from ideal solutions. For
such columns, the 6 method is one of the fastest known methods (Refs. 2, 3). For
columns which do not have both a reboiler and an overhead condenser, such as
absorbers and reboiled absorbers, the 2N Newton-Raphson method is recom-
mended for separations which either form ideal solutions or do not deviate
widely from them. If the mixture to be separated forms an ideal solution, the 2N
Newton-Raphson method constitutes an exact application of the Newton-
Raphson method. The convergence characteristics of the Newton-Raphson
method are presented in App. A. For solving problems involving any type of
column in the service of separating highly nonideal solutions, the third method,
called the “Almost Band Algorithm,” is recommended. The 2N Newton-
Raphson method is presented in Chap. 4 and the Almost Band Algorithm is
presented in Chap. 5.

In this chapter, the 6 method is developed and applied to conventional
distillation columns. In Sec. 2-1, the equations required to describe conventional
distillation columns are presented. The formulation and application of the 6
method of convergence, the K, method for computing temperatures, and the
constant-composition method for solving the enthalpy balances for the total-flow
rates are presented in Sec. 2-2.

45
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2-1 EQUATIONS REQUIRED TO DESCRIBE
CONVENTIONAL DISTILLATION COLUMNS

A conventional distillation column is defined as one that has one feed and two
product streams, the distillate D and the bottoms B. Such a column has the same
configuration as the one shown in Fig. 1-5. First consider the case where the
following specifications are made for a column at steady-state operation: (1) the
number of plates in each section of the column, (2) the quantity, composition,
and thermal condition of the feed at the column pressure, (3) the type of over-
head condenser (total or partial), (4) the column pressure (or the pressure at a
given point in the column where the variation of the pressure throughout the
column is not negligible), (S), the reflux of ratio, L, /D, or V, or L,, and (6) the
temperature of the distillate or the total distillate rate. (The first three of these
are specifications of the geometry of the column and the feed, and the second
three are the specification of operating variables.) Steady-state operation means
that no process variable changes with time. For this set of operating conditions,
the problem is to find the compositions of the top and bottom products. The
set of equations required to represent such a system for all components
(i=1,2, ..., c)are as follows

Vi = Kj;x; (j=12...,N)
Equilibrium 2yi=1 (i=12...,N)
relationships | *=!
Yxp=1 (j=12..,N)
i=1
Vj+1)’j+1_i=ijji+DXDi U=1,2,---,f—2)
Material | Viyvpi+ Vevei= Ly X1 i+ DXy (21)
balances Vie1¥je1,i= Ljx;; — Bxp =f£f+1,...,N-1)

FX,~=DXD,~+BXB,'
[ VierHje1 = Lhy+ DHp+ Q¢ (j=1,2,...,f—2)

J
Enthalpy ,VsH;+ VeHp=L; (h; ,+DHyp+ Q,
balances |y H ., =Lh—Bhy+Qx (i=ff+1...,N—1)
FH=BhB+DHD+QC—QR

Inspection of this set of equations shows that they are a logical extension of
those stated in Chap. 1, Eq. (1-43), for the binary system. A schematic represen-
tation of the component-material balances is shown in Fig. 2-1. The behavior
assumed on the feed plate is demonstrated by model 2, which is shown in
Fig. 2-2.

The above enthalpy balances may be represented by the same enclosures
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Va ya:
Condenser
Accumulator
Uk DXp;
2 (Distillate)
| Lixy
‘ ) (Reflux)
Vil Yi+1iA Lix;i
Rt
J+1
\____\___\
FX;
' A j=f-1
(Feed)
Ve Le-r |,
j=f (Feed plate)

Vit Yj+Li

Reboiler
j=N
BXB;

(Bottoms)

Figure 2-1 Representation of the component-material balances given by Eq. (2-1). (Taken from
Holland: Introduction to the Fundamentals of Distillation, Proc. 4th Ann. Educ. Symp. Instrument Soc.
Am., Apr. 5-7, 1972, Wilmington, Delaware.)

f=1
. ? .
F)(i VFi Vei + v f—1,i
[ %
QFi + 21-1 i
< V&i ’
’\
f

Figure 2-2 Model 2 for the behavior of the feed plate. (Taken from Holland: Introduction to the
Fundamentals of Distillation, Proceedings of the Fourth Annual Education Symposium of the Instrument
Society of America, April 5-7, 1972, Wilmington, Delaware.)
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shown in Fig. 2-1. As in the case of the material balances for any one compo-
nent, the number of independent energy balances is equal to the number of stages
(J=1,2,..., N—1, N). In this case the total number of independent equations
is equal to N(2c + 3), as might be expected from the fact that an adiabatic flash
is represented by 2c + 3 equations.

For a column whose geometry [the total number of stages, the feed plate
locations, and the type of condenser (partial or total)] and feed have been
specified, the remaining variables to be specified are as follows:

Variable Number

Vapor and liquid mole fractions 2cN

Total-flow rates 2N

Temperatures N

Reboiler and condenser duties 2

Column pressure 1
N@2c+3)+3

Since the number of variables exceeds the number of equations by three, it is
necessary to fix three variables in order to obtain a solution to the N(2c + 3)
equations. For example, the distillate rate D, reflux rate L,, and the column
pressure may be specified.

When it is supposed that the vapor and liquid streams form ideal solutions,
the enthalpy per mole of vapor and the enthalpy per mole of liquid leaving plate
J are given by the following expressions (as shown in Chap. 14)

H;= Y H;y; (vapor)
i=1
c (2'2)
= Y hix;  (liquid)

where the enthalpy of each pure component i in the vapor and liquid streams
leaving plate j are represented by H ;i and hj;, respectively. These enthalpies are
of course evaluated at the temperature and pressure of plate j. The meaning of
H , depends upon the type of condenser employed. For a total condenser, D is
withdrawn from the accumulator as a liquid at its bubble-point temperature T,

at the column pressure, and y,; = x,; = X ;,;. Thus

L

Hp= ZhliXDi= hyixy;i=hy (2'3)
i=1 =1

For a partial condenser, D is withdrawn from the accumulator as a vapor at its
dew-point temperature T; at the column pressure, and y;; = Xp;. Thus

H,= ZHliXDi= ZHliyli=H1 (2'4)
i=1 i=1
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The enthalpy per mole of bottoms has double representation, hg and hy, that is,

hy= Zh,,,-x,ﬁ= hyixyi = hy (2-5)
i=1 =1

The symbols Q. and Q are used to denote the condenser and reboiler duties,

respectively. The condenser duty Q. is equal to the net amount of heat removed

per unit time by the condenser, and the reboiler duty Q, is equal to the net

amount of heat introduced to the reboiler per unit time.

A wide variety of numerical methods have been proposed for solving the
set of equations represented by Eq. (2-1). Two fundamentally different iterative
procedures have been proposed for solving these equations; namely the Lewis
and Matheson method!® and the Thiele and Geddes method.'* In the Lewis and
Matheson method, the terminal compositions {X ,;} and {x;} are taken to be the
independent variables, and in the Thiele and Geddes method, the temperatures
(the temperature of each stage) are taken to be the independent variables. Up
until about 1963, the Lewis and Matheson choice of independent variables was
used almost exclusively, and since then, the Thiele and Geddes choice of the
independent variables has become the most popular.

Merely the statement that the Thiele and Geddes choice of independent
variables (or the Thiele and Geddes method) has been employed to solve a
problem is not sufficient to describe the calculational procedure. In the solution
of a set of nonlinear equations by iterative techniques, the convergence or diver-
gence of a given calculational procedure depends not only upon the initial choice
of the independent variables but also upon the precise arrangement and order in
which each equation of the set is solved. Over a period of several years, the
author has investigated a variety of arrangements and combinations of the ex-
pressions given by Eq. (2-1). Of these, the calculational procedure described
below was found to converge for almost all problems involving distillation col-
umns. To achieve this result, it was necessary to include the 6 method of conver-
gence in the calculational procedure.

2-2 FORMULATION AND APPLICATION OF THE
0 METHOD OF CONVERGENCE, THE K, METHOD,
AND THE CONSTANT-COMPOSITION METHOD

The order of presentation of the topics in this section is the same order in which
the combined set of methods listed above are applied in the calculational
procedure. First, the component-material balances given by Eq.(2-1) are
restated in terms of the component-flow rates. The component-flow rates for the
liquid phase are eliminated from this set of equations by use of the equilibrium
relationships given by Eq. (2-1). Then the 6 method is presented. The 6 method
is used to compute an improved set of compositions on the basis of the most
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recent set of calculated values of the component-flow rates. The compositions so
obtained are used to compute a new set of temperatures by use of the K,
method. The new sets of compositions and temperatures are then used to com-
pute a new set of total flow rates by use of the constant-composition method for
solving the enthalpy balances. Numerical examples are used to demonstrate the
application of these methods.

Statement of the Component-Material Balances and
Equilibrium Relationships as a Tridiagonal Matrix Equation

Although the equations utilized in  this procedure differ in form from those
presented by Eq. (2-1), they are an equivalent independent set. In the case of
the component-material balances, a new set of variables—the component-flow
rates in the vapor and liquid phases—are introduced, namely,

vi=Vy; and l; = Lix;; (2-6)
Also, the flow rates of component i in the distillate and bottoms are repre-
sented by

d;=DX and  b; = Bxy (2-7)
and the flow rates of component i in the vapor and liquid parts of the feed by
Uri = Veyri and lpi = Lpxp; (2-8)

The equilibrium relationship yj;; = K;;x;; may be restated in an equivalent
form in terms of the component-flow rates v;; and I; as follows. First, observe
that through the use of Eq. (2-6), the expression yji = Kjixj; may be restated in
the form
l

Ll -
Jt Lj (2 9)

<
=

i K

=

or
L.ji = Sll and l =A

Jitj Jji Jji

vji (2-10)
where the absorption factor 4;; and the stripping factor S ;i are defined as follows
Aji = 1/Sji = Lj/(Kji VJ) (2'11)

Instead of enclosing the ends of the column and the respective plates in each
section of the column as demonstrated by Eq. (2-1) and Fig. 2-1, an equivalent
set of component-material balances is obtained by enclosing each stage
(=12 .. ,N-1, N) by a component-material balance as demonstrated in
Fig. 2-3. The corresponding set of material balances for each component i are as
follows
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—lLi—di+0vy;=0
Lii = vy = L+ 03, =0
Loy i—vi—li+v,,:=0, (j=34,..,/-2)
Material lpoai—vpogi— oy it o= —vp (2-12)
balances
Ly i—vpi=li+ o= =l
Lovi—vi—li+041.:=0, (j=f+1,
S+2,..,N-1)
lN—l‘i_UNi_bi=0
k2
1,
Accumulator d
i=l
=2
A
]
Wisnio |4
F i+l
]
M—\_/—
j=f-1
in <~____‘__¢—
——
j=f
/\v,i <] ‘fi
J
I"iu.i qui
( T+
d———P
| ——— |
Q j=N-1

Figure 2-3 Representation of the component-material balances given by Eq. (2-12). (Taken from
Holland: An Introduction to the Fundamentals of Distillation, Proc. 4th Ann. Educ. Symp. Instrument
Soc. Am., Apr. 5-7, 1972, Wilmington, Delaware.)
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Except for the first expression of Eq. (2-12), the I;’s may be eliminated by use of
the equilibrium relationship, Eq. (2-11). For the case of a total condenser, I,; and
d; have the same composition, and thus

1 (Ll No
1i= > B — LU\ AR
D Nw«\m:;;:\*n

(2-13)

For a partial condenser, y,; = X, and hence y,; = K, x,; may be restated as

follows

or

where

DK ,;
DX = J)L,x“
L,

11.’ = Ay;d,

A= Ll/(KliD)

(2-14)

(2-15)

The expression given by Eq. (2-15) may be used to represent both a partial
condenser and a total condenser, provided that A,; is set equal to L, /D for a
total condenser.t Also, the form of Ay; differs slightly from that for A ji because
of the double representation of the reboiler by the subscripts N and B.
Thus, the equilibrium relationship yy; = Ky; xx; may be restated in the form

or

where

Ky Vi
Vayni = ( );; N)ani

b= Ayvy

Ay; = B/(Km V.v)

(2-16)

When the I;’s and b; are eliminated from Eq. (2-12) by use of Egs. (2-10),
(2-15), and (2-16), the following result is obtained

Material
balances

and

Equilibrium
relationships

—(Ayi + 1Md; + 03;=0
Ayid; — (Azi + 1oy + 03, =0

Ao iVjoa i — (Aj+ Doz + 0544, =0 G=3...

Apaitya i —(Apoy i+ Dopoy i+ 0= —vpy

A v = (Ap+ Dopi+opyy = =y

fij_ l‘ivj_l‘i - (AI' + l)Uj,‘ + Uj+1.i = 0

=f+L,f+2,...,N=1)

Av-1,i0n-1,i = (A + Doy =0

(2-17)

T This notation of convenience should not be taken to mean that K, = 1 for a total condenser.
For the boiling-point temperature, T; of the distillate leaving a total condenser is computed by use of

the equation

Z,Vn= l= ZKlinli
i=1

i=1
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This set of equations may be stated in the matrix form

Aivi=—/i (2-18)
where
—P1i 1 0 0 0
All —Pai 1 0 0
A= 0 0 Ar o —Pr-v.i 1 0 0 0
0 0 A;_yi Pri 1 0 0
0 0 AN—Z i —pN—l i 1
Y 0 0 Anv_ —Pni
vi=[di Ui U3; *°" Uy g, Vg """ Unoq UN.']T

=000 00 1,;0--00]"
pii=(1+ Ay)

The remainder of the development of the calculational procedure is ordered
in the same sequence in which the calculations are carried out. The calculational
procedure is initiated by the assumption of a set of temperatures {T;} and a set of
vapor rates {V;} from which the corresponding set of liquid rates {L ;1 is found by
use of the total material balances presented below. This particular choice of
independent variables was first proposed by Thiele and Geddes.!* On the basis
of the assumed temperatures and total-flow rates, the absorption factors {4}
appearing in Eq. (2-18) may be evaluated for component i on each plate j. Since
matrix A; in Eq. (2-18) is of tridiagonal form, this matrix equation may be solved
for the calculated values of the vapor rates for component i [denoted by (v)i)ca)
by use of the Thomas algorithm* which follows. Consider the following set of
linear equations in the variables x,, x,, ..., Xy_,, xy Whose coefficients form a
tridiagonal matrix.

byxy + ¢y x; =d,
ayxy +byx;, + cyx3=4d,

a3Xx; + b3x3 + c3x, = dy
(2-19)

an-1Xn-2 + by xy_y + oy xy=dy_,

ayxy_1 +byxy=dy
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These equations may be solved by use of the following recurrence formulas,
which are applied in the order stated

fi=cy /b g, =d,; /b,

. Cy
=% (k=23 .,N-1
Y ( ) (2-20)

dy — &g
=" k=23...,N
gk bk _ ak /;‘_1 ( )
After the f’s and g’s have been computed, the values of xy, xy_y, ..., X3, X, are
computed as follows

XN =GN

2-21
xk=gk—f,x,‘+l (k=N_1,N_2,...,2,1) ( )

The development of the recurrence formulas is outlined in Prob. 2-3. An
improved form of these expressions was recently proposed by Boston and
Sullivan.! For the special case of a conventional distillation column in which
model 2 (see Fig. 2-2) for the feed plate is assumed, the procedure proposed by
Boston and Sullivan (see Prob. 2-3) may be used.to reduce the above formulas
to the following form

1
f1=—-— m1—1+A1,

my

m
fz=—m_1 my = Aym; + 1

M-y
ﬁ:—T mk=Akl'mk—l+1 (k=2,3,...,N_1)

k
(2-22)

91=92="'=gf—2=0

nlf_z

gdr-1= Uri
ms_,

mg

gr=(r+A;_y:97-1)

My
k= Ak-1.i9k-1
my

k=f+1,f+2,..,N)

Again, after the f’s and g’s have been computed, the values of xy, xy_1, ---, X3,
x, are computed by use of Eq. (2-21).

After the recurrence formulas have been applied for each component i and
the set of component vapor rates {(v;;).,} have been found, the corresponding set
of liquid rates {(I;;)..} are then found by use of Eq. (2-10). These sets of calculated
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.

flow rates are used in conjunction with the 0 method of convergence and the K,
method in the determination of an improved set of temperatures.

Formulation of the § Method of Convergence

In this application of the 6 method of convergence, it is used to weight the mole
fractions which are employed in the K, method for computing a new tempera-
ture profile. The corrected product rates are used as weight factors in the calcu-
lation of improved sets of mole fractions. The corrected terminal rates are
selected such that they are both in overall component-material balance and in
agreement with the specified value of D, that is,

FX;=(d). + (b)c (2-23)

and

¥ (@)= D 2:24)

These two conditions may be satisfied simultaneously by suitable choice cf the
multiplier 6, which is defined by

(%L=4%L (2-25)

(The subscripts co and ca are used throughout this discussion to distinguish
between the corrected and calculated values of a variable, respectively.) Elimina-
tion of (b; /d;)., from Egs. (2-23) and (2-25) yields the formula for (d;),,, namely,

FX;
d)ey =7 2-26
( e 1 + g(bi/di)ca ( )
Since the specified values of (d;)., are to have a sum equal to the specified value
of D, the desired value of 6 is that > 0 that makes g(6) = 0, where

90)= % () =D -21)

A graph of this function for 8 > 0 is shown in Fig. 2-4.
In the determination of 8 by Newton’s method, the following formula for the
first derivative, g'(f), is needed

, _ < (bi/di)caFXi

After the desired value of 6 has been obtained, (b;)., may be computed by use of
Eq. (2-25). (Note, Newton’s method converges to the positive root of g(6),
provided 6 = 0 is taken to be the first trial value; see Prob. 2-11). For the case
where the dew-point temperature of the distillate is specified instead of the
distillate rate D, the g function has the form shown in Prob. 2-13.

(2-28)
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g(6)

0.0 0,

0

Figure 2-4 Geometrical Representation of the function g(0) in the neighborhood of the positive
root 6.

The corrected mole fractions for the liquid and vapor phases are computed
as follows

T i)l
T oulduld

The development of these formulas as well as the proof of the fact that they are
consistent with the definition of 6 is left as an exercise for the student (see
Prob. 2-15).

ji

(2-29)

Determination of a Set of Improved Temperatures
by Use of the K, Method

On the basis of the mole fractions given by Eq. (2-29) and the last temperature
profile (the one assumed to make the nth trial), the new temperature profile is
found by use of the K, method!? in the following manner. For any plate j,
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Eq. (1-21) or (1-22) may be applied as follows

(2-30)

where a;; = Kj; /K, the relative volatility of component i at the temperature of
plate j. The quantity K, is the K value of the base component, evaluated at the
temperature of plate j.

It can be shown that the x;;’s and y;’s defined by Eq. (2-29) form a consis-
tent set in that they give the same value of K, (see Prob. 2-7). Component b
represents a hypothetical base component whose K value is given by

InKj=— +b (2-31)

Hi=

where the constants a and b are evaluated on the basis of the values of K at the
upper and lower limits of the curve fits of the midboiling component of the
mixture or one just lighter. Thus, after K; has been computed by use of
Eq. (2-30), the temperature T; ., to be assumed for the next trial is calculated
directly by use of Eq. (2-31).

The corrected compositions and the new temperatures are used in the
enthalpy balances to determine the total flow rates to be used for the next trial
through the column.

Determination of a Set of Improved Total-Flow Rates
by Use of the Constant-Composition Method

In the constant-composition method, one of the total-flow rates (V; or L)) is
eliminated from the enthalpy balance given by Eq. (2-1) for each stage by use of
the component-material balances for the respective stage. The restatement of the
enthalpy balances given by Eq. (2-1) in the form called the constant-composition
method may be initiated by first observing that

ViH; = Vj;Hﬂyﬁ = .ngiiUii

and

c c

Ljhy=L;} hjx;; = .Zl hjilj;

i=1

Use of relationships of this type permits the enthalpy balance to be restated in
terms of the component-flow rates. For example, the enthalpy balance enclosing
plate j

VierHjon —Lh;—DH,— Qc=0  (j=1,2,...,f-2) (2-32)
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may be restated in terms of the component-flow rates as follows

Z [Hj+ LiVieri— bl — Hyd]—Qc=0 (2-33)

i=1
where H, = h,; for a distillation column having a total condenser and,
H, = H,; for a distillation column having a partial condenser. When the
component-material balance enclosing plate j [see Eq. (2-12)]

Vivr.i= i+ d; U=12..1-2)

is used to eliminate v;,, ; from Eq. (2-33), the following result is obtained

Z [(Hj+ O hjl')lji + (Hj+ i~ Hl)i)di] —Q0¢=0
i=1

or

<

LjZ(Hj+l.i_hji)xji+DZ(Hj+I.i_ l):) pi—Qc=0
i=1

The desired expression for calculating L; is then given by

<

Q(‘—DZ(Hj+1.i—HDi)XI)i
L;= =l =12..,1=-2) (2-34)

J <
Z i )"ji

Similarly
Qc— (Hf. —Hp)X i+ Ve Z (Hf. Hp)yp
L, ,= i - (2-35)
.Zl(Hfi —hpoy xpoq

llMa

and
Qc= LIZ(HZi_hli)xli+DZ(H2i_HDi)XDi (2-36)
i=1

i=1

The flow rates in the stripping section may be determined by use of the
enthalpy balances which enclose either the top or the bottom of the column and
the given plate. When the reboiler is enclosed, the following formula is obtained

Z h‘ll xB(
V,-“— — G=ff+1,...,N-1) (2-37)
Z(Hjﬂ,i—hﬁ)ijrL.-
i=1

This expression is developed in a manner analogous to that demonstrated above
for Eq. (2-34). The above formulas are given the name “constant—composition
method” because each of the summations appearing in Egs. (2-34) through
(2-37) may be represented by a thermodynamic process which occurs at constant
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composition. The reboiler duty Q is found by use of the overall enthalpy
balance [the last expression given by Eq. (2-1)].

The total-flow rates of the vapor and liquid streams are related by the
following total material balances

Vieo=L;+D (=1L2.../-2)
Vi+ Vi=L, ,+D
L=V, +B G=hf+1,...N=1)
F=D+B

After the L}’s for the rectifying section and the V;'s for the stripping section have
been determined by use of the enthalpy balances, the remaining total-flow rates
are found by use of Eq. (2-38). These most recent sets of values of the variables
{T.ns1)s {Vinsr)» and {L; ..} are used to make the next trial through the
column. The procedure described is repeated until values of the desired accuracy
have been obtained. A summary of the steps of the proposed calculational
procedure follow.

(2-38)

Calculational Procedure for Ideal Solutions

1. Assume a set of temperatures {T;} and a set of vapor rates {V;}. [The set of
liquid rates corresponding to the set of assumed vapor rates are found by use
of the total-material balances; see Eq. (2-38)].

2. On the basis of the temperatures and flow rates assumed in step 1, compute
the component-flow rates by use of Egs. (2-18) through (2-21) [or (2-22)] for
each component i.

3. Find the 6 > 0 that makes g(6) = 0; see Egs. (2-26) through (2-28). (Newton’s
method* always converges to the desired 6, provided that the first assumed
value of 0 is taken to be equal to zero.)

4. Use Eq. (2-29) to compute the corrected x;’s or y;’s for each component i
and plate j.

5. Use the results of step 4 to compute the K, for each stage j by use of either one
of the expressions given by Eq. (2-30). Use the K;’s so obtained to compute a
new set of temperatures {T; ,.,} by use of Eq. (2-31).

6. Use the results of steps 4 and 5 to compute new sets of total-flow rates,
{Vj.n+1} and {L; ..}, by use of Eqs. (2-34) through (2-38).

7. 1f 0, the Tjs, and Vs are within the prescribed tolerances, convergence has
been achieved; otherwise, repeat steps 2 through 6 on the basis of the most
recent set of T;’s and V}’s.

In the above calculational procedure, it is supposed that the pressure drop
from plate to plate is negligible relative to the total pressure. If this assumption
is not valid, the calculational procedure is modified as described in Sec. 2-4.

The solution of the component-material balances and equilibrium relation-
ships by use of the above recurrence formulas is demonstrated by the following
numerical example.
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Overhead vapor, V, =100

Condenser

=1

i=2 Distillate

F=100

L3=|50

V4=lOO

Reboiler
j=N=4

Bottoms

B=50

Figure 2-5 Flow diagram for Example 2-1.

Example 2-1 (a) On the basis of the initial set of temperatures (T, = T, =
T; = T, = 560°R) and the total-flow rates displayed in Fig. 2-5, solve
Eq. (2-18) for the component-flow rates by use of the above recurrence
formulas given by Egs. (2-20) and (2-21). (b) Repeat (a) by use of the recur-
rence formulas given by Egs. (2-22) and (2-21).

K;=Cexp (-E;/Tt)

Component X; C, E; Specifications

1/3 4 x 103/Pf 4.6447 x 10° Total condenser, P = 1 atm, boiling point
2 1/3 8 x 10%/P 4.6447 x 103 liquid feed (I;;=FX;), N=4, =3,
1/3 12 x 103/P  4.6447 x 10° F=100lbmol/h,D=L,=L,=501b
mol/h, Ly =150 1b mol/h, V, =V, =
V, = 100 1b mol/h

+ Tisin °R.
i Pis in atm.
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SOLUTION (a) Use of Egs. (2-20) and (2-21) The correspondence of the
symbols in the recurrence formulas and the elements of A; and # follow

by=—(4,;+1) cy =1 d =0
a, = Ay; b, = —(43 + 1) =1 d;=0
a3=A2‘- b3=—(A3‘+1) C3:1 d3="FX
a,=Ay;  by=—(445+1) d,=0
Calculation of the A;’s follows
KZi' KJ(" K4|'
L, (@ 560°R L, L, 3
=1 . A, = =
Component  A1:=7"  4nd 1atm R A T
1 1 1 1/2 32
2 1 2 1/4 3/4
3 1 3 1/6 1/2
C t A= B = !
omponen AT
1 1/2
2 1/4
3 1/6

Application of the recurrence formulas for tridiagonal

matrix equations

follows:
Component b, < d, a, b, c, d, a, b,
1 -2 1 0 1 —15000 1 0 050000 25
2 -2 1 0 1 —1.25000 1 0 0.25000 -1.75
3 -2 1 0 1 —1.16667 1 0 0.16667 —-15
€1
Component c; dy a, b, e fHi=— g, a, f,
1
1 1 —33.33333 1.5 —1.50000 0 —-0.5 0 -0.5
2 1 —33.33333 0.75 —1.25000 0 —-0.5 0 -0.5
3 1 —33.33333 0.5 —1.16667 0 -0.5 0 =05
- c d,—a
Compo b, —a /i fz=*—z-*— d; —ayg, .‘12=—2—L«l asf, by —a3 f; a;
nent b, —ay f; b, —as f;
1 —1.00000 —1.00000 0 0 —0.50000 —2.00000 O
2 —0.75000 —1.33333 0 0 —0.33333 —1.41667 0
3 —0.66667 —1.50000 0 0 —0.25000 —1.25000 O
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c dy —a,g
Com t - = 2 =2 372 b, —
ponen dy—ayg, fs b —a, 93 by—a, f, a, fs s~ aq
1 —3333333  —0.50000 16.6667 —0.75000  —0.75000
2 —33.33333  —0.70588 23.52941 —0.52941  —0.72059
3 —33.33333  —0.80000 26.66667 —0.40000 —0.76667
d, —a,g,
Component  a,g, dy  x,=¢,=— A X3 =g3 ~ [3X,
by —as fs
1 2499999 0 33.33333 —16.66667  33.33333
2 17.64706 0 2448974 —17.28687  40.81629
3 1333333 0 17.39131 —1391305  40.57914
(Note: v,; = x,) (v3; = x3)
Component  x, =g, —fx; X, =g, ~fix, b=Auv,; b/d
1 33.33333 16.66667 16.66667 1.000000
2 54.42162 27.21087 6.12243 0.225000
3 60.86956 30.43477 2.89855 0.095238
(r2i=x;) (d;=x,)

(b) Use of Egs. (2-22) and (2-21)

C - 1 m
‘neonTpo Ay mp=A;+1 fi= _;1: Ay Aymy my=A;m +1 fo= _m‘:
1 1 2 -1/2 12 1 2 -1

2 1 2 -1/2 1/4 172 32 —4/3

3 12 ~12 6 13 43 -3n
Compo- m

nent P Ayi Aymy my=Aymy+1 fy=~ ;f Ay Agmy mg=Agmy + 1
1 32 3 4 -1/2 12 2 3

2 3/4 9/8 17/8 —12/17 1/4 17/32  49/32

3 12 2/3 5/3 —4/5 1/6 5/18 23/18

g1 =0, and since vr; =0, g, =0, and I; = FX;.

m, my m,
Component g, =FX,—  Ayg; — Vgi = X4 =G4 = A3i03 —
my m, mg,
1 16.66666 24.99999 1.333333 33.33333
2 23.52941 17.647057 1.387755 24.48978
3 26.66666 13.33333 1.304347 17.39130
Compo-
nent fix, Vy=X3=g3—f3X4 Vu=Xy=g,—foxs di=x;=g,—fix;
1 —16.66666 33.33333 33.33333 16.66666
2 —1728690 40.81631 54.42175 27.21087
3 —1391304 40.57970 60.86956 30.43478
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The tridiagonal formulation of the component-material balances and equilib-
rium relationships is generally preferred in computer applications because the
method is readily applied to other types of columns such as complex distillation
columns as shown in Chap. 3. However, for making calculations for conven-
tional distillation columns by hand, the use of nesting equations as originally
suggested by Thiele and Geddes'* is generally the most convenient method
to use.

Solution of the Component-Material Balances and
Equilibrium Relationships by Use of Nesting Equations

The nesting equations are obtained by first restating those given by Eq. (2-1)
in terms of the component-flow rates as follows

Viyq,i =l +d; =L2../=-2)
Vit v =1t d; (2-39)
Vigg,i =l —b; =ff+1,..,N-1)
FX,=d;+ b;

Elimination of [;; from the first expression of Eq. (2-39) by means of the equilib-
rium relationship I;; = 4;;v; [Eq. (2-10)] yields the following expression upon
rearrangement

v

ekl Aj,.(%) +1 (2-40)

for j=2,3,...,f— 1. For j=1 (the condenser-accumulator section) and for a
total condenser, the first expression of Eq. (2-39) becomes

vai _ L 1 _ Lyxy;
d

= 1= 41 241
) DX, "D T (2-41)

since x;; = Xp;.
For a partial condenser, y,; = X p;, y;; = Ky;x; or l,;; = A,;d;, and the first
expression of Eq. (2-39) reduces to

%= All'+ 1 (2-42)

where 4,; = L, /K,;D. By use of Eq. (2-41) or (2-42) and Eq. (2-40), the nesting
calculations are initiated at the top of the column and continued down toward
the feed plate. For the case of boiling-point liquid and subcooled feeds, the
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nesting calculations are discontinued as soon as v;/d; has been obtained. For
the case of dew-point vapor and superheated feeds, the nesting calculations are
discontinued as soon as I,_; ;/d; has been obtained. (An expression for the
calculation of b,/d; for a feed of any thermal condition is developed below.)

The nesting equations for the stripping section are initiated at the reboiler.
Since yn; = Kyixn = KniXg Of vy; = Sy;b;, the last expression of Eq. (2-39)
reduces to

In—1i  [Swi
bt VLY (od T RIS T I | 2-43
- (bi )b +1=Sy+ (2-43)

where Sy; = Ky; Vv/B). After a number value has been obtained for Iy_, ;/b;, it
is used to compute Iy_, ;/b; by use of the following equation which is obtained
by eliminating v;, , ;/b; from next the last expression of Eq. (2-39) by use of the
equilibrium relationship v; = Sj;[;;, that is,

%:Sin,i(!%)%i)*‘ 1 (2-44)

which holds for j=f, f+1,..., N —2. After I;;/b; has been computed, the
nesting calculations are ceased and the quantity v, /b; is computed by use of the
equilibrium relationship, namely,

Vi _ o (ki
m‘”{b)

For the case of a boiling-point liquid or subcooled feed, vy; =0, I; = FX;,
and hence the moles of vapor entering plate f — 1 is equal to the moles of vapor
leaving plate j. Thus, b;/d; may be computed from the number values found for
vyi/d; and vy, /b; as follows

b; _ Vsi/d;
Z‘ B vyi/bi (2:43)

Next, the overall component-material balance of Eq. (2-39) may be solved for d;
in terms of b;/d; in the following manner

FX; (2-46)

FX;=d{(1 ;/d; P tieial S
=dl+bJd) and =gty

After d; has been obtained, the complete set of component-flow rates {bi, vji, i}
may be obtained from previously calculated results in an obvious manner.
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For the general case of a partially vaporized feed, the expression for comput-
ing b;/d; is obtained by commencing with the second expression of Eq. (2-39)
and rearranging it to give

m _lz_' Upi FX; _lf—l‘i
(bi)(di)+(FXi)( d, )— d; +1 (2-47)
Since
Uri _ L FX; E
Fx, ' TFx, W Ty

Eq. (2-47) may be solved for b;/d; to give

& _ (Ij'—l,l'/di) + (ll'l/FXl)

di (vi/b) + (Vi /FX) (2-48)

When the appropriate values for I;; and v,; are employed, Eq. (2-48) may be
used to calculate b;/d; for a feed of any thermal condition. For bubble-point
liquid and subcooled feeds, I, = FFX; and v;; =0. For feeds that enter the
column as dew-point and superheated vapors, v,; = FX; and I, = 0.

Example 2-2 Use the above nesting equations to solve Example 2-1 for the
component-flow rates.

SoruTioN 1. Calculations for the Rectifying Section

Compo- L, ta_ Ly +1 K,; @ 560°F 4, = L, li‘zAzl,(L“) v_3=b ‘1

nent D d, D and 1 atm K,.V, d; d; d, d,

1 10 20 10 0.5 10 20

2 10 20 20 0.25 0.5 1.5

3 10 20 30 0.1666667 0.33333333 1.33333333
2. Calculations for the Stripping Section

Compo- K,; @ 560°R S, = K.V, I =S, +1 K;; @ 560°R — KsiVs i =S 1_3.'

nent and | atm 4“7 B b, ¥ and 1 atm WL, b

1 1.0 20 30 10 0.6666666 1.999999

2 20 40 5.0 20 1.3333333 6.666666

3 30 6.0 70 30 1.9999999 13.999999
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oy FX,

Component [ﬁ = Lai/d d; = .
d;  vy/b; 1+ b,/d,

1 1.000000 16.66666

2 0.225000 27.21088

3 0.095238 30.43478

74.31232

The next illustrative example is presented for the purpose of demonstrating
the determination of a corrected set of mole fractions by use of the 6 method of
convergence as indicated by step 2 of the proposed calculational procedure.

Example 2-3 On the basis of the calculated set of values for b, /d; which were
found in Example 2-2, find the 6 that makes g(0) = 0 by use of Newton’s

method [see Eqs. (2-25) through (2-28)].

SOLUTION Determination of 0 by Use of Newton’s Method

Trial 1. Assume 6; =0

Compo- 5 ll P_x _ FX; FX, FX(b;/d).,
nent (di )u o (di ". o (di )a @ = b; b, ? b, :
”0‘(,7.) ”9‘(1) J 1+o,(;) J
1 1 0 1 33.33333 3333333 33.33333
2 0225 0 1 33.33333 33.33333 7.49999
3 0095233 0 1 33.33333 33.33333 3.17459
100.00000 3400791
< d FXi(bi/di)ca
g 9) = d'. o — D g' 0) = — N1 vea |
€)= 2, O= -2 T op/a)r
Therefore, g(f) = 100 — 50 = 50, g'(8) = —44.00791
Then by Newton's method
9(9:) 50
0,=0, — =00 -———— =1.13616
N gy) (—44.00791)
Trial 2. Assume 0, = 1.13616
b, b, b, FX, FX, FX (bi/d)..
como (5], 0(G), o) @n-— T T e T
nent 1+ez(d—‘) [1+01(;{-‘) J [1 “’2(2) J
1 1 113616  2.13616 15.60432 7.30485 7.30485
2 0225 025564 1.25564 26.54688 2114211 475697
3 0095238 0.10821  1.10821 3007853 27.14154 2.58490
7222973 1464672
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<

Y (d)., = 7222973 g'(0,) = —14.64672 9(0,) = 22.22973

i=1
Then by Newton’s method

9(0,) 22.22973
=52 = 113616 — ——" "2 — )
2 4(0,) (—14.64672) 265389

Continuation of this process gives a 0 = 3.687276 for which [9(0)| < 0.0001.

0,=0

The solution value of 6 found in Example 2-3 is used to compute the cor-
rected compositions. Then these compositions are used in the K, method to
compute a new set of temperatures as demonstrated below.

Example 24 Use the 6 found in Example 2-3 to compute the corrected
compositions for plates 2 and 3. Then determine the new temperatures T;,
T,,and T;.

Compo- lﬁ) (5) _ FX; _ % oy (@ x
nent o(d,- . 1+6 4., ) = —“‘bi X i D S60°R %y pi
1+ 0(_)
dt’ ca
1 3.68728 4.68728 7.11145 0.14223 1 0.14223
2 0.82964 1.82964 18.21854 0.36437 2 0.72874
3 035117  1.35117 24.67001 0.49340 3 1.48020
50.00000 2.35117
1
Kyp=— = = 042532 = C, exp (—E,/T,)
235117
Z oy X pi
i=1
Thus
E, 4.6447 x 10°

= 507.68°R = 47.68°F

T = =
'"InG,/K,, In (40 x 10%)/(0.42532)

To calculate the y,,’s, the values of the v;’s and d;’s found in Example 2-1 are
used to obtain the (vj;/d;)'s, and then these ratios are multiplied by the
(d;).o’s found above.

Component (%) (d)eo ;=M :&SL; Yai (Kdﬂ) (d:)o
i/ca & V@i /ca
Z (v2:/d)ca(d:)co :
i=1
1 14.22290 0.14223 1 0.14223 14.2229
2 36.43709 0.36437 2 0.18219  27.3278
3 49.34002 0.49340 3 0.16447 32.8933

100.00001 0.48889  74.4440
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Kyp= Y 22 = 048889 = C, exp (~E,/T,)

=1 %2
E, 46447 x 10°
=10 C,/Ky ~ In (40 x 10%)/(0.43889)

= 515.52°R = 55.52°F

Component v (v3:/d:)cald;)., oy @ Yai

om W -

Yi= SR a,,

Z (v3:/d))cald;)co :

i=1

1 0.19105 1 0.19105
2 0.36709 2 0.18355
3 0.44185 3 0.14728
0.52188

<

Ky= Y ¥ = 052188 = C, exp (~E,/Ty)

i=1 ¥X3;
_E 4.6447 x 103
InGy/Ky,  In (40 x 10°)/(0.52188)

= 519.29°R = 59.29°F

T;

Example 2-5 Use the compositions and temperatures found in Examples 2-3
and 2-4 and the enthalpy functions given in Example 1-5 to compute Q, L,,
and V.

SOLUTION (a) For a total condenser: hii=Hp, xi=Xpi, Y2i= X e
Calculation of Q.

Qc=1L, Z (Hy; — hy)xy; + D Z (Hzi — Hp)X i
R i=1

i=1

=(L, + D)i (Hyi = hi)X

Compo- H:; hy; @ H; @ hy; (@

nent SSSNF 4768°F  Hy—hy,  (Hy— h)X, S929°F  55.52°F

1 18.665.60 11,430.40 7235.20 1029.06 18,778.7 11,665.60

2 14.110.40 8,953.60 5156.80 1878.98 14,185.8 9,110.40

3 83372 547.68 307.84 _151.89 859.29 555.52
3059.93

Qc = (100)(3059.93) = 305,993 Btu/h
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Calculation of L,

Qc— D’i (Hyi - hn)xm,
L,= i=1

Z (Hyi — hyi)x2;
i=1

(12:/d))caldi).o

1.
Component (f) (d)e  x3= (Hy—hy)  (Hy—h )X Hy— by,

" Y (li/d)).(dy).,
i=1
1 7.11145 0.290927 7348.30 1045.15 7113.10
2 9.10927 0.372657 523220 1906.46 5075.40
3 8.22336 0.336415 311.61 1 53.73 303.77
24.44408 3105.36

Component  (Hy; — hy;)x,;

1 2069.39
1891.38
3 102.19
406296

Thus

L. (=50)[3105.36] + 305,993
- [4062.96]

= 37.10 Ib mol/h

Then
Vy=L,+ D =87.10 Ib mol/h

Example 2-6 Repeat the iterative procedure demonstrated by Examples 2-1
through 2-5 until convergence has been achieved. The column has a total
condenser, P = 1 atm, boiling-point liquid feed, N = 4, f'= 3, the feed com-
position {X;} is given in Example 2-1, F =100, L, =D =50 1b mol/h.
The K data are given in Example 2-1 and the enthalpy data are given in
Example 1-5.

SoLuTION The convergence characteristics of the proposed calculational
procedure and final results obtained for this example are shown in Table 2-1.
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Table 2-1 Solution of Example 2-6 by use of the 6 method, K, method,
and the constant-composition for making enthalpy balances

Calculated values of the temperature, °F

Trial
Stage 1 2 3 4 5 6
1 47.67480 47.57593 47.64648 47.68652 47.70581 47.71484
2 55.52295 55.35938 55.48169 55.55078 55.58423 55.59985
3 59.28833 60.60938 60.54272 60.50366 60.48169 60.46973
4 68.15991 68.31323 68.20361 68.14209 68.11208 68.09814
D 74.31046 49.53528 50.02797 50.01648 50.00912 50.00485
(calcu-
lated)
0 3.686828 0.9772162 1.001385 1.000813 1.000451 1.000240
Calculated values of the temperature, °F
Trial
Stage 7 8 9 10 11 12
1 47.71924 47.72119 47.72217 47.72241 47.72266 47.72266
2 55.60718 55.61060 55.61279 55.61279 55.61328 5561328
3 60.46313 60.45972 60.45801 60.45728 60.45679 60.45654
4 68.09155 68.08862 68.08716 68.08643 68.08618 68.08618
D 50.00258 50.00131 50.00060 50.00290 50.00014 50.00005
(calcu-
lated)
0 1.000128 1.000063 1.000031 1.000014 1.000008 1.000004
Final flow rates
Component b d
1 26.15640 7.176938
2 15.14437 18.18893
3 8.699208 2463411

2-3 CONVERGENCE CHARACTERISTICS OF
THE 6 METHOD OF CONVERGENCE, THE K, METHOD,
AND THE CONSTANT-COMPOSITION METHOD

The 6 method of convergence may be classified as an iterative procedure, and the
success of such a method depends upon the proper arrangement of all equations
involved in the entire calculational procedure. The complete calculational
procedure was developed by trial by finding what appeared to be the best form
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for all equations. In particular, it was found that the method was most stable
when the temperatures were determined by the K, method and the total-flow
rates by the constant-composition method. The use of other procedures for the
determination of either the temperatures or the total-flow rates caused some
problems to diverge which could be solved by use of the K, method and the
constant-composition method as discussed below.

In summary, it was found that if the combination of the 0 method of conver-
gence, the K, method, and the constant-composition method were used, conver-
gence of almost all problems involving conventional and complex columns as
well as systems of distillation columns could be achieved. This combination of
calculational procedures is also one of the fastest known methods.?: 3

Although a proof of the convergence of the combination of the 0 method, K,
method, and constant-composition method cannot be constructed, it can be
shown (and is shown below) that the 6 method constitutes an exact solution to
certain total reflux problems.

To illustrate the characteristics of the combination of these three calcula-
tional procedures, Example 2-7 was selected. The statement of this example is
presented in Table 2-2. The temperature profiles obtained by use of the K,
method on the basis of the corrected compositions found by use of the § method
[Eqgs. (2-27) and (2-28)] are presented in Table 2-3. The constants a and b in the
expression for K, [Eq. (2-31)] were found by use of the K values for i-C,H 4 at
510 and 960°R. The values of 6 and the calculated values of D at the end of
each trial are also listed in this table. The vapor rates computed by use of the
constant-composition method, the temperatures found by the K, method, and
the corrected compositions are presented in Table 2-4. The solution sets {d;} and
{b;} are presented in Table 2-5. To satisfy the convergence criterion, twelve trials
were required and 2.60 seconds of computer time on an AMDAHL 470 V/6
computer using a WATFIV compiler.

Table 2-2 Statement of Example 2-7

Compo-
nent FX,; Specifications

CH, 20 D =316, ¥, =948 (all flow rates are in Ib mol/h) boiling-point liquid feed,
C,Hg 100 partial condenser, column pressure = 300 lb/in? abs, N = 12 and f=5
C;Hq 6.0 Equilibrium and enthalpy data for all components are given in Tables B-1

C;H, 12.5 and B-2 of the Appendix. The initial temperature profile is to be taken _lix}e.ar
i-C,H,, 35 with plate number between T; = 610°R and T,; = 910°R. Take the mlflal
n-CH, 150 vapor rate profiles to be V; =948 (j = 2,3, ..., 13), and the corresponding

n-CsHy, 152 liquid rate profile is given by material balance. Component i-C,Ho was
n-CeHyy 113 taken as the base component and a and b in Eq. (2-30) were determined on
n-C.H;s 90 the basis of the values for the K of i-C4H,, at 510 and 960°R.

n-CgH,, 85

400+ 7.0

+ Commonly referred to as the 400°F—normal boiling fraction.



72 FUNDAMENTALS OF MULTICOMPONENT DISTILLATION

Table 2-3 Temperature profiles, theta, and calculated values of D

Temperature profiles (°R)

Trial
Stage 1 2 3 4 5 6
1 (distil- 573.59 567.84 567.56 567.56 567.56 567.57
late)
2 596.60 590.67 594.54 594.13 594.42 594.33
3 607.01 606.81 612.61 611.63 611.99 611.89
4 612.65 627.85 631.10 62991 630.26 630.25
5 (feed) 617.02 695.72 658.24 670.53 665.95 668.04
6 647.02 709.68 681.56 691.68 687.53 689.20
7 670.05 71792 697.73 705.76 702.37 703.69
8 689.59 724.20 709.70 716.11 713.40 714.46
9 707.47 730.07 719.35 72447 722.32 723.17
10 72593 737.58 72894 73296 731.25 731.92
11 741.73 749.93 74209 745.17 743.78 744.32
12 77147 774.19 766.54 768.84 761.70 768.13
13 (bottoms)  833.68 83341 825.47 82721 826.36 826.68
D (calcu- 41.5475 30.4606 323414 31.37940 31.6940 31.5598
lated)
[’} 22.4131 0.303676 2.34622 0.835224 1.07461 0.968934
Temperature profiles (°R)
Trial
Stage 7 8 9 10 11 12
1 (distil- 567.57 567.57 567.57 567.57 567.57 567.57
late)
2 594.38 594.36 594.37 594.37 594.37 594.37
3 61195 61192 611.93 611.93 61193 61193
4 630.27 630.26 630.27 630.27 630.27 630.26
5 (feed) 667.14 667.53 667.37 667.44 667.41 667.41
6 688.47 688.79 688.65 688.71 688.68 688.69
7 703.11 703.36 703.25 703.30 703.28 703.28
8 714.00 714.19 714.11 714.14 714.13 714.13
9 722.719 72295 722.88 72291 72290 722.90
10 731.63 731.75 731.70 731.72 731.71 73171
1 744.08 744.18 744.13 744.15 744.15 744.15
12 76794 768.02 767.99 768.00 767.99 768.00
13 (bottoms) 826.53 826.59 826.56 826.58 826.57 826.57
D (calcu- 31.6175 31.5925 31.6031 31.5986 31.60057 31.59977
lated)

0 101356 0.994182 1.00243 0.998940 1.00042 1.00000
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Table 2-4 Vapor rates obtained by the constant-composition
method for Example 2-7

Vapor rates (Ib-mol/h)

Trial

Stage 1 2 3 4 5 6

2 94.80 94.80 94.80 94.80 94.80 94.80
3 94.63 9323 93.06 93.29 93.29 93.29
4 94.13 88.11 89.31 89.41 89.45 89.41
5 93.13 72.10 82.71 79.25 80.51 7994
6 140.71 108.19 117.18 109.35 111.52 110.55
7 143.80 12543 129.81 125.40 126.79 126.13
8 146.69 137.24 138.81 136.34 137.20 136.78
9 148.52 145.60 145.39 144.16 144.60 144.38
10 148.03 150.07 149.13 148.83 148.94 148.87
11 144.63 150.08 149.09 149.59 149.43 149.50
12 137.74 143.88 142.75 143.97 143.60 143.77
13 120.86 123.86 122.24 123.93 123.33 123.60

Vapor rates (Ib mol/h)
Trial

Stage 7 8 9 10 11 12

2 94.80 94.80 94.80 94.80 94.80 94.80
3 93.29 93.29 93.29 93.29 93.29 93.29
4 89.41 89.41 89.42 89.42 89.42 89.42
5 80.18 80.08 80.12 80.10 80.11 80.11
6 110.92 110.75 110.82 110.79 110.81 110.80
7 126.36 126.25 126.29 126.24 126.28 126.27
8 13691 136.84 136.87 136.86 136.86 136.86
9 144.44 144.41 144.42 144.42 144.42 144.41
10 148.89 148.87 148.88 148.88 148.88 148.87
11 149.47 149.48 149.47 149.48 149.47 149.47
12 143.70 143.73 143.72 143.72 143.72 143.72
13 123.49 123.54 123.52 123.53 123.52 123.52

By solving a wide variety of examples it was found that the boiling range,
the thermal condition of the feed, the number of plates, the initial temperature,
and vapor rate profiles had no appreciable effect on the number of trials
required to achieve convergence. However, as the boiling range of the feed is
increased, it may become necessary to average the temperature profiles as well as
the vapor-rate profiles for successive trials.

The use of a component much lighter than the midboiling component of the
mixture can introduce significant overcorrections of the temperature profiles
while the use of a component much heavier than the midboiling component can
lead to undercorrections of the temperature profiles. The use of the midboiling
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Table 2-5 Solution sets of the component flow rates in
the distillate and bottoms of Example 2-7

Component d; b;

CH, 0.200000 x 10 0.11163 x 1078
C,Hq 0.99999%0 x 10 0.11627 x 10°3
C,3H¢ 0.597230 x 10 0.27665 x 10~ !
C,H, 0.1234600 x 10? 0.15358
iC,H,, 0.74216 027578 x 10
n-C,H,, 0.53699 0.14462 x 102
n-C;H,, 0.20153 x 102 0.15197 x 102
n-CH,, 0.94035 x 10~ 0.11299 x 10?
n-C,H,, 0.94025 x 10~ 0.89999 x 10
n-CgH, ¢ 0.63427 x 1077 0.84999 x 10
400 0.65162 x 10~ !2 0.69999 x 10

Q¢ = 39628 x 10° Btu/h
Qx = 13278 x 10° Btu/h
Convergence criterion: [g(1)] <10~3

component of the feed mixture or the component just lighter for the calculation
of the constants a and b of the K, method generally give satisfactory results.
Recently, however, improvements in the K, method were proposed by Billingsley?
wherein a different K, was used for each plate and composition effects were also
included.

To obtain the convergence characteristics exhibited in Table 2-3 through
2-5, it cannot be overemphasized that the complete set of calculational
procedures (the 6 method, the K, method, and the constant-composition
method) must be used. When the 6 method was introduced initially,!! other
procedures were used for the determination of the temperatures and total-flow
rates, and the convergence characteristics differed from those presented in Tables
2-3 through 2-5.

Comparison of the 0 Method with the Method of Direct Iteration

Some of the convergence characteristics of the # method are demonstrated by
comparing the 6 method with the method of direct iteration. The method of
direct iteration differs from the § method only by the procedure used to compute
the compositions. Instead of the expressions given by Eq. (2-29), the following
expressions are used in the method of direct iteration

= c(lji/di)ca(di)ca (2_49)
';l (lji /di)ca(di)ca
Vi= (vji/d:)caldi)ca (2-50)

i (vji/di)ca(di)ca
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By comparison of these expressions with those given by Egs. (2-25), (2-26), and
(2-29), it is evident that the method of direct iteration amounts to setting 0 = 1
in Eq. (2-26) for all trials. The results obtained for Example 2-2 with the flow
rates held fixed at the set stated in this example are presented in Table 2-1. When
the method of direct iteration was used, a calculated value of 52.14 was obtained
for D at the end of the third trial, and 11 trials were required to obtain tempera-
tures which were correct to eight digits.

At a set of fixed L/V’s, the calculated values of D follow the same type of
variation with respect to temperature as might be expected for an actual column.
If the assumed temperature profile is too high, then the calculated value of D will
be greater than the specified value; and if the assumed temperature profile is too
low, the calculated value of D will be less than the specified value. More
precisely, by use of the expressions presented in Prob. 2-4, it is readily shown
that b; /d; decreases with an increase in the temperature of any one plate of the
column, and conversely. Thus, by Eq. (2-46), d; increases as any one temperature
is increased, and conversely.

Now consider Egs. (2-26) and (2-27). If the sum of the calculated values of d,
is greater than the specified value of I3, a positive value of 0 that is greater than
unity is required to satisfy Eq. (2-27) (that is, make g(6) = 0), and if the sum of
the calculated values of d; is less than the specified value of D, a positive value of
0 less than unity is required to satisfy Eq. (2-27). Thus, if the temperature profile
for the previous trial was too low, a value of 0 less than unity will be obtained;
and if too high, a value of 6 greater than unity will be obtained.

The use of corrected d;’s based on values of @ < 1 and 0 > 1 gives lower and
higher temperatures, respectively, than those predicted by the method of direct
iteration. This is readily shown by consideration of the variation of the corrected
d;’s with 0 for very light and very heavy components. For a very light component
b;/d; is very small so that Eq. (2-26) reduces to

(di)co = FX: (2'51)
For a very heavy component, b; /d; is very large. Thus
FX;
()0 = : (2-52)

= g(bi/di)ca

Now consider the case where the temperature profile of the previous trial was
too high. This condition leads to a value of 0 greater than unity. In view of
Egs. (2-51) and (2-52), it is seen that the formulas for the mole fractions for each
plate [Eq. (2-29)] give sets of compositions with a relatively smaller proportion
of heavies than those obtained by direct iteration. Therefore, the temperatures
computed on the basis of the corrected compositions are less than the corre-
sponding temperatures calculated by the method of direct iteration, since the
latter are calculated on the basis of the calculated d’s.

An Exact Solution Given by the  Method of Convergence

If a set of b;/d;s corresponding to a given D are known for a column at total
reflux and a system for which the a;’s are constant, then the 6 method of conver-
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gence may be used to compute the solution set of b;/d;’s corresponding to any
other value of D.

That the 0 method of convergence is applicable to a problem of this type is
demonstrated in the following manner. Consider the case of a distillation column
with N stages and a total condenser which is operated at two different distillate
rates, D, and D, [or at two different specified values of b,/d,, denoted by
(by/d,), and (b,/d,),). For these two different sets of operating conditions at
total reflux, the Fenske equation* [see Eq. (1-58)] gives

In (b:/d); = In (b,/d,), ~ (N — 1) In o,
In (b;/d;), = In (by/dy), — (N — 1)Ino (2-53)
Elimination of In «; from these two equation gives
In (b;/d;); = In 0 + In (b, /d;),

or
).~ (z), =
where
o _ Lulds);
(bs /),

If the subscripts 1 and 2 in Eq. (2-54) are replaced by ca and co, respectively,
then Eq. (2-25) is obtained. A graphical representation of the expressions given
by Egs. (2-53) and (2-54) is presented in F ig. 2-6. That the # method is an exact

In (by/dy),

In (b;/d;)

In (b, /dy),

0.0
ln Q;

Figure 2-6 A graphical representation of 6 is obtained by considering two arbitrarily specified values
for a base component b in a column at total reflux.
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In (bi/di)2

In (bi/d;)1

In (b;/d;)

Ina,

Figure 2-7 Shift of the b, /d; profiles by the § method.

solution for certain problems involving columns at total reflux is demonstrated
by Prob. 2-5.

While the 6 method constitutes an exact solution to certain total reflux
problems, it represents only an approximate solution to problems wherein oper-
ating conditions other than total reflux are employed. The # method for a
conventional distillation column at any operating condition other than total
may be represented with the aid of Fig. 2-7 as the shifting of the most recently
calculated by/d; profile up or down the same distance (|In 6|) for each compo-
nent as required to obtain a new set of b;/d;’s which are in agreement with the
specified value of D.

2-4 OTHER TOPICS: PRESSURE EFF ECTS,
NONIDEAL SOLUTIONS, AND OTHER SPECIFICATIONS
Pressure Effects

In the calculational procedure demonstrated above, the effect of the varia-
tion of the column pressure from plate to plate on the K;;’s, H;’s, and h;’s was
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neglected. The effect of pressure on these variables may be taken into account
as described below.

For mixtures which behave as ideal solutions, the K values and the vapor
and liquid enthalpies of the pure components {K;;, H;;, h;} depend upon the
temperature T; and pressure P; of each plate j. Methods for taking the effect of
pressure into account in the evaluation of the K;’s, Hj’s, and h;’s are to be
found in standard thermodynamic texts, handbooks, and the scientific literature
as described in Chap. 14. The effort required to account for the effect of pressure
on the K values and enthalpies may be reduced by taking advantage of the
following observations. First, for columns operating at relatively high pressure,
the pressure drop across the column is small relative to the total pressure. Thus,
in many instances, it is possible to use a single column pressure in the evaluation
of the K;;’s, H;/s, and h;s, and these quantities may be curve fit as a function of
temperature alone.

For columns operated at relatively low pressures, such as vacuum distilla-
tions, the effect of pressure on the enthalpies can be neglected because the vapor
tends to behave as a perfect gas, but the effect of pressure on the K values cannot
be neglected. However, the fact that the vapor behavior approaches that of a
perfect gas gives rise to a simple method for including the effect of pressure on
the K values. In particular, at low pressures,

P;
K; = P (2-55)
Now suppose that the K values for component i are evaluated at some pressure
P, at each of several temperatures and that these values of K; are curve fit as a
function of T at the pressure P,. The value of K; at P; and T; [K;(P;, T;)] may
be approximated with good accuracy by use of the value given by the curve fit
[K;i(Py, T;)] and the following relationship which is suggested by Eq. (2-55)

P,
Kji(Pj’ 7}) = #Kji(Pb’ 73) (2'56)
J

Nonideal Solutions

Most problems involving the separation of nonideal solutions may be solved by
use of the § method of convergence. When used to solve such problems, the 6
method does become slower and it may be necessary to place certain restraints
on the calculational procedure. [The “Almost Band Algorithm” which is pre-
sented in Chap. S may be used to solve any problem for which the 8 method
fails.]

To apply the 8 method to problems involving nonideal solutions, minor
modifications of the equations presented above for ideal solutions are necessary.
The development of the appropriate expressions for the component-material
balances, the K, method, and the constant-composition method is outlined in
Probs. 2-6 through 2-10.



DEVELOPMENT AND APPLICATION OF THE THETA METHOD OF CONVERGENCE 79

Modification of the Formulas to Account for
Separated Components and Inert Components

The formulas for the 0 method were developed for distributed components,
where a distributed component is defined as one which appears in both the
distillate and bottoms; that is, for a distributed component d; > 0 and b; > 0.

A separated component is one which appears in only one product stream. A
separated light component is defined as one which appears only in the distillate
(b;=0, d;= FX), and a separated heavy component is one which appears only
in the bottoms (d; =0, b; = FX).

In order to avoid numerical difficulties resulting from the divisions by small
values of (d;),, in Egs. (2-26) and (2-29), the following expressions for (d;).,
should be used. These expressions are obtained by a simple rearrangement of
Eq. (2-26), namely,

(dl')co = (di)capi (2'57)
where p; is defined by

FX;
= 2-58
P (di)cn + G(bi)ca ( )
Then for a separated heavy component for which (d;),, =0, it follows from
Eq. (2-58) that p; is finite. Since p; is finite and (d,), = 0, Eq. (2-57) gives

(di)co =0

Consequently, it follows by material balance that for a separated heavy com-
ponent
(bi)ca = (bi)ca = FX:

Thus, if separated heavies are present, the ratios (d;)., /(d;)., in the formulas given
by Eq. (2-29) for x;; and y; become indeterminate. As suggested by Tetlow,'
these indeterminate terms may be eliminated by use of Egs. (2-57) and (2-58).
The resulting expressions may be used for all types of components, separated
lights, separated heavies, and distributed components

- (lji)capi
';1 (ljl')capi

Ji

- (vii)capi (2_59)
'Zl (vji)capi
where p; is to be computed by use of Eq. (2-58).

Similarly, the expression for g(#) may be expressed in terms of the p;s and
used to avoid numerical difficulties

90)= ¥, (@)ap, ~ D (2-60)

i=1

Jji
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Although inert gases and inert liquids may be treated as two separate classes
of components, as demonstrated in Chap. 1, it is perhaps simpler from a compu-
tational point of view to treat them as volatile components. This treatment may
be carried out by assigning the inert gases a K value which is large relative to
the light components and the inert liquid a K value which is small relative to the

heavy components.

Other Types of Specifications

In all of the formulations considered, it is supposed that the following
specifications have been made: the number of plates in each section; the quan-
tity, composition, and thermal condition of the feed; and the column pressure.
Two other specifications may be made in addition to these, and the formulation
of the functions corresponding to these two additional specifications may be
divided into three classes in addition to the class considered above (the
specification of the reflux rate L, and the distillate rate D or the temperature of
the distillate; see Prob. 2-13).

CLASS 1. SPECIFICATION OF THE REFLUX RATE L, (OR THE
BOILUP RATE V) AND ONE ADDITIONAL SPECIFICATION SUCH AS D,
A PARTIAL SUM OF ds OR X ’s

When any one of several specifications are made in lieu of the distillate rate D, a
corresponding g function may be formulated. Some care must be given, however,
to the formulation of this function in order to obtain one which has desirable
behavior, such as monotonic behavior with respect to the variable 6. Suitable
functions are given in Probs. 2-12 through 2-14 for a number of specifications.

CLASS 2. TWO PURITY SPECIFICATIONS

If instead of L, and D, two purity specifications such as {X y, Xg}, {X p» Xg}»
{d,, by}, or {d,, d;} where the subscript [ is used to denote the light key and h the
heavy key component. To solve problems of this type, the optimization
procedure described in Chap. 9 may be applied as described in Chap. 11.

CLASS 3. SPECIFICATION OF THE REFLUX RATIO L, /D
AND THE BOILUP RATIO V,/B

This particular set of specifications gives rise to a set of g functions which
involve the material balances and the energy balances enclosing the column as
well as the equilibrium relationships for the terminal streams. This application of
the 6 method to single columns is deferred until Chap. 7 because of its similarity
to calculational procedures developed therein.
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NOTATION

Aji absorption factor; defined by Eq. (2-11)

A; a square matrix for each component i; defined below Eq. (2-18)

/ a feed vector in the component-material balances; defined below
Eq. (2-18)

g(0) a function of 8; defined by Eq. (2-27)

H enthalpy per mole of feed, regardless of state

H, enthalpy per mole of distillate, regardless of state. For a total con-
denser Hp = hy and Hj; = h,;. For a partial condenser, H, = H,
and HD(' = Hli

hg enthalpy per mole of bottoms -

Hj partial molar enthalpy of component i, evaluated at the temperature
and vapor composition of plate j

H i virtual value of the partial molar enthalpy, evaluated at the temper-
ature and vapor composition of plate j

lii molar flow rate at which component i in the liquid phase leaves
the jth plate

N total number of plates

pi ratio of distillate rates; defined by Eq. (2-58)

P; vapor pressure of component i

P total pressure

Sji stripping factor for component i; defined by Eq. (2-11)

vj; molar flow rate at which component i in the vapor leaves plate j

v; column vector of components flow rates in the vapor phase; defined
by Eq. (2-18)

Subscripts

ca calculated value

co corrected value

f feed plate

F variables associated with a partially vaporized feed

i component number, i=1,2, ..., ¢

J stage number; for the accumulator j = 1; for the top plate j = 2, for
the feed plate j = f; for the bottom plate j = N — 1, and for the
reboiler j = N; thatis, j=1,2,3,...,f,...., N— I, N

k trial number

n trial number

Greek Symbols

Pji
0

defined beneath Eq. (2-18)
a multiplier defined by Eq. (2-25)
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Mathematical Symbols

[xy x; x3]" transpose of a row vector. The transpose of a row vector is

X1
equal to a column vector; that is, [x; x; x3]" = | x,
X3
Z summation over all components k, where k denotes any set of
k
components less than the total number ¢,say k=1,2,...,c — 1
PROBLEMS

2-1 (a) Complete the trial calculations initiated by Example 2-2 by obtaining the solution value of 6
shown.
(b) Complete the trial calculations initiated in Example 2-4 by finding T, Qg, V,,and L;.

2-2 If the following set of K values

Component Kt

1 0017/P
2 0.0002T3/P
3 0.03T/P

+ Tisin °F and P is in atm.

is used instead of the set given in Example 2-1, show that (a) 6 = 3.687276, and (b) T, = 42.53°F,
T, = 48.89°F, T; = 52.19°F, T, = 60.65°F. Use the K, method and take K, = K.

2-3 The recurrence formulas given by Egs. (2-20) and (2-21) for solving equations which are tri-
diagonal in form may be developed as outlined below by use of the gaussian elimination. The system
of linear equations given by Eq. (2-19) is represented by the following matrix equation

by ¢ 0 0 o - 0 Xy d;

a, b, ¢; 0 o - 0 X, d,

0 ay; by ¢ o - 0 X3 d, (A)
0 0 ay_, by, cn-1 || Xn-1 dy_,

0 0 0 ay by Xy dy

(a) By use of the following definitions of f;, g,, f;, and g, given in the text, show that Eq. (A)
may be transformed to the following form

1 £, 0 00 - O X, 'R

o1 £, 00 - O X, 92

00 1 f; 0 - O X3 g3
..................................... = (B)
0o - 0 1 So-1 ] X521 gn-1

0 0 0 1 Xy gn

(b) Commencing with the bottom row of Eq. (B), show that the matrix multiplication rule may
be applied to give

Xs=0y  X%=Gi—fixxas (k=N-1,N=2..,21) ©
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(c) For the special case of a conventional distillation column, b;= —(1 + 4), ¢;=1,
a;=Aj_y,dgy = —0p, dp= —ly, and d;=0(j # f, f — 1), show that when these quantities are
substituted successively into the formulas for f; and g; [Eq. (2-20)], the recurrence formulas given by
Eq. (2-22) are obtained.

2-4 Suppose that the solution set of operating conditions are known. For definiteness, suppose that
the column has a total condenser and that the feed enters the column as a liquid at its boiling-point
temperature at the column pressure.

(a) Suppose that the set {b;/d} and the total distillate rate D are computed by using the correct
set of L;/V}'s and the correct T}s except for one particular plate, say plate k, and for this particular
plate, a temperature less than the correct one is used in making the calculations. Show that the
calculated value of D so obtained is less than the correct value.

(b) Repeat (a) for the case where the temperature used for plate k in the calculation of the
b,/d;s is greater than the correct temperature, and show that in this case the calculated value of D is
greater than the correct value.

Hint: Show that

Vpldi= Ay Ay Ap it Ay Ap_ it Ap i Ap it A+ ]
and that
Vpilbi = SpiSpan i Sni+ SpiSpan i Swonit o+ SuSp i+ Sy

2-5 The following set of b;/ds were found by use of Fenske’s equation in Prob. 1-24(a), and the

corresponding distillate rate was D = 46.4632. On the basis of this known set of b;/d's, compute the

b;/d;’s and d;'s at a D = 56.2629 for the following example by use of the 6§ method of convergence.
Given:

b.
Component X; o; I‘ Other specifications
1 13 1 16 N = 3, partial condenser,
2 1/3 2 1 F = 100 mol/h, and
3 1/3 3 0.1975 total reflux operation

This problem is based on material given in Refs. 6, and 9. For the first trial, assume 6 = 0.5, and use
Eq. (2-54) to explain the results obtained.

2-6 Begin with the equilibrium relationship given by Eq. (1-8) and the definition of the ideal solution

K value given by Eq.(1-10) and obtain the following formulas for the K, method for nonideal
solutions

1 4
Kjy=——"7"— and Kj= /-

z
3 [l G

2-7 Show that the same value of K, is obtained regardless of whether the corrected X;s or the
corrected values of the y;’s given by Eq. (2-29) are used. A more precise statement of the problem
follows.

Given:

1
(1) Kpr,,r, =

c

Z i) Ty Xji
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(2) x;’s and y/s are defined by Eq. (2-29).

O G = (%) e

K. K;
(), ()
( ) STy Kjb T Kjb .
Show that
Yji

Kjbm_.u =
i=1 0T,

where n denotes the values of the variables assumed to make the nth trial.
2-8 Repeat Prob. 2-7 for the case where both the vapor and liquid phases form nonideal solutions.
That is, given:

(1) Kpirjper =
Z(v,.a,./),.), i

1

(2) xj’s and y;’s are defined by Eq. (2-29)

O G = (752 ) e

K; )
Kﬂ’ Tjn

@ =

show that

c

Yi
Kpprpoor = % e
ST Z (i v

2-9 (a) By use of the definition of the ideal solution K value
K ji =f ;"./f ;:

(where f fand f are the fugacities of pure component i, evaluated at the temperature and pressure of
plate j) show that the equilibrium relationship given by Eq. (1-8)

i L3 = vi i
may be restated in the following forms

l.=A.v.. and Vi = Sﬂ IJ'I'

ji jivji
where
L;

Ap=—to
s (7,;/7;i)Kﬂ

(b) Show that the component-material balances are of the same general form for nonideal
solutions as those for ideal solutions, provided that the absorption (or stripping) factor has the
definition given in (a).

2-10 For the case of nonideal solutions, show that the expressions for the enthalpy balances are of
the same form as those given by Eqs. (2-33) through (2-37) except for the fact that the ideal solution
enthalpies of the pure components {h;,, H ) are replaoed by their partial molar values {h;;, H;} or
the virtual values of their partial molar enthalpies {h i, Hji}; see Chap. 14,

2-11 (a) Show that the function g(9), defined by Eq. (2-27) has c¢ real roots, one positive root, and
¢ — 1 negative roots.

(b) Show that if 6 = 0 is selected as the first assumed value of 6, then Newton’s method always
converges to the positive root of g(6).

=1/

ji
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2-12 For the case where the reflux rate and a partial sum of the component distillation rates,
¥u(dy) pec, are specified, show that the corresponding g function,

L (@),

g(0)=z~f(d—) -1

decreases monotonically with 8. The corrected distillate rates {(d,).,} are defined by Eq. (2-57).

2-13 Show that when reflux rate L, and the dew-point temperature T, of the distillate are specified,
the corresponding form of the g function is obtained

9(0)= DL i(di)w/’(ll] -1

co li=1
and that it decreases monotonically with 6. The corrected distillate rate {(d,),} are defined by
Eq. (2-57) and
D:a = Z (di)ca
i=1

2-14 If the reflux ratio L, and a partial sum of mole fractions are specified, show that the following
form of the corresponding g function varies monotonically with 6

XXy

00 =5 !

Sketch the function g(6) for the case where the k components are relatively light and for the case
when the k components are relatively heavy.

Note: X = (d;).,/D, -
2-15 Let the corrected component flow rates be defined as follows

(U)o = m; (‘%‘l )u(dl')ca

(000 = a(;)(d)

where 7; and ¢; are undetermined multipliers which are to be picked such that

v-_il (Iji)ca = (Lj)co

'gl (Dji)u = (Vj)to

(@) Use the definition of the mole fraction and the above definitions of the corrected flow rates
to obtain the expression given by Eq. (2-29) for the calculation of the mole fractions by the # method.
(b) Show that if the undetermined multiplier 5, for the reboiler is denoted by 6, then the
defining equation for 8 [Eq. (2-25)] follows from the above definition of (I;;),, for j = N, the reboiler.
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CHAPTER

THREE

APPLICATION OF THE

THETA METHOD OF CONVERGENCE
TO COMPLEX COLUMNS

AND TO SYSTEMS OF COLUMNS

The calculation procedures [the 6 method, K, method, and constant composi-
tion method] developed in Chap. 2 for conventional distillation columns are
applied to complex distillation columns in Sec. 3-1. For solving problems involv-
ing systems of columns interconnected by recycle streams, a variation of the
theta method, called the “capital ® method” of convergence is presented in
Secs. 3-2 and 3-3. For the case where the terminal flow rates are specified, the
capital ® method is used to pick a set of corrected component-flow rates which
satisfy the component-material balances enclosing each column and the specified
values of the terminal rates simultaneously. For the case where other
specifications are made in lieu of the terminal rates, sets of corrected terminal
rates which satisfy the material and energy balances enclosing each column as
well as the equilibrium relationships of the terminal streams are found by use of
the capital ©® method of convergence as described in Chap. 7.

3-1 COMPLEX DISTILLATION COLUMNS

A complex distillation column is defined as one which has either more feeds
introduced or streams withdrawn or a combination of these than does a conven-
tional distillation column. To demonstrate the application of the § method and
associated calculational procedures, the complex column shown in Fig. 3-1

87
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L, ;
p-1
— P W (LIQUID)
t Ip+l

F f-1

f+l

F t-1

t+1

q-1 W, (VAPOR)

B

Figure 3-1 Complex column with two feed plates and two sidestreams.

which has two feed plates and two sidestreams (in addition to the top and bottom
products) was selected.

In the application of the aforementioned calculational procedures, the
specifications commonly made are as follows: the column pressure; the number
of plates; the rate, composition, and thermal condition of each feed; as well as
the locations of the feed plates and sidestreams. The number of additional
specifications that may be made is equal to the total number of streams with-
drawn (the distillate, bottoms, and sidestreams). For the column shown in
Fig. 3-1, the additional specifications V, (or L,), D, W,, and W, may be made.
These in turn fix the dependent variable B.

In order to make the first trial, temperature and L/V profiles for the column
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are assumed. This allows one to solve the component-material balances for the
component-flow rates. After the § method of convergence for the complex
column has been applied, the compositions are computed. The compositions so
obtained are used to compute an improved set of temperatures by use of the K,
method. These temperatures and compositions are used to find a new set of total-
flow rates by solving the enthalpy balances after they have been stated in the
form of the constant-composition method.

Component-Material Balances

The component-material balances are stated in terms of a single set of flow rates,
the vapor rates, by use of the equilibrium relationship I;; = 4;v;; [Eq. (2-10)].
Except for the plates from which the sidestreams are withdrawn, the equations
for the remaining stages of the complex column shown in Fig. 3-1 are formulated
in precisely the same manner which was shown in Chap. 2 for conventional
columns.

To demonstrate the notation employed, an enlarged view of plate p (see
Fig. 3-2) from which the liquid sidestream W, is withdrawn as shown in Fig. 3-1.
The component-material balance enclosing plate p is seen to be

Up+l.l'+lp—1,i_vpi_lpi_wli=0 (3-1)

Since w,; has the same composition as I,; and since I,; = A4,;v,; [Eq. (2-10)], it
follows that

W Wi
Wy =l = — A0, (3-2)
Lp P Lp ptp
0 I
p-l
vpi | Vp Rp-1,i Lp-1
( P
T W,
Vptl,i Vp,! ’p| Lp Wi
) p+l
,Jv A

Figure 3-2 Notation used for the streams entering and leaving a plate from which a liquid sidestream
is withdrawn.
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e = 7
q-1
Vi | Va fq-1,i| La-t
)
wZi Woi+ ti Waf Vq
|
q
]
Vael,i |Va+l qu Lq
[ q+!
A ~

Figure 3-3 Notation used for the streams entering and leaving a plate from which a vapor sidestream
is withdrawn.

Then after the equilibrium relationship [Eq. (2-10)] has been used to state liquid
flow rates of Eq. (3-1) in terms of the vapor rates, one obtains

W,
Ap-i1.ilpor,i— [1 + A,,i(l + —L—‘)]v,i + 0p41,:i=0 (3-3)

P
An enlarged view of plate g from which the vapor sidestream W, is with-
drawn is shown in Fig. 3-3. The component-material balance for plate g is
given by

Ug+1,i + lq—l.i_vqi - lqi —wy;=0 (3‘4)
Since W, and ¥, have the same composition, it follows that
W,
Wy = A Ugi (3-5)

q

Then by use of this relationship and the equilibrium relationship [Eq. (2-10)], it
is possible to restate Eq. (3-4) in terms of the vapor rates as follows
W,
Aq_lh,'vq_l_;—- [1 +Aqi+72qu,~+vq+,‘i=0 (3'6)
q
The complete set of component-material balances may be represented by a
matrix equation of the same form as the one used to represent these balances for
a conventional column, namely,

Aivi= -/ (3-7)
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The elements of A, are the same as those displayed beneath Eq. (2-18) except
that in this case, the following expressions for p;; must be used for plates p and q
from which sidestreams W, and W, are withdrawn

W,
ppi=1+APi 1+—'~

o (3-8)
W,

v,

q
When model 2, shown in Fig. 2-2, is used for the feed plates, the column vector ¢
contains the vapor and liquid rates (vg; and Ig;) for each feed. The elements of v;
and ¢, may be displayed as follows

pqi=l+Aqi+

T
vVi= [d-' Ugi U3; " VUp—q,i Ui =°° Ui—1,i Ui UNi]

/:'=[0”'0Urnlr'no"'oUrzilrzio"'O]T (3-9)
The elements v,_,,; and vy;, vy and lpy;, U— 1, and gy, v; and g lie in rows
f —1,f,t—1, ¢, respectively.

The component-material balances A;v; = —, may be solved for the vapor
rates and d; by use of the recurrence formulas given by Egs. (2-20) and (2-21) in
the same manner as was demonstrated in Example 2-1.

After the component-material balances have been solved for the component-
flow rates d;, vy;, vs;, -.., Uni, the corresponding set of flow rates for the liquid
may be calculated by use of the equilibrium relationship given by Eq. (2-10).
Then the @ method is applied for the purpose of finding a set of terminal-
component flow rates which are in component-material balance and in agree-
ment with the specified values of the total-flow rates of the terminal streams.

Formulation of the § Method of Convergence

The formulation of the § method of convergence for a complex column follows
that originally proposed by Lyster et al.® First, a 6 multiplier is defined for each
stream withdrawn from the column which may be specified independently. For
the column shown in Fig. 3-1, any three of the four streams D, W;, W,, and B
may be specified independently. For definiteness, suppose that D, W;, W, are
specified. Then B may be found by an overall material balance. The 6 multipliers
are defined by the following equations

). = (a).
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where 6, >0, 6, >0, and 6, > 0. Again the corrected rates are those which
satisfy simultaneously, the specifications D, W;, and W, (where B is taken to be
the dependent variable) and the overall material balance

FX:' = (dl')cu + (wli)m + (WZI')co + (bl’)co (3_1 l)
where
FX;=F, X+ F,X,,

A combination of Egs. (3-10) and (3-11) yields the following expression for the
corrected distillate rate

FX;
1+ 0o(bi/di)eq + 01(wyi/d)ea + 05(wi/d).
Again, in a manner analogous to that shown for conventional columns,

numerical problems resulting from the divisions by small values for (d;)., may be
avoided by use of the following expression for (d;),,

(di)co = (dl')mpi (3-13)

(di )co =

(3-12)

where p; is defined by

B FX,

 (d)ea + Oo(bi)es + 0;(W1)ea + 02(W2i)ea
When the defining equations for the 6s given by Eq. (3-10) are restated in terms

of p;, the following expressions are obtained for the calculation of the corrected
terminal rates, namely,

Di (3'14)

(bi)co = Bo(bi)capi
(W1i)eo = 01(W13)eaPi (3-15)
(W2i)eo = 02(W2:)cap;

The requirement that the corrected rates satisfy the specifications D, W,, and
W, leads to the g functions

90(00’ 01’ 02) = 'Zl (di)co -D
g1(00, 0y, 0,) = Z W1:eo — W, (3-16)
i=1

92000, 6y, 6,) = Z (W2i)eo — W2
i=1

The desired solution is the set of positive values of 0y, 0, and 6, that makes
90 =g, = g, =0, simultaneously. When the solution set of §’s has been found,
the set of corrected d;’s (or p;’s) will have been computed. These values of (d)eo
and p; may be used to compute the set of improved compositons. In order to
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reduce numerical difficulties, in the application of the § method, the g functions
should be stated in normalized form. For example

1
D,

Mn

go = (di)co -1

1

Corrected Mole Fractions

Expressions for the corrected mole fractions for the column shown in Fig. 3-1
may be developed from first principles as outlined in Prob. 2-15. The expressions
so obtained are the same as those given in Chap. 2, namely

X = (Iji/di)ca(di)w

Ji

— (lii)capi (3_17)

or  xj;=-—

Zc:l (Iji/di)ca(di)co Z (lji)capi

i=1

where (d;),, is given by Eq. (3-13) and p; by Eq. (3-14). The formulas for y;; are
obtained by replacing /;; in the above expressions by v;;.

Calculation of a Corrected Set of Temperatures
by Use of the K, Method

After cither a corrected set of x;’s or y;’s has been computed as described
above, a new set of temperatures may be computed by use of the K, method in
the same manner that was described in Chap. 2 for conventional distillation
columns.

Calculation of a Corrected Set of Total-Flow Rates by Use of the
Constant-Composition Method and the Total-Material Balances

The development of the expressions for the constant-composition form of the
enthalpy balances is carried out in the same manner demonstrated in Chap. 2 for
conventional distillation columns. For example, the energy balance enclosing the
top of the column and some plate j located between plates p and f — 1 of the
column shown in Fig. 3-1 can be expressed as follows

_; [Hj+ iV, — bl — hpiwli —Hpd]-Qc=0 (3-18)

Elimination of v;, , ; by use of the component-material balance
Virr,i =i+ wy + d; (3-19)
yields

'_Zl (Hjss, i = hdlii + (Hju 1, — hpiwy; + (Hjs1,i —Hp)d] —Qc=0



94 FUNDAMENTALS OF MULTICOMPONENT DISTILLATION

Since I;; = L;x;, w,; = W, x,;, d; = DX p;, the above form of the energy balance

may be solved for L; to give

<

WY (Hjsri— hyi)x,i — D Z (Hjir,i — Hp)X pi + Qc
I = i=1 i=1

J c
‘—Zn (Hj+ 1,i hji)xji

(3-20)

The complete set of enthalpy balances for the column which are obtained in a
manner analogous to that demonstrated above. After the L ;s have been
computed by use of these enthalpy-balance expressions, the corresponding vapor
rates may be computed by use of the total-material balances.

Geometrical Representation of the g Functions

To simplify the geometrical representation of the g functions, consider the case
where only one sidestream W, is withdrawn in addition to the distillate D and
the bottoms B as shown in Fig. 3-4. For this column, only two § multipliers
exist, 0, and 0,. These two multipliers are defined by the first two expressions of
Eq. (3-10). If D and W, are specified, then the corresponding g functions are

go(oo’ 0,)= ; (di)co ~-D (3‘21)
91000, 6,) = ; Wii)eo — W (3-22)
where
(o = s

1 + Go(b,-/d,-)c., + Bl(wli/di)ca

Again, (d;)., may be stated in terms of p; as demonstrated above by Egs. (3-13)
and (3-14).

Traces of the functions g, in the go0, , go0,, and the 6,0,, planes are
shown in Fig. 3-5. and traces of g, in the g,6,, g,0,, and 6,6, planes are
shown in Fig. 3-6. The desired solution is the intersection of the traces of g, and
g, in the 6,60, plane where go =g, =0 as shown in Fig. 3-7. Examination of
these graphs reveals that g, and g, arc continuous, monotonic functions for all
positive values of §, and 6,. Such behavior is desirable in the numerical solution
of problems.

The set of §’s that makes g, = g, = 0 may be found by use of the Newton-
Raphson method? as described in App. A. The Newton-Raphson method con-
sists of the successive solution of the equations corresponding to the linear terms
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Figure 3-4 A complex column with one sidestream.
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L 9,(0.0)= W 48

Figure 3-5 Traces of the function go(,, 6,) in the g0, , go0,, and the 6,0, planes.

9,(&.6) g, (0,°)=F-W = B+D

(oo S V /A,
9,(§6))-0

_~—

Figure 3-6 Traces of the function g, in the g, 0,, g, 8, , and the 8, 0, planes.
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C
00
Trace of %
The desired solution
b
Trace of 91 Figure 3-7 Traces of the functions g, and
91 gy in the 0,0, plane.

of the Taylor series expansions of the functions g, and g, about the assumed
values of the variables 6, and 6,, namely

990 99
= — — A
0=go+ a0, Ab, + 20, 1
2 2 (3-23)
g1 g1
= —_— — A
0=g,+ 20, AO, + 20, 0,

Expressions for the partial derivatives are given in Prob. 3-1. The Newton-
Raphson method is illustrated by the following example.

Example 3-1 Make two trials by use of the Newton-Raphson method for
the set of values x and y which make f; = f, = 0 simultaneously

filx, y)=x*—y* +1
flx, y)=x?+ y* =2
Take the initial values of x and y to be x, =y, = 1.
SOLUTION
Trial 1. For xo =y, =1
NHLD)=1-1+1=1

H(L1D)=141-2=0
and

Qf—l=2x %=—2y %=2x %

Ox dy Ox dy -
Thus, for x, = yo, = 1, the Newton-Raphson equations become
0=14+2Ax—-2Ay
0=0+2Ax+2Ay
Addition of these equations yields
0=1+4Ax Ax=-1/4

2y

and
Xy =xo+Ax=1-1/4=3/4
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Substitution of this value of Ax into either of the Newton-Raphson equa-
tions yields

Ay=1/4
and
yi=YyotAy=1+1/4=5/4
Trial 2. For x, = 3/4 and y, = 5/4
f1(3/4, 5/4) = (3/4)* — (5/4)* + 1=0
2314, 5/4) = (3/4) + (5/4) =2 =118

Thus
o _ _ 9% _ _
== (2)3/4) =372 7~ QB4 =372
o _ __ % _ =
o = (D= =52 FE= Q)54 =512
and

0 =0+ (3/2) Ax — (5/2) Ay
0= 1/8 + (3/2) Ax + (5/2) Ay
Solution of these equations for Ax and Ay yields
Ax = —1/24 x; =3/4 — 1/24 = 17/24 = 0.7083
Ay = —1/40 y2 = 5/4 — 1/40 = 49/40 = 1.225

These values compare well with the solution set of values which are

1
=75 07071 and  y=./3/2=12247

Convergence Characteristics of the 0 Method of Convergence
for Complex Columns

To demonstrate some of the numerical characteristics of the § method for com-
plex columns, Example 3-2 was selected. The statement of this example is given
in Table 3-1 and the geometry of the column is depicted in Fig. 3-4. In addition
to the distillate and bottoms, the column has one sidestream withdrawn. Thus,
the 0 method has two 6 multipliers, 6, and 8,, which are defined by the first two
expressions given by Eq. (3-10). Since D and W, are specified (see Table 3-1) the
two g functions to be used for computing these 8’s are given by Egs. (3-21) and
(3-22).

The convergence characteristics of this example are presented in Table 3-2,
and the solution sets of T}’s, V}’s, d/’s, w,;’s and b;’s are presented in Table 3-3. To
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Table 3-1 Statement of Example 3-2, a complex distillation problem

FX;
Component (Ib mol/h)
CH, 20
C,H, 100
C,H, 6.0
C,H, 125
i-C4H,o 35
n-C.H,o 150
n-CH,, 152
n-CeHyq 11.3
n-C,H,¢ 90
n-CgH;4 8.5
400 70

Other specifications

The column pressure is 300 Ib/in? abs. The K values and enthalpies are given in Tables B-1
and B-2. The feed enters the column on plate f =6 at its bubble-point temperature at the
column pressure. The column has 11 plates, a reboiler, and a partial condenser. The distillate is
withdrawn at the rate D = 32.298 1b mol/h. The sidestream is withdrawn from plate p = 10 as a
liquid at the rate W, =250 1b mol/h. A reflux ratio L, /D = 2.25 is to be used. Take the initial
temperatures to be linear between T, = 200°F and T,, = 300°F, and take T, = 200°F and
T, = 300°F. Take the initial values of L/V;=1forj=23, ..., 12, and take V;3/B = 10.

Table 3-2 Convergence characteristics exhibited by the 0 method in the solution
of Example 3-2

Temp.of  Temp.of  Calculated Calculated

Trial 0, 0, D, °F B, °F value of D value of W,
1 0.7365 0.8632 125.79 410.82 31.9304 244257
2 1.16464 1.16219 115.13 443.44 32.6193 24.7670
3 0.984057 0.962613 11425 441.59 32.2084 24.7236
4 1.03172 102741 114.13 446.36 32.3555 25.0021
5 0.984476 0.989619 114.13 445.68 32.22745 2495864
6 1.00754 1.006039 114.13 446.53 323110 25.00688
7 0.996285 0.997367 114.13 446.28 32.29217 2499218
8 1.001739 1.001348 114.13 446.45 32.30094 25.00218
9 0.9991422  0.999384 114.13 446.39 32.29664 24.99829

10 1.000344 1.000269 114.13 446.42 32.29861 25.00039

11 0.9998121 0.9998789 114.13 446.41 32.29772 24.99945

12 1.0000 1.0000 114.13 446.41 32.29811 24.99993

Convergence criterion: (1) For each trial, values of 6, and 8, were found such that both |go|
and |g, | were equal to or less than 10~ 5. (2) Convergence for the problem was said to have been
achieved when |go(1, 1)| and |g,(1, 1)| were each equal to or less than 1075

The convergence criteria were satisfied at the end of the 12th trial and 2.81 seconds on an
AMDAHL 470 V/6 computer with the WATFIV compiler.



100 FUNDAMENTALS OF MULTICOMPONENT DISTILLATION

Table 3-3 Solution of Example 3-2

1. Final temperature, liquid, and vapor profiles

T,

L

V,

) J

Stage (°F) (Ib mol/h) (Ib mol/h)

1 114.13 72.671 32.298

2 145.45 61.302 104.97

3 165.40 68.080 103.60

4 183.47 58.993 100.38

5 217.13 194.95 91.291

6 239.30 212.35 127.25

7 253.55 22245 144.65

8 264.68 227.36 154.75

9 276.18 227.38 159.66

10 292.27 196.97 159.67

11 319.29 186.10 154.27

12 363.18 164.71 143.39

13 456.41 42.702 12201

2. Final product iiow rates
d; Wyi b;

Component (Ib mol/h) (Ib mol/h) (Ib mol/h)
CH, 0.20000 x 10! 032125 x 1076 0.30273 x 10~°
C,Hq 0.99985 x 10! 0.15077 x 10~2 0.19926 x 10~ *
C,H, 0.59356 x 10! 0.61044 x 10! 0.33848 x 102
C;H, 0.12224 x 10? 0.24742 0.18230 x 10!
i-C,H,, 0.11119 x 10 0.19577 x 10! 0.43043
n-C,H,, 0.10242 x 10* 0.10428 x 102 0.35483 x 10!
n-C4H,, 036429 x 10°2  0.64835 x 10* 0.87129 x 10°
n-C¢H, . 0.18929 x 104 0.25252 x 10! 0.87747 x 10!
n-C,H, ¢ 0.15019 x 10~ 0.13819 x 10! 0.76181 x 10*
n-CgH,, 0.12374 x 1078 0.10969 x 10! 0.74031 x 10!
400 0.14162 x 107! 0.80727 0.61927 x 10!

Q= 0.47243 x 10° Btu/h
Qx = 0.15519 x 107 Btu/h

éatisfy the convergence criterion stated in Table 3-2, a total of 12 complete trials
and 2.81 seconds of computer time (AMDAHL 470 V/6 WATFIV) were

required.

Exact Solutions Given by the & Method of Convergence
for Complex Columns

For a distillation column such as the one shown in Fig. 3-4, the 6 method
constitutes an exact solution at total reflux; that is, the sets of b; /d;’s and w,; /d;’s
at two different sets of values for D and W, are related by the single multipliers
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6, and 0, as indicated by the first two expressions of Eq. (3-15). The proof of this
statement is established by solving Probs. 3-3 and 3-4. That the 6 method is an
exact solution to certain problems at total reflux is further illustrated by solving
Probs. 3-5 and 3-6.

3-2 SYSTEMS OF INTERCONNECTED
DISTILLATION COLUMNS

The particular difficulty associated with the solution of problems involving
systems of distillation columns becomes apparent upon close examination of the
system shown in Fig. 3-8. First observe that the composition of the recycled
bottoms from the second column to the first is not known until a solution to the

Dy 4 02

DISTILLATION COLUMN |
A
DISTILLATION COLUMN 2

8 Bz

Figure 3-8 A system of two interconnected distillatior: columns.
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second column has been obtained. On the other hand, the composition of
the feed to the second column is not known until a solution has been found for
the first column, since the feed to the second column is the bottoms of the first
column.

For solving problems of this type, Tomme and Holland!® and Tomme'" pro-
posed an extension of the § method of convergence, called the “Capital @ Method
for Systems.” The “capital ©®” is used to distinguish this method for systems from
the 0 method for single columns. The capital ® method for systems is similar to
the 6 method for complex columns in that for each external stream which may
be specified independently, there exists a ® multiplier. These ® multipliers
are to be picked such that the overall component-material balances and the
specifications are satisfied simultaneously. For each component i, there exists
one overall component-material balance per column which is independent.
The strong convergence characteristics of the ® method for systems of inter-
connected distillation columns can be attributed to the fact that there exists
many problems for which the ® method for systems constitutes an exact solu-
tion for a system of columns at total reflux.

The capital ® method for systems is introduced by the formulation of the
equations for this method for the simple system of two conventional distillation
columns shown in Fig. 3-8. In a subsequent section, the formulation is gener-
alized for the case of any number of columns with any number of sidestreams
withdrawn.

Formulation of the Equations for
the © Method for a System of Two Distillation Columns

As shown in Fig. 3-8, the number of the column from which a stream is with-
drawn is denoted by a subscript on D and B. To identify the variables of each
column, the column number is carried as the last subscript. For example, d;
and d; , denote the flow rates of component i in the distillate streams withdrawn
from columns 1 and 2, respectively.

For the system of columns shown in Fig. 3-8, there exists one independent
component-material balance per column, namely

FX;+b,,~d;,—b =0
bi.l_di,z—'bi,2=0

In the interest of simplicity, the subscript co used to identify the corrected flow
rates for conventional and complex distillation columns has been omitted in the
above expressions and from those which follow.

For each total-flow rate of the set D,, B, D,, and B, which may be fixed
independently, there exists a capital @ multiplier. If D, is fixed, then D, is seen
to be dependent since it is uniquely determined by a total material balance
which encloses the entire system. From the total material balances enclosing
each column, it is seen that if B, is fixed, then either D;, D,, or B, may be fixed

(3-24)
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independently. Thus, two ® multipliers may be defined as follows
bi. 1] _ bi. 1
PR

bi 2 bi 2

’ - G) .
(di. 2 )co Z(di. 2 )ca
where the calculated values are those found by use of the calculational procedure
described below. The subscript co is dropped in the interest of simplicity in the
remainder of the development. The g functions may be stated in terms of any

two of the flow rates D,, D,, B,, and B, which may be specified independently.
Thus, if B, and D, are elected as the specified flow rates, then

(3-25)

91(61» 92) = Z b, — B,

- (3-26)
9:(9,, 9;) = Z di.,—D,

i=1

The desired sct of @’s is that set of positive numbers that makes g, = g, =0,
simultaneously. These ®@’s may be found by use of the Newton-Raphson method
in a manner analogous to that described in Sec. 3-1 for complex distillation
columns.

Formulas for {d; ,} and {d; ,} are obtained as follows. Let the expressions
given by Eq. (3-25) be restated in the form

b, =r; 1d;
L1 L1801 (3-27)
b, =r;,d; ,
where
Fiy = 91(b.‘, 1/4:, 1)ea
ri,2 = 0y(b; 2/d;, 2)ca

After b; | and b, , have been eliminated from the component-material balances

by use of the relationships given by Eq. (3-27), the equations so obtained may be
rearranged to give

—(1+r M +r1i2di 2= —FX;
roadiy— (L4722 =0

This set of equations may be solved for the corrected distillate rates to give

(3-28)

dl. = FX,(‘ + r,~'2) (3-29)
S o PR o PP
4y, = — Xl (3-30)

Tl4r g+,
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Figure 3-9 Behavior of the function g 1 in the neighborhood of the positive roots.

Graphs of the functions g, and g2 in the neighborhood of the solution set of @’s
are shown in Figs. 3-9, 3-10, and 3-11. An outline of the proof of the existence of
a set of positive ©’s that satisfy the g functions simultaneously is presented in
Prob. 3-13. A proof for a more general case has been given by Billingsley.!" 2

Calculational Procedure

The calculational procedure recommended by Nartker et al.!? consists of apply-
ing the 6 method of convergence (for conventional and complex distillation
columns) one time to each column of the system in succession. The terminal
rates so obtained for each column of the system are called the “calculated values
for the system,” and denoted by the subscript ca. To initiate the calculational
procedure for the system, the compositions for the minimum number of streams
are selected as the independent variables for the system. For example, to initiate
the calculational procedure for column 1 of the system shown in Fig. 3-9 the
composition of the stream B, is assumed. One complete column trial is made on
column 1. A complete column trial consists of the application of the § method
for single columns, the calculation of a new set of temperatures by use of the K,
method, and the calculation of a new set of total-flow rates for use of constant-
composition method. These temperatures and total-flow rates are stored for use

in the next trial calculation for the system. The set of b, ,’s obtained by the
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0,

Figure 3-10 Behavior of the function g, in the neighborhood of the positive roots.

column trial on column 1 become the set of assumed flow rates for making the
column trial on column 2. After the column trial on column 2 has been
completed, the capital ® method for systems is applied, and the set of b; ,’s so
obtained is used to initiate the next system trial by making one column trial on
column 1.

Figure 3-11 Intersections of the surfaces of the functions g, and g, with the ©, @, plane for the case
where F — B, > 0.
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0, D2

A

W2i

DISTILLATION COLUMN |
A
DISTILLATION COLUMN 2

B B2
bi, bj,2

Figure 3-12 Sketch of a system of interconnected distillation columns.

Convergence Characteristics of the Capital ® Method

To demonstrate the convergence characteristics of the capital ® method,
Example 3-3 was selected. This example involves the system of two complex
columns shown in Fig. 3-12. A statement of this example is given in Table 3-4
and the solution is given in Table 3-5. The variation of the 8’s and ©’s with trial
number is presented in Table 3-6.

Exact Solutions Given by the ® Method of Convergence
for Systems of Distillation Columns

For systems of interconnected distillation columns, the ® method constitutes an
exact solution for certain problems; provided that the o;’s are constant in each
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Table 34 Statement of Example 3-3

FX,

Component No. (kg mol/h)
Toluene 1 0.80000
Ethylbenzene 2 0.5100 x 10?2
Styrene 3 0.4777 x 10?
Isopropylbenzene 4 0.5000 x 10!
1-methyl-3- S 0.1000 x 10~!

ethylbenzene
a-methylstyrene 6 0.1300
cis-1-propylbenzene 7 0.2000

Other specifications

Column 1. The column has 50 plates, a total condenser (stage j = 1) and a reboiler (stage
j = N = 52). The feed F enters on plate j = 10 as a subcooled liquid at 317.75 K at 270 mmHg.
The distillate is withdrawn as a liquid at its boiling point at the rate D, = 52 g mol/h. The
sidestream is withdrawn as a liquid from plate j = 21 at the rate W; = 11 g mol/h. The top
product stream of column 2 is recycled to plate j =45 in column 1. The pressure in the
condenser is 40 mmHg, and it may be assumed to vary linearly with plate number between
stage j = 2 at a pressure of 50 mmHg and the reboiler at 270 mmHg. A reflux ratio L, /D = 2.5
is to be used. Use the equilibrium and enthalpy data given in Tables B-3 and B-4.

Initial temperature profile. Linear between 325.15 K (the boiling point of pure ethylben-
zene at 40 mmHg) and 381.143 K (the boiling point of pure styrene at 270 mmHg).

Initial vapor rates. V;=1820 g mol/h (j =2,3,..., 52).

Initial liquid rates. L; = 1300 g mol/h (j=1, 2, ..., 9), L; = 2300 g mol/h (j = 10, 11,
..., 21), L; = 2190 g mol/h (j = 22, 23, ..., 44), L; = 2350 g mol/h (j = 45, 46, ..., 51).

Base component. Base the values of a and b in the expression for K, given by Eq. (2-37) on
the K values for styrene at 298.15 K and 40 mmHg and at 700 K and 270 mmHg.

Column 2. The “other specifications” for column 2. are the same as those stated for
column 1 except for the following items. D, = 16 g mol/h, W, =7 g mol/h. The sidestream
W, is withdrawn as a liquid from plate j = 21. The bottoms B, of column 1 is fed to column 2
on plate j = 31. The pressure in the condenser is 40 mmHg, and it may be assumed to vary
linearly with plate number between stage 2 at a pressure of 50 mm and the reboiler at
250 mmHg. A reflux ratio of L, /D of 2.5 is to be used.

Initial temperature, vapor, and liquid rate profiles. Same as stated for column 1.

Initial composition profiles for the recycle stream D,. To initiate the first trial for column 1,
assume that essentially all of the ethylbenzene in the feed leaves in the stream D,, and take

d, ,=D, —-FX,=52-51=1
Assume the recycle stream D, is composed mostly of styrene, and

dy,=D,—d, ,=16—-1=15
Take dy,; =dy ;=d;s ; =dg , =d; , =0.
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Table 3-5 Solution of Example 3-3

L. Final temperature and vapor rate profiles for column 1+

T, v, T 7
Stage (K) (kg mol/h) Stage (K) (kg mol/h)
1 326.69 520 27 363.32 204.10
2 33241 1820 28 364.08 20442
3 334.80 183.56 29 364.84 204.73
4 33693 183.38 30 365.57 205.03
5 338.86 183.24 31 366.30 205.32
6 340.64 183.12 32 367.01 205.60
7 34230 183.04 33 367.74 205.87
8 34383 182.98 34 368.41 206.13
9 345.28 182.92 35 369.10 206.38
10 346.66 182.87 36 369.78 206.62
11 347.96 196.73 37 370.46 206.86
12 349.19 197.35 38 371.14 207.08
13 350.35 197.95 39 37181 207.28
14 35148 198.52 40 372.49 207.48
15 352.56 199.06 41 373.17 207.66
16 353.60 199.59 42 373385 207.83
17 354.61 200.09 43 374.54 207.98
18 355.59 200.58 4 37524 208.12
19 356.54 201.05 45 37594 208.25
20 35747 201.50 46 376.65 21197
21 358.36 201.95 47 377.38 212.10
22 359.24 202.37 48 378.13 21222
23 360.10 202.74 49 37891 212.30
24 36093 203.10 50 379.71 21236
25 361.75 203.44 51 380.55 21239
26 362.54 203.78 52 381.44 21237
I1. Solution sets of product rates for column 1
d; Wy by
Component (kg mol/h) (kg mol/h) (kg mol/h)
1 0.8000 0.54160 x 10~3 0.14787 x 10714
2 0.40954 x 102 0.57815 x 10! 0.10105 x 102
3 0.10244 x 102 0.51932 x 10! 0.42530 x 10?
4 0.20858 x 102 0.45960 x 102 0.45430 x 10!
S 0.20724 x 10~* 0.72101 x 1073 092581 x 10~ 2
6 0.51283 x 10~4 0.87917 x 102 0.12115
7 0.11536 x 103 0.11275 x 107! 0.18871

t The convergence criteria for the g functions g, and g, for each column were the same as
stated in Table 3-3 for Example 3-1, except that in this case the criterion of 10~ * instead of
10™% was used.

Qc 1 = 0.18264 x 10'° cal/h
Qr. 1 = 0.20182 x 10° cal/h
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Table 3-5 (continued)

IIL. Final temperature and vapor rate profiles for column 2

T, v, T, 7

Stage (K) (kg mol/h) Stage (K) (kg mol/k)

1 330.55 16.000 27 364.39 56.304

2 336.13 56.000 28 365.11 56.270

3 338.27 56.515 29 365.83 56.236

4 240.16 56.486 30 566.54 56.200

5 341.85 56.475 31 367.24 56.161

6 343.41 56.472 32 36791 52.425

7 344.86 56.474 33 368.57 52.564

8 346.22 56.478 34 369.21 52.700

9 347.51 56.482 35 369.84 52.834
10 348.74 56.485 36 370.47 52.966
11 349.92 56.488 37 371.08 53.095
12 351.05 56.490 38 371.68 53.271
13 352.14 56.492 39 37228 53.345
14 353.19 56.492 40 362.86 53.467
15 354.20 56.492 41 373.44 53 .87
16 355.19 56.490 42 37402 53.703
17 356.14 56.489 43 374.59 53.818
18 357.07 56.486 44 375.15 53.930
19 357.96 56.483 45 375.72 54.039
20 358.84 56.479 46 376.29 54.145
21 359.64 56.475 47 376.86 54.247
22 360.52 56.470 48 377.44 54.345
23 361.33 56.437 49 378.03 54.439
24 362.12 56.404 50 378.64 54.527
25 362.89 56.370 51 379.29 54.606
26 363.65 56.337 52 380.01 54.665

IV. Solution sets of product rates for column 2
di2 Wi b,

Component (g mol/h) (g mol/h) (g mol/h)
1 0.13988 x 1014 0.79899 x 10~ !¢ 0.18892 x 10~2°
2 0.57999 x 10! 0.12848 x 10 0.30208 x 10
3 0.10198 x 10? 0.57079 x 10 0.26624 x 10?
4 0.21138 x 1072 0.58192 x 1072 0.37496 x 10~!
5 0.38839 x 10~¢ 0.21680 x 1073 0.90409 x 10~2
6 0.13979 x 107¢ 0.12231 x 1072 0.11993
7 0.30294 x 10~ 2 0.23966 x 10™* 0.18869

Q¢ = 0.57000 x 10° cal/h
Qx 2 = 0.52253 x 10° cal/h
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Table 3-6 Convergence characteristics of the © method for Example 3-3

1. Column 60’s

Column 1 Column 2
Trial 0, 0, 0, 0,
1 43543 29.111 94.863 3.0438
2 0.091353 0.11463 0.39932 0.48084
3 29271 24237 1.4243 1.2706
4 0.56381 0.62113 0.89824 091891
5 1.3090 1.3016 1.0657 1.0492
6 0.88564 0.89622 0.96894 0.97597
7 1.0402 1.0449 1.0165 10126
8 0.98519 098711 0.99377 0.99512
9 1.0066 1.0045 1.0022 1.0017
10 0.99671 0.99741 0.99913 0.99935
11 1.0012 1.0014 1.0004 1.0004
12 0.99953 0.99935 0.99973 0.99980
13 0.99995 1.0001 1.0001 1.0001
14. 1.0 10 ’ 10 10
2. System @’s
Trial 9, 0, 0, [ON
1 1.1727 1.2217 1.0173 1.0521
2 1.0446 1.0755 1.0235 1.0276
3 0.99716 0.99252 0.99827 099714
4 1.0161 1.0308 1.0099 1.0140
b 1.0006 1.0013 1.0004 1.0006
6 0.99918 0.99817 0.9942 0.99916
7 1.0008 1.0018 1.0006 1.0009
8 10 1.0 1.0 10
9 0.99984 0.99965 0.99989 0.99985
10 10 1.0 10 10
11 0.99953 0.9935 0.99973 0.99980
12 1.0 1.0 10 10
13 1.0 1.0 10 10

3. The convergence criteria were satisfied at the end of the 14th trial. 16.84 seconds of computer
time were required on an AMDAHL 470 V/6 computer with a WATFIV compiler.

The convergence criterion for the system was that the euclidean norm of the g functions for the
system < 107%, that is,

[(91)2 +(92)* + (gs) + (g)*]'"

<10™*
r <

when the g functions are evaluated at @, =0, =0, =0, = 1.
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column. A proof of this statement is established by solving Probs. 3-7 and 3-8,
and a demonstration of the truth of the statement is afforded by solving
Probs. 3-9 and 3-10.

Systems Containing Mixers and Proportional Dividers

The ® method of convergence for systems is readily extended to include other
types of units such as mixers and proportional dividers which are commonly
found in systems of distillation columns. To demonstrate the application of the
© method to systems containing units such as these, consider the system shown
in Fig. 3-13. Suppose the specifications for the system are taken to be D, and B, .
In addition to these, specifications such as the total-flow rate, the thermal condi-
tion and composition of the feed F, the reflux rate, the column pressure, the type
of condenser, and the plate configuration for unit 2 are made. The remaining
flow rates, D,, D;, and B, are computed from the set of three overall material
balance equations. For any component i, the component-material balances are
as follows

{_1 0 i3 d; FX;
[ 1 —(1+r,) 0 di,|=—-1]0 (3-31)
0 T2 (L +r3)]ld: 5 0

When only one stream is withdrawn from a unit such as a mixer, there exists no
question about the product distribution for the given unit. For any choice of
inputs to the mixer, the corresponding output is uniquely determined by the
component-material balance for the mixer (FX;=d; , —r; 3d; ;). Thus, for a
mixer with a single output, a © does not exist. Furthermore, @, for the propor-
tional divider is unity. Thus, r; ; may be set equal to (b;, 3/d; 3)ca» and the
unknown @, found by use of the following g function

g= Z(di.Z co_DZ (3-32)
i=1

where the value of (d; )., is found by solving Eq. (3-31).

n
| I E
r UniT 1 UniT 2 UniT 3
| NMier DisTILLATION PROPORT IONAL
CoLumn Diviper

L% |

B

Figure 3-13 A system containing a mixer, a distillation column, and a proportional divider.
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3-3 A GENERALIZED FORMULATION FOR
A SYSTEM OF COLUMNS IN WHICH

THE TOTAL-FLOW RATES OF

THE EXTERNAL STREAMS ARE SPECIFIED

To illustrate the formulation of the capital ® method for the general case of a
system having any number of columns interconnected by any number of recycle
streams, consider the system of four columns shown in Fig. 3-14. The formula-
tion is simplified by the introduction of a new system of notation.

For each column added to the system, there exists an additional capital ®
multiplier, and each sidestream withdrawn from a column leads to an additional
© multiplier. Thus, the number of ® multipliers is equal to the number of
columns plus the number of sidestreams. The number of g functions is equal to
the number of @ multipliers, and the number of overall component-material
balances to be satisfied by the solution set of the @’s is equal to the number of
columns.

The treatment presented below is restricted to systems of distillation col-
umns. Systems containing both absorbers, strippers, or reboiled absorbers and
distillation columns may also be solved by use of the capital ® method of
convergence as demonstrated in Chap. 4.

As shown in Fig. 3-14, the column from which any stream is withdrawn is
carried as a superscript, and the column to which an independent feed is in-
troduced is also carried as a superscript. This notation follows closely that
developed by Nartker et al.!? For the system of four columns, there are four
independent overall material balances for each component, namely

F'X! +d? —d} —w};,—w};=0

3 2 2 2 _
wy —di —wi;—wy; =0

{
3-33)
F3X3+dt—d} —wi—wi=0
w%i_d?_w?i_w;i__'o
o' 02 F3 ’o" 0%
at I " L v} W
— F—— — 3 3 P 4 ———
|
L
L 3 , w3
w) ( N

Figure 3-14 A generalized system of four interconnected separation units.
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For the system of columns shown in Fig. 3-14, two independent multipliers per
column exist, and they are defined as follows

Wi, @*(W") (k=1,2,3,4)

Fa d*
W, WA (3-34)
3 ®k(d") (k=1,2,3,4)
or, more compactly,
Wi whi
F = 9"(‘1:. )m (k=1,234,s=12) (3-35)

where k denotes the column number and s denotes the sidestream number.

To avoid the numerical problems resulting from the division of the w;’s by
small to zero values for one or more of the d;’s, the following definitions of the
r’s are used instead of those given by Eq. (3-27)

=0iWh)e (k=1,2,3,4,5=1,2) (3-36)

The corrected values of the w’s for each column méy be restated as follows by
combining Egs. (3-35) and (3-36)

wa=rapf  (k=1,234;s=12) (3-37)
where
pi=di/d)a (k=1,2,34)

By use of the relationships given by Eq. (3-37), the component-material balances
[Eq. (3-33)] may be restated in terms of the p;’s as follows

FX} + @)eap? = [(@})a + rli + 3Pl =0
30 = (@) + r}i + 13 )P =0

F>X? + (@})eab! = [([@)ca + 13 + 1302 =0 (3-38)
ryp! = [(@)ea + r}i + rilpt =0

These equations may be represented by the matrix equation

Lpi= —/.. (3-39)
where
-R} @), O 0 pi F'x}
-] 0 —-R? 1}, 0 — |p? , | O
"“lo o -k @] "T|#| “T|exs
0 0 -—R} pi 0

= (d’i‘)ca + r'ii + rgi (k = l’ 2; 37 4)
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Again the number of external streams which may be specified independently
is equal to the number of columns plus the number of sidestreams withdrawn (in
addition to the distillate and bottoms). Thus, for the system shown in Fig. 3-14,
only eight of the twelve external streams may be specified independently.
Furthermore, care must be exercised in the selection of the streams to be
specified in order to obtain an independent set. For example, an examination of
this system shows that all of the W’s may be specified independently, and for this
set of specifications, the normalized g functions become

g= T W) 1 (k=1,234;5=12) (3-40)
i=1

and in view of Eq. (3-37), the expression represented by Eq. (3-40) may be
restated in terms of the r;’s and p/s to give

gi= Y [(rspywe] -1 (k=1,234;5=1,2) (3-41)
i=1

After the last column trial of a given system trial has been performed, the
capital ® method for systems is applied to find a new set of product-component-
flow rates which satisfy all of the system component-material balances simulta-
neously while being in agreement with the specified values of the terminal flow
rates Wi and W4 (k = 1, 2, 3, 4). The solution set of p;’s is determined by finding
the set of positive @’s that make g% = g4 =0, (k= 1, 2, 3, 4), simultaneously.
This set of ®’s may be found by use of the Newton-Raphson method; the
equations for this method are represented by

JA®=—g (3-42)

where the jacobian matrix J and the column vectors g and A® have the follow-
ing matrix representations

20! FIK:
J=1] : :
90! FIeH

g=I[gi - gigi - 93]
A@=[A®} -+ AGt AGY - A@;]T

After the functions and their partial derivatives with respect to the ©’s have
been evaluated, Eq. (3-42) may be solved for A® by use of any one of many
procedures such as gaussian elimination. 3

The functions and their partial derivatives which appear in g and J, respec-
tively, may be evaluated by any one of the techniques described in Chap. 4. Also,
the matrix equation [Eq. (3-42)] may be solved by use of any one of the matrix
techniques described in Chap. 4.
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NOTATION

di‘: di, k

(See also Chapters 1 and 2)

molar flow rate of component i in the distillate from
unit number k

D*, D, total molar flow rate of the distillate from unit k

F* total molar flow rate of the independent feeds to unit k

do» 91 g functions of the 6 method for a single column

g g function for terminal stream number s of unit k

g column vector of g functions; see Eq. (3-42)

J jacobian matrix; defined by Eq. (3-42)

p; (d:)co/(d:).a; see Eq. (3-13)

Pk a;/(d})ca

P: column vector of the p;’s

-, O(wX)eq» value of r for stream s of unit k

r; a square matrix; defined by Eq. (3-39)

w total molar flow rate of sidestream s from unit k

wh molar flow rate of component i in sidestream s leaving
unit k

W, total molar flow rate of sidestream s leaving a complex
column

Subscripts

S number of the first feed plate; see Fig. 3-1

p numbser of the plate from which the first sidestream is withdrawn;
see Fig. 3-1

q number of the plate from which the second sidestream is
withdrawn; see Fig. 3-1

t number of the second feed plate relative to the top of the column;
see Fig. 3-1

Superscripts

k column or unit number

Greek Letters

0 multiplier for the § method for single columns

ok multiplier for sidestream s of unit k of a system

Mathematical Symbols

[x; x; x3]7  transpose of a row vector; the transpose of a row vector

is equal to a column vector, [x, x, x;]7= [x,]

X2
X3
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PROBLEMS

3-1 For the case of a complex distillation column which has one sidestream withdrawn in addition
to the distillate and bottoms, show that the partial derivatives are given by the following expressions.

0go _ - (5:)ealdi)eaF X i
(@) 5_90 T 51 [(d)ea + 00(bi)ea + 0, (wy)).
®) _‘?g_o _ _ < (Wi)ealdi)ea F X
90, i=1 [(d)ea + Oo(bi)ea + 0,(wy,))
09, _ < 01 (Wii)ealbi)ea FX
© afoo T i1 [(d)ea + Oo(bi)eq + 0wy, )2

99, _ z‘: (W13)eal (41)ea + B0(b:)ca) FX;

@ %, =1 [([@ddea + 0o(b)ea + 0,(w,,).)?

3-2 (a) Formulate the constant-composition form of the enthalpy balances for the complex column
shown in Fig. 3-1.
(b) Develop the total material balances for the complex column shown in Fig. 3-1.

3-3 Suppose that the complex column shown in Fig. 3-4 is to be operated at total reflux at finite and
nonzero values of D, B, and W,. Further suppose that the column has a partial condenser and that
the relative volatilities remain constant throughout the column. By use of the same approach used to
derive Eq. (1-58), show that the Fenske-type relationships are given by

W _ m)arp
d \4, /"

b (b°)a‘ N
4 \4/"
where b refers to the base component, the component used to compute the ;s (x; = K;/K,).

34 Use the Fenske equations of Prob. 3-3 to show that the values of {(b;/d,),} and {(w,;/d;),} for one
set of total flow rates D, and W, are related to the values {(b;/d,),} and {(w,;/d,),} for a second set of
total flow rates (D, and W,) by the multipliers 6, and 8, that is

(@), -(z),
(i), =),

_ (by/dy),
7 (by/dy),

- (wy,/dy);
! (w1p/dy),

and

where

3-5 This problem is based on material given in Refs. 7 and 8. A complex column having one
sidestream W, is operating at total reflux. The feed composition, relative volatilities, and other
specifications for this column follow
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Component X, o;  Other specifications

1 1/3 1 N =5, p = 3, total condenser,
2 1/3 2 F = 100 mol/h, and

3 1/3 3 total reflux operation

(a) Compute the values of b, /d;, w,;/d;, D, and W, when it is specified that
b,/d,=16 and  w,,/d, =10
(b) Repeat (a) for the case when it is specified b, /d, = 8 and w,, /d, = 5.

Answer:
(a) Component  b,/d; wy,/d;
1 16 10
2 1 25
3 0.1975 L1

D = 23.0808 W, = 469075
D = 34.6522 W, = 38.2498

3-6 This problem is also based on material presented in Refs. 6 and 7. On the basis of the following
sets of b/d’s and w,;/d’s at D =23.0808 and W, = 46.9078, compute the b;/d’s and w,;/d;’s at
D = 34.6522 and W, = 38.2494 by use of the § method of convergence for complex columns.

Given:

Component X a;  (bi/d), (wy:/dy), Other specifications

1 1/3 1 16 10 N =5, p=3, total

2 1/3 2 1 2.5000 condenser, F = 100, and
3 1/3 3 0.1975 1.1111 total reflux operation

Hint: For the first trial assume that 6, = 0.5 and 6, = 0.5.

Answer :
Component  b,/d; wyi/d;
1 8.000 5.0000
2 0.500 1.2500
3 0.09875  0.5555

3-7 If each column in the system of columns shown in Fig. 3-8 is at total reflux of the type in which
all of the total-flow rates of the terminal streams (F, D,, D,, B,, B,) are nonzero, finite, and positive,
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show that the Fenske-type equations for columns 1 and 2 are as follows

by _ (f’u)a,—m
di,l db.l !

bos _ bz
di‘l db. 2 !

Thus, when both columns are operated at the condition of total reflux, the above Fenske equations
for columns 1 and 2 give the values of r, , and r, , of Eq. (3-27) exactly, that is, r, , = b, , /d; , and
ra=b,,/di ;.

3-8 Use the Fenske equations of Prob. 3-7 to show that the values of {(b; ,/d; )} and
{(bs, 2/d;, ;),} for one set of total-flow rates D, and B, are related to the values {(b; ,/d; ).} and
{(bi, /d;, ;)2} for a second set of total-flow rates (D, and B,) by the multipliers ®, and ©,, that is

b; b;
(@), - (i)
i1/2 iw1/71
bi 2) (bl 2)
(di'l 2 : di.z 1

= (bb. l/db. 1)2
! (bb. l/db. l)l

_ (by, 2/dy, 2)s
(by, 2/ds, )

3-9 The following example was also formulated on the basis of information given in Refs. 7 and 8.

(a) For the system of conventional distillation columns shown in Fig. 3-8, compute D,, D,, B,,
and B, for the case where component 1 is selected as the base component b, and it is specified that
the columns are at total reflux and that

where

0,

by, 4 /dy, 4 = 16 by ,/dy . =8

Given:

Column 1, o; columns 1

Component X and 2 Other specifications

1 1/3 1 Columns 1 and 2: N = 5, total condenser,
2 1/3 2 and total reflux operation. External feed
3 1/3 3 F to column 1 is 100 mol/h

(b) Repeat part (a) for the case where
bb. 1/d).1 =8 b, ,/d, ;=4

Answer:

(a) D, = 60.2543, D, = 39.7448, B, = 217.5755, and B, = 177.8305 mol/h.

(b) D, = 67.0963, D, = 32.9036, B, = 117.4772, and B, = 84.5736 mol/h.
3-10 On the basis of the product distributions found in Prob. 3-9(a), compute the product distribu-
tions at the total-flow rates specified in Prob. 3-9(b) by use of the capital ® method of convergence.
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Hint: Assume ©, = 0.5, ©, = 0.5 for the first trial.
Answer:

Component b, ,/d; b, ,/d; ,

1 8 102.5640
2 0.5 11.9047
3 0.09875 3.0085

3-11 Tomme'! has shown that it is always possible to find a set of positive 0’s that make all of the
functions go to zero for a column having one sidestream. By use of the following outline, construct
the proof of the existence of a set of positive 0's such that g, = g, = 0, simultaneously, for a column
with one sidestream. It is also to be understood that D and W, are specified positive numbers such
that D + W, < F; thatis, F = D + W, + B, where B > 0.

Step 1. Construct the graphs shown in Figs. 3-5 and 3-6 for g, and g, in the neighborhood
where both 6, and 0, are positive.

Step 2. Show that g, always has a trace in the 8,0, plane.

Step 3. Show that g, always has a trace in the 6,0, plane.

Step 4. In order to prove that a point of intersection exists for every pair of functions, it is
sufficient to show that

a<b

In order to prove this, verify the following relationships and then employ them as required.

1900, 0)' =B+ W

19,00, 0)| = W,
99,(0, 01)‘_ 94,(0, 0,)
a0, _’ a0,

3-12 Obtain expressions for the partial derivatives of the g functions given Eq. (3-26) for the system
shown in Fig. 3-8.

3-13 Show that it is always possible to find a set of positive @’s for the g functions of the capital ©
method for the system shown in Fig. 3-8.

Hints:

1. Show that the trace of the function g, in the ©, ®, plane exists for all sets of positive and finite
values for ®, and O, .

2. Show that the trace of g, exists for all finite and positive values of ®, and for all positive values of
©, greater than the asymptotic value.

3. Show that point a in Fig. 3-11 is always to the left of point b, that is a < b.

3-14 For the proportional divider [unit 3 of Fig. 3-13], show that ®; = 1 by use of the following

information

Lo(b; 3/d; 3)e = @3(1’:. 3/d;, 3)ea-

2. The composition of stream B, is always equal to the composition of stream D, .

3. The calculated values of b, ; and d, , are based on the specified (or corrected) values of B and
Dy, that is, (B3 /Ds)., = (B3 /D3),-
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CHAPTER

FOUR
THE 2N NEWTON-RAPHSON METHOD

When the Newton-Raphson method” is formulated in terms of two independent
variables per stage, the temperature T; and the flow ratio L;/V;, the resulting
procedure is called the 2N Newton-Raphson method. (Originally, this procedure
was called the multi-0 method.'® !”) When both the vapor and liquid phases
form ideal solutions on each stage, this procedure is an exact application of the
Newton-Raphson method.

The 2N Newton-Raphson method may be applied to any type of distillation
column or to any system of interconnected columns. Absorbers, strippers,
reboiled absorbers, and distillation columns are treated in Sec. 4-1. Selected
numerical methods for solving the 2N Newton-Raphson equations are presented
in Sec. 4-2. In Sec. 4-3, two methods for solving problems involving systems of
columns interconnected by recycle streams are presented.

Recommended procedures for solving problems involving single columns as
well as systems of columns interconnected by recycle streams are summarized in
Table 4-1 for the case where mixtures to be separated form ideal or near solu-
tions throughout the column. As shown there, the 2N Newton-Raphson method
is recommended for solving problems involving absorber-type columns (any
column which does not possess both an overhead condenser and a reboiler such
as absorbers, strippers, and reboiled absorbers).

For solving problems involving distillation-type columns (any column pos-
sessing both an overhead condenser and a reboiler), the 6
Chaps. 2 and 3 is recommended. For systems of colu s:&ontai 63» oth
absorber-type and distillation-type columns, it is reco r@‘nded that t& N
Newton-Raphson method be used for the absorber-type doTimpysaed Eg#

)
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Table 4-1 Summary of methods and their applications for separating mixtures
which form ideal solutions

Recommended
Type of column method Description
Conventional and complex 0 method Chaps. 2 and 3
distillation columns
Absorbers, strippers, 2N Newton-Raphson This chapter
reboiled absorbers,
and any column which
does not have both a
condenser and a reboiler
Systems of distillation- 6 method for the individual columns Chaps. 2 and 3
type columns with and the capital ® method for
recycle streams the system
Systems of absorber- 6 method for the distillation-type This chapter and
type and distillation- columns, the 2N Newton-Raphson Chaps. 2 and 3
type columns with method for absorber-type columns,
recycle streams and the capital © method for the
system

method be used for the distillation-type columns. After one trial has been made
on each column of the system, the system is placed in component-material
balance and in agreement with the specified values of the total-flow rates by use
of the capital ® method of convergence.

4-1 FORMULATION OF THE
2N NEWTON-RAPHSON METHOD FOR SINGLE COLUMNS

The development of this application of the Newton-Raphson method is pre-
sented first for an absorber (or stripper)—see Fig. 4-1. Then the method is
applied to conventional and complex distillation columns.

Absorber and strippers may be classified as complex columns because they
possess two feeds and because they possess neither an overhead condenser nor a
reboiler. The sketch of the absorber in Fig. 4-1 depicts an historic application of
absorbers in the naturai gas industry. From a light gas stream such as natural
gas that contains primarily methane plus small quantities of, say, ethane through
n-pentane, the desired quantities of the components heavier than methane may
be removed by contacting the natural gas stream with a heavy oil stream (say
n-octane or heavier) in a countercurrent, multiple-stage column such as the one
shown in Fig. 4-1. Since absorption is a heat-liberating process, the lean oil is
customarily introduced at a temperature below the average temperature at
which the column is expected to operate. The flow rate of the lean oil is denoted
by Lo, and the lean oil enters at the top of the column as implied by Fig. 4-1.
The rich gas (which is sometimes called the wet gas) enters at the bottom of the
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Vi Lo
Vii Roi
=1
Va Ly
v2i Rii =2
Vs Lo
Vi Rai i3
j=N-1
i=N
Vn+i Ln
VN4, ANi

Figure 4-1 Absorber and identifying symbols.

column at a temperature equal to or above its dew-point temperature at the
column pressure but generally below the average operating temperature of
the column. The total-flow rate of the rich gas is denoted by Vy . ;. The absorber
oil plus the material that it has absorbed leave at the bottom of the column; this
stream is called the rich oil. The treated gas leaving the top of the column is
called the lean gas (or the stripped gas).

Strippers are used to remove relatively light gases from a heavy oil stream
by contacting it with a relatively light gas stream such as steam. Figure 4-1 is
also used to depict a typical stripper.

Formulation of the 2N Newton-Raphson Method for an Absorber
(or Stripper) with Any Number of Equilibrium Stages

In the following formulation of the Newton-Raphson equations, the independent
variables are taken to be the N-stage temperatures {T;} and the N-ratios of the
total-flow rates {L;/V;}. When the gas and liquid phases form ideal solutions, the
procedure described is an exact application of the Newton-Raphson method.
The absorber (or stripper) shown in Fig. 4-1 is described by the N(2¢ +3)
independent equations. When these equations are stated in terms of component
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and total-flow rates instead of mole fractions, one obtains

i _ gt (i=12..,N)
v "L (i=12..7¢
Equilibrium < ;
I:L =1,2,...,N
rclationships< ,-;1 o U )
Y=V (=12..,N)
i=1
. 4-1
Component- 1)
material {uj+,.i+l,-_l‘,-—vj,-—lj,~=0 (=12 ...,N)
balances (i=12..70
Energy <
balances { __Zl (v il i+ Loy by — v;iHji — ;] =0

(j=12..,N)

~ When the column pressure P, the rich gas rates {vy,, ;} and the temperature
Ty, the lean gas rates {l,,;} and the temperature T, and the number of plates N
are fixed (or specified), the set of equations represented by Eq. (4-1) contains
N(2c + 3) unknowns: {v;}, {I;}, {V;}, {L;}, and {T}}.
The N equilibrium functions are formulated by first restating the second and
third expressions of Eq. (4-1) as follows

0=l i (4-2)
L; Vi

Elimination of the I;s by use of the first expression of Eq. (4-1) and restatement
of the result so obtained in functional form yields

1 & (1

= — =11 i=1,2...,N 4-3

FJ V] igl (Kji )U,. (j ) ( )

The N enthalpy functions are obtained by dividing the sum of the input

terms of the last expression of Eq. (4-1) by the sum of the output terms. When
the result so obtained is restated in functional form, one obtains

Z [”jiHji + Ijihji]
G. = i=1

J

-1 (4-4)

(4
Z Va1, iHjer, i + -1 ihj-1,4)
i=1

The functions F; and G; contain the dependent variables {v;;}, {1}, and {V}}.
For any choice of values of the independent variables {T;} and {L;/V}}, expres-
sions are needed for computing the corresponding values of the dependent
variables.
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First, an equation for computing the {¥}’s} for any set of assumed L;/V}’s is
developed. Summation of the component-material balances over all components
followed by the elimination of the summations through the use of the second
and third expressions of Eq. (4-1) yields

V,—V,—L,=—L,
‘/_I+I+LJ—1_‘/J—L]=0 (j=2,3,..,N—1) (4-5)
Ly, — VN—LN=“VN+1

For any given set of L;/V}’s it is desired to solve the total-material balances for
the corresponding set of vapor rates {V}. In the restatement of the total-material
balances, it is convenient to define the new variable 0; as follows

. L.

9.1 j =

g 9,(%)‘, (G=12....N) (4-6)
where (L;/V;), is any arbitrary value of L;/V;. Taking this assumed ratio equal
to the most recently assumed value of L;/V; serves to normalize the 6)’s so that
at convergence ; approaches unity for 2il j. Let Eq. (4-6) be restated as follows

i=R;V; (4-7)
where R; is defined by
L;

Equation (4-7) may be used to restate the total material balances in terms of
either the vapor or the liquid rates. For any interior plate j (j=2,3,..., N — 1),
the total material balance may be restated in terms of the vapor rates as follows

RiyViey —(L+ R)V; + Vi =0 (4-9)

The complete set of total-material balances may be represented by the matrix
equation

RV = —-%F (4-10)
where
—(1+Ry) 1 0 0 0
R R, —(1+R;) 1 0 0
0 0 Ry-; —(14+ Ry-y) 1
0 0 0 Ry_, —(1+ Ry)

V=l Y Wl
F = [LO 0--- 0 VN+1]T

For a given set of values of the independent variables {6;} and {Tj}, the
corresponding sets of values of the component-flow rates {v;;} and {/;;} are needed
in order to evaluate the functions {F;} and {G}. These rates may be computed
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through the use of the first and fourth expressions of Eq. (4-1) which may be
rearranged to the form

L= Ajvj; (4-11)
where

After the I;’s (j=1, 2, ..., N) have been eliminated from the component-
material balances by use of Eq. (4-11), the resulting set of equations may be
restated in the matrix form of Eq. (2-18), A;v; = — 4, where each absorption
factor appearing in A, is given by Eq. (4-11) and v; and 4 have the following
-elements

Vi=[vg; vy o on]"
fi= [lo; 0~ 0 UN+1,|']T (4-12)
Now observe that for any given set of 6’s and T}’s (and some arbitrary set of
(L;/V;)a’s), sets of numerical values may be found for the Vs and the v;’s by
solving Eqs. (4-10) and (2-18) respectively. After the V;’s have been found, the
L;s may be computed by use of Eq. (4-7). Similarly, after the v;’s have been
computed, the corresponding I;’s may be computed by use of the equilibrium

relationship, Eq. (4-11). In summary, it is desired to find the set of 2N indepen-
dent variables

X=[0,0, - 0sT, T, - Ty]"
which satisfy the 2N independent functions

f=[F, F; - Fx G; G, - Gp]"
simultaneously.

The Newton-Raphson equations for solving the 2N functions {F;, G} for the
2N independent variables {#;, T;} may be represented by the matrix equation

JAX = —f (4-13)
where the jacobian J has the representation
001 50N 5T1 aTQN
00, a0y 0T, 0Ty
J=
00, a0y 0T, 0Ty
| 06, a0y 0T, 0Ty |
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and
AX = [A0,, AD,, ..., A0y, ATy, AT, ..., AT\)"

f= [Fl’ F2, ceey F‘v, Gl‘ Gz, ...,GN]

Next, the 2N Newton-Raphson method is applied to reboiled absorbers, conven-
tional distillation columns, and complex distillation columns, and then a
procedure which makes use of the calculus of matrices for solving these equa-
tions is presented.

In the formulation of the Newton-Raphson equations, each of the functions
to be employed may be obtained by any combination of the independent equa-
tions which produces an independent function. One of the most important steps
in the application of the Newton-Raphson method is the formulation of the
functions because the precise form of the functions determines the region of
convergence. To illustrate this concept, consider the formulation of the isother-
mal flash function. Although a variety of flash functions may be developed by
different combinations of the 2¢ + 2 equilibrium and component-material bal-
ances, many of these functions could prove unsatisfactory for solving the adiaba-
tic flash problem by use of a formulation of the Newton-Raphson method which
involves two independent variables and two independent functions. In general it
is desirable to construct functions which are monotonic in the independent
variables throughout the region of convergence. For example, the flash function
given by Eq. (1-30) is not monotonic in the independent variable ‘¥ throughout
the solution domain 0 < ¥ < 1. Although the function P(¥) may be used satis-
factorily to find the solution to the isothermal flash problem by starting at
¥ = 1, its use could lead to difficulties in the solution of the adiabatic flash
problem by a Newton-Raphson formulation in terms of ¥ and T. Examination
of P(¥) shown in Fig. 1-8 shows that when any value of ¥ > 0 to the left of the
minimum is used, Newton’s method will predict a negative ¥. The customary
procedure used in n-dimensional space consists of the successive reduction of the
corrections [A¥ for the function P(¥)] by factors of 1/2 until positive values of
the variables are obtained. For the function P(¥), this procedure fails because all
values of ¥ to the left of the minimum are outside of the region of convergence
for the positive nonzero root. In this case, trials would be made at successively
smaller values of W and the trivial solution ¥ = 0 would be approached as this
procedure is applied indefinitely. To obtain the desired solution (the ¥ >0
which makes P(¥) = 0), a new starting value which is to the right of the mini-
mum value P(¥) must be selected. Selection of an initial set of the variables
which are in the region of convergence can prove difficult for n-dimensional
problems unless the functions are very carefully formulated.

Another type of serious difficulty arises when f(x) exhibits the following type
of behavior. Suppose that after having passed through the x axis at some x > 0,
it then passes through a minimum (or a maximum) and then approaches zero
asymptotically. Thus, for larger and larger values of x to the right of the
minimum (or maximum), the function f(x) becomes smaller and smaller. The
function in Prob. 4-5(b) behaves in this manner. Although it is difficult to deduce
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the behavior of a function in n-dimensional space, the traces of the function can
be examined in two-dimensional space and an attempt should be made to formu-
late functions whose traces are monotonic.

Reboiled Absorbers

The sketch for a typical reboiled absorber is shown in Fig. 4-2. To demonstrate
the formulation of the 2N Newton-Raphson method for reboiled absorbers, two
different sets of specifications are considered.

Specification set 1 P, F, {X,}, thermal condition of F, L,, {x,}, Tp, f, N and Qg
In order to solve a problem of this type by the 2N Newton-Raphson method,

Vi T (Lean Gas)

- Lo
. (LeaN oiL)
2
F f -
(RICH GAS) f
4
N-2
N-|
VN
1 bn-i
REBOILER B

N J(BoTTOMS)

Figure 4-2 Sketch of a reboiled absorber.
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the following sets of 2N independent functions are selected
X=[0,0, 0T, T, - TN]T
f=[F, F, - Fy G, G, -~ GN]T

The matrix A; of the component-material balances are of the same general
form as the A; given by Eq. (2-18) for distillation columns. When plate 1 is
assumed to behave according to model 1 (see Fig. 1-13) and plate f'is assumed to
have the behavior characterized by model 2 (see Fig. 2-2), the component-
material balances may be represented by Eq. (2-18); provided that the elements
of ¥ are taken to be the following set

4 =[lg; 00 -~ 0 vy I); 0 --- 0]" 4-14
b4

where vy; lies in row f— 1 and [, lies in row f.
The second set of specifications differs from the first in that the boilup ratio
Vy /B is specified instead of the reboiler duty.

Specification set 2 P, F, {X;}, thermal condition of F, L,, {x,}, Ty, f, N, Vy/B
For this set of specifications, the 2N independent variables are given by

X=[01 0, - Oy T T, - Ty y Ty QR]T (4'15)

and the 2N independent functions f are the same set listed for Specification
Set 1. The N vapor-liquid equilibrium functions are given by Eq. (4-3), and the
enthalpy balance functions are given by Eq. (4-4) for all stages except j = f — 1, f,
N. For stage f — 1 and f; the functions G,_, and G contain the additional term

Mn

v;Hy  and Y lihy
i=1

i=1

in their denominators, respectively. For stage N, the normalized form of Gy is
given by

z [oniH i + bihyi]
i=1

Gy = -1 (4-16)

Mn

[v-1ihn-1. + Ok

i=1

Conventional Distillation Columns

From the sketches of a conventional distillation column (Fig. 2-1) and a reboiled
absorber (Fig. 4-2), it is seen that the geometrical configuration of a conven-
tional distillation column is obtained by replacing plate 1 of the reboiled absor-
ber by a condenser-accumulator section (stage 1) and by eliminating the feed L, .
The condenser-accumulator section is assigned the stage number 1, and when
the condenser duty Q. is specified the independent variables corresponding to
this stage are 0, (where 6, = L, /D) and T;.
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The matrix equation representing the component-material balance is again
given by Eq. (2-18), and the elements of the matrices A;, v;, and ¥4 have the

meanings stated below Eq. (2-18).

For a column having a partial condenser, the dew-point functions are given
by Eq. (4-3) for j=2,3,..., N.Forj=1,D and d, play the same role as V; and
v;; in Eq. (4-3) and the dew-point function F, is given by

1 & (1
F,=— — = ; 4-17
! D igl (Kli I)dl ( )
For a column having a total condenser, the bubble-point function for the
distillate is used for F,, namely,
l c
Fy=— Z(Kli_ 1) d; (4‘18)
D=

Except for stage 1, the enthalpy balance functions are given by Egs. (4-4) and
(4-16). For stage j = 1, the normalized form of the enthalpy balance function is
given by

Z [diHl;i + liih] + Qc
G, ==t - -1 (4-19)
Z vy Hy;
i=1

where H,; = H,; for a partial condenser and H; = hy; for a total condenser. For
stages j=2, 3, ..., f—2, f+1, f+2, ..., and N—1, the enthalpy balance
functions G; are given by Eq. (4-4). The functions G, and G are formulated as
described below Eq. (4-15) and Gy is given by Eq. (4-16).

The independent variables for different sets of specifications are listed in
Table 4-2.

Complex Columns

Complex columns were defined in Chap. 3 and illustrated by Figs. 3-1 and 3-4.
To illustrate the application of the 2N Newton-Raphson method to the solution
of problems involving complex columns, consider the simple case where the
sidestream W, is withdrawn in the liquid phase from some interior plate p. The
withdrawal of the sidestream W, gives rise to one specification in addition to
those stated for conventional columns, in items 1 through 4 of Table 4-2. When
this additional specification is taken to be either the total-flow rate W, or the
ratio W, /L, the sets of specifications, independent variables, and functions for
this complex column are the same as those stated in Table 4-2 except that either
W, or W, /L, should be added to each set of specifications.

When W, /L, is specified, the total-material balance for plate p,
Vpsr + Lp-y — V, — L, — Wy =0 may be restated as follows

W,
R,_le_l—(l+R,+1—‘R,)V,+ Vose1=0 (4-20)
14
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Table 4-2 Specifications, independent variables, and functions for conventional
distillation columns

1. Specifications: P, F, {X, thermal condition of F, f, N, Q. Q. a partial condenser, and the
model of the feed plate.
Independent variables: 0,, 0,, ..., 0y_,, Oy, T, Ty, ..., Ty_. Ty
Functions: F,, F,, ..., Fy_, Fy, G, Gy, ..., Gy_y, Gy. F, is given by Eq. (4-17).

2. Specifications: P, F, {X}, thermal condition of the feed F, f N, L,/D, Vy/B, and a partial
condenser.
Independent variables: Q.. 0,, 05, ..., 0y_y, Qp, Ty, T, -y Ty Ty
Functions: Same as item 1.

3. Specifications: Same as item 1 above except that a total condenser instead of a partial
condenser is to be used.
Independent variables: Same as item 1.
Functions: Same as item 1 except F, is given by Eq. (4-18).

4. Specifications: Same as item 2 above except that a total condenser instead of a partial
condenser is to be used.
Independent variables: Same as item 2.
Functions: Same as item 3.

Thus, the matrix equation RV = —% [Eq. (4-10)] applies, provided that the
element lying on the central diagonal of row p of R is changed from (1 + R,) to
[1 + R, + (W, /L,)R,].

When W, is specified, the total-material balance for plate p takes the form

Ry Vo i —(L+ R, + Vyur =W, (4-21)

In this case, the constant W, appears in row p of the column vector %. For
example, if W, is withdrawn from plate p above the feed plate f, then & is of the
form

F=[00(-W)00V L 0-0] (4-22)

The component-material balances are formulated in precisely the same
manner as demonstrated in Chap. 3 for complex columns.

Three procedures are presented in this chapter for solving the Newton-
Raphson equations. Procedure 1 is presented below and procedures 2 and 3 are
presented in Sec. 4-3.

Procedure 1. Solution of the 2N Newton-Raphson Equations by
Use of the Calculus of Matrices and LU Factorization

The analytical expressions for the partial derivatives of the Fj’s and Gj’s with
respect to the ;s and Tj’s are readily obtained by termwise differentiation of
these functions. For example

oF;, 1[& (1 dv; .V (k=1,2,...,N)
Ci 2|y (- —1| 28 —F, 24 15 o0 4-23
%,V [;, (K‘,. l)ao,, faek] (i=12..,N) (+23)

J J ’
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The partial derivatives of the flow rates which appear in these expressions may
be evaluated by solving the matrix equations given below. The partial derivatlyes
of Fj’s with respect to the 6/s may be computed by use of the matrix equation
obtained by partial differentiation of the members of Eq. (4-10) with respect to
any 0, say 0,

ov; 0A;

T = — = V; k=12 .., N 4-24

0, "ag " k=1L2 ) (4-24)
where

a0, — |26, 36, a0,

Similarly, partial differentiation of the component-material balances [Eq. (2-18)],
A;vi = — 4, with respect to T, gives
ov; 0A;

e = — oy, 4-25
L= T (4-25)

ot oo

where
oT, |d0T, 0T, 0T,

Since the matrix A, has at most only two elements which depend upon a particu-
lar 6 or T, the right-hand sides of Eqs. (4-24) and (4-25) reduce to relatively
simple column vectors as shown in Table 4-3 for absorbers. The elements in
these column vectors are found by carrying out the matrix operations indicated
on the right-hand sides of Egs. (4-24) and (4-25).

The partial derivatives of the total-flow rates with respect to the 6;’s may be
found by use of the following expression which is obtained by termwise partial
differentiation of Eq. (4-10) to give

oV _ R
30, 26,

After the matrix operations implied by the right-hand side of this equation have
been performed, the elements of the column matrix shown in Table 4-3 are
obtained.

The partial derivatives of the Vs with respect to the temperatures are all
equal to zero because every element of the matrix R is independent of tempera-
ture. The truth of this statement is demonstrated by first differentiation of each
member of Eq. (4-10) with respect to any T, say T, to obtain

ov JR

—_—=——V = ]
= 5TV =0V=0

(4-26)

and thus
ov

—:R_l =
T, 0=0
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Table 4-3 Elements of the column vectors on
the right-hand sides of Eqgs. (4-24), (4-25), and
(4-26) for absorbers

1. Elements of C,; = —(0A,/00,)v;, (k=1,2, ..., N)
Ci=[Cyi (=C1) O - 0)]"
Co=[0Cy (=Cp) 0 - O]T

Cyor.i=[0--0 Cyoni (_CNAI.-‘)]T
Cy=[0-0 CNi]T
C:u'=%“i"lu'=i 5)
agk Kki l/k a
2. Elements of D,; = —(0A;/0T)v;, (k=1,2,..., N)
Dy;=[Dy; (=Dy)) 0 -+ O]T
Dz.'=[0 Dy(=D3) 0 - O]T

DN~1‘1=[0 0 Dy_y.; (‘DN—I.-‘)]T
Dy = [0 0 DN.’]'.
2 b, 0Ky
ki T, ki K. ki T,
3. Elements of E, = —(0R/d6,)V
E = [Ex (_El) 0-- O]T
E,= [0 E, (—Ez) 0 - O]T

Ey.,=[0--0 Ey_, (—En—x)]r
Ey=[0--0 E\]"

E, —aR"V—(L" v,
k—aek k= Vk)‘k

Consequently

Yi_o U=12...N)
T, (k=1,2,...,N)

Comparison of Egs. (3-7), (4-24), and (4-25) shows that the same tridiagonal
matrix A; appears in the expressions for computing the component-flow rates as
appears in the expressions for calculating the partial derivatives of the vj’s with
respect to the temperatures and the 6’s. Similarly, the tridiagonal matrix R which
appears in the total-material balances [Eq. (4-10)] also appears in the expression
for calculating the partial derivatives of the V;s with respect to the ’s
[Eq. (4-26)]. This characteristic gives rise to several possible procedures for solv-
ing for the component-flow rates, the total-flow rates, and their partial deriva-
tives. Three of the possible methods for solving these equations are (1) the use of

(4-27)
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the recurrence formulas for tridiagonal matrices [see Egs. (2-20) through (2-22)],
(2) the use of inverse matrices, and (3) the use of the procedure called “LU
factorization.” Only the fastest of these, LU factorization, is described. The
method of LU factorization is best described by use of the following numerical
example.

Example 4-1 (Hess et al,'? by courtesy Hydrocarbon Process.) Lean oil at
the rate L, = 1 g mol/s enters the top plate of a three-plate absorber. Rich
gas at the rate V, =2 g mol/s enters the absorber at the bottom of the
column on plate 3 (see Fig. 4-3). (a) For the first trial, take (L;/V;), = 1/2 for
all j and take the assumed values for the 8;’s to be 6, = 0, = 6; = 1. Find
the corresponding values of the total flow rates V;, V,, and V;. Solve by
gaussian elimination, and store the negative values of each multiplier in the
same location as the zero produced by the given multiplier. (b) Show that
the resulting matrix produced by the operations described in part (a) may be
restated in terms of a lower triangular matrix L and an upper triangular
matrix U which are related to the original matrix R as follows

LU =R

(c) Show that the multipliers saved in part (a) may be used to operate on the
elements of the original matrix (— %) to produce the form possessed by this
matrix at the end of the gaussian elimination process. (d) Show that the
multipliers saved in part (a) and the final form of the R matrix at the end of
the gaussian elimination process may be used to compute the partial deriva-
tives for the ¥’s with respect to 0,.

Vi Lo
1
2
3
V4 Ls

Figure 4-3 The three-plate absorber used in Example 4-1.
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SoLuTION (a) The total-material balances may be stated as follows in terms
of the vapor rates and the R;’s

—(l+R W, + V,=—-L,
R\ Vi—(1+R)V,+Vy=0
R,V —(1 + Ry)V;= -V,
These equations may be stated as a matrix equation of the form
RV=C

where —# of Eq. (4-10) is replaced by C in this example to give the

following
—(1+Ry) 1 0 Vi -L,
R, —(1+Ry) 1 v, |= 0
0 R, —(L+ R3) ||V, -V,

On the basis of the values given above, R; = R, = R; = 1/2, and the fact
that Ly =1 and V, = 2, matrices R and C become

[—3/2 1 0] [—1]
12 =32 1 0 (A)
-2

0 12 =32
Step 1. To eliminate 1/2 (the first element in the second row) multiply
row 1 by 1/3 and add this result to row 2. Then replace row 2 by the result
obtained by this addition to give
-1
-1/3
-2

-3/2 1 0
(—173) -17/6 1
0 12 =32

The negative value of the multiplier 1/3 has been stored in the location
where a zero was obtained by use of this multiplying factor. To emphasize
that a zero and not —1/3 is to be used in subsequent row operations, the
multiplier is enclosed by parentheses.

Step 2. To eliminate 1/2 (the second element of row 3) multiply row 2
by 3/7 and add this result to row 3. Then replace row 3 by the resuit
obtained by this addition and store the multiplier 3/7 as before to give the
final matrix equation

—3)2 1 o 1[v -1
(-1/3) -17/6 1 || l=]-13 (B)
0 (=31 -15n4]lv,| |-157

which may be represented symbolically as

RV=C (©)
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where R’ is the upper triangular form of the matrix R, and C’ is the resulting
form of C obtained by transforming R to R'.

Application of the multiplication rule’ to row 3 [with the understand-
ing that the actual element where (—3/7) is stored is zero] gives

—(15/14)Vy = —15/7
Thus
V=2
Application of the multiplication rule to row 2 gives
—(1/6)Va + V3= —1/3
After V3 = 2 has been substituted into this equation, one finds
V,=2
Similarly, application of the multiplication rule to the top row gives
-3 +V,= -1
and thus
V=2
(b) Let U denote the upper triangular form of R obtained in part (a).
[ -3/2 1 0 ]
U= 0 -7/6 1
0 0 -—15/14

Let L be the lower triangular matrix formed by use of the multipliers of part
(a) and by the use of elements of unity along the central diagonal, that is,

( 1 0 0
L=]-1/3 1 0
0 =37 1
Now carry out the multiplication of L times U
1 0 0][-32 1 0
LU=|-1/3 1 0 0 -7/ 1
0 =37 1} 0 0 -—15/14
-3/2 1 0
= 12 =32 1
0 12 =32

The matrix obtained by multiplication is seen to be the original matrix R.
Thus the calculational procedure described in part (a) and the formulation
of the matrices L and U from these results does produce a factorization of R,
and for this reason the process is called LU factorization.
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(c) It will now be demonstrated that most of the operations which
would be required to solve any other set of equations that differ from the
original set by only the elements of the C matrix have already been per-
formed and need not be repeated. The results of these operations are con-
tained in the triangularized form of R in which the multipliers have been
saved as demonstrated by Eq. (B).

First observe that the operations required to transform R into an upper
triangular matrix are the same regardless of the particular set of elements
appearing in the C matrix. Next, examine steps 1 and 2 of part (a) and
observe that the elements of the C matrix are operated on by only the
multipliers used to transform R into the upper triangular matrix R’. Thus,
the final set of elements shown in the derived matrix C" in Egs. (B) and (C)
can be obtained by commencing with the original set of elements in C and
the multipliers stored in R’ and performing the operations shown below. Let
the elements of C and C' be denoted by C,, C,, C; and C), C,, Cj,
respectively. Examination of Egs. (A) and (B) shows that

C,=Cy=—1

By examination of the operations in step 1, it is seen that C’, may be
computed as follows

Cy=C,— (=13)C; =0 — (=13)(-1)= —1/3
Similarly, an examination of the operations in step 2 shows that
Cy=C;—(=3/7)Cy= -2 —(=3/7)(—-1/3)= —15/7

Thus, for any set of initial values of C,, C,, and Cj, the final set of values
C', C5, and C% may be found by performing the above calculations. The
method described is readily extended for the general case where the matrix R
contains any number of elements.

(d) By use of the value obtained for V; in part (a) and the formulas
given in Table 4-3 for the matrix E; of the matrix equation R 0V/00 = E,,
the elements of E, are evaluated as follows

oR, L
— — |V 1
a0, " (V) ‘

E1= aRl = Ll =

% =) v || -1
3, (V) ‘
0 0 0

To determine the values which the elements of E, would take on by the
gaussian elimination process required to transform R into the upper triangu-
lar matrix R’, one may perform on E, the same set of operations performed
on C in part (a). Let the elements of E, be denoted by E, ,, E, ,, E;, 3 and
the elements of E} by E} ,, E}_,, E}_ 3. By use of the elements of E, and the
multipliers stored in R’ [see Eq. (B)] the elements of E; ,, E} », and E} ;
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may be computed as follows

E\=E; =1

E\ ,=E, ,—(—1B)E, = —1—(-13)(1)= -2/3

Ej 3=E; 35— (=3/TE\ ,=0—(=3/7)(-2/3)= -2/
Observe that the form of R’ obtained by performing gaussian elimination on
RV = C to give R'V = C' is the same as that obtained by performing gaus-
sian elimination on R dV/d0, = E, to give R’ dV/d0, = E}. Thus, the final

result may be obtained by use of R’ as given by Eq. (B) and the elements of
E; found above

[ov,] [ . ]
-3 1 0 ..
/ a0, !
ov;
-1/3 -7/6 1 2=l -2/3
(-13) =7 o ||
oV
0 (=3/7) —1514|] == =2/7
i Lo [ 7]
Application of the multiplication rule to the bottom row gives
ov.

3_ —_ — P
9. = (“27N-14/15) = 4715

Similarly, for the second row

oV, vy _

~ 5%, 0, T30,

-2/3

and

v, B
.= (—2/3 — 4/15)(—6/7) = 4/5

and for the first row

a—V = (1 —4/5)(=2/3)= —2/15

Use of the LU factorizatlon technique (demonstrated above) for the calcula-
tion of the partial derivatives of the v;’'s with respect to the 6;s and T}s
materially reduces the time requnred to compute the partial derlvatnves of the
Fjs and G/’s which appear in the jacobian matrix. Additional speed is also
achieved by performing numerical operations on only those elements lying on
the principal and two adjacent diagonals of the tridiagonal matrices. The re-
maining elements are zero at the outset of the gaussian elimination process and
are not altered by this process. A summary of the steps of the proposed calcula-
tional procedure follows.
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Calculational Procedure

1.

Assume a set of temperatures {T;} and flow ratios {(L;/V;),}. For each trial
after the first one, take the assumed values of the T;s and the (L,-/Vj)’s
to be equal to the most recent values found in step 6. Assume
0,=0,=-=0y=1

. Solve the total-material balances Eq. (4-10) for the V}’s. Save the upper trian-

gular matrix R" and the multipliers used to obtain it.

. Use R’ and the vectors E, (k =1, 2, ..., N) given in Table 4-3 to compute the

partial derivatives dV/d0, (k=1, 2, ..., N) by use of Eq. (4-26) and LU
factorization.

. Solve the component-material balances [Eq. (2-18)] for the v;’s. Then com-

pute the I;’s by use of the equilibrium relationship, [;; = 4;;v;;, where Aj; is
defined by Eq. (4-11). Save the upper triangular matrix A} for each compo-
nent and the multipliers used to obtain it.

. Use the upper triangular matrix A and the expressions given for the column

vectors C; (k=1, 2, ..., N) in Table 4-3 to compute the partial derivatives
ov; /00, (k =1, 2, ..., N) by LU factorization. The partial derivatives dv, /0T,
(k=1,2,..., N) may be computed by LU factorization by use of the upper
triangular matrix Aj and the expressions given for the column vectors D,;
(k=1,2,..., N)in Table 4-3.

. Use the results obtained by steps 1 through 5 to evaluate the functions {F },

{G;}, and their partial derivatives. Then solve Eq. (4-13) for the set of correc-
tions AX. If the convergence criteria are satisfied by the values of the func-
tions or the values of the variables so obtained, convergence is said to have
been achieved. If the convergence criteria are not satisfied, then correct the
assumed set of variables X, to give the next assumed set X, ., for step 1 as
follows

xn+l =Xn+ﬂAx

First a value of § = 1 is used, and if any one of the corresponding values of the
independent variables is not positive or if any one of the temperatures is not
within the range of the curve fits, a value of f = 1/2 is used. The reduction of
B by a factor of 1/2 is continued until the &’s are all positive and all of the
temperatures are within the range of the curve fits.

A variety of methods were tested for adjusting the calculated values of the

variables, but none of them appeared to be significantly better than the relatively
simple halving method described above in step 6.

In all of the applications of the 2N Newton-Raphson method which follow,

both the functions and the variables were normalized for the purpose of reducing
roundoff error. The functions {F;} and {G,} are stated in a normalized form. The
definition of the 6,’s contains a normalizing factor, namely, (L;/V;),. Tempera-
tures were normalized by dividing each temperature by some base temperature.
Although other more precise methods of normalization may be used such as the
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one presented in Chap. 15, the above relatively simple procedure was satisfac-
tory for the examples presented in this chapter.

When both the F;’s and Gjs are normalized, the sum of their squares is
meaningful as a measure of how far a given set of trial values of the variables are
from the solution set. In the examples presented in this chapter, the convergence
criterion used was that ¢, the square root of the average of the euclidean norm,
must be less than some small preassigned number ¢, say ¢ = 10™*.

LS (7 + chpe (@28)

¢=ﬁj_

where N is equal to the total number of stages.

Numerical examples The statement of a typical absorber problem is pre-
sented as Example 4-2 in Table 4-4. To demonstrate the characteristics ex-
hibited by procedure 1, the calculated values of the temperatures and flow
rates are presented in Table 4-5. A typical stripper problem is presented as
Example 4-3 in Table 4-6, and the intermediate trial results as well as the
solution sets of temperatures, flow rates, and product flow rates are pre-
sented in Table 4-7.

To demonstrate the application of the 2N Newton-Raphson method to
reboiled absorbers, Example 4-4 was solved. The statement and solution of
this example appears in Table 4-8. The application of the 2N Newton-
Raphson method to conventional and complex distillation columns is illus-
trated by Examples 4-5 and 4-6. Example 4-5 which involves a conventional
distillation column, is a restatement of Example 2-7 (see Table 2-2). The

Table 4-4 Statement of an absorber problem, Example 4-2

Rich gas Lean oil
Component ty. . {Ib mol/h) lo;(Ib mol/h) Other specifications
Co, 0.4703 00 T, =29°F, Ty, , =0°F, N =8, and
N, 0.1822 00 P = 800 Ib/in? abs. Initial
CH, 88.7000 00 temperature profile to be constant
C,Hq 6.6747 0.0 at T;=25F forallj(j=1,2,
C,H, 2.7786 0.0015 ..., N). The initial vapor rate
i-C,H,, 0.6375 0.0006 profile is to be constant at
n-C,H,, 0.3655 0.0013 V,=9088 (j=1,2,...,8) and
i-CsH,, 0.1158 0.0067 the liquid rates are L; = 6.3092
n-CsH,, 0.0505 0.0061 (j=1,2..,7),and Lg=1542
CeH,, 00146 0.1495 Use the K values and enthalpies
C,H, 0.0081 0.5736 given in Tables B-5 and B-6
CgH 4 0.0020 1.8214
CoH,, 00 1.6866
CioHy, 00 20619

100.00 6.3092
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Table 4-5 Convergence characteristics exhibited by procedure 1 in the solu-
tion of the absorber problem, Example 4-2

1. Temperatures, °R

Trial
Initial

Plate profile 2 3 4 5
1 485.0 484.54 487.52 487.92 487.94
2 485.72 490.41 491.03 491.06
I 484.97 490.06 490.87 490.92
4 L 483.51 488.62 489.56 489.61
s L 481.85 486.61 487.62 487.68
6 L. 480.08 484.08 485.04 485.11
7 478.13 480.67 481.42 481.48
8 485.0 476.54 47533 475.32 47533

II. 8;s Computed at the end of the trial indicated

Trial
Plate 1 2 3 4
1 1.4709 1.2128 10397 1.0013
2 1.4669 1.1944 10348 1.0010
3 1.4829 1.2031 10374 1.0011
4 1.4974 1.2142 10413 1.0013
S 1.5124 1.2291 10472 1.0018
6 1.5296 1.2516 1.0575 1.0028
7 1.5587 1.2888 1.0779 1.€056
8 10353 1.0255 1.0006 0.99988
II1. Soiution sets of product rates

Component vy; Ly
Co, 0.34840 0.12190
N, 0.18037 0.19104 x 1072
CH, 0.82841 x 102 0.58600 x 10!
C,H, 0.46875 x 10* 0.19872 x 10!
C;H,g 0.67786 0.21022 x 10!
i-CH,, 0.90314 x 10™2 0.62915
n-C,H,, 0.11957 x 1072 0.36556
i-C4H,, 0.17761 x 1072 0.12069
n-C;H,, 0.11812 x 1072 0.55469 x 10!
CeH,, 0.11098 x 10! 0.15298
C,H,¢ 0.17115 x 10~ 0.56458
CgH,g 0.23692 x 10! 0.12997 x 10!
CgH,, 0.10240 x 107! 0.16763 x 10!
C,oH;- 0.60846 x 102 0.20558 x 10!

Total 88.816 17.494
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Table 4-6 Statement of a stripper problem, Example 4-3

UNsr,i I

1, 0i
Component (Ib mol/h) (Ib mol/h)

Steam 13.47 0
CH, 0 001
C,H, 0 1.17
C,H, 0 1.30
n-C,H,, 0 2.38
n-CsH,, 0 1.75
CeH,, 0 2.35
C,H,¢ 0 2.55
500 0 82.24
1347 9320

Other specifications

The stripper has eight plates and it is to be operated at a column pressure of 50 Ib/in? abs.
The K values and the enthalpies of the hydrocarbons were taken from Tables B-7 and B-2.
The K values for steam given by (K/T)Y? =0.191302 — 0.692641 x 10~*T + 0.8664775 x
107T? — 0.6587865 x 10~ °T> (where T is in °R) were used. This curve fit is based on the K
values given by Hadden.'? The following curve fits were used for the vapor and liquid enthal-
pies of steam:

h' % = 2789976 + 0.9787701 x 10~ 2T — 0.1599299 x 10~ *T?
H'?=118.3686 + 0.4152569 x 10~ 'T — 0.6785253 x 107 °T?

(where T is in °R and h and H are in Btu per 1b mol). These curve fits were based on data
presented by Smith and Van Ness.?!

The rich oil enters at 370°F and the steam at 500°F. Take the initial temperature profile to
be linear between T, = 340°F and T, = 375°F. Take the vapor profile to be constant at V; = 80
(=12..38)

corresponding solution sets of temperatures, vapor rates, and product rates
presented in Tables 2-3 through 2-5 were obtained. Similarly, Example
4-6 (see Table 4-10) involves a complex distillation column and consists of a
restatement of Example 3-2 (see Table 3-1) in a form which is convenient for
the application of the 2N Newton-Raphson method. The solution sets of
temperatures, total-flow rates, and component-flow rates are the same as those
given in Table 3-3.

Also, to demonstrate the effect of the number of plates on the computer
time required to obtain a solution, the first column of the system of columns
of Example 3-3 was solved as a complex column and referred to as
Example 4-7. The recycle stream B, (see Fig. 3-12) was taken to be an
independent feed and its composition was taken to be the solution set of
values given in Table 3-5. The solution sets of temperatures, total-flow rates,
and composition were the same as those presented for Example 3-3 in
Table 3-5.

A comparison of the computer times and number of trials required to
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Table 4-7 Convergence characteristics exhibited by the Newton-Raphson
method (procedure 1) in the solution of the stripper problem, Example 4-3

1. Temperature profiles (°R)

Trial
Initial
Plate profile 2 7 8
1 800.0 827.60 827.26 826.28
2 805.0 827.87 827.46 827.52
3 8100 827.68 827.17 827.48
4 815.0 827.55 827.26 827.42
5 8200 827.62 827.41 827.37
6 8250 828.79 827.33 827.32
7 8300 832.48 827.29 827.26
8 8350 822.20 827.36 827.34
Il. 8;s computed at the end of trial indicated
Trial
Plate 1 2 7 8
1 1.8715 1.6876 0.00877 0.99998
2 1.5446 2.3695 0.99669 0.99996
3 1.2804 1.8663 0.99158 0.999%90
4 1.2064 ) 1.4493 0.95722 0.99946
5 1.1858 1.2503 0.92400 0.00067
6 1.1806 1.1696 1.0065 1.0001
7 1.1135 1.1266 1.0047 1.0000
8 1.3040 1.1583 1.0016 1.0000
IIL. Solution sets of product rates
Component Uy; Iyi
Steam 11.336 2.1339
CH, 0.010 0.0
C,H, 0.17 0.0
C;Hg 1.30 0.0
n-C,H,, 2.8149 0.01506
n-CiH,, 1.5479 0.20204
CeH,, 2.3499 0.0
C,H,, 2.5499 0.0

500 1.0992 81.140
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Table 4-8 Statement and solution of the reboiled absorber problem,
Example 4-4

I. Statement

in 'Ol'
Component (b mol/h) (Ib mol/h)
CH, 65 0
C,H¢ 13 0
C,H, 1 0
i-C,H,o 1 0
n-C;H,, 20 0
n-CoH 4 0 100

Other specifications

P =300 Ib/in* abs. f= 5, N = 11, T, = 100°F. The feed F enters on plate f = 5 as a vapor
at its dew-point temperature at the column pressure. The column has 10 plates plus a reboiler.
The reboiler duty is specified at Q= 3 x 10® Btu/h. The equilibrium data are given in Table
B-1 and the enthalpy data are given in Table B-2. For the first trial, take the vapor rates to be:
Vi=75V,=150(j=23,4),V,;=50(j=5,6,..., 10), V;; = 77.925 and take the corresponding
liquid rates to be those obtained by making total material balances. Take the temperatures to
be linear between T, = 200°F and T,, = 400°F.

II. Solution

T 7

Stage (°R) (Ib mol/h) vy b;
1 562.25 73.537 64.995 0.44694 x 1072
2 568.57 86.627 8.4004 4.59966
3 578.54 88.924 0.72798 x 10~* 0.92720
4 610.38 92.336 0.46200 x 102 0.99538
5 612.82 114.002 0.39219 x 1073 19.999
6 618.34 153.312 0.15292 99.847
7 624.67 24.786
8 631.12 36.248
9 655.64 43.403

10 758.21 51.182

11 938.74 78.840

solve these examples by procedure 1 and by procedures 2 and 3 (presented
below) is given as a summary at the end of this chapter.

The results shown for these examples are in good agreement with the
fact that the Newton-Raphson method is said to exhibit quadratic conver-
gence. For a single variable problem, quadratic convergence means that the
error for the nth trial is proportional to the square of the error for
the previous trial. The error for the nth trial is defined as the correct value of
the variable minus the value predicted by the nth trial. For a multivariable
problem, quadratic convergence means that the norm of the errors given by
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Table 4-9 Statement of Example 4-5: a conventional distillation column

1. Feed. The components, composition, and flow rates are the same as stated in Table 2-2
for Example 2-7.

2. Other specifications. Same as stated in Table 2-2 for Example 2-7 except for the follow-
ing changes. Instead of specifying D as was done in Example 2-6, the ratio B/V, is
specified at B/Vy=0.55365, which is the solution value obtained for Example 2-2.
Again, as in Example 2-7 the reflux ratio is specified at L, /D = 2. For the first trial, the
temperatures are taken to be linear between T, = 135°F and the reboiler temperature
Ty3 = 300°F. The values of (L;/V;), for the first trial are to be taken equal to unity for
stages j=2,3,..., 12

the nth trial is proportional to the square of the norm for the (n — 1)st trial.
In summary, the Newton-Raphson method, under the mild restrictions
stated in App. A, converges quadratically provided that the initial choice of
variables lies within the region of convergence. The latter condition is
commonly replaced by the less precise statement “provided that the initial
choice of variables is close enough to the solution set.”

Since tle 2N Newton-Raphson method is an exact application of the
Newton-Raphson method for all columns in the service of separating ideal
solutions, convergence for all such problems can be assured; provided that
suitable starting values for the T;’s and L;/V;’s are selected (see App. A). The
fact that no difficulty was encountered in the selection of the starting values
of the variables of the 2N Newton-Raphson method suggests that the func-
tions and variables selected possess a wide region of convergence. The use of
other functions in the 2N Newton-Raphson method could reduce its region
of convergence, and it could become difficult to find a suitable set of starting
values. For example, the alternative form of the dew-point function given in
Prob. 4-5(b) did result in a smaller region of convergence than that resulting
from the use of the form of the dew-point function given by Eq. (4-4).

Applications of approximate formulations of the Newton-Raphson
method such as the ones proposed by Sujata?? and Holland!” may fail to
converge for some examples. For example, the 2N Newton-Raphson method
converged for the test problem called Example 3 by Boyum* while the
approximate methods of Sujata and Holland failed.

Table 4-10. Statement of Example 4-6: a complex column

1. Feed. The components, composition, and flow rates are the same as stated in Table 3-1
for Example 3-2.

2. Other specifications. Same as stated in Table 3-1 for Example 3-2 except for the follow-
ing changes. The sidestream W, is withdrawn from plate p = 11. The reflux ratio
L,/D =225 For B/Vy and W,/L,, the solution values obtained for Example 3-2 are
specified ; namely, B/Vy = 0.31, and W, /L, = 0.12692.

For the first trial, assume that the temperatures are linear between T, = 200°F
and Ty, =300°F, and take T; =200°F and T,; = 300°F. Take the initial values of
(L;/V)o=1forj=2,3, ..., 12
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Other Formulations of the Newton-Raphson Method for Ideal Solutions

A number of formulations of the Newton-Raphson method for the solution of
distillation problems has been proposed. A brief description of each of several
of these formulations wherein the number of independent variables ranges from
N to 2N is given below. (Other formulations of the Newton-Raphson
method in which compositions or component-flow rates are among the indepen-
dent variables are described in Chap. 5.)

Greendstadt et al.!' were among the first to apply the Newton-Raphson
method to the solution of distillation problems. In 1961, Sujata?? proposed an
approximate application of the Newton-Raphson method for the solution of
absorber and stripper problems. Sujata regarded the temperatures as the
independent variables. For each set of assumed temperatures, the component-
material balances and equilibrium relationships were solved by direct iteration
(or successive iteration) for the solution sets of compositions and flow rates.
These compositions and flow rates were then used in the enthalpy balances in
the calculation of an improved set of temperatures by use of the Newton-
Raphson method. In Sujata’s application of the Newton-Raphson method to the
enthalpy balances, the dependency of the flow rates and compositions on the
temperature was neglected in the calculation of the partial derivatives. A version
of the @ method, called the “single # method ” has been proposed.!’

Another formulation of the Newton-Raphson method was proposed by
Newman?® in 1963 in which the total-flow rates of the liquid {L;} were taken as
the independent variables and the corresponding sets of temperatures needed to
satisfy the component-material balances and equilibrium relationships was
found by successive application of the Newton-Raphson equations. The compo-
sitions and temperatures so obtained were used to solve the enthalpy balances
explicitly for a new set of liquid rates. The procedure was then repeated by
commencing with this most recent set of liquid rates {L}.

Following Newman, Boynton® also took the liquid rates {L;} to be the
independent variables, and for each choice of these variables the temperatures
required to satisfy the component-material balances, and equilibrium relation-
ships were found by successive application of the Newton-Raphson method. The
results so obtained were then used in the enthalpy balances to compute a new set
of liquid rates by use of one application of the Newton-Raphson method. For
the case where both the vapor and liquid phases form ideal solutions, Boynton’s
method constitutes an exact application of the Newton-Raphson method. All of
the matrix equations solved by Boynton were of order N.

Another exact iormulation of the Newton-Raphson method, called the
multi-f method, was proposed by Holland.!” Two procedures for applying this
method were presented. In both of the procedures, the matrices were all of order
N. All derivatives wer. evaluated by use of the calculus of matrices.

In a series of papers, Tierney et al.?3-2% proposed an application of the
Newton-Raphson method in which the vapor rates {¥}} and the temperatures {T}}
were taken to be independent variables. The formulation was exact and the
partial derivatives were evaluated by use of the calculus of matrices.
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4-2 NUMERICAL METHODS FOR SOLVING
THE 2N NEWTON-RAPHSON EQUATIONS

Instead of using analytical expressions for the evaluation of the partial deriva-
tives of the Fj’s and G s, they may be evaluated numerically. Procedures 2 and 3,
presented below, make use of the numerical approximations of the partial deri-
vatives. Also presented is a calculational procedure for systems of absorber-type
and distillation-type columns which are interconnected by recycle streams.

Procedure 2. Solution of the Newton-Raphson Equations
by Use of Broyden’s Method®

Tomich?® was the first to apply Broyden’s method (developed in chap. 15) to the
solution of distillation problems. Broyden’s method is based on the use of numerical
approximations of the partial derivatives appearing in the jacobian matrix. The
approach proposed by Broyden permits the inverse of the jacobian matrix to be
updated each trial after the first through the use of Householder’s formula.® Thus,
it is necessary to invert the jacobian matrix only once. Since approximate values
for the partial derivatives are used, procedure 2 generally requires more trials than
does procedure 1. However, since the evaluation of the partial derivatives and
the inversion of the jacobian matrix are not generally required after the first trial
of procedure 2, it requires less computer time per trial than does procedure 1.

For the general case of n independent equations in n unknowns, the
Newton-Raphson method may be formulated in terms of n functions in n
unknowns. For the kth trial, the resulting set of Newton-Raphson equations
may be represented as follows

J AX, = —f, (4-29)

where J, is the square jacobian matrix of order n and AX, and f, are conform-
able column vectors

I . %
0x, ox,
Je=| :
O ..
0x, 0x,

AX, =X, — X, Xi = [X1x> X2k -+ X"
fk = [fllufzk, ---,fnk]T

In the class of methods proposed by Broyden, the partial derivatives df; /0x; in
the jacobian matrix J, of Eq. (4-29) are generally evaluated only once. In each
successive trial, the elements of the inverse of the jacobian matrix are corrected
by use of the computed values of the functions. An algebraic example will be
given after the calculational procedure proposed by Broyden has been presented.
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Step 1. Assume an initial set of values for the variables, X,, and compute

fo= f(xo)
Step 2. Approximate the elements of Hy, where H, is defined as follows
H, = -Jo !

Broyden obtained a first approximation of the elements of J, by use of the
formula

% - Jdx; + By) = fi(x;)
Ox; = h;

J

where h; was taken to be equal to 0.001 x;.
Step 3. On the basis of the most recent values of H and f, say H, and f,,
compute

Axk = Hk fk

Step 4. Find the s, such that the euclidean norm of f(X, + s, AX,) is less
than that of f(X,). First try s, ; = 1 and if the follcwing inequality is satisfied

T ritrsax)| " < | £ )]

proceed to step 5. Otherwise, compute s, , by use of the following formula which
was developed by Broyden

sk.2 = [(1+ 6n)'2 = 1]/3n

1/2

where

N
Z SHX, + 5, AX,)
i=1

n= N
3. /)

If the norm is not reduced by use of s, , after a specified number of trials
through the complete procedure, return to step 2 and reevaluate the partial
derivatives of J, on the basis of X,. As pointed out by Broyden, other methods
for picking s, may be used. For example, s, may be picked such that the
euclidean norm of f is minimized.

Step 5. In the course of making the calculations in step 4, the following
vectors will have been evaluated

Xir1 =X, + 5 AX,
fiv1 =f(xk+ 1)
Test f, ., for convergence. If convergence has not been achieved, compute

Yi=f — 1
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Step 6. Compute

(H,Y, + s, AX,) AX/ H,

Hiry = H, - AX/H, Y,

and return to step 3.
Example 4-8 consists of a simple algebraic example which illustrates the
application of this method.

Example 4-8 (Hess et al.,'* by courtesy Hydrocarbon Process.) It is desired
to find the pair of positive roots that make fi(x, y) =0 and f3(x, y) =0,
simultaneously

Silx, y)=x? —xy* =2
Salx, y)=2x* = 3xy* + 3

Take xo=1 and y,=1, and make one complete trial calculation as
prescribed by steps 1 through 6.

SOLUTION:

Step 1. Since xo =1, yo =1

Xo=[1,1]"
and
Lo=LiXo)=/fi(L)=1-1-2= -2
fro=fXo)=/2(1,1)=2-3+3=2

Step 2. Take the increment h for computing the derivatives with respect

to x to be
h = (0.001)x, = 0.001

Then

¥, _ (1001 1)~ £,(1, 1)

ox 0.001 = 1001

For computing the derivatives with respect to y, take

h = (0.001)y, = 0.001
Then

o _ (1, 1001) - fi(1, 1)
oy 0.001 = —2001

and

o _ A(1L001, 1)~ fi(1, 1) _
= ool =102

9 _ fo(1,1.001) — f5(1, 1) _
dy 0.001

—6.003
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Then
_ {ro01 —2001
°" 1002 —6.003
The inverse of J, is found by gaussian elimination as follows. Begin with
1.001 —2.001 10
1002 —-6.003]| (0 1

and carry out the necessary row operations to obtain

1 0 14992  —0.49975
01

025023 —0.25000
J1o [1.4992 —0.49975J
sl

Then

0.25023 —0.25000
and

Ho— _g-t [—1.4992 0.49975]
0= —dJdo =

—0.25023  0.25000

Step 3. On the basis of the most recent values H and f, the correction
AX is computed as follows

—1.4992 049975 | (-2 _ [3.9979
—0.25023 0.25000 2| |1.0005

Step 4. Take s, ; = 1. Then

AX0=H0f0={

S R - M e
and
f1i(Xo + AX,) = £1(4.9979, 2.0005) = 2.9774
f(Xo + AX,) = £(4.9979, 2.0005) = —7.0468
Since
(29774)? + (—7.0468)* > (—2)* + (2)?
compute
_ (X0 + AXg) + f3(Xo + AX0)= (29774)* + (—7.0468)* — 731529
Fi(Xo) + f3(Xo) (=2 + @)
and
S0, 2 = (Lﬂi——l = 0.25974

3n
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Then

1 103839 203839
Xo +0.25974 AX, = ' 1] * [0.259865} = [1.259865}

and
S1(Xo + 50,2 AX,) = £1(2.03839, 1.259865) = —1.08040
J2(Xo + 50,2 AX) = /5(2.03839, 1.259865) = 1.60372
Thus, the criterion on f,, namely,
(—1.08040)% + (1.6037)* < (—2)* + (2)*

has been satisfied.

Step 5. If the convergence criterion is taken to be that the sum of the
squares f; and f; is to be reduced to some small preassigned number ¢, say
£¢=1071° then this criterion has not been satisfied by x = 20384 and
y = 1.25986. Then compute

Yoo f —f.— —1.08040 ] =2Z| | 091960
O 0T 160372 2| |-0.39628
Step 6. Compute the following products which are needed to find H,.

—1.5767
—0.32918

—1.4992 049975][ 0.91960
—0.25023  0.25000 | | —0.39628

—1.4992  0.49975
—0.25023  0.25000

—1.5767 ] [1.03839 ]_ [—0.53831]

HY, - |
AX{H, = [3.9979, 1.0005][ } = [—6.2440, 2.2481]

H0Yo+80'2 Ax0= [

—0.32918 0.259865 —0.06931
" 0.91960
; =[-6. . = —6.6328
AXGHo Yo = 62440’22481][—0.39628] 6

Since
(Ho Yo + 5o AX ) AXgH,

= =X, v,

it follows that
o= | 1.4992 0.49975 —0.50674 0.18245
17 1-025023 0.25000 —0.06525 0.023491

—0.99246 0.31730
—0.18498 0.22651

and the next trial is commenced by returning to step 3 with H;.
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Examples 4-3 through 4-7 as well as examples presented below were solved
by this procedure. These results are discussed in Sec. 4-4.

Procedure 3. Broyden-Bennett Algorithm

In the method proposed by Broyden, Householder’s formula was used to obtain
the formula for the inverted matrix shown in step 6. The second term on the
right-hand side of the expression in step 6 contains the correction proposed by
Broyden.

Instead of applying Householder’s formula, the calculation of an inverse of
the jacobian may be avoided altogether by use of the algorithm proposed by
Bennett for updating the LU factors of the jacobian matrix. Example 4-9 will
show that fewer numerical operations are required to compute the LU factors
than are required to compute the inverse of a matrix. Bennett’s algorithm is
applied to the Broyden equations as follows.

Broyden’s algorithm consists of successively updating of the jacobian matrix
of the Newton-Raphson equations by use of the correction matrix xCy’, that is,

Jiv1 =+ xCy{
where

1

€= s AXy AX,

(a scalar)

X =fp — (1 sk)fk
Yi = AX,

Since the jacobian matrix J may be stated in terms of its factors L and U as
demonstrated in procedure 1, the above expression for J,, ; may be restated in the
following form

Lis 1 Uiy = LUy + x,Cyy

Bennett proposed the algorithm presented in Fig. 4-4 for updating the
matrices L, and U, to obtain the updated matrices L,,, and U,, ;. When
Bennett’s algorithm is used to make the Broyden correction, the following calcu-
lational procedure is used.

Step 1. Same as step 1 of procedure 2.

Step 2. The partial derivatives of J, are found in the same manner as shown
in step 2 of procedure 2. Then find the factors L, and U, of J, such that

Jo= LoUo

as described by Hess et al.;!* see also Conte and de Boor.®
Step 3. On the basis of L,, U,, and f, (the most recent values of L, U, and f)
compute AX, as follows

LkUk Axk = _fk

Step 4. Same as step 4 of procedure 2.
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Step 5. Test f,,, for convergence. If convergence has not been achieved,
compute

1

€= 5 AX7 AX,
Xe = fip g — (1= s )i
v = AX{

Step 6. Use the algorithm proposed by Bennett (see Fig. 4-4) to obtain the
updated matrices L, , , and Uy, of L, and U,, where

Li+1 Uiey = LU + x,Cyy
Then return to step 3.

The use of Bennett’s algorithm is illustrated by the following numerical
example:

Example 4-9 (Hess et al,'> by courtesy Hydrocarbon Process.) Given the
matrix A, and its factors L, and U,

2 4 -6
Ak=LkUk= —'4 _7 10

2 7 -9
where
L,, O 0 1 0 O
Li={L,y L, 0 |=]-2 1 O
Lyy Ly, Laa) [ 1 3 1
Ui Uy2 Uy [ 2 4 -6
Uk= 0 U2,2 U2,3 = 0 1 _2
Lo 0 Us; | 0 o0 3

The upper and lower triangular matrices U, and L, may be found by use of
the technique demonstrated in Example 4-1. It is desired to find L., and
U,., when A, is corrected by adding the matrix x, Cy, to it; that is, find
L., and U, ,. where

Li+1 Uisy = LU, + x.Cy/

Xy l yl 3
= |x|=|2 o= | Y2|=|2 C=1
X3 3 A 1

and
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SoruTioN The calculations are carried out according to the algorithm
shown in Fig. 4-4. For this example, n = 3. Begin by making the calculations
shown in the second square for i = 1.

When i =1

Wii=n/U;. =312
P=x,C=(1)(1)=1
Uy ,=U; +Py;=2+(1)3)=5
Q=y,C/Uy = (3)1)/5=3/5
Since i < n(1 < 3), take j =i + 1.
Thenforj=2,i=1
X=x,— L, x;,=2—(-2)(1)=4
Ly =L, +x,0= -2+ (4)(3/5)=2/5
Zy,=Py,=(1)(2)=2
2=y, =W Uy ,=2-(32)4)= -4
Ui,=U,,+Z, ,=4+2=6

Takej=j+1=3.
Thenforj=3,i=1

x3=x3— L3 x;=3—-(1)(1)=2
Ly =Ly, +x0=1+(2)3/5)=11/5
Zyy=Py;=(1)(1)=1
V3=y3s— W Uy 3=1-(3/2)(-6)=10
Ui3=U;3+2Z; 3=—-6+1= -5

Since j > n, compute

C=C—QP=1-(3/51)=2/5

and take i=i+ 1= 2.
Then for i =2

Wy 2=9:/Uz = —4/1= -4
P=x,C=(4)2/5)=8/5
Uz 2 =U,; 2+ Py, =1+ (8/5)(—4)= —-27/5
Q= y:C/Us, = (—4)2/5)/(—27/5) = 8/27

Since i <n, take j=i+ 1= 3.
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Thenforj=3,i=2
X3=x3— L3 ;x;=2 - (3)4)=—10

Ly ;=1L; 4+ x50 =3+ (—10)8/27) = 1/27
Z, 3= Py; = (8/5)(10) = 16
Vy3=y3— Wy Uy 3=10—(-4)(-2)=2
Uy a=U;3+2Z;3=-2+16=14
Since j > n, compute
C=C—QP=2/5—(8/27)8/5)= —2/27

and take i=i+ 1= 3.
Then for i = 3
Wi 3=y3/Us 3=2/3

P = x;C = (—10)(=2/27) = 20/27
Us.3=Us 3+ y3P =3+ (2)(20/27) = 121727

Since i =3, the process has been completed and the final result is
given by

1 0o o]fs 6 -5
A+xCyT=LU=|25 1 ollo -2755 14

15 127 1l{o 0 121/27

Note that, since the elements of the lower triangular factor L along the
diagonal are always equal to unity, it was not necessary to make any correc-
tion to them in the algorithm.

Less time is consumed by procedure 3 than by procedure 1. Calculation of
the LU factors of the matrix J in step 2 of procedure 3 requires approximately
n’/3 operations, whereas the calculation of the inverse of J in step 2 of
procedure 2 requires approximately n® operations, where the matrix J is a
square matrix of order n. To update the LU factors in step 6 of procedure 3 by
use of Bennett’s algorithm requires approximately 2n® operation, whereas ap-
proximately 3n? operations are required to update the inverse of J by use of
Householder’s formula as proposed by Broyden in step 6 of procedure 2.

4-3 SYSTEMS OF COLUMNS

Two approaches exist for solving problems involving systems of columns, the
“column modular method” and the “system modular method” proposed by
Hess.!> In the column modular approach, the equations for each column of a
system are solved in succession, and in the system modular approach, the com-
plete set of equations for the system are solved simultaneously. While the system
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modular approach may be the ultimate method for solving problems involving
systems of interconnected columns, the column modular approach appears to be
the most realistic approach at the present time.

Solution of Systems of Columns by Use of the Column Modular Method

In the column modular approach, the equations for each column are solved by
use of the most efficient procedure for each column. After one trial has been
made on each column, the terminal flow rates are placed in component-material
balance and in agreement with the specified values of the terminal flow rates by
use of the “capital @ method” for systems. The entire calculational process is
repeated until convergence has been achieved.

To illustrate the application of the column modular approach, consider the
particular system of columns shown in Fig. 4-5, which consists of a reboiled
absorber (column 1) and a distillation column (column 2). For such a system, a
combination of the § method and the 2N Newton-Raphson method is recom-
mended. The 2N Newton-Raphson method is used for solving the reboiled
absorber and the @ method is recommended for the distillation column. At the
end of one complete trial for each of the two columns, the capital @ method is
applied to place the system in component-material balance and in agreement
with the specified values of the terminal flow rates.

ch
e of
Vi To D,
L2 :
| 2
W2
COLUMN COLUMN ——>
I 2
F REBCILED DISTILLATION
~ _ |ABSOREER > - | COLUMN
<—WL~—p
N-I N-I
Qri Qr
L B,
T Tn2

Figure 4-5 A system of a reboiled absorber and a distillation column.
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Suppose that the total flow rates Ly;, D;, Wy, and W, are specified. These
specifications in turn fix V; and B;. The specifications for the reboiled absorber
are as follows: F, {X}, the thermal condition of F, f, N, and the column pressure.
The specifications for the distillation column are as follows: N, type of conden-
ser, f, Ly, D, and the common pressure.

In the application of the 2N Newton-Raphson method, V; is regarded as
specified and the temperature Tg of B, entering column 1 or the intercooler duty
Qc, is taken to be the new independent variable. In this case the 2N + 1 var-
iables X and the 2N + 1 functions f are as follows

x= [91, 92, "'99N7 To, Tl’ 7}, ey T‘N]T
f=[fO’Fl’FZ’"'9FNyGl’GZ,'-',GN]T (4_30)

Corresponding to the new independent variable T, for the absorber, the new
function f; is introduced to express the condition that the specified value of V1,
denoted by (V}),,, must be equal to the calculated value at convergence, that is

( Vl )sP

Thus, the 2N + 1 functions denoted by f, consist of f, the N dew-point func-
tions, and the N energy balance functions given by Egs. (4-4) and (4-5).

The proposed calculational procedure consists of first making one trial cal-
culation on the reboiled absorber by use of the 2N Newton-Raphson method
and then one trial on the distillation column by use of the § method. Then the
capital ® method is applied one time to the system in order to place it in overall
component-material balance and in agreement with the specified values of the
terminal flow rates. To initiate the calculational procedure the composition of
any recycle stream which is needed is assumed. After the first trial through the
system, the composition of such recycle streams found by the ® method are
used. The steps of the proposed calculational procedure follow.

Step 1. On the basis of the most recent set of values {(b;, ;).,; found in step 3,
make one trial on the reboiled absorber by use of the 2N Newton-Raphson
method. [In order to initiate the first trial, a set of b; ;s is assumed.] Save the
resulting values of T; and L;/V; for making the next trial on this column. After
one trial, go to step 2.

Step 2. Use the Iy; s found in step 1 as the feed to the distillation column.
Make one trial by use of the § method. Save the resulting values of the Tj’s and
Vis.

Step 3. Apply the capital ©® method to the system. Find the set of ® multi-
pliers required to place the system in component-material balance and in
agreement with the specified terminal rates Ly;, D,, Wi, and W,. Return to
step 1.

To illustrate the use of the combination of the 2N Newton-Raphson method,
the 8 method, and the capital ® method, Example 4-10 which involves the
system shown in Fig. 4-5 was solved. The statement and solution of this example

Jo -1 (4-31)
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are presented in Tables 4-11 and 4-12, respectively. After one trial had been
made on the reboiled absorber by use of the 2N Newton-Raphson method
(procedures 1, 2, or 3), one trial was made on the distillation column by use of
the 0 method for single columns (see Chap. 2). Then the system was placed in
component-material balance and in agreement with the specified values of the
total-flow rates by use of the capital @ method of convergence (see Chap. 3). The
formulation of the four g functions and the material balances of the capital @
method for Example 4-10 are left as an exercise; see Prob. 4-2.

Solution of Systems of Columns by Use of the System Modular Method

In this formulation of the Newton-Raphson method, the equations for each
column of the system are solved simultaneously.!® To demonstrate this
approach, the pipestill example is used; see Fig. 4-6. To solve problems involving

Table 4-11 Statement of Example 4-10

Initial values
FX; b, ,
Component (1b mol/h) (Ib mol/h)

CH, 350

C,H, 20

C,H, 30

C,H, 50

i-C,H, 10

iC H,, 50 35

n-C,H,, 150 35

iC,H,, 10.0 140

n-CH,, 200 140

n-CeH,, 20 140

n-C,H, ¢ 10 10.5

n-CgH, 4 10 105
100.0 700

Other specifications

Column 1—Reboiled Absorber N = 12, f= 7, column pressure = 300 1b/in? abs, V, =60,
W, =10 Ib mol/h, W, is to be withdrawn as a liquid from plate j = 10, and B, /Vy, = 1.435.
The feed F enters as a vapor at 724.77°R at 300 Ib/in? abs. For the initial values of the
temperatures {T} and vapor rates {V}} use the following. T, = 666°R, T, = 624.45°R,
T,=T,,+1846 (j=3,4, ..., N—1), T,,=809°R. V, =60, V,=120 (j=2, 3, ..., 6),
Vy = 55.68 1b mol/h.

Column 2—Distillation Column N = 11, f= 5, the column has a total condenser and the
column pressure = 300 Ib/in® abs, D, = 20, W, = 10 Ib mol/h, L, ,/D, = 6.5, and W, is to be
withdrawn as a liquid from plate j = 2. For this initial values of {T;} and {V}, use the following.
T, =725R, T;=T, ,+34(j=23,..,N~1), Ty=858R. ¥, =20, V,=150 (j =2, 3, ...,
N —1). ¥;, = 3641 Ib mol/h. Use the equilibrium and enthalpy data given in Tables B-1 and
B-2.

System specifications. W, = 10, B, = 100, D, = 20, and W, = 10 Ib mol/h.
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Table 4-12 Solution sets of temperatures, vapor rates, and product distribu-
tions for Example 4-10

1. Final temperature and vapor rate profiles

Column 1 Column 2
7, v, T, v,
Stage (K) (Ib mol/h) (K) (b mol/h)
1 669.38 60.000 723.08 20.00
2 698.52 92.519 745.73 150.00
3 712.68 108.84 762.89 149.13
4 719.95 117.73 776.93 147.36
5 72399 122.38 795.85 139.57
6 726.51 12485 800.90 141.47
7 747.96 25.341 805.36 145.01
8 759.51 46.852 809.79 147.70
9 765.88 59.501 815.63 148.91
10 772.32 65.105 826.90 146.62
11 782.41 68.706 855.12 135.80
12 805.33 69.687

2. Product distributions for column 1

Column 1

Flow rates (Ib mol/h)

Component vy Wi b,y
CH, 0.34999 x 102 0.47620 x 1073 0.10515 x 1073
C,Hg 0.19963 x 10 0.19172 x 1072 0.17459 x 1072
C;Hg 0.26196 x 10 0.99014 x 10 0.28156
C;H; 0.40833 x 10 021911 0.69825
i-C,H,q 0.26137 0.18099 0.65269
i-C,H,, 0.16655 x 10 0.51893 0.28765 x 10
n-C,H,, 0.29343 x 10 0.16889 x 10 0.11110 x 102
i-CsH,, 0.27728 x 10 0.15129 x 10 0.14529 x 102
n-C,H,, 0.71043 x 10 0.36612 x 10 0.37907 x 102
n-CgH,, 0.97548 0.80332 0.10623 x 102
n-C.;H,, 0.36977 0.60741 0.90232 x 10
n-CgH, 4 0.21819 0.77794 0.12298 x 102
V, =600 W, = 10.000 B, = 100.00

Q¢ =0.10389 x 107 Btu/h
Qry = 0.62979 x 106 Btu/h
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Table 4-12 (continued)

3. Product distribution for column 2

Column 2

Flow rates (Ib mol/h)

Component d;. Wiz b,
CH, 0.10182 x 103 033282 x 1073 0.23697 x 10~ !
C,H¢ 0.16214 x 10~ 2 0.12448 x 1072 0.75617 x 108
C;Hq 0.24057 0.40839 x 107! 0.15194 x 1073
C,H, 0.58828 0.10930 0.66903 x 10~
i-C,Hg 0.47254 0.15710 0.23051 x 107!
i-C,H,, 021553 x 10 0.66034 0.60867 x 10~
n-C,H,, 0.75806 x 10 0.27965 x 10 0.7326t
i-C4H, 0.35072 x 10 0.22071 x 10 0.88146 x 10
n-CsH,, 0.53558 x 10 0.38787 x i0 0.28672 x 10?2
n-CeH,, 091142 x 107! 0.13006 0.10402 x 102
n-C,H,¢ 0.61908 x 102 0.16632 % 107! 0.90003 x 10
n-CeH, 0.61185 x 10~ 032479 x 102 0.12294 x 10?
D, = 200 W, = 100 B, = 700

Qe = 0.10509 x 107 Btu/h
Qr> =0.13928 x 107 Btu/h

systems of columns, the column modular method is generally recommended over
the system modular method except for the possible exception of pipestills. Since,
however, each sidestripper is small relative to the main column, it is perhaps
easier to treat this particular system by the column modular method rather than
the system modular method. Te illustrate the system modular method, an ab-
breviated development of the pipestill problem, Example 4-11, is given.

The pipestill problem solved herein was originally solved by Cecchetti et al.3
by use of the original 6 method of convergence which is described in Chap. 3.
This problem is based on data from field tests which were made on the pipestill
shown in Fig. 4-6. The & method for distillation columns may fail to converge for
some absorber-type problems, such as the pipestill. The pipestill is classified as
an absorber-type problem because the main column has a condenser bui no
reboiler; the first sidestripper has a reboiler but no condenser; and all of the
remaining strippers are of the conventional type.

For the pipestill shown in Fig. 4-6, Cecchetti et al.® found a theoretical
analogue column by trial. The theoretical analogue column is defined as that
column having perfect plates which gives calculated results that are in good
agreement with field test results for the pipestill. The theoretical analogue column
shown in Fig. 4-7 was proposed by Hess et al.!? This is essentially the same as
the analogue proposed by Cecchitti et al.
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Figure 46 Actual stage numbers in the main column and the side strippers of the pipestill. [Hess et
al., Hydrocarbon Process.. $6(5): 241 (1977), by courtesy Hydrocarbon Processing.]

The minor differences between the theoretical analogue shown in Fig. 4-7 and
the one used by Cecchetti et al. are a reflection of the different manner in which
water was treated. In the present analysis, which follows that of Hess et al,'’
water was regarded as being distributed between the vapor and liquid phases on
stages 2 through 37. whereas Cecchetti et al. regarded water to be in the vapor
phase alone on these stages. On stage 1 (the accumulator), two immiscible liquid
phases (a water and a hydrocarbon phase) are assumed to be in equilibrium with
the vapor phase. In Fig. 4-7, the withdrawal rate of the liquid water phase is W,
and the withdrawal rate of the liquid hydrocarbon phase is W;.
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Figure 4-7 Theoretical analogue of the pipestill. [Hess et al., Hydrocarbon Process., 56(5): 241 (1977),
Courtesy Hydrocarbon Processing.]
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The physical properties (normal boiling points, densities, and molecular
weights) of the 34 pseudo components selected to represent the true boiling-
point curves of the feed, distillate, and sidestreams are presented by Cecchetti et
al® On the basis of these data, a feed composed of 34 pseudo components and
having the molar compositions and total flow rate shown in Table 4-13 was
selected by Cecchetti et al. The specifications for the theoretical analogue column
are also given in this table.

The calculated sets of temperatures, flow rates, and compositions obtained
by the calculational procedure developed below are presented in Tables 4-14
through 4-16. These results were obtained by use of the data of Cecchetti et al.
for the K values and enthalpies of the pseudo components. Curve fits of these
data are presented in Tables B-14 and B-16. The K values for water i = 35 was
taken from nomographs given by Hadden and Grayson,'? and the enthalpies
from the steam tables given by Smith and Van Ness.?! In the condenser, the K;
was taken equal to its vapor pressure (as given in the steam tables) divided by
the total pressure in the condenser.

A SYSTEM MODULAR FORMULATION OF THE
(2N + 1) NEWTON-RAPHSON METHOD FOR A PIPESTILL

The pipestill shown in Fig. 4-7 is used for the purpose of separating the hydro-
carbon feed F, into seven fractions (V,, W, Wy, W, W,, Ws, L,3). The remain-
ing feeds, F, through Fs, consist of steam which is used as the stripping
medium. The stages are numbered down from the top of the main column. The
condenser-accumulator section is assigned the number 1, the top plate the
number 2, and the bottom plate of the main column the number 28. The stages
of the sidestrippers are numbered consecutively 29 through 37, as shown in
Fig. 4-7.

For the theoretical analog column, the following variables are regarded as
fixed.

1. The number of theoretical plates in the main column and side-strippers as
well as the locations of all stream withdrawals and return positions

. Quantity, composition, and thermal conditions of all feeds

. Column pressure and the pressure drop per stage

. The reflux ratio L, /V; (or alternatively, the condenser duty Q)

. Distillate and sidestream withdrawal rates, W,, W,, W, W,, W;

. The boilup ratio V;,/L,, for the sidestripper No. 1 which has a reboiler (or
alternatively, the reboiler duty Qps, for this stripper could be specified)

. The intercooler duty Q, for the pumparound stream W,

8. The pumparound rate W, and its withdrawal and return positions

AL bW

~

The numerical values for the specifications are listed in Table 4-13.
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Table 4-13 Composition of the feed stream F; and other speci-
fications for the pipestill, Example 4-11 (Taken from Ref. 13 by
courtesy Hydrocarbon Process.)

Other specifications for the

Component F, X, theoretical analogue column
1 0.73000 x 10! The hydrocarbon feed F, enters the
2 0.25700 x 10? column at 637°F with 69.038¢% of
3 0.38000 x 10° the feed vaporized and a total
4 0.43800 x 102 enthalpy of 219.890 x 10° Btu/h.
5 0.95700 x 10? The steam enters the main column
6 0.71400 x 102 and the sidestrippers as super-
7 0.63300 x 10° heated steam at 572°F and with
8 0.63300 x 102 the rates F, = 66, F, = 6.94,
9 0.76250 x 10? F, =268, and Fs = 158 Ib mol/h.
10 0.72250 x 10? The sidestreams are to be with-
11 0.43950 x 102 drawn at the rates W, = 135,
12 0.43950 x 102 W, = 313.44, W, = 136.08, and
13 0.86500 x 102 W, = 368.40 Ib mol/h. The pump-
14 0.29400 x 102 around stream is to be withdrawn
15 0.29400 x 10?2 at the rate of W, = 823 Ib mol/h
16 0.51000 x 102 and the intercooler duty Q, =
17 0.34000 x 10? 18.0 x 10° Btu/h. The reflux ratio
18 0.34000 x 102 L,/V; = 10.95 and the boilup ratio
19 0.30640 x 102 V31/L3; = 0.13245. The pressure in
20 0.30650 x 10? the accumulator is 23.1 Ib/in? abs,
21 0.67600 x 10? and the pressure on plate 28 is
22 0.65600 x 102 29.24 Ib/in? abs. An equal
23 0.42400 x 102 pressure drop per plate may be
24 0.71200 x 102 assumed for the main column and
25 0.67500 x 102 the sidestrippers. The pressure
26 0.12780 x 10° on the top plate of each side-
27 0.11360 x 103 stripper may be taken equal to
28 097100 x 10? the pressure of the plate in the
29 0.81200 x 102 main column wheie the sidestream
30 0.67800 x 102 feed to the stripper originated.
31 0.47700 x 102
32 0.57300 x 102
33 0.29600 x 102
34 0.28300 x 102
35 0.26400 x 103

F; =0.22032 x 10* Ib mol/h
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CHOICE OF INDEPENDENT VARIABLES

Although the temperatures and the L/V’s are commonly selected as the indepen-
dent variables in the 2N Newton-Raphson method, a heating or cooling duty
may be selected as an independent variable, and the L/V for that stage specified.
For example, by specification of the reflux ratio L,/V}, the condenser duty Q¢
and the temperature T; become the independent variables for the first stage of
the main column. The variable L;/V; is replaced by the new variable 0;, which is
defined by Eq. (4-8).

For the set of specifications stated above and in Table 4-13, the correspond-
ing set of 2N + 1 independent variables (where N is equal to the total number of
stages) is: 0g, Qcy 03, 03, -, 030, Qr3ry 032, .-, 037, T, T, ..., T37. Except
for 65, the 6,'s are defined by Eq. (4-6). The new variable 6, is introduced to
account for the two liquid phases in the accumulator, and it is defined as follows

. Wo/V1 = HO(WO/Vl)a (4'32)

TOTAL MATERIAL BALAMNCES

The total material balances are formulated in a manner analogous to that
demonstrated for complex columns. The returning vapor streams from the side-
strippers to plates 5, 10, 15, and 22 give rise to elements which lie above the three
diagonals of the matrix R of Eq. (4-10).

The presence of two perfectly immiscible liquid phases on stage 1 and the
typical two-phase (vapor and liquid) behavior on all subsequent stages calls for a
special treatment of water on stages 1 and 2. The development of the
component-material balances for all components except water are developed for
the first and second stages, and then the component-material balances for water

on these two stages are developed.

COMPONENT-MATERIAL BALANCES

For stage 1, the component-material balance for any component except water
(for water or steam i = ¢ = 35) is given by

Vyi — Uy — i =Wy =0 (i#¢)
Since W, and L, have the same composition
wy; = (Wi /L)l (i#¢)

Use of this relationship and the equilibrium relationship given by Eq. (4-11)
permits the component-material balance to be restated in the following form

—[1+ Ay + (W /LAy + v2i=0 (i#c)
For the second stage, the component-material balance is given by

vyl — vy —1;,=0 (i#¢)



THE 2N NEWTON-RAPHSON METHOD 167

and by use of the equilibrium relationship, the component-material balance is
restated in the following form

Ao —(1 + Ay + 03, =0 (i # c) (4-33)

The component-material balances for the remaining stages are developed in an
analogous manner, and the complete set of equations so obtained may be stated
in matrix form as follows

Avi=—4 (i#¢) (4-34)
where vi=[oy; vy o 039]"

=100 vpy lpyi 0 O]T

The square matrix A, differs from a tridiagonal matrix by the appearance of only
four nonzero elements to the right and four nonzero elements to the left of the
tridiagonal band of elements. The four nonzero elements to the right of the
tridiagonal band result from the return of the vapor streams from the sidestrip-
pers, and the four elements to the left of the tridiagonal band of elements result
from the introduction of the sidestreams W,, Wy, W, and W; to the sidestrip-

pers. The hydrocarbon feed F, enters on plate 27, and vy, is 1 row 26 while I;
is in row 27.

COMPONENT-MATERIAL BALANCES FOR WATER

Since the two liquid phases (the water phase and the hydrocarbon phase) in the
accumulator are taken to be immiscible, it follows that

wo. = W,
li,=0
Thus the component-material balance for water for stage 1 (the condenser-
accumulator section) is given by
Uz = U1 — Wor =0

Since the partial pressure of water vapor above the two liquid phases in the
accumulator is equal to its vapor pressure, it is evident that

Plc=p1c= (Ulc/Vl)P (4'35)

where P,, is the vapor pressure of water at the temperature T, of the accumula-
tor and p,, is the partial pressure of water in the accumulator. Symmetry of the
equations is preserved by restating the flow rate of water wo, in terms of the
vapor rate v;.. Commencing with

woe = Wo = (Wo /0101
and making use of Eq. (4-35) gives

W

Woc=T7p5 7o Vle
% Vi(Py/P) !

= AOcvlc



168 FUNDAMENTALS OF MULTICOMPONENT DISTILLATION

Use of this relationship permits the component-material balance for water for
stage 1 to be restated as follows

_(1 + AOc)vlc + Uy = 0 (4-36)
For stage 2, the component-material balance is
U3 — Uy — =0

since ;. = 0. For stages 2 through 37, water is taken to be a two-phase compo-
nent and the equilibrium relationship given by Eq. (4-11) may be used to restate
the component-material balance for the second stage as follows

—(1 + AZc)UZc + U3, = 0

FUNCTIONS FOR THE NEWTON-RAPHSON METHOD

For the general case of any stage j in which a single-liquid phase is in equili-
brium with the vapor phase, there exist two independent variables per stage, 0 ;
(or Qc; or Qg;) and T; for a total of 2N independent variables. The total of
2N + 1 independent variables for the pipestill results from the existence of two
liquid phases in the accumulator, which give rise to three independent variables
[00, 0, (or Qcy), T;] for stage 1.

In order to solve for the 2N + 1 independent variables by use of the
Newton-Raphson method, 2N + 1 independent equations must be selected and
expressed in functional form. The equations so selected are the N + 1 equili-
brium relationships and the N enthalpy balances.

The N — 1 equilibrium functional expressions for stages 2 through N are
formulated by commencing with the condition that a set of the independent
variables is to be found such that F;=0 for all j (j =2, 3, ..., N), where F; is
given by Eq. (4-4).

The existence of two liquid phases on stage 1 leads to two independent
equilibrium functional expressions. The functional expression for the hydrocar-
bon phase is developed by commencing with Eq. (4-2) and the fact that [,, = 0
to give

F,= % {c;l lKlu — IJv“ - ch; (4-37)

The functional form of the equilibrium exp-ession for the liquid-water phase on
plate 1 is obtained by commencing with the equilibrium relationships given by

Eq. (4-35). Rearrangement of this equation followed by the statement of the
result so obtained in functional form gives

L

The enthalpy balance functions are formulated for any stage j in a manner
analogous to that for absorbers and distillation columns. The solution values of

the variables (the temperatures, vapor rates, and product flow rates) are presented
in Tables 4-14 and 4-15.
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Table 4-14 Initial and final temperature and flow rate profiles for Example
4-11 (Taken from Ref. 13)

Temp., °F Liquid, Ib mol/h Vapor, Ib mol/h

Plate Initial Final Initial Final Initial Final

1 100.00 111.64 2178.0 2129.8 198.90 194.50
2 122.22 116.79 21780 2108.9 28620 2816.1

3 144.44 192.56 21780 2053.4 2862.0 2795.2

4 166.77 210.74 21780 1985.4 28620 2738.7

5 188.89 227.83 21780 1894.9 2862.0 2671.6

6 211.11 247.41 1864.6 1463.3 2825.3 2561.5

7 233.33 27247 1864.6 13599 2825.3 24433

8 255.56 296.95 1864.6 1303.0 2825.3 2340.0

9 277.78 316.27 1864.6 1281.4 2825.3 2283.1
10 300.00 329.46 1864.6 1265.5 2825.3 2261.4
11 322.22 339.07 1728.5 1102.5 2818.4 22250
12 355.55 348.00 1728.5 1061.2 2818.4 2198.2
13 366.67 357.68 1728.5 1003.4 2818.4 2156.8
14 388.89 369.84 1728.5 92226 2818.4 2099.1

15 411.11 386.60 1728.5 81Z2.16 2818.4 2017.9
16 433.33 410.45 1360.1 329.69 2791.6 1842.2
17 455.55 439.86 1360.0 285.59 2791.6 1728.1
18 477.78 453.90 2183.1 1607.8 2791.6 1684.0
19 500.00 486.45 1360.1 879.87 2791.6 2183.3
20 52222 508.06 1360.1 859.71 2791.6 2278.3
21 544.44 520.82 1360.1 816.99 2791.6 2258.1
22 566.67 531.37 1360.1 759.57 2791.6 2251.4
23 588.89 542.52 1234.7 554.13 27758 21244
24 611.11 556.74 1234.7 462.72 27758 2044.5
25 633.33 572.98 1234.7 354.27 2775.8 1953.1
26 655.55 593.34 1234.7 154.74 2775.8 1844.6
27 677.78 629.46 1916.8 811.63 1254.7 123.98
28 700.00 626.51 728.12 778.86 1254.7 98.768
29 21111 256.46 3134 326.68 36.63 19.775
30 233.33 261.04 3134 332.53 36.63 33020
31t 255.56 266.80 276.8 293.66 36.63 38.866
32 322.22 331.89 136.1 130.74 6.94 20.442
33+ 344.44 32195 136.1 122.58 6.94 15.105
34 43333 404.36 368.4 352.74 26.80 65.626
35t 455.55 395.54 368.4 329.59 26.80 49.969
36 588.89 535.40 1254 117.97 15.80 33.464
37 611.11 524.46 1254 107.70 15.80 26.072
Other variables Initial Final

Wy /Vy 1.75 1.838
Q¢ (Btu/h) 38.33 x 10° 39.179 x 10°¢
Qrs; (Btu/h) 0.65 x 108 0.66462 x 108

t Plates 31, 33, 35, and 37, are the bottom plates of sidestrippers 1, 2, 3, and 4, respectively.



170 FUNDAMENTALS OF MULTICOMPONENT DISTILLATION

Table 4-15 Product distributions for the main column of Example 4-11 (T aken

from Ref. 13)

Compo- Liquid Liquid Vapor Liquid

nent Wi Wy Uy lys.:

1 0.36758 x 107! 0.72632 x 10* 0.32644 x 10*

2 0.62566 0.25071 x 10? 0.26807 x 102

3 0.29272 x 10! 0.35048 x 10 0.83867 x 102

4 0.89763 x 10! 0.34632 x 102 0.15499 x 10!

5 0.40897 x 102 0.52850 x 10? 0.85879 x 10!

6 0.44157 x 10? 0.21337 x 10? 0.11619

7 026133 x 102 0.47275 x 10! 0.17989

8 0.99476 x 10! 0.14782 x 10! 0.22583

9 0.10933 x 10! 0.88609 x 10! 0.38925

10 0.19251 0.10284 x 10! 0.50368

1mn 0.16419 x 10! 0.56516 x 103 0.37881

2 0.16518 x 1073 0.22649 x 10°% 0.67363

13 0.16641 x 10™* 0.14177 x 107¢ 0.17456 x 10~
4 0.15145 x 10~¢ 0.78507 x 10°° 0.79277

5 0.22765 x 10~ 8 0.70243 x 107! 0.10205 x 10!
6 0.55656 x 1071 0.10392 x 10712 0.23381 x 10!
7 0.14330 x 10~*2 0.13288 x 10713 0.20558 x 10!
8 0.76684 x 10713 0.40886 x 1078 0.26460 x 10!
9 0.68740 x 1016 0.28692 x 107 0.26962 x 10!
200 0.22190 x 1018 0.51428 x 10~ 22 0.34258 x 10!
21 0.17505 x 1072° 0.22792 x 10724 0.96953 x 10!
22 0.20760 x 10™2* 0.10708 x 1028 0.13251 x 10?2
23 0.61138 x 107%° 0.12121 x 10733 0.12496 x 102
24 0.30110 x 10?
25 0.44651 x 102
26 0.11928 x 103
27 0.11338 x 103
28 0.97097 x i0?
29 081199 x 10?2
30 0.67799 x 102
31 0.47699 x 102
32 0.57299 x 102
33 0.29599 x 102
34 0.28299 x 102
35 0.77105 x 10!
Total 356.84 135.00 194.50 778.86
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Table 4-16 Product distribution for the sidestrippers of Example 4-11 (Taken
from Ref. 13)

Compo-

nent Iy by, lys. Ly
1 0.69343 x 1076 0.25754 x 10~% 0.61494 x 10™° 0.94406 x 10~ ¢
2 0.19430 x 107* 0.18269 x 103 041215 x 1073 0.75324 x 10~ 4
3 091788 x 1072 0.24606 x 102 0.37864 x 1072 0.34557 x 10~3
4 0.14254 0.15945 x 107! 0.17375 x 10! 0.85512 x 10~3
5 0.15792 x 10! 0.14054 0.14165 0.57496 x 102
6 0.51627 x 10! 0.31236 0.30460 0.10062 x 10!
7 0.29863 x 1072 0.68628 0.69136 0.20813 x 107!
8 0.49639 x 102 0.10066 x 10* 0.97587 0.27918 x 107!
9 0.70439 x 102 0.22821 x 10! 0.19077 x 10* 0.50768 x 101!
10 0.69003 x 102 0.38008 x 10! 0.26698 x 10! 0.70253 x 10~
11 0.36973 x 102 0.43218 x 10! 0.22027 x 10! 0.57564 x 10~!
12 0.17744 x 102 0.20337 x 102 0.50738 x 10! 0.12158

13 0.12172 x 10? 0.54715 x 102 0.17523 x 10? 0.34493

14 0.18682 0.16350 x 102 0.11270 x 10? 0.17098

15 0.10401 0.96660 x 10! 0.18373 x 102 0.23646

16 0.16173 x 107! 0.65683 x 10" 0.41485 x 10? 0.59569

17 0.49269 x 103 0.11589 x 10! 0.30219 x 102 0.56579

18 0.23143 x 107* 0.28438 0.30271 x 10? 0.79865

19 0.50537 x 103 0.12979 0.26966 x 10* 0.85782

20 0.18022 x 10°¢ 0.27553 x 107! 0.25961 x 10? 0.12358 x 10!

21 0.13224 x 1077 0.11837 x 107! 0.53601 x 10? 0.42919 x 10!

22 0.63624 x 1071 0.88605 x 1073 0.42437 x 102 0.99107 x 10!

23 0.82631 x 10713 0.20398 x 1074 0.12174 x 102 0.17731 x 10?

24 080735 x 1016 0.39169 x 10°¢ 0.29254 x 10! 0.38165 x 10?

25 0.67213 x 10~ 2! 0.22248 x 107° 0.60178 x 107! 0.22788 x 10?

26 0.30389 x 10~ 4 0.14531 x 1073 0.85209 x 10!

27 0.21479 x 10~ 22 0.23489 x 1078 0.21711

28 i i 0.12939 x 1073 0.31133 x 1072

29 s i 0.64525 x 10~2° 0.20250 x 10~ *

30 s i i 0.15680 x 1077

K P, 0.52034 x 10~°

32 0.53617 x 10~ '*

33 0.26740 x 107 '°

. L

35 0.26242 x 10~ 2 0.75718 0.23097 x 10! 0.89814

Total 293.66 122.58 329.57 107.70
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4-4 COMPARISON OF PROCEDURES 1, 2, 3,
AND THE COLUMN MODULAR
AND SYSTEM MODULAR METHODS

A summary of the computer times and the number of trials required to solve a
variety of examples by the methods enumerated above is presented in Table
4-17. These results show that for absorber-type columns (Examples 4-2, 4-3, and
4-4), procedure 1 requires fewer trials than do procedures 2 and 3. For columns
which have a relatively small number of plates, all three procedures require
about the same amount of computer time. As the number of plates and compo-
nents are increased (see Example 4-12), the speed advantage of procedures 2 and 3
over procedure 1 becomes more pronounced.

For distillation-type columns (Examples 4-5 through 4-7) the 6 method,
which is presented in Chaps. 2 and 3, is seen to be from 5 to 20 times faster than
the 2N Newton-Raphson method.

Since the number of operations required to invert or to find the LU
factorization of the jacobian matrix requires n* or n? operations, respectively, it is
fortunate that most absorber-type problems are characterized by mixtures which
contain a relatively large number of components and by columns which contain
a relatively small number of plates. For problems of this type, the 2N Newton-
Raphson method is best suited and is recommended. For separations carried out
in distillation type columns involving large numbers of components and plates,
the 0 method is the most efficient and is recommended.

In order to obtain a comparison between the computer times required for
the column modular and the system modular methods, Example 3-4 was used by
Hess'® to test the two methods. In the global modular application of the 2N
Newton-Raphson method to the system shown in Fig. 3-12, stages are numbered
consecutively beginning with the accumulator of the first column and terminat-
ing with the reboiler of the last column. Example 4-12 consisted of solving the
complete set of equations for the system simultaneously by use of the 2N
Newton-Raphson method in a manner similar to that demonstrated above for
pipestills. From the results presented in Table 4-17, it is evident that the column
modular method consisting of the § method for each of the columns and capital
© method for the system is significantly faster than the system modular
approach of the 2N Newton-Raphson method. In conclusion, the results pre-
sented in Table 4-17 support the recommended combination of procedures pre-
sented in Table 4-1.
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PROBLEMS

4-1 An adiabatic flash process may be regarded as an absorber with one equilibrium stage in which
the two entering feeds are combined to give a feed rate F and composition {X}, that is,

l’N+|,i+loi=FXi

and
_Onirit o

o VN+I + LO
(a) Restate Eqs. (4-1) through (4-13) for the special case of an absorber with one equilibrium
stage.
(b) In the interest of simplicity, let (L,/V,), be set equal to unity. Show that Eq. (4-10) reduces
to a scalar-total material balance which may be solved for ¥, to give

F

Vy=—
1+0
and that A;v; = —# reduces to a scalar-component-material balance which may be solved for v,; to
give
FX;

by =T
1 +0/K,;

4-2 (a) Obtain expressions for the partial derivatives of v,; and V, (see Prob. 4-1) with respect to T,
and 6,.

(;)) Obtain expressions for the partial derivatives of the functions F, and G, (see Prob. 4-1)
with respect to T, and 0,.
4-3 Show that the function F,(6,, T,) (see Prob. 4-1) decreases monotonically with both 0, and T,
for all 9, >0 and all T, lying between the bubble-point and the dew-point temperatures of the
combined feed.
4-4 Repeat Prob. 4-3 for the function G,(6,, T;) (see Prob. 4-1).
4-5 Produce a sketch of the following forms of the phase equilibrium function in the positive domain
of  at a fixed value of T, lying between the bubble-point and dew-point temperatures of the feed.

@ Fi=" %

() F,= i (K_ll —l)u“

(c) F,= % z“, L“1)"15

where the formulas for v,, and ¥, are given in Prob. 4-1.

4-6 A single-stage absorber is to be operated adiabatically at 1 atm pressure. The lean oil stream L,
enters the single-stage absorber as a liquid at 139.6°F, and the rich gas enters the absorber at its
dew-point temperature of 200°F at 1 atm. Use the equilibrium and enthalpy data stated in Examples
1-4 and 1-5. The component-flow rates of the rich gas Vy,, and lean oil L, are as follows.

Component Oneri o
1 0 50
2 0

50
3 50 0
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It is desired to determine Vi, L,, and their compositions by use of the Newton-Raphson method.
Evaluate the functions F,and G, and the partial derivatives OF /00, and 0G, /00,. These are two of
the four partial derivatives which are needed to make the first trial and calculation by use of the
Newton-Raphson method. For the first trial take 0, =1and T, = 105°F.
In practice, both the variables and the functions should be normalized. Let a new normalized
temperature be defined as follows
. T(°F)
T (normalized) = 100
4-7 Begin with first principles and formulate the enthalpy balance functions G; for a conventional
distillation column.
4-8 For the functions {F,} and {G,\ given by Egs. (4-3) and (4-4), respectively, develop the expres-
sions for the following sets of partial derivatives for allj(j=1,2....,N)andallk (k=1,2,..., N)

PEL - RELRGI G

lo, | loml  Vaol ot
4-9 Perform the matrix differentiation implied by the right-hand side of Eq. (4-24) and verify the
formulas given in Table 4-3 for Ci.
4-10 Supply the missing steps required to tind the inverse of the jacobian matrix Jo in Example 4-8.
4-11 (a) If

2 4 -6
A=|-4 -7 10
2 71 -9

Il

1 3
X, 20.y=]2].C=1
3 1

Compute
Avy = A+ x,Cy)/
(b) Obtain the LU factorization of A, and compare the result so obtained with that found in
Example 4-9.

4-12 Formulate the four ¢ functions and the matrix equation for the overall component-material
balances for Example +10.

4-13 Show that the Broyden correction may be stated in the form given in procedure 3, namely,
Jior =d + x, Cy{

Hint: Make use of the Broyden relationships given in Chap. 15.
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CHAPTER

FIVE

ALMOST BAND ALGORITHMS OF THE
NEWTON-RAPHSON METHOD

The Newton-Raphson formulations, called the Almost Band Algorithms are
recommended for solving problems involving columns in the service of separat-
ing highly nonideal mixtures. In the Almost Band Algorithms, the independent
variables in the Newton-Raphson method are taken to be either one or both sets
of the component-flow rates {I;;} and {v;}, the temperatures {T}}, and in some of
the formulations one or more of the total flow rates {L;}. In Sec. 5-1 the indepen-
dent variables are taken to be the component-flow rates, {I;}, {v;}, and the
temperatures {T;}. The formulation is presented in Sec. 5-1 for absorbers and
strippers, and in Sec. 5-2 the formulation for conventional and complex columns
is presented. Two modifications of Broyden’s method are presented in Sec. 5-2.
The modifications of Broyden’s method preserve the sparsity of the initial jacob-
ian matrix, whereas the original method as proposed by Broyden does not. The
treatment of systems of columns in the service of separating highly nonideal
solutions is presented in the next chapter.

Although the Almost Band Algorithms use a large number of independent
variables, far less computer time is required to obtain a solution to a given
distillation problem than might be expected. The computational speed results
from the use of selected techniques of sparse matrices and the characteristics of
homogeneous functions. |

Sparsity of the jacobian matrix is achieved by a suitable ordering of the
variables and functions. The particular choice of variables and functions and
their ordering (discussed below) leads to the unique form of the jacobian matrix -
shown in Fig. 5-1. The well-known method of gaussian elimination may be
applied in a stepwise fashion in the transformation of the matrix shown in
Fig. 5-1 to the one shown in Fig. 5-2. At any one time, only four of the (c + 2)
square matrices along the diagonal and the two corresponding column matrices
are considered in the gaussian elimination process instead of the complete :
N(c + 2) square matrix. No arithmetic is ever performed on any of the zero
elements lying outside of the squares in Figs. 5-1 and 5-2.

178 J
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No. | 2 3 N-I N
T T T T T T T T T T T
! o @ @ Note:
L All elements outside of the
2 @ @ ® @ shaded orea are zero.
2. Each of the shaded
3 @ @ @ cgrf'ains onesor ;oresqn‘?ne-s
B zero elements.
®e
L (2c+1)

(2c+1)elements

Figure 5-1 Structure of the jacobian matrix for an absorber.

Plate
No. | 3 N-1 N
0 T T T T T T T T T T
|
| © Note:
4 1. All elements outside of the
2 @ @ shaded area ore zero.
3 o 2. Eoch of the shoded squares
L and triangles may contain one
or more nonzero elements.
r (2c +1) elements
\ o (2c +1) elements
N-1
N

Figure 5-2 Upper triangular matrix for an absorber.
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Highly nonideal solutions are characterized by the fact that the activity
coefficients and the partial molar enthalpies are strongly dependent upon
composition. In order to compute the partial derivatives of these quantities
which are needed in the application of the Newton-Raphson method, it is con-
venient to choose compositions or component-flow rates as members of the set
of independent variables. Numerous choices of the independent variables have
been made.5 7> 8. 13.15.17.19.20 T demonstrate the formulation of the Newton-
Raphson method, the choice of independent variables proposed by Naphtali and
Sandholm!” is used. The Almost Band Algorithm may be formulated for other
choices of independent variables as shown by Gallun and Holland.”*°

5-1 ALMOST BAND ALGORITHMS FOR ABSORBERS
AND STRIPPERS, INDEPENDENT VARIABLES:
{li:}, {Uji}’ AND {7}}

As shown in Fig. 4-1, the plates of the absorber are numbered down from the
top of the column, the top plate is assigned the number 1 and the bottom plate
the number N. The variables regarded as fixed (or specified) in the developments
which follow are:

1. {lo;}, liquid at T, and at the inlet pressure P,
2. {vn+1, i} vapor at Ty, and at the inlet pressure Py, ,
3. the column pressure or the pressure on each stage

The N(2c + 3) equations required to describe the column may be stated in
the following form:

*,'J'-,:ij,-zij,-Kﬁlﬁ (j=12...,N)
v L; (i=12...,¢
Equilibrium < .
i=L; =1,2...,N
relationship ,-;I" L U )
Y=V (i=12..,N)
i=1
(5-1)
Component- ‘rﬁ.i+lj_,',~—v,-,-—lﬁ=0 (i=12...,N)
material . (i=12..,¢)
balances
Energy < - - . R
balance "‘Z:l[vﬁ niHjeit Ij—l.ihj—l.i —v;Hj — Ijihji] =0
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where H ;i and Eﬁ denote the virtual values of the partial molar enthalpies; see
Chap. 14. In the above statement of the equations, the component-material bal-
ances and the energy balances enclose each stage j.

Use of the second and third expressions of Eq. (5-1) to eliminate the total-
flow rates from the equilibrium relationships yields a total of N(2c + 1) equa-
tions for the description of an absorber. When the independent variables are
chosen as shown above, it is convenient to state each component-material bal-
ance and each energy balance for the enclosure of a single stage. Thus, after the
total-flow rates have been eliminated from Eq. (5-1)'as described above, the
resulting set of N(2c + 1) independent equations required to describe the column
may be stated in functional form to give

fji v;uKﬂIp V:xv;n (./_ L2, ’ ) (5_2)
z » (i=1,2,...,¢)
ji Vj;
Pyl s’
(=12 ...,N)
my =0y i+l i —vi— 1 (i=12...¢) (5-3)
Z [vjiﬁji + lji’;ji]
Gj=— i-1 -1 (=12...,N) (54)

Z[UJ+IIH]+II+IJ ln j—1, ]

In the expressions for the activity coeﬂicnents {7}, v} and the virtual values of
the partial molar enthalpies {H;;, h;}, the mole fractions must have the sum of
unity. This condition is satisfied by use of the following expressions for these
mole fractions

. (5-5)

In order to obtain a jacobian matrix having the form shown in Fig. 5-1 for
an absorber, both the functions and the variables must be appropriately ordered.
The functions must be ordered as follows

f= [(le fj,z fj,c mjy mj, ccmg . G_i)j=l.N]T (5-6)

where the subscript j =1, N means that the argument is to be repeated for
Jj=1,2,..., N. The variables must be ordered as follows

"=[(lj,1 iz Ij,c Vj 1 Vj,2 """ VUj¢ 7})}=1.N]T (5-7)

By the ordering of the variables is meant the order in which the differentia-
tion of each function is carried out in the Newton-Raphson method which is the
same as the order in which the variables appear in the vector given by Eq. (5-7).
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For example, the Newton-Raphson equation for any one function, say fj (the
equilibrium function for plate j and component k, where k denotes a particular
one of the ¢ components), is
(i /0ly, 1) Al 1 + (0fu /01y, ) ALy 5 + -+ + (@fu /o1, ) Al
+ (@fw /00y, 1) Aoy + - + (@ /Ovy, ) Av,y, + (9 /0Ty) AT,
++ (6fjk/avN.c) AvN.c + (af;k/aTN) AT;V

The complete set of Newton-Raphson equations may be stated in the following
matrix form

JAx= —f (5-8)
[ s ofis 0 |
al,, al,, Ty
om . om,,  em,,
al,, al, Ty
J=
0G, 96, = 3G,
al,, al, oTy
Gy 6y a6y
| o, al,, Ty |

Ax = [(Al; y Al; 5 -+ AL, Av; 1 Av; 5 -+ Av; . AT))j=y ]"

and f is defined by Eq. (5-6).

The complete set of Newton-Raphson equations may be solved by trans-
forming the matrix shown in Fig. 5-1 into the upper triangular matrix shown in
Fig. 5-2. The triangularization procedure, to be described next, is based on gaus-
sian elimination.

The matrix shown in Fig. 5-1 has several desirable features which arise from
ordering. First, the elements lying outside of the shaded areas in Figs. 5-1 and
5-2 are always zero. Second, most of the elements below the principal diagonal in
Fig. 5-1 are zero, and those which are nonzero are clustered along the diagonal.
This characteristic makes it possible to consider only a relatively small number
of squares of elements (or submatrices) at any one time.

For example, in the first step of the triangularization of the jacobian matrix
in Fig. 5-1, the submatrices 1, 2, 3, 4, 6, and 7 are considered. To initiate the
elimination process, the largest element of column 1 of submatrices 1 and 2 of
Fig. 5-1 is selected as the pivot element. If this element lies in submatrix 2, then
submatrix 6 may be filled in the process of eliminating all elements above the
pivot element.
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After the procedure has been applied to the last column of submatrix 2, the
entire process is repeated for the next set of six submatrices; namely, submatrices
4,5, 7,8, 10, and 11. If one or more of the pivot elements lie in submatrix 5, then
submatrix 10 may be filled in the elimination process.

Refinements of the gaussian elimination process which were used have been
described by others?® under headings such as symbolic partial pivoting. One of
the refinements used consisted of keeping an account of the precise number of
rows filled in matrices such as 3 and 10 by the triangularization process. No
subsequent arithmetic was performed on the empty rows. A second refinement
consisted of the use of minimum element sizes whereby each element was
examined and if found to be less than some small preassigned number, it was set
equal to zero. No subsequent arithmetic was performed on such elements. Also,
all of the variables were scaled so that their values generally fell within the range
of 0 to 2, and the columns and rows of the Newton-Raphson equations were
scaled as recommended by Tewarson?23 (see also Chap. 15) before the gaussian
elimination process was initiated.

If the approximations presented in this section are made, the number of
nonzero elements in the shaded submatrices of Fig. 5-1 is smaller, and the effort
required to evaluate many of the partial derivatives is significantly reduced.
However, the general algorithm just presented for solving the Newton-Raphson
equations may be used regardless of whether or not any or all of the approxima-
tions presented in this section are used.

The first class of approximations are referred to as “ mathematical approxi-
mations” because they are based upon purely mathematical considerations. The
second class of approximations are called “ physical approximations” because
they are based upon the physical characteristics of a particular system.

MATHEMATICAL APPROXIMATION

The proposed approximation amounts to neglecting the partial derivatives of the
enthalpy departure functions, the Q’s, with respect to the component-flow rates.
As shown in Chap. 14, Q appears in the definition of the virtual value of the
partial molar enthalpy. For example, for any component i in the liquid phase on
plate j, the virtual value of the partial molar enthalpy is given by

hj; = Hj; + Qf (5-9)

when H7; is the enthalpy per mole of pure component i in the perfect gas state at

the temperature T; and pressure of one atmosphere, h}i is the virtual value of the

partial molar enthalpy per mole of component i, hyi = hy; (P;, Ty, {I;}), and Qf is

67‘1111?;1 }t;w departure or deviatior function per mole of the mixture, Qf = Qf (P,,
J» jis)-

The mathematical approximation which follows is based on the fact that the

Q’s are homogeneous functions of degree zero in the component-flow rates.
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Thus, when the {0Q}/ol;;} are evaluated at the l;’s assumed to make trial n,
Euler’s theorem?? gives the following relationship (see App. A).

3 (@00101,)(1,), = 0 (5-10)

Advantage of this relationship may be taken by consideration of the following
terms of the Newton-Raphson equation for the function G;

3 Y hiil 3 Y hiily Y hjily;
. d=r ; d=1 . i=1_ TR
+ al, Al + al, Alj + - + I, Al +

Since hj; = HS; + Q/, this series of terms may be rearranged to the following
form
s 00f

o Yy Al + (Zl,-.-)lz L Alj.-J+..,
i=1 i=1 g

i=1

Since Alj; = (I;;),+ 1 — (I;i),, the last term of the above expression may be restated
as follows

.g:, (C;SZ.:L)" Aly = z‘: (%—)n(lji)n+l - ZC: (%&lf)n(lf‘)"

i=1 i= ji

By Eq. (5-10), the second sum in this series is identically equal to zero. Then, if
the approximation that

3 OQH)ldue , =0 (5-11)

is made, derivatives of the Qj’s with respect to the component-flow rates may be
neglected. Thus, on the basis of the assumption given by Eq. (5-11), the selected
terms of the Newton-Raphson equation reduce to the same result which would
have been obtained had it been assumed that mixture formed an ideal solution,
that is,

¢ 0 [Z hji IiiJ c
Z Lal,—— Aly = Z hi Al
k=1 ik k=1

A similar argument may be made for neglecting the partial derivatives of
Q}’s with respect to the component-flow rates of the vapor.

In support of the approximation given by Eq. (5-11), it should be noted that
the relationship becomes exact if the predicted flow rates in this expression are
approximated by a linear combination of the assumed set of flow rates, namely,

(lid+ 1 = a(l;;)s. This relationship is also exact if (0Qf/015:), = (0QF/01;)4 1
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PHYSICAL APPROXIMATIONS

Most approximations of this class involve the relative magnitudes of the partial
derivatives of the activity coefficients, fugacities, and the departure function Q
with respect to temperature. If, for example, the Q is independent of temperature
or its variation with temperature is small, then the approximation Q0T =0
may be made.

5-2 ALMOST BAND ALGORITHMS FOR CONVENTIONAL
AND COMPLEX DISTILLATION COLUMNS

Only minor modifications of the algorithm formulated for absorbers are needed
in order to solve problems involving all types of distillation columns.

The [N(2c + 1) + 2] Formulation of the Newton-Raphson Equations
for a Conventional Distillation Column

Distillation columns may be described by N(2c + 3) equations similar to those
given by Eq. (5-1) for absorbers except that in the case of distil'ation columns,
the energy balances for stages j =1 (the condenser-accumulator section) and
Jj = N (the reboiler) contain two new variables, the condenser duty Q. and the
reboiler duty Q.. To demonstrate the formulation of the equations for distilla-
tion columns, two cases are considered: (1) a conventional distillation column
with a partial condenser and the reflux rate L, and bottoms rate L, specified, and
(2) a conventional distillation column with a total condenser and L, and L,
specified.

In addition to the specification of the type of condenser, it is also supposed
in all of the cases considered that the following variables have been fixed:
column pressure; number of stages N; complete definition of the feed (the feed
rate F, composition X; and thermal condition); and the feed plate location f.

CONVENTIONAL DISTILLATION COLUMNS WITH PARTIAL CONDENSERS

Consider first the case where a partial condenser is used. Introduction of a partial
condenser and a reboiler introduces two new variables (relative to those which were
used to describe absorbers), the condenser duty Q. and the reboiler duty Q. If
Q¢ and Qg are regarded as independent variables, two others must be fixed.
When these are taken to be the reflux rate L, and the bottoms rate Ly, the
corresponding specification functions take the form

S, =5 — (5-12)

Sy= "=L‘ -1 (5-13)
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When the [N(2c + 1) + 2] functions are ordered as follows
f=[S:(fi1 fiz = Sremiamiy - m . G)ioy v Sy]” (5-14)

and the differentiation is carried out with respect to the following
[N(2c + 1) + 2] variables in the order listed

X=[0dli 1 L2 be vy 050 v T)j=yn Qrl” (5-15)

a jacobian matrix similar to the one shown in Fig. 5-1 is obtained. In this case,
however, the first and last squares on the principal diagonal are (2¢ + 2) by
(2¢ + 2) rather than (2c + 1) by (2c + 1) as shown in Fig. 5-1. In the above
listing of the variables, v,; has been used to denote d;. The corresponding
Newton-Raphson equations may be solved by gaussian elimination in a manner
analogous to that described for absorbers.

The equilibrium functions are of the same form as those presented for absor-
bers; provided that the distillates rates {d,} are denoted by {v,;} and the bottom
rates {b;} by {Ix;}. For all stages except for j = 1, f—1, f, and N, the material
balance functions m;; are of the same form as those shown for absorbers. For the
exceptions, the functions take the form

My =0y —vy; — Iy
Me =0+ 0+l =0,y =1y,
-1, S F f=2,i S=1,i f—1,i
B (5-16)
My =0vpoy i+l g i+ lp—vy— 1y
Mmy=Iy_y;—vy—ly

Likewise, the enthalpy balances G; are of the same form as those given by
Eq. (5-4) for absorbers except for stages j=1, f— 1, f, and N. For stages f— 1
and f, the denominators of G 7-1 and G, contains the additional terms

Zvn ﬁFi and ZlFiEFi
i=1 i=1

respectively. The functions G, (for a column with a partial condenser) and G
are given by

Z (vliHIi + Ih‘ﬁli) + Qc

G, = _ -1
Z UZ:‘ﬁh'
. (5-17)
[omHyi + Inihi]
Gy=-+ -1

lN—l.iﬁN—l,i + Qg

Mn

i=1

For the case where Q. and Qj are specified instead of L, and Ly, the
functions f are of the same form as shown above, but the set of independent
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variables x now contain L, and Ly instead of Q. and Qg

x=[L, (.1 ;2 lic vy 02 Vj,e Ti)j=l.NLN]T (5‘18)

CONVENTIONAL DISTILLATION COLUMNS WITH TOTAL CONDENSERS

For the case where a total condenser is employed and L, and Ly are specified,
the problem is formulated as follows. Specification of L fixes D, since by total
material balance, D = F — Ly. Since d; and [,; have the same composition, they

are related by
D
d=[=1..
i (Ll) 1i

and d; should be replaced wherever it appears by its equivalent (D/L,)l,;. In the
case of a total condenser, the variable v,; does not exist, and it is replaced in f] ;
and x by y,;, the mole fraction of component i in the vapor above the liquid in
the accumulator, that is,

L v
fl,i= y}if(lilli _ Y:.')’u (5_19)
Zlu ZYU
i=1 i=1
and
x=[Q¢ Loy e Yior Ve T (g lic vjy =+ vje 7})j=2.~ QR]T

(5-20)

Also, wherever y,; appears in the expression for the activity coefficients {y};} and
the enthalpies {H,}}, it is replaced by its normalized value y,; /Y%, y;.

The set of N[(2c + 1) + 2] functions is again given by Eq. (5-14). However, a
different form of the function S, must be used because the expression given by
Eq. (5-12) is no longer independent. For it may be obtained by a linear combina-
tion of the other functions, namely,

Si=-— Z imji"‘LNSNJ/D (5-21)

i=1j=1

Thus, the following expression should be used for S, for columns with total
condensers

Si=Yyu—1 (5-22)
i=1

When the condenser duty Q. and the reboiler duty Qg are specified rather
than L, and Ly, then Q. and Qg are replaced in the vector x of independent
variables by L; and Ly, respectively. The specification functions are given by
Egs. (5-12) and (5-22).
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The [N(2c + 1) + 3] Formulation of the Almost Band Algorithm
for a Complex Column with One Sidestream

Consider the case where a liquid sidestream is withdrawn at the specified rate of
W, moles per hour from plate p as shown in Fig. 3-4. This problem may be
solved by introducing a new independent function and a new independent var-
iable ¢, which is equal to the multiplier of the flow rate L, required to give the
specified flow rate W,. The new independent function may be stated as follows

63 Iy
Fo= ‘T‘ -1 (5-23)

p

The functions f and variables x are ordered as indicated by Egs. (5-14) and
(5-15) for conventional columns except for stage p, and for this stage, the func-
tions and their ordering follow

"'fpx fpz ot foe Myy My e My, Gy Fy oo

The variables for stage p and their ordering are

Ip.l lp.2 oo Ip.c vp.l vp,z e vp,c '1;, ¢

where each w,; is replaced by ¢l,; in the material balances. The 2c + 2 functions
and 2c + 2 variables for stage p are reflected by the 2c¢ + 2 by 2c + 2 squares
shown in Fig. 5-3.

Note:
I. All elements outside of the
shaded area are zero.

2. Eoch of the shoded squares
conkiins one or more non-
zero elements.

(2c+2)
L«

p I/(2c+2)

_.I 1 3. All squares are (2c+!)

o by (2c+1) except for -
(et = plates! ,p, and- N which are
(2c+2) by (2c+2).

elements

Figure 5-3 Jacobian matrix for a complex column with a liquid sidestream withdrawn from plate p.
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In the application of the Almost Band Algorithm to problems involving
sharp separations, it was required that all of the corrected flow rates be positive
and that the temperatures lie within the range of the curve fits. In this procedure,
the vector correction Ax was reduced by an appropriate scalar a until all of the
corrected flow rates were positive and the corrected temperatures were within
the range of the curve fits, that is,

Xpe 1 = X + o AX (5-24)

where a = 1, 1/2, 1/4,1/8, ... . First a value of « = 1 is tried, and if the conditions
enumerated are not satisfied, the value of « is reduced successively by a factor of
1/2 until all flow rates are positive and the temperatures lie within range of the
curve fits.

When only the I;’s or v;’s are selected as the independent variables, the
picking of & becomes more difficult, particularly in the case of complex columns,
because the o must be selected such the dependent component-flow rates given
by the constraining equations (the component-material balances) are positive.

The disadvantage of the choice of the {I;;}, {v;}, and {T}} as the independent
variables over the choice of the {/;} and {T}} as the independent variables is the
additional storage requirement for the N x ¢ vapor rates {v;;}. Other formula-
tions involving different sets of flow rates are considered in Prob. 5-5.

Formulations involving the use of the mole fractions as independent var-
iables have been proposed by Bruno et al.* and Ishii and Otto.'® Bruno et al.
formulated the problem in terms of N(c + 1) independent variables: the {V}}, {T}},
and {xj, xj3 *** x;. To solve an extractive distillation problem which involved
nine plates and three components, Bruno et al. reported an execution time of 1.5
minutes on an IBM 360-50. Gallun® solved the same problem (except for a
minor difference in specifications) in nine seconds of IBM 360-50 execution time
with six iterations. The difference in execution time of the two methods was
attributed to the efficient matrix solving techniques used by Gallun.

Ishii and Otto'® presented a very fast algorithm based on the Newton-
Raphson method. The problem was formulated in terms of N(c + 2) indepen-
dent variables, {V}}, {T;}, {x;}. In contrast to the algorithm described herein, their
algorithm was based upon making several approximations in the evaluation of
the partial derivatives. These approximations could lead to failure in the solution
of problems involving highly nonideal solutions. However, if the approximations
they proposed are not made, their algorithm for solving the jacobian matrix is
no longer applicable. When their approximations were made in the algorithm
presented herein, Example 5-1 appeared to be converging but was far from
convergence at the end of 20 trials.

N

NUMERICAL EXAMPLES

Statements of Examples 5-1 and 5-2 are presented in Table 5-1, and the solutions
are presented in Tables 5-2 through 5-4. The curve fits of all data used in the
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Table 5-1 Statement of Examples 5-1 and 5-2

Example 5-1 Example 5-2

Components FX; Fi Xy FyXy;
Methanol s 65
Acetone @ 25
Ethanol e L 5
Water e 50 5
Methyl acetate s

Benzene 2

Chloroform 20

Type of column

Conventional distillation
column

Complex distillation column
with two feeds

Column pressure, atm

1

1

Feed plate location f=6 F, enters on plate 6
F, enters on plate 21
N . 17 42
Thermal condition of feed Liquid at F, is liquid at 120°F
137.1°F F, is liquid at 100°F
Type of condenser Total Total
L,/D 95 3
B, mol/h 61.91443 124
Table 5-2 Solutions of Examples 5-1 and 5-2
Initial
assumptions Example 5-1 Example 5-2
Temperature T, =100, T, = 110 T, =100, T, = 110
profile, °F Ty, =175 Ty, =175
T, = 110 + (175 — 110)/15, T, = 110 + (175 — 110)/40,
forj=3,4,..., 16 forj=3,4,...,41
L;, mol/h L;=570,j=12...,5 L;=78,j=12..,5
L;=610,j=6,7,...,16 L;=128,j=6,7,...,20
L;j=228,j=21,22,...,41
I,,, mol/h I = L,X, for all i and j =L, [LX“LFIX”J
F, +F,
for all i and j
{ru} yf=02foralli Y1 =025 for all i
Qc, Btu/h 4; 108 1 x 108
Qg, Btu/h 4 x 10® 1 x 108
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Table 5-3 Solution values of selected variables for Example 5-1

Plate T,.°F L;, mol/h Plate T, °F L;, mol/h
1 132.60 361.81 10 134.66 46203
2 133.02 360.85 11 134.72 462.43
3 133.40 360.39 12 134383 463.30
4 133.74 360.65 13 13595 465.15
5 134.09 361.98 14 135.60 498.89
6 134.56 461.76 15 13701 475.10
7 134.58 461.65 16 140.39 483.64
8 134.60 461.78 17 145.99 61.91443
9 134.63 461.84
d;
Component (mol/h) Vi
Methanol 13.2015 0.33186
Acetone 17.8976 0.49304
Methyl acetate 29490 0.08770
Benzene 2.8971 0.06688
Chloroform 1.1402 0.02052

Qc = 5633271 x 10° Btu/h
Q, = 5.714335 x 10° Btu/h

solution of thése examples are presented in Tables B-11 through B-18. These
curve fits were taken from Gallun.> 7 The enthalpy of the liquid phase was
approximated by the assumption of ideal solution behavior. The enthalpy func-
tion Q for the vapor phase was evaluated by use of the first two terms of the
virial equation of state as described in Table B-18. The second virial coefficients
were approximated as described by Prausnitz et al.'® The critical properties and
parameters needed are presented in Table B-17. These were taken from Table
B-1 of App. B-1, page 213, of Ref. 18. Vapor pressures were expressed by
Antoine equations, and the constants for these equations are given in Table
B-13. Activity coefficients for each component in the liquid phase were approx-
imated by use of the Wilson equation as described in Chap. 14. The energy terms
appearing in this equation are given in Table B-15 for Example 5-1 and in Table
B-16 for Example 5-2. The molar volumes appearing in the Wilson equation
were curve fit on the basis of the data given in Table B-14. The fugacity
coefficients y} f¥/P for the vapor phase were approximated by use of Chap. 3
(Egs. 3-10 through 3-12) and pages 143-144 of App. A of Ref. 18 as described in
Table B-18.

The assumption of ideal solution behavior for the calculation of the enthalpy
of the liquid phase was made for both examples. For the vapor phase, the
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Table 54 Solution values of selected variables for Example 5-2

L

j i

Plate T; (°F) (mol/h) Plate T; (°F) (mol/h)
1 132.08 78.00 23 145.58 223.00
2 132.38 7742 24 145.58 223.00
3 132.80 76.58 25 145.59 22299
4 133.51 75.21 26 145.60 22298
5 135.09 72.20 27+ 145.62 222,96
6 140.88 125.40 28 145.65 22294
7 141.02 125.08 29 145.70 22290
8 141.23 124.68 30 145.77 22284
9 141.52 124.18 31 145.89 22274

10 14197 123.54 32 146.09 222.59

11 142.65 122.71 33 146.39 22236

12 143.71 121.69 34 146.86 22203

13 145.27 120.56 35 147.55 221.56

14 147.30 119.51 36 148.55 220.97

15 149.47 118.72 37 149.89 220.29

16 151.35 118.23 38 151.54 219.58

17 152.64 117.99 39 153.38 218.96

18 153.29 117.99 40 155.29 218.35

19 153.14 118.38 41 157.50 217.38

20 151.38 119.87 42 16191 124.00

21 145.57 223.00

22 145.57 223.00

Component d; (mol/h) Vii

Methanol 0.8396 0.03631

Acetone 23.8181 0.29418

Ethanol 0.0008 0.00002

Water 1.3414 0.03849

Qc = 1.3887 x 108 Btu/h
Qr = 1.5230 x 10° Btu/h
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Table 5-5 Convergence characteristics for Examples 5-1 and 5-2

Execution
Number of time Final value
Example iterations (IBM 360-65) of ¢t
5-1 8 258 s 1.0 x 10~ !
5-2 9 45s 43 x 10712

t Convergence was said to have been achieved when the value of ¢ computed by

1 ’N 2 2 c I
TN+ 1)(c+2)|,§, Fi+6; +,§, j’?‘l’

was equal to or less than 1 x 10 '°. The functions appearing in ¢ were all normalized.

¢

approximation which is analogous to the one represented by Eq. (5-11) was
made. It was further assumed that 0Q}/0T = 0.

The initial set of assumed values of the variables shown in Table 5-1 were
selected in a relatively arbitrary fashion so that they could not be regarded as
good first guesses in the sense that they were close to the solution set. On the
basis of these first guesses, for the variables, Examples 5-1 and 5-2 were each
solved in less than one minute of IBM 360-65 computer time (see Table 5-5) by
use of the calculational procedure presented herein. The computer times listed
for all examples presented in this chapter were obtained by use of Almost Band
Algorithms involving [N(c + 1) + 2] independent variables. The computer times
required to solve problems by use of these algorithms were essentially the same
as those by the algorithm presented in the text.

Comparison of the 2N Newton-Raphson Method with the
Almost Band Algorithm for Mixtures which Form Ideal Solutions

To compare the characteristics of the 2N Newton-Raphson method and the
[N(2c + 1) + 2] Almost Band Algorithm for solving problems involving ideal
solutions, the sequence of examples shown in Table 5-6 were solved by both
methods. For small numbers of components, procedure 2 of the 2N Newton-
Raphson method is faster than the Almost Band Algorithm and conversely for
large numbers of plates and a small number of components, the Almost Band
Algorithm is faster than the 2N Newton-Raphson method as indicated by the
results shown in Table 5-7. Since absorber-type problems generally involve large
numbers of components relative to the number of plates, and since the mixtures
encountered in most absorber applications do not deviate significantly from
ideal solutions, the 2N Newton-Raphson method is recommended for solving
such problems.
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Table 5-6 Statement of examples used in the comparison of the 2N Newton-
Raphson and the Almost Band matrix methods

The-distillation column had a total condenser and the feed plate was located in the middle
of the column, N/2, where N is equal to the total number of stages. An equimolar feed was used
for each example and the total flow rate of the feed was fixed at 100 moles per hour. Examples
were solved with 4, 6, 8, 10, and 12 components. The identity of the particular set of compo-
nents used for each example is given in tabular form below. The temperature of the feed for each
example was 100°F, and a column pressure of 300 Ib/in? abs was used for all examples. The
reflux ratio was held fixed at 2, and the product rates were set at 50% of the feed rate for all
examples. The ideal solution K values and enthalpies were taken from Tables B-1 and B-2.

Number of components

—
N

Component 4 6 8 10

C,H¢ x
C,Hq X X
C,H, X X
i-C,H,q
i-C,H,
n-C,H,, X X
i'Csle
n-CsH,, x x
n-CgH, ¢
n-C;H,q
n-CgH, g x
400

x
X X

X
X
X X X X X

X X X X X X X
X X X X X X X X X X X X

Table 5-7 Comparison of the 2N Newton-Raphson and the Almost Band matrix

methods
Example 2N Newton-Raphson methodt Almost Band matrix method

No.of  No. of No. of Time} No. of Time}
stages ~ components trials (s) rials (s)

12 4 9 1.03 6 0.57

12 6 5 1.32 9 092

12 8 5 149 9 235

12 10 8 1.73 9 3.68

12 12 7 1.87 10 6.11

25 4 6 2.59 10 1.05

25 6 8 4.52 10 1.62

25 8 12 4.32 10 247

25 10 16 5.37 12 436

25 12 9 7.34 12 6.15

50 4 16 13.13 20 3.08

T These results were obtained by use of procedure 2, Broyden’s method as modified by Bennett.

+
+

AMDAHL, FORTRAN H OPT 2.
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5-3 MODIFICATIONS OF BROYDEN’S METHOD

As originally proposed, the sparsity of the jacobian matrix is destroyed by Broy-
den’s method. Two procedures (or modifications) which preserves the sparsity of
the jacobian matrices are presented. The procedures are demonstrated by use of
simple algebraic examples and applied to the solution of distillation problems
whose jacobian matrices are sparse.

Since all derivatives may be evaluated numerically in Broyden’s method,’
the necessity for programming the expressions needed for the derivatives appear-
ing in the Newton-Raphson equations is avoided by use of these methods. The
wide variety of thermodynamic packages which are available make these
approaches very attractive.

After the Broyden correction for the independent variables has been
computed, Broyden proposed that the inverse of the jacobian matrix of the
Newton-Raphson equations be updated by use of Householder’s formula. Herein
lies the difficulty with Broyden’s method. For Newton-Raphson formulations
such as the Almost Band Algorithm for problems involving highly nonideal
solutions, the corresponding jacobian matrices are exceedingly sparse, and the
inverse of a sparse matrix is not necessarily sparse. The sparse characteristic of
these jacobian matrices makes the application of Broyden’s method (wherein the
inverse of the jacobian matrix is updated by use of Householder’s formula)
impractical.

Two methods have been proposed for retaining the desirable characteristics
of Broyden’s method and eliminating the undesirable characteristic of the loss of
sparsity of the jacobian matrix through the use of inverses. In both of these
modifications of Broyden’s method, the necessity for the development of analyti-
cal expressions for the partial derivations is eliminated. To initiate the calcula-
tional procedure in each of these modified versions of Broyden’s method, the
partial derivatives appearing in the jacobian matrix are evaluated numerically,
and the jacobian matrix is updated in subsequent trials through the use of
functional evaluations. The first modified form of Broyden’s method is the one
proposed by Gallun and Holland,® and the second modification is the one
proposed by Schubert.?!

Method 1. The Broyden-Householder Algorithm

As shown in Chap. 4, Broyden proposed the following formula for updating
the jacobian matrix J, to obtain J, . ,

(Fes 1 — (1 — sf) AxS

Jirr1=J 5-25
k1=t s Ax) Ax, (5-25)
Let the scalar ¢, ,, and the vectors u,, , and p,,, be defined as follows
1
= 5-26
Cr+1 Sk Aka Axk ( )
Ut = firy — (1 = s )fi (5-27)

Piv1 = Ax{ (5-28)
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Use of these definitions permits Eq. (5-25) to be restated in the following form
Jes1 =D+ Ui 1 Cr Py (5-29)

In this algorithm, Broyden’s method is applied by updating the jacobian
matrices by use of Householder’s formula.!? Let Jo be the initial approximation
of the jacobian matrix with which the iterative procedure is started. Then

Jo Axg = —f, (5-30)
and
Axo = —Jg ', (5-31)

Although the inverse of J, appears in Eq. (5-31), it should be noted that the
explicit expression of J5 ! need never be developed; only the LU factorization is
required. If J, is sparse, its inverse J5 ! is not necessarily sparse, but its factoriza-
tion L, Uy, is sparse. Thus, throughout the remainder of the development, in-
verses are shown but the actual numerical solutions are to be found by use of the
LU factorizations rather than the inverses of the jacobian matrices.

After Ax, has been used to find x, as described above, the updated jacobian
matrix J, is found as follows

Jy=Jo+uc,pf (5-32)
where
uy =1, — (1 —so)fy
Pi = Axg
1

CI -
So AXJ Ax,

After Ax, has been used to find x,, the updated jacobian matrix J, is found
as follows

J2=J +uyc,p; (5-33)

After J, in this equation has been replaced by its equivalent as given by
Eq. (5-32), one obtains

J2=Jo +use,pi +uyc,p3 (5-34)
By continuation of this procedure, the matrix Ji+1 is found as follows
k+1
Jer1=do+ Z "icipiT (5'35)
i=1

Thus, it is possible to state the jacobian matrix J,,, in terms of the initial
Jacobian matrix J, and the Broyden corrections for each of the successive
iterations. >

An algorithm is giveni%elow for solving the Newton-Raphson equations by
use of only the LU factorization of J, and the Broyden update terms given by
Eqs. (5-29), (5-30). and (5-31). As shown in App. 5-1, this algorithm is based on
the successive application of Householder’s formula to Eq. (5-29).
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THE BROYDEN-HOUSEHOLDER ALGORITHM FOR SPARSE MATRICES
(1) j=0
SOLVE J, Ax, = —f,
COMPUTE u,, p{
(2) SOLVE Jow= —f,,,
Joz=uy,,
(3) IF k=0, GO TO (5)
(4 DOj=1,2 ...,k
B=op] w
v=a;p]z
W w+ fy;
Z<Z+
(5) WYs1=z
1
(Vews 1) + Pis 1Vie s
B = s 1Pi+ W
AXpry =W+ By
(6) COMPUTE x,., fy+,, w+;, AND RETURN TO (2)
To demonstrate the application of this algorithm, the following algebraic
example is used. In order to reduce the arithmetic required to demonstrate the

application of the algorithm, a very simple example was selected whose solution
is seen by inspection to be x, = 1, x, = \/Z and x; = \/3

Xy g =

Example 5-3 (Gallun and Holland,” by courtesy Comput. Chem. Eng.) 1t is
desired to find the set of positive values of x,, x,, and x; which make

£1(x) = f2(x) = f3(x) = 0, where

filx)=x3 -1
fH(x)=x3-2
fi(x)=x3 -3
On the basis of the initial set of assumed values
xo=[1 1 1]7

compute x; and x, by use of the Broyden-Householder algorithm for sparse
matrices.

SOLUTION
(1) j=0, SOLVE J, Axy = —f,

Since the analytical expression for the partial derivatives are so easily
obtained (namely, df,/0x, = 2x, and 9f,/0x,, = 0, m # n), they are used
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)

to evaluate the elements of J,. It is easily verified that f,(x,) = 0,
J2(%o) = —1, and f3(x,) = —2. Thus

2 0 0][Ax,] 0
0 2 0f]Ax, |=-] -1
0 0 2][Ax;] -2

Since J, is a diagonal matrix, the solution is seen to be

[ Ax, | 0
Axo =] Ax, | =]1/2

| Ax; | 1

First, try so = 1 (see procedure 2, Broyden’s method in Chap. 4). Thus
1 0 1
X;=Xo+Axg=|1|+]|1/2]=]{3/2
1 1 2

filx)=0 fa(xy) = 1/4 filxy)=1
Thus, the inequality (see procedure 2, Chap. 4) is satisfied, since
(A4 + (1] < [(=1)* + (= 2)]'
and the full step size (s, = 1) may be used to compute x,. By Eq. (5-27).
u,=f,=[0 1/4 1]"

and

and
Pi=Ax{=[0 12 1]"
SOLVE Jow= —f,

2 0 0]fw, [ 0
0 2 Ofjw,[=—|1/4
0 0 2f[w, [ 1

w, 0 ]
w=1lw,[=]|-1/8
w; | —1/2]

Thus

Next solve Joz = u,

2 0 0}fz 0

02 0flz|=|14
é 0 0 2Jlz] 1]
. [2,] [0]
v 2=z |=]1/8
Z3 [ 1/2]
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(3) Since k =0, go to (5)
(5) vi=z=[0 18 1/2]"
-1
B (/ey) + pivy
By Eq. (5-46)
1 1 1 4

C’=s0 AX Axg 0] (/4)+1_5
(o 172 13|12
1

-1 B -1 _ 16
0 ] T (54 +(1/16)+ (12) T 29

oy =

(5/4) + [0 1,2 1][1/8
12

0
B=a,piw=(-16/29)0 1/2 1][— 1/8]
12

= (—16/29)(—(1/16) — (1/2) = 9/29

0 0
Ax; =w+ fv, = [— 1/8] + (9/29)[1/8]
—-12 1/2

0 0
=(—2029) 1/8 | = | —5/58
12 ~10/29

(6) Fors, =1

1 0 1
X2 =X, + Ax; = [3/2| + |-00862| = | 1.414
2 —0.345 1.655

and

Si(x2)=0 Sa(x2)=0 S3(x3) = —0.261

Thus, the inequality given of Broyden’s method (see procedure 2,
Chap. 4) is satisfied, that is,

[0)* + (—0.261)2)2 < [(1/4)* + (1)*]*2
Hence,

0
u,=f,= 0
—0.261

4
Now return to (2)
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@) k=1
SOLVE Jow= —f,

2 0 O|lw, 0
0 2 Of|w,|=— 0
0 0 2)|w,s —0.261
w, | 0
w=|w,|=| 0
wy] 10.130
2 0 0]fz] 0
0 2 0llz,]=] o
0 0 2){z;] |-0261

Zy [ 0
1=|z2,|= 0
z3 | —0.130

(3) Since k = 1, go to (4)
4) j=landk=1

Thus

SOLVE Joz =u,

Thus

0
B=apiw=(-16/29)00 12 1]| 0o |= —00717

0.130

0
y=oplz=(-16/29)0 12 1]] 0 |=00717

~0.130

0 0 0

wewt vy = 0 [+(-00717)] 1/8 | =] —0.009

0.130 12 0.094

[ : } { 0 ] [ : ]
z-z+yvy=| 0 [|+(00717)[1/8]=]| 0.009
—0.130 1/2 —0.094

0
(5) vo=z=| 0009
—0.094

-1
(Lea) +p3v,

1
cz=‘lrg~= = 7.908
s; Ax; &k, 0

7 (1)[0, —0.0862, —0.345]| —0.0862
~0.345

a2=
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Since p, = Ax,

0
piv, = [0, —0.0862, —0.345]| 0.009 | = 0.0316
~0.094
~1 -1
= - = —633
2= (1/7.908) + 00316 _ 0.158
0
B=oa,plw=(—633)0, —0.0862, —0.345]| —0.009 | = 0.200
0094

Ax, = w + Bv,

0 0 0
Ax, =[—0009 | + (0200)] 0009 |=|-0007
0094 [ -0.094 0075

(6) Trys,=1
1 0 1
X3 = X3 + AXZ = 1.414 + “‘0(X)7 = 1407
 1.655 0.075 1.73
fx(xs)=o fa(x3) = —0.02 f3(x3) = —0.007

Thus, the inequality of Broyden’s method is satisfied
[(—0.02)* + (-0007)*]' < [(0)* + (—0.261)*]/2

and

Hence

0
|‘|3 = f3 = '—0.020
—0.007

Return to (2).

Schubert’s Modification of Broyden’s Method

In the formulation of Schubert’s method,?! it is convenient to denote the kth
approximation of the jacobian by G"), where the iteration number is carried as a
superscript enclosed by parentheses. Then Broyden’s formula for computing the
next approximation of the jacobian is given by

[f(k+l) _ (1 _ s(k))t(k)] Ax®T
+ s(k) Ax(k)T Ax(k)

Schubert proposed a modification of Broyden’s method which takes advan-
tage of the fact that in the case of sparse jacobian matrices, most of the elements

G+ = G®

(5-36)
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are either equal to zero or fixed constants. These known elements would be
modified from trial to trial by Broyden’s method. Schubert imposed the condi-
tion that these known elements should remain unchanged in the jacobian revi-
sion. By use of this and certain other conditions,?! Schubert obtained the
following row-by-row analog of Eq. (5-36)

[FEFD — (1 — sW) 1] AxOT

S AT AL (i=12..,n) (537)

k+1) _ ok
gt =g+

where n is the order of the jacobian matrix, and

g =a row vector which contains the elements of the ith row of the
jacobian G®
Ax{¥ = a column vector derived from Ax™ by setting to zero each element of
Ax™ that corresponds to an element of g which is a known constant
£ = the ith element of f®

The application of Schubert’s method is demonstrated by the following
numerical example.

Example 5-4 [Gallun and Holland,® by courtesy Comput. Chem. Eng.) Make
one trial on the problem stated in Example 5-3 by use of Schubert’s method.

SoLuTiON The calculation of x*) by this method is precisely the same as
shown for x, in Example 5-3. On the basis of the set of assumed values

Q=11 1 1)"
the Newton-Raphson equations
GO Ax(® — _fO)

2 0 0][Ax,] 0
0 2 0]lax,|=~|=1
0 0 2][Ax;] -2

are solved for Ax(? to give

[0
AXO =172
[ 1

Again as shown in Example 5-3, the inequality of Broyden’s method (see
procedure 2, Chap. 4) is satisfied by taking s‘® = 1. Thus, as in Example 5-3

1
xM = xO 4 AxO = [3/2]
2
and as in Example 5-§

P 0
i fi=fM=|r|= 1/4
(1) 1
3
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i=1,
gl=[2 0 0]

The known constants of g are the two zeros. (These elements will

have the value zero for any choice of x.) Then the element 1/2 and 1 of
Ax'® are replaced by zeros to give

0
Ax{® =10
0

Since Ax{®" Ax\”’ = 0, the denominator of the corrective term is zero.
To avoid this division by zero, set the correction term of Eq. (5-37)
equal to zero to give

gi'=[2 0 0]

Since the first and third elements of g’ are known to be zero for all

choices of x, the corresponding elements of Ax'? are set equal to zero

to give
0
AxY =172
0

Since 59 = 1, and ' = 1/4

(1 0)T
(0) fZ Ax2

(1/4)0 12 0]

(1) —

g: =8 +—_(1)Ax‘2°)r D =[0 2 0]+ 5
[0 12 0 1/2]
=0 2 0]+[0 1/2 0] 0
Thus
g =[0 52 0]
i=3

g =0 0 2]

0
AXQ =10
1
Since s =1, and f{' = 1

(1) A (O)T
S Ax§

(o o 1]
AXPT AXQ

0
) 1][0}
1

="+ =[0 0 2]+

=[0 0 2]+[0 0 1]
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Thus
g’=[0 o 3]

Since the rows of G are given by gV, gi¥) and g{", the required
numerical values are available for solving

G AxD = _q»
Namely
2 0 0} Ax, 0
0 52 Of| Ax,|=—]1/4
0 0 3]lAx; 1
Thus
0
AxV =1 -1/10
—-1/3
Try sV =1
1 0 1
xP = x4 AxV =32 | + —-1/10|1=| 1.4
2 —-1/3 1.67
Then

HEP) =0 f,(x?)=-004 f,(x?)= —021
and since the inequality of Broyden’s method
[(=004)* + (—021)°]"2 < [(1/4)* + (1)2]*"2

is satisfied, the x'?) obtained by use of s’ =1 is taken to be the assumed
value of x' for the next trial.

Example 5-5 was used by Gallun and Holland® to compare Broyden’s
method implemented with the new algorithm to the Newton-Raphson method
and to Schubert’s*! modification of Broyden’s method. The statement of this
example is given in Tabl .5-8 and the solution is presented in Table 5-9.

Solution of this exa%le as originally implemented by Broyden® would have
required an excessive améfint of computer time. The example is described by 452
Newton-Raphson equafions whose Jacobian matrix contains only 3532 nonzero
elements out of a possible 204,304. Of these 3532 nonzero elements, 798 are
known to be constants, generally 1 or —1 due to the linearity of the equations.
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Table 58 Statement of Example 5-5

leli FZX“ FSXJI'
Component (g mol/s) (g mol/s) (g mol/s)
Methyl alcohol 0 0.25 65.0
Acetone 0 0.50 250
Ethanol 0 50 50
Water 50 197.5 50

Other specifications

The column has a total condenser, 50 stages, F, enters on plate 4, F, on plate 6, and Fyon
plate 21. The column pressure is 760 mm. Feeds F,, F,, and F, enter with enthalpies
0.33993877 x 10*, 0.2853018 x 10%, and 0.08139422 cal/g mol, respectively. A reflux ratio
(L,/D) of 2.5 is to be used, and the bottoms is to be withdrawn at the rate of 285 Ib mol per
hour. The equilibrium and thermodynamic data to be used are the same as stated for
Example 5-3.

Table 5-9 Solution of Example 5-5

1. Final profiles, temperature, and vapor and liquid rates

T L, Ty L,
Plate  (°F) (Ib mol/h) (b mol/h)  Plate (°F) (Ib mol/h)  (Ib mol/h)
1 13426  ........... 58.13 26 154.61 78.21 36.32
2 136.11 81.38 56.32 27 154.61 78.21 36.32
3 139.12 79.57 53.77 28 154.61 78.21 36.32
4 144.65 77.02 56.31 29 154.61 78.21 36.32
S 152.70 74.56 52.30 30 154.61 78.21 36.32
6 169.06 70.55 25.66 31 154.61 78.21 36.32
7 169.33 71.58 25.66 32 154.61 78.21 36.32
8 169.50 71.60 25.66 33 154.61 78.21 36.32
9 169.62 71.61 25.66 34 154.61 78.21 36.32
10 169.72 71.61 25.66 35 153.62 78.21 36.32
11 169.81 71.61 25.66 36 154.62 78.21 36.32
12 169.92 71.61 25.66 37 154.62 78.21 36.32
13 170.05 71.61 25.66 38 154.62 78.21 36.32
14 170.23 71.60 25.66 39 154.62 78.21 36.32
15 170.45 71.60 25.66 40 154.63 78.21 36.32
16 170.70 71.60 25.66 41 154.65 78.20 36.32
17 17091 71.61 25.67 42 154.69 78.19 36.32
18 170.84 71.65 2568 43 154.77 78.17 36.31
19 169.96 71.78 25.68 44 15491 78.14 36.31
20 166.64 72.15 25.72 45 155.20 78.07 36.29
21 154.61 73.55 25.86 46 155.75 7794 36.27
22 154.61 78.21 36.32 47 156.77 77.71 36.23
23 154.61 78.21 36.32 48 158.63 77.32 36.17
24 154.61 78.21 36.32 49 16193 76.73 36.06
25 154.61 78.21 36.32 50 169.48 75.64 28.50

(Continued on page 206.)
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Table 5-9 (continued)

2. Product distribution

b, d;
Component (Ib mol/h) (Ib mol/h)
Methyl alcohol 0.8832228 x 10! 0.6516167 x 10%
Acetone 0.1936700 x 102 0.6133089 x 10
Ethanol 0.1895224 x 10 0.8104776 x 10
Water 0.1899549 x 10 0.2056004 x 10

Qc = 111,5040 Btu/h
« = 1262069 Btu/h

3. Comparison of the Broyden-Householder and the Schubert Algorithms

Jacobian
Method of
calcula-
tion of Final
deriva- Evalua- Factoriza- Itera- squared Execution
Method tives tions tion tions  norm time(s)t
Newton-Raphson  Analytical 14 13 13 72 x 10713 9.97
Newton-Raphson  Numerical 13 12 12 40 x 10! 59.94
Broyden-
Householder Analytical 4 4 51 197 x 1071 12.77
Broyden-
Householder Numerical § 5 56 1.16 x 10°° 3590
Schubert Analytical 1 37 37 891 x 1071° 2277
Schubert Numerical 1 34 34 240 x 1071 26.89

+ AMDAHL. FORTRAN H, OPT 2

5-4 THE BOSTON-SULLIVAN ALGORITHM?

This algorithm is based on the use of newly defined energy and volatility par-
ameters as the primary successive approximation variables, and Broyden’s
method is used to iterate on these parameters. A brief review of the Boston-
Sullivan Algorithm follows.

The component-material balances are formulated in a manner analogous to
that shown in Chap. 2 exgept for the fact that Boston and Sullivan? stated these
balances in terms of the gquid rates {I;;} rather than the vapor rates {v;;}. Tem-
peratures were computed®y use of a variation of the method wherein a different
base component is used for each plate as suggested by Billingsley.? Partial molar
enthalpies were also expressed in terms of the deviation function Q.
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A formulation of the model equations follows. The S;’s appearing in the
component-material balance for each stage j

i i = (U4 S+ 801,341, =0 (5-38)
may be stated in terms of the “S parameters” as follows
K,V
Sji= —iJ =8,5;r%;i (5-39)

j
where K;; = K;(P;, T, {x;i}, {vji}) (note the vapor- and liquid-phase activity
coefficients are contained in this definition of the vapor-liquid equi-
librium ratio)
Sj= K Vi/L;
Srj = S;/Ss, the relative S parameter
N 1N N
S, = (n Sj) , the base S parameter, where n S$;=84,8,...,8n.
ji=1 j=1
The relative volatility as used in this development is defined as follows
Kji(Pj’ T;, {xji}’ {Yﬁ}) = Kjb(Tj) ’ aji(Pj’ T;, {xji}’ {in}) (5-40)
Thus
Vi = Kjixji = 0;; Kjp x;; (5-41)
It follows as shown in Chap. 2 that

Kj=— (5-42)
.';1 i X,
and thus
Vi = _tai (5-43)
.';1 il
where

X1 / o (5-44)

The K value for the base component was taken to be an exponential function of
temperature as follows

]

In Kj,,=Aj—-?’. (5-45)
J

The vapo; enthalpies were expressed in terms of the enthalpy departure
function Q (see Chap. 14) as follows

Mn

H =

]

yilHi= Y y(H; + Q)= Y y;H; + Q (5-46)
i=1 i=1

1
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where Q = Q(P, T, {y}) and H; is the enthalpy of component i in the perfect gas
state at the temperature T. The enthalpy departure function was separated into a
composition correction term and a temperature-dependent term by introducing
new variables ®, and ®; as follows

P, T{y}}) = @, + (T - T*) (5-47)

The variables ®; and ®, are defined by
@7 = [P, T{y}) - QP, T* {yJ(T — T*) (5-48)
D, =Q*+ Q(P, T, {y}) - Q(P, T, {y}}) (5-49)

where Q* = Q(P, T*, {y*})
T* = reference temperature
{y¥} = reference set of mole fractions

Next the following set of variables was introduced
;= (H? — Hy)/(T - T,) (5-50)

where Hy; is the perfect gas enthalpy of component i evaluated at an arbitrary
reference temperature T,. Let the new variables " and © be defined as follows

0= Z Vi ®;
i=1 (5-51)
r=T-1,
The total vapor enthalpy may now be expressed as follows
H=TO +®,+ & —T*)+ Y y.H, (5-52)
i=1
The variable ® was partitioned into two factors O, and O, as follows
0=0,0, (5-53)

where @, is strongly dependent on vapor composition and @, is a weak function
of both vapor composition and temperature. These functions are defined as
follows

G‘)r = Z yri d)ri
i=1
0, = Z Vi @y
i=1
@y = lim @, (5-54)
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The enthalpy of the liquid phase was treated in a manner similar to that of
the vapor phase. In this case, the partial molar enthalpy h; is related to the excess

partial molar enthalpy as follows
* hj=h;+ hf (5-55)

where h; is the enthalpy of a pure component evaluated at P and T of the
mixture, and A} is the excess partial molar enthalpy. Next a new set of variables
was introduced. First, the variable ¢; is defined

¢i= (hi - h:i)/(T - n) (5'56)

where hg; is the liquid enthalpy evaluated at the temperature T,. Then the total
enthalpy per mole of liquid mixture is given by

h=TO + h* + Y xhp; (5-57)
where !
0= E xl¢l
i=1
h* =Y x;hf

The new variable 6 was partitioned in the same manner as ©, namely,

0=10,0,
where

Br = Z xri ¢rl
i=1

0, = Z X; Py
i=1

¢b| - hm ¢1
T—Tp

¢n‘ = ¢i/¢bi

(4
Xpi = Xi@pi Z X; P
i=1

The energy balance enclosing any interior stage j other than the feed plate or
plate above it is given by

< (3 < <

_lej— Ll t 'zn Virr, iljey,i — .lejihji - Z v;H;; =0 (5-58)
The results obtained above for vapor and liquid enthalpies together with other
equations including the total-material balance equations and the component-
material balance equations were substituted into Eq. (5-58) to obtain the follow-
ing form of the energy balance equations which were employed to calculate the
liquid phase rates for any stage j < f— 1.

(aj-y —aj)L;-y — (a; — a@j41)L; = (aj4, — aj_,)D (5-59)
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where
a;=T;0;+ hi — Ay;

aj=T;0;+ @, + (T; - T3},

l;j Z (H bi — hbl

The new variables ®,;, ®;, ©,;, 6,; and h® are referred to as the energy par-
ameters. Then parameters and the volatlhty parameters o;’s become the princi-
pal successive approximation variables of the algorithm. The following
calculational procedure was used.

Step 1. Assume values for the energy and volatility parameters, the Sj's {a;],
{(DTf}’ {(D,vi}'

Step 2. Solve the component material balances for the liquid rates {/;;}.

Step 3. Calculate the liquid mole fractions by use of Eq. (5-45).

Step 4. Calculate K,’s by use of Eq. (5-42) and the corresponding temperatures
by use of Eq. (5:45).

Step 5. Calculate the coefficients of the energy balance equations (4-59) and
solve for the total liquid rates. Then compute the vapor rates by use of total
material balances.

Step 6. Compute the Sg’s from the defining equation given beneath Eq. (5-39).
Compare these values with the last assumed values. If they do not agree
within an acceptable tolerance, assume a new set of values and return to step
2. A quasi-Newton method was used to find the new set of Sg’s.

Step 7. Calculate the vapor mole fractions by use of Eq. (5-43).

Step 8. Evaluate the equilibrium ratios and enthalpies.

Step 9. Update the energy and volatility parameters using the defining equa-
tions. If they do not agree within an acceptable tolerance, retain the updated
values and return to step 2.

Numerical examples solved by Boston and Sullivan® demonstrated that the
method is both fast and stable for all types of problems considered.

PROBLEMS

5-1 Show that the expression given by Eq. (5-21) for S, reduces to the one given by Eq. (5-12).
5-2 Show that the assumptions

Z aVJk) (Ldes1=0  (k=1,2,...,¢)

i=1
i= 1200y

)(”1().+1=0 (k=12...,¢)

amount to neglecting the dependency of the y5’s on the [;’s and the y};’s on the vy’s in the differentia-
tion of the functions {f} in the Newton-Raphson method. That is, show that the above assumptions
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are equivalent to carrying out the differentiation of the functions {f} as if the mixture formed an
ideal solution.
5-3 Show that the multiplications implied by Eq. (12) of App. 5-1 are represented by the algorithm
given above Eq. (14) of App. 5-1.
5-4 By Broyden’s method, the corrected jacobian J, , , is given by
i =d U G Py

Use Householder’s identity to show that

It =+ o, v P !
where v, , and a, , , are defined by Eqgs. (5) and (6) of App. 5-1.
5-5 (a) To illustrate the variety of choices of independent variables which may be made in the
Almost Band formulation of the Newton-Raphson equations, display the variables and functions for
the following formulations for absorbers: N(2c + 1), N(c + 1), and N(c + 2).

(b) For a conventional distillation column for which the two additional specifications are taken
to be the reflux rate L, and the bottoms rate L, display the variables and functions for the following
formulations: [N(2c + 1) + 2], N(2c + 2), [N(c + 1) + 2], and N(c + 2).

5-6 (a) Formulate the equations for the determination of the bubble-point temperature in terms of
¢ + 1 independent functions and the ¢ + 1 independent variables x = [y, y, == y. T]".

(b) Repeat part (a) for the determination of the dew-point temperature where the independent
variables are x = [x; x; -*- x. T]".

5-7 (a) Formulate the equations required to determine the solution of an isothermal flash problem
in terms of 2c independent functions and 2c independent variables x = [I, I, --- I, v, v, - v ]".

(b) Repeat part (a) for the case where the formulation is in terms ¢ independent functions and
the ¢ independent variables x = [I, I, --- 1]".

58 (a) Formulate the equations for an adiabatic flash of a highly nonideal solution in terms of
2¢ + 1 independent functions and the 2¢ + 1 independent variables

x=[v, v, r v by - 1 T]".

(b) Show that if the approximations given by Eqs. (5-9) through (5-11) are made, the enthalpy
balance functions may be treated in the same manner as those of an ideal solution in the differentia-
tion process.
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APPENDIX 5-1 DEVELOPMENT OF

THE BROYDEN-HOUSEHOLDER ALGORITHM

FOR SPARSE MATRICES [S. E. Gallun and C. D. Holland, Comput.
Chem. Eng., 4:93 (1980), by courtesy Comput. Chem. Eng.]

The Householder identity is given by

(A+WCZT) 1= A1 - A"'W(C™! + ZTA"'W) 1Z7TA"! (1)

where A is an n x n matrix, W and X are n x m matrices and C is an m x m
matrix. For the case where W and Z are vectors and C is a nonzero scalar,
Householder’s identity reduces to

(A+wez") = A"+ aA " 'wzTA™! (2)

where A is a square matrigw and z are conformable column vectors, and « is

the scalar given by

s -1
T () +2TAw
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If the vector v is defined by
Av=w
then Eq. (2) may be factored and written as
(A+wez") '=(1+avz)A™! 3)
where
-t
(1/c) +z'v

Equation (3) and the definition of a provide the basis for an algorithm to
efficiently solve the series of linear equations that arise during the implementa-
tion of Broyden’s method.

An expression for J;!,, where J,,, is defined by Eq.(5-29) may be
developed through the use of Eq. (3) as follows

Jii't = (L4 oy Var 1Pi+ M ! 4)
where
diViry =Wy )
s = ©
(1/cks 1) + Pi+ 1¥es 1
Since

Ji=Jdiq Hwepd ™

a similar expression can be developed for J; ! by replacing the subscript k + 1 in

Egs. (4) and (5) by k. Substitution of the expression so obtained for J; ! into
Eq. (4) gives

Jei't = (U4 os 1 View 1Pis )T+ o Vi P Wiy (®)

Clearly, the process may be repeated for J,!;, J. !5, ..., J7 ! to give

Tt = (U + ar Vi D )T + 0 vep) - (T+ oyvip{ 5! 9)

where I is the identity matrix and the definitions of a,, a,, ..., o, and v, v,, ...,
v are of the same form as the expressions given in Egs. (5) and (6), respectively.

Thus, if J, is sparse and a sparse factorization is available, Broyden’s
procedure can be implemented while effectively maintaining the sparsity of the
jacobian. The algorithm for effecting these calculations in an efficient manner is
developed as follows. Suppose that it is desired to solve

Jir1 Ay = —fiyy (10)
Since

AXp 4y =Jk_+ll(_fk+l) (11)
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post multiplication of the members of Eq. (9) by (—f,, ,) gives
Axpyy = (L + s 1Vir 1P I+ e viepe) - (I + ayvipi o H(—firr) (12)
Since it is supposed that an LU factorization of J, is available, the result in-
dicated by multiplication of Jg ' by (—f,, ) can be obtained by solving
Jow= —f,, (13)

for w. After w has been obtained, it is necessary to perform k + 1 matrix multi-
plications in order to obtain Ax,,,. The development of the algorithm is
simplified by first supposing that a;, v;, and p;. (j = 1, 2. ..., k + 1) are known
as well as the LU factorization of J,. Let « be the replacement operator. Then

(1) j=0
SOLVE Jyw= —f,,,
Q) DOj=1,2, .., k+1
B=opfw
wew+ fy;
() Axpy=w
Although it was assumed in the development of the above algorithm that o;
and v; (j=1, 2, ..., k + 1} were available, the values of these variables may be
developed in parallel with the solution of Eq. (10). First observe that when
Eq. (4) is post multiplied by (—fi, ), one obtains
Ay = (T4 oy Vir 1P Wi H(—Fivy) (14)
Now begin Eq. (12) and apply the above algorithm for j =0, 1, ..., k to obtain

Ay = (T4 04y 1 Vey (Pi+ 1 )W (15)
Upon comparison of Egs. (14) and (15), it is seen that
Jew= —f4, (16)

The development of a formula for v,,, in terms of J5! is initiated by first
solving Eq. (5) for v, , to give

Vi+1 =Jk-luk+1 (17)

Application of Householder’s formula to Eq. (7) permits Eq. (17) to be written
as follows

Virr = (L + o v p{N W4y (18)
Clearly, the process may be continued to give
Vier = (I + zkvk@(l + O 1 Vim 1Pi-1) 0 (U o vip{No tugy (19)
If z is defined by i
Joz=1u4, (20j
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it is seen by comparison of Eqs. (12) and (19) that an algorithm for the calcula-
tion of v, , of the same form as that shown above for Ax,,, exists, and that z
has the same role in the algorithm for the calculation of v,, , as w has in the
algorithm for the calculation of Ax,, ;. From the above equations, it is seen that
the algorithm presented in the text is appropriate for the solution of Eq. (10)
with simultaneous development of the vector v, and the scalar «,, ,.



CHAPTER

SIX

SYSTEMS OF AZEOTROPIC AND
EXTRACTIVE DISTILLATION COLUMNS

Azeotropic and extractive distillation are old processes which have become
widely used since about 1930. In 1908 Emile Guillaume patented an extractive
distillation process for the removal of fusel oil from fermentation alcohol.!® The
name “extractive distillation” is said to have been introduced by Dunn et al.®

Azeotropic and extractive distillation columns are examples of columns in
the service of separating highly nonideal solutions. Algorithms for solving prob-
lems involving highly nonideal solutions are described in Chap. 5. Azeotropic
and extractive distillation are the names given to processes in which advantage is
taken of the nonideal behavior exhibited by certain mixtures in the presence of
selected solvents. In Sec. 6-1, the qualitative aspects of azeotropic and extractive
distillation are presented. In Sec. 6-2, several topics are presented which include
the quantitative behavior of solvents, three-phase mixtures, and the solution of
systems of interconnected columns. In the first of two methods proposed for
systems of columns. a *column modular ” method is presented in which the sets
of equations for each column are solved sequentially. In the second procedure,
called the “system modular method,” the complete sct of equations for the
system are solved simultaneously.

6-1 QUALITATIVE CHARACTERISTICS OF AZEOTROPIC
AND EXTRACTIVE DISTILLATION PROCESSES

because many very close iling mixtures may be separated economically by use
of these techniques. The Separation of such mixtures by conventional distillation
methods is usually uneconomical because of the large number of stages which
would be required to effect such separations.

Applications of azeotropi%and extractive distillation have continued to expand

216
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Because of the tendency toward nonideal behavior of mixtures, it is generally
possible to find some component which when added to a given mixture will
increase the difference between the volatilities of the light and heavy key com-
ponents to be separated. The component or material added to the mixture to be
separated is called the solvent. When the solvent added to the mixture is with-
drawn from the column, usually in the distillate, as an azeotrope with one or
both of the key components, the separation process is called azeotropic distilla-
tion. The name azeotropic distillation has also sometimes been given to
processes where no azeotrope is formed and the solvent is withdrawn almost
exclusively in the distillate.

When the solvent added to ‘the mixture is withdrawn almost exclusively in
the bottom product without forming an azeotrope, the process is called extrac-
tive distillation.

Behavior of Solvents

An effective solvent for an extractive distillation is one which is attracted to one
or more of the components. This attraction of the solvent for these components
reduces the volatility of the solvent as well as the volatilities of the components
to which it is attracted. It is desirable that the attraction occur in the natural
direction, that is, that the solvent be attracted to the relatively heavy compo-
nents. However, this is not a necessary condition for the behavior of the solvent.
Many separations are carried out in which one of the relatively light components
is attracted by the solvent and removed in the bottom product with the solvent.
A variety of theories have been advanced for .the roles of the solvent in
azeotropic and extractive distillation. In the case of extractive distillation, attrac-
tion of the solvent for the certain components of the mixture is commonly
attributed to one or more or a combination of the following phenomenon:
(1) hydrogen bonding, (2) polar characteristics of the solvent and members of
the mixture, (3) the formation of weak unstable chemical complexes, (4) chemi-
cal reactions between the solvent'and one or more of the components of the
mixture. A more complete statement of theories has been summarized by Berg.?
In the case of azeotropic distillation, the solvent should have the capacity to
reduce the tendency of attraction between molecules. For example, a nonpolar
solvent may be added to a mixture of poiar molecules in order to increase the
volatilities of the more polar compounds relative to the less polar conipounds.
Although any one theory does not sufficiently explain all applications of
azeotropic and extractive distillation, the theories do provide qualitative rules
for the selection of solvents. The role of polarity has been elucidated by Hopkins
and Fritsch'” who described the use of products obtained by oxidation of
selected hydrocarbons. Because of the dissimilarities in molecular structure, the
oxidation products can be arranged in the order of increasing polarity,* !’
namely, esters, oxides, aldehydes, ketones, acetals, and alcohols. In any class of
compounds, the polarity is inversely proportional to the molecular weight, the
polarity of straight-chain molecules is greater than that of branched-chain struc-
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tures, and olefinic compounds are more polar than their corresponding paraffin
derivatives.

Separation of Hydrocarbon Oxidation Products
by Azeotropic and Extractive Distillation

The products obtained by the oxidation of hydrocarbons have small differences
in boiling points. Typical oxidation products are shown in Table 6-1. Straight
fractionation to recover a pure product from one of these groups is uneconomi-
cal because too many plates would be required.

One hydrocarbon reaction product produced by Celanese contains over
forty components which are capable of forming more than fifty binary azeo-
tropes with each other.!” Several ternary azeotropes are also known to exist.
Azeotropes of eleven of the oxidation products are listed in Table 6-2. An ex-
amination of Table 6-2 shows that the separation of any one product from the
mixture of eleven components would be most difficult to effect by straight
fractionation.

If the solvent is highly polar, the volatility of the more polar compound is
lowered and it is withdrawn with the solvent from the bottom of the column.
The less polar compound is recovered in the top product. If a nonpolar com-
pound is added, the volatility of the more polar compounds may be increased in
some instances enough to permit the component with the higher polarity to be
removed as an overhead product.!’

Separation of Acetone and Methanol

The use of a polar and a nonpolar solvent to separate acetone and methanol
from a mixture of tetramethylene oxide and other oxides has been described by
Hopkins and Fritsch.!” A schematic drawing of this purification process is
shown in Fig. 6-1. The ternary azeotrope of acetone, methanol, and tetramethy-
lene, a cyclic ether. may be broken by an extractive distillation using the highly
polar solvent, water. The volatility of the methanol is lowered by the water to
such an extent that the azeotrope of acetone and tetramethylene oxide may be
distilled overhead in the extractive distillation column, and the methanol is
withdrawn with the water from the bottom of the column. A second column is
used to separate the azeotropic mixture of acetone and tetramethylene oxides by
use of the relative nonpolar solvent, pentane. An azeotrope of pentane and
acetone boiling at 32°C, is removed from the top of the column. The azeotrope is
broken by adding water which results in the formation of two phases, a pentane
phase and an acetone-water phase.

Purification of Methyl Eélyl Ketone

Another example presen‘fed by Hopkins and Fritsch!” consists of the use of
azeotropic and extractive distillation to recover part of the methyl ethyl ketone



SYSTEMS OF AZEOTROPIC AND EXTRACTIVE DISTILLATION COLUMNS 219

Table 6-1 Typical groups of oxidation
products of hydrocarbons [W. C. Hop-
kins and J. J. Fritsch, Chem. Eng.
51(8):361  (1955), by  courtesy
McGraw-Hill Book Company.]

Normal boiling

Compound point °C
Propionaldehyde 48.8
Acrolein 525
Ethyl acetate 771
Methyl propionate 79.7
Allyl alcohol 96.6
n-Propyl alcohol 97.8
sec-butyl alcohol 99.5

Table 6-2 Boiling points of selected oxygenated
chemicals and their binary azeotropes [L. H. Hors-
ley, Azeotropic Data, by courtesy American Chemi-
cal Society, Washington, D.C., 1952]

Normal boiling

Pure compound or binary azeotrope point, °C
Acetone, methyl alcohol 55.5
Acetone 56.5
Methyl alcohol, methyl ethyl ketone 63.5
Methyl alcohol 64.7
Methyl ethyl ketone, water 73.4
Ethyl alcohol, methyl ethyl ketone 75.7
Methyl ethyl ketone, isopropyl alcohol 779
Ethyl alcohol, water 78.2
Ethyl alcohol 78.4
Methyl ethyl ketone, tert-butyl alcohol 78.7
Methyl ethyl ketone 79.6
tert-butyl alcohol, water 69.9
Isopropyl alcohol, water 80.3
Isopropyl alcohol 825
tert-butyl alcohol 829
n-propyl alcohol, water 87.0
sec-butyl alcohol, water 875
Isobutyl alcohol, water 89.8
Water, n-butyl alcohol 92.7
n-propyl alcohol 99.5
sec-butyl alcohol 99.5
Water 100.0
Isobutyl alcohol 108.0

n-butyl alcohol 117.5
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Figure 6-1 Separation of a mixture containing acetone and methyl alcohol by azeotropic and extrac-
tive distillation. [W. C. Hopkins and J. J. Fritsch, Chem. Eng. 51(8):361 (1955), by courtesy McGraw-
Hill Book Company.]
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Figure 6-2 Purification of methyl ethyl keytone by azeotropic and extractive distillation. [w. C.

Hopkins and J. J. Fritsch. Chem. Eng. 51(8):361 (1955), by courtesy McGraw-Hill Book Company.]
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from a stream which also contained methyl-tetrahydrofuran, formals, acetals,
and oxide impurities. The sequence of steps is shown in Fig. 6-2. All but a small
portion of the oxide impurities are removed by azeotropic distillation. The azeo-
trope is taken overhead at 65°C. In the second column, the solvent is separated
from the remaining components by water extraction. The remaining impurities
are separated from the methyl ethyl ketone by a water extractive distillation with
a water concentration on the trays of approximately 60 percent by weight. The
polar solvent, water, reduces the volatilities of the acetals, and the azeotrope of
methyl ketone and water is removed overhead.?® The overhead, methyl ethyl
ketone and water, is then dried by pentane extraction.

Separation of Ethanol and Water

An early application of azeotropic distillation was proposed by Guinot and
Clark'" for the separation of ethanol and water by the use of benzene as the
solvent. This process is based on the fact that benzene forms a ternary azeotrope
with ethanol and water, which has a higher ratio of water to ethanol than does
the ethanol-water azeotrope. In the first column, shown in Fig. 6-3, an azeotro-
pic distillation is carried out. A two-phase liquid separation at 20°C in the
decanter is used to concentrate the benzene in the reflux to the first column.
The solvent benzene is recovered in the second column and water is removed in
the third column.
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5.1 % CCNG

] 56% ETOH
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Figure 6-3 Azeotropic separation of ethanol and water by use of a benzene solyénffH. Guinot @
W. Clark, Trans. Inst. Chem. Eng. (London) 16: 187 (1938), by courtesy T| Lpdtitute of Chemi

Engineers (London).]
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Solvents for Hydrocarbon Separations

The high demand for relatively pure butadiene and toluene at the outbreak of
World War II was met through the use of azeotropic distillation. Nitration grade
toluene was needed for the production of explosives and butadiene was needed
for the production of synthetic rubber. As a result of the need for these chemi-
cals, azeotropic and extractive distillation became large-scale industrial
processes.

An enumeration of some of the specifications which must be met by an
efficient solvent follows. Obviously, the solvent should be noncorrosive to the
equipment and should not react with the feed to form undesired products. It
should produce a sufficient change in the volatilities of the components to be
separated so that these components may be separated with a reasonable number
of plates at an economical reflux ratio. The solvent should have an appropriate
boiling point relative to the components of the feed to be separated. An azeotro-
pic solvent should have a volatility near the major component desired in the
overhead product and an extractive solvent should have a volatility lower than
the major component to be withdrawn in the bottom product. The solvent
should not be toxic, and it should be available in sufficient quantities at a
reasonable price.

Azeotropic Separation of Butadiene from
a Mixture of the C, Hydrocarbons by Use of Ammonia

One of the first processes employed to separate butadiene from a C, hydrocar-
bon stream was an azeotropic distillation which used liquid ammonia as the
solvent. A description of this process has been presented by Poffenberger et al. 24
who also gave a typical analysis of the C, stream together with the boiling
points of hydrocarbons and their azeotropes. Other solvents such as furfural and
acetonitrile are presently employed to effect this separation.!?

Other Extractive and Azeotropic Separations

Many solvents have beer: investigated for the separation of toluene and other
aromatics from paraffinic mixtures. Dunn et al., among others, have presented
lists of possible solvents. The use of phenol for the extraction of toluene has been
described by Dunn et al.® A solvent-to-feed ratio of approximately 3 to 1 was
used. The first commercial plant for the recovery of nitration grade toluene by
phenol extraction was constructed and put into operation in 1940 at the
Houston Refinery of Shel%Oil Company, Inc.® Because of the emergencies which
existed at that time. it w@$ necessary to go directly from the laboratory to the
full-scale plant. e

The production of butadiene from a butane feed generally requires a feed
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purification process which involves the separation of the butenes from the bu-
tanes. Atkins and Boyer' have described a process in which the separation of the
butenes from the butanes was carried out by use of extractive distillation with a
mixture of 85 percent acetone and 15 percent water as the solvent. A solvent-to-
feed ratio of 0.85 was used.

Separation of Azeotropes by Fractionation

The formation of azeotropes in azeotropic distillation calls for a discussion of
some of the techniques which may be employed in the separation of such mix-
tures. If the azeotropic composition is sensitive to the variation of the total
pressure, homogeneous azeotropes may be separated by use of a two-column
fractionation scheme as described by Van Winkle,2® among others.

SEPARATION OF MINIMUM-BOILING HOMOGENEOUS AZEOTROPES

Suppose that the boiling-point diagrams for two different total pressures are as
shown in Fig. 6-4. Such an azeotrope may be separated by use of two columns as
shown in Fig. 6-5. The feed (X, = 0.3) is introduced to the second column at the
higher pressure P,. The bottom product contains a relatively pure component B
and the top product consists of the minimum-boiling azeotrope X, 4=08 and
X p. 5= 0.2. The distillate is fed to the first column which is operated at the total
pressure of P;. This column produces a bottom product which is relatively pure
in A. The top product is essentially the azeotropic composition at P,
(Xp.4=06 and X, ,=04), and thus it is added to the feed to the second
column.

SEPARATION OF MAXIMUM-BOILING HOMOGENEOUS AZEOTROPES

The separation of these azeotropes may be effected, if they are sensitive to a
change in the total pressure, in a manner similar to that described above for
minimum-boiling azeotropes. Suppose that the boiling-point diagrams at the
pressures Py and P, are as shown in Fig. 6-6. Then the separation may be
effected by use of two columns as shown in Fig. 6-7.

SEPARATION OF HETEROGENEOUS AZEOTROPES

If the feed is in the two-phase region, the two phases may be separated and fed
to each of two columns. Suppose that the boiling-point diagram for a mixture of
components A and B is as shown in Fig. 6-8. The feed is introduced to the
separator shown in Fig. 6-9 which operates at the temperature T,. Phase I is
then fed to column 1 and phase II to column 2. The bottom products of columns
1 and 2 are relatively pure B and A, respectively. The distillate compositions are
approximately those of the azeotrope, and consequently the distillates are fed to
the separator.
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Figure 6-4 Boiling-point diagrams for a minimum-boiling homogeneous azeotrope which is sensitive
to a change in the total pressure. (M. Van Winkle, Distillation, 1967, by courtesy McGraw-Hill Book
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Figure 6-5 Use of two column;ftd separate a minimum-boiling homogeneous azeotrope which is
sensitive to a change in total pressure. (M. Van Winkle, Distillation, 1967, by courtesy McGraw-Hill
Book Company.)
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Figure 6-6 Boiling-point diagrams for a maximum-boiling azeotrope which is sensitive to a change
in the total pressure. (M. Van Winkle, Distillation, 1967, by courtesy McGraw-Hill Book Company.)
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Figure 6-7 Use of two columns to separate a maximum-boiling homogeneous azeotrope which is
pressure sensitive. (M. Van Winkle, Distillation, 1967, by courtesy McGraw-Hill Book Company.)
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Figure 6-8 Boiling-point diagram for a heterogeneous minimum-boiling azeotrope. (M. Van Winkle,
Distillation, 1967, by courtesy McGraw-Hill Book Company.)
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Figure 6-9 Use of a two-column system to separate a heterogeneous minimum-boiling azeotrope.
(M. Van Winkle, Distillation. 1967, by courtesy McGraw-Hill Book Company.)
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6-2 SOLUTION OF PROBLEMS INVOLVING
SINGLE COLUMNS USED TO EFFECT AZEOTROPIC
AND EXTRACTIVE DISTILLATIONS

Prior to the treatment of systems of azeotropic and extractive distillation col-
umns, two other topics are considered, namely, the quantitative description of
the behavior of solvents and the solution of problems involving columns in
which three phases exist in the accumulator.

A Quantitative Description of the Behavior of Solvents

The behavior of solvents in the vapor and liquid phases which form nonideal
solutions are described by the same set of expressions as those given by
Eq. (5-1). Further insight into the behavior of solvents in azeotropic and extrac-
tive distillation may be gained by the reconsideration of the first expression of
Eq. (5-1), which may be restated in the following form
L
7 Kix;
i v (6’1)
li
where
L
K= .f—
If a mixture behaves as an ideal solution in the vapor phase y} = 1 for all i, and
if it also behaves as an ideal solution in the liquid phase y/ =1 for all i, then
Eq. (6-1) reduces to

yi = Kix; (6-2)

Azeotropic and extractive distillation are made possible by the unique varia-
tions of the activity coefficients when a solvent is added to the mixture. A
measure of the effect of a given solvent on two components may be expressed in
terms of their volatility ratio. Let the volatility of component i be defined by
y:/x;. Then the volatility of component i relative to any component b (or the
relative volatility a; of component i relative to component b) is given by

VilXi Y.'LK.'/}’.'V
=== 6-3
Vo /Xe )’{;Kb/}’t‘: 63

In many systems, the vapor phase exhibits ideal behavior and Eq. (6-3)
reduces to

Yo/ V5K
If equations of state are available for estimating the effect of a solvent on the y’s,

then Eg.(6-4) can be used in the screening of solvents for a given
Separation.z' 6,13,23,27,29

X LK.
o = yl/xl Vi Kl (6-4)
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Almost Band Algorithms for Single Columns
in the Service of Azeotropic and Extractive Distillations

The Almost Band Algorithm presented in Chap. 5 may be used to describe a
single column in which either an azeotropic or extractive distillation is carried
out provided that the accumulator contains only one liquid phase and one vapor
phase. In many azeotropic distillation columns, the accumulator contains two
liquid phases and one vapor phase. In order to describe a column whose accu-
mulator contains three phases, the Almost Band Algorithms presented in
Chap. 5 must be modified. To illustrate the modifications of the Almost Band
Algorithm which are required in order to describe a column having three phases
in the accumulator, the [N(2c + 1) + 2] formulation of the Almost Band Algor-
ithm for a column with a two-phase partial condenser is selected as the base
case. Then the modifications required to describe a three-phase partial condenser
are presented.

As shown in Chap. S, for the case where L, and Ly are taken to be fixed (or
specified), the [N(2c + 1) + 2] functions of the Almost Band Algorithm are as
follows .

f=[s, (f;l i Sive m;  m; - mj, Gj)j=1,.v Sal" (5-14)

The functions S, and S are given by Egs. (5-12) and (5-13). The equilibrium
functions and the material balance functions are of the same general form as
those given by Egs. (5-1) and (5-2). The enthalpy balance functions are given by
Egs. (5-4) and (5-17).

The [N(2c + 1) + 2] independent variables are given by

x=[0¢ (I, g vy Vi2 " Ve Tia v Qul” (5-15)
In the above listing of the variables, v; has been used to denote d,.

Columns Having Two Liquid Phases in the Accumulator

A sketch of the condenser-accumulator section for the general case where two
liquid phases and one vapor phase are formed in the accumulator is shown in
Fig. 6-10. The functions and variables selected depend upon the particular set of
specifications made on the column. Three cases are considered. All of the
specifications are the same for each case except for the specification of the type
of condenser (partial or total) and the “product specifications ” such as L, and
Ly or Q. and Q. In addition to these two specifications, the fractions « and f§ of
the liquid streams withdrawn from the system may be specified. Generally, « and
B are set equal to 0 or 1 such that one phase is returned to the column as reflux
and the other phase is withdrawn as a product.

CASE 1. SPECIFICATION OF Qc¢y Qrs % B, AND A PARTIAL CONDENSER

Except for the first stage, the equations are of the same general form
presented above. The equilibrium relationships needed to describe the two
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(-aL} + (1-B)13
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