


M A R C E L  

MARCEL  DEKKER,  INC. 

D E K K E R  

NEW YORK BASEL 



rar-y of ~ o n ~ r e s s  ~atalo~in~-in-Publi~ation 
Polymer  viscoelasticity : stress and strain in practice / Evaristo 

Riande . . . [et  al.]. 
p. cm. - (Plastics  engineering : 55) 

Includes bibliographical references and index. 
ISBN  0-8247-7904-5 (alk. paper) 
1.  Polymers-Viscosity.  2.  Viscoelasticity. I.  Riande, 

Evaristo. 11. Series:  Plastics  engineering  (Marcel Dekker, Inc.); 
55. 
TA455.PBP694 2000 
620.1  '9204232-dc21 99-40874 

CIP 

This book is printed  on acid-free paper. 

Marcel Dekker, Inc. 
270 Madison Avenue, New York, NY 1001 6 
tel:  212-696-9000;  fax: 21  2-685-4540 

emis~~ere  ~istribu~on 
Marcel  Dekker AC 
Hutgasse 4, Postfach 8 12,  Ch-4001  Basel,  Switzerland 
tel:  41-61-261-8482;  fax:  41-61-261-8896 

The publisher  offers discounts  on this book when ordered in  bulk quantities. For 
more  information, write to Special Sales/Professional  Marketing at the  headquarters 
address  above. 

Neither this book  nor  any  part may  be  retrieved or  transmitted in  any form  or by any 
means,  electronic or mechanical,  including photocopying, microfilming, and 
recording, or by any  information  storage  and retrieval  system, without permission 
in  writing from  the publisher. 

Current  printing (last  digit): 
l 0 9 8 7 6 5 4 3 2 1  



This book is concerned mainly  with the study of the viscoelastic  response Of 
isotropic macro~olecular systems to mechanical force fields.  Owing to 
diverse  influences on the viscoelastic behavior in multiphase systems  (e.g., 
changes in morphology and interfaces by action of the force fields, interac- 
tions between  phases, etc.), it is difficult to relate the measured rheological 
functions to the intrinsic physical properties of the systems and, as a result, 
the viscoelastic behavior of  polymer  blends and liquid crystals is not 
addressed in this book. 

We have approached the subject  in  such a way that the book will  meet 
the require~ents of the beginner in the study of viscoelastic properties of 
polymers as well as those of the experienced worker in other type  of materi- 
als. With this in mind, Chapters 1 and 2 are introductory and discuss aspects 
related to chemical  diversity, topology, molecular heterodispersity, and 
states of aggregation of  polymers  (glassy, crystalline, and rubbery states) 
to familiarize those who are  not acquainted with  polymers  with molecular 
parameters that condition the marked viscoelastic behavior of  these materi- 
als. Chapters I and 2 also discuss  melting  processes and glass transition, and 
factors affecting them. 

Owing to the coil conformation of molecular chains, polymers above 
the glass-transition te~perature exhibit high entropic elasticity. Chapter 3 
discusses,  using thermodynamic approaches, the relationship between stress 
and entropic elasticity in rubbery networks. The equation of state between 
stress and defor~ation in rubber elasticity  is established through random- 
flight statistics. Swelling methods are described that enable infomation  to 
be obtained on the topology of the networks, Vulcanizing  systems, additives 

iii 
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(antioxidants, softeners and plasticizers,  reinforcers), and applications are 
reviewed, as are elastomeric materials and thermoplastic elastomers  com- 
mercially available. Chapter 3 also provides a summary of  some  aspects 
related to rubbers of interest in engineering. 

Chapter 4 outlines operations of  symmetry  on  ideal  solids that show 
how the number of independent  components of the modulus tensor 
diminishes as the number of symmetry  elements in the solid  increases. 
This analysis  leads to the formulation of the generalized  ooke’s  law  utiliz- 
ing both elastic modulus  and elastic complia~ces for am  hous solid mate- 
rials.  These re~ationships, conveniently  modified, are further used  in 
viscoelasticity. In this chapter the generalized  law  of  Newton for ideal 
liquids  is  also stated. 

Chapters 5 and 6 discuss  how the mechanical characteristics of a mate- 
rial  (solid, liquid, or viscoelastic) can be  defined  by comparing the mean 
relaxation time and the time  scale  of both creep and relaxation experiments, 
in  which the transient creep  compliance function and the transient relaxa- 
tion modulus for viscoelastic materials can be determined. These chapters 

oltzmann superposition principle can be applied to predict 
the evolution of either the deformation or the stress for c 
discontinuo~s mechanical  histories  in  linear  viscoelasticity. 
relationships between transient compliance functions and transient relaxa- 
tion moduli are obtained, and interrelations between  viscoelastic functions 
in the time and frequency domains are given. 

xperimental methods to measure the viscoelastic functions in the time 
quency domain are described  in Chapter 7. 
thermorheolo~cal simple  systems, the time-tem~erature correspon- 

dence  principle holds. Chapter 8 gives  examples  of  isotherrns for compliance 
functions and relaxation moduli. The shift factors are expressed  in  terrns  of 
terminal viscoelastic parameters, and the temperature dependence of the 

ctors is interpreted in  terms of the free  volume and the ua- 
he chapter outlines methods for determining the mole ght 

entanglements, and analyzes the in~uence of diluents and plastici- 
zers on the viscoelastic functions. 

Chapter 9 examines transient and nontransient viscoelastic functions in 
terms of the retardation times  (compliance functions) and relaxation times 

axation moduli) and  compares retardation and relaxation times. 
thods to determine retardation and relaxation spectra from c o ~ ~ l i a ~ ~ e  

functions and relaxation spectra, respectively, are presented. 
echanical  models that represent the evolution of the viscoelastic  func- 

tions in the time and frequency domain are described  in Chapter 10. Chapter 
11 discusses  experimental  scaling  laws for viscosity, equilib~um recovery 
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compliance, and terminal relaxation times in terms of molecular models 
(spring-bead and reptation theories). 

In the glassy state, long-range motions are frozen and only  local 
motions are p e ~ i t t e d .  The viscoelastic behavior of  polymers in the glassy 
state is  discussed  in 2, with emphasis on the mechanisms that 
could produce the sub- elaxations. The glass-rubber relaxation is 
discussed  in terms of the equation. Aging  effects on the glass rubber 
relaxation are analyz as the effect  of  crystalline entities on the 
relaxation viscoelastic behavior of se~icrystalline polymers. 

The stress in  viscoelastic liquids at steady-state conditions is  defined,  in 
simple shear flow,  by the shear rate  and two normal stress differences. 
Chapter 13  reviews the evolution of both the normal stress differenc~s 
and the viscosity  with increasing shear rate  for different 

e~iquantitative approaches are used  in  which the critical shear rate at 
which the viscosity starts  to  drop in non-~ewtonian fluids  is  estimate^. 
The effects  of shear rate, concentration, and temperature on die  swell are 
qualitatively analyzed, and some  basic aspects of the elongational flow are 
discussed. This process is  useful to understand, at least qualitatively, the 
rheological fundamentals of  polymer  processing. 

As strain increases, the stress-strain isochrones deviate 
and some phenomena arise in polymeric materials in bulk. 
plastic material, permanent or irreversible changes occur 
stress,  defined as yield  stress.  ecause thermoplastics and thermosets in 
engineering applications fail b yielding-that  is,  by the onset of plastic 
defor~ation-plastic deformation is  closely associated with the technolo 
of  polymers. Chapter 14 presents an overview  of  yielding and deformation 
behavior in  polymers. Theoretical approaches that have  been  developed to 
account for yield strength are outlined in this chapter. Polymers can fail in 
many other ways. Chapter 14 also discusses the analysis of the stress-strain 
curves  of  polymeric materials and enables their classification as brittle or 
ductile materials as well as establishing testing conditions for the ductile- 
brittle transition. The processes that take place  when a polymer  is f r a c t u r ~ ~  
are described, as  are crazing phenomena, characteristics of thermoplastic 
polymers. Crazing represents an intermediate state between  microscopic 
fracture and yielding, and it is often a precursor to brittle fracture, 
Finally, the impact strength and fatigue are examined. 

Among the main disadvantages of  using  polymers as structural compo- 
nents in engineering are their low  stiffness and strength. To improve these 
properties, reinforced  polymers or polymeric matrix composites are pre- 
pared. Chapter 15 provides an overview  of  these materials, mainly fiber- 
reinforced composites since  they exhibit the best  mechanical properties. 
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The methods utilized to measure the viscoelastic functions are often 
close to the stress patterns occurring in certain conditions of  use  of  poly- 
meric materials. Consequently, information of  technological importance can 
be obtained from knowledge  of  these functions. Even the sokcalled ultimate 
properties imply  molecular  mechanisms that  are closely related to those 
involved in viscoelastic behavior. Chapters 16 and 1’7 deal with the stress- 
strain multiaxial problems in viscoelasticity. ~pplication of the boundary 
problems for engineer in^ applications is made on the basis  of the integral 
and differential constitutive stress-strain relationships. Several problems of 
the classical theory of elasticity are revisited as viscoelastic problems. Two 
special  cases that  are of  special interest from the experimental point of  view 
are studied: viscoelastic  beams in flexion and viscoelastic rods in torsion. 

Each chapter includes problem sets that we hope will facilitate the 
understanding of the subjects  discussed in the book for those who are  not 
familiar with the mechanical behavior of  polymeric materials. This book 
should be  used as a textbook in an under~raduate course of materials. 

Evaristo Riande 
Ricardo ~~az-Callejo 

Margarita G. Prolong0 
Rosa M. Masegosa 

Catalina Salom 
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The word polymer literally means “many parts.” A polymer  is a macromo- 
lecule that contains many groups of atoms, called monomeric units, that  are 
covalently bonded. The simplest hydrocarbon chain polymer  is  polyethy- 
lene,  with the general formula: 

obtained from the monomer ethylene, H2C= CH2. 
The number of ethylene monomeric units, n, can reach  values  between 

lo3 and lo6. For high molecular weight chains, teminal groups and d>2 
are present in low concentrations and will therefore have no effect on the 

l 



2 C h ~ ~ t e ~  I 

mechanical properties of the polymer. Terminal groups influence  mainly the 
chemical stability of the polymer. eating or irradiation can provoke the 

e polymer indicated above has a linear skeletal structure that can be 
represented by a chain with two ends. There are also polymers  with non- 
linear skeletal structures of the type  shown  in Figures 1.1 and 1.2. Nonlinear 
polymers are called branched polymers  when  they  have  side chains or 
branches of signi~cant length covalently  linked to the main chain. These 
polymers are characterized according to the number and size  of the 
branches. There are also nonlinear polymers, known as cross-linked  poly- 
mers or polymer networks, that have three-dimensional structures in which 
each chain is  linked to the others via a sequence  of  chemical bonds. 

The term ~ o ~ o ~ o Z y ~ e r  is  generally  used to describe the polymers whose 
chemical structure can be represented by the multiple repetition of a single 
type  of repeating unit, which can contain one or more kinds of monomeric 
units. The chemical structure of a polymer  is no r~a l ly  represented by pla- 
cing the repeating unit between square brackets. For example, the homo- 
polymer A - A - A - A - A - A - would  be represented by [A], , when YI 
is  the number of repeating units joined together to form the macromolecule. 
Tables 1. la, 1. 1 b show the chemical structures of  some common homopo- 
lymers, together with the monomers from which  they  derive. 

tion of  polymers  with unstable terminal groups, 

Side-branched polyethylene. 
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\ c-c-c-c-c 

\ 

W H  -c-c 

Cross-linked  polyethylene. 

The nomenclature of polymers  is somewhat complex, due in part  to the 
fact  that the majority of polymers have more than one correct name; more- 
over, in some  cases the registered trade names are also used to denote some 

he criterion  adopted here  is to use  names that most clearly and 
simply state  the chemical structures of the polymers. The polymers in Tables 
1. la  and 1. l b  have been  named  following the basic  rules of nomenclature. 
Thus, the prefix “poly” is  placed  before the name of the monomer,  and the 
name of the ~ o n o m e r  is  set  within parentheses unless it is a simple word. 
the case of repeating units  containing more than one monomer (examples  in 
Table 1.1 b), the words contained in parentheses after  the prefix “poly” must 
describe the chemical structure of the repeating unit. 

The tern copolyme~ is  used to describe  polymers  whose  molecules con- 
tain two or more different types of repeating units. There are various types 

ending on how the repeating units are organized along the 
y, we  will consider copolymers consisting of just 
, S t~ t i s t i c~ l  c o p o l y ~ e ~ s  are copolymers in which 

distribution sequence of the repeating units A, obey statistical laws. 
dom copolyme~s are a special  type of statistical polymer in which the 

distribution of the repeating units is random: 

-A 
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Addition Polymers 

Ethylene 

CHzzCH;, 

Propylene 

CHz=CH-  CH3 

Styrene 

CH;! =CH 
I 

Vinyl chloride 
CH2 = !H 

Cl 

Tetraf luoroethylene 

CF2 = CF2 

Acrylonitrile 
CH2 = fH 

CN 
ethyl  acrylate 

CH,= CH 
I 
COOCH, 

Methyl  methacrylate 

Polyethylene 

-(CH2-CH2)< 

Polypropylene 
-(CHz-fH In- 

CH3 
Polystyrene 

Poly  (vinyl  chloride) 
- (CH2-FH)n- 

Cl 

Poly (tet raf luoroet hylene) 

-(  CF2 - CF2)n- 

Polyacrylonitrile 

-(CH2- fH )R- 
CN 

Poly  (methyl  acrylate) 
-(CH,-  CH )n- 

COOCM3 
Poly  (methyl  methacrylate) 

CH,=C-CH=CH2  -(CH2-?=CH-CH2fn- 
I 
R R 

R=-H Polybutadiene 
R -CH3 Poly i soprene 
R =-cl Polychloroprene 
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Ethylene  glycol 

and 
Terephthalic  acid -( O-CH2-CH2-O- CO e C 0 ) ~  

Ho-CH2-cW2-oH Poly  (ethylene terephthalate) (PET) 

HOOC  COOH 

Hexamethylene diamine 

H2N-(CW~)6-NH2 H N - [ ( C H ~ ) ~ - N H - C O - ( C H Z ) , - C O ~ ~  
and X= 8 nylon 6.10 
Dicarboxylic acids X=4 nylon 6.6 

HOOC-(CH2)~-COOH 

Diol 
H 0 - R - O H  

and 
Dii  socyanate 

OCN -R'- NCO 

P o l y u r ~ t h a n ~  
- ( O - R - 0 - O C - N H -  R'-NH-CO),,- 

~ Z t e r ~ a t i ~ g  c u ~ u Z y ~ e r s  are those consisting of just two  types  of repeating 
units arranged alternately along the polymer chain: 

A-B-A-B-A-B-A-B 

The properties of statistical, random, and alternating copolymers generally 
are intermediate to those of the parent homopolymers. 

Block c u ~ u l y ~ e r s  are linear copolymers in which the repeating units 
appear in grou@ or blocks  of the same  type, thus: 

A-A-A-A-A-A-A-A-A-B-B-B-B-B-B-6- 

Graft c u ~ u Z y ~ e r s  are branched copolymers in  which the chemical struc- 
ture of the branches differs from that of the main chain. In their simplest 
form, they consist of long side chains of a second  polymer  chemically 
attached to the base  polymer: 

B-B-B-B- 
I 
B 
I 

A-A-A-A-A-A-A-A-A-A-A-A-A-A 
I 

B-B-B-B-B- 
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Unlike the copolymers described earlier, block and graft copolymers 
display characteristic properties of the constituent homopolymers though 
they also display certain unique properties that depend on the co~patibility 
of the components and their respective  glass transition temperatures. 

The principles  of nomenclature for copolymers are based on their struc- 
ture  and  are given in Table 1.2,  where A and represent the names 
of repeating units. For example, a statistical cop ymer  of  ethylene and 
propylene would  be  called  poly(ethy1ene at-propylene), and a triblock 
copolymer of styrene (A) sand isoprene would  be  called  polystyrene- 
bZoc~-polyisoprene-bZoc~-polystyrene. In e cases it is  necessary to in- 
troduce square brackets in the nomenclature to clarify the notation. Let 
us see an example:  An alternating Copolymer  of styrene and maleic 
anhydride would  be  called  poly[styrene-aZt(ma1eic anhydride)]. 

olymers are commonly  classified into three groups: thermoplastics, 
elastomers, and thermosets. This method of  classification is based on the 
thermomechanical properties of the polymers as a consequence  of their 
molecular structure. ~ ~ e r ~ o ~ ~ a s t i c s  are linear or branched polymers that 
become  fluid  when heat is applied. They can be  molded and transformed 
using  processing techniques such as injection molding and extrusion. 
Thermoplastics currently form the major proportion of  polymers  used in 
industry. Thermoplastics can be  classified into crystalline and amorphous. 
~ Z f f s t o ~ e ~ s  are cross-linked  polymers  with a low density of cross-linking 
points that can be  easily deformed, reaching extensions  of up  to ten times 
their original dimensions and rapidly recovering their original size  when the 
applied tension is  released. It is  precisely  because  of their network condition 
that they cannot flow, though they can recover their original dimension by 
the action of a recovering force of entropic origin  when the applied tension 
is  released. Thermostable polymers or t ~ e r ~ o s e t s  are rigid materials; their 
structure is that of  polymer networks or meshes in which the chain move- 
ments are severely restricted due to the high  density  of the cross-linking 

Nomenclature for Copolymers 

Type of copolymer Nomenclature 

Unspecified 
Statistical 
Random 
Alternating 
Block 

Crafta 
lock-poly A 



). As occurs with elastomers, thermosets cannot be trans- 
ned, nor  do they  flow under the action of heat; instead 
dation at high temperatures. 

he r e~~ i remen t  for monomer polymerization is that each monomer 
has to be  left  linked to  at least two other mon ers, and conse~uently, the 
monomer functionality has to be 2 or higher. ymerization  processes can 
be broadly divided into chain or addition poly ization and step polymer- 
ization (1-3). Chain polymerization involves the opening of double bon 
low  molecular  weight  molecules (monomers) to form a polymer chain 
example, styrene polymerizes to polystyrene. 

nCHZ==CH + -(CW2-CH)c 
I I 

~ o i y s t y r e n  
Chain pol~merization involves three stages: initiation, propagation, and 

termination. The most important of the chain polymeri~ation methods is 
free radical polym~rization, in which the initiation step occurs by an attack 
on the monomer molecule by a free radical. A free radical is a reactive 
molecule  possessing an unpaired electron and is  usually formed by the 
deco~~os i t i on  of a relatively unstable molecule  referred to as r. 
In particular, those compounds containing peroxide bonds, (- 
can produce free radicals by thermal decomposition, for example, 

* * 

0 0  0 
I I  11 11 

c-0-0-c 2@C-O* 

benzoyloxy 
radicals 

The free radical species react to open the double bond of the monomer 
and  add  to it: 

vinyl 
~ o n o ~ e r  

new free radica 
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Following the initiation reaction a large number of monomers are rapidly 
added to the  growing  species: 

H H .. 

I l 

0 X 0 X 

(?=&-f-O-CH2-C* I + nCW2=CHX “3- @t-0-(CH2-C*ln+, I 

.. 

I l 

0 X 0 X 

(?=&-f-O-CH2-C* I + nCW2=CHX “3- @t-0-(CH2-C*ln+, I 

This process  of propagation continues until the reactive center is 
destroyed in what is  called the termination stage. Termination occurs either 
by the combination of  two  growing radicals or by disproportion, in which a 
hydrogen is transferred from one chain to the other, forming inactive  poly- 
mer chains. Free radical polymerization is the most widely  used  process for 
the preparation of  polymers from monomers having the general structure 
CH2 = CR1 R2, such as vinyl  polymers,  acrylic  polymers, and methacrylic 
polymers (see Table 1. la). 

Step polymerization occurs by  successive reactions between functional 
groups of reactants. A typical  example  is the synthesis  of a polyester,  where 
each  of the two reactants possesses two reactive end groups (difunctional 
monomers): 

0 0 
II I I  

nHO-CH2-CH2- OH + nHO-C-(=&C-OH ”+ 

ethylene glycol terephthalic acid 
0 0 
II II 

H - [ O - C H 2 - C H 2 - O - C ~ ~ ] ~ O ~  + (2n-1) H20 

poly (ethylene  terephthalate) 

This polymerization process  is a polycondensation in  which the molecular 
weight  builds up slowly as the small  molecules  of water are eliminated. Most 
step polymerization processes are polycondensations; thus the terns “step 
polymerization” and “condensation polymerization” are often used  syno- 
nymously. The stepwise reaction leads successively from monomers to 
dimers, trimers, and so on, until finally  polymer  molecules are formed. 
The polymers obtained are classified  by taking into account the functional 
group of the repeating unit, for example,  polyesters (- CO - 0 -), poly- 
amides ( - CO - NH -), polyurethanes (- 0 - CO - NH -), 
polyethers ( - 0 -), and polycarbonates ( - 0 - CO -0 -). 

While linear polymers are synthesized from monomeric units with func- 
tionality 2, polymerization reaction of a mixture of monomers with  func- 
tionality 2 and higher than 2 gives  rise to cross-linked  polymers. For 
example, let us consider the case  of a polymerization reaction of polystyrene 
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to which has been  added a small percentage of divinylbenzene. Styrene is a 
monomer  with functionality 2. 

CH =CH, 
I 

However,  divinylbenzene  is  a  monomer  with functionality 4. 

During the course of the reaction, the divinylbenzene  will act as a cross- 
linking agent, and in the  structure of the polymer  obtained we  will find 
cross-linking points (cross-links) of the type 

-A-A- A-A-A-CH,- CH-A-A-A-A- 
I 

A-  A-A - CH- CH*-A-A-A- 

where  A represents the styrene monomer unit. As  can  be  seen  from the 
above  scheme, the divinylbenzene acts as a union bridge between the 
polystyrene chains, obtaining a cross-linked structure similar to  that 
shown in Figure 1.2.  Once the polymer  network  has  been obtained, the 
number of chains starting  from a monomer unit is the same as the func- 
tionality of the  starting monomer. The properties of the cross-linked poly- 
mer  depend on the number of cross-links existing in the network and on 
the length of the chains between cross-links. Thus, if there are many cross- 
links, the chains between  nodes are  short,  and consequently the mobility of 
the chains between cross-links will  be strongly reduced. The product 
obtained  in these circumstances is  known as a thermoset. A typical exam- 
ple  of a themoset is the phenolic resin  shown in Figure 1.3. This  resin  is 
obtained by reacting phenol (a trifunctional monomer)  with  formaldehyde 
(a bifunctional monomer). 

On the other  hand, if the cross-link density is  low (the length of the 
chains between cross-links is large) and  the mobility of the chains is high, the 
cross-linked material is  called an elastomer. An  example of a typical elasto- 
mer  is cis-1,4-polyisoprene (natural rubber), which, by means of a cross- 
linking reaction with sulfur (vulcanization), gives  rise to a network structure 
(see Fig. 1.4). 



Structure of a  phenolic resin. 

any properties of  polymers de  d  on their size,  which  is  expressed in 
e m s  of their molecular  weight, . For cross-linked  polymers  (polymer 

networks)? the only  significant  molecular  weight  is that  correspond 
the f r a ~ e n t s  of the polymer chains existing  between the cross-l 
points, since the molecular  weight  of the network  itself  is  essentially  infinite. 

he  molecular  weight of a homopolymer  is  related to the degree of 
poly~erization, a, which is defined as 
up the polymer chain. ~ o n s e ~ ~ e n t l y ,  

I 
3 

t 

I 
2 

I 

(a) cis- l ,4-~olyisopre~e (natural  rubber). (b) Cross-linking ~ e a c t ~ o ~  
with sulfur ( ~ ~ c a ~ i z a t i o n ) .  



weight  of the repeating unit. define the molecular  weight  of a copolymer, 
it is  necessary to know the S of the  product aMo for each type of repeat- 
ing unit. 

In general, polymers do not have a unique  molecular  weight  (in contrast 
with nonpo l~e r i c  substances). Instead, they  have a distribution of  molec- 
ular weights and therefore different intervals of ~ ~ 0 ,  which are known as 
fractions. ~onsequently, the distribution of  molecular  weights will  be dis- 
co~tinuous. Nevertheless, since, for most  polymers the changes in the inter- 
vals  corresponding to each fraction are very small in  comparison to  the  total 
interval of molecular  weigh , the ~istribution can  be  regarded as continu- 
ous, as shown in Figure 1 S .  he ordinate is  generally the weight fraction, wi, 
of  molecules  of  molecular  weight , but  it is appar  t  that  it might  be 
appropriate occasionally to plot the molar fraction.  e distribution of 
molecular  weights can be characteri~ed in terms of rent molecular 
weight  averages; these are defined taking into account the disconti~uous 
nature of the distribution in  which the omolecular fractions contain 
Nj molecules  of  molecular  weight ~i = 

The  two  most import molecular  weight averages are  the number- 
average  molecular  weight, 

n 

I 

Typical  molecular weight distribution of a polydisperse  polymer  sam- 
ple. 
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and  the weight-average molecular  weight, MW, 

where Nj is the number of  molecules  of  molecular  weight Mi and xi and wi 
are the molar fraction and weight fraction, respectively,  of  molecules  of 
molecular  weight Mi. Other averages are MZ and MZ+l given  by 

For distributions with a single  maximum, M, is  normally  close to the 
maximum. M ,  is  always greater than M,, except for monodisperse  samples 
where all molecules  have the same  molecular  weight and M-, = Mn. For 
simple distributions, MW) is  typically 1.5 or 2  times M,. The relative locations 
of the different weight averages are given  in Figure 1.5. The ratio ~ W / ~ n  is 
known as the polydispersity index and  must, by definition, be greater than l 
for a polydisperse polymer; it provides a measure of the width of the dis- 
tribution. It can be shown that the width of the number-average  molecular 
weight distribution, expressed as its standard deviation, is related to  the 
ratio M W / M ~  as follows  (see  Problem  1.2): 

The standard deviation of a weight-average molecular  weight distribu- 
tion can  be written as (see  Problem 1.2): 

For many polymers, a narrow distribution of molecular  weight leads to 
better properties than a wide distribution. 
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The properties of polymer materials do not  just depend  on their chemical 
composition and molecular  weight.  Their  molecular structure also has a 
marked  influence  on their physical properties. “Molecular structure” is 
understood to mean the arrangement of the atoms in the molecule. The 
term “configuration” refers to the organization of the atoms along the 
chain; to change a polymer configuration it is  necessary to break and re- 
form  chemical or primary bond (3).  On the other  hand,  the term “confor- 
mation” refers to the spatial arrangement of the atoms  and substituents of a 
polymer chain; different conformations are obtained  simply by rotation 
around the single  primary  bonds.  onf formational isomers can therefore 
be interconverted without  having to break  any  chemical bond in the 
chain. A polymer configuration is  defined  by the polymerization method, 
and  a polymer  preserves its configuration until  it reacts chemically.  The 
polymerization of asymmetrical  monomers can give  rise to head-to-tail, 
head-to-head, and tail-to-tail configurations along the chains. For poly(vi- 
nyl chloride), for example, the head-to-tail union leads to  the  structure 

“CH2-CH-CH,-CH-& 
l I 
Cl  Cl 

while the head-to-head  union  would give 

-CH~-CH-CH-cH2-- 
I I  
Cl Cl 

Due  to energetic and steric reasons, the head-to-tail union  is the pre- 
ferred structure.  In spite of this, radical addition polymers  always contain a 
small proportion of head-to-head unions. The properties of these isomers 
are considerably different; in particular,  the presence  of  head-to-head 
unions gives  rise to irregularities that make it difficult for polymer chains 
to crystallize. 

A wide  range  of  polymers are  obtained from the addition of conjugate 
diene  monomers, notably l ,3-butadiene, isoprene, and chloroprene: 

l,~-butadiene isoprene chloropren 

The addition of  successive  monomers can be  made to  the 1-2 bond; the 
polymerization is then called 1-2 addition  and forms chains with the con- 
figuration 



n the case  of 1,3-butadiene, 1-2 addition  and 3-4 addition  are equivalent, 
but  for isoprene and chloroprene, as is evident, 1-2 and 3-4 additions give 
different products.  The  third possibility is referred to as 1-4 addition  and 
produces chains with the configuration 

... CH2-CX=CH-CH~-~ 

he 1-4 addition can take the cis orientation, leaving the substituents on 
the same  side  of the double bond,  or  the  trans  orientation, leaving  them on 
opposite sides.  These isomers are known as geometric isomers 

n radical polym~rizations the 1-4 trans  addition usually predominates, 
This  is thought  to be  due to the fact that the monomers are generally  used in 

e  trans form and they ~ a i n t a i n  their configuration during  poly 
is  possible to favor 1-4  cis addition by  using ionic initiators. 

1-4  cis and 1-4 trans  addition polymers  can  be  crystallized  when  they are in 
state, differing from  each other in  having  very different melting 

ut if the macromolecule contains  both forms (random~y alternating 
), then crystallinity is inhibited. 

olymerization of monomers  with the chemical structure C 
, in which  one  of the  carbon  atoms carries two different substi 

an give  rise to three basic types of steric 
tions known as isotactic, syndiotactic, and atactic. 

nomer units (a dyad) of a polymer 
pending on  the relative positions 

, two stereochemical configurations can  be  defi 
qual substituents are located on the same  si 

sest in space, and racemic  dyads (r) if  they are located on opposite sides 
as far away  from  each other as possible. igure 1.6b shows the projec- 
tions of these configurations on  a plane. T ds (three consecutive mono- 
mer units) could  be in the configurations mm, rr,  or  mr, as shown in 

S are known as is0 ctic, syndiot~ctic, and hetero- 
he  fully  extended 

confor~ation ha C bonds of the 
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v x v x  v x x v  

m r 

W Y W Y  W Y H X  
I I I I  I I I I  

-C-C-C--C- 
I I I I  

-C-C--C--C- 
I I I I  

W X W X   W X W Y  

m r 

mm  mr rr 

(C 1 

Confi~urational sequences.  (a) Spatial representations of rneso (m) 
and racemic  (r) confi~urations. (b) Planar  projections of m and  r con~~ura t ions~  
(c) Isotactic (mm), heterotactic (mr), and  syndiotactic (rr) triads. 

chain gives  rise to  other conformations, without  modifying the steric 
configuration-isotactic, syndiotactic, or heterotactic. hen  meso config- 
urations predominate, a polymer  is said to be isotac 
mic con~gurations are  dominant,  it is  called syndiotacti 
polymers are  not  obtained in either wholly isotactic ( m ~ m m m  . . ) or 
wholly syndiotac~ic  (rrrrrr . . . ) configurations, so their degree  of stereo- 
regularity is  defined  by  giving the  proportion of triads  or dyads. 
stereochemi uences are determined by the use  of nuclear magnetic 
resonance ( 
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Polymers in which the chains show  meso and racemic  dyads at random 
are not stereoregular and  are known as atactic. In terms of the nomencla- 
ture, to specify  whether it is  predominantly isotactic or syndiotactic, the 
prefix it- or st-, respectively,  is  placed before the name of the polymer. 
The  absence of a prefix indicates an atactic polymer. ~tereoregular polymers 
can  be  obtained  via  special  methods  such as anionic and  coordination poly- 
merization. The properties of these polymers are going to vary dramatically 
depending on the degree  of stereoregularity; in general it can  be stated that 
the more regular a sample  is, the greater will  be its crystallinity and  the lower 
its solubility. 

As we have already mentioned, the conformation of a polymer chain is 
determined by the position taken in space by their atoms  that  can be inter- 
changed by  simple rotation  about single  bonds (4). There are flexible  poly- 
mers that  can  adopt a large number of conformations, and rigid chains for 
which  only a limited  number  of  conformations are accessible. On  the  other 
hand, flexible  polymers  in the crystalline state  adopt fixed conformations, 
whereas  in solution or in the molten state they adopt a wide  range  of con- 
formations. To illustrate what the conformational change consists of, we 
refer to the molecule  of n-butane, shown  in Figure 1.7. It can  be  seen that 
two  extreme  conformations  can occur: the one  known as cis, in which 

3 -  2- CM," 

ci 1 

Confor~ation of n-butane. 
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carbons 1 and 4 are located as close as possible in space, and the one  known 
as trans, in  which  they are located in opposite positions. The passage  from 
one to the other is  achieved  by  simple rotation  around the Cz - C3 bond. A s  

3 groups are bulky, the cis conformation produces steric 
hindrances; accordingly the  trans  conformation is the most stable. To char- 
acterize the different conformations that occur in n-butane, the angle of 
rotation  around the bond C2 - C3 is taken, with the convention of cp = 18 
0" for the trans  conformation  and cp = 0" for the cis  conformation.  The 
lowest  energy  corresponds to trans; those known as gauche, g'(cp = 300") 
and g(9 = 60"), are conformations  with  minimum  energy  though greater 
than  trans;  and cis  is the least favorable. The interactions between the Cl 
and C4 groups are known as first-order interactions and  are responsible for 
the energies  of the gauche and  trans states. The potential energy  of interac- 
tion can be represented as a function of the angle cp as shown  in Figure 1.8. 
The  energy barriers between the three most stable conformations are of the 
order of thermal energy, RT. In the case  of chains longer than n-butane, 
second-order interactions must also be  borne in mind.  These interactions are 
those that occur  when  groups joined via four bonds approach each other in 
space. The distance between these groups, and therefore their interaction 
potential energy, depends  on  two consecutive angles, as is the case  of n- 
pentane. Considering  only the minimum  energy positions, t, g',  g, the con- 
formations illustrated in Figure 1.9 can be identified. The  lowest  energy 
conformation is tt, while those with  highest  energy  correspond to the com- 
bination g'g' = gg'; the conformations  with intermediate energies are 
tg' = gt, tg = g't,  and g'g' gg. For n-hexane, it is  necessary to consider 
three angles, the interactions being the same type as in n-pentane, first-order 
and second-order. In  the case  of a macromolecular chain of n atoms, y1 - 3 

0 60 120 180 240 300 360 

CQ 

Conformational energy of n-butane as a function of the angle of rota- 
tion p. 
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t t  

Conformations of n-pentane. 

angles have to be considered, which in a strict sense  will  be able to take 
values  between 0 and 2n, not  just the minimum  energy positions. 
~onsequently, the  rotation of the bonds of a  polymer chain would lead to 
many different conformations, i.e., to different energy states, and  not all the 
co~formations of a chain would  be equally stable. Taking  into account 
values  of n in the usual range 1000-10,000, the number of molecular con- 
formations will  be enormous, increasing as an exponential function of n. In 
some  cases  one  of the possible conformations is  much  more stable than the 
others, and the macromolecular adopts this one  exclusively; this is the case 
of polymers in the crystalline state. If the energy difference between con- 
formational states is of the same order of magnitude as the thermal energy, 
macromolecule  would adopt the entire set  of possible conformations over 
time. This state of the macromolecule, in which the chain adopts  any of the 
possible  conformations,  is  known as a statistical coil. In  it, each  conforma- 
tion ceases to be individually discernible and  the only thing that  matters is 
the set of all of  them. It is impossible to determine the exact conformation of 
any  macromolecular chain at any particular  instant. owever, despite the 
complexity  of the  conformational problem, the required i~formation can be 
obtained statistically. 

he disordered state of  a statistical coil is  what  is displayed by polymers in 
the molten and  amorphous states and also in solution. To describe the 
conformation of a macromolecule consisting of a main chain N + l 
atoms, the positions of all them  have to be determined. Using vectorial 
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notation in accordance  with the diagram in Figure 1.10, this would  be 
carried out knowing the vectors making up the chain. 
are inaccessible in many  cases; therefore the tendency is to represent a con- 
formation by a  more global parameter  such as the end-to-end distance of the 

, which  is  defined as 

N 

i= l 

The  objective  is to obtain  the mean  value  of the end-to-end distance corre- 
sponding to the set  of  conformations that define the statistical coil state. 
this, it is  possible to think physically in two  ways that might  seem  diffe 
at first sight but  are in fact the same (ergodic hypothesis): 

etermine the values that F adopts with  time for a particular 
acromolecule and then calculate a time average. 
etermine the values  of at a particular instant  for N macromo- 

lecules  of the sample, and  thus calculate the instantaneous mean 
for the set  of  macromolecules. In this way, the mean 

square value of the end-to-end distance of the chain is  defined as 

li lj 

The result of the two  methods  is the same for a  polymer  in the liquid state, 
because a l~acromolecule statistically takes all the possible conformations 
with time, which  is equivalent to observing a large number of macromole- 
cules at a particular instant. In the glassy state, each  molecule adopts one 
specific confo~at ion ,  and therefore the value of F does not change  with 

c N-l 

CN+t 

Position vectors of a  macromolecular  chain with rz + 1 atoms. 



time. In this  case the only  average that  can be obtained is the instantaneous 
average  considering the set of macromolecules in the glass. 

To obtain the statistical properties of a chain, we consider a chain OP 
(Fig. 1.11) with a coordinate axis  system  established at one end. Let r be the 
end-to-end vector of the macromolecule  whose  origin  coincides  with that of 
the coordinates and whose tip corresponds to the coordinate point (x, y, z), 

The chain OP can  adopt  an  enormous  number of  different conforma- 
tions, each  of  which  is characterized by a value of r. Each value of r will 
have a specific probability. The greater the number of conformations 
corresponding to  a particular value of r, the greater  will  be the probability. 
Consider first an artificially  restricted chain with the ends 0 and P remaini~g 
on the x axis (see Fig. 1.12). When the separation between 0 and P is equal 
to the contour length, xl, the  chain  is straight, i.e., a fully  extended macro- 
molecule. This confor~ation is  achieved  by a single path; consequently, the 
probability of acquiring this conformation is insigni~cant. However,  when 
the end-to-end distance, X’, is  much  less than the contour length, the chain 
can  adopt a large number of conformations while x’ remains constant. 
When 0 and P coincide, the number of possible conformations is greatest, 
and the probability that x’ is equal to zero is greater than for any other value 
of X’. Equating the number of possible conformations with the probability is 

z 

Schematic representation of a macromolecule  with end-to-end dis- 
tance r. 
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0 x'  P 

Schematic representation of  a macromolecule with its ends in the x 
axis. (a) Fully extended conformation; (b) three of many conformations with end-to- 
end distance X'. 

based  on the consideration that each conformation is a priori equally prob- 
able. The function that models this behavior  is the Gaussian function (5) 

(1.10) 

where p is a representative length, i.e., a  parameter of the model. The 
probability of the end-to-end distance being  between x and x + dx is linearly 
proportional  to dx. Therefore, the probability that the end-to-end distance is 
between x and x + dx is  defined as the product of p ( x )  and dx: 

(1.1  1) 

The Gaussian function is  shown  in Figure 1.13, with a maxi mu^ at x = 0. 
In relation to the three-dimensional problem, the probability that the tip P 
of the vector r is contained  in a volume  element dV (see Fig. 1. l l) is, 
according to the Gaussian  model, 

- X  0 + x  

The Gaussian function P(x)  as a function of x. 
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he function of P(x, y, z) is spherically symmetrical; it is  a  unique function 
of r .  This result is obviously the expected  one and implies that all direc- 
tions of the vector OP are equally probable. 113 addition, the function P( 
x, y, z) has a maximum  when r = 0, which  corresponds to the case  in 
which the two  ends of the chain coincide, and  it decreases as r increases 

quation (1.12) supplies information in only  one direction 
of the space; to know the most  probable  value for the end-to-end distance, 
all directions of space have to be taken  into account equally. 

onsequently, the probability of finding the end P of the chain at a dis- 
tance r from the origin 0 in a spherical shell  of t ckness dr has to be 
calculated. The  volume  element  in this case  is dV = r2dr (see Fig. 1.15), 

the probability is obtained as 

0 r 

(1.13) 
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Sphe r i cat / 
hell 

A spherical shell at a distance r that determines the distribution of r 
values regardless of direction in space. 

The function 4nr2P(r) is represented in Figure 1.14.  This function has a 
maximum at a value of r # 0 and takes on  the value zero for r = 0, unlike 
the function P(x, y, z) [Eq. (1.12)) 

he  most  probable value for r ,  rmp, corresponding to  the maximum of 
the curve, is  obtained by differentiating Eq. (1.3) and is rMP = p. Another 
important mean quantity is the mean square end-to-end distance (r2) :  

(1.14) 

o calculate (v2), a mode1 for the polymer  molecule  must  be  assumed, 
mplest  one is the freely jointed chain model. This model consists of a 

hypothetical chain with N ks  of length l ,  in which  any link can adopt a 
random direction in space. ch a model  excludes the restr 
by bond  angles  of  any struc l restriction of the real chain. 
using Eq. (1.8) leads to 

(r2> = N Z ~  (1.15) 

given that  the cosine  of the angle formed by two vectors 
-1 with equal probability and in average ca 
) = 0 except  when i = j ;  In  that case the scalar product is equal to 

In general, it can  be  shown that the statistical distribution of end-to-end 
distances of a chain, independently of what its geometry  might  be,  can  be 
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represented by a Gaussian distribution function if the number of segments 
of the chain is  sufficiently large, in order to guarantee that  the correlation 
between  bonds  is totally lost over the length of the chain. The length of 
chain or the molecular  weight  necessary for this correlation to be lost, and 
for the Gaussian distribution of distances to be valid, depends on the che- 
mical structure of the polymer and on the intramolecular interactions. In 
flexible  polymer chains, just a small  number of bonds (N 2 20-50) are 
enough for achieving this loss  of correlation. For this reason the Gaussian 
function is applicable to flexible  polymers in general unless their molecular 
weight  is exceptionally low. In  other, less  flexible chain polymers, the num- 
ber  of  bonds required for losing the correlation is greater, and  the Gaussian 
function is applicable to them  only from a particular molecular  weight 
upward. In polymers  with a more  rigid structure,  the correlation persists 
over a great number  of  bonds, and  the Gaussian function is suitable only for 
very  high  molecular  weights. 

Equating (1 .14) and (1, 15), the parameter p is obtained: 

(1.16) 

The structural parameters  of the freely jointed chain that can represent the 
real polymer chain and therefore fits a Gaussian function of end-to-end 
distances can  be calculated. The first requirement that is  going to be 
imposed  is that the real chain and the model chain have the same value of 
mean square end-to-end distance; therefore the product NZ2 is determined, 
but  it does not permit N and 2 to be  known independently. Consequently it 
will  be  necessary to  add a further condition, which  is that the two chains (the 
real one and the model)  have the same length corresponding to  that of the 
fully  extended chain: 

L, = L, = Nmb (1.18) 
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Schematic representation of the equivalent chain comprising N, 
hypothetical bonds of length b connected by free joint. 

From monodisperse  samples of polystyrene of  molecular  weights,  sample A, 
lo3 g/mol; sample B, 5 x io4 g/mol; sample C, 2 x lo5 g/mol; sample D, 
lo6 g/mol, three blends were  prepared  by  mixing  them in the following  mass 
ra t ios : (a )O: l : l :O; (b)   l : l : l :O; (c)O: l : l : l .  

Calculate both  the number-average and weight-average molecular 
weights. 

(a) The  numbers of  moles  in 2 g  of the 0 : l : 1 : 0 blend are 

NA =ND = 0 (P1.l.l) 

NB=-"-- 
S X 104- 

N ( y = - -  
2 X 105" 

2 x 10-5m01 (P1 (I 1.2) 

l 5 x 10-6m01 (P1 (I 1.3) 



2 x 10-~  x 5 x lo4 + 5 x X 2 x io5 2 - - 
2 x 10-5 + 5 x 10-6 2.5 x 10-5 

- - = 8.0 x lo4 g/mol 

(PI. l .4) 

and 

(P1.1.5) 
2 x 10-~  x (5 x 10412 + 5 x x (2 x 10512 

2 = 12.5 x 104g/mol 

(b) The  number  of  moles in 3 g  of the 1 : 1 : 1 : 0 blend are: 

(Pl. 1.6) 
NC = 5 X mol; ND=O 

The  number-average  molecular  weight  is 

10 -~  x lo3 + 2 x 10-~  x 5 x lo4 + 5 x x 2 x lo5 
10 -~  + 2 x 1 0 4  + 5 X io-6 

M, = 
,l (P1.1.7) 
3 - - 

1.025 x - 
- 2.9 x lo3 g/mol 

and  the weight-average  molecular  weight  is 

M, = X (10312 + 2 X 10-~  x (5 x 10412 + 5 x x (2 x 1o5l2] 
(P1 .l .8) 

= 8.4 x io4 g/mol 

(c) For the 0 : 1 : 1 : 1 blend, 

Comparison of the results of (a) with those of (b) and of the results of (a) 
with  (c) lead us to conclude that M, is  sensitive to the presence  of 
low  molecular  weight  molecules,  whereas M, is  sensitive to the presence 
of  high  molecular  weight chains. 
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Find the relationships between the average molecular weights and the stan- 
dard deviations of the number- and weight-average molecular weight  dis- 
tributions ci, and c ~ ~ ,  respectively. 

Let us assume the following distribution: 

Moles Mol W 

he  first moment of the distribution, or number-a~erage molecular weight, 
is  given  by 

where wi is the weight fraction of the species  with  molecular  weight Mi. The 
variation of the distribution can be written as 

because, as will  be shown below, 

(P1.2.2) 

(P1 2.3) 
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The first moment  of the distribution is the weight-average molecular  weight 
given by 

The variation of the distribution can  be written as 

where 

(Pl.2.4) 

(P1.2.5) 

(P1.2.6) 

is the z-average molecular weight, Mz. 
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Solid  polymers  can occur in the amorphous  or crystalline state. Polymers 
in the amorphous  state  are characterized by a disordered arrangement of 
the ~acromolecular chains, which adopt conformations  corresponding to 
statistical coils. The crystalline state is characterized by a long-range three- 
dimensional order (order extending to distances of hundreds or  thousands 

29 



of  times the molecular size  of  the repeating unit). The macromolecular 
chains in this state  adopt fixed conformations such as planar zigzag, or 
helical,  These chains are aligned parallel to each other, forming a compact 
packing that gives  rise to a three-dimensional order. The differences in 
arrangement of  polymer chains in the crystalline and a~orphous  states 
are sche~atically illustrated in Figure 2.1. 

epe~ding on structure and temperature, amorphous polymers  (which 
do not contain any crystalline region)  show different physical properties. 
They are  hard  and brittle at low t e~pe ra tu r~s ,  when  polymers are in the 
glassy state. A glass can be  viewed as a solid that has frozen-in l i~u id - l i~e  
disorder, As the temperature is raised, glasses  exhibit  glass transition, and 
they  go  over to the liquid viscoelastic state, Glassy  polymers are prepared by 
rapid cooling  of molten polymers. olymers that easily form glasses  have 
some irregularity in their structure. Examples include atactic vinyl  polymers 
and  random copolymers. 

any polymers  have the capability to crystallize. This capability basi- 
cally depends on the structure and regularity of the chains and  on the 
i~teractions between them. The term  ‘‘semicrystal1ine state” should be 
used rather than crystalline state, because  regions in which the chains or 
part of  them  have an ordered and regular spatial arrangement coexist  with 
disordered regions  typical  of the amorphous state. X-ray diffraction studies 
of  samples  of polymers crystallized from the melt  reveal  diffuse  zones, char- 

Confo~at iona l  differences of polymer chains in the  amorphous  and 
crystalline states. Fringed micelle model. Parallel and coiled  lines represent, respec- 
tively, portions of chains in the crystalline and  the  amorphous regions. 
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acteristic of disordered substances such as liquids, and clearly defined rings 
indicating the presence  of the crystalline phase. In  addition, the densities of 
crystalline polymers adopt intermediate values between those of totally 
amorphous samples and those theoretically calculated for 100% crystalline 
samples, Even the most perfect single crystals, obtained  by crystallization 
from dilute solutions, can  be  regarded as partially crystalline. Figure 2.1 
shows  a schematic representation of the “fringed micelle”  model (l), which 
represents the crystalline and  amorphous regions of a polymer  crystallized 
from  the melt. In this model, the chains pass from  amorphous  to crystalline 
regions and vice versa, and they are sufficiently large to cross various crys- 
talline regions, keeping  them linked together. The supramolecular structures 
in crystalline polymers (see  Sect.  2.4) are nowadays well known, and this 
model is strictly accepted only for polymers of  very  low crystallinity. 
Nevertheless, the basic idea of chains passing from crystalline to  amorphous 
regions remains  valid and has  been  successfully  used to explain the proper- 
ties  of  many semic~ystalline polymers and fibres. The crystallinity of a sam- 
ple  depends not only on its molecular structure  but also on the conditions 
under  which the crystallization process took place and  the thermal treat- 
ments applied to the sample after crystallization. 

The physical and mechanical properties of polymer materials depend  on 
the degree  of crystallinity as well as on the crystalline structure  and mor- 
phology (24).  ““Crystalline structure” refers to the way  in  which the chains, 
in a particular conformation,  are packed,  giving  rise to  the regular three- 
dimensional structure, while “crystalline morphology”  refers to the size and 
shape of the crystallites, their arrangement, and their interconnection with 
the  amorphous phase. “Crystallinity confers on polymers certain character- 
istic properties, particularly with regard to the mechanical strength and 
resistance to solvents, that determine their selection for certain applications 
in preference to  amorphous polymers. With crystalline polymers it is possi- 
ble to manufacture  textile  fibers  such as polyester and aliphatic polyamides 
(nylon), high resistance fibers  such as polyaramides  (e.g. Kevlar), and poly- 
ethylene (e.g., Spectra), gears and machinery parts with  polyamides and 
flexible containers such as those made of polyethylene. Nevertheless, given 
the biphasic nature of  semicrystalline polymers, a general characteristic is 
that they usually lack the transparency of amorphous polymers; hence the 
ideal transparent organic glass  is atactic poly(methy1 methacrylate). 

In this chapter we study the characteristics that determine the crystal- 
linity of polymers, crystalline morphology, and the factors affecting the 
crystallization and melting of polymers. We  describe the amorphous state, 
focusing on the glass transition, a fundamental  property  for defining the 
mechanical  behavior  of polymers. The entire description refers  exclusively to 
synthetic polymers. 
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Crystallization is the process  of formation of a phase with long-range three- 
dimensional order from a disordered phase or from one that displays only 
local order. The crystallization provokes a discontinuous change in the 
enthalpy, volume,  etc.; it is thus a first-order thermodynamic transition. 
Crystallization occurs at a particular temperature below  which the state of 
equilibrium is the crystalline state. Nevertheless,  below this crystallization 
temperature it is also possible to  obtain a substance in a supercooled liquid 
state, i.e., a metastable state. When a liquid  is cooled, its viscosity  increases, 
and if the cooling  is  very fast, arrangement of the molecu~es  into a crystal 
lattice can be prevented, giving  rise to an  amorphous solid. In the case  of 
small  molecules  in this metastable state, insignificant  changes in the external 
conditions generally produce crystallization. However,  owing to their high 
molecular length, polymers can easily  be obtained as amorphous solids by 
quickly cooling the melt. If, during the cooling, the loss of chain mobility  is 
such that the chains cannot explore the entire conformational space, the 
most stable stretched conformation will not be adopted and the crystalline 
state will not be  achieved. Moreover, many polymers  remain in the amor- 
phous state indefinitely.  Even though from a thermodynamic point of  view 
they ought to reach the equilibrium crystalline state, this process does not 
occur on the time  scale  of the laboratory (the time  needed for reaching the 
crystalline state exceeds observable times). 

On the other  hand, since the crystalline state requires long-range order, 
only regular chains pemitting such ordering will produce crystalline  phases. 
The crystallizability of  polymers  is  governed by the same structural factors 
as that of  small  molecules,  such as interaction energy and geometry, and by 
specific factors of the polymer chains, i.e., chain regularity. Typical crystal- 
line  polymers are those in  which the chains exhibit regular chemical struc- 
ture and a regular geometry. Consequently, although linear molecular 
structures such as those of  polyethylene are highly  crystalline, branches 
decrease  polymer crystallinity. In the same  way, copolymerization limits 
crystallinity, up  to the point that development  of three-dimensional order 
is prevented in the case  of random copolymers with a signi~cant proportion 
of both comonomers. One  of the factors most clearly determining the crys- 
tallizability  of  vinyl  polymers, (- CH2 - CHR-)fz, is stereoregularity. In 
general, isotactic and syndiotactic polymers can crystallize,  while atactic 
polymers  with  bulky  side groups occur in the amorphous state. This is the 
case of polystyrene (R = C6H5), poly(viny1 acetate) (R S" 0 - CO - 
CH,), and poly(methy1 acrylate) (R S- CO-OCH,). 
is not general for all atactic polymers  because the size of the side group and 
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the intermolecular interactions influence the development of crystallinity. 
Thus the crystallinity of atactic poly(viny1 alcohol) (R = OH) and  atactic 
poly(viny1 fluoride (R = F) can  be justified on grounds of the small size  of 
the side groups. Even  polymers  with atactic structure  and bulky  side  groups 
crystallize if strong intermolecular interactions are present, as occurs in the 
case of polyacrylonitrile (R =--CN). Finally, hydrogen  bonding  in  poly- 
amides determines their crystallinity. 

Table 2.1 gives examples  of the effect  of regularity on  the crystallinity of 
polymer chains. 

Experimental  methods  such as X-ray, electron, and  neutron diffraction are 
used to determine the crystalline structure of many  polymers (2). A s  in the 
case of small molecules, chain packing  can  be described via the corre- 
sponding unit cell  of the seven crystal systems. The unit cell  is  formed 
by the arrangement of the monomers of the chains, and, depending  on the 
complexity  of the polymer, tens or hundreds of atoms can  be found in the 
cell. A s  has already been  mentioned, the chains adopt extended  conforma- 
tions of minimum energy, such as planar zigzag or helical forms. The 
conformatio~ of an isolated chain is  determined by intramolecular inter- 
actions, but in the crystal lattice strong intermolecular interactions, such as 
hydrogen  bonding,  can confer stability to a specific conformation.  In all 

Effect  of Regularity  on  the Crystallinity of  Polymers 

Source of the irregularity 

Degree  of 
crystallinity 

Polymer (%) (typical) 

Copolymerization  Linear polyethylene 
Isotactic polypropylene 
Random linear  copolymer, 

ethylene-propylene 
Branching Linear polyethylene 

Branched  polyethylene 
No tacticity Isotactic polypropylene 

Atactic polypropylene 
Random cis-trans  isomerism Poly(trans- 1,4-butadiene) 

Poly(cis-  1,4-butadiene) 
Poly( 1,4-butadiene), 

random cis-trans 

70 
70 

None 

70 
40 
70 

None 
40 
30 

None 

Source: From Ref. 5. 
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cases, the polymer  molecules traverse many unit cells. In the longitudinal 
direction the atoms are covalently bonded, but in transverse directions the 
interactions are relatively  weak  (van der Waals, hydrogen bonding); con- 
seq~ently the crystal units have anisotropic properties. The transverse 
or~anization is different from the longitudinal one, which leads to  an 
anisotropy that prevents the appearance of cubic lattices. This anisotropic 
character is  reflected in the mechanical properties, with moduli depending 
dramatically on the direction. It can be estimated that the modulus is 
about two orders of magnitude higher in the direction of the chains 
than in the transverse directions. 

elow, a brief description is  given  of the conformations and crystalline 
ures  of the most representative polymers. The most studied polymer  is 

polyethylene. In this polymer, the lowest  energy conformation has all the 
bonds in trans, i.e., the planar zigzag as shown in Figure 2.2, The chains are 
packed in orthorhombic cells bonded by van der Waals interactions giving 
rise to a unit cell  of  dimensions a = 0.742, b = 0,493, and c = 0.253  nm that 
contains two monomer units. Although the orthorhombic crystal structure 
is the most stable one, mechanical deformations can give  rise to a mono- 
clinic structure. The existence  of more than one crystal structure is known as 

olymorphism is relatively common in polymers for which 
various isoenergetic conforrnations can exist. ~oly(tetrafluoroethy1ene) 
(- CF2 - CF2 -), displays  triclinic crystallization at low temperatures 
and hexagonal at temperatures above 19°C. In this polymer, the lowest 
energy conformation departs from the conventional planar zigzag  (all 
trans), due to the bulkiness of the fluorine atoms. ~oly(tetrafluoroethy1ene) 

Orthorhombic crystalline structure of polyethylene:  perspective view 
of the unit cell and view along chain axis. 
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adopts helical conformations in the crystalline state, as shown in Figure 2.3. 
The helices formed are 13/1 ( l  3 repeat units per rotation of the helix) and 1 S/ 
1 at low and high temperatu~e, respectively. The transformation from one to 
the other involves  volume changes of 1 %. This volume change at room 
temperature makes it inadvisable to use this polymer in the manufacture of 
parts requiring dimensional stability. Vinyl  polymers such as poly(viny1 
fluoride) and poly(viny1 alcohol), with  side groups relatively  small,  crystallize 
in extended  zigzag conformations, forming structures similar to  that of  poly- 
ethylene. 

Isotactic polymers  always  crystallize in helical conformations that facil- 
itate the arrangement of the side groups. Figure 2.4  shows the 3/1 helix  of 
isotactic polypropylene and isotactic. polystyrene, originated by the alter- 
nation of trans  and gauche bonds along the chain. If the side groups are 
bulkier, complex  helices are formed such as those of isotactic poly(methy1 
 eth ha cry late), which  crystallizes in 512 helices. In syndiotactic polymers the 
conformation is again controlled by the size  of the side group. 

olyamides are a typical  example  of chains whose conformation and 
chain packing in the crystalline state are determined by int 
teractions, i.e., the hydrogen bonding between the groups - 
of nei~hboring molecules. The chains adopt the all-trans conformation, 
facilitating the intermolecular hydrogen bond interactions, They  become 
packed, forming laminae as shown in Figure 2.5 for nylon 6.6. 

Crystalline conformation of polytetra~uoroethylene, 13/1  helix (1 3 
CF2 units per  turn of the helix). 
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Isotactic 3/1  helix  of  polypropylene (R CH3) and polystyrene 
(R C6H5). 

/ 

Crystalline conformation of polyamides:  nylon 6.6. 
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Crystallization of polymers  can  be carried out from the molten state  or  from 
solutions. These  procedures lead to different morphologies. Starting from 
solution, single crystals are obtained  with the shape of lamella (plates). 
Starting  form the melt, small crystalline lamellae or crystallites are formed 
that are organized into complex structures known as spherulites. 

(a) ~ i n ~ l e  Crystals:  Shape  and ~ t ~ u c t u ~ e  
Although  single crystals have no technological application, their study is 
essential for  the understanding of the morphology and behavior of crystal- 
line polymers. In the crystallization of polymers starting  from very dilute 
solutions (concentrations less than l%), polymer  single crystals are gener- 
ated by cooling or by additio? of a precipitant. Single crystals have the 
shape of lamellae about 100 A thick and several  micrometers in length 
(see Fig. 2.6)  (6). The general characteristic of  single crystals is their small 
size  in  comparison  with the crystal size  of  small  molecules,  which limits their 
study by X-rays. The orientation of the chains in the lamellae, determined 
by electron diffraction, shows that the chains are nearly normal to the 
lamellar surface. Since  polymer chains have  dimFnsions  of thousands of 
angstroms and the single crystals are  about X00 A thick, the chains must 
be folded, entering and exiting  via the upper and lower faces of the lamellae 
as shown in Figure 2.7. In this figure  each of the straight lines represents the 
chain  in its most stable extended conformation, while in the loops or folds 
the chain abandons the minimum  energy conformation.  In  the case of 

Electron micrograph of a single crystal of polyethylene. (From Ref. 6.) 
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Folded-chain models for single crystals. (a) Regular  adjacent reentry; 
(b) nonregular  random reentry. 

polyethylene, five C- C bonds, three of  them  in  gauche conformation,  are 
sufficient to  form a loop. 

easurements of the density of  single crystals give  values  lower than 
those calculated theoretically according to crystallographic data. They are 
not perfect crystals, having a degree  of crystallinity less than 100%. The 
noncrystalline proportion is too large to be attributed to intercrysta~line 
defects, and it is  assumed that noncrystalline (amorphous) regions are 
formed on  the surfaces. Although it is evident that the packing of folded 
chains is  less  compact than  that of  fully  extended chains, the model  of a 
totally regular adjacent folding (Fig. 2.7a) does not justify the results. On 
the other  hand, nonregular folding (Fig. 2.7b)  with entries in the surface at 
random would not correspond to single crystals of flat surfaces with per- 
fectl  demarcated  edges. Therefore, an intermediate model  is accepted. 

olymers crystallized from concentrated solutions exhibit more  complex 
crystalline morphology  (7). En dilute solutions, polymer  coils are isolated 
from  each other,  but if the concentration increases, association and  entan- 
glement  among the chains are favored. Therefore, there is a greater prob- 
ability that a chain forms part of various crystallites, thus producing 
aggregated lamellae in multilayer morphologies, 

he  most important dimension of the crystalline lamella is its thickness, 
since thickness is a measure  of the period I ,  or length of chain in the fully 
extended conformation. The period of the single crystals depends on  the 
crystallization temperature Tc and  on  further heat treatments e.g. annealing. 
The period always increases as the crystallization tem~erature increases. 
~xperimentally, it is  obtained that I - (Tm - TJ-', where Tm is the melting 
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temperature of the polymer and Tc the crystallization temperature. The 
difference Tm - TC is  called under coo ling^ the smaller the undercooling, 
the greater is 1. If the crystals are annealed at a temperature TG (maintained 
at a temperature T, close to Tm), an increase  in the period takes place. 
increase in I is greater the closer T, is to T,. This increase in thickness is 
irreversible, and no decrease  in I occurs when the annealed sample is  cooled 
again. 

hen polymers are crystallized from the melt, spherulite morphology is the 
most frequently observed. This morphology, as its name indi 
spherical shape consisting of  aggregates  of crystalline lamellae. 
varies from micrometers up  to millimeters in extreme  cases. The spherulite 
morphology is  usually obtained in the production processes, under quiescent 
conditions, for the majority of crystalline polymers. ~pherulites are easily 
observed  in an optical scopy with polarized light and with the polar- 
izer and analyzer cross ey are recognized as birefringent circular areas 
with a dark cross, like  ese cross, having arms parallel to the polarizer 
and analyzer, respectiv bservation of the spherulites in 
an electron microscope  shows that they are made up of crystalline lamellae, 

Spherulite  of isotactic polystyrene  crystallized from  the melt. (From 
Ref. 8.) 
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like  fibrils opening out  into a fan from the center to the periphery following 
the radial direction. Studies  with X-ray diffraction and electron diffraction 
show that these  lamellae are similar to single crystals. The chains are located 
normal to the faces  of the lamella and are folded in the same way as in single 
crystals. Figure 2.9 shows a representation of this morphology. The long- 
itudinal and transverse refractive  indices  of the radial lamellae are different, 
and spherulites are therefore birefringent. The lamellae  of spherulites never- 
theless  display a more irregular folding of chains than in single crystals. The 
different lamellae are not independent, and some  polymer chains pass from 
one to another, giving  rise to intercrystalline links. The material remaining 
between the lamellae is found to be disordered and therefore is amorphous. 
In addition, different spherulites are joined by chains that crystallize, form- 
ing part of more than one spherulite. This is  possible  because  of the low 
correlation of  movements  of parts of the chain (segments) that are located 
far from each other. Long chains can crystallize simultaneously in various 
parts, foming crystallites belonging to the same or even different spheru- 
lites. The morphology of interlinked spherulites is  justified by considering 
that polymer chains in the melt are meshed together, and when  they crystal- 
lize the high  viscosity  of the medium makes it difficult to order themselves to 
form isolated crystals. This crystalline ~orphology explains the character- 
istic toughness of  semicrystalline polymers. In some  cases, the crystalline 
lamellae forming spherulites do not maintain any  fixed orientation and are 
twisted into a spiral in the radial direction. The orientation is repeated at 
regular intervals along the radius, giving  rise to the appearance of concentric 
rings  when  observed  in a polarized light microscope (g), as shown in Figure 
2.10. A single  polymer can develop different types of spherulites depending 
on the crystallization conditions. Spherulites display a perfect spherical 
shape only at the  start of crystallization; as the crystallization proceeds, 

arnel  lar 
 in- fold^ 
rystall i l e  

A ~ r ~ ~ o u ~  
~ ~ t e r i ~ ~  

Model of spherulite morphology. 
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Ringed spherulites of polyethylene. (From Ref. 8.) 

these spherulites collide  with  each other, giving  rise to polyhedral or ovoid 
shapes (see Fig. 2.10).  The  number and size  of the spherulites depend on  the 
crystallization temperature, thus, when the undercooling increases, the num- 
ber of nucleating spherulites increases, and therefore the size that they  can 
reach decreases. Under  normal crystallization conditions used in manufac- 
turing processes, the size  reached  by the spherulites is usually of the  order of 
magnitude of the wavelength  of  visible light. This is  why crystalline poly- 
mers  have turbid appearance  while amorphous polymers are  transparent 
(the light is scattered by spherulites but  not by the crystalline lamellae, 
which are very  much smaller than  the wavelength  of  visible light). 

Polymers crystallized under stress develop  morphologies different from 
those created under quiescent conditions. This fact has considerable tech- 
nological repercussions, since  many  polymers are processed  in the form of 
fibers or extruded through nozzles, and in these processes the crystallization 
takes place  under stress. Synthetic polymer  fibers,  such as nylon, polyester, 
and acrylics, are manufactured by means  of a spinning process, involving 
the extrusion of the polymer, either molten or in solution, through fine 
holes, followed  by unidirectional drawing. This method creates a change 



from an isotropic state (molten or solution) to a crystalline state in which 
the chains show a   referential orientation in the stretching direction. The 
crystallinity increase and the mechanical properties improve-particularly 
the longitudinal Young’s modulus (9). In the transverse direction of the fiber 
the modulus is much lower than in the longitudinal direction. 
isotropic poly(ethy1ene thalate) has a Young’s modulu 
and tensile strength of ’7 , while oriented fibers attain Val 

a, respectively. Nylon 6.6 increases  in crystallini 
e strength is  increased by a factor of 4, reachin 

-ray and electron microscopic studies have  revealed 
morphology in crystalline polymer  fibers. The crystalline lamellae are  not 

ally, instead forming elongated units oriented in the direction 
r flexible chain polymers the morphology of the fiber  is well 

illustrated in the schematic model shown in Figure 2.11, in which  fibrils 
oriented parallel to the direction of extension can be distinguished (10). 
The chains in the fibrils  still partly maintain the folded conformation, and 
some  of  them pass from one crystal to another, acting as a link  between 
them. The fibrils are only  weakly bonded together. ~rystalline and  amor- 

F O L D E ~  CHAI 
~ ~ Y ~ T A L L I T ~  

D 
TALL1 N 

Fibrillar structure of oriented flexible  crystalline  polymers. 
fibrils are  demarcated by discontinuous lines. 

The 
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phous regions  each  possess molecular orientation. Stretching of  the  fiber 
favors the arrangement of chains parallel to the axis  of the fiber. 

The importance of studying the crystallization process in technical and 
engineering applications derives from the need to know the rate and range 
of temp~ratures  at which crystallization is produced and the degree  of  crys- 
tallinity attained. 

he  degree  of crystallinity, x,, indicates the proportion of  solid that is 
crystalline. This magnitude has great practical importance, as the mechan- 
ical properties of the material, and most of its properties in general, depend 
on the crystallinity. The simplest method to determine the degree  of crystal- 
linity of a polymer  is  based on the measurement of the specific  volume,  v. 
Crystallization implies a compaction of  polymer chains, i.e., a decrease in 
the volume  (increase in density) with  respect to the amorphous material, If 
the biphasic model (amorphous phase + crystalline phase) is  accepted for 
the semicrystalline sample, the specific  volume can be written as 

v = &V, + (l  - x&, (2.0 

where  v, v, and v, are the specific  volumes  of the semicrystalline sample, the 
hypothetical 100% crystalline polymer, and  amorphous polymer, respec- 
tively, at the measurement temperature T and x, is the degree  of crystallinity 
of the sample. The value  of v, can be determined experimentally if amor- 
phous samples can be prepared at temperature T. The value  of this para- 
meter can alternatively be estimated by extrapolating the specific  volumes  of 
the liquid  polymer to temperature T .  Figure 2.12 represents the typical 
variation of the specific  volume  of a semicrystalline  polymer  with tempera- 
ture up to  and beyond the melting point. The value  of v, can be calculated 
from crystallographic data. ~ccording to  q. @.l), the degree  of crystal- 
linity  of a polymer can easily  be determined from the measurement of the 
specific  volume. This method would  be  valid for all crystalline polymers 
when there is a significant  difference  between v, and v,. 
some  polymers, such as  polytetra~uoroethylene, which  is manufactured by 

process, the method breaks down, because the polymer contains 
a percentage of v S (1 %) that falsifies the results. Other experimental 
techniques such a ray scattering, calorimetric thermal analysis, infrare 
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Variation of the  specific  volume of a  semicrystalline  polymer with 
temperature. 

spectroscopy, and nuclear magnetic resonance also allow the determination 
of the crystallinity of  polymers. In general, the values  given by the different 
techniques can be correlated, though they do not entirely  agree. 

~rystallization is not  an instantaneous process; it progresses with time. 
hen a polymer  crystallizes at constant temperature, lamellae are formed 

to which the polymer chains become incorporated. The chains fold with a 
certain period, and the lamellae  grow longitudinally. In the case of crystal- 
lization from the melt, the longitudinal growth of the lamellae leads to  an 
increase in the radius of the spherulites. The mechanism  is similar to  that of 
the crystallization of small  molecules and consist  of a first stage, called 
nucleation, in  which  nuclei are formed in the melt and a second stage of 
growth. This crystallization step is known as primary crystallization. A 
further stage, secondary crystallization, can occur; once the spherulites 
have made contact, the amorphous material remaining between the lamellae 
crystallizes. 

The nucleation can be homogeneous or heterogeneous. Heterogeneous 
nucleation is  caused  by impurities, while homogeneous nucleation consists 
of the spontaneous aggregation of  polymer chains at a temperature below 
the melting temperature in order to f o m  a nucleus. The ordered regions that 
can persist in the molten polymer  have great importance in homogeneous 
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nucleation. It is said that polymers  have “structural memory,”  because  when 
the crystallization process  is repeated several  times, the crystals grow  in 
exactly the same  place  in  which  they  were located before being melted. 
The crystallization rate can  be  determined by dilatometric techniques, mea- 
suring the change  of  volume  with time at a given crystallization temperature, 
or by means of microscopy, observing how the radius of the spherulites 
grows  with time. At each  temperature the radial growth occurs at a  constant 
rate. When the rate of  growth  is plotted against the crystallization tempera- 
ture, curves are obtained that display a ~ax imum,  as shown  in Figure 2.13 
(1 1). At temperatures close to melting, the rate of crystallization becomes 
zero. The Gibbs free  energy  of nucleation is proportional  to  the reciprocal of 
the under cool in^ [G* - l/( Tm - Tc)]. The crystallization is a nucleation- 
controlled process, as the crystallization rate is proportional  to exp(-G*/R 
T) so it tends to zero when T, approach Tm. A s  the temperature  is  lowered 
there is an increase in the thermodynamic  tendency  toward crystallization 
that leads to  an increase in the growth rate,  but the system simultaneously 
becomes  more  viscous. This increase in viscosity  decreases the molecular 
mobility, hinder in^ the  incorporation of the chains into the crystalline 
phase, and consequently the rate of crystallization again decreases. The 
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Variation of the crystal growth rate with temperature for poly(ethy- 
lene terephthalate), Tm = 280°C. (From Ref. l1  .) 
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tel~perature  at which the maximum rate of crystallization is  reached  is 
about 0.8 Tm for most polymers. 

The time  dependence  of the overall crystallization process  is  governed 
by Avrami's equation (12), 

where x, is the degree  of crystallinity achieved  in a time t ,  and 2 and n are 
characteristic constants of the crystallization mechanism. The values  of the 
exponential term lie in the range 2 4 .  Equation (2.2)  is not suitable for 
describing the final stage of the crystallization process,  when secondary 
crystallization occurs. 

elting is the process opposite to crystallization, ~rystalline order is 
destroyed in the melting  process, and the material b e c o ~ e s  a viscoelastic 
liquid above the melting temperature. The disappearance of the crystalline 
morphology and structure during melting  is demonstrated through charac- 
teristic changes  in the physical, mechanical, and thermodynamic properties 
of the material, X-ray diffraction patterns of molten flexible chain polymers 

w diffuse  rings, indicating that the long-range order has disap- 
continuous changes are ~roduced in the volume, enthalpy, and 
ing  melting and conse~uently this process  is a first-order transi- 
heless, the melting  of  polymers  shows certain peculiar charac- 

distinguish them from the melting  of  low molecular weight 
crystalline  solids. First, melting  of  polymers  does not occur at a unique 
temperature; instead it occurs over a temperature range that depends on 
the type  of sample (molecular weight, polydispersity, branchings, etc.). The 

on of the melting temperature with molecular weight  is illustrated in 
2.14. The melting temperature of  polymers  with molecular weight 

ower than lo3 g/mol strongly decreases as the length of the chain decreases. 
ver, as the molecular weight  increases, the melting temperature depen- 
on molecular weight  becomes  weaker. For high molecular weights 

ere is a band of  melting temperatures that is due to the presence  of crystals" 
of different thicknesses. Figure 2.15  shows the volume  changes that occur 
during the melting  of linear and branched polyethylene  (13). In both cases 
the volume  of the solid  increases  with temperature, and as melting  is 
approached an  abrupt change in  volume occurs T > Tm, the volume 
of the liquid increases  linearly  with temperat~re, ample of linear poly- 
ethylene  (highly crystalline) has a narrow melting ; 700/0 of the crystal- 

. .  
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Dependence of the melting temperature on the molecular weight. 

linity disappears within 34"C, while branched polyethylene  (low crystal- 
linity) displays a very broad melting range, about 40°C. 

The second characteristic of the melting  of  polymers  is that the melting 
temperature of a particular sample depends strongly on its thermal history 
and more particularly, on its crystallization temperature. The closer the 

Variation of the relative volume with temperature for linear (A) and 
branched (B) polyethylene. (From Ref. 13.) 
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crystallization temperature  is to the melting temperature, the higher will  be 
the melting temperature. This behavior  is a consequence of the decrease in 
the size and perfection of the crystalline lamellae  when the undercooling 
(Tm - T,) increases. Hence, for each  sample the melting temperature is 
usually taken at the end of the melting, i.e., the temperature at which the 
final traces of crystallinity disappear, which  corresponds to the melting of 
the most perfect crystals in the sample. 

True thermodynamic equilibrium refers to  the phase in their most stable 
state, and  for the crystalline polymer  phase the most stable conformation is 
the fully  extended one. The equilibrium melting temperature, T:, corre- 
sponds to the melting of perfect crystals of  infinite  size  with  fully  extended 
chains. The value of T i  for a polymer  is unique. Since the crystalline sam- 
ples  of  polymers are made up of crystals of  finite  size in which the chains are 
folded and  not fully extended, the experimentally determined melting tem- 
perature, Tm is always  lower than T'. There  is a strong dependence  of Tm on 
the thickness of the crystalline lamella, I; Tm always increases with I. 

Surface effects  can  be disregarded in crystals of infinite size, and con- 
sequently the change in the  Cibbs free  energy  in the crystal-liquid transi- 
tion, AG, (per unit volume  of crystalline phase), is due solely to the melting 
of the crystalline phase. Melting of  finite crystals also involves the destruc- 
tion of the upper and lower surface faces, a ~ontribution  that is negative and 
is represented as 2uJZ (per unit volume), where ua is the surface free energy. 
The  Cibbs energy  of the phase  change  is  canceled  in the crystal-liquid 
equilibrium. Thus,  for the infinite crystal at T i  we can write 

and 

~~m and AS, are the enthalpy and  entropy of melting per unit volume, 
respectively. 

For a crystal of thickness Z at Tm the free energy  change  can  be written 
as 

and  the melting temperature  becomes 
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~ombining Eqs. (2.4) and (2.6), the following relationship between TIE and 
Tk is obtained: 

Equation (2.7) predicts that Tm for a finite crystal is  always  lower than 
T i .  Equation (2.7)  allows the determination of T: from the measurement of 
the melting temperature of crystals of different thicknesses. Actually, the 
plot of T’ vs 1/E gives a straight line  whose intercept with the  ordinate axis 
gives T;. 

A simple  method to determine Ti is  based on the dependence of the 
melting temperature  on the crystallization temperature, Tc (14). Tm 
increases linearly with Tc as Figure 2.16 shows  (15).  Since Tm can never 
be  lower than Tc, the line Tfi = Tc represents the limit, i.e., the situation of 
perfect reversibility in which melting and crystallization occur at the same 
temperat~re. The  extrapolation of Tm to Tm = Tc provides Ti. 
cedure  is the one  most  widely  used  because it is applicable to all samples, not 
just  to single crystals. Table  2.2  shows the values of Ti, melting enthalpy, 
and melting entropy of  some  polymers (16). The values  of AHrn, which 

Variation of  melting temperature with crystallization temperature 
for (0) poly(&-caprolactone)  and ( ) poly(E-caprolactone)  in a blend  with  poly(4- 
hydroxystyrene) (85% weight fraction of PCL). (From Ref. 15.) 



Equilibrium Melting Temperatures T: Enthalpies AHm and Entropies 
AS, of Melting for Some Polymers 

Polymer 

~olyet~ylene 
~olypropylene 
Poly(cis- 1,4-isoprene) 
Poly(trans- 1 ,&isoprene) 
it-~olystyrene 
Poly(tetramethy1ene terephthalate) 
Poly(decamet~y1ene terephthalate) 
Poly(decamethy1ene sebacamide) 

146 
200 
28 
74 

243 
230 
138 
216 

960  2.3 
1,386  2.9 
1,050  3.46 
3,040  8.75 
2,000  3.9 
7,600  15.1 

1  1,000  27 
8,300  17 

"Expressed per repeating unit. 
Source: Ref. 16. 

reflect the intermolecular interactions, lie  in the interval 100~10 ,OO~ call 
mol. AS could be  expected, the melting temperature values are  not exclu- 
sively dependent on the melting enthalpy [see Eq. (2.4)]. The thermodynamic 
melting temperature, Ti, is related to the flexibility  of the polymer chains. 

he  higher the flexibility, the larger the confo~at ional  entropy and hence 
the lower the value  of Ti. ubbers have  low  melting temperatures due to 
the relatively  high  melting entropies reflecting the flexibility  of their chains. 
At the other extreme, the engineering  plastics such as aromatic polyamides, 
with  very  rigid chains and  strong interactions among them, present high 
values  of  melting temperature that  are characteristic of  these materials. 
The presence  of aromatic rings in the main chain increases the melting 
temperature with  respect to aliphatic chains because it decreases the con- 
formational entropy of  the  melt  (less  flexibility). In Section 2.11 the influ- 
ence  of the molecular structure of Tm is  discussed in further detail for each 
type  of polymer. 

As occurs with other crystalline substances, the melting temperature of 
polymers  decreases  in the presence  of solvents (melting point depression). 
Thermodynamic arguments lead to expressions that relate the depression of 
the melting point to the solution concentration. The equation that gives the 
melting temperature of a polymer solution as a function of the concentra- 
tion (1'7) can be written as 
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where Ti and Tm are, respectively, the melting temperatures of the pure 
polymer and of the polymer  in a solution of composition 2rl (volume fraction 
of solvent), VI and V2u are, respectively, the molar volumes  of the solvent 
and the monomeric unit of the polymer, 111 is the universal constant, h 
the melting enthalpy per monomeric unit, and x12 is the polymer-solvent 
interaction parameter; the lower the value  of x12, the stronger the interac- 
tion between the two components of the solution. 

In the case  of mixtures of a crystalline  polymer and an amorphous 
polymer, a drop in the melting temperature of the crystalline polymer also 
occurs whenever the two  polymers are miscible  in the liquid state. In this 
case, the equation correlating the melting temperature with the composition 
is different from Eq. (2.8) because the large molecular  size  of the compo- 
nents causes the entropy of  mixing to be considerably lower. The e~uation 
that gives the drop of the melting temperature for mixtures  of crystalline 
polymer (2) + amorphous polymer (3) of similar size (1 8) is  given  by 

where x 3 2  is the polymer-polymer interaction parameter. 
The dependence  of Tm on the molecular mass  of the polymer has been 

interpreted as a melting point depression caused by the chain ends, which 
act as if they  were a low molecular weight impurity (solvent). 
molecular weight, the larger the proportion of terminal groups and conse- 
quently the lower the melting temperature, Tm. 

The liquid crystal state (LCS) shows order in one or two dimensions~ it lacks 
the three-dimensional long-range order of the crystalline state. 
c~aract~ristics intermediate between those of the crystalline and the disor- 
dered amorphous states. These  phases are called  liquid crystals because 
many of  them can flow  like ordinary liquids but they  display-birefringence 
and other properties characteristic of crystalline solids. In liquid crystal 
phases the molecules can move but the orientational order is  conserved  in 
at least one direction. The LCS can be  displayed  by  small  molecules and by 
polymers, but in both cases a characteristic chemical structure is  needed. 
The existence  of the liquid crystal state is related to the molecular asymme- 
try and the presence  of strong anisotropic intermolecular interactions (19- 
21). Thus, molecules  with a rigid rod structure can form highly ordered 
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0 

- X  

Repeating units of some main-chain liquid  crystals. (a) 

~oly~-phenylene terephtbalarnide (Kevlar);  (b)  copolyester of p-hydroxybenzoic 
acid and biphenylene terephthalate  (Xydar); (c)  copolyester of ~-hydro~ybenzoic 
acid and  2,6-hydroxynaphthoic acid (Vectra). 

states in concentrated solutions or in the molten state. olymers  with aro- 
matic  rings  in the main chain connected by ester or amide  groups take  on 
the conformation of a rigid linear chain, giving  rise to highly crystalline 

hen  they are melted or dissolved, they partly  maintain their 
order, passing through liquid crystal states before reaching the isotropic 
disordered liquid state. Typical examples  of  polymers  with a rigid chain 
structure (main-chain LC polymers) are shown in Figure 2.17. 

Liquid crystals are classified into two  groups  known as thermotropics 
and lyotropics. Thermotropics are those that  are formed  in the melting 
of crystalline solids, and they can remain in the liquid crystal mesophase 
without deco~position, passing to  the isotropic liquid state when subse- 
quently heated. As their mesophases are  turbid, the temperature at which 
the transition to the isotropic liquid phase takes place  is  called the clearing 
temperature. Lyotropic  LCs  form  mesophases  in concentrated solution 
when the concentration exceeds a critical value. 

Not all crystalline polymers pass through liquid crystal states. Flexible 
polymers, which adopt statistical coil conformations  in the dissolved and 
molten states, pass directly to  the isotropic liquid when  dissolved or melted. 

nly  if  they are modified  by introducing side  mesogen  groups  could they 
form liquid crystal phases (side-chain LC polymers). The  mesogen  groups 
confer the liquid crystal characteristic; they have the form  of  rigid rods  or 
discs, like those illustrated in Figure 2.18a. Figure  2.18b  shows the possible 
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Sid~-chain LCP 

(W 
xible  spacer  group 

(a) Some typical mesogen groups. (b) Schematic representation of 
types of liquid crystal polymers according to the location of the mesogen groups: in. 
the main chain (right) or as side substituents (left). 

locations of mesogen  groups  giving  rise to what are called  main-chain LC 
and side-chain LCPs (5,19--22). 

The liquid crystal state can  be  ordered  in different forms  known as meso- 
phases (phases intermediate between the solid and liquid states). Figure 2.19 
illustrates the possible orderings of the molecules in rnesophases (5, 19-22). 
In the rnesophases  known as smectic, the molecules are oriented in one 
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Orderings in LC mesophases. (a) nematic; (b) smectic;  (c) cholesteric; 
(d) discotic-nematic; (e) discotic-colu~nar, 

direction and ordered  in parallel layers. Nematic  mesophases lack ordering 
in layers and conserve only the orientation  order. The optical anistropy  and 
the response to electric  fields  of  nematic  phases are the basis of their use in 
screens for calculators, watches, and electronic devices. In cholesteric meso- 
phases the molecules are ordered  in layers, with the direction of orientation 
slightly  changing in consecutive layers, giving  rise to helical structures. The 
periodicity of the helical layers depends  on the temperature; as a result they 
display different colors depending on the temperature and  can be  used as 
temperature sensors. Finally, discotic mesophases are typical of disc-shaped 
molecules and  can display nematic or columnar  mesophases. 

iquid crystal polymers can occur in different mesophases  depending on 
t~m~era tu re  and pressure. When the temperature  rises,  they  can pass from 
one  mesophase to  another,  from the more  ordered to the less ordered state, 
until they reach the isotropic liquid state.  The  transitions solid-LC  meso- 
phase, LC mesophase-LC  mesophase, and LC mesophase-isotropic liquid 
are first-order thermodynamic transitions. In them the volume and enthalpy 
show discontinuous changes (23). This means that they  can  b 

* ometry or by differential scanning calorimetry, as shown i 
crystalline polymer melts, turning first into a smectic and 

mesophase and finally reaching the isotropic liquid state. All the changes of 
volume and enthalpy undergone are additive. 
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Transitions  that  an LCP can  undergo with  increasing temp~rat~re:  
melting to a smectic  mesophase, Tm; passage to a  nematic mesophase, yy,E, and 
passage to an isotropic liquid T',. 

terized  by their low solubility and by 
, in  many  cases  decomposing before 

reaching the molten state. These characteristics are a  consequence of their 
rigid chain structure with strong intermolecular interactions. The melting or 
dissolving  of the crystals requires the brea~ing of many interactions and is 
therefore highly  endothermic,  n the  other  hand, in the solid-li~uid transi- 
tion very little entropy is originated, since the chains continue to maintain 
their stretched conformation. This is in contrast  to  the behavior of  flexible 
macromolecules,  whic  ave higher melting entropy  as they  have  much 
lower melting points. in-chain LC polymers, such as arom 
amides, usually form opic LCs  with  nematic  mesophases. 
main-chain LC polymers are not used in the liquid crystalline state. 
~everthe~ess,  this is the state in  which they are processed and once the 
solvent is eliminated, they  possess  excellent  mechanical properties such as 
rigidity, tensile strength, and extraordinary chemical resistance. 
reason, they are used in advanced applications in e aerospace, telecom- 
munication, and electrical industries. For example, vlar is  processed dis- 
solved in sulfuric acid to  form high resistance fibers. 
characteristic for the processing is that the increase in the viscosity  of the 



solution with the concentration ceases  when the critical concentration is 
reached and the mesophase  is formed. The ordering of the chains in the 
direction of  flow  reduces the viscosity,  which facilitates the processing  of the 
fibers, 

Thermotropic main-chain LC polymers are copolymers or terpoly- 
mers,  generally  polyesters and polyamides. Homopolymers have such 
high  melting temperatures that they decompose before melting, There 

. are several  ways to lower their melting temperatures and be able to use 
them as thermotropics. 

1.  Copolymerize  mesogenic monomers to form random copolymers 

2. Incorporate bulky  side groups that make packing difficult. 
3. Attach flexible  side chains onto the stiff main chain which 

decreases the interactions between the main chains. 
4. Insert flexible chain portions (spacers) into the main chain to aid 

the solubility and decrease the transition temperature (see Fig. 
2.18b). 

with lower  melting temperatures. 

~ide-chain liquid crystal polymers are obtained by  fixing  mesogenic units 
as side substituents of  flexible  polymer chains, commonly polyacrylates 
and polysiloxanes. The bonding of  rigid rod type  mesogenic groups 
directly onto the flexible main chain does not lead to LC mesophases, 
because, due to steric i ~ p e d i ~ e n t s ,  the arrangement of mesogenic moi- 
eties  does not take place.  Nevertheless, the attachment of  mesogens to the 
main chain via  flexible spacers stabilizes the ordered mesophase (5) (see 
Fig. 2.21). When  alkyl chain spacers are used and the main chain is 
sufficiently long, smectic mesophases can be  observed that, when the 
temperature is increased, can pass through a nematic mesophase to the 
isotropic liquid state. In side-chain LCs, the order of the mesophase can 
persist  when the mesophase  is  cooled  quickly to below the glass transition 
temperature; thereby it is  possible to obtain a nematic (or smectic)  glass, 
i.e., a rigid phase displaying the order and anisotropic properties of the 
LC phase. This characteristic makes them  useful as materials for storing 
information. Unlike main-chain LC polymers,  side-chain LCs do not 
possess such good mechanical properties, but their optical behavior- 
particularly their response to electric and magnetic fields-makes them 
useful as materials for nonlinear optics (mixers,  amplifiers, and frequency 
modulators). 
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SMECTIC  NEMATIC 

CHOLESTERIC 

Side-chain LCPs organized in different mesophases. 

The  introduction  to this chapter made  reference to the absence of long-range 
molecular order in amorphous polymers as being the characteristic differ- 
entiating them from crystalline polymers. Depending on  the tem~erature 
and structure, amorpho~s polymers exhibit different types of  physical and 
mechanical behavior. In a molten  polymer the molecular  segments inter- 
change  places  because  of the high possibility of conformational changes 
caused by thermal excitation. In a solid amorphous polymer, the movements 
of the chain segments are vibrations around fixed positions. When the tem- 
perature increases, the amplitude  of the vibrations increases, transmitting a 
rise  in tension to the intermolecular interactions. If the temperature con- 
tinues to increase, a growing fraction of chain segments acquire enough 
energy to overcome these intermolecular interactions. Stronger modes of 
movement appear  that involve the rotation  and  translation of chain term- 
inals and chain segments or loops incorporating  about 10 bonds (Fig. 2.22). 
These  movements are  an  important mechanism for energy absorption, 
thereby imparting  toughness to the material. A  temperature  can  be  assigned 
to each  polymer at which, during the observation time of the experi~ent, 
these movements start  to be detected. This tem~erature is the glass transi- 
tion temperature, T' (7,24,25). At temperatures  below T', the polymer 
maintains the disordered nature of the melt but lacks molecular mobility; 
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Movements of chain teminals, loops,  and segments in the glass 
transition temperature range. (From Ref. 24.) 

it is in the “glassy” state. This state is distinguished from the molten state in 
one aspect only:  immobility of the molecular chains, which are frozen into 
  on extended conformations in contrast to the crystalline state. At tempera- 
tures above T’ the polymer  is  easily deformed due to the partial flexibility of 
the chains. There is therefore a drastic change in the rigidity and, in general, 
in the mechanical properties of  polymers at 27’. The ability to  adopt the 

state is not confined to  amorphous polymers.  Any polymer, if it is 
suf~ciently below the melting temperature T, without crystallizing~ 

will undergo a glass transition. ~emicrystalline polymers  display a glass 
transition, but the changes  in properties at Tg are normally less pronounced 
than in fully amorphous polymers. At temperatures between TnZ and T‘ the 
solid consists of  rigid crystallites and an am phous fraction of  low mod- 
ulus, so it will  be both flexible and tough. low Tg the solid comprises 
crystalline and glassy  regions. 

Let us assume an experiment  consisting in cooling a liquid  polymer until it 
solidifies. Figure 2.23 shows the evolution of the process  in a V / T  diagram. 
In some  polymers, such as highly crystalline polyethylene, crystal~ization 
cannot be prevented and the path followed  in the solidification  is that 
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~ o l u ~ e - t e ~ ~ e r a t u r e  dependence for glassy and highly  crystalline 
polymers. 

y curve 1 in the figure. ~morphous  polymers and even  some 
crysta~line polymers,  when  cooled  quickly,  follow path 2, i 
phase ~ersists until the liquid-glass tra 
the glass  transition^ the slope of the 
than those corres~onding  to the liq 
n o ~ a l l y   ons side red to be the temp 
straight lines corres~onding  to the liquid and glassy 

S zone,  while the crystalline  regions 

S as the polymer expands, e~hibits both melting 

simply a relaxation phenomenon where  slow  kinetics  does not allow the 
structural relaxation to the~odynamic  equilibrium within the experimen- 
tal time  scale. 
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Figure 2.24 Specific volumetemperature dependence for semicrystalline poly- 
mers. 

Glass transition has kinetic characteristic. As illustrated by Figure 2.25, 
the polymer cooled from the liquid to the glassy state follows the path ABC; 
if it is cooled at a slower rate, the polymer will follow the path AB’C’, in 
such a way that Tg is lower when the rate of cooling decreases (26). The 
kinetic nature of the glass transition can also be revealed by analyzing 
Figure 2.26, which shows the variation of volume with time (27). The curves 
correspond to the following sequence of experiments. The polymer initially 
at one temperature T’(T‘ > Tg), is cooled to another temperature, TI’ 
around Tg. At TI’ the volume is not constant with time, as shown by the 
various curves of Figure 2.26. In the glassy state the polymer continues to 
shrink with time, and the magnitude of that shrinkage depends on how far 
the temperature TI’ is from Tg. Therefore, the volume that is determined in 
the glassy state at each temperature depends on the time elapsed from the 
moment when the polymer was cooled until T” was measured. 

The decrease in volume with time in the glassy state indicates that, 
though slowly, conformational changes do take place over time, leading 
to greater density and an increase in brittleness. The changes in physical 
properties of glassy polymers when they are held at temperatures below their 
Tg is known as physical aging. In relation to physical aging, two aspects 
have to be taken into account. On the one hand, to obtain reproducible Tg 
data it is necessary to maintain the polymer sample at the measuring tem- 
perature for the same time. On the other hand, physical aging provides 
changes in mechanical properties (slow stiffening) that have to be considered 
in design. 
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Figure 2.25 Specific volumetemperature dependence for poly(viny1 acetate) as a 
function of cooling rate. 

It is worthwhile to comment on the temperature dependence of the first 
derivatives of volume and enthalpy. The first derivative of volume is the 
thermal expansion coefficient, a. 

(2.10) 

Log t 

Flgure 2.26 Volume-time dependence at different temperatures near the glass 
transition temperature. 

, . , .,... .." .,.l..l..,..,...^.,..l ,,l.l .,.,.. ,",.^." .,_.., l,,"." " ,..,, . I. / . . . I .  1. .. . I .. , ,"  "*~,, .. 

Administrator
v



62 

Volume (V), enthalpy (H), expansion coefficient (a), and  heat  capa- 
city (C,) as a function of t ~ ~ ~ e r a t u r e  near Tg. 

.27 shows both the V--T and a-T curves. t can be  seen that  at Tg 
is a discontin~ous change in t thermal expansion coefficient. Thus, 

lypropylene (T' = - 1 ), the themal  ex~ansion coefficient a 
t below T,) is 2.2 x 
e coeffi~ien~ a for the glass 
line  polymer at the same te 
for the first derivative of 

function of temperature. These changes in 
methods to determine T'. The Cp-T or a-- 
correspond to the c g process; if a heating process  follows, different 
curves  of Cp or a would  be obtained, due to the ~inetic 
the glass transitio values  of T' reported in the literatur 

lymer can vary around an interval of 10-15°C; this is a conse~~ence of 
e de~endence of T, on the time  scale  of the experiment and on the mea- 

igure 2.28 shows the variation of  viscosity r\ with te~perature for a 
s ~ ~ e m e n t  technique. 

olymer (28). In spite of the enormo~s change i in passing thro 
lass transition, the behavior is q~alitatively analo us to that seen for 

ne  of the most suitable approxi~ations for analyzing the glass transition 
concerns the free  volume. The free  volume  is the space in a solid or liquid 
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not occupied by  molecules; i.e., it is the empty space existing  between  mole- 
cules. In the liquid state the free  volume  is large, so molecular  movements 
occur  easily (the unoccupied  volume facilitates the mobility of the mole- 
cules)? and  the molecules are therefore able to change their conformation 
freely.  A drop in  temperature  reduces the thermal  energy available for 
molecular motions. The free volume  is  sensitive to changes  in temperature; 
thus the thermal  expansion  of the solid or molten  polymer can be explained 
by a change in free  volume.  When the temperature of a molten  polymer  falls, 
the free  volume shrinks until it is too small to allow long-range cooperative 

rownian) motions. The  temperature at which this occurs is T'; 
below T' only local confo~at ional  changes are permitted, and conse- 
quently the free  volume  shows a negligible  temperature  dependence. 

The  situation discussed  above  is  shown schematically in Figure 2.29. 
The free volume, V,, is represented by the shaded area; it  can be  seen that V, 
remains constant below T' (it is denoted V;) and increases with  temperature 
above T'. The total volume of the sample, V ,  is the volume  occupied by the 
molecules, Vo, and  the free  volume V''; V = V. + V,. The free  volume frac- 
tion, f, is  defined as V,/ V .  Above Tg there will  be a considerable coFtribu- 
tion of Vj- due  to the expansion of the melt. The free  volume at temperatures 
greater than T' will  be  given  by 

(2.1 1) 

and dividing by V ,  
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T 

Scheme  of the variation.  of the specific  volume  of  a  polymer  with 
temperature.  The free  volume  is  represented by the  shaded area. 

wheref,  and& represent the free  volume fraction at any  temperature  above 
T' and at Tg, respectively; af is the thermal  expansion  coefficient of the free 
volume,  which  can be assumed constant  for temperatures  slightly  above 7''; 
i.e., the increase of f  with T is  assumed to be linear and consequently 
A f / A T  = constant = ay. 

The  free  volume  has  been  introduced intuitively, relating it  to the 
gaps that allow conformational changes in the solid. It would therefore 
be  possible to obtain f from  the difference  between the geometric  volume 
of the segments and  the  total volume. Nevertheless, this type of calcula- 
tion is not useful, as the free volume for molecular  movement  does not 
exactly coincide with the empty space in the solid. The concept of  free 
volume  is related to the occurrence of  macromolecular motion  rather 
than  to the existence  of gaps. For this reason, the free  volume fraction 
is an empirical parameter whose value is determined on the basis  of 
experimental results. 

cal  assumption (29), which states that the viscosity, q, at 1" > Tg is related to 
the free  volume fraction by the  equation 

The free volume theory of  glass transition is  based on 

(2.13) 

where A and B are  constants. 
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From Eq. (2.13), 

1 l n q = l n A + B -  
.f 

(2.14) 

where f clr: V f /  Vo, given that V. >> Vf 

viscosity at T', then Eq. (2.14) leads to 
If qr corresponds to the viscosity at any temperature T ,  and qrg to the 

In (2.15) 

earrangement of this equation gives 

(2.16) 

(2.17) 

where the constant B is  close to unity. Equation (2.17)  is one form of the 
illiams-  an del-Ferry (l") empirical correlation (30) and can be stated 

as a function of  universal parameters, giving 

7"- Tg 
C,  + T - T' logal. = C1 (2.18) 

The constants Cl and C2 are nearly universal and, within a reasonable 
degree  of approximation, are valid for many polymers, taking the values 

, respectively. From the value  of Cl it can be  deduced that 
the free  volume fraction, fg, at the glass transition is approximately 0.025. 
When the free  volume fraction falls to this low  value it seems that the 
confo~ationa1 changes in the solid  cease to occur. The value  of C2, 
together with &, = 0.025,  allows the thermal expansion coefficient o 
free  volume to be known, which turns  out to be af 4.8 x 
valid for the great majority of polymers. 
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The influence  of factors such as chemical structure, molecular weight, cross- 
linking and plasticizers in the glass transition of  polymers can be related to 
the changes that they provoke on the free  volume fraction, which, as we 
already know,  reaches a critical value at the glass transition temperature. 
The factors affecting the glass transition can be  classified into two  types: (1) 
molecular factors, i.e.? those related to the chemical structure of the polymer 
chain, and (2) external or controllable factors. 

(a) ~ a i n   ~ h ~ i n  

The effect of the chemical nature of the main chain of the polymer on the 
glass transition temperature is  similar to the effect that it has on the melting 
temperature, Tm. The chemical structure has a determining influence on 
the flexibility  of the chain. For example,  polymers such as polyethylene, 
- CH2 -)n, and polyoxyethylene? (- 

latively  flexible chains as a result of the ea 
their chain bonds. Thus they  have  low  values  of T' and Tm, as can be 

able 2.3. The incorporation into the main chain of units that hinder 
rotation and consequently increase the rigidity  of the chain clearly  causes a 
large increase  in T'. For example, the incorporation of a  phenylene ring 
(Ph) into the monomeric unit of polyethylene  gives po1y~-xylylene), which 
has a Tg of around 353 K (see Table 2.3). 

(b) ~i~~ Groups 

In vinyl  polymers, (- C ~ CHR-),, the nature of the side group R has 
as a result of restrictions on the rotation of the 

nflexible, and bulky  side groups cause an increase in 
rigidity,  while  flexible  side groups have not marked effect. Table 2.4 presents 

Values of 7"' and T, for Various Polymers 

"H2-CH2- 140-270 4 10-4 19 
"CH2"CH~"O- 206 340 
-CH2-Ph-CH2- 353 670 
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Values  of Tg for 'Various  Polymers (- CH2 - CHR-), 

Side group R Tg (To 

250 
373 
354 
358 
370 
241 
272 
356 

the values  of T, for several polymers of the general formula ( -C 
with different types  of substituents R (7). The last three examples 

how the flexibility  of the molecule  varies according to the degree  of 
compactness of the different isomers  of the butyl radical, leading in the case 
of  poly(viny1 tert butyl ether) to a considerable increase  in 7"'. 

n-alkyl ethers of the general formula (- C 
represents an n-alkyl group (24), are given 
re observed as the length of R' increase. The rise  in the 
iated with an increase  in  free  volume at a given  tem- 

affects 2"''. It might be  expected that polyisobutylene, 
-)n, would  have a Tg greater than p 
) - )n ,  as a consequence  of the two - 

perature. 

ded to the backbone, which  would tend to increase the chain rigidity. 
this is not the case;  polyisobutylene  is a rubber that has a T' of 

--71"C,  while polypropylene presents Tg = -23°C. Another example  of 
how  symmetry  plays an important role in the Tg is  seen if  we compare 
poly(viny1 chloride) (7'' = 8 1°C) and poly(viny1idene chloride) 
(T, = -19°C)  (31). As a general  rule, it can be  said that  an increase  in 
symmetry produces a decrease in the glass transition temperature. 

T' of  Some  Poly(viny1  n-alkyl ether)s 

Polymer R' 

Poly(viny1  methyl ether) CH3 
Poly(viny1 ethyl ether) CH2CH3 
Poly(viny1  n-propyl ether) CH2CH2CH3 
Poly(viny1  n-butyl ether) CH2CH2CH2CH3 

- 10 
-17 
-27 
-32 



If the different tactic configurations of a single  polymer, for example, 
poly(methy1 methacrylate), are considered the lowest  value  of T' corre- 
sponds to the isotactic polymer. At T T' the specific  volume  of the iso- 
tactic polymer  is  lower than  that of the atactic one, and the free  volume 
fraction is the same for both polymers; therefore the volume  occupied  will 
be  less in the isotactic polymer. Nevertheless, at T > Tg, both tactic config- 
urations have  similar  specific  volume; consequently the temperature at 
which  the  free  volume  is equal to 0.025  of the total volume  is  lower  in the 
isotactic form than in the atactic one. 

(c) ~ o l a r i ~ y  of the Chain 

The glass transition temperature rises  with the polarity of the polymer chain. 
It is  assumed that the decrease in the mobility of the chain in this caseais due 
to an increase in inter~olecular forces. Table 2.4 shows  how the presence  of 
polar groups such as -Cl, -OH, or - CN tends to increase T' more 
than do nonpolar groups of equivalent size. Polar interactions considerably 
restrict rotation; hence  poly(viny1 chloride), (- CH2 - CHCl has a Tg 
higher than  that of polypropylene, (- CH2 - CH(CH~) 

The chemical factors controlling T' that have just been  discussed  will 
also have an effect on Tm, given that both temperatures are controlled by the 
rigidity  of the main chain. It is not surprising, therefore, that a correlation is 
found between Tg and Tm in  semicrystalline polymers, In these  cases,  when 
the temperatures are stated in kelvins, the value of T' generally  falls  between 
0.5 and 0.8Tm (32). Figure 2.30  shows Tm vs. T' for various polymers such 
as polyethylene, polypropylene, polystyrene, and poly(ethy1ene  oxide),  illus- 
trating this behavior. This demonstrates that in homopolymers it is not 
possible to independently control 7'' and Tm. Nevertheless, this is  indeed 
possible  in copolymers. For example, in random copolymers of  nylon 6.6 
and nylon 6.10, Tg varies  very little with  respect to the T' of the two 
homopol~mers, since the rigidity  of the main chain hardly changes. 
However, the irregularity introduced into the main chain in copoly~eriza- 
tion will  reduce the ability  of the chains to crystallize, and as a consequence 
the melting temperature Tm of the copolymer will  be lower than  that of the 
homopolymers. 

(a) ~ f f e c t  of Pressure 
When a polymer is at a temperature above its glass transition temperature 
and it is  subjected to a compression, the free  volume  decreases, T' therefore 
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T, vs. Tg for various polymers. (From Ref. 32.) 

rises, and the polymer will thus be  closer to its glass transition temperature. 
In general, T' of polymers  increases  by around 20°C per 1000 atm of pres- 
sure. For small pressure changes, the effects are clearly negligible. So the 
effect  of pressure of Tg becomes important only in the case  of applications at 
very  high pressure. Glass transition can also be  observed as a function of 
pressure at constant temperature. Experiments  could therefore be  performed 
to measure, for example, the specific  volume as a function of pressure in 
order  to  obtain the glass transition pressure. 

(h) ~ f f e c t  of ~ o l ~ c ~ l ~ ~   ~ e i g ~ t  
The dependence of T' on molecular  weight  can  be  expressed  according to 
the  equation (33) 

(2.19) 

where K is a constant  and Tr is the limit value  of Tg for M;' -+ 0 
(ME -+ 00). This limit value is  normally  reached for values  of ME on the 
order of lo5. This equation can  be  deduced from the free  volume theory, 
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taking into account that terminal bonds are associated with more free 
volume than the intermediate ones. This can be  explained  by considering 
that terminal bonds have greater mobility and each chain termination is the 
cause of an imperfection in the packing of the solid. 

Let us consider a polymer  of density p and molecular weight MR. In this 
case, the number of chains per unit volume  is p(NA/MR); thus the number of 
chain terminals per unit volume  is 2p(NA/M,), where NA is Avogadro's 
number. If the contribution of one chain terminal to the free  volume  is 
represented by 8, the total free volume fraction due to the chain terminals, 
f,, is  given  by 

(2.20) 

If a polymer  with this value off, has a glass transition temperature Tg, then 
fc will  be equivalent to the increase  in the free  volume that occurs when the 
polymer  is thermally expanded between Tg and T'. This means that 

where af is the thermal expansion coefficient  of the free  volume. Combining 
qs. (2.20) and (2.21) gives the expression 

(2.22) 

his equation has the same form as (2.19) with K = 2pNA/af.  
Figure 2.31a represents the variation of Tg vs. A4L1 for polystyrene. The 

slope  of  this straight line can be  used to deduce the value  of 0, since NA, a, 
and p are known. It is obtained that 8 = 80 A3, a value approximately equal 
to half the size  of the styrene monomer unit. Figure 2.31b shows a plot of 2"' 
vs. M,; as can be  seen, the effect  of the molecular weight on T' has very little 
importance when the molecular  weight  is  high (M > lo5). 

nching has a significant  influence on the glass transition tempera- 
small number of branchings in a polymer  reduces the value  of Tg. 

This fact is analyzed again based on the free  volume theory; therefore, 
according to earlier statements a branched chain of a polymer  with a num- 
ber y of chain terminals will  have a glass transition temperature given  by 

(2.23) 
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Dependence of  the  glass  transition  temperature as a  a  function of  the 
molecular  weight (b) and  its  inverse  (a). (From Ref. 33.) 

where T? is the glass transition temperature of a linear chain of infinite 
molecular mass. he linear chain has two terminals, so the number  of 
~ranchings per chain will  be y - 2. Equation (2.23) is valid only  when the 
number of branchings  is  low. A high  branching density will  have the same 
effect as side groups; i.e., it will restrict the mobility of the chain and there- 
fore increase T'. 

(c) ~ f f ~ c ~  of ~ r ~ s s - ~ i n k i n ~  on Tg 

olymers  with strong intermolecular interactions present high  glass transi- 
on temperatures, because great energy  is required to separate their chains. 

~ross-linkings constitute the strongest intermolecular interactions; they 
form real chemical  bonds. As the cross-link density increases, the free 
volume decreases, and Tg consequently  rises  because the molecular mobility 
is  more hindered. igure 2.32 shows the variation of the specific  volume  with 
temperature for a series  of styrene polymers cross-linked with different 
amounts of  divinylbenzene  (see  Sect.  1.2). It can.  be  seen that the transition 
tem~eratures are shifted toward higher values and the transition zone 
broadens as the divin~lbenzene  content increases (34). The  effect  of cross- 
linking on T' is the inverse to  that implied  by a decrease in  molecular 

ormally, the  introduction of cross-links into a polymer  is  accom- 
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Effect of cross-linking on the glass transition temperature of the 
system styrene with  divinylbenzene. (From Ref. 34.) 

plished by the addition of a specific cross-lin~ing agent that can be regarded 
as a comonomer. Consequently, two  effects  have to be considered: on the 
one hand, the copolymer effect (as a result of the incorporation of a second 
unit), and on the other hand, the cross-linking effect. Both are considered in 
the equation 

where M is the molecular weight  between  cross-links, Kx is a constant, and p 
is the number of cross-links per gram. This equation is analogous to  that 
obtained for the relation between T' and molecular  weight  [Eq.  (2.19)], but 
it includes a further tern, K&. 

(d) ~omogeneous C o ~ o l y ~ ~ r  Systems and ~ i s ~ i b l e   ~ i x t u r e s  
The introduction of a comonomer into a polymer  influences the glass transi- 
tion temperature. In general, a random copolymer of  two monomers with 
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different 2"' values has a glass transition temperature intermediate between 
those of the homopolymers. These random copolymers behave as regular 
polymers,  showing a single  glass transition temperature. Such  is the case 
also for miscible mixtures of  polymers or polymer  blends. The dependence 
of Tg of a random copolymer, or of a miscible  polymer mixture, on the 
composition can be predicted. Various equations have  been proposed for 
expressing this dependence  based on the assumption of additivity of  free 
volume.  One  of the simplest  is the classic  rule  of mixtures of Di Marzio and 
Gibbs (35),  whose  expression has the form 

(2.25) 

where wi represents the weight fraction of the comonomers in the copolymer 
or the weight fraction of homopolymers in the mixture, and Tgi represents 
the glass transition temperature of the homopolymers. 

Another simple equation frequently used  is that proposed by Fox (36): 

(2.26) 

This model presupposes homogeneity  in the case  of copolymers and in 
polymer mixtures, that is, random distribution at the segmental  level. It 
has been  considered that it represents the ideal behavior of  miscible  polymer 
mixtures, on account of  which deviations of experimental data  from this 
prediction have been  used as a criterion to indicate the strength of interac- 
tion among the components in the amorphous phase of the mixture, This 
equation is  nevertheless not applicable to block or graft copolymers. In their 
case a 2"' value  is obtained for each component if the blocks or graft 
branching are sufficiently large, allowing each type  of homopolymer to 
segregate into its own  region. 

(e) Plasticizers 
The glass transition temperature of  polymers  decreases  when a liquid  such 
as  an organic solvent or water is  mixed  with them. Liquids added to poly- 
mers to make them suitable for practical purposes, e.g., softer and more 
flexible at ambient temperature, are known as plasticizers.  These substances 
are generally  low  molecular  weight organic compounds, weakly polar, with 
glass transition temperatures in the range of -50 to - 150°C and high  boil- 
ing points, on the order of 300"C, to prevent evaporation losses.  Weakly 
polar esters are good  plasticizers  because  they tend to be  miscible  with many 
polar and nonpolar polymers. The most commonly used  plasticizers are 



obtained from  phthalic acid and include diethyl, dibutyl, and n-dioctyl 
thalates. These compounds  act by weakening the inte~olecular interac- 
ns by means of a solvating action. Plasticizers  reduce the T’ and Tm of 

polymers, making them softer and  more ~exible, by distributing their mole- 
cules through  the polymer and  separating the chains. In  addition  to this 
physical action,  the intermolecular interactions  among  the chains are wea- 
kened,  because interactions  are hindered at the points where the plasticizer  is 
located. 

Figure 2.33 illustrates how the Tg and Tm of  poly(viny1 chloride) vary 
with the plasticizer content (37). Note how Tg falls faster  than Tm. In this 
case  miscibility  lirnits the plasticizer content  to approximately 40%. The 
effect of plastici~ers  in reducing the Tg is interpreted as  being due to  the 
increase of free  volume of the system. y assuming that the free  volume of a 
plasticiz~r system  is the average of the free ~ o l u ~ e s  of the components, one 
can write 

Variation of thermal  transition te~peratures of poly(viny1  chloride) 
with plasticizer  content. 
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wheref,  is the fraction free  volume  (0.025) at the glass transition tempera- 
ture, af and ap and T' and T' are, respectively, the expansion coefficients  of 
the free  volume and the glass transition temperature of the polymer and 
plasticizer,  respectively, up and f are respectively the volume fraction of the 
plasticizer and the fractional free  volume  of the plasticizer  system at tem- 
perature T. According to the free  volume theory, the fractional free  volume 
of the plasticized  system at its glass transition temperature T' is fg. 
~ubstituting T for 7"; and f for fg in Eq. (2.27), the following  expression 
is obtained, which relates the glass transition temperature to the plasticizer 
content: 

(2.28) 

lasticizers  of  low  molecular  weight  have a disad~antage due to their 
volatility and the facility  with  which  they  diffuse. This fact has provoked 
the development  of  polymeric  plasticizers, formed by polymers of  low F'' 
and miscible  with the base polymer, which provid 
processing, and give the material longer service. 
predurability in relation to plasticizers  of  low m 
plasticizers are specially  useful for  food, electrical, and medical applica- 
tions. A typical  exa  of  polymer  plasticized  with  these materials is 
pol~(viny1 chloride) ) with copolymers of  ethylene  vinyl acetate 
(EVA). 

Crystallinity also affects the glass transition temperature. The F'' of t 
amorphous phase in a polymer depends on the degree  of crystallinity. 
some  cases, for example, in poly(ethyleneterephthalate), when the de ree  of 
crystallinity increases from 2% to 65Y0, Tg rises from 80°C to 125 
other  hand, in the case  of  poly(4-methylpentene),  when the degree 
linity  increases from 0% to 76%, Tg drops from 29°C to 18" 
increase or decrease  with the degree  of crystallinity; there is no universally 
accepted explanation for  it. It has been  suggested that  it could dep 
relative  densities  of the amorphous and crystalline phases (38). 
the crystalline phase has the higher density at Tg, the molecular chains that 
belong to the amorpho phase are restricted by the immobile crystalline 
phase, and T' increases.  hen the crystalline phase has a lower  density (rare 
occasions) than the amorphous phase, the entropy increases and Tg 
decreases. 
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emonstrate that the extended planar zigzag conformation of crystalline 

Data: C - C - C angle l 12"C, C - C length 0.154  nm; atomic radius of 
polyethylene  is not permitted in crystalline polytetra~uoroethylene. 

= 0.075  nm; atomic radius of F = 0.135  nm. 

In the planar zigzag conformation of polyethylene  (see Fig. 2.2) the centers 
of the substituents (hydrogen atoms) of alternate carbons will  be separated 
by a distance 

2 x 0.154 x sin(112/2) = 0.255 nrn (P2.1 (I 1) 

The radius of a hydrogen atom is just 0.075 mm, which permits this  config- 
uration in polyethslene (2 x 0.075 = 0.15 nm 0.254nm). Fluorine atoms 
are bigger and take up more space than  that available (2 x 0.135 = 0.27  nm 
> 0.254  nm). Then the most stable conformation is  achieved  by means of a 
small distortion of the C- C - C bond angle (1 16"C),  giving  rise to 13/1 
helixes as illustrated in Figure 2.3. 

For a single crystal of  polyethylene  of  thickness 12 nm, estimate the number 
of monomer units in each section  of chain in the extended  zigzag conforma- 
tion as well as  the number of folds of a chain of molecular  weight M = lo5 
g/mol. 

Data: C-C  length=0.154 nm; C-C-C bond angle= 112". 

Each monomer unit, - CH2 - C - , occupies a length of extended chain 
given  by 

I = 2 x 0.154 x sin(112/2) = 0.255nm (P2.2.1) 

Therefore, there are 12/0.255 = 47 monomer units in each section. 

be  105,000/28 m 3571 ethylene units in the chain. 
Since the - CH2 - CH2 - unit possesses a mass  of 28 glmol, there will 
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Assuming that in  each chain there are the same  number of extended 
sections, x, as bends or folds, 

3571 = 47x + x (P2.2.2) 

so there are x - 74 folds in  each chain. 

Calculate the density of syndiotactic poly(viny1 chloride), PVC, knowing 
that it crystallizes  in the orthorhombic system, a = p = y = go", 
a = 1.040nm, b = 0.530  nm, c = 0.510  nm, and  that in  each  cell there are 
four monomer units (- CH2 - CHCl-). 

Data: Atomic  masses: C = 12, H = 1, Cl = 35.5  amu;  Avogadro's  con- 
stant = 6.023 x IO23 mol-'. 

Mass of one  monomer unit = 62.5  g/mol 
Mass of the unit cell = (4 x 62.5)/(6.023 x = 4.15 x g 

Density=M/V = 4.15 x 10-22/(1.04 x x 0.53 x X 0.51 X 

= 1 .47  g/cm3. 

The theoretical density of 100% crystalline polyethylene is I g / ~ m - ~ ,  and 
that of amorphous polyethylene is  0.865 Calculate the crystallinity 
of a sample of density 0.97 

From Eq. (2.1), 

(0.97)" = X, X 1 + (1 - x,)/0.865 

Then x, = 0.80, and the polymer is 80% crystalline. 

(P2.4. l )  

The lattice constants  for  orthorhombic polyethylene have  been  determined 
as a function of temperature: 



Lattice constants (nm) 

T(I0 U b c 

4  0.712 0.485 0.255 
77 0.71 5 0.490 0.255 

293  0.740 0.495 0.254 
303  0.741 0.494 0.255 

lculate the coefficient  of  thermal  expansion at 293 
y is the  constant e virtually independe~t of temperature? 

(a) The volume  of the unit cell for the orthorhombic  crystalli~ation 
system  is Y = abc. Figure .5.1 shows a plot of ersus T. From  the 
slope of the straight line; d dT = 1.74 x nm3 therefore the ther- 
mal  expansion  coefficient, a, at 293 

l dl/ 
V dT 

a = - - = 1.87 x ~ o - ~ K - '  (P2.5.1) 

stant c is the length of the orthorhombic cell in the direction 
refore it will depend on the C-C-C bond angle, so it is 

inde~endent of temperature 

0 .o 
0 
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oly-E-caprolactone (- O -(CH2), -CO -)n, PCL, is a crystalline poly- 
mer  of density l .  1 g / ~ m - ~ .  When a sample of molecular weight M = 50,000 
g/mol is  blended  with amorphous poly(viny1 phenol), PV 
weight  1500 g/mol and density  1.2 g/cm, homogeneous mi 
The table below  gives the values determined for the melti 
a function of the volume fraction poly(viny1 phenol), v3. 

v3 Tin (m 
0.3  327.0 

0.25 329.7 

0.225  330.6 

0.15 333.0 

Calculate the melting point of pure PCL and the value  of the polymer- 
polymer interaction parameter, knowing that AH2u = 3690 cal/mol. 

Figure P2.6.1  shows the plot of l/Tm versus v:. According to Eq. (2.9), the 
value  of the intercept gives the melting point of pure PCL. Ti = 335 
slope  is 7.7 x K."', which  allows the evaluation of ~ 3 2 .  From the mole- 
cular weights  of the monomer units and the corresponding densities, one 
obtains = 102 cm3/mol and Vju = 100cm3/mol. Then from Eq. (2.9), 

1 
0 0.02 0.04 0.06 0 . 0 ~  0.1 

212 
3 
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This negative  value indicates a strong polymer-polymer interaction that 
occurs via hydrogen bonding among the hydroxyl groups of  poly(viny1 
phenol) and the carbonyl groups of PCL. Polymers are miscible  only 
when strong interactions are established among them, since the mixing 
entropy is  very  small due to their large size. 

The glass transition temperature, T', of a linear polymer  with number-aver- 
age  molecular  weight Mn = 3000  is 100°C. The value  of T' increases to 
130°C for a sample of the same linear polymer  with M, = 10,000. A 
branched sample of this polymer  with Mn = 6000 has a T' of 90°C. 

etemine the average number of branchings on the branched polymer. 

If we apply the relationship between T' and molecular  weight, Eq. (2.22), to 
both linear polymer  samples  of number-average molecular weights  3000 and 
10,000, then we have 

(P2.7.1) 

(P2.7.2) 

which  leads to 

" - 128,573; TT = 415.9K 

y substituting the data obtained above into Eq. (2.23) and taking into 
account that Tg for the branched polymer  is 90°C and ME = 6000, we obtain 
a number y of chain terminals equal to 5. As a linear chain has two term- 
inals, the number of branchings per chain, y - 2,  will  be  3. 

Calculate the glass transition temperature, T' for a noncrystalline ethylene- 
propylene random copolymer that contains 20 - CH3 groups per  100 main- 
chain carbons, knowing that it reduces the degree  of crystalli~ity of the 
copolymer to 0%. 
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Data: Tg for  PE = - 120°C; Tg for PP = - 19°C;  molecular  weight  of 
monomeric units: 42 (PP) and 28 (PE). 

The Tg of a random copolymer  is  expressed by Eq. (2.28) (Fox equation). 
First we  need to calculate the weight fractions of the comonomers in the 
copolymer.  The  copolymer  has 20- CH3 groups per 100  main-chain 
carbons, which  means that its content is 40% propylene  comonomer, 
and  as a consequence the weight fractions of the comonomers will  be 

0.4 x 42 
= 0.4 x 42 + 0.6 x 28 = 0.5 

and 
0.6 x 28 

=L: 0.4 x 42 + 0.6 x 28 = 0.5 

Then 

(P2.8.1) 

(P2.8.2) 

(P2.8.3) 

As a result the T' of the copolymer  is  191.2 K, or -82°C. 

The refractive index, n, of a polymer  was  determined as a function of tem- 
perature. The results obtained  were as follows. 

20 
30 
40 
50 
60 
70 
80 
90 

l00 
110 
120 
130 

1.5913 
1.5898 
1 .5883 
1.5868 
1.5853 
1 S838 
1 S822 
1 S801 
1 S766 
1 S725 
1.5684 
1,5643 

Determine the glass transition temperature  of the polymer.  Notice that 
nwp" where p is the density. 



f we plot the graph of n against T, we obtain Figure P2.9.1. The equations 
corresponding to straight lines  1 and 2 are, respectively, 

y = 1.595 - 1.544 x 10-4x and y = 1.418 - 4.10 x 10”4x 

The intersection of the two  lines  gives a value  of  90.7”C,  which corre- 
sponds to the glass transition temperature. 

The plasticizer  tri-m-tolyl phosphate is added to polystyrene to make it more 
flexible at ambient temperature. Determine the glass transition temperature 
of the polymer  when the plasticizer content is  30% v/v. 

~~~~: Expansion coefficient  of  polystyrene  (PS), af: 5.1 x OC-’. 
xpansion coefficient  of  tri-m-tolyl, a,: 8.5 x “C-’. Density of P 

1.04 g/cm3 at 25°C. Density of tri-m-tolyl phosphate, p = 1.189 - 8.274 x 
~ o - ~ ( T  - 273). 

he  effect  of  plasticizer in reducing T’ is interpreted as the increase in the 
free  volume  of the system. According to the free  volume theory, we apply 

g* S2.28>, 

1. 

1. 

0 50 100 f50 
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(8.5 x 10-4)(T' - 203)(0.3) 
373 - T' = (5.1 x 10-4)(1- 0.3) 

(P2.10. l) 

Resolving the equation we obtain 2"' = 302 K. 
This result can be compared with the one obtained considering that the 

polymer-plastici~er system  follows the Fox equation [Eq. (2.28)]. To apply 
this equation we must calculate the weight fractions of the components, 

(P2.10.2) 

where q ,  v2 are the volume fractions of the components and pl,  p2 are the 
densities  of the com~onents. The calculation of the weight fractions gives 
the result 

W plasticizer (wl) = 0.33; W polymer (w2) = 0.67 

Applying the Fox equation, 

1 0.33  0.67 
T' - 203 $'m "- (P2.10.3) 

The value for Tg obtained from this expression is 292. 
observed, there is a significant  difference  between the two results (around 
10°C). 
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The tern “elastomer”  is currently applied to a set  of  polymeric materials 
that possess exceptional elastic properties similar to those of natural  rubber. 
These properties can  be  summarized as (1-3) 

1. Capability for  instantaneous  and extremely  high  extensibility 

2. Elastic reversibility,  i.e., the capability to recover the initial length 
under low mechanical stresses. 

when the deforming force is  removed. 

In theory, it is not difficult to associate this elastic behavior  with the 
molecular structure of polymers. The  coiled conformation of polymers  is 
responsible for the anomalous macroscopic  deformation  observed in 

85 
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owever, to meet the conditions of instantaneous and reversible 
deformation, two related aspects have to be considered. On the one hand, 
instantaneous deformation implies that the chain has great mobility for 
reacting to external stimulus (mechanical  stress). This situation is  achieved 
only  when the glass transition temperature of the polymer  considered  is 
lower than the temperature of the experiment. On the other hand, during 
the deformation process the intermolecular forces  between the polymer 
chains are broken. These intermolecular intera ons are of a strength simi- 
lar to those corresponding to the liquid state. eaking the intermolecular 
force  would lead to permanent macroscopic deformation. Reversibility dur- 

the ~eformation process  is guaranteed by the presence  of cross-links 
between chains that prevent one chain from slipping  with  respect to the 
others. The structure of an elastomeric material is a three-dimensional net- 
work  of interlinked polymer chains. 

The sequence  of  steps leading the preparation of  polymer networks is 
shown in Figure 3.1. Figure 3.1 a shows two linear polymer chains that by 
means of a cross-linking chemical reaction, become joined together by the 
formation of a covalent bond. The chemical reaction gives a tetrafunctional 
c~oss-link, since there are four chains departing from it. Figure 3.2b illus- 
trates the process  shown in Figure 3. la as a global process  affecting  all the 
linear polymer chains that  are going to form the network. The appearance 
of cross-links in the network changes the signi~cance of the individual 
chains; therefore, when  referring to a polymer chain in an elastomer net- 
work, the number of monomer units between  two  consecutive cross-links 
must be considered. The cross-link density has a decisive  influence on the 

Covalent cross-linking reaction, (a) Cross-linking point between  two 
macromolecules.  (b)  Several tetrafunctional cross-linking points between macromo- 
lecular chains, which form a  polymer network. 



elastic behavior of the network, as demonstrated further below. 
formation of the network, imperfections or defects occur that  i 
mechanical behavior. The most common defects are illustrated i 
The first  of  these  defects consists of the formation of  physical entanglements 

ig.  3.2a). This defect contributes to the mechanical beha- 
way as chemical cross-links do. The second  defect  is the 

ning the beginning and end of the same chain, 
cross-link  of this kind makes no contribution 
network. Nor does the third type  of  defect, 

which consists of the formation cross-links connecting chains 
work by just one of their ends. ese chains (Fig. 3 .2~)  are calle 
chains. For the purpose of the theoretical treatments presented here, the 
elastomer network is  assumed to be structurally ideal, i.e.,  all network 
chains start  and end at a cross-link  of the network. 

The molecular  mechanism causing elasticity in elastomers differs  signif- 
icantly from that found in other materials such as metals or  c 
typical  tensile force~xtension curve for art elastomer is shown in 

he curve displays three different regions;  in the low defor~ation region 
ation between the tensil force and the strain, i.e., the 
n; this region  extends up  to a deformation of approxi- 

e high deformation region (up to 600%), the elastic beha- 
nonlinear and is related to the confo~at ional  entropy 

produced during the deformation process. Finally, the abrupt increase  in 
for deformation above 6 0 0 ~  is due to the extensibi 
and to a strain-induced crysta~li~ation process, 

oriented polymer chains of the network under high deformation facilitate 
the formation of crystals, which  increase the strength of the elastomer. 

Types of network defects. (a) Physical entangle~ent; (b) looping; (c) 
terminal chains. 
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exten~ion ( X )  

Force-extension curve of a typical lightly  cross-linked rubber. 

This chapter is  divided into two parts.  Throughout Secs 3.2-3.5, the 
fundamental concepts of rubber elasticity are reviewed  in order to under- 
stand elastomeric behavior. The deformation process observed at the 
macroscopic  level  is  connected  with the changes  in the thermodynal~ic 
quantities internal energy and  entropy in Sect. 3.2. Also, the relation 
between the imposed stress and conformational  changes  undergone by the 
network chains is analyzed in  Sects 3.3 and 3.4. The swelling equilibrium of 
elastomeric networks  is  reviewed  in Sect. 3.5. Scientific interest in these 
materials arises from their great applicability as a result of their mechanical 
properties, which are unique and characteristic; therefore, different aspects 
in relation to engineering applications of  rubbers are dealt with  in Sect. 3.6. 

The  aim of the thermod~namic treatment is to relate the elastic force oppos- 
ing the deformation  of the elastomer to changes in energy and  entropy 
occurring during the process. 

Let us consider an elastic solid of initial length lo under a uniasial tensile 
forcef  that causes an infinitesimal deformation dl. The  work done  on the 
solid  is 
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Equation (3.1) has been  simplified  by omitting the contribution to the work 
from the change in  volume, dV, accompanying the extension dl. This sim- 
plification  is  justified  because the work  of expansion -P dV (P= atmo- 
spheric pressure) is three or  four orders of magnitude smaller than the 
term f dl being considered. Equation (3.1)  would  be totally exact if the 
process  were carried out under constant-volume conditions. 

For a reversible change at constant volume, the work done is equal to 
the change in the Helmholtz function, F :  

where U is the internal energy and S the entropy. Under isothermal condi- 
tions, Eqs, (3.1) and (3.2)  give the expression 

which relates the tensile force to changes in both internal and entropy per 
unit increase  in length in the deformation process. The uniaxial tensile  force 
f applied under equilibrium conditions will  be equal to the recovering or 
elastic force that the solid  experiences  when it opposes the deformation. 

With the aim  of evaluating the change in internal energy accompanying 
the deformation process, the entropy term in Eq. (3.3)  needs to be stated as a 
function of properties that can be determined experimentally. For this, we 
will make a simple thermodynamic deduction. According to the first  law  of 
thermodynamics, 

By substituting Eq. (3.4) into Eq. (3.2) we obtain 

d F = f   d l - S d T  

Therefore, 

( ~ )  =f and ( ~ )  = - S  
LT I 

Since F is a function of state: 
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and considering Eqs. (3.6) and (3.7), the important relationship 

is obtained, which  is substituted into  Eq. (3.3) to give 

f = ( ~ ) T + T ( . g )  I 

Equation (3.9)  allows the experimental determination of the two con- 
tributions to the elastic force. The entropic contribution, fs, 

.fs = T(.g I (3.10) 

can be obtained by determining how the elastic force  varies  with tempera- 
ture at constant elongation. Once the entropic contribution has been deter- 

ined, the energy contribution, fu9 is  immediately obtained from 
elrnholtz equation as 

f ~ = ( ~ )  =f-” (3.1 1) 

he application of Eqs. (3.10) and (3.1  1) requires the determination of the 
temperature coefficient  of the elastic force, keeping the volume, V ,  and 
length, I ,  constant during the experiment. In practice, it is simpler to conduct 
this experiment under constant pressure  (usually atmospheric pressure). In 
this case, instead of  using the exact equations, (3.10) and (3. l l), the follow- 
ing approximate expressions are used (2,4): 

(3.10a) 

(3.1 la) 

where h = l/lo is the elongation ratio. 

et us consider the tensile force necessary to deform vulcanized rubber in 
the temperature range 15-90°C and defor~ation interval 1--390% (5,6). 
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Stress at constant length as  a  function of temperature. E lon~~t ions  as 
indicated (5,6). (From Ref 5.) 

The experiment  is conducted under conditions of thermodynamic 
equilibrium, ensuring that the changes in the elastic force with te~perature 
are always  reversible. Figure 3.4 represents the results obtained for the 
experiment  described above. The force per unit cross-sectional area of 
the original sample (0 = f / A )  is represented versus temperature. The 
strain is calculated by taking into account the increase  in  volume under- 
gone by the network due to the increase  in temperature. It can be  seen that 
all the curves are straight lines, corresponding to the behavior indicated by 

n the basis  of the data shown  in Figure 3.4 and according to 
qs. (3.10a) and (3.11a), t energy and entropy contributions to the 
astic force represented in gure 3.5 are obtained. It can be  seen that 

up  to deformation values c esponding to 350%, the entropic contribu- 
tion is uniq~ely sible for the recovering force experienced by the 
vu€canized rubber. ntribution remains virtually zero in this 
elongation range. . (3.9) can be rewritten as 

(3.9a) 

This means that f is proportional  to the te~perature and is determine 
exclusively  by the entropy changes taking place during the d e f o ~ a t i o n  
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Internal energy and entropy contributions of  tensile force, as functions 
of extension (5,6). (From Ref. 5.) 

process. It can be  confirmed that Eq. (3.9a)  is an acceptable simpli~cation 
of Eq. (3.9) in the region  of intermediate elongations. For elongations 
higher than 350% it is not possible to ignore the energy component off 
in Eq. (3.1 la) in natural rubber since the phenomenon of strain”induced 
crystallization takes place. In this case  the  energy contribution tof may  be 
larger than the entropic one, and therefore it cannot be  neglected.  An 
elastomer whose  physical behavior is  described  by Eq. (3.9a)  is  termed 
an “ideal elastomer.” This implies that the term ( ~ U / ~ Z ) ~ , ~  is  zero and 
therefore the elastomer is composed of  ideal  freely rotating chains. The 
small variation in internal energy undergone by elastomers in the range of 
moderate elongations is  reminiscent  of the behavior observed for ideal 
gases in which there are no intermolecular forces and consequently the 
internal energy  is not a function of the distance between  molecules or, 
therefore, of the volume. 
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The  themodynamic treatment of deformation made in the preceding section 
establishes the  entropic  nature of the recovering force. Nevertheless, this 
treatment does not provide direct information  on  the reorganization taking 
place at the molecular level during the process of elongation in elastomer 
networks. The  interpretation of the process at the molecular level permits us 
to establish relations between the elastic force and the different molecular 
parameters involved. The statistical theory of rubber elasticity assumes that 
a large polymer chain can adopt  a great number  of  conformations as a 
consequence of the thermal vibration of the  atoms. It is further assumed 
that the chains between cross-linking points behave  like isolated chains. The 
number of conformations that each chain can adopt is  connected to the 
entropy  content of the chain by  means  of the Boltzmann equation. The 
fundamental ideas on which the theory rests are due  to the work of 
Meyer et  al.  and  Karrer in the early 1900s. The statistical theory of elasticity 
was  developed  in  1934  by Guth  and  Mark. 

This section seeks to make a  quantitative evaluation of the relation 
between the elastic force and elongation. The calculation requires determin- 
ing the total  entropy of the elastomer network as a function of strain. The 
procedure  is  divided into two stages: first, the calculation of the entropy of a 
single chain, and second, the change  in  entropy of a network as  a function of 
strain. 

In  a polymer  network the chains are connected through cross-links that 
restrict the motion of the chain ends. Consequently a polymer chain belong- 
ing to  an elastomeric network  can  be represented as in Figure  3.6,  i.e.,  with 
one  end  fixed at the origin 0 while the other is  confined to  a small volume 
dV = dx  dy  dz.  

oltzmann’s equation, S = kB In S2, relates the entropy  to  the number of 
conformations of the chain S2. Considering an element  of constant volume 
d V ,  the number of conformations available to the chain is proportional  to 
the probability per unit volume, p(x, y ,  z), multiplied by the size  of the 
volume element, dV, Eq. (1.12); therefore, the  entropy of the chain is 
given  by the expression 

S = ks(lnp(x, Y ,  z) dv) 

~ubstituting Eq (1.12) into  Eq. (3.12) gives 

(3.12) 
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Polymer chain  detached  from  a  network with a  coordinate system at 
one end. 

(3.13) 

where represents the mean square end-to-end distance of the chain (see 
ect. 1.6) and C is an arbitrary  constant, 

uation (3.13)  provides the value  of the entropy of 
ated at specified points separated by a distance 

indicates that the entropy decreases as the ~ ~ d - t o - e n d  d 
the chain is  subjected to the action of an extern l force causing a macro- 
scopic elongation, the chain end-to-end distance will  be greater than  that 
corresponding to the undeformed state. Therefo , there will  be a decrease 
in the number of confor~ations available to the chain and therefore a 
decrease in the c o ~ f o r ~ a t i o ~ a l  entrop The chain will  exercise a recovering 
force that opposes the external force. he  recovering force tends to reduce 

end-to-end distance to  that corresponding to the unde- 
can be  asserted that the recovering or elastic  force  arises 
recover the state of  maximum entropy, which corresponds 

e work required to move the end of the c n from a distance r to 
distance r + dr is equal to the change in lmholtz energy and is 

to the undeformed state. 

given  by 
dw dl7 dS 
"" __ --T- 
dr dr dr 

(3.14) 

where internal energy  is  assumed to be constant. 
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From Eqs. (3.13) and (3.14) we obtain 

(3.15) 

Equation (3.15) provides necessary to keep the chain with an end- 
to-end distance equal to 

3kB T 
f = m p  (3.16) 

Under e q u i l i b r i ~ ~  conditions, this force is equalled by the equivalent reco- 
hen the external force is removed, the recovering force caus 
ontaneously. From Eq. (3.16) it can be concluded that (1) 

is proportional  to the te~perature, so that as T increases the force needed to 
keep the chain with a certain value of r increases, and (2) the force is  linearly 
elastic, i.e., proportional  to P. 

The aim of this section  is to find the relation between the elastic force and 
the d e f o r ~ a t i o ~  for a polymer network. For  that purpose the change in 
entropy associated with deformation of the chains in the network must be 
evaluated. Figure 3.7’ shows the distribution of the chain end-to-end vectors 
in the deformed (stretched) and undeformed (unstrained) states. The distri- 
~ u t i o n  has spherical symmetry in the undeformed state,  and when the 

unstrained  sample st retched sample 

Schematic representation of chain  end-to-end vectors for an 
unstrained sample and for a stretched  sample. 
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sample is  subjected to a uniaxial extension, the distribution is  ellipsoidal. 
The change of distribution is associated with the change of entropy, related 
to the force causing the deformation. 

efore undertaking the calculation of the change in entropy, a series  of 
ass~mptions need to be made: 

l. The network is made up of N chains per unit volume. 
2. The network has no defects  (see  Sect. 3.l), that is, all the chains are 

joined by both ends to different cross-links. 
3. The network is  considered to be made up of  freely jointed chains, 

which  obey Gaussian statistics (see Chap. l). 
4. In the deformed and undeformed states, each cross-link is located 

at a fixed  mean position. 
5. The components of the end-to-end distance vector  of  each chain 

change in the same ratio  as the corresponding di~ensions of the 
bulk network. This means that the network undergoes an affine 
deformation. 

Figure 3.8 shows a diagram of the deformation, The sample initially 
possesses  dimensions xo, yo, zo, and when deformed it takes on dimensions 
x, y, z. According to the affine deformation model, the end-to-end distance 
vector  of the chains of the strained network will change its com~onents in 

Model of deformation. (a) The unstrained state; (b) the strained state. 
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exactly the same proportion as the macroscopic dimensions  (see Fig. 3.9), so 
that the extension ratios for the three coordinate axes are 

(3.17) 

The volume  of the network is  assumed to remain constant during the defor- 
mation process, so 

h,h,h, = 1 (3.18) 

Therefore only  two  extension ratios can vary independently, leaving the 
third one determined by Eq. (3.18) 

According to Eq. (3.13), the entropy of an undeformed chain is  given  by 

r2 

P P2 
S = c - k , ~ = c - - ( ~ o + y ~ + z : , )  kB 2 (3.19) 

while the entropy of the deformed chains can be written as 

S' = c - - @,x() + h;)?:, + h;z:,) kB 2 2 

P2 
(3.20) 

Y x = x,/2 

The affine deformation. of chains. 
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ince C is a constant independent of r, the variation in entropy associated 
with the deformation for a single chain is 

The  total change in entropy per unit volume for the N chains constituting 
the network is obtained by addition of the N contributions represented by 
Eq. (3.21). 

N N N 

y definition, 

(3.23) 

where (x;) is the mean square value  of the x components in the undeformed 
state. Given that there is no preference among the x, y, z directions  because 
the directions of the end-to-end chain vectors, ro, in the unstrained state are 
entirely random (isotropic state), we obtain 

ubstituting these equations into Eq. (3.22)  gives 

(3.25) 

emembering that p2 = (2/3)(r2)), [see Eq. (1.14)], Eq. (3.25) can be  simpli- 
fied to 

kBN 2 2 2 AS = --(hx +h, h, - 3) 2 
(3 -26) 

Equat io~ (3.26)  provides the change  in entropy of the network subjected to 
a deformation represented by the extension ratios h,, h,, h,. 

onsidering that there  is no change  in internal energy  associated  with 
the isothermal deformation, Eq. (3.2) indicates that W = -TAS, where W 
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represents the work done in the deformation process or elastically stored 
free  energy per unit volume of the network. According to Eq. (3.26), 

1 
2 

W = --Nk,T(A$ + A; + A: - 3) (3.27) 

Particularizing Eq. (3.27) for the case  of a simple elongation ratio 31, along 
the z axis  (see Fig. 3-30), Eq. (3.27)  becomes 

W = -NkBT(12 1 + h  2 - 3) 
2 

where  use  was made of the expression 

obtained from Eq. (3.18). 
The total work  is  given by 

(3.28) 

(3.29) 

(3.30) 

where it was  considered that W = W V .  

(3.30) as 
he elastic force associated with the deformation is obtained from 

A f 

I 

 ne-dimensional extension under the action of forcef. 
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dW dW  dh  
dl dh  dl 

f-=."" 

~ h ~ p t e ~  3 

(3.31) 

Therefore, from Eqs. (3.30) and (3.31) one obtains 

The quotient VIZo 
unstrained state. If 
Eq. (3.32)  becomes 

(3.32) 

is Ao, the cross-sectional area of the sample in the 
the force per unit area is  expressed as ci =f/Ao, then 

o = G ( i " $ )  (3.33) 

In this equation G = NkBT represents the shear modulus of the elastomer, 
as will  be  confirmed  in Problem 3.1 solved at the end of this chapter. 

hen a material is  subjected to small deformations, the cross-sectional 
area of the unstrained sample, Ao, coincides  with the cross-sectional area of 
the strained sample, A. However,  in the case  of elastomers, in  which the 
deformations can be  extremely high, account has to be taken of the change 
in the cross section  of the sample. Consequently, the value  of the stress 0, 
calculated by using Eq. (3.33) and called nominal stress, does not coincide 
with the true tensile stress c i f  = f / A  (Fig. 3.10). 

Since 

q. (3.32)  becomes 

(3.34) 

(3.35) 

Equation (3.33)  is suitable to study the experimental behavior in the interval 
of moderate deformations. For higher d e f o ~ a t i o n s  the value  of the shear 
modulus, G = NkBT,  has to be  decreased in order to achieve a better fit 
between experiment and theoretical treatment. 

It is actually possible  within the framework of the statistical theory of 
elasticity to deduce an expression  similar to Eq. (3.33) that considers the 
e~~erimentally observed  decrease in modulus. This is done by using a model 
different from the affine deformation model, known as the phantom net- 
work model. In the phantom network the nodes fluctuate around mean 



positions. When the elastomer is deformed, the fluctuation occurs in an 
asymmetrical manner. The fluctuations of a chain of the network are inde- 
pendent of the presence of neighbor in^ chains. With these assumptions, an 
expression for the phantom network (2), equivalent to Eq. (3.33),  is 
obtained: 

CF = A+NkBT(h - he2) (3.36) 

where A+ 1 is a parameter that reduces the value  of G = iVkBT. 

2 A q , = l - -  
4, 

where 4> is the functionality. In the case  of functionality equal to 4. 

1 
2 A($ ==- 

and 

NkB T 
2 

cj=lr---"- (h - h-2) 

(3.37) 

(3.36a) 

Comparison of Eqs. (3.36a) and (3.33) indicates that the value  of ~ o d u l u s  G 
obtained from the affine deformation model is two times the value corre- 
sponding to the phantom network. This would  mean that the latter model is 
more applicable in the region  of moderate deformations and the affine 
model is more suitable in the region of low deformations. 

(a) ~f ress-~f$ai f f  Curves 
G typical isothermal stress-strain curve is  shown in Figure 3.1  1. The experi- 
mental behavior is  represented by points, and the dashed line corresponds to 
Eq. (3.33). The experiment consists in a uniaxial tension on vulcanized 
rubber (2,?). The theoretical and experimental results agree  only  in the 
region  of  small elongations (1 h l .3). In the experimental curve two 
regions are distinguished where the experimental results diverge from the 
theoretical predictions in opposite directions: (1) the region  of i n t e~ed ia t e  
elongations, 1.3 h c 5.5, in  which the experimental curve lies  below the 
theoretical prediction and exhibits an elastic behavior that would  be 
described by the phantom network model; (2) the region of large elongations 
(A > 5.5) in which the experimental curve  displays a notable increase in 
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Isothermal stress-strain.  curve (2,7). (0) Experimental  results. (---) 
~aussian. curve  [Eq. (3.33), G = 0.39 MPa]. (From Ref. 2.) 

stress, not shown by the theoretical curve. There are two aspects to bear in 
mind to explain the experimental behavior at large elongations. 
hand, strain-induced crystallization can occur  in rubber. The melting tem- 
perature of a polymer  is  inversely proportional to the melting entropy, 
which  decreases  when the polymer chains of a network are kept subjected 
to a stress. Consequently, in the deformed state  the melting temperature 
increases, leading to crystallization of some of the chains of the network. 
The crystals formed act  as extra cross-linking points, causing a notable 
increase in the modulus.  On the  other  hand, the extensibility limit of the 
chains has to be considered at large deformations. The theoretical models 
explained in the preceding sections use Gaussian statistics, and this requires 
the extensibility of the chains not  to be  very large (r << nZ). As will  be 
demonstrated further below, an important point to  obtain a better fit 
between the theoretical and experimental results is to consider the effects 



of the extensibility  of the polymer chains constituting the network (non- 
cts) in the development  of the theoretical model. 
of  checking the validity  of Eqs. (3.33) and (3.36)  is to resort to 

ivlin  semiempirical equation (2,3), 

(3.38) 

where [o] is  called the reduced stress and 2CI  and 2C2 are the so-called 
ivlin constants. According to Eq. (3.33), the value  of the reduced 

stress [cr] is independent of h in  such a way that for the affine network model 

while for the phantom network model  with &> = 4 [Eq. (3.36a)], 

2c1 = (1/2)kBTN, 2c, = 0 (3.40) 

vlin plots for different types  of  vulcanized rubber are shown  in 
(2,8). It can be  seen that the constant C1 shows a significant 

dependence on the type  of rubber, while the constant C2 adopts a value that 
is  nearly constant but different from zero. The variation of Cl with the 
degree  of vulcanization of the rubber suggests that Cl is a parameter related 
to the structure of th  and, in this regard, is connected to the 
parameter G = ~~~~. , C2 is taken as a measure of the goodness 
of the fit between  exp nd theoretical results. The lower the value 
of C2 is, the better the theory fits the ex~erimental results. In any case,  the 
ratio 2C2/2C1 is  usually taken as a measure of the nonaffine character of the 
deformation so that a decrease  in 2C2/2CI implies that the deformation 
approaches that of the affine model. The decrease in the reduced stress [G] 
with increasing deformation can be  explained if account is taken of the 
transformation undergone by the network when it is deformed. In the region 
of  low deformations, the polymer chains constituting the network form 
entanglements that embed the cross-links, and it is therefore appropriate 
to consider an affine d e f o ~ a t i o n  model to describe this situation. 

evertheless, as the elongation increases, the chains become extended, 
and the average density of entanglement points decreases. ~onsequently, 
the cross-links will fluctuate more freely around their equi~i~rium positions, 
and the network model that represents this situation is closer to the phan- 
tom model. 



104 

0.8 

c: 
n 

0.6 

U 

0.4 

0.2 

Chapter 3 

0.5 0.6 0.7 0.8 0.9 1.0 
h” 

Mooney-Rivlin plots for various  rubbers in uniaxial extension (8). 
(From Ref. 2.) 

(b)  elation ~ e t ~ e e n  Stress and the ~ e t ~ o r ~  S ~ r u ~ t u r e  
There are two parameters used as a measure of cross-link density: the num- 
ber  of network chains, U, usually  expressed as U/ V ,  where P‘ is the volume  of 
the unstrained network; and the number of cross-links (p) per unit volume, 
p/ P‘. The relationship between p and U is established by knowing the num- 
ber  of chains starting from a particular cross-linking point, &, (functional- 
ity). The two most important types  of network are the t~trafunctional 
(b> = 4) and the trifunctional (4 = 3). Another characteristic parameter of 
a network is the number-average molecular weight  between cross-links, M,. 
The relation between the characteristic parameters is established in Problem 
3.4 

When elastomer networks are formed, the segments of chains that  are 
close to each other in space  may  be crosslinked, in~ependently of their 
locations along the chain. Therefore, the network has a totally random 
structure in which the number of c r o s ~ - ~ i n ~ i n ~  points and their locations 
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are unknown. Under these conditions, it is  difficult to establish a relation 
between the stress and the structure of the network. Nevertheless, new 
synthesis techniques have permitted the preparation of model  networks of 
known structure. One  example of such  a  network is that obtained from 
hydroxyl-te~inated linear chains of polydimethylsiloxane (PDMS) (g),  
using tetraethyl orthosilicate as a cross-linking agent. A diagram of the 
reaction is  shown in Figure 3.13.  If the number-average  molecular  weight, 

ME and the molecular  weight distribution of the linear chains of PDMS are 
previously  known, a network is obtained  with M, equal to MR and with the 

same distribution. Moreover, the functionality of the network  is  determined 
by the cross-linking agent, and in the above  example 4, = 4.  Model  networks 

have  been  efficiently  used to check the theories. By using model  networks of 
PDMS with functionality Q, = 4 and 4, = 3, it has  been  possible to demon- 
strate  that  for the same value of M ,  the deformation of the network  is  closer 

to the affine  model  when the functionality is high. Similarly,  networks  with 
the same functionality behave  more  like the affine deformation  model  when 
the value of M, is lower (1  0-1 2). 

A structural  factor  that has not been considered so far  and  that has a 
decisive  influence  on the elastic behavior of the network  is the presence  of 
physical cross-links or entanglements  (see Fig. 3,3c),  which, as mentioned  in 
Sect.  3.1, are network  defects that increase the modulus of the elastomer. 
When it comes to checking the validity of the theories, it is desirable to 
reduce this type of  defect as far  as possible  because it complicates in an 
uncontrollable way the topology  of the model  network. To prevent the 
presence  of  physical cross-links, two different synthesis techniques have 

been resorted to (13,14).  Both  methods are based  on trying to separate 
the linear chains of polymers as  far  as possible before producing the 

cross-linking reaction. The first technique consists of  dissolving the linear 
chains and carrying out a cross-linking process in solution in such a way 

that the solvent solvates the linear chains and prevents intermolecular and 
intramolec~lar entanglements (see Fig. 3.14a).  Once the network  has  been 
obtained, the solvent is extracted. The  second technique consists of obtain- 
ing the network starting from linear chains oriented by the action of a stress 
(see Fig. 3.14b). Once the network  is obtained, the orienting force is 

H0 -0,  ’0 -OH 

H 0  - 0’ ‘0-OH 
4 0 H  -OH + (CzH50)11 Si Si + 4Cz H5  OH 

Synthetic procedure for preparing PDMS network of known struc- 
ture [H0 ---- OH] represents a hydrosyl-te~inated PDMS chain (9). (From 
Ref.  4.) 



 etw work obtained in 
solution after solvent 
removed 

 etw work o ~ t ~ i n e ~  in 

orienting  force removed 

Methods to obtain elastomeric networks with a reduced number of 
entanglements. (a) Cross-linking reaction in the presence of a solvent. (b) Cross- 
linking reaction in the  oriented state. 

removed. In  both cases the absence of defects in the network structure is 
achieved. 

this section  some  general considerations of interest regarding non- 
ussian statistical theory are made with the aim of bringing the simple 

k model  discussed in Section 3.2 closer to a real network ( 2 4 .  
aussian statistics can be applied to polymer chains whose  extension  is 
ed  in  such a way that  the end-to-end vector distance reaches a value 

less than 30% the length of the fully  extended chain.  For greater elonga- 
tions, deviations from the Gaussian model start to become considerable. 

aussian statistics, non- aussian statistics consider that the poly- 
can reach a maxi elon~ation and provide an  end-to-end 

distribution  function  that is  valid for  the entire range of values of 
sible to the chain. 

form corresponding to non-Gaussian statistics furnished by 
in 1942 for  a  chain with y1 links of length E is  given  by 

The expression of the probabilit~ density function, P(r), in ~ o ~ ~ r i t ~ r n ~ c  

(3.41) 

 here p is  defined  by 
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l 
nl P L = (coth) p - - = .c@) 
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(3.42) 

C(p) is the Langevin 
Langevin function. 

y expanding Eq. 

lnP(r) = 

function, and p = L" (r/nl)  is the inverse  of the 

(3.41) in series, one obtains 

3 r 2  9 r 4  99 r 6  
cte--n - - +- - +- - +.. 

[2 (nl) 20 (nl) 350 (nl) *] 

(3.43) 

If we truncate the series at the first term, which  would  be a good approx- 
imation for r << nl, Eq. (3.43) corresponds to the Gaussian distribution 
function. The theoretical treatment using Eq. (3.43)  is similar to  that carried 
out  for Gaussian statistics: First the entropy is calculated for one chain, and 
then the change in entropy associated with the deformation process  of the 
network is obtained. The final  result  gives the elastic force for a network of 
non-Gaussian chains. The rigorous treatment of the problem by non- 
Gaussian statistics is  extremely complicated from a mathematical point of 
view; therefore, some assumptions are made in order to simplify the math- 
ematical calculation. The simplest method is  based on a network formed by 
three independent sets  of non-Gaussian chains parallel to the axes  of a 
rectangular coordinate system,  which undergo affine deformation. 
these simpli~cations, the force per undeformed unit of cross-sectional area 
for a network under uniaxial stress is  given  by (Fig. 3.10) 

(3.44) 

where n and I have the same meaning as before; n is the number of  segments 
of length I belonging to a hypothetical freely jointed chain in which the end- 
to-end distance corresponding to the fully extended length chain is nl. 

xpe~imental results are compared in Figure 3.15  with those ob * 

ussian and non-~aussian networks with YL == 75 and G = 0.273 
these  values  being  used as adjustable parameters. From this comparison one 

clude that the consideration of the limited  extensibility  of the chains 
ussian statistics) notably improves the agreement between theory 

and experiment at high elongations. 
It is  worthwhile to note that the equations describing the behavior of a 

Gaussian network [Eqs.  (3.33) and (3.36)] depend on the structure of the 
network via a single parameter N, while the descriptions of non  ian 

q. (3.44)] include a second structural parameter, E. The the 
number of chains, I?, of the network determines the behavior observed in 
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Isothermal stress-strain curve. Continuous line, non-Gaussian curve 
[Eq. (3.44) with G = NkBT = 0.273 &€Pa and YE = 751. (From Ref. 2.) 

the region of  low elongations in which Gaussian statistics are applicable. 
However, the elastic behavior at high elongations is controlled by the num- 
ber of segnents, n, of each chain.  In reality, both zz and iV are usually  used as 
adjustable  parameters. The value of zz is determined from  the best  fit 
between theoretical and experimental data  at high elongations, while N is 
obtained from comparison between theory and experiment at moderate 
elongations. In spite of the fact that  both  parameters  are fitted separately, 
they cannot  in reality  be regarded as  independent, since n is  inversely pro- 
portional  to N. 

The non-Gaussian model  justifies the increase in modulus and therefore 
the strengthening of the elastomer network at high elongations, considering 
the limited  extensibility of the chains forming the network. Nevertheless, 
taking into  account  that  the increase in modulus at high elongations is 
shown  mainly for networks that could undergo strain-induced crystalliza- 
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tion, it seems appropriate to evaluate the two effects separately. A compar- 
ison of the two effects appears in Figures 3.16 and 3.17,  which  show 
Mooney-Rivlin isotherms for model networks of  polydimethylsiloxane 
(PDMS) with a high elongation capability and networks of  poly(cis-1,4- 
butadiene) (PBD) with a high  tendency toward crystallization. In noncrys- 
tallizable model networks of PDMS, the increase in modulus at high defor- 
mations occurs for all isotherms and does not disappear at high temperature 
as would  be  expected for limited chain extensibility  (15,16). For  PBD net- 
works with a high  tendency to crystallize the increase in the modulus is more 
pronounced than in the case  of PDMS (the appearance of crystalline zones  in 
the network strengthens its structure), but this effect  decreases and even 
disappears with  increasing temperature (l 7,18).  These experimental results 
confirm that  both effects  have to be considered to explain the significant 
strengthening of elastomer networks at high elongation. 

Another way to deform an elastomer network is to put it in contact with a 
solvent. In this case  molecules  of  solvent are absorbed in the network, giving 
rise to a phenomenon known as swelling.  Swelling  of a network by the 
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Mooney-Rivlin plots [Eq. (3.38)] showing the effect  of the  tempera- 
ture on stress-strain isotherms for model PDMS networks (15,16). The filled  circles 
represent the reversibility  of the elastic  measurements, and  the vertical  lines locate 

the fracture points. (From Ref.  15.) 
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Mooney-Rivlin plots [Eq. (3.38)]  showing the effect of strain- 
induced crystallization on the elastic behavior of highly crystallizable poly(cis-1,4- 
butadiene) networks at selected temperatures (1'7,18). The filled  circles and the ver- 
tical  lines have the same meaning as in Fig. 3.16. (From Ref. 15.) 

action of a solvent constitutes a three-dimensional deform~tion.  From the 
ther~odynamic point of  view, the network absorbs solvent until the swelling 
equilibrium is reached. In this situation, 

hpl + hpul (elastic) = 0 (3.45) 

n other words,  swelling equilibrium is  reached  when the drop in the che- 
mical potential of the solvent in contact with the polymer  is  compensated for 
the rise in chemical potential undergone by the solvent due to  the elastic 
pressure of the network, 

The classical theory of  swelling  developed  by  Flory and Rehner  in 1953 
(1) provides the following expression for swelling equilibrium: 

(3.46) 
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where p is the density  of the network, MC the average molecular weight 
between cross-links, w2 the volume fraction of  polymer at swelling  equili- 
brium, x12 the polymer-solvent interaction parameter, A$ = 1 in the affine 
limit, V1 the molar volume  of the solvent, w2s the volume fraction of  polymer 
present during the cross-linking reaction of the network, and U an entropic 
volume factor equal to 2/+. 

In a more recent theory of  swelling equilibrium developed by Flory in 
1979 (19), the extent to which the swelling equilibrium defomation is non- 
affine  is taken into account. The nonaffine behavior depends on the loose- 
ness  with  which the cross-links are embedded  in the network and 
consequently is related to the network structure and the degree  of  swelling 
at equilibrium, The final expression  is 

(3.47) 

The factor F+ characterizes the extension by  which the deformation 
approaches the affine limit. This theory is more difficult to apply than 
that corresponding to Eq. (3.46)  because the factor F+ contains some para- 
meters that  are  not present in the classical theory of  swelling. 

Equations (3.46) and (3.47) can be  used in two different ways. First, if 
the polymer-solvent interaction parameter, x12, is known and the value  of w2 
at swelling equilibrium is measured, then the molecular  weight  between 
cross-links, MC, can be calculated using Eq. (3.46). Second, if the value  of 
M, is known and w2 is measured at equilibrium, the polymer-solvent inter- 
action parameter x12 at polymer concentration w2 can be determined. 

Figure 3.18  shows an example of the variation with temperature of w2 
for a network of  poly(methy1 tri~uoropropylsiloxane) ( P ~ T F P S )  in differ- 
ent solvents (20). Some aspects merit additional comments. The low values 
of v2, around 15%, suggest a good polymer-solvent interaction (low  values 
of xI2); therefore, acetates and tetrahydrofuran can be  considered good 
solvents for P ~ T F P S .  The opposite behavior (high  values of w2) is  shown 

TFPS networks swollen in n-chlorobutane. 

As occurs with other plastic materials, elastomers, undergo certain processes 
before  being used, such as cross-linking reactions, that lead to the f o ~ a t i o n  
of three-~imensional networks. Also it is  necessary to incorporate certain. 
chemical substances such as antioxidant agents, fillers, or plasticizers during 
their manufacture. These operations are aimed at improving the properties 
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Polymer  volume fraction (v2) at swelling equilibrium for poly(methy1 
t~fluoropropylsiloxane)  on of the  temperature 
selected  solvents ( tetrahydrofuran; (A, 
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of v2 obtained by  increasing and decreasing the  temperature, respectively. (From 
Ref. 20.) 

of the final products in order to optimize their utilization time under the best 
possible conditions and at a competitive cost on the market. Below are 
described the most usual processes to which  these materials are subjected, 
along with the problems that can arise in  service (21-23). 

Vulcanization of a rubber or an elastomer consists in creating chemical 
cross-links among the polymer chains in order to form a three-dimensional 
network. There are various types of cross-linking agents, and the most 
commonly  used are described  below. The process of vulcanization with 
sulfur is the most widely  used. It is easy to obtain a broad variety of 
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cross-linked structures by varying the sulfur content in the vulcanization 
and also the time and temperature. Sulfur acts on the double  bonds of the 
main chain, creating bridges of sulfur atoms  that link the polymer chains 

through covalent bonds. Figure 3.19 shows  different  types of cross-linking 
unions  that  can be obtained in the vulcanization  of natural  rubber poly(cis- 
1,Gsoprene)  (NR).  The  predominance of one type of  specific union in NR 
networks  can alter the properties of the rubber. For example,  cross-links 
formed by a single atom of sulfur confers to  natural  rubber  a relatively  high 
thermal stability. Nevertheless,  polysulfide  cross-linking produces vulca- 

nized rubbers with  improved strength and fatigue properties. 
Organic peroxides are another type  of  cross-linking agents, 

~ulcanization by means of peroxides  is a free radical process that leads to 
the formation of carbon-carbon covalent bonds between chains. Below  we 

show a diagram of the process: 

POOP aftH 2PO. 
Peroxide  Oxyradical 

PO.+ RH ”+ POH+ R. 
rubber free radical of rubber 

2R*  ”+ R-R 
Cross-linked rubber 

The networks obtained through vulcanization by peroxides  display  high 
thermal stability. Nevertheless, the peroxide  vulcanization  process  allows 

less control of the vulcanization than the sulfur process.  Consequently it 

Sulfur cross-links obtained in vulcanization processes. S (C - S - 
C), monosulfur cross-link. S2 (C - S - S - C), disulfur cross-link. S, [(C - S -C), 
B = 3-61 polysulfur  cross-link. (a, b) Intrachain cyclic.  (c,d) Double-bond  conju- 
gated. 
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is  more  difficult to obtain a final product with  well-defined properties. For 
example, uncontrolled increase of the cross-link  density can occur due to 
reactions competitive  with those shown above. oreover, the oxy  radicals 
react  with the antioxidants present  in the reaction medium,  reducing the 
cross-link  density of the vulcanized rubber. In spite  of  the drawbacks men- 
tioned, the use  of organic peroxides  is  necessary  when  it  is  impossible to 
carry out vulcanization with  sulfur due to a lack of unsaturation in the 
rubber, as occurs  in the case  of  silicones and ethylene-propylene rubber. 

~urrently, vulcanization  processes for natural rubber  and other diene 
rubbers are being carried out by reacting nitrophenols with  diisocyanates. In 
this  way,  cross-links of the urea type are  produced, as shown  in the follow- 
ing diagram: 

Vulcanized rubbers obtained by this method have a good balance  of  physi- 
cal properties, though their  cost  is  higher than  that of  any  of the vulcanized 
rubbers mentioned  earlier. 

hen an elastomer is  placed  in  service,  some factors have to be taken into 
account. These factors reduce the service  life  of the elastomer and are related 
to the service temperature, service  time,  thickness  of the elastomer, and the 
presence  of  oxygen. 

The main  problem  is  related to exposure of  these materials to high 
t~mperatures in the presence  of  oxygen.  These conditions favor the oxidative 
degradation of the elastomer, which  leads to  opposing changes  in its struc- 

n the one  hand, chain scission can occur, and  on the other hand, 
cross-links can be generated. If chain scission dominates, the hardness and 
modulus of the elastomer  will  decrease. If, however,  cross-links are gener- 
ated, both the hardness and the modulus increase and the strain at fracture 

ther mechanical properties are altered by an increase  in 
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Tensile  strength. as a  function of temperature for rubbers.  (From 
Ref. 23.) 

temperature. For example, the resilience  of  vulcanized rubber increases and 
its tensile strength decreases  when the temperature rises, as the examples 
shown in Figure 3.20 reveal. For this reason, although rubber can be  very 
resistant to the effects  of  aging at high temperatures, the material can be a 
bad choice due to the loss  of strength when the temperature is raised. Also, 
elastomers increase in temperature when  they are subjected to a cyclic defor- 
mation. This can be a problem in  cyclic deformation processes as occurs in 
automobile tires. In this service condition, the temperature will  increase 
considerably even though the ambient temperature might  be  low, causing 
degradation and possibly failure of the rubber. 

To choose a particular elastomer, thermal aging  is not the only main 
factor to consider. For example, it is important  to know also the resistance 
of the product to the action of  oils, organic solvents, and ozone. 
gas  with  high  oxidizing  power. Ozone will attack elastomers at the points of 
unsaturation, causing  highly  local damage in the structure. Chain scission 

and the appearance of deep cracks that propagate through the elastomer 
structure can occur, provoking failure of the material. 
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This  section  describes the various substances that  are  added  to  an elastomer 
in the manufacturing process, to improve its properties and extend its ser- 
vice  life. 

(a) A n t i ~ ~ i d a n t s  
Antioxidants are substances that considerably  reduce the oxidative  aging of 
elastomers. To select a substance as an antioxidant, it is important  to con- 
sider  two factors: the volatility  of the antioxidant, and its diffusion capabil- 
ity through the elastomer network. Protection against oxidation is  needed in 
the outer layers  of the material. Antioxidant substances should be capable of 
diffusing from the interior to the exterior in order to replenish the antiox- 
idant that disappears during the protection process.  However, if the elasto- 
mer  is  subjected to high temperatures, the antioxidant substance can 
evaporate. Consequently, when  high  service te~peratures are required, sub- 
stances  with  high  molecular  weight and low  volatility are usually  used as 
antioxidants. 

Commercially  available antioxidants include  phenols and amine deriva- 
tives; the latter, though generally more effective,  have the drawback of 
altering the coloration of dyed products. These  additives are necessary to 
prevent, to some extent, the process of thermal oxidation of rubbers, though 
it has to be borne in  mind that the stability of rubbers is  primarily deter- 
mined  by the chemical nature of the chains as well as by the cross-links that 
define  network structure. 

(b) Fillers 
The  modulus of  engineering elastomers can be  modified  by  varying their 
cross-linking  density.  However,  there are times  when it is  necessary to add 
substances  in the form of  particles or fibers to the elastomer to increase its 
rigidity and strength. These  substances are called  fillers, and the composite 
material obtained is  called a reinforced elastomer. Although in  some parti- 
cular cases,  such as when  they are used  in  conveyor  belts or tires, the 
elastomeric materials are reinforced  with  fibers  such as nylon or with  steel 
cables, the most usual method is to mix the elastomer with carbon black. 
This substance is produced by burning  hydrocarbons in an oxygen-deficient 
atmosphere. Carbon black  is  formed  by  spherical  particles  covering a wide 
range of  sizes. The sizes  most  commonly  used  in industry are between 20 and 
30 nm  in diameter. At the microscopic  level,  each  spherical  particle  is 
formed by small laminae of graphite packed together to form a sphere. 
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(a)  Original 
mixed state 

(b) Intermediate 
strain 

(c) Full strain 

(d) Retract ion 

Deformation of elastomeric  chains  in  contact with carbon  black 
reinforceme~t. (From Ref. 24.) 

The reinforcing action of  these  small  spherical  particles  of carbon arises 
from reactions of unsaturations in the main chain with  free radicals present 
on the surface  of the particles. Other particles also interact weakly  by  means 
of a process in which s e g ~ e l ~ t s  of polymer are absorbed  on the porous 
surface of the carbon black. Figure 3.21  shows  how the particles  of carbon 
black act as extra cross-links  connecting chains of the elastomer. It can be 

heme that the deformation results from the sliding of the chains 
located between  two  spherical  particles.  Once the deforming force  is 

removed, the chains  between  particles  more or less  recover their initial 
length. 

The effects of fillers on the behavior  of  elastomers are summarized  in 
Figure  3.22. In this  figure the stress-strain  curves  of both  natural  rubber 

reinforced  with 50% carbon black and  a nonreinforced natural  rubber are 
compared. An  inspection  of the curves  highlights three important character- 
istics: 

1. Garbon black  exerts a considerable  reinforcing action on natural 
rubber. 
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Stress-strain  curves for natural  rubber (a) without reinforcement 
and (b) with carbon black  reinforcement. (E  = h - l) (From Ref. 25.) 

he curve corresponding to the second stress process for rein- 
forced rubber  is located below the first for any  deformation 
value. This softening phenomenon  is due  to the damage  caused 
in the structure of the rubber during  the first stress process. 

einforced rubber displays considerable hysteresis,  which  is not 
observed in natural  rubber.  In fact, the existence  of  pronounced 
mechanical  hysteresis  can  become a serious problem due  to the 
generation of heat involved during high  speed oscillatory loading 
(e.g., in a rapidly revolving car tire). In practice, the  content of 
carbon black  is  chosen to achieve a desirable compromise  between 
the reinforcing effect and  the mechanical  hysteresis that  it  can 
provoke. 

~ l though  the last two characteristics also occur in nonreinforced rubber, 
they  become important only when  high  deformations (5 h c 7’) are 
achieved, situations not very usual when the elastomer is  in  service, 

here are also other substances that can  be  used as fillers that behave 
like carbon black in terms  of the reinforcing action. One  example  is  silica, 
but  it has the drawback of its price, and the properties of the reinforced 
elastomer are generally inferior to those obtained with carbon black. These 
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two factors restrict the use  of  silica to the preparation of products in  which 
the black color must be avoided. Since  silica  sometimes  improves the ther- 
mal resistance  of elastomers, it  can be  used as a reinforcing agent in con- 
junction with carbon black when the application requires it. 

(c) ~ l ~ s ~ ~ c j z ~ ~ ~  

substances decrease the viscosity and facilitate the flow  process, 
the processing  of elastomers. However,  plasticizers  reduce the 
elastomers, and as a consequence  these substances are used together with 
fillers, to  control the final properties ade~uately. The substances commonly 
used as plasticizers for elastomers are aromatic oils, naphthene oils, or 
paraffins derived from petroleum. The plasticizer content is  limited by the 
com~atibility of the elastomer-plasticizer pair. Other factors that must be 
taken into consideration are the resi  ance to oxidation at high te~peratures 
and the volatility of the plasticizer. e oxidative instability of an oil  is due 
primarily to the presence of nitrogen and sulfur heterocyclics,  while volati- 
lity  decreases as the molecular weight and the viscosity  of the oil increase. 
is also possible to use  low molecular weight fractions of natural rubber, 
which are liquids, as plasticizers.  These fractions, mixed  with  high molecular 
weight natural rubber, act as nonextractable plasticizers, as they react dur- 

the vulcanization process and form part of the three-dimensional net- 
work, In the event that high thermal resistance  is required, the plasticizer 
content of the elastomer should be signi~cantly restricted. 

ect. 2.11 3 )  are also used as additives for elastom 

In spite of the fact that the elastic modulus of elastomers is approximately 
three orders of magnitude lower than  that of most thermoplastic materials, 
elastomeric materials are widely  used in engineering a~plications. 
Throughout this chapter we have  been  describing  how an elastomer can 
be  modified  with the aim of improving its mechanical properties and making 
it more useful in service. Control over the cross-linking reaction and the 
addition of  fillers are operations that have a decisive impact on the mechan- 
ical behavior of the elastomer. The addition of antioxidants increases the 
thermal resistance  of the substance. Plasticizing substances improve the 
processability  of  these materials. It is clear that elastomers will  be ideal 
materials when the application requires high deformability combined with 
the capability of  recovery. 

oreover, elastomers are widely  used  in applications such as the man- 
ufacture of dampers, bearings, or major supporting structures such as 
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Effect  of bonded steel  sheets on  the response of rubber blocks to 
compression and shear. (From Ref. 24.) 

bridges or as insulators for the vibrations that  a building can receive 
due  to its proximity to  a railway station, a subway station, or simply 
urban traffic. Elastomer materials have  been  used for protecting build- 
ings from the destructive effects  of the horizontal vibrations occurring 
during earthquakes. These applications are related  with the most char- 
acteristic property of elastomers:  high capability for deformation  and 
recovery. 

When an elastomer supports a major structure, it must do so without 
undergoing a notable compression deformation. In addition, the elastomer 
must be  sufficiently  flexible under shear to accommodate the changes that 
occur as a result of thermal expansions and contractions. This apparent 
conflict  is  solved if the material displays  flexibility  in one plane and great 
rigidity  in another, conditions that are met  by  elastomers,  since the typical 
shear modulus is around 1 &€Pa while the bulk modulus is approximately 2 
CPa.  In other words, it is  much  easier to change  the shape of an elastomer 
than  to  change its volume. In this regard, elastomers are similar to liquids, 
which are capable of withstanding great hydrostatic compression.  This can 
be proved  with an experiment  in  which a block  of elastomer of  thickness D is 
perfectly  secured to two  steel  sheets as shown  in Figure 3.23. Under com- 
pression the structure shows great resistance, something  that does not occur 
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under shear. Under a compressive stress the elastomer will deform and 
project beyond the sides that  are  not fixed to the steel  sheets  in such a 
way that the total volume  remains constant. Under shear, the sides  of the 
block  become  uniformly deformed without undergoing any kind of defor- 
mation toward the outside. If the heights  of the block  decreases (Fig. 3.23), 
the effect of the steel  sheets will become clear, since the possibility  of the 
block  becoming deformed by bulging  will  decrease. A thin block  of elasto- 
mer will therefore always  be more rigid under compression than a thick 
block. 

The influence  of the geometry  of the piece on the behavior of the elas- 
tomer under both compression and shear can be determined by calculating 
the rigidity under compression, Kc, and the rigidity under shear, Ks, defined 
as 

F' FA D ----."=-."x-= 
'" Ay A AyD 

and analogously, 

(3.48) 

(3.49) 

where G and K are the shear and bulk relaxation moduli, respectively, A is 
the area of the transverse cross section  of the piece, and D is the thickness  of 
the elastomeric block. K can be written as a function of both the tensile 
modulus of the elastomer, E ,  and the shape factor, S: 

K = E(l  + 2kS2) (3.50) 

where k is a numerical constant that varies  between 0.93 and 0.53, depend- 
ing on the hardness of the elastomer. The factor S is  defined as the ratio 
between. the surface area subjected to stress and the surface area free of 
stress. According to Figure 3.23, 

BW 
= 2d(B + W )  (3.51) 

This expression indicates that a decrease in  the thickness d produces an 
increase in S, with the consequent repercussion on the bulk relaxation mod- 
ulus  [Eq.  (3.50)] and the rigidity under compression [Eq. (3.48)].  Figur,e  3.24 
shows the stress-strain  curves under compression for elastomer blocks  of 
different shapes. It can be  seen that  as S increases the curves  lose the 
linearity displayed  in a large interval of extensions when S has a low 
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Compressive  stress-strain  curves for natural  rubber vulcanizate 
showing the effect  of shape factor S. (From Ref. 24.) 

value. The way to control the rigidity under compression and shear is to 
construct pieces in which the elastomer is distributed in  layers  of  thickness d 
supported between  steel  sheets.  An illustrative scheme  is shown in Figure 
3.23. In this way, the rigidity under compression will  increase as d decreases, 

owever, the rigidity under shear, which  increases  when the thickness 
ecreases [Eq. (3.49)], is not altered because it depends on the total thickness 

of the block D (D = nd, where n is the number of  blocks  of elastomer of 
thickness d). 

It is  very important for engineering applications to control the rigidity 
separately in two pe~endicular directions. For example,  when elastomeric 
materials are used in the construction of  bridges, the rigidity  of the materials 
under compression must be suitable to  support the weight  of the bridge and 

to accommodate additional loads due to traffic and ambient 
n the other hand, the flexibility of the elastomer admits hor- 

izontal movements  of the deck  caused by daily fluctuations in temperature 
or fluctuations between different climatic seasons. ~therwise, the horizontal 
mo~ements of the deck could cause considerable bending of the pillars of the 
bridge, an effect that could become dangerous in the long term. 
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(a) ~ a ~ ~ r ~ l  R f f ~ ~ e r  ( ~ R )  

One  of the most widely  used  polymers  in industry is natural rubber, 
industrial application of rubber is  based on its exceptional  elastic proper 
From a chemical point of  view, rubber consists  exclusively of poly(cis 
isoprene),  whose  repeating unit is 

It is obtained from latex  extracted from the Hevea ~rasiziensis tree. There 
exists another structural isomer  called gutta-percha formed from poly(trans- 
1,4-iso~rene), whose  elastic properties differ from those  of natural rubber. 

atural  rubber is composed of linear  polymer  chains; the glass transi- 
tion temperature T', is "7O0C, and below that temperature it is a fragile 
glass. The elastic properties for rubber are displayed at temperatures above 
7.'. Gutta-percha is a rigid  crystalline  solid at room temperature. The dif- 
ferences  between natural  rubber (NR) and gutta-percha derive from the 
capability shown by the polymer chains with the trans config~ration  to 
align  themselves and  produce a much more ordered structure than  that 
corresponding to natural rubber. ~utta-percha displays  elastic properties 
similar to those of rubber at temperatures above 65"C, which corresponds to 
the melting point of crystalline gutta-percha. The vulcanization reaction of 
natural  rubber takes  place  via the double  bonds of the main chain which are 
highly  reactive, sulfur being  used as the cross-linking agent. 
bonds remain in^ in natural rubber chains after the vulcanization  process 
are liable to undergo oxidation processes, For this  reason the use  of a 
powerful antioxidant agent is required. 

A wide  range  of  synthetic rubbers are available on the market  that display 
elastic properties similar to those of natural rubber. Some  types  of rubbers 
of industrial interest are classified as (1) diene rubbers, (2) mono-olefinic 
rubbers, (3) silicones, and (4) fluoro-olefinics. 

iene rubbers are fomed from diolefins,  basically butadiene, which  poly- 
merize  by transposin~ the double  bond: 
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A s  occurs  in natural rubber, only the 1,4-cis  isomer  exhibits  elastomeric 
characteristics. The  most  important synthetic  diene rubbers are polychlor- 
oprene (neoprene) and rubbers derived from butadiene such as styrene- 
butadiene and  acrylonitrile-butadien~ copolymers. 

~ t ~ e n ~ - B u t a ~ i e n ~  Rubbers. These synthetic rubbers, n o ~ a l l y  known 
as SBRs, are mainly  used  in the ~anufacture of tires.  Their  chemical struc- 
ture corresponds to a random copolymer  of  styrene and butadiene units in a 
weight ratio of 23:77 and in a ratio of 1% in  terms of structural units. 

The presence of double  bonds in the main chain enables the SBR chains 
to cross-link by a vulcanization  process  similar to  that of natural rubber. 
Although the double  bond is  less  reactive in this case, a natural tendency 
toward oxidation is nevertheless  observed.  Butadiene  sequences in the chain 
can be obtained in the 1,4-cis  isomer  by  using a stereospecific catalyst. 
Butadiene rubber (BR)  is more flexible than  natural  rubber because the 
methyl group attached to the unsaturated carbon  that is  present  in natural 
rubber is absent from BR. In addition, the presence of styrene units confers 
greater hardness and toughness  on  SBR. Moreover, the phenyl  side group 
attached to the chain reduces the tendency to crystallize,  in contrast with the 
behavior  observed  in natural rubber. SBR  shows a high  tendency toward 
hysteresis  in  load-unload  cycles. Loss of strength is also observed at high 
temperatures, compared  to  natural rubber. SBR  is not resistant to organic 
liquids,  such as oil or gasoline, and it displays a tendency to absorb them, 
leading to swelling and the loss of mechanical properties of the rubber net- 
work. 

  cry lo nit rile-Butadiene Rubber. This rubber, normally  known as 
NBR, is a random copolymer of acrylonitrile and butadiene in  which the 
acrylonitrile content lies  in the range 15-50% (w/w). A diagram of the chain 
is  shown  below: 

A s  occurs  with other rubbers, the cross-linking  process  in NBR is car- 
ried out by means of a vulcanization  process  via the double  bonds of the 
main chain. The unreacted double  bonds are liable to suffer oxidation pro- 
cesses, particularly at high temperatures. The presence  of the nitrile group as 
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a side substituent increases the polarity of the chains, favoring intermole- 
cular interactions. Hydrogen  bonding between adjacent chains leads to the 
loss of molecular  flexibility. For this reason, acrylonitrile-butadiene rubbers 
are more resistant to the action of organic liquids.  These rubbers do not 
display  any  tendency to swell  in contact with petroleum. Because  of this, and 
in  spite of  being more expensive than natural rubber, NBRs are used  in 
applications requiring considerable  resistance to the action of organic sol- 
vents.  One of the many applications of this  type of rubber in  recent  years has 
been  in the automobile industry, specifically  in the manufacture of engine 
components.  In such  circumstances, the rubbers have to resist  high tempera- 
tures under conditions of aging  by oxidation. For these applications man- 
ufacturers have resorted to using hydrogenated  NBR in  which the reactive 
double  bonds of the butadiene units are saturated, in  this way avoiding the 
oxidative  process through  double  bonds in this elastomer. The vulcanization 
process  is carried out using organic peroxides as cross-linking agents. 

Ql~c~ loro~rene   (~eQ~rene)  Rubbers. Polychloroprene or neoprene 
rubbers (CR) are polymers of 2-chloro-l,3-butadiene. The stereochemical 
structure of  these rubbers is fundamentally the trans configuration (SO%), 
with the rest  being predominantly cis-l ,4, though small quantities of 1,2 
(1.5%)  and 3,4  (1 YO) are also present. A scheme  is  given  below: 

n(CHz=C-CH=CH2b 
I 
Cl 

l 
Although the polymer chains contain unsaturations, the chlorine atoms 

attached to the double  bonds stabilize  them,  increasing their resistance to 
oxygen and ozone  in  such a way that the chains behave for these purposes as 
if they  were saturated. Vulcanization  is carried out using a metal  Zn or Mg 
oxide.  Owing to the presence  of the chlorine atom, which  confers polarity to 
the polymer  chains,  neoprenes are resistant to swelling  by the action of oils 
and organic solvents.  These rubbers show good resistance to flame and 
exhibit  high  mechanical strength, They are  more expensive than other 
dienes, and in  spite  of  their good properties their  use  is  confined to special 
applications such as coatings for industrial cables and wires,  hoses, and 
fastenings. 

Mono-Olefinic  Rubbers 
Mono-olefinic rubbers are fully saturated elastomers obtained by copoly- 
merization of linear  mono-olefins. In general, the cross-linking  process  is 



carried out by the action of organic peroxides or by introducing double 
bonds into the main chain that will permit vulcanization with sulfur, or 
organic peroxides. 

thylene"propy1ene rubbers (EP are basically ra~dom  copoly~ers  of 
ethylene and propylene, with 60-70% (w/w) ethylene. 
polypropylene are homopolymers that display too high a degree  of crystal- 
linity to be  used as elastomers.  everth he less, random copolymerization pro- 
duces linear chains with  sufficient structural irregularity to prevent 

he copolymeri~ation process leads to amorphous, fully 
saturated chains. 

The vulcanization process  is carried out by using an organic peroxide as 
a cross-linking agent. On some  occasions, chain scission reactions take place 
during the cross-lin~ing process that affect  negatively the physical properties 
of the resulting elastomer. To avoid chemical degradation, the tendency on 
some  occasions  is to carry out the vulcanization with sulfur, and  for this is it 
~ e c e s s a r ~  to introduce a small quantity of  dienes into the linear chains of the 
copoly~ers. These  dienes, for example, 5"ethylidiene-~-norborne, provide 
unsaturated sites  via  which the vulcanization reaction can prosper. In this 
way, the ter polymer-ethylene-propy~ene-diene monomer ( 

case, chain scission reactions are less i 
quently the physical properties of EP 
affected by degradative rocesses. 

S can also be  cross-linked by using 

and excellent  resistance to oxidation and ozone, 

applications are in the ~anufacture of  window  sealing strips and in the 
automobile industry. 

com to N nd a relatively  low cost. Their most inlportant 

i I icones 
ilicone rubbers are formed by an inorganic main chain of  oxygen-silicon 

covalent bonds, with  side sub~tituents consisting of  me 
etc. The most c o ~ ~ o n l y  used  is po~ydimethylsiloxane ( 
ture is  given  below: 



Rubber ~last ic i ty  127 

As EPR  and  EPDM elastomers, the vulcanization process is carried out 
using organic peroxides because the polymer chains do  not contain unsatu- 
rated bonds.  If the polydimethylsiloxane chains are modified  by introducing 
a small quantity of  vinyl groups, the vulcanization is carried out using  cumyl 
peroxide. 

Silicones are rubbers possessing certain exceptional properties. For 
example, these rubbers display excellent resistance to oxidation processes, 
a  wide  range  of  accessible temperatures, -100°C to 3OO0C, and excellent 
dielectric properties, even at high temperatures, and they are also inert from 
the chemical and physiological points of  view.  Their most notable draw- 
backs  lie in their high cost and the fact that their mechanical strength at 
room  temperature  is only moderate. 

F luo ro -~ l~ f i n i cs  
Fluoroelastomers are copolymers containing fluorine in their structure. 
There are different kinds of fluoroelastomers depending on the chemical 
composition and  on the production in  which the comonomers are  found 
in the chain. As examples  of  comonomers, we can  mention  vinylidene fluor- 
ide-hexafluoropropylen~  and vinylidene fluoride-chlorotrifluoroethylene. 
The vulcanization process is performed using peroxides, diamines, and 
bisphenol. 

The  most  significant properties of fluoroelastomers are: (l) excellent 
resistance to oxidation (they are self-extinguishing);  (2) resistance to cherni- 
cal attack  and  to organic solvents (they are among the most resistant rub- 
bers to hydrocarbons, water, steam, and concentrated acids and alkalis; and 
(3) thermal resistance comparable to  that of the silicones (they can  support 
temperatures up  to 250°C  without  undergoing degradation). 
fluoro-olefinic rubbers are very  expensive materials; this disadvantage  is 
aggravated by their high density (l .84 g/cm3). 

been  used for at least the last 25 
years. These materials are also known as thermoplastic rubbers. In spite 
of their short life, TPE rubbers are highly  regarded  from the technological 
point of  view. As their name indicates, they  combine into a single material 
the elastic capability of an elastomer and  the processability of a themo- 
plastic, characteristics that  are explained by their structure.  TPEs have 
managed to demonstrate  that the barriers existing between the rubber indus- 
try and the plastics industry correspond more  to  tradition  than  to reality, 
and they are promoting the technological development of a stronger indus- 
try based on polymer materials in general. 
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(a)  ha^ Is a ~hermoplastic ~lastom~r? 

The term “thermoplastic elastomer” is normally used to describe  polymeric 
materials that exhibit elastic properties similar to those of elastomers with- 
out containing chemical  cross-links  in their structure, as shown  in the 
scheme  of Figure 3.25. TPEs are biphasic materials composed of an elasto- 
meric matrix containing a second phase of harder material dispersed within 
it, which acts to form physical cross-links of the TPE. While the cross-links 
in elastomeric networks are permanent (genuine  chemical bonds), those in 
TPE  are physical and reversible. The structure shown in Figure 3.25 can be 
achieved either by preparing a block copolymer or by  mixing  two  polymers. 
In either event, the monomer units of one variety are  not compatible with 
those of the second  variety forming the TPE. Therefore, when the two  types 
of monomer units come into contact, a phase separation takes place,  giving 
rise to the biphasic structure shown in Figure 3.25. The domains acting as 
cross-links can display different morphologies-spherical,  cylindrical, or 
laminar~epending on the thermal and mechanical history of the material. 
The hard domains, distributed through the elastomeric matrix, are made up 
of frozen macromolecular chains capable of restricting the gross chain 
motion of the chains constituting the elastomeric phase of the material. 

There are certain advantages and disadvantages to this type  of material 
compared to conventional elastomers. The advantages concern the existence 
of  reversible  physical  cross-links. When a TPE is heated, the cross-links 
disappear if the temperature increases  beyond the 7“’ of the hard phase or 
above the Tm of the hard domain if it is crystalline. In contrast, conven- 
tional elastomers display thermostable structure. The physical nature of 

Domain of hard 
block 

Soft elastomeric 
matrix 

Ye Thermoplastic elastomer phase structure (From Ref. 26). 
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TPE cross-links  permits the processing of  these materials using  techniques 
of thermoplastics. Some disadvantages of  these materials are low  elastic 
recovery capability, limited strength at high temperatures, and low  resis- 
tance against the action of  acids and solvents. In general, the disadvantages 
are being  overcome day by day with the preparation of thermoplastic elas- 
tomers with  considerably  improved performance for special  uses  in  engi- 
neering. 

Styrenic TPEs 
Styrene-butadiene-styrene (SBS) triblock copolymers  were the first themo- 
plastic  elastomers introduced onto the market in  1965.  These rubbers have 
been  known  by the generic  name  of  styrenics. SBS are triblock (SBS) linear 
copolymers  disposed  in radial or star form. The  morphology of a styrenic 
TPE is  shown  in Figure 3.26. It can be  seen that the styrenic  blocks are 
situated together, forming a domain  that is separated from the elastomeric 
phase composed of butadiene blocks. The  morphology of both phases had 
been  extensively  studied  by  transmission  electron  microscopy. The conclu- 
sion has been that commercial SBSs contain around 30%  styrene and dis- 
play a phase of spherical domains of  polystyrene that extend  in a very 
regular way through the elastomeric  phase. On the main limitations of 

styrene butadiene styrene 
”e 

tri block  copolymer 

.-“--polystyrene domains 

(polybutadiene) 

ure Styrenic TPE morphology. 
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Ss in service  is their low tolerance to moderately high temperatures, The 
softening temperature is determined by the T' of the styrenic blocks. In 
principle, this should be around lOO"C, the T' of  polystyrene.  However, 
the blocks  of  polystyrene  have  low  molecular  weight, and therefore the 
most accepted  value for the softening temperatures is  65°C.  Obviously, 
the consequence  of thermal softening is the loss  of  mechanical qualities of 
these materials, and creep and permanent elongation can be  observed. In 
contrast, the performance is  very good at low temperatures. Flexibility  is 
maintained over a wide range of temperatures down to about -90°C  with 
blocks  of butadiene and  to  about -60°C if the butadiene is re laced  by 
isoprene (SIS). The tendency to oxidation shown by this type E is a 
drawback. This is  caused by the presence  of unsaturations in t tomer 
phase. This problem can be partly solved if the S S undergoes a hydrogena- 
tion process. 

In spite of the disadvantages mentioned above, styrenics account for 
nearly 50% of the total consumption of TPEs. Their use  is equally wide- 
spread in  America and in Europe, a fact that could largely  be due to a good 
qualitylprice ratio. 

Olefinic TPEs 
lefinic TPEs are thermoplastic elastomers corning  second  in order of 
emand, making them the most important in the group after styrenics. 

first  ones  were marketed in  1972, Unlike styrenics,  they  consist  of a 
ture of a crystalline olefin, normally p ylene, and an elastomeric 

copolymer of ethylene-propylene, usually (Fig. 3.27).  These materi- 
als are collectively known under the name of thermoplastic olefin (TPO) 
elastomers. The structure of the mixture of polypr (PP) and E P ~ ~  
is biphasic due to the incornpatibility of PP and In principle, the 
crystalline phase acts in a similar way to the hard phase of styrenic TPEs. In 
terms of properties, TPOs are materials that cover a broad range of hard- 
ness, modulus, and tensile strength. In general, all these properties increase 

content of the mixture. Certain flaws in the elastic properties 
k of  recovery capability and low  resilience, particularly at high 

temperatures, should be mentioned as the most i ~ p o r t a n t  drawbacks. These 
factors restrict their use  in  some applications at temperatures above 60°C 
Their flexibiiity at low temperatures is guaranteed unti 
glass transition temperature of the elastomeric phase. 
since the melting temperature of PP is around 160°C, these materials are 
processed at ternperatures between  190 and 230°C. The flaws mentioned 
above have,  been  overcome to some  degree by modifying the preparation 
of the material. The modification consists in vulcanizing E P ~ ~ ,  via unsa- 
turated moieties, during the process  of  mixing  with PP, a process known as 
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Semicrystalline TPE morphology (From Ref. 26). 

dynamic vulcanization. At the structural level, the consequence of this pro- 
cess  is the appearance of  chemical  cross-links  in the elastomeric phase, and 
materials subjected to this  modification are generically  known  by the term 
TPVs  (vulcanized the~oplastics), TPVs  obviously  lack the flaws found for 
TPOs and display superior elastic properties and better resistance to oils and 
solvents. 

TPEs for  Engineering 
A new type of materials, referred to as TPEs for engineering,  have  recently 
been  developed (26). These materials show advantages over the traditional 
TPEs. They are all  block  copolymers  in  which the hard block  is  crystalline. 
According to certain specific groups appearing in their structure they are 
classified  as 

1. ~ ~ Z ~ e ~ ~ e ~ ~ .  This group is  formed  by  multiblock  copolymers  in 
which hard blocks,  generally constituted by poly(b~ty1ene ter- 
ephthalate) (PBT) (T, = 170-250°C) of approximately 10 units, 
alternate with soft flexible  blocks  consisting  of poly(tetramethy- 
lene  glycol terephthalate) ( P T ~ ~ T )  (T, = -50°C). This type of 

E displays a combination of interesting properties, such as flex- 
ibility at low temperatures and high  softening point. These materi- 
als are also capable of  covering a wide hardness range  because the 
content of the hard phase can be  modified.  Nevertheless, as occurs 
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with all polyesters,  they are liable to undergo hydrolysis at tem- 
peratures above 60°C. 

2. PoZyure t~a~es .  Thermoplastic polyurethanes (TPUs) contain 
urethane groups, - 0 -CO - NH - in  their structure obtained 
from the reaction of a diisocyanate (OCN- R- CNO) with a 
polyol.  These polyurethanes are block  copolymers  in  which hard 
blocks formed by reaction of a diisocyanate with a short-chain diol 
alternate with soft blocks  formed by reaction of a diisocyanate 
with a long-chain diol. 

3. P o Z y a ~ j ~ e s .  Polyamides are the most  recently  developed TPEs. 
Their structure does not differ from that of other TPEs  for engi- 
neering. An example  of a polyamide TPE is obtained from  a 
prepolymer terminating in a hydroxyl group, which  will constitute 
the soft blocks, capable of reacting  with a polyamide terminating 
in carboxyl groups, which  will constitute the hard blocks  of the 
copolymer. The amide  blocks  could be nylon l1  or nylon  12. The 
flexibility  of  these thermoplastics is  ensured at low temperatures 
down to -40°C. The polyamide  blocks  melt  in the range  170” 
220°C. 

The  TPEs for engineering  show advantages over conventional TPEs. 
They  exhibit a good  combination of properties such as resistance to  abra- 
sion and splitting, good  flexibility at low temperatures, and high  resistance 
to impact. The principal disadvantage of TPEs for engineering  is  their cost, 
which  is  twice to five  times the cost  of  styrenic and olefinic TPEs. 

.l 

Show that in Eq. (3.33), CT = NkBT(h - h-2), the parameter NkBT repre- 
sents the shear modulus of the elastomer. 

According to Hooke’s  law, the stress CT is proportional to the deformation E 
of the sample,  defined as the extension per unit of initial length E = AL/Lo 
according to the equation 

U = E& (P3.1.1) 



Rubber Ela~ticity 133 

where E is the elastic modulus of the sample. 
In  the case of Eq. (3.33) the  deformation h is  defined as 

h = l t - A L / L o = l $ - E  (P3.1.2) 

and therefore 

h - h-2 = 1 + & - (1 + (P3.1.3) 

Expanding the term (1 + E ) - ~  in series, we obtain 

= 1 + & " ( l  -2&+-*) (P3.1.4) 

For small deformations, 

h - = 3&  (P3.1.5) 

so Eq. (3.33)  would  be  reduced to 

CT = Nk~12"3& and E = ~ N ~ B T  (P3.1.6) 

Since for  an incompressible material E = 3G  (see Chapter 4), it  can be 
asserted that the quantity NkBT of Eq. (3.33)  coincides  with the shear 
modulus of the elastomer, 

G = NksT (P3.1.7) 

Obtain  the  stress-elongation relationship from Eq. (3.27) for  an ideal elas- 
tomer: 

(a) For  a two-dimensional deformation Ax = h, = h produced by the appli- 

(b) For  a two-dimensional deformation h, # h, produced by the applica- 
cation of two  forces in the x, y directions. 

tion of forces  in the x, y directions. 

(a) Figure P3.2.1 shows a representation of a sample of elastomer of initial 
dimensions xo, yo, zo subjected to the action of two  forces 



134 Chapter 3 

For a  sample of  volume V = xoyozo, the  total work  would  be  given  by 

W = - G V ( h ~ + h ~ + h ~ - 3 )  1 

2 (P3.2.1) 

in this particular case, h, = h, = h and therefore h, = h-2, which  gives 

GV 
2 W = -(2h2 + h-4 - 3) (P3.2.2) 

f =fy = ( ~ )   ( ~ )  = ( ~ )  ( ~ )  
L=?@-$) (i) 

and 

(P3.2.3) 

(P3.2.5) 

(P3.2.5) 

Substituting V = xoyozo into Eqs. (P3.2.4) and (P3.2.5), we obtain 
f, = 2G yo zo(h - hW5) 

and 

fy = 2G XO zo (h - h-5) (P3.2.6) 

so the nominal stress is  given  by 

f. .f;i 
" - G, = 2G(h - h-5) = CT - - 

x0 zo Yo zo Y "  (P3.2.7) 



Thus, 

and 

1 
h, =- 

h&, 
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W=--(h:+h;+”3) GV l 
2 nzh; 

Therefore, 

(P3.2.8) 

(P3.2.9) 

(P3.2.10) 

(P3.2. l 1) 

and 

CY, = G(h, - hi3hY2) (P3.2.12) 

In the same  way, we can derive 

( r ~  = G(h, - hY3hX2) (P3.2.13) 

Calculate the variation in entropy corresponding to a polydimethylsiloxane 
network of‘ mass 6.89 g, with an average molecular weight  between cros - 
links MC = 8.3 x lo3, subjected to a reversible uniaxial extension at 25” 
until the length is double its initial length. 

According to Eq. (3.26), the variation in entropy, AS, per unit volume in a 
deformation experiment is given by 

AS=-- k3N (h; + h; + h: - 3) 
2 (P3.3.1) 



To calculate the total variation in entropy, we replace N by U ,  the total 
number of  elastic chains of the network. 

If the deformation occurs along the z axis, h, = 2, and, remembering that 

A,h,h, = 1  (P3.3.3) 

we  will have 

h, = h, = 1 /45  (P3 * 3.4) 

Moreover 

m 6.89 v = " N A  = ~ x 6.023 x = 5 x lo2' chains 
MC 8.3 x 103 

(P3.3.5) 

Therefore, 

This shows that the entropy decreases  when the sample  of PDMS is 
extended. 

The heat involved  in the process can also be calculated by applying the 
second  law of the~odynamics,  

A S  = Q/T (P3.3.7) 

Q = -6.9 x x 298 = -2.06 J, and since AE = 0, the first  law of ther- 
modynamics  indicates that W = 2.06 J. 

The results  have to be interpreted as follows. The work done by the 
force  applied to the sample  of PDMS is  positive, and consequently the 
sample  of PDMS releases heat in an  amount equal to the work done. 

Determine the relationship existing  between the structural parameters of the 
networks whose arrangement is  shown  in Figure 3.4.1. 
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The  structural  parameters of a network were stated in  Section 3.3.3 as 
functionality d>, cross-link density = 1.1 (cross-link points)/ V (nonswollen net- 
work), and U = number of chains in the network. 

For network (a), 

Q> = 4 (four  chains  start  from each  cross-link) 

IJ. = 4; U = 8; p/v = 4/8 = 1/2 

For network (b), 

d, = 3 (three chains  start  from  each cross-link) 

IJ. == 4; U = 6; pv = 4/6 == 2/3 

Moreover, in both cases the general relation $1.1 = 2v can be confirmed. 
In  addition, if the density of the sample, p (g/cm3) is known, the average 

molecular weight  between cross-links, MC, can be obtained  from  the rela- 
tionship 

P MC =- 
v /  v (P3.4. I) 

A 2.830 g sample of a poly(methy1 methacrylate) (PMMA) network 
immersed in ethyl acetate (EtAc) reaches  swelling equilibrium after 24 h, 

the final  weight  being 7.336 g. The cross-linking reaction was carried out 
with a  tetrafunctional cross-linking agent in the undiluted state (uZs = 1). 
Calculate MC. 
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Data: Specific  volume o f  the P M M ~  network = 0.8 1 cm3/g; x (poly- 
mer-solvent  interaction  parameter) = 0.4'7; density of   EtAc = 0.900 g/cm3 
(molecular  weight = 88.12). 

irst,  the value o f  212, the  fraction by  volume o f  
brium,  is  calculated  as 

volume  of PMMA 
total volume at equilibrium (PMMA + EtAc) v2 = (P3.5.1) 

Volume of PMMA = 2.830 x 0.81 == 2.292cm3 

Total volume = 2.292 + (7.336 - 2.830)/0.9 = 7.299cm3 

V? = 2.292/7.299 = 0.314 

Degree  of  swelling = v:' = 0.314" = 3.185 

T o  calculate MC we use  the  classical  theory, Eq. (3.46), 

(P3.5.2) 

ubstituting p = 0.81-1 = 1.235 g/cm3, 

which gives 

= 3.82 x 103 

The  density o f  elastic  chains is 

"" 

V MC - 3.82 x IO3 
P = 3.2 x lom4 mol  chains 

imilarly,  from  the  relationship  between  the  number o f  chains  and  number 
roblem 3.4) for  a  tetrafunctional  network, we obtain 

p/ V = 1.6 x mol cross-links cm-3 
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The response of most materials  to mechanical, electrical, optical  and  other 
force fields  is time-dependent. The study of the responses to these  force  fields 
allows one to determine, respectively, the rheological, dielectrical and bire- 
fringence properties of materials. According to the second law of themo- 
dynamics, part of the input energy  involved  in the  perturbation must 
invariably be dissipated, and  part of it is stored. It should be pointed out 

140 
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that dissipation of  energy does not occur instantaneously; it may take place 
in a time  infinitely short, infinitely long, or finite, depending on the thermo- 
dynamic state  and  nature of the material, 

In rheology, the perturbation is a mechanical  force, and the response is 
a deformation that in certain cases  becomes  flow. Part of the energy 
involved  in the deformation is stored elastically, and  part is dissipated 
through viscous  mechanisms.  Because  some  of the energy  is dissipated, 
the response  always  lags  behind the perturbation. The shorter or greater 
the duration of the perturbation, the smaller or larger, respectively,  is the 
amount of lag. This is a consequence  of the fact that in a short perturbation 
the molecules comprising the material cannot rearrange sufficiently fast to 
accommodate to it, whereas in a perturbation of large duration there is 
plenty of time for molecular rearrangements. The response also depends 
on the intensity of the perturbation. 

The establishment of relationships or constitutive equations linking the 
forces acting on a material and its response (deformation or flow)  is one of the 
main objectives  of rheology. However, this is not  an easy task, because  of the 
time  dependence  of the response. An important requirement of constitutive 
equations is that they must be independent of the shape and size  of the mate- 
rial. To illustrate this, let  us consider an ideal elastic material in which the lag 
time  between the perturbation  and the response  is zero. Though strictly speak- 
ing this material does not exist, it could be  considered as such a material in 
which the lag time  is  close to zero. Metals, for example,  fulfil this requirement. 
To start with, let  us  assume a metallic rod of length Lo and uniform cross- 
sectional area A. that is stretched by being  pulled on its ends, and  as a result a 
tensile force F is applied in the direction of the rod axis.  Experience indicates 
that  for infinitesimal deformations, F = kAo(L - Lo), where L is the length of 
the deformed rod. The proportionality constant k depends on the nature of the 
material and the initial dimensions  of the rod defined  by Lo and Ao. Moreover, 
for  constant values  of L - Lo and A. the force is  inversely proportional to the 
original length of the bar. Accordingly, the tensile force is  given by 

where E = kLo. The parameter E, called the modulus of elasticity, is inde- 
pendent of the geometry  of the road  and consequently represents a char- 
acteristic material property or a material function. Rearrangement of Eq. 
(4.1) gives the well-known constitutive Hooke's equation (1) 

CY = EE 
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where D(= F/Ao) is the force per unit area or stress and E[= (L  - Lo)/Lo] is 
the deformation. 0th CT and E have the dimensions of newtons per square 

(N/m2), while E is a dimensionless quantity. 
et us now  discuss the rheological behavior of ideal liquids. The storage 

energy  of an ideal viscous liquid is zero. Though strictly speaking there is no 
real  liquid that meets this assumption, low molecular weight liquids 
approach this behavior. Consider a liquid sheared between  two parallel 
plates by a force FA applied on thk upper plate of area A that forces it to 
move  with constant velocity v while the lower plate remains motionless. 
Assume that the two plates are separated by a relatively  small distance h 
and  that v is  small enough that the flow  is laminar. Experience indicates that 
the shear stress D(= F/A)  is  given  by (2) 

where i(= v/h), the rate of shear, has the dimension of reciprocal time, S-', 

and the dimension of the viscosity q is kilograms per meter per  second  [kg/ 
he fact that the rate of shear remains constant means that the input 

energy  is dissipated by friction of the layers that slide upon each other, their 
velocities  decreasing from v to zero, corresponding to the liquid layers in 
contact with the moving plate and the motionless plate, respectively. 
Consequently, the viscosity  is a measurement of the energy dissipated in 
flow,  in such a way that the higher this energy  is, the higher  is the viscosity 
of the liquid. 

0th E, in  ideal  solids, and q,  in  ideal liquids, are material functions 
independent of the size and shape of the material they  describe. This holds 
for isotropic and homogeneous materials, that is, materials for which a 
property is the same at all directions at any point. Isotropic materials are 
so characterized because their degree  of  symmetry  is  infinite. In contrast, 
anisotropic materials present a limited number of elements of symmetry, 
and the lower the number of  these  elements, the higher the number of 
material functions necessary to describe the response of the material to a 
given perturbation. Even isotropic materials need  two material functions to 
describe in a generalized  way the relationship between the pertur~ation and 
the response. In order to formulate the mechanical behavior of ideal solids 
and ideal liquids in terns of constitutive equations, it is necessary to estab- 
lish the concepts of strain and stress. 
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The  introduction of the concepts of stress and  deformation at a point has 
been a fundamental  concept in the development of the mechanics of con- 
tinuum media. From  a physical point of  view,  only the displacement is a real 
quantity, while stress implies an idealized situation  that is not directly mea- 
surable; the value of a stress can only be inferred from its effects.  The  effects 
of the force at a  point P depend on  the  orientation of the element surface 6A 
comprising the point, which in turn is characterized by a vector nj (i =1,2,3) 
normal to the surface at P, as shown  in Figure 4.1.  The stress vector at the 
point P can  be written as 

From Newton's  law  of action and reaction the stress vector resulting from 
the force exerted by the material inside an  arbitrary volume V upon the 
material surrounding  it across the element surface 6A is 

If, as indicated in Figure 4.2, the normal  to the surface 6A coincides 
with the x3 coordinate axis, the force acting on P can  be  decomposed into  a 
component parallel to x3 and  a shear force located in the plane of the 
surface, which in turn  can be  decomposed into  a component Sf& along  the 
x2 axis and  a component Ah3, along xi. Here the second subscript indicates 
the axis perpendicular to the elemental surface 6A and  the first the axis to 

Schematic representation of the state of stress at a point of a material 
body. 
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”””* 

x1 - 

Components of force at an infinitesimal  surface. 

which the  component of the force in the surface is parallel. The values of the 
limits of S & / S A ,   S f 2 3 / S A ,  and S t j 3 / S A  when SA ”+ 0 are  the stresses at a 
point  that  are customarily written as 013,  023, and 033, respectively. 
Obviously  these three values do  not completely  define the state of the stress 
at the point considered because  they depend on  the plane of the  arbitrarily 
chosen section. The  state of the stress at a  point will require specification of 
the co~ponents of the stress in three mutually perpendicular planes, that is, 
three planes perpendicular to xl, x 2 ,  and x 3 ,  as indicated in Figure 4.3. The 
vectors shown in this figure, three of stress perpendicular to the three planes 

31 

Components of the stress tensor in rectangular  coordinates on an 
infinitesi~al element. 
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(011,  022, and 033, also named normal stresses) and six  of shear (o12, 013, 
021, ~ 2 3 ,  031, and 032), are the components of the stress tensor represented 

Not all the components of the stress tensor are independent, as  can 
easily be shown by taking the moments around  the  different  coordinate 
axes  in Figure 4.3. A balance of forces at equilibrium gives 

by o@, 

(032 dxl dx2)dx3 - ( ~ 2 3  dxl dx3)dxZ = 0 around  the x1 axis  (4.6a) 

(021 dxl dx3)dx2 - (o12 dx2 dx3)dx1 = 0 around  the x3 axis  (4.6b) 

(oI3 dx2 dx3)dx1 - dxl dx2)dx3 = 0 around  the x2 axis (4.6~) 

Hence, = oji. The stress tensor is  symmetrical and consequently has only 
six independent components. 

With the aim of relating the force per unit  area at a  point to the com- 
ponents of the stress tensor at  that point, let us consider (3) the tetrahedron 
of Figure 4.4, in which a force per unit  area, f, is applied to the oblique 
surface AS. The  other surfaces of the tetrahedron, AS1, AS2, and AS3, 
respectively pe~endicular  to the xl, x 2 ,  and x3 coordinate axes, can be 
obtained  from AS from the expressions. 

Forces and stresses on  an infinitesimal tetrahedral element. 
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where n l ,  122, and n3 are the components of the unit vector perpendicular to 
AS in the reference frame xl , x2, and x3. If the tetrahedron is at equilibrium, 
a balance of force leads to 

where b = --pVd) is a conservative force emanating from a gravitational 
potential d), p is the density  of the body and Ah is the tetrahedron height. 

hen Ah -+ 0, Eqs (4.7) and (4.8)  give 

n j o j i ,  j = 1, 2, 3 (4.9) 
j 

This expression indicates that the force f is a linear combination of the 
components of the stress tensor. The inertial tern has been  neglected in 
this equation because the height  of the tetrahedron is in~nitesimal. 

hen a body  of  volume V and area S is under the action of both contact 
and conservative forces, a balance of  forces  gives 

(4.10) 

where f is the contact force per unit of surface and a is the acceleration. 
substitutin~ Eq. (4.9) into Eq. (4.10), this latter expression  becomes 

(4.11) 

y taking into account the theorem of  divergence, this equation can be 
written as 

(4.12) 

where ojk,k =2: ~ u j ~ / ~ x ~ ~  = div c. ecause Eq. (4.12) holds for any volume, 
the following  expression  is obtained: 

(4.13) 
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which  is also called the second  law  of  dynamics. In experiments in which the 
body  undergoes  deformation  without translation, as occurs in linear elasti- 
city, Eq. (4.13)  becomes 

(4.14) 

Let us consider two  neighboring points in a solid  body  (3), indicated as A 
and B in  Figure  4.5,  whose coordinates in an  orthogonal reference  frame are 
xi and xi + h i ,  respectively,  where i = 1,2,3. Let us assume further  that 
under the action of a force field, the body  is  deformed and  the positions of 
the two points are A’ and B’ with coordinates Xi  and Xi+l with  respect to 
the reference  frame indicated before. According to Figure 4.5, the coordi- 
nates X;. and xi are related by 

where ui are  the components  of the vector displacement 
be  a continuous function of the initial coordinates xi, one  can write 

(4.16) 

Displacements of two points A and B as a result of a force. 



which  leads to 

(dXI)2 = (dxJ2 + c3 dxk  dxl + 
k,l 

(4.17) 

The squares of the distances  between the points A and B (ds2) and between 
A‘ and B’ (dS2) can be written as 

ds2 = (dx1)2 + ( d ~ 2 ) ~  + ( d ~ 3 ) ~  = (4.1 sa) 
I 

where the mute  index i, instead of l ,  has been  used  in the second  term  of the 
right-hand side  of Eq. (4.18b).  Consequently, the difference  between dS2 
and ds2 is  given  by 

ik 

where 

(4.19) 

(4.20) 

The assembly  of  values  of eik forms a second-order tensor associated  with 
the coordinates of the point A’. This tensor has the components 

(4.2  1 a) 

(4.21b) 

It can easily  be  shown that eij is a symmetrical tensor, that is eij = ejj. For 
very  small deformations, the partial derivatives & i / a X j  in Eq. (4.21) can be 
considered  infinitesimal quantities of  first order, so the components of the eij 
tensor can be approximately expressed as 

(4.22) 
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The displacement gradient tensor defined as 

(4.23) 

is inconvenient to measure the deformation. Let us analyze, for example, the 
response of a solid material to the action of a shear stress in the plane x1x2. 

is applied on a thin layer in the direction of axis x1, as shown in 
Figure 4.6a, the layer  is  displaced parallel to the axis in the amount (au1/ 
ax2)dx2 in such a way that the deformation is  given  by 

(4.24) 

For small displacements, tan 0 @ 0. However, if the force acts along the x2 
axis, as indicated in Figure 4.6c, the layers are displaced parallel to the x2 
axis by the amount (au2/dxl)dx1, and the deformation can be written as 

(4.25) 

where, as before, aul/axl = tan 0 @ 0 for a small deformation. The super- 
position of the two deformations indicated in Figure 4.6b and 4.6d produces 
a shear deformation (see Fig. 4.6e)  given  by 

(4.26) 

If the force acts in the negative direction of the x2 axis, as shown in Figure 
4.6f, the layers undergo the displacements indicated in Figure 4.6g,  so that 
superposition of the displacements of Figure 4.6b and 4.6g does not produce 
a deformation but the rotation presented in Figure 4.6h,  whose  value  is 

(4.27) 

where it has been  assumed that the two shears have the same magnitude. 
From this one infers that the displacement gradient tensor can be separated 
into the so-called strain tensor, yii, and a rotation tensor c"'@, that is, 

(4.28) 
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F 

XI 

l 

l 

(d) 
XI 

l X2 

Shear forces, showing the shear responses and their superpositions. 
(See text for details) 

where yij and aij are given  by 

(4.29a) 

(4.29b) 

It is obvious that yij = yji and aij = -aji. In other words, yq and oij are, 
respectively,  symmetrical and antisymmetrical tensors. The  strain tensor can 
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be written in matrix form, and the off-diagonal components are called shear 
strains while the components on the main diagonal are called normal 

strains. The shear strains represent changes in angle, whereas normal strains 
represents extensions or changes in length per unit length parallel to the 
coordinate axes. 

In the case  of a simple shear deformation, schematica~ly indicated in 
Figure 4.6b7 the only nonzero components of the displacement gradient and 
strain tensors are given  by 

and 

(4.30a) 

(4.30b) 

where c12 and y12 are the amount of shear and shear strain, respectively. It 
follows from Eqs. (4.30a) and (4.30b) that 

E12 = 2Y12 (4.30~) 

ecause the six components of the strain tensor are functions of three dis- 
placements ul, they cannot all be independent, for then different portions of 

the material would share the same coordinate points or there would  be  voids 
(gaps), thus violating the continuity of the material. Strictly speaking, the 

three-dimensional problem is equivalent to determining the compatibility of 
six equations with three unknown variables (4). 

Let us  first consider the two-dimensional case. According to Eq. (4.29), 
the components of the strain  are given  by 

y taking derivatives one obtains 

(4.3 1) 
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(4.32a) 

(4.32b) 

Once the derivatives  of the displacements are eliminated, the following 
expression  is obtained: 

(4.33) 

which  is the compatibility equation for the planar strain case. In the three- 
dimensional situation, the necessary conditions are 

(4.34a) 

(4.34b) 

(4.34c) 

and 

__ 2 Y l l  ; 

2“- $Y23 __ $Y22 ; a2y33 

2-=- a2Y31 J2Y33 

2- - - (4.35a) 
ax,  ax,,  ax; ax; 

ax2  ax3  ax;  ax; 

ax3  ax,  ax:  ax; 

(4.35b) 

(4.35c) 

It can be demonstrated  that for simply  connected domains these conditions 
are sufficient. 

A variety  of  experiments  show that for a solid under  an infinitesimal defor- 
mation, the stress tensor is a linear function of the strain tensor, 
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where Cqkl is a modulus tensor of fourth order with 81 components  that are 
material constants. However, not all  of the components of the modulus 
tensor are independent. Thus C,,, = Cji, because the stress and strain ten- 
sors are  both symmetrical (crq = crji, Ykl = ykl), and consequently the num- 
ber  of independent terms  reduces from 81 to 36. In order to proceed  with a 
further reduction of independent terms, it is  convenient to analyze the work 
W carried out in the deformation. This quantity is  given  by 

where the reduction of indices ij = a and kl = p was  made.  Any tensor can 
be written as the sum  of  symmetrical tensor A,p and antisymmetrical tensor 
Baa. Accordingly. 

Hence one infers that the components of the C tensor can be written in 
terns of those  of A and B as 

From Eqs.  (4.37) and (4.39), the following  expression  is obtained: 

(4.39) 

(4.40) 

By taking into  account  that B,@ = Cap - Cp,, the second  term  on the right- 
hand side  of  this equation becomes 

1 1 

(4.41) 

This  expression  lets Eq. (4.37)  be  expressed as 

Since Aar! is a symmetrical tensor, this last equation indicates that Cap is also 
symmetrxcal.  Hence, Cqkl = and the number of independent terms  is 



reduced to 21. It will  be shown  below that the number of independent terns 
of Cijrc. evolves  with increases in the symmetry of the system. 

ere only noncrystalline symmetries,  which are likely to play an important 
linear viscoelastic  behavior of materials, are considered. 
oegl's approach to this subject (5). Crystalline materials 

their symmetries are described in many  textbooks  (6,7). In  order to study 
how the symmetry of the system affects the number of independent  compo- 
nents of Cgkkt, it is  convenient to reduce the number  of  indices of both  the 
stress and  strain tensors. Following  Voigt's formulation, the reduction is 
made by doing 11 -+ 1, 22 "+ 2,  33 -+ 3,  12 -+ 4,  23 + 5, 13 -+ 6, so that 
the relation between the stress and  the  strain tensors can be written in  matrix 
form as 

c l 2  c13  c14 c15 c16' 

c22 c 2 3  c24 c25 c26 

c33  c34 c35 c36 

c44 c 4 5   c 4 6  

c55 C56 

c66 

Y1' 

Y2 

Y3 

Y4 

Y5 

Y G  . 

(4.43) 

For reasons that will  become clear later, it is  convenient to write Eq. (4.43) 
as 

Let us analyze a material having a plane of  symmetry  defined  by the coor- 
dinates axes x2, x3, as shown  in  Figure  4.7.  The  components  of the stress 
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Single  plane of symmetry 

tensor in a change of  reference frame, for example, from ~ 1 ~ 2 x 3  to x;x;x;, 
are given  by 

(4.45) 

Taking into account the symmetry  of the system, the matrix of director 
cosines  is 

(4.46) 

where  all the elements of the matrix except  those of the diagonal are zero. 
~ccordingly, 

(4.47) 

The same arguments as those  used for the strain tensor lead to 
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(4.48) 

Consequently, the relation between the stress tensor and  the  strain tensor in 
the reference frame ~ 1 ~ 2 x 3  is  given  by 

c12 c 1 3   c 1 4   c 1 5   c 1 6  ' 

c 2 2   c 2 3   c 2 4   c 2 5   c 2 6  

c33  c34  c3S c 3 6  

c44 c 4 5   c 4 6  

C S 5  c 5 6  

c 6 6  . 

Y1 ' 
Y2 

Y3 

-Y4 

YS 

, "Y6 

(4.49) 

where the  terms of the  tensors G' and y' have been substituted by those of CT 

and y,  as indicated in Eqs. (4.47) and (4.48). From  Eq. (4.49) one obtains 

(4.50) 

Comparison of Eqs. (4.44) and (4.50) indicates that CI4 = CI6 = = C26 
= C34 = C36 = Cd5 = C56 = 0, as  a consequence of the invariance of the 
stress and  train tensors in the change of reference frame. Therefore the 21 
independent components of the tensor Cgkl are reduced to  l3 when the solid 
has one plane of symmetry, and the relation between the stress and  strain 
tensors can be written as 
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Y1 

Y2 

Y3 

Y4 

Y5 

Y6 

(4.5 1) 

If the degree of symmetry increases-for example, if the solid has  an 
additional plane of symmetry  defined by the axes x2 and xl-the matrix of 
director cosines will  be 

(4.52) 

Proceeding in the same  way as above, the terms CIS, C25, and C46 are 
found to be zero, and  the number of independent components of C,,. 
decreases from 13 to 9. For a system  with  two planes of symmetry, the 
following relationship holds: 

This expression can be written in explicit form  as 

(4.53) 

(4.54) 
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Plane  and axis of symmetry. 

If the system also has cylindrical symmetry as shown  in Figure 4.8, where 
the symmetry  axis  is .x1 the matrix  of director cosines  is 

(4.55) 

n 

a;, = a l k a l l a k l  = allall"l1 = 0 1 1  
kl 

(4.56a) 

(4.56~) 

y using the Voigt notation, the components of the stress and 
strain tensors in the xi, x;, x; reference  frame are given  by 
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and 

[Yil = 

159 

(4.57) 

(4.58) 

Owing to the symmetry  of the system, Eqs. (4.5'7) and (4.58) must hold for 
any  angle  of rotation about the xl axis, so for 8 = 90" these equations 
become 

h41 = 

Y1 

Y3 

Y2 

Y6 

"Y5 

, "Y4 

(4.59) 

In this  case the relationship between the stress and strain tensors in the 
reference frame of the coordinate axes xi, x;, x i  is  given  by 

Y1 

Y3 

Y2 

Y6 

"Y5 

, -Y4 

(4.60) 
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This relationship can be written as 

(4.61) 

By comparing Eqs. (4.54) and (4.61) and taking into account the invariance 
of the components of the stress and strain tensors in an operation of sym- 
metry, one obtains 

~onsequ~ntly,  the number  of independent  components of CVkl in a system 
with  cylindrical symet ry  is  six. In this  case, the relation between the stress 
and strain tensors can be written as 

Y1 

Y2 

Y3 

Y4 

Y5 

76 

(4.60) 

A system  with an additional axis  of  symmetry, for example x3, is isotropic. 
The  components of the stress tensor in the system  of coordinates x i ,  xi, x$ 
can be obtained from those  in the reference frame of the coordinate system 
X I ,  4x2, x3 by means of the following  cosine directors: 

cos0 sin0 0 
(4.64) 
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By performing the pertinent  operations,  the components of 04 and yh are 
found to be 

[Oil = 

and 

EYLI = 

01 cos2 0 + 02 sin2 8 + 204 sin 8 cos 0 
C T ~  sin2 0 + c r 2  cos2 0 - 204 sin o cos 0 

(02 - G I )  sin 0 cos 0 + C T ~ ( C O S ~  Q - sin2 0) 
ci5 cos 8 - CT, sin 8 

G, sin8 + CT, cos 0 

G3 

y1 cos2 e + y2 sin2 e + 2y4  sin 8 cos 8 
y1 sin2 0 + y, cos2 e - 2y4  sin 8 cos e 

(y2 - yl) sin e cos +  COS^ 0 - sin2 e) 
y5 cos 8 - y, sin 8 
y, sin 8 + y, cos 0 

Y3 

For 0 = 90°, the relation between OL and yh can be written as 

\ 

Y2 

Y1 

Y3 

"Y4 

"Y6 

Ys I 

(4.65) 

(4.66) 

(4.67) 

By comparing Eqs. (4.63) and (4.6'7) and  taking  into  account the invariance 
of the components of a tensor in an  operation of symmetry,  one obtains 

In this case,  Cqkl has three independent components,  and  the relation 
between the stress and  strain tensors is  given by 
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Y1 

Y2 

Y3 

Y4 

Y5 

7 6 .  

(4.69) 

owever, an additional reduction can still  be made. By substituting the 
values  given for cr44 and y44 in Eqs. (4.65) and (4.66) into the expression 
0: = CMy;, one obtains 

(02 - all sin e cos e C T ~ ( C O S ~  e - sin2 e) = 
(4.70) 

c44[(y2 - yl) sin e COS e + y4(cos2 e - sin2 e)] 

On the other hand, the difference cr2 - o1, directly obtained from Eq. (4.69), 
can be substituted into Eq. (4.70),  giving 

(cll - c12)(y2 - yl)  sin e COS e + C F ~ ( C O S ~  e - sin2 e) = 
(4.7 I) 

c44[(y2 - yl)  sin e COS e + y4(cos2 e - sin2 e)] 

y equating the terms containing the factors (yz - yl) (sin 0 cos e) on the 
left- and right-hand sides  of Eq. (4.71), the following  expression is obtained: 

c44 = c11 - c 1 2  (4.72) 

The components of the modulus tensor C, have traditionally been  expressed 
in terms of the Lami: constants h and G. Specifically, 

Then the relation between the stress and strain tensors is  given  by the 
classical  expression 
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h 

h+2G 

h 

h 

h+2G 

0 

0 
0 

2G 

0 
0 

0 

0 

2G 

(4.74) 

or in  simplified f o m  by 

where 

A = trace y0 = yll + y22 + y33 (4.76 

ronecker symbol  whose  value  is 1 for i = j and 0 otherwise. 
Equation (4.75) is known as the generalized constitutive equation of elasti- 
city for isotropic solids. The physical meaning of A can easily  be  deduced by 
considering a prismatic solid  whose  edge lengths are Lol, Lo2, and l&. Let 
us  assume that  after  application of an external force the lengths of the edges 
become L1, L2, L3. For very small deformations, the components of the 
strain tensor are given  by 

(4.77) 

Then the  ratio between the volume of the deformed body ( V )  and  that of the 
undeform~d one (Vo) can be written as 

(4.78) 

where the nonlinear terms in y i j  have  been  neglected. 

A V  trace yii = A = - 
V0 

(4.79) 

bviously, A represents the  dilatation  (or  contraction) undergone by an 
isotropic body  because of the  action of an external force. It is convehient 



164 Chapter 4 

to express the strain tensor yg as  the sum of a  dilatational tensor (y;) and  a 
deviatoric tensor ( y i )  

Yij = Yij + Yij A d  (4.80) 

where 

1 ASij Y; = -diag (A, A, A) = ~ (4.8 1) 
3 3 

and 

Y11 - 5 712 
A 

Y13 

Y22 - 5 Y23 
yij d = yij - y; = A (4.82) 

A 
Y33 - 5 

If the strain tensor in the generalized constitutive equation of elasticity is 
expressed  in terns of yg and y i ,  then Eq. (4.75) becomes 

(4.83) 

where the K parameter, defined as 

2 
3 K = h + - G  (4.84) 

is  called the bulk relaxation modulus. By substituting  the value of h given in 
Eq. (4.84) into Eq. (4.79, the generalized equation of elasticity as a function 
of the measurable quantities K and G is obtained. This expression  is  given 
by 

In analogy with the  strain,  it is  possible to express the stress tensor as 
the sum of a  dilatational  component, G’, and  a deviatoric component, od, 
that is, 

Here c$ and o$ are given  by 
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l I: 
3 3 

c$ = -diag (I:, X,  X) =-l& 

where 

and 

X = oll + 022 + 033 = trace 

165 

(4.87) 

(4.88) 

By combining Eqs. (4.83),  (4.80),  (4.81), and (4.86), the following  expres- 
sions are obtained: 

(4.90a) 

(4.90b) 

which combine the dilatational and deviatoric stress tensors with the corre- 
sponding strain tensors. It is obvious that  for the strain and stress deviator 
tensors the following relationships hold: 

trace y i  = 0, trace 0:. = o (4.91) 

When an elastic body is under the effect  of a hydrostatic pressure, both the 
strain and stress deviatoric tensors are zero. Owing to the fact that in this 
case yl l  = y22 = y33 and oll = 022 = Eq. (4.85)  becomes 

where p is an  arbitrary isotropic pressure. Because A = (V - Vo)/Vo, the 
measurement of the diminution of  volume  by action of a known hydrostatic 
pressure allows the experimental determination of the bulk relaxation mod- 
ulus. In the same way, Eq. (4.85) indicates that the ratio between the shear 
stress and shear strain (for example 012/y12) gives the experimental shear 
relaxation modulus G. It is worth noting that when K >> G, the combi~ation 
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of Eqs. (4.85) and (4.92) leads to the generalized ooke's law for  an incom- 
pressible material, 

Equation (4.93a) indicates that the stress is  defined only within an  arbitrary 
isotropic pressure. 

If an elastic body  is  under the effect  of a force parallel to one  of the 
coordinate axes, for example  along the x1 axis, the stress tensor has  a  single 
component.  The stress and  strain tensors can  be written in the f o m  

(4.93b) 

where for  an isotropic system y22 = y33. From  Eq. (4.75)  one obtains 

(4.94a) 

(4.94b) 

The solution of these equations, in conjunction with the fact that h = K - 
(2/3)G [Eq. (4,84)],  lead to the expression 

(4.95) 

which relates the tensile relaxation modulus to the shear relaxation modu- 
lus, G. According to  Eq. (4.95), E 2 3 6  if K >> G. 

The  ratio between the components of the diagonal of the strain tensor, 
called Poisson's ratio, is  easily  obtained  from Eqs. (4.84) and (4.94),  giving 

(4.96) 

According to this equation, Poisson's ratio is 1/2 when K >> G. 
Let us analyze the response of a material when it is  compressed or 

expands in a single direction, for example  along the x1 axis, and defoma- 
tions along the x2 and x3 axes are  not permitted. This situation occurs when 
a material is  compressed  in a cylinder or when an acoustic wave propagates 
through  the material. In these conditions, the stress and  strain tensors can be 
written as 
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(4.97) 

rom Eq. (4.85),  one obtains 

oll = ~ - ~ G ) Y ~  +2Gy11 = 

~onsequently, the acoustic mode  is  given  by the expression 

(4.98) 

(4.99) 

On the other  hand,  Eq. (4.85)  shows that 022 = [K - (2/3)G]yll, so that the 
ratio 022/011 is  given  by 

(4.100) 

When K >> G, then csll = cr22 = ci33 = -p, that is, each point of the system 
is under the hydrostatic pressure -p. 

From the foregoing, one infers that the state of an ideal elastic material 
under  small  deformations  is totally defined  once  two  of the  four parameters 
E,  G, K, and U are known.  The relations between the elastic parameters can 
be  obtained  from the expressions indicated above. The pertinent relations 
are given  in Table 4.1  (5). 

For many  purposes it is convenient to express the equilibrium equations in 
terms of the displacements. In  the absence of body forces and inertial terms, 
Eq. (4.14)  can  be written as 

ao, 
axj 
-=o (4.101) 

The relationship between stress and  strain in terns of the tensile  modulus 
oisson ratio is  given  by 
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(4.102) 

This equation can be obtained from Eq.(4.85) and the expressions of Table 
4.1 that relate K and G to E and U. By substuting Eq.(4.102) into Eq.(4. lol), 
one obtains 

(4.103) 

Expressing the tensor strain in  terms  of the components of the vector  dis- 
placement, Eq. (4.103)  becomes 

EU a2uk +- 14: [a2ui --"+l $U' ] = 0 
(4.104) (1 + ~ ) ( l  - 2 4  axj axk  2(  1 + U) ax- axjaxi 

which after an appropriate change  of notation of  some  of the subscripts can 
be written as 

$Ui 1 a2uk "-+-p- 
ax- i - 2v axjxj - 0  (4.105) 

Equation (4.105) can be  expressed  in a more  compact  form as 

1 
1 -2u Au+- V div U = 0 (4.106) 

This expression  is  known as the Navier equation. It should be noted  that 
since 

Au = V div U - rot  rot U (4.107) 

the Navier equation can also be written as 

2(1 - u)V div U = (1 - 2u) rot  rot U (4.108) 

Finally, it is worth noting that taking the divergence and Laplacian in Eq. 
(4.108) one finds 

A div U = 0 (div U is harmonic) 
AAu = 0 (U is biharmonic) 

(4.109) 

It should be pointed out  that the external forces should  appear in the solu- 
tion of  these equations through the boundary conditions. 



hen a solid elastic body  is under the action of an  in~nitesimal contact 
force, the  strain tensor is related to  the stress tensor by the expression 

(4.110) 
kl 

where Rqkl is the compliance tensor with  two independent components. 
using the Voigt notation, Eq. (4110) can be written as 

Y1 

Y2 

Y3 

Y4 

Y5 

Y6 

rom the relation 0;. = CjkYk ,  one obtains 

y i  = (C&lOi = R p j  

G 1  

0 2  

cf3 

cf4 

0 5  

O 6  

(4.111) 

(4.1  12) 

, is the reciprocal of the C, matrix. Because C, is a pseudodia~onal 
matrix,  the term is given  by 

R4 = C&' = (2G)" = J/2 (4.1 13) 

where J = is the shear compliance function.  The  other terms of R, can be 
obtained from the reciprocal of the matrix 

(4.1  14) 

whose  values are given by 
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- c:, R11 = A 

where h is the d e t e ~ i n a n t  of the matrix, From Eqs. (4.73, (4..84), and 
(4. l 15), one obtains 

3 K + G  J 3 RI1 = - - 
9KG 3 9 

"-+- 

and 

2G-3K  3 J R~2=-=--- 
18GK 9 6 

(4.1  16a) 

(4.1  16b) 

where B = 1JK is the bulk compliance function. Using  these  expressions, 
Eq. (4.1 l l) becomes 

Y1 

Y 2  

Y3 

Y4 

Y5 

Y6 

L+B  B-L B" 
3 9 9  69;'" 

(4.1  17) 

which permits writing the relations hi^ between the strain and stress tensors 
in the generali~ed form 

(4.  1  18) 

Let us consider that the only nonzero tern of the stress tensor is oil. 
to Eq. (4.1 18), the r~lationshi~ between yl1 and till is  given  by 

(4.119) 



and the tensile compliance function, D, can be written as 

D=-=-+- Y11 B J 
G11 9 3 

(4.120) 

This equation suggests that D = J / 3  if B -+ 0. In the same  way, Eq. 118 
indicates that the component of the strain tensor in the direction transverse 
to  that of c~~~ is  given  by 

(4.121) 

This equation in conjunction with Eq. (4.1  19) permits us to obtain the 
Poisson ratio given  by 

Y22 W9 - J/6 
711 13/9 + J/3 I)=-=- (4.122) 

One can see that v -+ 1/2 if B -+ 0. Each of the four compliance parameters 
( J ,  D, B, and U) can easily  be obtained from the values of other two  by 
means of the expressions  developed above. The pertinent relationships are 
given  in Table 4.2 (5). 

Let us consider an isotropic material whose temperature uniformly rises 
owing to external causes, for example heating, or the dissipation of  energy 
produced in the body by the deformation. The cubic dilatation taking place 
in the material because of the effect  of the change in temperature is  given  by 

Y,+.,+. = 3 a  AT (4.123) 

where a is the linear dilatation coefficient,  which can be  considered approxi- 
mately constant,  and AT' is the rise in temperature. To establish generalized 
Hookean relationships for systems in which a change of temperature AT 
occurs, consider first the dilatation of the system in isothermal conditions 
caused by the forces applied to the system. By taking into account that 
J = 1/G  and B = 1/K  and considering further that, according to Table 
4.1, K = E/3(  1 - 2v) and G = E/2(1 + U), Eq. (4.1  18) can be written as 

us.1 U 

E E yjj = -Gjj - -(J&Sjj (4.124) 
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The dilatation of the system in isothermal conditions obtained  from Eq. 
(4.124) is  given  by 

(4.125) 

y assuming superposition of  effects, the  dilatation of the system  caused  by 
both the stress applied on  it  and a change of temperature A T  is 

and the trace of the stress tensor is  given by 

(4.126) 

(4.127) 

n this case, Eq. (4.124) adopts the form 

where the  contribution  to  the strain from the thermal dilatation is incorpo- 
y substitution into this equation of the value given for o k k  in Eq. 

(4.126) and  further inversion of the resulting e~pression, one obtains 

E EU E 
"g = -yq + 1 + U  (1 +u) ( l  -2u)ykfc El 1 -2u 

6.. - a"--- A T  6, (4.129) 

ote  that by  using the relationships given  between E and U and K' and G 
indicated in  Table 4.1, Eq. (4.129) also can be written as 

At equilibrium, = 0 [Eq. (4.14)], and as a consequence 

(4.130) 

(4.131) 

where  body forces were  neglected. y following the procedures outlined in 
Eqs. (4.104)-(4.107), the thermoelastic Navier equation is obtained: 
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-[~l 1 - v) V div 1 -2v 
l f v  

rot rot U = aVT I (4.132) 

is the vector displacement 

have  seen that  the stress tensor for ideal isotropic solids is a linear 
ction of the strain tensor, the proportional coefficient  being  a fourth- 

order modulus tensor with  only  two inde~endent components,  In liquids, 
the shear components uij, i # j ,  of the stress tensor produce S 
while the  normal components uti, i = j ,  give  rise to bulk  flow. 
the high compressibility coefficient  of liquids, bulk  flow  is  near1 
in  comparison  with the shear flow,  We can extend the generalized equation 
of elasticity [Eq. (4.90a)l to liquids by substituting elastic parameters for 
viscous ones. The  analog of the relaxation modulus G is the shear viscosity 
q, and  that of the bulk relaxation modulus K is the bulk  viscosity c. 
analogy  with Eq. (4.90), the  dilatant  and deviator stress tensors for liquids 
are given  by 

0; = {AS, = 3 K j i  (4.133a) 

and 

“4 2qj!  (4.133b) 

where j$ and yi. are, respectively, the isotropic rate of strain tensor and  the 
deviatoric rate of the strain tensor. Accordingly, the generalized equation  of 
viscosity for liquids can be written as 

(4.134) 

For simple shear flows, Eq. (4.134)  becomes the familiar expression for 
Newtonian liquids, 

“ i j  = 2qjij, i jc: j (4.135) 

For a fluid  flowing under a force field  in  which the stress tensor has  only  one 
component, 01 1, Eq. (4.134)  can.  be written explicitly as 
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0 1 1  = (c - ;'l)(?ll + 2?22) + 2'1?ll (4.136a) 

where j Z 2  = j33 because of the isotropy of fluids. Solution of these equations 
gives 

TIL=-=- 011 95'1 
Y l l  35+'1 

(4.137) 

where qL is the elongational viscosity. In general, the bulls  viscosity  is much 
larger than the shear viscosity and consequently qL 3q. 

Owing to the fact that a viscous material still responds elastically to  an 
isotropic pressure, Eq. (4.133a) should be written as 

0; = 3Ky$ + 3 c j A  v (4.138) 

Consequently, Eq. (4.134) can be  expressed by 

Hence, the elongational viscosity  is  given by 

(4.139) 

(4.140) 

For >> q, Eq. (4.140) again reduces to qL = 3q.  For  incom~ressible 
liquids, Eq. (4.139)  becomes 

oij = -p&@ + 2qjg (4.141) 

where Eq. (4.93a)  was considered. Equation (4.141) indicates that the stress 
is known only  within an  arbitrary isotropic pressure. For an isotropic mate- 
rial under uniaxial elongation, the stresses, strains, and rates of strain are 
identical in the two transverse directions. In this situation, the normal stress 
difference  is  given  by 

0 1 1  - G22 = 2TI(?ll - ?22) (4.142) 

For  an incompressible  fluid the rate of dilatation vanishes, and we obtain 
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A = +2j22 = 0 
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(4.143) 

Hence, Eq. (4.142)  becomes 

QII.  - 0 2 2  = 3rlY11  (4.144) 

By taking into account the earlier relation, qL = 377, Eq. (4.144) can be 
written as 

0 1 1  - Q22 
r lL  = (4.145) 

which  gives the elongational viscosity  of an incompressible liquid in terms of 
the normal stress difference. Equations (4.139) and (4.141) are special forms 
of the generalized  Newton’s  law. 

Yl I 

Given the displacements 

where a is a positive constant, determine (a) the displacement tensor, (b) the 
strain tensor, and (c) the rotation tensor. 

According to Eqs. (4.23), (429a),  and (4.29b), the gradient displacement 
tensor, the strain tensor yii, and the rotation tensor cog are given  by 

0 
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0 ax3 

-ax3 0 

Write the  strain tensor components in cylindrical coordinates. 

Let us represent by U,, u0, and U, the radial, angular,  and axial displacements 
respectively, as in Figure P4.2.1. 

For ab the radial displacement  is (au,/a~)~~? so 

8% 
Yur  = (P4.2.1) 

For 2 the total displacement  is the resultant of the radial and tangen- 
tial displacements according to 

Y 
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Hence, 

To find yrs we proceed in a similar way  (see Fig. P4.2.1). 

and consequently, 

Working now on the face dr d., we obtain. 

and on r de d., 

(P4.2.2) 

(P4.2.3) 

(P4.2.4) 

(P4.2.5) 

For an axis-symmetric problem, for example,  with  symmetry about the z 
axis, the strain tensor depends only on r,  so 

(P4.2.6) 

If ue depends linearly on r, then Yre = 0. 

components of the strain are yru and yes. 
For a plane strain problem (see Chap. 16), U, = 0, and the only nonzero 
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Show that the volume integral of the divergence of a continuously differ- 
entiable second-order tensorial field in a finite  region D is equivalent to  the 
integral over the surface contour S enclosing that volume multiplied by the 
oriented normal vector n at each point of the surface. 

Conversely,  show that  the flux  of a tensorial field outside a closed sur- 
face  is the integral of the divergence of this field in the volume  enclosed by 
that surface. 

Obviously, it is required that  the surface be  piecewise continuous  and  the 
volume  simply connected and convex, that is, without holes, so that its 
surface S can be continuously contracted  through V so as  to  surround 
any point in V .  The direction of the normal n to S is outward  from the 
enclosed  volume. 

Let tsjk be a second-order tensor (e.g., the stress tensor), D the domain, 
and S the surface (see Fig. P4.3.1). Let us divide the volume into prisms of 
sides dx:! and dx3. Taking the following integral over a prism of volume SD, 

and carrying out  the  integration with  respect to xl, we  find 

R 

(P4.3.1) 
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Here the first and second  terms  have  been evaluated on the right- and left- 
hand sides  of the prisms. 

If n is the unit vector normal  to the contour S of D, and nl, 122, and 123 
are director cosines  of n, then the integral can be written as 

(P4.3.2) 

where A is the area of each  side.  After  calculating the integral over  all the 
prisms corresponding to the volume  of D we have 

The right-hand side  of  this equation, calculated  over  all the surface sur- 
rounding the volume V ,  can be replaced by an integral over the closed 
surface S, that is, 

(74.3.4) 

This means that the integral of  div ojk within D is equal to the sum of the 
integrals within  each rectangular block into which D is  divided. The second 
member  is the flux  of o j k  through the surfaces of each rectangular block. 
Note  that the contributions to the surface integral along each  of the integral 
faces  will  be zero, since  two equal fluxes  in opposite directions are added 
along each of these  faces. Thus, the total sum equals the flux of ojk  through 
the outer surface S. 

Equation (P4.3.4), known  as the ~auss-Ostrogradsky, or divergence, 
theorem, is usually written 

.If J, ojk , i  S I, ojknidA (P4.3.5) 

If ojrc is a vector v, we have the divergence  theorem for a vector. 

For a scalar  field Cp, 

(P4.3.6) 

(P4.3.7) 
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Finally, we remark that the Stokes theorem can be obtained as a two- 
dimensional version  of the Gauss theorern. 

(P4.3.8) 

where I" is the one-dimensional contour of the surface S. 
Alternatively we can say that the divergence of a vector v is the number 

of  vector  lines originating in an infinitely  small  volume or, which  is the same 
thing, the flux of the vector  field t~rough the surface of this volume. 

(€34,359 

e note that the divergence  of a tensor is a vector, whereas the divergence 
of a vector  is a scalar 

Given the tensor field og, 

x x + y z  0 
x+yz  0 0 

0 0 0  

and the domain depicted in Figure P4.4.1, (a) verify the Gauss theorem for 
~ 1 2 , 3  and (b) prove the divergence theorem over this domain for 

v=x2yi+zj+yk 

(a) According to the Gauss theorem, 

(P4.4.1) 

Then 
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l 
X 

(P4.4.2) 

On the other  hand, in order  to calculate 

it is  necessary to consider that 

dx dy for z = 1 

--dx d’ for z = 0 

0 for the other sides 

Accordingly, 
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Study if the equilibrium conditions are fulfilled for the stress field 

where A ,  B, and C are constants. 

At equilibrium and in the absence  of  body  forces, Eq, (4.14) indicates that 
div CI; = Q. By writing x1 = x, x2 = y, x3 = z, one obtains 

9 a022 8 0 2 3  a031 aG32 a 0 3 3  
ax, ax2 ax3 ax, ax2 ax3 

+ - + - = 0 ;  - +-+-=O 

There is no equilibrium 

A differential  of  volume,  in  cylindrical coordinates, is  shown  in Figure 
P4.6.1. Obtain the equilibrium equations. 
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At equilibrium, Xfr = 0 in the  radial direction. Accordingly 

If 

then 

( r + d r ) d 0 d z - - o l l r d 0 d z +  

(012 +%) cosTdr  d0 dz 

+ 6,. r dr d0  dz = 0 
(P4.6.1) 

d0 d0 d0 sin- - - 2 - 2  and cos- S 1 2 
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(P4.6.2) 

y neglecting  high order infinitesimals and dividing by r dr de dz, we obtain 

or, equivalently, 

In  an analogous  way, at equilibrium, 

fs =O and f , = O  

and  the corresponding equations  are easily obtained: 

(P4.6.3) 

(P4.6.4) 

(P4.6.5a) 

(P4.6.5b) 

To obtain the motion equations, the inertial terms pd2ui/dt2 must  be added 
to  the right-hand side  of these equations. 

For a two-dimensional  problem (polar plane coordi~ates), and in the 
absence of body forces, the equilibrium equations become 

and 

2cT,o a%3 +-+-=O r  ar 

(P4.6.6) 

(P4.6.7) 

Another way to obtain  the equilibrium equations is to  transform the 
Cartesian equations directly by means  of the relations 
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x = rcos Q; r2 =x2 +v2 
Y = rsine; 8 = arctan- Y 

x 
(P4.6.8) 

which  give 

The transformations of the derivatives  with  respect to r and 8 are given  by 

(P4.6. loa) 

(P4.6.lOb) 

Since the transformation of a tensor to a different reference frame is given 
bY 

where R is the rotation matrix 

cos 0 - sin0 0 

sine  cos0 0 

0 0 1  

the transformed stresses are 

(P4.6.11) 

y subs~itutin~ these e~uations into the Cartesian equilibrium equation, we 
obtain 



Since this equation must be valid for any value of 0, Eq. (P4.6.12) becomes 

These equations  are identical to those previously obtained.  The strain- 
displacement equations can also be transformed in a similar  way. 

Find the equilibrium equations  for  a system  with radial symmetry (Fig. 
P4.7.1). 

luti .7 

Owing to  the symmetry of the problem, the stress, strain,  and displacements 
are only functions of r.  In this case 

2 = e  
3 = q  
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and 
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For the spherical  element under consideration, the equilibrium condition in 
the r direction in  absence of body  forces will  be 

(P4.7.2) 

By taking into account  that 

( ?) 2 
d0 * dJINdJI 

sin cos JI - g cos JI - and sin- - 2 2  

Simplifying and neglecting  high order differentials, we obtain 

= - Oil) dr r 

Note  that for the strain components 

and 

(P4.7.3) 

(P4.7.4a) 

(P4.7.4b) 
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Given the tensor 

separate the deviatoric and  dilational  parts. 

From Eqs. (4.80) and (4.83)  one  easily obtains 

In. a continu~m the stress tensor in MPa is given  by 

etemine the resulting tensor after a  clockwise rotation of  45".  Determine 
also the eigenvalues and  the invariants (that is, the coefficients  of the secular 
equation). 

A s  we have  seen [Eq. (4.3'7)], 

(P4.9.1) 

where csij are the components of the tensor in a primitive reference frame 
and Pki and  are the matrices representing the  rotations of the reference 
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axis  with  respect to the new  ones, their elements  being the director cosines  of 
the angles  between the new frame and the old one. In matrix notation, 

where Pki are the components of [A] and components of its transposed 
A '. Therefore, 

1 0  0 

0 cos 45" - sin45" 

0 sin45" cos45" 
(P4.9.3) 

Since 

1 1 cos(--45") == cos 45" = - sin(-45") = - sin 45" = - - a' a 

this can be  expressed as 

1 "- 
43 1 -&+l 

-&- l  S+& " 3 2 (P4.9.4) 

Let us consider an operation that transforms the unit vector nj in other 
ai. The vector determined in this  way  is a scalar multiple of yti: 

opj = Ani or alternatively [o] a n = An (P4.9.5) 

The direction defined  by ni is a principal one, and the corresponding scalar h 
is  called  the  eigenvalue  of CT. 

The solution of the so-called secular equation (oii - h2j6,)nj = 0 allows 
the dete~inat ion of the eigenvalues and consequently the diagonalization 
of the tensor under study. 

The matrix equation is converted into a homogeneous system that has a 
nontrivial solution if its determinant differs from zero. 
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0‘11 - h  012   G13  

021 022 - h 023 

O31  O32  O33 - h 

The development of this determinant gives 

Chapter 4 

(P4.9.6) 

h3 - tr ogh2 + - [(tr - t r ( ~ ~ ) ~ ] h  - det oij = h3 - Ih2 + IIh - I11 = 0 (P4.9.7) l 

2 

where I, 11, and 111 are called the invariants of G@. In this case, we have 

( l  - h)(l - h)(4 - h) - 9(4 - h) - 4(1 - h) + 12 = 0 

and  from here, 

h3 - 6h2 - 4h + 24 = 0 

which  gives 

h1 =I: 2, h2 = -2, h 3  = 6 

The invariants are given by 

I = t T G = n g = 6  
1 
2 11 = - [(tr cr12 - T ~ ( c r ) ~ ]  = -4 

I11 = det CF = -24 

Find the limits for the Poisson ratio. 

From 

(P4.9.8a) 

(P4.9.8b) 

(P4.9.8~) 

3K - 2G 
= 2(3K + G) 

If 

(P4.10.1) 
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G << K ,  U = 1/2 

If 

K << G, U = -1 
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(P4.10.2a) 

(P4.10.2b) 

Hence, 

-1 < U < 1/2 

The upper limit corresponds  to  a material such that G = E/3, 
h = K = 00, that is, an incompressible solid. Materials with  negative  values 
of v are still unknown,  but their existence  is not impossible. 

Let a cubic volume  element be constrained to a stress state such that 

(a) Determine the  strain components as a  function of oij the tensile modulus 
E, and the Poisson ratio. 
(b) Determine the stress components as  a  function of the  strain y i j ,  the 
tensile modulus E,  and the Poisson ratio. 

From Eq. (4.124) we obtain 

and in an  analogous way 

and 

(P4.11. la) 

(P4.11.1.b) 

(P4.11.1.c) 

In shear ( i  $ j )  
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1 1 1 + v  
yij = - oij with - = - 2G  2G E (P4.11.2) 

Equation (4.83) together with the pertinent espressions of Table 4.1  lead to 

E 
“x, = [(l - 4Yxx + 4Yyy + Y22)l (P4.11.3a) 

“,Yy = (1 + u)(l - 2v) K1 - 9 Y y y  + 4Yxx + YZ2)l (P4.11.3b) 

(1 + v)(l - 2v) 
E 

and 

In shear, 

E = 2Gyq  with  2G = - 
l + v  (P4. 1 1.4) 

pzx3 - 2axz + bz 0 - ipx2z2 + a22 + f x4 + c 
“g  = 0 0 0 

-~px222+az2+fx4+c 0 pxz3 - 2px3z 

Calculate the strain tensor in x = z = 1. 

According to Eqs. (P4.11.la)-(P4.1 l .  IC) and (P4.11.2), 
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S 
4 
S 

E 2  
yxx = E [oXx - U ( C T ~ ~  + o,,)] = - -px3z - --pxz3 - 2 ~ ~ x 2  + bz 

l S 
y,, = z[oYy - LJ(O,, + o,~)] = - -(-px3z  +pxz3 - 2axz + bz) 

4E 
l 

4 E 2 4  
yzz = ,[O,, - u(a,, + a,,)] = - pxz3 - -px 9 3  z + " X 2  a - - 

Therefore the strain tensor components at x = z = 1 will be 

yxx = (;p - 2a + h) x y,, = 

5 
yzz = x S0"O; yxz =$p+LZ+c) x 

S, 

2. 

3. 
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Perfectly elastic d e f o ~ a t i o n  and perfectly  viscous flow are idealizations that 
are approximately realized in some  limiting conditions.  In general the con- 
densed matter  has a fading structural memory, and  the velocity  with  which a 
system that has been perturbed forgets the configuration that  it had in the 
past roughly defines its solid or liquid nature.  In  ordinary liquids, molecular 
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reorganization occurs very rapidly and structural memory at the molecular 
level  is  very short. The response is  essentially  viscous  unless the frequency  of 
the testing experiment  is  very  high. Consequently the mean relaxation time, 
roughly defined as the time  necessary for the system to forget the configura- 
tion it had previous to the perturbation, is  very  small. In solids, on the other 
hand, the relaxation of structure at the molecular level  is extremely  low. The 
response  is  essentially  elastic.  However, the distinction between  solid (or 
elastic) and liquid (or viscous),  is not  an absolute distinction between  dif- 
ferent classes  of materials. It should be pointed out  that the distinction 
between  solid and liquid  is  usually  based on a subjective comparison of 
the relaxation time  of the system and the time  of observation (l).  For 
example, water behaves as a solid at very  high  frequencies, and ice  behaves 
as a fluid on a geological  time  scale.  If we can dabble our fingers in a 
material we can conclude that  it is a fluid, though it may return to its initial 
configuration after one month or one year. In the same  way,  if we are hit by 
a hard object we can think that it is a solid  even though it can flow on a 
geological  time  scale. From a strict point of  view,  condensed matter exhibits 
viscoelastic behavior, though the ability to detect elastic or viscous 
responses depends in many cases on the time  scale  of the experiment. 
Usually, the solid or liquid character of a material is  expressed by the 
Deborah number, ND, defined as (2) 

z NB =- 
zexp 

where z can provisionally be taken as some order-of-magnitude estimate of 
the time required for stress relaxation to approach completion and zeXp is the 
time  scale  of the experiment. For ordinary liquids "I; "+ 0 and ND 0, while 
for ordinary solids z "+ 00 and NB "+ 00. For the so-called  viscoelastic 
systems, z and zexp are comparable and the Deborah number of  these sub- 
stances is on the order of unity. 

Polymers are the most important viscoelastic  systems. Above the glass 
transition temperature, the response  of  these materials to a mechanical 
perturbation field  involves  several  types  of molecular motion. For example, 
the rearran~ement of  flexible chains may  be  very fast on the length scale  of a 
repeating unit. These motions imply  some  type  of cooperativity in the con- 
formational transitions that produce them. Cooperativity occurs even as the 
relaxation propagates along the chains, involving a growing number of 
segments  of the backbone as time  passes. At very long times, disentangle- 
ment of the chains takes place, and the longest relaxation time associated 
with this process  shows a strong dependence on both the molecular weight 
and the molecular architecture (branching) of the system. The disentangle- 
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ment process  governs the flow  of the system.  As a consequence  of the com- 
plexity  of the molecular responses,  polymer chains exhibit a wide distribu- 
tion of relaxation times that extend  over  several  decades in the time or 
frequeiicy domains. At  short times the response is mainly  elastic,  whereas 
at long times it is  mainly  viscous.  Obviously, the elastic component of the 
deformation is recoverable, but the viscous component is not. The elastic 
component of the deformation is  of an entropic nature, and consequently it 
is ti~e-dependent . 

The complex relationship between the configurational distortion pro- 
duced by a perturbation field in polymers and the rownian motion that 
relaxes that distortion make it difficult to establish stress-strain relation- 
ships. In fact, the stress at a point in the system depends not only on the 
actual deformation at  that point but also on the previous history of defor- 
mation of the material. As a consequence the relaxation between the stress 
and strain or  rate of strain cannot be  expressed by material constants such 
as G or J, as occurs in ideal elastic materials, but  rather by time-~ependent 
material functions, G(t) and J(t) .  It has been argued that the dynamics of 
incompressible liquids may  be characterized by a function of the evolution 
of the strain tensor from the beginning up to the present time. According to 
this criterion, the stress tensor would  be  given by (3,4) 

t 

oij(t) = [Yij(t - e>] 
8”cc 

where t is the present time and 0 is the past time. It is  said that the stress is a 
functional of the strain because it depends on the values taken by yV in the 
interval [-m, 4. In a similar  way, the strain may  be  expressed as a function 
of the stress 

If the deformations are small enough, the functional can be written in terms 
of linear differential equations with constant coefficients or, equivalently, in 
terns of convolution integrals with  difference  kernels. 

In the limit of infinitesimal strains, the responses  of  viscoelastic materials to 
mechanical perturbations are well described by the theory of linear visco- 
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WO kinds of experiments are commonly  used to study the vis- 
coelastic behavior of materials: relaxation and creep experiments (l ,410). 

Let us consider a slab of material in a simple shearing motion. The slab 
is  regarded as being so thin that inertial effects  can  be  neglected. In a 
relaxation experiment an infinitesimal shear deformation is applied to a 
material, and  the evolution of the stress necessary to keep this deformation 
constant is monitored, Let us assume that  at time t = 0 a small shear strain 
s12 = iiu1/6x2 is  imposed  on the slab of Figure 5.1. This action is  expressed 
in mathematica~ terms by 

E12 = E = -H(t) 
3x2 

eaviside function, or step function, whose  values are 1 
rwise. In shear experiments we disregard the tensorial 

character of the stress and  the  strain in  such a way that o12(t) and y12 (or ~ ~ 2 )  
will  simply  be represented by CT and y (or E). For  an ideally elastic material, 
the shear stress necessary to keep E constant will  be CT = ci0 H(& that is, the 
stress remains constant  for t 0. For  an ideal viscous liquid, the 
be instantaneously infinite at t = 0 and then zero for t > 0, like a 
dH(t)/dt] function. The  responses  of ideal solids and liquids in relaxation 
experiments are schematically represented in Figure S.2b and 5.2c,  respec- 
tively. 

A. careful observation of the behavior of real substances reveals that 
neither of these idealizations is quite accurate. Thus  for solids the stress 
decreases rather rapidly at  short times and then more gradually at long 
times,  approaching a limiting value 0,. If CT, >O, the material is  likely to 
be considered a solid, and otherwise a liquid. The evolution of the relaxation 
stress for real solids and liquids in relaxation experiments  is schematically 
illustrated in Figures S.3a and 5,3b, respectively. It should  be  pointed out 
that the de te~ina t ion  of 0, is a subjective matter  that depends on the 
nature of the material and the nature of the observation. The relaxation 
time, that is, the time  necessary for  the stress to  approach completion, may 
be so short  that  it escapes observation. In this situation the experimenter 

Slab of a  material  under simple shearing  motion. 
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Response of ideal  elastic  solids (b) and ideal liquids  (c) to a constant 
shear strain (a) in relaxation experiments. 

may conclude that  the material is a perfectly elastic solid or a fluid, as the 
case  may  be.  If the relaxation time  is so long that  no relaxation is observed 
during the experiment, one may conclude that the material is  perfectly 
elastic. Materials for which the relaxation time and the period of observa- 
tion times are  not astronomically different are called  viscoelastic. 

In a shear creep experiment  of this type, the material undergoes a stress 
CT = aoH(t) (see Fig. 5.4a), and the evolution of the shear strain with  time  is 
registered. A s  shown in Figure 5.4b, the shear strain for  an ideal  solid  is 
instantaneous [ ~ ( t )  = E~W(~')], remaining constant with  time.  However, the 
strain for ideal liquids is a linear function of time (Fig. 5.4~). A s  Eq. (4.135) 
suggests, the shear strain  for an ideal liquid is  given  by 

CT 
&(t) = - t 

rl 
(5.5) 

In the case  of  real substances, the response to the shear stress involves an 
instantaneous deformation of the Hookean type  followed  by gradual 
increase of the shear strain with  time.  If the strain at long times 
approaches a limiting value E,, the substance is  considered a solid. 
However, if at long times the strain is a linear function of time, the 
substance is considered a liquid. Schematic representations of these 
responses are given in Figures 5.5a and 5.5b for real solids and liquids, 

FLU1 D 

I 
k 

t I T t 

Response of real  solids (a) and real liquids (b) to a constant  shear 
strain in relaxation experiments. 
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d t l  

Response of ideal  solids (b) and ideal liquids (c) to a constant  shear 
stress (a) in creep experiments. 

respectively. Situations may appear,  for example,  when &(t) - t1/2 (see Fig. 
5.5c), in which from a limited number of data one could think  that  a 
limiting value had been  reached or  that  the shear strain were increasing 
linearly, depending on one’s  preconceived ideas. 

If a material undergoes a sudden infinitesimal shear strain y, the shear stress 
required to keep that shear strain  constant is  given by 

o( t )  = 2G(t)y = G(t)E (5.6) 

where G(t) is the relaxation modulus. The substitution of E = 2y in this 
equation arises from  the  fact  that = 2yV for i + j and = yii for i = j 
[see Eq. (4.30c)l. In  order to get a  better  understanding of the concept of 
linearity, let  us  assume that in separate experiments the shear strains EIH(t) 
and g 2 f f ( t )  are imposed  on the slab of Figure 5.1 at t = 0. The time depen- 
dence of the shear stress for  both cases  is  shown  in Figure 5.6. The relaxa- 
tion behavior is considered to be linear if for t = t, and t = tb ,  the following 
relations hold: 

ure Response of real  solids (a) and real liquids (b) to a constant  shear 
stress  in  creep  experiments. 
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Excitations and  responses  in  linear  shear relaxation  experiments, 

(5.7a) 

(5.7b) 

inearity in relaxation experiments holds only at small shear strains. A 
schematic diagram illustrating the linear and nonlinear behavior in  relaxa- 

periments is  shown in Figure 5.7. 
relaxation experiments carried out  on solids, the shear stress con- 

~ i~uous ly  decreases with increasing time until a constant value G, is 
obtained. Accordingly, the evolution of the relaxation modulus with  time 
is described  by the equation 

where G, = G,/& and Gd accounts for the maximum contribution of the 
entropic elasticity to G(t). @(t) is a normalized monotonously decreasing 
function of  time  whose extreme values are 1 and 0 for t = 0 and t = 00, 
respectively. ~ ~ v i o u s l y ,  G;, is zero €or liquids. The function 
to the entropic elastic mechanisms  involved  in the relaxation. The variation 

G(t) with  time for solid and liquid  polymers  is shown sche~atically in 
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E 

Sketch illustrating the transition from linear to nonlinear behavior  in 
shear  relaxation experiments. Note  that  the data must be obtained by a series of 
stress relaxation experiments. 

If the viscoelastic material is under the effect  of an isotropic defoma- 
tion (dilatation or compression), the diagonal components of both the stress 
and strain tensors differ from zero. In analogy with Eq. (4.92), the relation- 
ship between the excitation and the response  is  given by 

K(t )  = Kc + &<]t>'(t) (5.10) 

' ( t )  is a normalized function with  extreme  values l and 0 for t = 0 
and infinity,  respectively. 

ouble  logarithmic  plot of the  shear  relaxation  modulus in th 
domain. 

le time 



The study of the response of viscoelastic  systems to a tensile strength is 
very important  on practical grounds.  For  a uniaxial strain H(t)El l ,  the 
evolution of the stress with  time can be written as 

The tensile relaxation modulus, E( t ) ,  is  given by 

E(t) = Ee + E&&”(t) (5.12) 

where Ee is the equilibriu~ elastic modulus  and CP ”( t )  is the decay function 
whose  limits are 1 and 0 for t = 0 and infinity,  respectively. For viscoelastic 
liquids, Ee = 0. 

Let us consider the response of a system under the action of a small shear 
stress given  by crH(t), In this case, the time  dependence  of the strain is  given 
by 

where J ( t )  is the creep compliance function. The analysis of the responses of 
a variety of solids and liquids demonstrates  that  the  strain at t = 0 is 
Hookean.  For t > 0, the  strain of solids undergoes a  monotonous increase 
with  time until  a  constant value  is reached; in the case of liquids, the strain is 
a linear function of t at very long times. 

The tern linearity in creep implies that in the perturbations  and 
responses of Figure 5.9 the following relationships hold: 

(5.14a) 

(5.14b) 

where and c2 are  the responses of the material to  the shear stresses 01 and 
cr2, respectively. In  other words, the  shear  strain must be proportional to the 
shear stress at a given time.  However, linearity does not hold at high strains, 
so it is  necessary to know the interval of strain  in which linearity holds 
before performing creep experiments. From creep isochrones, curves of E 
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Excitations  and responses in linear shear creep  experiments. 

against a;, similar to those presented in Figure 5.10, are obtained. It can be 
seen that for moderately high  values  of the shear stress, the shear strain is 
greater than one would  expect from the linearity obtained in the region  of 
small shear stresses. Unlike what occurs in the linear region, the strain for a 
given stress cannot be obtained from previous experiments in the nonlinear 
region. 

The deformation is entropic for viscoelastic  solids and  both entropic 
and viscous for viscoelastic liquids. When the entropic contribution to the 
strain reaches its maximum  value, it is  said that the system has reached 

d 
Diagrams showing the transition from linear to nonlinear  behavior 

in shear creep  experiments. Note  that  the data are  taken  from creep  experiments at 
different deformations. 
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Log t 

Schematic representation of the  double  logarithmic plot of shear 
creep  compliance  in the time domain. 

steady-state conditions; in this situation,  further deformation  in liquids is 
only  of the viscous type. Obviously, J(t) will  evolve  with  time like the 
deformation, and J(t) is customarily written as 

J(t) = Jg + Jg\ll(t) (5.15) 

for solids and 

t 
rl 

J(t) ==: Jg + Ja\ll(t) + - (5.16) 

for liquids, where q is the viscosity. An illustrative schematic curve of the 
creep compliance function in the time domain is presented in Figure 5.11. 
For solids and liquids, @(t) is a monotonously increasing function of time 
whose limiting values are 0 and 1 for t = 0 and t = 00, respectively. Jg and 
Jd are, respectively, the glassy (Hookean)  and maximum elastic entropic 
compliances. The compliance function Je given  by 

is a measure  of the maximum elasticity that a deformed  polymeric  system 
can store, while q is related to the maximum  energy that a polymer  under 
flow  can dissipate. Je and q are two  very important viscoelastic  parameters 
in processing. It should  be pointed out  that  the Committee of the Society  of 

heology (1 l) recommends  using the term “equilibrium compliance”, Jet 
for solids and “steady-state compliance,” J:, for liquids. 

For a material under a hydrostatic pressure p, Eq. (4.92) suggests that 
the time  dependence of the trace of the  strain tensor is  given  by 
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A( t )  = -yB(t) (5.18) 

where B(t) is the bulk  creep compliance function. While J ( t )  may change 
several  decades  in the interval 0 t 00, the changes taking place  in B(t) 
are rather small. In analogy with the shear compliance function, B(t) can be 
written as 

B(t) = Bg + Bd\I[/”(t) (5.19) 

where ‘Jl”(t) is a monotonous increasing function of  time  whose  limiting 
values are 0 and 1 for t = 0 and t = 00, respectively. 

The response of a material to the tensile strength oll H(t )  is  given  by 

where D(t) is the tensile compliance function, which, in analogy with the 
shear compliance function, can be written 

t 
D(t) = L), + Dd\I[/’(t) + - 

T1L 
(5.21) 

where Dg is the Hookean contribution, *’(l) is the entropic contribution 
whose  limiting  values are also 0 and 1 for t = 0 and t = 00, respectively, and 
qL is the elongational viscosity. 

Owing to the entropic changes that take place in a viscoelastic  system per- 
turbed by a force field, the response does not vanish  when the perturbation 
field  ceases. A consequence  of this fact is that the deformation depends not 
only on the actual stress but also on the previous  stresses  (mechanical  his- 
tory) undergone by the material in  the past. Under the linear behavior 
regime, the responses to different perturbations superpose. Let  us  assume 
that the stresses h ~ ( 0 ~ )  and h ~ i ( 0 ~ )  are applied on the material at times 
and Cl2, respectively. This stress history is  shown  schematically  in Figure 
5.12. The response is  given  by 

E(t) = d(t  - 01)A0(01) + J( t  - 02)A0(02) (5.22) 



~ h a p t e r  S 

Schematic representation of the response of a viscoelastic material 
(b) to the  shear stress history (a). 

Let us assume further that the perturbation decreases A111cr(03) at t = 03. In 
this case, the system interprets this effect as if a stress -AC@) were applied 
to the material at time fj3. In that case the shear strain can be written as 

The relationship between the shear strain and the shear stress can be 
expressed in a generalized  way as 

(5.24) 

This equation, one of many possible forms of  expressing the Boltzmann 
superposition principle, indicates that  the effects of mechanical history are 
linearly additive (1 2,13). 

For reasons that will become clear, it is important  to obtain the time 
dependence of the shear strain under the shear stress history indicated in 
Figure 5.13. In this case CY = cfH(t) and H(t - 0)o = 0. The shear strain at 
t = 0 will  be 

&(e) = J(8)Cr (5.25) 

Since the shear stress is canceled at t = 0, the shear strain at t > 0 is 
expressed by (7) 

&(l) = J(t)o - J( t  - 8)Cr (5.26) 
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Response of a viscoelastic  solid (a) and liquid  (b) to a  shear stress 
perturbation.  Cancellation of the  shear stress occurs at a time 8 at which steady-state 
conditions  are assumed to have  been reached. 

By making the change of variables t - 0 = U in this equation,  the elastic 
contribution to the strain, U units of time after  the stress is  canceled, can 
be written as 

&(e) - &(e + U) = [J(0) - J(8 + U) + J(u)]o (5.27) 

Since the compliance function is a monotonous increasing function of time, 
J(t + 0) > J(t) if steady state is not reached. In this case one obtains 

If steady state is reached at the moment of canceling the shear stress, Eq. 
(5 27 )  becomes 

E(e) - ""1 = J(o0) - J(o0 + U) + J(u) = J(u) (5.29) 
8+o0 CT 

because J(o0) = J(o0 + U). This expression  shows that  the recovery compli- 
ance Jr(t) is an image  of the compliance function J(t) when the recovery 



d e f o ~ a t i o n  is  registered after the system has reached steady-state condi- 
tions. 

Let us  now analyze the behavior of a viscoelastic  liquid  whose stress 
history is cr(t) = CT for 0 c t 5 8 and o(t) == 0 for 8 > 0. In this  case, the 
strain at t = Q is  given  by 

(5.30) 

or t =- 0, the shear strain can be written as 

y making t - 8 = U in Eq. (5.31) and subtracting the resulting expression 
from Eq. (5.30), one obtains 

ecause  in non-steady-state conditions Jd$(8) c Jd$(8 + U ) ,  the recovery 
compliance [E($) - E($ + u)]/a c J(u) - u/q. For stead-state conditions 
(8 ”+ W), Eq. (5.32) can be written as 

where J,(u) = J(u) - u/q.  Therefore this procedure allows the experimental 
determination of the recoverable compliance and the viscous component of 
the creep compliance function. 

oltzmann superposition principle applied to a viscoelastic material 
that has undergone a history of  pressures or tensile  stresses can be written as 

t 

0=-aO 

(5.34a) 

(5.34b) 

where A(t)  = trace ~ ~ ( t ) .  
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If the shear stress varies with time in very small steps so that o can  be 
assumed to be a continuous function of time, Eq. (5.24)  can  be written 

(5.35) 

This  is the Boltzmann s~perposition principle for creep experiments 
expressed  in continuous fom.  If the stress is a continuous function of 
time  in the interval -00 -c t el, constant in the interval I_( t I_( eZ, and 
again a continuous function for t > (see Fig. 5-14.), then Eq. (5.35) cannot 
be  used to obtain E because the  contribution of the stress to  the strain in the 
interval €l1 5 t 5 €l2 would  be zero. The response for this stress history is 
given  by 

y integrating Eq. (5.36)  by parts one obtains 

(5.36) 

(5.37) 

Shear  stress perturbation of a viscoelastic material. Conti~uous and 
discontinuous excitations. 



where the change of variables t = 6 = U was made and  it was considered that 
o(--00) = 0. Equation (5.37)  is an alternative way  of  expressing the 
Boltzmann s u p ~ ~ o s i t i o n  principle. A s  J(t) is an increasing continuous func- 
tion of  time, Eq. (5.37)  is more suitable than  Eq. (5.35) to express the 
Boltzmann superposition principle. 

In the same  way, the dilatation for a system under a time-dependent 
hydrostatic pressure can be written 

(5.38) 

where A(t) = trace yit. Finally, the Boltzmann supe~osition principle 
predicts that the tensile strain is related to the tensile stress history by 
equation 

(5.39) 

To gain a better understanding of the effects  of  memory on the strain of 
viscoelastic  systems, it is convenient to write Eq. (5.37) in terns of the 
entropic and viscous contributions to J(t). The time  dependence  of the 
shear strain can be written as 

This equation, formulated for liquids, also describes the behavior of solids if 
q = 00 is  assumed in the latter case.  Experimentally it is found that J( t )  - 
t/q - Jg is a monotonous increasing function of  time that reaches the value 
J d  as t -+ 00. The function q ( t )  modulates the entropic response to the shear 
stress; the time  dependence  of this function is indicated in Figure 5.15.  Since 
?u(t - 6) is a monotonous decreasing function of  time, d q ( t  - 6)/d( t  - e) is 
an increasing function of  time  whose  slope  increases considerably as 6 
approaches t. Consequently, q ( t )  behaves as a memory function that mod- 
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Form of the  fading memory  of Eq. (5.40) in a  shear creep  experi- 
ment. 

ulates the perturbations on the material in  such a way that their efforts 
greatly increase with the closeness  of the  perturbations to the time  of obser- 
vation. In  other words,  viscoelastic materials exhibit fading memory (7). 
This behavior  is sche~atica~ly represented in Figure 5.16, where the curves 
describing both the shear stress history and  the evolution of $(t) with  time 
are represented. 

Schematic sketch showing fading memory for an arbitrary shear 
stress history. 
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Let us assume that a viscoelastic material undergoes the following shear 
strain history: AE($,)H(~ - e,), and Ac(02)H(t - 0,). Let  us  assume further 
that the shear strain suddenly vanishes at t = C.j3. In these circum- 
stances the response of the material will  be 

~ ( t )  G(t - 0,)A&(0,) + G(t - 02)A&(02) - G(t - e,)A&(e,) (5.41) 

As indicated above, cancelation of a given perturbation is interpreted by the 
material as if a perturbation of opposite sign  were applied on  it. The 

oltzmann superposition principle can be  expressed  in a generalized  way  by 

ej=t 

ej=--w 
(5.42) 

For a material with a history of discrete isotropic deformations, the evolu- 
tion of the hydrostatic pressure with  time can be written as 

(5.43) 

while for a viscoelastic  solid  with a tensile strain history the time  dependence 
of the tensile stress is  given  by 

(5.44) 

If the values  of &(Qi) are very small, the time  dependence of the shear stress 
in Eq. (5.42) can be  expressed by the relationship 

(5.45) 

This equation, however,  does not give a good  account of the histories in 
which. the  strain remains constant  during a  given interval of time, because in 
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that case the contribution of AE to the relaxation would  be  nil. For example, 
if Ag(0,) remains constant in the interval t 02, as shown in. Figure 
5.17, then Eq. (5.45) should be written 

owever, by integrating Eq. (5.45)  by parts, one obtains the expression 

(5.47) 

in which the strain history is not in the time derivative. It has been  assumed 
in Eq. (5.47) that €(-m) = 0 and Gg = G(0) = Gd for liquids. For solids, 

For a material undergoing a variable isotropic deformation, the time 
Gg G, + G d .  

dependence  of the pressure is  given.  by 

(5.48) 

In the same  way, the evolution of the tensile stress with  time can be 
expressed as 

l 

2 t 

Shear strain perturbation of a viscoelastic material. Continuous and 
disco~tinuous excitations. 
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(5.49) 

The memory  effects in relaxation processes can be  observed  by  writing Eq. 
(5.47) as 

(5.50) 

where the change of variables 0 = t - U has been made. As shown in Figure 
5.18, @(t) is a decreasing function of  time  while cP(t - 0) is an increasing 
function of t. It is also an experimental fact that the value  of the slope of the 
curve of cP(t - 0) versus  time undergoes a sharp increase as 0 approaches t. 
A schematic representation of d@(t - 0)/d(t - 0) together with an  arbitrary 
history of strain is  shown  in Figure 5.19. It can be  seen that memory  effects 
become much more important,  that is, the absolute value  of d@(t - 0)/d(t - 
0) becomes much larger as the time 0 at which the deformation occurred is 

e -t 

F ~ r m  of  the  fading memory of Eq. (5.50) in a  shear  relaxation 
experiment. 
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Sketch  showing fading memory for an arbitrary shear strain history. 

closer to the time t. Consequently the material “remembers” better the 
history of deformation closer to the present  time;  in other words,  viscoelas- 
tic materials exhibit fading memory (7). 

Let us assume that a viscoelastic material undergoes a shear strain that is a 
linear function of time.  Let us assume further that the experiment  is carried 
out in  such conditions that the viscoelastic  behavior  is  linear and the 
mechanical history is  given  by (7) 

0 t t o  

k t ,  t 2 0 
&(t) = 

With the change of variables t - 8 = U, Eq. (5.45) becomes 

o( t )  = k G(t4)du = k G(t)dt .c 
Once steady-state conditions ( t  + 00) are reached, one obtains 

(5.51) 

(5.52) 



218 

E(t) = (. +;)B, 

According to this equation, 

(5.54) 

y substituting this value  of k into  Eq. (539, the following relationship 
between the viscosity and the relaxation modulus is obtained: 

This expression  allows the determination of the viscosity at zero shear rate 
from the time dependence of the relaxation modulus. 

On the other hand, it is  possible to relate the shear compliance function 
to the relaxation modulus by using the ramp experiment  described above. 
Actually, Eqs. (5.35) and (5.52)  lead to the expression 

(5.56) 

y taking into account that according to the mechanical history stated in 
Eq. (5.51), E(t) = kt, Eq. (5.56) becomes 

.c, J( t  - 6)G(6)d6 = G(t - 6)J(6)d6 = t (5.57) 

An apparently easy  way to relate transient relaxation moduli and transient 
compliance functions is  by applying Laplace transforms to Eqs. (5.35) and 

Y taking into account the convolution theorem, one obtains (see 
Appendix) 
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E(S) = d(s)sii(s) 

6(s) = G(s)sE(s) 

(5.58a) 

(5.58b) 

where the overbar indicates  Laplace transform. These relations lead to the 
expression 

1 
S2 

J(s)G(s) = - (5.53) 

which  permits the shear compliance to be obtained from the relaxation 
modulus  and vice versa. It should be noted  that Laplace transforms of the 
expressions of Eq. (5.57) also  lead to Eq. (5.59). 

Laplace transforms of Eqs. (5.38) and (5.48)  give 

&(S) = -s~(s)~(s)  

P(s) = - S ~ ( S ) & ( ~ )  

These  expressions  lead to 

1 
S2 

~ ( s ) ~ ( s )  = - 

(5.60a) 

(5.60b) 

(5.61) 

In the same  way, from Laplace transforms of  Eqs.  (5.39) and (5.49) the 
following relationship is obtained: 

1 
S2 

D(s)E(s) = - (5.62) 

It should be noted  that Eqs.  (5.59),  (5.61), and (5.62) are of limited  use 
because  of the difficulties  involved  in the calculations of the required trans- 
forms  and their inverses. 

The reciprocal of the  Laplace transform of Eq. (5.59)  gives 

I G(t - 0 ) ~ ( 0 ) ~ 0  = J(t  - 0)G(0)~0  = t (5.63) 

an expression  similar to Eq. (5.57) obtained from the ramp experiment 
defined  by Eq. (5.51). y using  Leibnitz’s  rule, the derivative  with  respect 
to time of Eq. (5.63) can be written as. 



- u)du + GgJ(t) = 1 

1; F G(t - u)du + JgG(t) = 1 

(5.64a) 

(5.64b) 

where the change of variable U = t - 0 was made. Substituting the identities 

J(t - U) = J(t) + [J(t - U )  - J(t)] (5.65a) 

and 

G(t - U )  = G(t) + [G($ - U) - G(t)] (5.65b) 

into Eqs. (5.64a) and (5.64b),  respectively, one obtains 

[G(t - U )  - G(t)]-d~ = 1 dJ(U) 
du 

(5.66b) 

Since J ( t )  and G(t)  are, respectively, monotonously increasing and decreas- 
ing functions of  time, J ( t  - U) - J ( t )  5 0 and ~ G ( t ) / ~ t  5 0. For the same 
reasons, G(t  - U) - G(t)  2 0 and dJ( t ) /d t  1: 0. Hence, from Eqs. (5.66), the 
following inequality is obtained (14); 

The integrals of Eqs. (5.66)  vanish for t = 0, and consequently JgGg = 1. 
For viscoelastic  solids, J ( t  - U) - J ( t )  and G(t - U) - G(t)  also vanish  when 
t -+ 00, and as a result, J,G, = 1. For viscoelastic liquids, ~ ~ ( t ) / ~ t  = l/q 
and G(t) == 0 when t -+ 00, so Eq. (5.66b) can be written as (7) 

lirn 
t+oo G(t)J(t) = Z G e  = 1 - (5.68) 

According to Eq. (5.54), the integral of Eq. (5.68)  gives the viscosity.  Hence, 
J f   G ,  = 0 for viscoelastic liquids. 

The inverse  of the Laplace transforms of Eqs. (5.62) and (5.61)  gives 

j; D(t - 6)E(6)~6 = D(O)E(t - $)de = t (5.69) 

and 
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f t  rt 
K(t  - 0)S(0)d0 = S( t  - 0 ) ~ ( 0 ) ~ 0  = t J* 

Obviously, the following  inequalities  also hold: 

221 

(5.70) 

(5.71a) 

(5.7 1 b) 

m i l  lntro~uetio 

The superposition principle  leads to the following  generalized relationship 
between the strain tensor and the stress tensor for viscoelastic  systems: 

where t; = trace oij, The generalized relationship between the stress and 
strain tensors can be written as 

G(t - 0 ) ~ d 0  + 6 ,  J'I [K(t - 0) - -G(t - 0) ] - ~ ~ ~ ' d 0  (5.73) d0 "00 3 

where A = trace y i j .  A s  discussed above, if the stress and strain remain 
constant for some  time  intervals  in Eqs. (5.72) and (5.73), respectively, it 
is  necessary to carry out integration by parts of the integrals of  these equa- 
tions in order to avoid  having the derivatives doij($)/d$ [dsij(0)/dO] and 
dt;($)/d$ [dA($)/d$] appear in  these integrals. 

The generalized  stress-strain relationships in  linear  viscoelasticity can 
be obtained directly from the generalized Hooke's law,  described by Eqs. 
(4.85) and (4.118),  by  using the so-called correspondence principle.  This 
principle  establishes that if an elastic solution to  a stress  analysis  is 
known, the corresponding viscoelastic  (complex  plane) solution can be 
obtained by substituting for the elastic quantities the s-multiplied  Laplace 
transforms (8; p. 509). The application of this principle to Eq. (4.85)  gives 
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It can easily  be  seen that the retransformation of this equation gives Eq. 
(5.73). In the same  way, the application of the correspondence principle to 
Eq. (4.118) leads to the expression 

(5.75) 

whose retransformatio~ gives Eq. (5.72). This expression can be obtained 
directly from Eq. (5.74). In this case, 

- -(S) l?($) - (2/3)G(s) ( %(S) ) 
y&) = II - 

2sG(s) 6, G ( 4  2SZ(S) 

= -sJ(s)oij(s) I -  + 6 ~ [ g -  B($) - ~ ] s ~ ( s )  &) 
2 

(5.76) 

where Eqs. (5.59) and (5.61)  have  been considered. 
into account that 

%(S) = 3s l?(s )~(s )  (5.77) 

and consequently 

(5.78) 

For a system under a tensile strength ol l l  Eq. (5.75)  becomes 

ence 

(5.79a) 

(5.79b) 

he reciprocal of the Laplace transform of  Eq.  (5.79b)  leads to the relation- 
ship 
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(5.80) 

In other words, independently of the viscoelastic history in the linear region, 
the tensile compliance function can readily  be obtained from both the shear 
and bulk compliance functions. For viscoelastic  solids and liquids above the 
glass transition temperature, the following relationships hold when t -+ 00 : 
J(t) E t / q  [Eq. (5.16)], D(t) E q L / t  [Eq. (5.21)], and D(t)J(t)/3.  These  rela- 
tions lead to qL E 371; that is, the elongational viscosity  is three times the 
shear viscosity. It is noteworthy that the relatively  high  value  of  tensile 
viscosity facilitates film  processing. 

Laplace transform of  the  tensile relaxation modulus can be obtained 
from Eqs. (5.62) and (5.80). The pertinent expression  is 

1 1 sE(s) = -"--- = 
sD(s) s[J(s)/3 + 2?(s)/91 

1 - - 
1/3sG(s) + 1/9sR(s) 

Equation (5.8 1) leads to the expression 

- 9G(s)R(s) E(s) = - 
3K(s) + G(s) 

(5.81) 

(5.812) 

which  gives the Laplace transform of the tensile stress in terms of Laplace 
transforms of the shear and bulk relaxation moduli. It should be noted, once 
more, that  Eq. (5.82) can be obtained directly from Eq. (4.95) by  using the 
correspondence principle. Equation (5.82) in real time  is  given by 

f:, E(t - $)G($)d$ + 3 E(t - 8)K(8)]d0 = 9 (5.83) 

This equation indicates that the tensile modulus does not show an explicit 
dependence on  both the shear and the bulk relaxation moduli. It can easily 
be  seen that for K(t)  >> G(t) ,  E(t) E 3G(t). 

In a tensile  experiment ( c T ~ ~  # 0, C T ~ ~  = 033 = O), the components of the 
strain tensor are yI1, y22 = y33. From Eq. (5.76) the transverse deformation 
is related to the tensile strain by the expression 
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(5.84) 

Hence, a Laplace transfom of the Poisson ratio  can be written as 

- J(s)/6 - B(s)/9 - 31y(s) - 2G(s) 
&)/3 + B(s)/9 - 6&s) + 2G(s) 
- 

(5.85) 

In spite of the complex  dependence of u(t) on the viscoelastic functions, the 
limit  values of the Poisson ratio  can easily  be obtained.  Thus the theorem of 
the initial and final values establishes that if a  function^(^) has  a limit, the 
following relationships hold: 

Accordingly, Eq. (5.85) can be written as 

lim 3Kg - 2Gg 
S + O O  

G(s) = 

G($) = 

6Kg + 2Gg = 
1im 3K, - 2G, 

S + O  6K, + 2G, = 

(5.86a) 

(5.86b) 

(5.87a) 

(5.87b) 

where us and U, represent, respectively, the Poisson ratio at short times 
(S "+ 00) and long times (S + 0) and consequently, are called the Poisson 
ratio at the glass-like state  and at steady-state equilibrium. Because 
K, >> Ge, Eq. (5.87b) predicts that U, = 0.5. In the glassy state the values 
of Kg and Gg are similar (Kg % 2.676,)  and Eq. (5.87a)  suggests that 
ug % 1/3. Like J(t), D(& and B(& the Poisson ratio is a  monotonously 
increasing function of time  with the limiting values indicated 

For  an  isotropic elastic material under a uniaxial stress along the axis 
X I ,  the Poisson ratio U = -y22/yll. By applying the correspondence prin- 
ciple, one obtains 
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In the time domain, Eq. (5.88) can be written as 

" " 

J "00 uu (5.89) 

Let us now  find the relationship between the tensile and shear moduli  in 
terms  of the Poisson ratio. Since for ideal  elastic  solids E = 2(1 + u)G, the 
correspondence principle  establishes that 

S&) = 211 + sij(s)]sG(s) (5.90) 

Hence, the reciprocal  of the Laplace transform of Eq. (5.90)  leads to the 
expression 

where ug is the glass  [u(0)]  Poisson ratio. The  correspondence principle also 
allows us to determine, at least  theoretically, the bulk relaxation modulus, 
K(t) ,  from simultaneous measurements of the tensile relaxation modulus 
and the Poisson ratio. According to Table 4.1, K = E/3(1 - 2u), and the 
correspondence principle  yields 

SE(,) sK(s) = 3[1 - ~s;(s)] 

Hence 

E(s) = 3[1 - 2sG(s)]K(s) 

Retransforming this  expression to the real t axis gives 

(5.92) 

(5.93) 

(5.94) 

This  expression  is a convolution integral and  cannot be made explicit for 
K(t) .  However, methods for its deconvolution are available (Ref. 4, p. 543). 



Exchanging  in Eqs. (5.74) and (5.75) the transform S = iw for the harmonic 
response forms leads to 

(5.96) 

where the asterisk refers to the complex function. In this equation, A(@) and 
Z(w) are given  by 

(5.97a) 

(5.97b) 

 elations ships between different viscoelastic functions are easily obtained 
from these equations. Thus for  a material under harmonic tensile  stress, 

the components of the strain tensor will  be 

For Eq, (5.95) one obtains 

(5.98) 

(5.99) 

A(@) + 2G*(w)yl,(@)  (5.100a) 

A(@) + 26*(0)~22(~) (5.100b) 

These equations lead to the expression 
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(5.101) 

This equation relates the tensile  complex relaxation modulus to the bulk and 
shear complex relaxation moduli. In the same  way, Eq. (5.95) leads to the 
relationship 

1 1 
9 3 D*(@) = --B*(@) +-%l*(@) (5.102) 

which  relates the tensile  complex compliance function to the bulk and shear 
complex  compliance functions. Because at temperatures well above the glass 
transition temperature of a viscoelastic material, K*(@) >> G*(@) and 
B*(@) << J*(u), Eqs. (5.101) and (5.102) suggest that 

1 
3 E*(@) = 3G*(o) and D*(@) ~li --%l*(@) (5.103) 

Relationships between  complex  viscoelastic functions similar to those 
given  in Tables 4.1 and 4.2 are obtained in the frequency domain. The 
difference  is that the viscoelastic magnitudes in the frequency domain are 
of the complex  type, that is,  they  have  real and imaginary components. 

The analysis by Laplace transforms can be  extended to any viscoelastic 
system  with independe~ce of its degree  of symmetry. The following equa- 
tions can be written. 

In the axis  of the real time,  these equations become 

(5.104a) 

(5.104b) 

(5.105a) 

(5.10%) 



By using  these  expressions and taking into  account  the symmetry operations 
discussed in Chapter 4, one can  obtain  the viscoelastic  responses for  materi- 
als with  planes of symmetry,  axis of symmetry, etc. 

S 

~ifferentiate between the linear and nonlinear stress-strain relationships in 
the following expression. 

(a) E = 80; (b) E = to2 

(c) &g = J: J( t  - z) do&) 

(a) 
= t crl and c2 = t u2,  so EI + ~2 = t2(crl + 02) 2  2 

Moreover = t2(htrl) = ht2a 

hence (a) is linear. 
(b) 

so (b) is nonlinear. 
(c) 

rt 

(P5.1.1) 

(P5.1.2) 

(PS.  1.3) 

J( t  - z) do&) = hEg 

Thus (c) is also linear. 
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A viscoelastic material under torsion between two parallel plates separated 
by a distance h of  0.5  mm rotates through an angle  of 1" at 10 S. Determine 
the compliance at t = 10 S if the torque is  200 Nm and the radius of the 
plates R, is 2 cm. See Figure P5.2.1. 

ti0 

If the inertial forces are neglected and the strains are in~nitesimal, the 
stress-strain relationship can be  expressed as relationships between force 
and displacement through the geometric characteristics of the system. For 
small displacements the stress will  be  related to the torque M by 

(P5.2.1) 

On the other hand, from the stress-strain relationship, the strain is  given  by 

r 
h crJ(t) = &(t) = - q(t) (P5.2.2) 

where v(t) is the angle  of rotation in the mobile plate. From Eqs. (P5.2.1) 
and (P5.2.2), 

dA4 r 
r2dr d0 h J( t )  - = - p(t) 

Hence, after integration, we obtain 

(P5.2.3) 
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Show that  for a material that fulfills  Andrade's equation, J( t )  = the 
torsion angle will  be 29 at t = 8t1 if this angle is cp at t = t l .  

If Andrade's equation holds, 

J(t1) = A y 3  = Fp(t1) = Fcpl 

and 

ence, 

J(t2) = Aty3  = Fp(t2) = &?2 

(P5.3.1) 

(P5.3.2) 

Therefore, 9 2  = 2 ~ 1 .  

Consider a viscoelastic material under torsion in a cone-plate configuration 
(Fig. P5.4.1).  How  much  should we modify the base  of the cone to have a 
rotation angle, under the same torque, twice as large at the same time and 
temperature? 
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In this case, CT = ~ ~ / ( r 2  dr de), and the stress-strain relationship takes the 
f o m  

J(t)CT = Cp(t) 
h 

Since for low  values  of a, h = r tan a E ra, we have 

(P5.4. l) 

From this equation, R;q( t l )  = Riq(t2). Then, if q(t2) = 2q(tl) ,  (P5.4.2) 

R: = 2Rq and R2 = 0.794 RI 

The radius should  be decreased by about 21 %. 

The  compliance of a viscoelastic material is  given  by J(t) = [ 1.4678 - 0.8730 
exp(-0.5268t)] x 10"' MPa".  Determine the  torsion angle, 4, of a cylind- 
rical rod of this material at t = 1 S, 10 min, 1001 S, 30 min, and 1 h, subjected 
to  the following stress history: 

t < 0 ,  cr=o 
0 5 t < l000 S, cr = 1 MPa 

1000 5 t 2000s, CT = 2MPa 

t ? 2000 S, CT = 0 

The dimensions of the cylinder are I! = 10 cm and r = 2 mm. 

Sketches of the  data plots are shown  in  figure P5.5.1. 
From  Eq. (5.24), 

e $(t) ~1: - XJ(t - Q)Ao(Q) 
P 

where it was considered that E = +r/I!. 

(P5.5.1) 
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2MPa , l 

1MPa 

1 0 ~ ~  2.10~~ t 

The torsion angles at different times are  as follows. 

t = l s :  

4, = 7 x i1.4678 - 0.8730exp(-O.5268 x l)] x lo-' x lo6 = 0.0476 rad 

t = 600 S: 

100 Q, = x [1.4678 - 0.8730exp(-0.5268 x 600)] x 10"' x lo6 = 0.0734rad 

t = 1001 S: 

100 
2 Q, = - x E1.4678 - 0.8730exp(-0.5268 x 1001)] x 10"' x lo6 

+ 7 x 11.4678 - 0.8730exp(-0.5268 x l)] x lo-' x lo6 = 0.121 rad 

t = 1800 S: 
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100 4 = 2, x [1.4678 - 0.8730exp(-0.5268 x 1800)] x x lo6 

100 
2 

= 0.1468 rad 

+- x [1.4678 - 0.8730  exp("0.5268 x SOO)] x x lo6 

t = 3600 S: 

100 
Q, = x [1.4678 - 0.8730exp(-0.5268 x 3600)] x x lo6 

100 
2 

100 
2 

E 0 rad 

+- x [1.4678 - 0.8730exp(-0.5268 x 2600)] x lop9 x lo6 

+- x C1.4678 - 0.8730exp(-0.5268 x 1600)] x x (-2) x lo6 

le 

Consider a cylindrical rod of 10 cm length and 2 mm radius whose shear 
modulus is  given  by 

G(t) = 0.6812 + exp("l.3t) GPa ( t  in seconds). 

(a) Find the stresses at t = 1 S, 10 min,  1001 S, 30 min, and l h for the 
following strain history: 

t < 0 ,  e = o  
O S t <  1000s e=o.1  

1000s 5 t < 00 0 = 0.04 

where 0 is the torsion angle  in radians. 
(b) At which  time  will the stress be  zero? 

Sketches  of the data plot and the response are shown in Fig. 5.6.1. 
From Eq. (5.42) 

o( t )  = G(t - t ')Ae(t') (P5.6.1) 
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where it was considered that 

E = r+/Z (P5.6.2) 

ccordingly, 
or t = 1 S: 

U =  x [0.6812+kxp(-1.3 x l)] x lo9 x 0.1 == 1.907 x 106Pa 
10 x 10-2 

or t = 600 S: 

2 x 
10 x 10-2 

U =  [0.6812 +exp(-1.3 x 600)] x lo9 x 0.1 = 1.362 x 106Pa 

For t = 1001 S: 

U =  x ([0.6812+exp(-1.3 x 1001)] x lo9 x 0.1 
10 x 10-2 

+[0.6812 + exp("1.3 x l)] x lo9 x (0.04 - 0.1)) 

== 2.18 x 

or t = 1800 S: 
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2 x 10-~  
10 x 10-2 cT= ([0.6812+exp(-1.3 x 1800)l x lo9 x 0.1 

+ [0.6812 + exp(”1.3 x 800)] x lo9 x (0.04 - 0.1)) 

= 5.458 x lo5  Pa 

This increase in the stress reveals a “memory”  effect  produced by the  strain 
history. 

The  time at which the stress is zero can be obtained  from 

2 x 10-~  
10 x 10-2 cT= {[0.6812 + exp(-l.3t)] x lo9 x 0.1 

+ [Oh812 + exp(-1.3(t - lOOO))] x lo9 x (0.04 - 0.1)) = 0 

which  yields t % 1000.6 S. 

one, giving as a result zero stress. 
At this time, the positive stress step is  compensated for by the negative 

Show that 

G(t - e)J(O) de = ~~~ J(t - U )  du + G,J(t) = l 
dt S, (P5.7.1) 

The right-hand side  of Eq. (P5.7.2) can  be written as 

lim for[G(t + At - 0) - G(t - 8)]J(Q) de + f+“ G(At)J(O) de = 1  (P5.7.3) 
t-+O At 

This espression becomes 

(P5.7.4) 



Where  it has been taken into  account  that dG(t - e)/& = -dG(t - e)/de 
and Gg = G(0).  Substituting U = t - 8 into Eq. (P5.'7.4), this expression 
becomes 

~~ "- dG(u) J( t - U) du + GgJ(t) = l (P5.7.5) 

Deduce Eq. (5.64b) for  a viscoelastic material  from the following  mechan- 
ical history: 

o(t) = 0 for t 0 and o(t) = EG(t) for t > 0 

According to Eq. (5.37), the time  dependence of the deformation is  given  by 

Writing the stress as  a  function of the strain, Eq. (P5.8.1)  becomes 

Hence, 

G(t - U)- du = 1 du 

(P5.8.1) 

(P5.8.2) 

(P5.8.3) 

Show that  for a = a. H ( t ) ,  where H(t)is the  step  unit f u n ~ t i o ~ ,  the following 
relation for d viscoelastic material holds 

(P5.9.1) 
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From Eq. (5.45), 

ds(e) S, o( t )  = 1: G(t - 0)- de == oo G(t - 0) dJ(0) de (P5.9.2) 

Since o(t) = ooH(t), then Eq. (P5.9.1) is obtained. 
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The transient experiments to which we referred in the preceding chapter 
provide information on the linear viscoelastic behavior of materials in the 

238 
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time  domain for values  of t larger than 0.1 S. However, it is often necessary 
to obtain the responses of  viscoelastic materials to perturbation force fields 
at very short times. For example,  when materials are used as acoustic iso- 
lators in buildings, or  to eliminate noise in vibrating metallic sheets by 
depositing layers of  viscoelastic materials on them, etc., it is important  to 
know  how the storage and loss viscoelastic functions change  with the fre- 
quency of the perturbation.  Information of this kind  can  be  obtained by 
studying the responses of materials to dynamic perturbation fields  (1-6). 

oreover, by taking into account that  an experiment carried out  at a fre- 
quency o is qualitatively equivalent to others performed  in the time domain 
t = m"' , the combination  of transient and dynamic  experiments provides 
informations on the viscoelastic  behavior  of materials in a wide  time  scale 
covering several decades. The information thus obtained  is important  not 
only on practical grounds  but also from a basic point of  view, Actually, the 
knowledge of  viscoelastic responses over a wide  time  scale  is important  to 
the study of the molecular  motions responsible for  the viscoelastic  behavior 
of materials. 

Let us assume that a sinusoidal shear strain ~ ( t )  = sin ot is  imposed on a 
viscoelastic solid, where and o are, respectively, the amplitude and fre- 
quency of the perturbing strain. A dynamic shear strain is illustrated in 
Figure 6.1. ~xperimentally one  observes that the shear stress (response) is 

Schematic representation of the  vibrating  shear  deformation of a 
material. 
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an angle 6 out of phase with  respect to the harmonic strain. A schematic 
representation of ~ ( t )  and cr(t) is  shown in Figure 6.2. Accordingly, 

o(t) = oo sintot + 6) 
= 00 cos 6 sin at + oo sin 6 cos ot 

This equation indicates that the stress  is a complex quantity with one com- 
ponent in phase with the perturbation (crocos6) and another 90" out of 
phase (00 sin 6). Because the sinusoidal shear strain is a continuous function 
of  time, its substitution into Eq. (5.45) gives 

= EO [ w G ~  @(U) COS ou du @(U) sin ou du sin ot 1 
= EO[G'(W) sin cot + G" cos at] 

(6.2) 

where the change of variables t - 0 = U has been performed and it has been 
taken into account that G(t)  = G, + Gd4[>(t) [Eq. (5.8)]. From Eq. (6.2) one 
obtains 

G'(o) = G, + w G ~  @(t) sin at dt .l,m 
00 

= G, + a J, [G(t) - G,] sinot dt 

and 

Sketch of an alternating stress leading an alternating strain by phase 
angle 6. 
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It is obvious that for a liquid  viscoelastic material, G, = 0. Comparison of 
Eqs. (6.1) and (6.2) leads to the expressions 

G'(co) = -COS 6 0 0  

EO 
(6.5a) 

G"(co) = - sin 6 0 0  

EO 
(6.5b) 

G"(CO) 
G '(4 

tan6 = - (6.5~) 

where G'(m) and G"(o) are the components of the complex relaxation mod- 
ulus G*(m). A vectorial  scheme  of the components of G*(m) is  shown  in 
Figure 6.3a. 

By using  complex notation, the perturbation and the response can be 
written as €*(m) = ~~Im(8"')  and ci*(m) = ooIm(e'@"+')),  respectively. 
Consequently, the relationship between the shear stress and the deformation 
is  given  by 

Stress 
Strain 

Strain 
Stress 

Vectorial components of (a) the complex relaxation  modulus G* and 
(b) the complex  compliance function J*. 
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Comparison of  real and imaginary parts in this equation gives the expres- 
sions for G’(w) and G”(w) already indicated in Eq. (6.5). 

Equations (6.3) and (6.4) suggest that G’(o) and G”(w) are the sine and 
cosine Fourier transforms of the relaxation modulus, respectively  (see 
Appendix). The pertinent relations are 

G’(w) - G, 
= .K[G(t) - 6 1  (6.7a) o 

(6.7b) 

where Fs and F, are, respectively, the symbols for the  sine and cosine 
Fourier transforms. The relaxation modulus G(t) can also be obtained 
from the inverse  of  the Fourier transform of Eqs. (6.7a) and (6.7b). The 
corresponding relationships are 

sin ot do (6.8a) 

(6.8b) 

If G, = 0, Eqs. (6.7) and (6.8) are also valid for viscoelastic liquids. 

In analogy with the definition  of  viscosity  given  in transient experiments, the 
complex shear stress is related to the complex shear rate deformation by the 
expression 

d&*(O) cT*(o) = q*(o)- = ~o&*(o)q*(~) dt 
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where €*(W) = EoImexp(iot) and q*(o) is the complex  viscosity. From Eq. 
(6.9) one obtains 

G*(o) GN(o)  
q*(o) = q/(o) - iqlyo) = - - - - 

10 W 
- (6.10) 

where it was taken into account that G * / € *  = G*. Hence, the real and irna- 
ginary parts of q*(o) can be written as 

and 

(6. l la) 

(6.11b) 

Equation (6.1 1 a) suggests that the viscosity  of liquids at zero shear rate can 
be obtained from dynamic experiments by means of the expression 

lim GN(o)  
r lo  = - 

w-+o U J ~  
(6.12) 

The work performed per  cycle  by a material that undergoes sinusoidal shear 
deformation E* = g0Im exp(iot) is  given  by  (1) 

where it has been  considered that iE* = (l / o ) d ~ * / d t .  In the integral contain- 
ing (;’(W), the work done of the material during part of the cycle  is  recovered 
during the other  part of the cycle, and the integral of the cycle  is zero. 
Consequently, G’(@) is  called the storage relaxation modulus because it is 
related to the stored energy. The term containing C”(o) is related to the 
viscous dissipation, and hence this vicoelastic function is  called the loss 
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relaxation modulus. The total work in  a complete cycle represents the dis- 
sipated energy  given by 

G”(@) W=.”--- 
W 

(6.14) 

where it  has been considered that d ~ *  = ( d ~ * / d t )  dt. According to this equa- 
tion,  the energy dissipated in a material under a sinusoidal deformation is 
proportional to both  the loss relaxation modulus and the reciprocal of the 
frequency. The limits of the last integral in Eq. (6.14) are 0 and  the period 
T(= 2n;/o). Accordingly, Eq. (6.14)  becomes 

W = G”(w)E& Jt”’” cos2 at dt = m$G”(w) (6.15) 

This equation indicates that the dissipated energy  is proportional to both  the 
square of the amplitude of the deformation  and  the loss relaxation modulus. 

The response of a material to a sinusoidal shear stress CT = oo sin ot is 
delayed an angle 6 with regard to the  perturbation,  and  the relaxation 
between the shear deformation (response) and  the shear stress is  given  by 

E(t) = sin(wt - 6 )  (6.16) 

The ratio between E($) [= ~OImexp[i(ot - 6)] and o(t) [= o~Imexp[i(o$)]] is 
the creep  complex compliance function given by 

From this equation one obtains 

These  expressions relate the components of the complex compliance to the 
amplitudes of both  the  perturbation  and the response as well as to the  out- 
of-phase angle 6. The vectorial scheme  of the  perturbation  and response is 
shown in Figure 6.3b. 
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By comparing the relations given in Eq. (6.18)  with those of Eq. (6.5), 
one obtains 

G”(o) J”(o) tan[ii(o)] = - - - G’(o) - J’(o) 

(6.1 sa) 

(6.19b) 

According to Eqs.  (6.19), the relationships between the components of the 
complex compliance function and those of the complex relaxation modulus 
are given  by 

1 
G’(o)[l + tan2 S(o)] 

J‘(w) = (6.20a) 

and 

1 
G”(o)[l + cotan2 6(w)] J”(o) = (6.20b) 

Equations (6.20a) and (6.20b)  suggest that J f (m)  = l/G’(w) and J”(w) = 1 
/G”(@) when 6 0 and 6 g 90°,  respectively. In other words, J’(w) comes 
near to being the reciprocal of  G’(@)  in the region of high  frequencies  where 
the dissipated energy  is  very  small; in the zone of  very  low  frequencies, the 
flow contribution is dominant  and JN(w) comes  close to  l/G”(w).  In the 
frequency interval 0 < CO < m, Eqs. (6.20a) and (6.20b)  suggest the inequal- 
ities 

(6.20~) 

According to the Boltzmann superposition principle, the shear strain of a 
solid  viscoelastic material under the action of a harmonic shear stress can be 
written as (2) 
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where it has  been considered that J(t) = Jg + JdtP(t), Jg + JdtP(00) = J, [see 
qs, (5.15) and (5,17)] and cr(-00) = 0. If the shear stress is sinusoidal, for 

example cr(t) = ci0 sin at, then Eq. (6.21)  becomes 

= oo[J’(o) sin o t  - J”(o) cos cot] 

where the change of variables U = t - 0 was  made.  Consequently. 

[*(W) - *(t)]  sinwt dt (6.23~1) 

and 

These equations  can be written as 

$’(W) = J, - w [J, - J( t )]  sin at dt I 
and 

J”(w) = w [J, - J( t )]  cos a t  dt J~ 

(6.2313) 

(6.24a) 

(6.24b) 

Therefore  these expressions permit us to transform the compliance function 
from the time domain  to  the frequency domain.  The r~lationships of Eqs. 
(6.24) can also be written in terns of  sine and cosine Fourier transforms: 



~ y ~ a ~ i c  Viscoelastic ~ u ~ c t i o ~ s ,  247 

J’(o) - J, 
= -Fs[Je - J(t)] 

o 
J“(O) 
0 

= F J J e  - J(t)l 

(6.25a) 

(6.25b) 

The inverse  of the Fourier transforms of Eqs. (6.25) permits transformation 
of the compliance function from the frequency domain to the time domain. 
The pertinent equations are 

and 

J( t )  = J, - ~ ~ ~ ~ c o s o t  0 do 

(6.26a) 

(6.26b) 

In a dynamic creep experiment, the shear strain for liquids can be written as 

y adding and subtracting the term &@(m) in the integrand of 
this expression  becomes (2) 

[J, + Jd?T1(00)] - Jd[\Tr(o~) - *(t - e)] + d0 
(6.28) 

== cro[J’(o) sin cot - J”(o)  cos cut] 

After some mathematical handling one obtains 

J’(o3) = J: - W J 1 ~  Ir: - J( t )  + (6.2%) 

and 
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(6.29b) 

The  components of the complex  compliance can be  expressed  in terms of the 
Fourier transforms by 

and 

J”(o)  S 
”- 

o o2q 

(6.30a) 

(6.30b) 

From the inverse of the Fourier transforms of  these equations one obtains 
the relationships 

(6.31a) 

(6.3 S b) 

which  permit transformation of the compliance functions from the fre- 
quency domain  to the time domain.  Equation (6.31a) can also be written 

2 O0 J’(w) - Jg + Jg - 
J,“ sinot d o  + - (6.32) t 

r\ 
J( t )  = Jg +J,“ - Jg  + ~ J o  0 

Since the complex  variable theory shows that (7) 

n 
do=-- 2 

Eq. (6.32) becomes (8) 

t J ( t )  r=: Jg + - sincot dm + - 
ri 

(6.33) 

(6.34) 
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This is the expression commonly found in the literature that relates the real 
component of the complex compliance in the frequency domain with the 
compliance function in the time domain. 

When t -+ 0, Eq. (6.31b)  becomes 

(6.35) 

which  gives the steady-state compliance function in terms of the loss  corn- 
pliance function. 

The value  of Jt obtained from this equation substituted into  Eq. (6.31b) 
gives the relationship 

(6.36) 

which  is an alternative way  of writing Eq. (6.31b). 

The energy per cycle  is  involved  when a viscoelastic material undergoes a 
shear stress o(t) = oo sin at can be written as 

W = !G*d€* = !G*- dc* dt 
dt (6.3’7) 

This expression  in conjunction with Eq. (6.22)  gives 

W = ~ao[ J~ J’(o) sin at cos ot dt + J”(o) sin2 ot dt J:”;” 
Since the first integral on the right-hand side  of this equation is zero, the 
dissipated energy  is obtained by solving the second integral. The expression 
obtained, 

indicates that the dissipated energy  is pro~ortional to  both the square of the 
amplitude of the shear stress and the loss shear compliance. 
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rom Eqs. (6.24.a) and (6.24.b), the components of the creep compliance 
function for solids  in the limit co -+ 0 are given by 

(6.40a) 

and 

J ”(W) = W [J, - J( t)] dt 
~~ 

(6.40b) 

where it was  assumed that sin(co)t ES cot and cos(cot) ES 1 when 03 -+ 0. 
Equations (6.40a) and (6.40b) indicate that J’(0) = Je and J”(0) = 0. In 
the low  frequency  region, the following  scaling  laws for solids hold: 

J, - J’(w) - a2; J”(w) - W (6.41) 

It can be  seen that the real compliance function is a decreasing linear func- 
tion of co2 in the low  frequency  region.  owever, the compliance loss  is an 
increasing linear function of co in the low  frequency zone. Although the real 
component of the creep  compliance  shows the same dependence on fre- 
quency for solids and liquids, the frequency  dependence  of the loss  compli- 
ance  differs for these  two states. Thus Eq. (6.29b)  suggests the following 
scaling  law for viscoelastic liquids in the low  frequency  region (03 -+ 0): 

J”(W) - 0 - l  (6.42) 

Accordingly, the loss compliance increases  indefinitely as the frequency 
decreases. A straight line  of  slope  -1  is obtained in the double logarithmic 
plot of J’’(co) against co, that is, 
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Equations (6.3) and (6.4) suggest the following  expressions for the relaxa- 
tion moduli of  solids: 

G’(0) = G,; G”(0) 0 (6.44) 

Obviously, G’(0) = G”(0) = 0 for liquids, According to Eqs. (6.3) and (6.4), 
the dynamic relaxation moduli of  viscoelastic  liquids (G, = 0) in the low 
frequency  region are given  by 

lim 00 

G’(co) = lim co .c G(t) sin cot dt G co2 f, tG(t) dt 
0-4 w-+o 

and 

lim G / ’ ( ~ )  = lim o G(t) cos cot dt = CL) Jo G(t) dt 
00 

W 4 0  w-to 

(6.45) 

(6.46) 

where the approximatio~s cos ot 1 and sin ot t for o ”+ 0 were  used. 
Since the integrals of Eqs. (6.45) and (6.46) are constant, the scaling  laws 
G’(o) - o2 and G” - o hold. Consequently, the double logarithmic plots of 
the dynamic relaxation moduli of  viscoelastic  liquids  in the teminal region 
are straight lines  with  slopes 

lim d log G’(co) =2 (6.47a) 
w-to  d loga  

and 

lim d log G”(o) 
= l  

o-to dlogw 
(6.47b) 

For viscoelastic  solids [G’(o) = G, when o ”+ 03, and according to Eq. 
(6.46), G“(w) - W in the low  frequency  region. Therefore, 

lim d log G’(co) =o 
w+o dlogo 

(6.48a) 

and 
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lim d log G”(w) 
= l  

w+o dlogo 

Chapter 6 

(6.48b) 

Accordingly, the phenomenological theory of linear viscoelasticity predicts 
the same  frequency  dependence for  the loss relaxation modulus of solids and 
liquids in the terminal region. 

The  combination of Eqs. (6.12) and (6.46) leads to the  important  relation- 
ship between the zero shear viscosity and  the shear relaxation modulus 
(2,8,9), 

lim G”(o) O0 

rlo =(#+(f 0 
- = f, G(t) dt (6.49) 

analogous to  that obtained in Chapter 5 using a  ramp  deformation history. 
This expression relates the viscosity,  usually determined from either creep 
measurements or  the loss dynamic modulus, to the  transient relaxation 
modulus. Another  important  relationship  can be obtained  for  the steady- 
state compliance. Because G*(m) = l / J * ( m ) ,  the components of the complex 
relaxation modulus are related to those of the complex compliance function 
by 

1 G’(o) + ~G”(co) = 
J ’(m) - iJ”(o) 

At  low  frequencies, G’(m) can be written as 

(6.50) 

(6.51) 

where  it has been considered that J”(o) E+ l/oq when m ”+ 0 [see Eq. 
(6.29b)l. In these conditions, J: << l/mq, and  Eq. (6.51)  becomes 

(6.52) 
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Equation (6.52) is  widely  used to determine the equilibrium compliance 
function  from the values of the  components of the relaxation moduli in 
the terminal region. This expression  in conjunction with Eqs. (6.45) and 
(6.49) leads to the expression 

(6.53) 

which  is an  alternative method of determining the steady-state compliance 
from  transient relaxation experiments. 

Linear viscoelasticity theory predicts that one component of a complex 
viscoelastic function  can be obtained from the other one by means of the 
Kronig-Kramers relations (10-112). For example, the  substitution of G(t) - 
GC given by Eq. (6.8b) into Eq. (6.3) leads to the relationship 

G”(x)  dx ~ ’ ( o )  - G, = 2,  lirn J x Jo sin wtcosxt dt 
R-+w 0 

By taking  into  account  that 

1 
2 sin o t  cos xt = - [sin(u - x)t + sin(w + x)t] 

Eq. (6.54) becomes 

(6.54) 

(6.55) 

lim cos(@ - x ) R  + cos(o + x ) R  
x 

R+00 [ m - x  O + X  I1 dx (6.56) 

00 = ~ J  o2 G”(x) ~ d l n x  
-00 m2 - x2 

It should be noted that the integrals of cosines in this equation  are zero, as a 
simple integration by parts shows. The strength of the relaxation can be 



obtained directly from Eq. (6.56)  by taking the limit  of G’(@) - G, when 
U ”+ 00. In this case, 

lim 00 

[G’(o) - G,] = Gg - G, = ~S G”(x) d lnx  (6.57) 
w--+oo -00 

ubstituting the value  of G, obtained from this equation into Eq. (6.56) 
gives the following alternative relationship between G’(w) and G”(w) : 

00 

G’(@) = Gg - - d lnx  (6.58) 

In the same  way, substitution of the value  of G(t) - G, given  by Eq. (6.8a) 
into  Eq. (6.4)  gives 

0 0 0 0  

G”(m) = - S o(G’(x) - sin xtcos o t  dt dx 
E o  0 X 

Following the same procedures outlined above, one obtains 

2 Sm ox[G’(x) - G,] G”(w) = - d lnx  
7t “00 x2 “ U 2  

(6.59) 

(6.60) 

Equations (6.56) and (6.60)  allow the calculation of the storage relaxation 
modulus for a given  frequency  when the loss relaxation modulus is known in 
the whole spectrum of  frequencies and vice  versa.  These  expressions are also 
suitable for viscoelastic liquids, though in this case G, = 0. A more rigorous 
deduction of the Kronig-Kramers relations can be done by using a formu- 
lation in the complex plane. With this f o ~ u l a t i o ~  the singularities appear- 
ing in the denominators of  Eqs.  (6.56) and (6.60) are avoided. 

From Eqs. (6.12) and (6.60) the following important relationship is 
obtained: 

(6.61) 

which provides an alternative way  of calculating the viscosity at zero shear 
rate for viscoelastic liquids from the storage relaxation modulus. 

The relationships for the compliance functions can be obtained by using 
the method outlined above for the relaxation functions. The pertinent equa- 
tions for viscoelastic l i~uids are 
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2 J” J”(x)x2 - x/q 
J‘(0) = Jg + - d lnx  

n “00 x2 “02 

and 

2 J” [J’(x) - J,]wx 1 
J”(0) = - d lnx+- 

n ”” 02 -x* 0rl 

(6.62) 

(6.63) 

For viscoelastic  solids, q -+ 00, and consequently the terms x/q and 1/wq 
in Eqs. (6.62) and (6.63), respectively,  vanish. 

The  beauty of the linear  viscoelastic  analysis  lies  in the fact that once a 
viscoelastic function is  known, the rest of the functions can be determined. 
For example, if one measures the compliance function J(t) ,  the values  of the 
components of the complex  compliance function can in  principle  be deter- 
mined from J ( t )  by using Fourier transforms [Eqs. (6.30)]. On the other 
hand, the components of the complex relaxation moduli can be obtained 
from those of J*(o) by  using Eq. (6.50). Even more, the real components of 
both the complex relaxation modulus  and the complex  compliance function 
can be determined from the respective  imaginary components,  and vice 
versa, by  using the Kronig-Kramers relations. Moreover, the inverse  of 
the Fourier transform of G’(w) and/or G”(w) [J’(w) and/or J’’(w)] allows 
the determination of the shear relaxation modulus (shear  creep  compliance). 
Finally, the convolution integrals of Eq. (5.57) allow the determination of 
J(t) and G(t)  by an efficient  method  of  numerical calculation outlined by 
Hopkins  and  Hamming (13). 

As  indicated  in another section, the response to  an isotropic pressure  as a 
step function of  time  gives the bulk  creep  compliance B(t). However, the 
response to  a sinusoidal  pressure gives the complex  bulk  compliance: 

where B’(w) and B”(m) are, respectively, the bulk storage and the bulk  loss 
compliance B(t). The bulk  phase  angle  is  given by 

B‘‘(0) tan 6B(w) = - 
B’(4 

(6.65) 



The Poisson ratio, like the bulk, tensile, and shear creep compliance, is an 
increasing function of time  because the  lateral  contraction  cannot develop 
instantaneously in uniaxial tension but takes an infinite  time to reach its 
ultimate value. In response to a sinusoidal uniaxial stretch,  the complete 
Poison ratio is obtained: 

u(w) = ~'(0) = iu"(o) = ;(a) exp[-iii,(o)]  (6.66) 

and the phase angle  between the lateral  contraction  and the strain excitation 
is 

(6.67) 

In  the same  way, the response to  a sinusoidal change of volume  yields the 
complex bulk relaxation modulus, 

and 

(6.68b) 

Finally, the complex  tensile compliance, D*(m), and the complete tensile 
relaxation modulus, E*(m), can be obtained from the responses to a sinu- 
soidal uniaxial stress or  strain, respectively. Thus, 

and 

with  tan&,(m) and tanijE(m) given by 

(6.71) 

It should be noted that  tan 6, = tan &E and  tan 6B = tan 6,. 
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In many practical situations the following  model for the compliance J(t) is 
useful. 

J( t ' )  = J(t)x@@) where t' = x t ,  0 x 1 

Estimate G(t) from J(t). Apply it to 

J( t )  = 1 + t 

and discuss the range of validity for  the  obtained estimation. 

If J(xt) = J(t)x~(~), it is  expected that 

G(xt) = G(t)x-n(r, (P6.1.1) 

Note  that m(t) is the slope of a logJ vs. log t plot. According to Eq. (P5.9.1), 
the relationship between the modulus and  the compliance can be written as 

For 8 = xt, 

1 
G[t(l - x)] dJ(tx) = 1, 0 x I 

(P6.1.2) 

(P6.1.3) 

By substituting  for J(xt) and G(xt)  the expressions given for this quantity in 
(P6.1,1), we obtain 

(1 - x)-"mxm"dx = G ( t ) J ( t ) L  == 1 c " ) ' ( ~ ) '  (P6.1.4) 
(m - n)! 

where the Euler beta function has been  used. By assuming a  smooth time 
dependence for n and m, that is, treating the factorials as  constants, we find 
that G(t) is proportional to J(t)". Then n is  close to m, and the following 
result is obtained: 
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nm (m)!(-m)! = ~ sin nm 

Consequently, 

sin mn G(t)J(t) T=T - 
mn 

(P6.1.5) 

A plot of the function represented by the right-hand side  of Eq. (P6.1.5) is 
shown in Figure P6.1.1. 

Consider now the proposed example. In this case, 

dlogJ(t) t m(t) = ~ - - 
d log t   t+  1 

- (P6.1.6) 

oreover, if t -+ 0, then m -+ 0 and J -3. 1. On the other  hand, if t -+ 00, 
then m-+ 1 and J -+ 00. For these reasons, in the short time limit, one can 
assume that 

1 G(t) S - 
l + t  

(P6.1.7) 

which can be expanded in series as 

G ( t ) S   I - t + t   - t  + * * .  
2 3  (P6.1 .S) 
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The exact solution can be found by  using Eq. (5.59), from which we obtain 

l 
G(s) = - 

1 3-3 

By Laplace inversion we find 

G(t) = exp(-t) 

This expression can be expanded in series as 

(P6.1.9) 

(P6. 1.10) 

(P6.1.11) 

Comparing Eqs. (P6.1.8) and (P6.1.1 l), we notice that the proposed model 
represents a good approximation only at short times. 

We also note that 

Therefore, 

Then, if m = 0.1, 

.l(t)G(t) 0.98 

Taking J ( t )  = [G(t)]-’ is  less than 2% in error. 

The shear modulus of a polymer at 18°C  is  given by 

(P6.1.12) 

(P6.1.3) 

(P6.  1.14) 

G(t) = E0.6812 + exp(-1.3t)] GPa 

where t is  given in seconds. Estimate J ( t ) .  
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From Eq. (5.59), we obtain 

On the other hand, 

Hence 

1 
s2G(s) J(s) = ~ 

0.6812 1 G(s) = EG(t) = (- 
S +-) S +  1.3 x 109 

J(s) = S +  1.3 x 10-9 
1.68  12s2 + 0.8856s 

= 0.5948 X 
x 10-9  pa-' 

s(s + 0.5268) 
Since 

s + u  A 3 U U 

b 
" s (s+b)- -s  -+-* A = p  B=l-- 

Eq., (P6.2.3) can be written as 

J(s) = 1.4678 x (! - x Pa" 

Therefore, 

(P6.2.1) 

(P6.2.2) 

(P6.2.3) 

(P6.2.4) 

(P6.2.5) 

J(t) = L"J(s) = 1.4678[1 - 0.5948  exp(-0.5268t)] x Pa"  (P6.2.6) 

If we take J( t )  as [G(t)]", the errors at t = loo, and lo2 S would  be, 
respectively, 0.013%, 10.10%, and 0.014%. 
Note  that 

J(t)G(t) = 1 - 0.5947exp(-0.5268t) + 1.4678exp(-1.3t) - 0.8730exp(-1.8268t) # 1 
Obviously, 

JgGg = 1 and JgGJ = 1 (P6.2.7) 
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le 

Show that 

H(t)  = I G(t - e) d~ ( 8 )  ? G(t)J(t) 

and 

on the basis  of the empirical behavior of G and J 

olutio 

According to Eq. (P5.9.1), and since H(t)  is the unity step function, 

H(t) = 1: G(t - 0) dJ(0) (P6.3.1) 

Because J and G are increasing and decreasing functions of  time (for t > 0), 

H(t) G(t) I dJ(0) = G(t)  J(t) 
0 

By using the same arguments it is  easy to see from 

that 

According to Eq. (5.55), the viscosity at zero shear rate is  given  by 

P" 

(P6.3.2) 

(P6.3.3) 

(P6.3.4) 
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The  divergence or nondivergence of this integral permits us to decide 
whether a material under study is a solid or a liquid. Check the nature 
(solid or liquid) of the materials whose  behavior is represented by the func- 
tions (a) G = (b) J = l + t ,  (c) J = t'I2. 

The materials is a solid. 

we find that 
y taking the Laplace  transform of J(t) = 1 + t and using Eq. (5.59, 

1 1 G(s) = ~ - 
S2J(S)  - S + 1 

Hence 

G(t) = L"[G(s)] = e-t 

Then 

and  the material is a fluid. 
(c) By a procedure  analogous to the one  followed above; we  find 

f i  -312 J(S) = -S  2 

and therefore 

Thus we obtain 
00 

q = J~ G(t) dt = S, 2 -  t 'l2 dt -+ 00 

Consequently the material is a solid. 
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Starting from G(t ' )  = G(t)x"n with t' = xt [Eq. (P6.1.1) of 
obtain a relationship between G(r) and G*(o) .  From this rela 
for small loss angles, determine the loss modulus and the loss 
the storage modulus. 

y taking logarithms to 

G(t ') = G(t)x-" 

where x = t ' / t ,  we obtain 

log G(t') = log G(t) - n log t' + n log t 

1 This expression leads to 

(P6.5.2a) 

oreover, for t = o-l, Eq. (P6.5.1) becomes 

1 while for x/o = t ', 

G(t') = G - o (t')-" (A) -* 

(P6.5.1) 

(P6.5.2) 

(P6.5.3) 

(P6.5.4) 

Taking the Laplace transform of (P6.5.4.) with  respect to t' and considering 
that 

we  find 

(P6.5.6) 

or 
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(P6.5.7) 

For S = im, and  taking  into account that i = exp(in;/2), Eq. (P6.5.7) can be 
written as 

G*(io) = $(?(S) = G(A)(--n)! exp(F)  

For very  low values of the loss  angles, Eq. (P6.5.8) becomes 

/G*[ E G'(o) E G(t)(--n)! 

(P6.5.8) 

(P6.5.9) 

where t = l/o has been assumed. 
In  the same  way,  if the loss  angle  is small, 

nn  nn - adlog  G'/ tan6 = tan(T) E - = 2 2 d o g  t l".w-l 
(P6.5.10) 

T[: dlnG' n dlnG' 

Finally, from tan6 = GNJC/, we  easily obtain 

(P6.5.11) 

A similar  expression can be found  for J". 

Consider a prismatic rod of PMMA whose  tensile modulus at 20°C and 1 
H z  is  given by E* = (4.62 + i0.438) x lo9 Pa. The dimensions of this rod are 
10 x 3 x 150 mm3. In  a test the  rod is  subjected to forced longitudinal 
vibrations with an amplitude of 1 kN. Determine the energy dissipated 
per  cycle. 

According to Eq.  (6.39), the energy dissipated per cycle  is  given  by 

W = ncrgD'' (P6.6.1) 
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where I)" is the loss  tensile compliance and o0 is the amplitude of the 
oscillating stress. Accordingly, 

and W = 7.1 x lo4 J/m3. Since the volume  of the rod is 4.5 x m3, the 
total energy dissipated is W = 0.3195 J per  cycle.  If the frequency  of the 
vibration is 1 Hz, the power dissipated as heat will  be  0.3195W. 

A piece  of rubber is  used to damp the mechanical vibration of a structural 
mechanism. Determine the power dissipated by this rubber when it is sub- 
jected to shear vibrations of  maximum amplitude 2 x and frequency U) 

= 12 000 rpm. The viscoelastic characteristics of the rubber are G' = 2 MPa 
and  tan 6 = 0.5. 

In terms of the displacement and the loss modulus, the dissipated power  is 
given  by Eq. (6.19, 

l$' = ~ y i G " w  = 3.14 x (2 x  x(2  x lo6 x 0.5) x 200 = 2.51 k W / m 3  
2 

Find qo for a material whose  loss modulus is  given  by 
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From  Eq. (6.12), 

where 

( u ) z ) ~ - ~  sin(? x) G”(w) = (Go - G,) 
1 + 2(U)z)”a c o s ( 9  x) + 

Consequently, 

(P6.8.1) 

lim 
q O = U ) + O  1 (P6.8.2) 

qo = 00, and the material is a solid. 

In the terminal region of a viscoelastic  liquid G’ = 102 N/m2 and G” = 
lo4 N/m2 at  rad/s and temperature T.  In steady state conditions 
determine, at this temperature, the strain at 1 S under a shear stress of 
10 kPa. 

rom Eqs. (6.12) and (6,52), we have 

The creep compliance will  be 
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Hence, 

E = 2 x x 104 = 0.02 

267 

Find Je from G(t) = Go exp(-t/l;). 

From Eq. (6.53), we have 

Sm tG(t) dt = 
tG(t) dt Jr tGO exp(--t/z) dt 1 

J, = - - ” 

v2 0 [Jr G(t) dt]”2 - [Jr Go exp(-t/z) - Go 

Je is the reciprocal of Go, as expected for a solid. 

ymmetrical  loss relaxation curves  fit the so-called Fuos 

f m  

f 
6“ = G&,,sech m In- 

where Gkax is the loss at the peak maximum and m is an empirical para- 
meter, 0 < m 5 l .  Show that the relaxation strength is  given  by 

nig-~ramers relationships [Eq. (6.57)], 

equation, G”(x) can be written as 
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G"(x) = 2G&ax(x~)m f m  
In- = In x 

1 + (XT)2m ' f 

By substituting Eq. (P6.1 1.2) into Eq. (P6.11. l), we obtain 

(P6.11.2) 

(P6.11.3) 

From 

dE'  2E" dln E' 2 tan6 
do Eo KW 

(a) - = - and (b) dw - " 

(see Problem 6.5) and assuming 

(c) E " = Eiaxsech mx and (d) tan 6 = tan Gmaxsech m'x 

where x = ln(f/fmax), find the respective  expressions for E' from E" and 
tan 6, specifying the assumptions made. 

From (a), 

dBf 2EN 
dInf " n; 
"--- 

Hence, 

2E " dEf = -dInf 
n; 

(P6.12. l) 

(P6.12.2) 

y substituting (c) into Eq. (P6.12.2), we obtain 
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(P6.12.3) 
= ~ E ~ [ a r c t a n ~ ) ~ ’ -  7cm a , c t a n ~ ) ~ ~ ]  

iffi = fm and f 2  = f ,  then 

(P6.12.4) 

From (b) and operating as above, that is, taking 

f 
fm 

tan 6 = tan 6,,,sech m’x,  x = In-  (P6.12.5) 

we obtain 

E’V~) = E’V,) exp [ I tan 6,,, [ arctan ~ ~ ) m ’  - - arctan ~ ~ ) ~ ‘ ] ~  - (P6.12.6) 

Iff1 = .fm and fi = f ,  then 

E’(f)  = E’VJ exp [Tci tan 6,,, [ arctan ~ ~ - ~ ] ~  - 

When tan 6,,, << 1, Eq. (P6.12.7)  becomes 

E’V”) = E’V,) { 1 +I .t tan 6,,, [ arctan e . ~ - ~ ] ~  - 

(P6.12.7) 

Equation (P6.  11.3) indicates that 

2 E ( m )  - E(0) = “&E&, 

While Eq. (P6.12.6) leads to 

Finally, from Eqs. (P6.12.9) and (P6.12.10), we  find 

(P6.12.8) 

(P6.12.9) 

(P6.12.10) 



and 

(21~2)~:  exp(5 tan S,) 
exp(3 tan Snl) - 1 

E(W) = (P6.12.11) 

(P6.12.2) 

(P6.12.13a) 

(P6.12.13b) 
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TI 

There are a great number of techniques for the experimental dete~inat ion 
of  viscoelastic functions. The techniques most frequently found in the lit- 
erature  are devoted to measuring the relaxation modulus, the creep  compli- 
ance function, and the components of the complex modulus in either shear, 
elongational, or flexural mode (1-4). Although the relaxation modulus and 
creep compliance functions are defined  in the time domain, whereas the 
complex  viscoelastic functions are given  in the frequency domain, it is  pos- 
sible,  in principle, by using Fourier transform, to pass from the time domain 
to the frequency domain, or vice  versa, as discussed earlier. 

Each of  these techniques relates the response to the  perturbation field 
with the material function under study through an auxiliary method of 
analysis. Under some rigorous boundary conditions, this analysis should 
give the exact solution to the field equations. However, to overcome in 
practice the inherent technical  difficulties, it is  necessary to introduce 
some approximations that  can affect the equations just  as the boundary 
conditions do. Some experimental methods are better conceived than others, 
and, as a general  rule, a simple method is  always more desirable than a more 
complex one because it allows  these  technical  difficulties to be eliminated or 
simplified. On the other hand, most modern experimental equipment incor- 
porates the method of analysis as  part of the software, and consequently it is 
not possible to discern  in detail the process  of calculation of the physical 
function under study. 

When the inertial forces can be  neglected and the de fo~a t ions  are 
infinitesimal, the relationships between stress and strain can be  assimilated 
into the relationships between force and displacement through a coefficient 
directly related to the geometry  of the system,  which, somewhat inade- 
quately, is  called a form factor 

In the analysis of  viscoelastic  systems by dynamic methods, a linear one- 
dimensional system  of  second order in terms of force and displacement is 
customarily used. This approach also requires the introduction of the geo- 
metric form factors with the purpose of  solving the real problem in a simple 
way (Fig. 7.1.) 

As shown, a detailed study of the same problem reveals that  on some 
occasions the factors in question depend on the physical properties of the 
viscoelastic  system.  Hence, it is important  to analyze carefully the hypoth- 
esis on which such a reduction of the problem is based, in order to be able to 
calibrate the quality of both the approximations achieved and the results 
obtained. Such a critical analysis must be  implemented rigorously in the 
experiments. The previous considerations become more important the 
nearer one works to the limit stipulated by the technical specifications of 
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Sketch to show  how the so-called “geometric  factors” act as  an inter- 
face  between the stress-strain and  force~isplacement relationships. 

the experimental equipment, since without this  type  of caution the errors 
made can be  of the order of magnitude of the experimental  measurement 
itself. 

As mentioned above, it is  very  difficult, for experimental  reasons, to mea- 
sure the relaxation modulus or the creep  compliance at times  below l S.  In 
this time  scale  region,  dynamic  mechanical  viscoelastic functions are widely 
employed (5,6). However,  in  these methods the measured  forces and displa- 
cements are not simply  related to the stress and strain in the samples. 
Moreover, in the case  of  dynamic  experiments, inertial effects are frequently 
important, and this fact must be taken into account in the theoretical meth- 
ods developed to calculate complex  viscoelastic functions from experimental 
results, 

Dynamic mechanical  tests  have  been  widely  applied  in the viscoelastic 
analysis  of  polymers and other materials. The reason for this has been the 
technical  simplicity  of the method  and the low  tensions and de fo~a t ions  
used. The response of materials to dynamic perturbation fields  provides 
information concerning the moduli and the compliances for storage and 
loss. Dynamic properties are of  considerable interest when  they are analyzed 
as a function of both frequency and temperature. They  permit the evalua- 
tion of the energy  dissipated  per  cycle and also provide information con- 
cerning the structure of the material, phase transitions, chemical  reactions, 
and other technical properties, such as fatigue or the resistance to impact. Of 
particular relevance are the applications in the field  of the isolation of 
vibrations in  mechanical  engineering. The dynamic  measurements are a 

~ 



complement to the transitory experiments  because  they provide information 
concerning the viscoelastic behavior of the material at short times (large 
frequencies). The frequencies  used in dynamic measurements lie  in the 
range 10"4-102 Hz. For higher frequencies  (of the order of  103-1 O4 Hz), 
echo  effects in the test  piece can be  used,  which permit dete~inat ion of the 
dynamic modulus from the form and frequency  of the resonance peaks. For 
still  higher  frequencies, ultrasonic waves are used. In this technique, the 
velocity  of the wave and the attenuation factor permit calculation of the 
storage and loss moduli of the material under study at frequencies above 100 
kHz. 

Nevertheless, although the dynamic response of materials to oscillatory 
perturbations has been studied by many authors in many places, informa- 
tion concerning the limitations and precision  of  these methods is not often 
found in the literature. The same  is true regarding the sources of error  and 
discrepancies  between different experimental methods. 

Simple shear experiments are inadequate to measure the rigidity  of a mate- 
rial, owing to  the magnitude of the force that is required to produce sig- 
nificant deformations. This problem can be  avoided  if the shear modulus is 
determined from torsion ex eriments carried out  on large  cylindrical or 
prismatic test  samples  (See  ef. 6, p. 27; and Ref. 7). In 
this type  of experiment there is not a meaningful variation of  volume  in the 
test sample, such as corresponds to pure shear, and  the particles of the 
material are moving in circular arcs around a common axis. The inertia 
of the system  is furnished by an external device, and to avoid compression 
or traction in the samples the mass that produces the rotatory inertia is 
compensated for by another mass on the opposite arm of an appropriate 
balance. These considerations define the physical structure of the torsion 
pendulum. The experiment can be initiated by a sinusoidal type of  signal in 
the forced vibration method or simply  by producing free oscillations after 
separating the inertial system from its position of equilibrium. This is a very 
simple method because  free oscillations can even  be induced manually. 
~ l though  the system  is  less  versatile than the techniques used in nonreso- 
nant vibrations, it has undoubted advantages, among them great precision 
in the determination of  viscoelastic functions in materials with small  loss 
and the relative  simplicity in the construction of the instrument. There are 
many automated designs  of this instrument that permit the sample to be 
conveniently thermostatized and also allow it to undergo different thermal 
histories. 
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A schematic model  of a torsion pendulum is presented in Figure 7.2. 
The sample  is clamped at the two extremes, and the upper clamp is bound to 
an inertial rotating counterbalanced system. Torsional oscillations can be 
induced by applying a torque, by  using a reasonably small deformation that 
separates the system from its position of equilibrium in the case  of  free 
oscillations, and by applying a periodic signal in the case  of forced oscilla- 
tions. The temporary dependence  of the anlgular displacement is measured 
through  an optical or electrical  system, etc. In the case  of  free oscillations, 
the decay  of the amplitude of the wave permits determination of the shear 
modulus of the material at the frequency  of the oscillation by procedures 
described  below. It is important to avoid lateral movements  of the system, 
and this is frequently achieved by using the same counterbalance system that 
is employed to avoid having the test sample undergo either traction or 
compression. The oscillation frequencies are ordinarily restricted to the 
interval 0.1-10 Hz. Furthermore, for materials with  high  viscous damping 
(tan 6 > 0.3), an auxiliary elastic element  is required in order to eliminate 
overdamping, which  would  impede obtaining precise measurements of the 
viscoelastic functions. 

To find convenient expressions for the storage modulus and the loss 
tangent for a viscoelastic material under free  oscillation in torsion, it is 
necessary to return to the equation of motion given  by 

16+ c - + K -  T) $+(S+KG’)B=O 

P 

weight 

Scheme of an inverted  torsion  pendulum. 
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where G’ and G ’’ are the storage and loss moduli of the material, S the 
rigidity of the auxiliary elastic element, SD the  damping of the elastic sup- 
port,  and I the inertial mass coupled to the system. A s  mentioned before, K 
is a “geometric” factor  that depends on the form of the test sample. A 
simple solution of Eq. (7. l)  is based on  a simple model made  up of an elastic 
element  in parallel with a  dashpot,  that is, a Kelvin element. This procedure 
introduces obvious limitations to the solution of the problem. 

As is  well known, the  solution of Eq. (7.1)  is a damped sinusoidal wave 
that  can be written as 

0 = Re eo exp(-yt) exp(iot) 

where 

The logarithmic decrement A, as  a measure of the damping, can be defined 
as  the logarithm of the quotient of the amplitude of two  successive  waves. 
Then 

- ”- 0(t + 2 n / 0 )  
Re 0, exp(-yt) exp(iot) = In Re eo expl-y(t + 27c/0)] exp [io(t + 2n/0)7 = 7 

and 

Normally the elastic support friction SD can be disregarded, and the 
frequency of the wave can be written as 

KG’ + S I A o 2  KGf + S  A2w2 
~- I [-(i,] 2n 01 = [ r -  - a..] (7.6a) 

which  means that 
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(7.6b) 

Furthermore, the loss tangent is  given by 

IA02 l tan6 = K  (7.7) 
K n [ l d ( l + $ )  -S]  

The constant S can be calculated in a measurement carried out without 
the test sample. In fact, in many measurements the equipment is prepared in 
such a way that S == 0 that is, the purely elastic rigidity  of the suspension 
thread, E,  is  negligible.  Since the flesibility  of  suspension  wires  of  cylindrical 
cross section depends on the fourth power  of the diameter, this requirement 
is  achieved  by  using a wire  of  very  small diameter. In these conditions 

G ' =  K " [ i o ' ( l + ~ ) ]  (7.8a) 

and 

= 4 (1 + A',4G) 
1 (7.8b) 

For small dampings, A/K 0.1, and consequently 

IO2 G'="- 
K 

and 

h tan6 = - n 

(7.9a) 

(7.9b) 

If the damping is large, as occurs in amorphous polymers in the vicinity of 
the glass transition temperature, these simpli~cations are  not adequate. 

In order to show the drawback of the theory as a result of the inherent 
inaccuracies introduced in the model, it is illustrative to compare the 
results obtained for the viscoelastic functions with those obtained by 
solving the following differential equation, which  is  sometimes  used in 
free oscillations (8): 
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19 + KG*@ = 0 (7.10) 

where G* is the complex  modulus. By substituting Eq. (7.2) into  Eq. (7.10) 
and following the same  procedure outlined above, one  finds 

ico2 A 
; Kn 

and consequently 

ecause 

2tan6/2 . 6 A  tan6 = tan- = - 
1 - tan2 6 / 2  ’ 2 2n 

(7.11) 

(7.12) 

(7.13) 

for small values of 8/2n(< 0.1) the results obtained for the moduli and  the 
viscoelastic  damping do  not greatly differ from those obtained by the 
method outlined above. However, the differences  become important  for 
viscous materials or in zones  where  viscous  damping  is high. The  reason 
for the discrepancies observed  is that neither the first nor the second differ- 
ential equation  can be  used  without further justification to describe the 
response of a viscoelastic material under free oscillation. 

In reality, neither the viscosity q’ (= Grf/o) nor the storage modulus G’ 
correctly defines the relationship between tensions and deformations  except 
in the case  of pure sinusoidal oscillations (9). In  fact, what  is  measured in 
free oscillations is the dynamic  modulus not  at a real frequency but  at a 
complex frequency. 

a* = --y + ico (7.14) 

This problem  was  clarified by Struik (lo), who also showed that the 
transient components  of the solution are ruled out when the constitutive 
behavior of the material is  artificially  simplified. In  fact, the two  proposed 
differential equations permit us to find only G*@), where S = -y + io, and 
not G*(o), which  is  defined  only on  the imaginary  axis of S. For low damp- 
ing materials, G*($) can  be interpreted as G*(o). In a similar way, to  put q ’  
= G”/o is correct only for S = io. 
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In this way, the formulas  obtained for  the two  procedures  discussed 
above can be considered, respectively, as maximum and minimum bounds 
for G’ and  tan 6, respectively, and vice versa. 

The problem  appearing in the calculation of  G ’ and  G”  from free  oscilla- 
tions under torsion lies  in that G* is  measured at a complex frequency and 
not  at a real value m as is usual in forced oscillations (1  1).  Consequently, 

0 = 00 exp(io*t) (7.15) 

where m* = m’ + imN.  As a  consequence, im* = -h + io with m” = h = y 
and m’ = m. It should  be  pointed out  that the evaluation of  G* at real 
frequencies through  an analytical continuation procedure  using a Taylor 
series  suggests that the correction for small damping  is small. Actually, if 
03’ >> m’’, which  is equivalent to A = 2720’’/0’ << 1, expansion of the com- 
ponents of G* around m” = 0 gives 

aG “ G’(m’) = G’(o’ + io”) + I m” (7.16a) am 

am 
aG’ GI’(m’) = G”(m’ + io”) - ----a’’ (7.16b) 

where the Cauchy-~ie~ann conditions of the complex variable theory have 
been considered and  the evaluation of the derivatives was  obtained at 
m’’ = 0. 

rom the previous equations  the following expressions are obtained: 

G’(o’) - G’(@’ + io”) G” aln G” m” o” aln G” 
G‘ a l n o ’  a’ m’ a l n o ’  
- 

G ’(W l) 
- tan.6- ~ (7.17) 

G”(w’) - G”(o’ + io”) 1 aG’ a’’ -““->o - 
G” a1n.o’ o’ G”(o’) (7.18) 

The  terms (aln  G’//aln m’) and m”/of in Eq. (7.17) are usually small 
(although the first can be positive or negative), and  for this reason 
G’(o’) % G‘(m‘ + io‘’). On the other  hand, since aG’/alnw’ % (2/7c)G1’  (see 
Problem 6.5), Eq. (7.18)  suggests that the corrections in G”  are also small for 
low values of m”/m’. 
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Forced oscillations in torsion are used in the most versatile and accurate 
technique for measuring the viscoelastic functions, in the frequency domain, 
of  melts and concentration solutions (12). In this case, the second-order 
differential equation governing the motion is  given  by 

I$* + KG*0* = M* (7.19) 

where the excitation torque appearing on  the right-hand side  is  given by 

M'" = Mexp(iot) (7.20) 

A s  a result, the top of the sample undergoes the sinusoidal motion e*, 

0" = 0 exp [i(ot - p)] (7.21) 

y substituting Eqs. (7.20) and (7.21)  in Eq. (7.19) and splitting the real and 
imaginary parts of the resulting expression as usual, we obtain 

Therefore the phase angle  is  given by 

sin p tan6 = 
cos p + Iw28/M 

(7.23) 

Resonance will occur near the frequency at which tan p -+ cm, that is, 

(7.24) 

In a first approach it is assumed that during torsion the distance between 
two  sections perpendicular to the torsion axis  of the rod remains constant. 
However, in the case  of torsion of rubbers or samples whose  width  is con- 
siderably greater than their thickness, this hypothesis is unrealistic. In fact, 
considering a rectangular section b x d, the longitudinal fibers other than 
the axis  experience an extension (13) when the rod is  twisted. For a fiber 
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belonging to the edge  of the bar, the strain and the stress are schematically 
represented in Figure 7.3. From geometric considerations, the strain is 
given  by  (see Fig. 7.4) 

- 
ac’ - Z 

ac 
&=------- - 

1 -cosp P2 P2 
CO@% 1 - 2 ,  &“ &=p 

cosp ’ 2 

By writing p as a function of the torsion angle by unit length, one has 
p = oc da/&, and from here E (l/8)(b2 + d2)(aol/aZ)2, &x/& being the 
relative rotation of  two separate sections. For a fiber at a distance r from 
the axis, the strain will  be  lower: 

- 

The corresponding stress will  be 

(7.25) 

(7.26) 

where E is the elastic modulus. 
If the stress is not fully balanced by the clamping constraints, the sarn- 

ples  will  tend to be shortened by an  amount AE. The value  of AE can be 
obtained by assuming that the longitudinal extensional force applied to the 
entire surface of the section  is  negligible, so 

Strain and  stress in the  edge of a  twisted  thin plate. 



282 

S, CrdQ = 0 

Chapter 7 

(7.27) 

is the area of the transverse section. In  our case, and according to 
Eq. (7.27), one has 

from which 

24 

Consequently, 

(7.29) 

(7.30) 

It is  clear that the maximum stress appears at the edges  of the sample, as 
shown in Figure 7.3, and its value  decreases  progressively toward the axis. 

The elongated fibers tend to incline  because  of the effect  of the rotation, 
and taking into account that the stress acts along these  fibers, it can be 
separated into components in  two directions, parallel and perpendicular 
to the axis  of rotation.  In this way, the normal component induces a sec- 
ondary torque, oL, that must be added to the primary one. The value of this 
torque is  given  by 

(7.31) 

This secondary torque depends on both the relative rotation of the two 
separate parallel sections aa/az and the distance to the torsion axis. 
~onse~uent ly ,  for small  values  of p the following approxi~ation holds: 

Then the secondary moment can be written as 

(7.32) 

(7.33) 
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a 

Scheme to calculate the  additional strain and stress  in  a  twisted thin 
plate. 

Finally, the derivative of the secondary moment is  given  by 

a" aa $a hd(b4 + d") "-.G) az dz2 120 (7.34) 

It is  clear that neither the additional torque  nor its derivative is a linear 
function of the torsion angle. Consequently the corresponding viscoelastic 
relationships will not be either. 

The length of the sample kept between the clamps differs from the effective 
value, for fundament all^ two reasons. On the one hand, the section  in  which 
the torsion is  zero  lies  within the zone  covered by the clamps, so that the 
clamp separation is  smaller than the  effective  sample length, On the other 
hand,  as stated earlier, the secondary effects  of the torsion produce an 
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additional torque that tends to reduce the distance between  sections, thus 
producing  a shortening of the bar. As a consequence,  these  effects are of 
opposite sign, and their  net  result can be either the enlargement or short- 
ening of the sample,  depending on which  of the two  effects  is dominant. We 
now  discuss the method used to determine experimentally the aforemen- 
tioned  length correction (Ref. 5, Chap. 3). To that end, a temperature is 
chosen in which the viscous damping of the material is  small. From Eq. 
(7.9a), one obtains 

K’G& = Iw2L (7.35) 

where K ‘  = KL, L being the length  of the sample and GLpp the apparent value 
of the storage modulus. By introducing now a length  change AL, indepen- 
dent of the length  of the sample, the following relationship is obtained: 

K‘G‘ = lo2(L + AZ) (7.36) 

If  several  frequencies  of the vibration are computed  as the clamp 
separation is  progressively changed, then from a plot of o2 versus L the 
value of hL can be obtained from the intercept of the straight line obtained 
with the L axis. The linearity  of the plot relies on the hypothesis that the 
modulus does not depend on the frequency as the length  of the test  sample  is 
varied. In fact, the modulus is  frequency-dependent, and a source  of error is 
introduced in the estimation of the sample  length by means  of  this method. 
When the measurements are carried out in  glassy  polymers, that error can be 
avoided by assuming, as a first approximation, a linear dependence of the 
modulus  on frequency, as follows: 

G’(w) = G’(w0) + a(w - WO) (7.37) 

where o is the frequency for a separation Ln and oo is a fixed  value. The 
parameter a can easily  be  determined  by  measuring the frequency as the 
moment of inertia is  varied at constant sample length. Thus, the slope  of a 
plot Iw2 vs. o will  be 

Then,  from Eqa. (7.36),  (7.37), and (7,38), we obtain 

(7.38) 

(7.39) 
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where the quantity g(o - oo)/Ioi can be considered as the modification  of 
the frequency due to the fact that the modulus is dependent  on this same 
frequency. The smaller the length  of the sample, the greater the correction. 
Because  of this, it is convenient to use  relatively long samples.  With  this 
modification of the frequency, the modulus at some  specific  length can be 
conveniently estimated. 

In the vicinity  of the glass transition, the loss factor of amorphous 
polymers  is so high that the torsional oscillations are overdamped. As a 
consequence, the resulting  wave  is not useful for measuring the frequency. 
This new problem  can be  solved  by  including  in the system an auxiliary 
elastic  element. A useful method to  do  that is to substitute for the suspen- 
sion  wire a steel rod with  rigidity  of the order of that of the sample. The 
resulting equation of motion  must include a term representing the restoring 
torque or the rigidity  of  this  elastic  element. In these conditions we return to 
the equations given  in the first part of this chapter that include this term. 
However, for methodological  reasons, the detailed study of this case  is 
postponed to Chapter 17. 

One of the most  important techniques  used to measure  dynamic  viscoelastic 
functions is  based on the application of transverse  oscillations of displace- 
ment  in the central part of a test  piece  clamped at both  ends or, alterna- 
tively, at one point (which  could  be the extremity) of a test  sample  clamped 
at the other extreme (Ref. 5, Chap. 5). The size  of the displacement  is 
variable, and the frequencies  usually  cover an interval of around four dec- 
ades,  between lom2 and lo2 Hz.  The frequencies  used are limited by the 
resonance  of the apparatus.  The sample can be isothermally thermostated 
or can suffer a determinate thermal history. The applied  forces are deter- 
mined by the current, which enters the oscillatory  system through a defined 
system  of calibration. It should be noted that although the most common 
way  of  using the equipment is through flexion,  small  modifications  in the 
design  allow  measurements to be made  in elongation or in shear. The selec- 
tion of the type of measurement depends  on the type  of material and its 
characteristics. Thus for threads and fibers, elongation is more convenient, 
whereas for gums and rubbers a shear experiment should be done. For the 
measurement  of rubbers and gums under elongation, prestressed  test  sam- 
ples are required. The range of measurement  in  terms  of the storage mod- 
ulus  varies  between 0.1 MPa  and 200 GPa. 
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The analysis  of the instrument can be carried out  on the basis  of Figure 
7.5. In this figure m represents the mass of the leading shaft whose inertial 
moment is so large that the inertial momentum of the sample is  negligible in 
comparison. The storage and loss compliance  of the flexible suspension are 
considered  in parallel with those of the measured test sample, and both. are 
represented by using  complex moduli. The ~emaining parts of the system are 
considered  sufficiently  rigid that their deformation can also be considered 
negligible. A s  the displacement that the test sample undergoes is the same as 
that of the suspension system, one can write 

or a h a r ~ o n i c  excitation x = xoeiwI, Eq. (7.40) becomes 

y s~parating the real and imaginary parts in Eq. (7.41), we obtain 

giving 

(7.40) 

(7.41) 

(7.42a) 

Diagram to study  the flexural vibrations of a  clamped bar  and in 
general any second order system. 
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E tt (FO/xO) sin 6’ - S, tan6=-= 
E (FO/xO) cos 6’ - S + mm2 

(7.4%) 

The process  of calibrating the apparatus consists in finding the parameters 
m, S, and SD that allow the solution of  these equations. Without  a test 
sample, one has 

%os 6;  = S - mm1 2 

X 0  

PO 
X 0  
-cos 6; = S - mm2 2 

(7.43a) 

(7.43b) 

From these equations and taking into account that o = 2nf, expressions are 
obtained for the parameters m, and S. 

If f i  > 1 Of;, f z  >> .fi2, and the values  of m and S in Eq. (7.44) become 

(7.45) 

In an analogous way, 

F0 S, = -sin 6’ (7.46) 
X 0  

The constant K, on which the calculation of E’ and E’’ depends, is a func- 
tion of the geometric  dimensions  of the sample. For  a rectangular cross- 
sectional sample of width b and thickness d clamped at its extremities, K is 
given  by 

K = 2 b ( ~ i / a ) ~  (7.47) 

where 8 is the distance between the clamping point and the force’s point of 
application, that is, the half-length and the middle point of the bar. Hence, 
for a purely elastic material and  a force F one obtains 

3 c X = ~ b ( ~ )  E (7.48) 
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where x is the displacement and E is the elastic modulus. Equation (7.48) 
coincides formally with the equation derived from the theory of  beams  (14), 
as shown later in Chapter 17. In this respect,  notice that the polar moment 
of inertia of a rectangular cross section, f ,  with  sides d and b with  respect to 
an axis parallel to the side  of length b and passing through the center of 
gravity (Fig. 7.6)  is  given  by 

b 
l2 y2 dx dy = d3 - (7.48a) 

Substituting the value  of f given in Eq. (7.48a) into the equation for the 
maxim~m deformation, Eq. (7.48)  immediately  follows, and consequently 
Eq. (7.47)  is justified. 

The study of transverse vibrations of a viscoelastic  beam can be carried 
out in a more complete way  by  using the elastic-viscoelastic analogy, thus 
following a methodology that will  be outlined further in a more general 
context. At the present level, the usual way to solve the problem of a vibrat- 
ing linear system  of  second order (through inertia and friction) is by apply- 
ing Laplace transforms and assuming F = F* sin cot for t L. 0 in the equation 

After 

+d/2 

(7.49) 

assuming x(0) = i ( 0 )  = 0, we obtain 

Y 

-b/2 +b/2 

Scheme of the  cross section of a rectangular  rod to calculate its 
moment of inertia. 
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sx(s) + (S + KE')X(S) = FO 7 W (7.50) 
0 +S2 

Equation (7.50) leads to 

(S2 + 2as + P2)x(s) = (7.51a) 

which  gives 

where 

(7.51b) 

(7.52) 

It should be pointed out  that p == a in order to avoid exponential solutions 
that increase with  time. The inverse Laplace transform of x(s) can be 
achieved by decomposing x($) into simple functions 

where 

Hence, 

As+B CS4-D x(s) = - S2 + W2 + S2 + 2as + p2 

s2 + 2as + p2 = (S + + P2 - a2 

p2 - W2 

(p2 - + 4 a W  

4a2 - (pz - W2) 

(p2 - + 4a2a2 

B =  

I)= 

(7.53) 

(7.54) 

(7.55a) 

(7.55b) 

(7.55c) 

and x(t) is  given  by 
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where 

(7.56) 

2ao 
61 = arctan ; S2 = arctan- = arctan 2w  2a(j32 - a2)1/2 

2a2 - j32 + m2 (U2 - p (7.57) 
a 

In the case  of a viscoelastic rod acted on by an  instantaneous stimulus, 

E; = F,S(t) -+ F(s) = F0 (7.58) 

where 6 represents the  Dirac delta function. The  Laplace  transform of Eq. 
(7.49) can  be written as 

S, + KEff  
ms2x(s) + sx(s) + (S + KE’)x(s) = F0 (7.59) 

with the boundary conditions x(0) = i ( 0 )  = 0. Hence, 

x(s) = - 
E;o m ( S2 + 2as l )  + p2 

and 

x(t) = L”[x(s)] 

If, as above, we assume that 

S2 + 2as + p2 = (S + + a: 
where a1 = a and a2 = (p2 - a2)1/2 we obtain the equation 

(7.60a) 

(7.6Ob) 

(7.61) 
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or equivalently, 

Here 

where 
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(7.62) 

(7.63) 

(7.64) 

and 

(7.65) 

Equations (7.64) and (7.65)  allow the determination of tan6 and E' by 
measuring the parameters al and a2 that  are observable in the damped 
waves. 

An alternative way to obtain  the viscoelastic functions is to solve the 
characteristic (or frequency) equation, 

s2 + 2as + p2 = 0, S = --h + io (7.66) 

S~litting this into  the real and imaginary parts gives 

a2 = h2 - 2ah + p2; h = E;  o2 = p2 - a2 = p2 - h2 (7.67) 

1 From Eqs. (7.64) and (7.65) and assuming that a = al, we obtain 

h=%=-( 1 S, + KEtf  ) 
2rn 

(7.68a) 
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KEN = 2mho - S, 

Chapter 7 

(7.68b) 

and 

4m202 = 4 m ( ~  + KE’) - 4m2h2 

(7.69a) 

(7.69b) 

(7.69~) 

(7.70) 

Calculations of E‘, E”, and  tan 6 obviously require knowledge  of the values 
of m, S and SD from calibration. 

The calculation from dynamic flexural  experiments  of  elastic or viscoelastic 
functions is  subject to errors arising from clamping (Ref. 6, p. 23). In the 
case  of test samples  whose  section has dimensions of the order of magnitude 
of the free length, such a free length must be  replaced  by an effective length 
that represents that parameter in a more realistic  way  (see Fig. 7.7). 

A correction of the length affects the geometric constant, which in turn 
influences the value  of the modulus. Since the force and the displacement are 
the same with and without corrections, we obtain 

By taking into account Eqs. (7.47) and (7.48), Eq. (7.71)  becomes 

(7.72) 

If we consider that the shear effects taking place in the flexural problems are 
small, then 



‘xperi~ental  ~eter~ination of Viscoelastic  Properties 293 

Scheme indicating  the  shape  and size of the  length  correction of a 
clamped  beam. 

Hence, 

(7.73a) 

(7.73b) 

The plot of L/ElLi versus L should give a straight line  whose  slope and 
intercept are, respectively, and ALEr;:{” 

The length corrections are typically 0.5-1.5 m; usually  these  values 
increase with both the thickness  of the test sample and the value  of the 
modulus and decrease  with  increasing temperature. The relative uncertain- 
ties in the calculation of the free length can introduce significant errors in the 
absolute values  of the moduli. This is an inherent limitation for all kinds of 
experiments  in  which the test sample to be  analyzed  is clamped. The torsion 
tests presented above also have  similar  flaws.  Recent developments in  clas- 
sical equipment allow measurements to be made in elongation or shear. In 
this regard, the Rheovibron viscoelastometer should be mentioned as one of 
the pioneer pieces  of equipment in dynamic mechanical  experiments (1 5-1 8). 
In this equipment, a sinusoidal tensile strain is  imposed on one end of the 
sample and a sinusoidal tensile stress is measured at the other end. The 
phase angle  between strain and stress in the sample  is measured by a 
direct-reading method (15). The instrument uses  two transducers for detec- 
tion of the complex dynamic modulus and the phase angle. The sample is 
driven at a certain frequency by means of a magnetic coil. The amount of 
strain or stress is transformed into a proportional electrical quantity by 
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using an unbounded type of wire strain or stress gauge. A complete descrip- 
tion of the method is  given in Refs. 17 and 18. 

As mentioned above in the context of  forced oscillations, resonance occurs 
at a frequency  given by Eq. (7.24) if the phase angle  is  small. From the 
resonance frequency, aR, the storage modulus is  readily calculated: 

G’(coR) = ICO;/K (7.74) 

In this case, measurements of the amplit~des of displacement and force, as 
well as the phase angle, are  not required. The frequency  of the force is  varied 
while its amplitude is kept constant (ref. 6 p. 34-48). The frequency at which 
the a~pl i tude of the displacement is maximum is taken as the resonance 
frequency. Usually several  relatively  decreasing  maxima are obtained. 

The loss tangent can be obtained from the half-wi~th of the resonance 
peak according to the expression 

(7.75) 

The half-width Am is the difference  between  two  frequencies for which the 
amplitude of the motion is  half as large as it is at resonance. See also 

The resonance method is  useful  when the data  are required at only one 
frequency or at a small number of  frequencies. In a typical  device  used to 
meas~re the dynamic tensile storage modulus, the rod, which has a circular 
or rectangular cross section, is hung by threads at nodal points. An oscillat- 
ing force is applied at one end of the rod by  means of a piezolectric trans- 
ducer. The response is detected at the other end by a capacitive transducer. 
To achieve that, it is  very convenient to paint the extremities  of the rod in 
front of the transducers with cooloidal silver or  another conductive paint. 

roblem  17.3. 

Although part of Chapter 16 is devoted to wave propagation in viscoelastic 
materials and some  specific  simple  cases are studied in detail as  part ‘of the 
engineering applications of  viscoelasticity, it is  useful to mention here that 
there are several experimental methods to determine the dynamic response 



of  viscoelastic materials at high  frequencies (> lo4 Hz). If the wave  is  being 
propagated in a direction normal to the motion of the material, it is  called a 
transverse wave. It should be noted that the theory is also valid for long- 
itudinal waves,  where the propagation is parallel to the motion, when G is 
replaced  by E. The measurement of dynamic mechanical properties in the 
ultrasonic region requires specific techniques (4,5,19). In some  specific appli- 
cations, pulses  of  high  frequency  sine  waves are generated by a piezoelectric 

epending on the way the crystal is  excited, the wave can be either 
transverse or longitudinal. In the case  of  liquids  only longitudinal waves are 
possible. The pulses go through the specimen to a second crystal. 
from the latter crystal are reflected from the specimen (without tra 
sion) and return to the first crystal, which  now acts as a receiving transducer. 
The amp~itudes of the transmitted and reflected  waves are compared to 
measure the attenuation. The speed  of propagation is obtained by measur- 
in the time  between  two  successive  reflections. 

tudies of  high  frequency dynamic properties in polymers are useful 
the point of  view  of vibration and sound damping. For polymeric 

materials, shear waves  typically travel at very  low  speeds and are rapidly 
attenuated. For this reason, the t ransfo~at ion of longitudinal waves into 
shear waves  is  greatly desired. The applications are centered on anechoic 
coatings, that is, coatings designed to reduce the reflection  of sound from 
elastic structures, such a the walls  of a tank in air or under water. The 
damping of  flexural  waves  is also important  for noise reduction, hearing 
protection, the reduction of structural fatigue. The incorporation of a vis- 
coelastic layer  in rods or beams,  giving  rise to composite structures, is a 
technical solution to achieve good damping at frequencies for which the 
layer is resonant. Alternatively, the effect  of  fillers, inclusions, or air cavities 
can also be studied by acoustic damping methods. 

A final comment seems to be pertinent. In st cases actual measure- 
ments are not made at the frequencies  of interest wever, one can estimate 
the corresponding property at the desired  frequency by using th 
quency~temperature superposition techniques of extrapolation, 
ferent apparatuses are used to measure dynamic mechanical properties, we 
note that the final  Comparison depends not only on the instrument but also 
on how the data  are analyzed. This implies that shifting procedures must be 
carried out in a consistent manner to avoid inaccuracies in the master 
curves. In particular, the shape of the adjacent curves at different frequen- 
cies must match exactly, and the shift factor must be the same for all the 
viscoelastic functions. Kramers-Kronig relationships provide a useful tool 
for checking the consistency  of the results obtained. 

~ndentation methods as a special  type  of analysis of  viscoelastic stress or 
displacement are studied in Chapter 16. It should be noted that indentation 
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testing as a measure  of  viscoelastic modulus is not yet  widely  used as a 
laboratory test method. However,  knowledge  of the displacement produced 
by the indentor can be  used to calculate the modulus by means of the 
formulas developed  in Chapter 16. The same  is  valid for the calculation 
of the bulk modulus. Of course, the bulk modulus may  be  measured  in 
the case  of isotropic materials by dilatometry if the bulk modulus of the 
containing fluid  is known. However,  some  special  types  of  experiments 
concerning the pressurization of  spheres or cylinders, as studied  in 
Chapter 16, can give information about the bulk modulus (20). 

Strictly  speaking, there are no static viscoelastic properties as viscoelastic 
properties are always  time-dependent.  However,  creep and stress relaxation 
experiments can be considered quasi-static experiments from which the 
creep  compliance and the modulus  can be obtained (4). Such  tests are com- 
monly  applied in uniaxial conditions for simplicity. The usual time  range of 
quasi-static transient measurements  is  limited to times not less than 10-1 S. 

The reasons for this is that in actual experiments it takes a short period  of 
time to apply the force or the deformation to the sample, and a transitory 
dynamic  response  overlaps the idealized  creep or relaxation experiment. 
There is no limitation on the maximum  time, but usually it is  restricted to 
a maximum  of lo4 S. In fact, this  range of  times  is  complementary, in 
the corresponding frequency  scale, to  that of dynamic  experiments. 
Accordingly, to compare these  two  complementary  techniques, procedures 
of  interconversion of data (time-frequency or its inverse) are needed.  Some 
of these  procedures are discussed  in Chapters 6 and 9. 

~easurements of  creep  in torsion can be made  very accurately. The reason 
is that  deformation  can be measured by measuring the large  deflections of a 
light  beam. A convenient way to simultaneously obtain shear dynamic and 
transient data is to combine both types  of  measurements  in the same equip- 
ment (4). Usually  this  requires  only  small  modifications  of the experimental 
device, For example, the cross bar in a torsion pendulum can be  removed 
and replaced by  weights and pulleys to apply a constant torque to the upper 
clamp. In this  way, a torsion creep apparatus is obtained (Fig. 7.8). The 
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Pulley 

Inertia 

F Sample 

77 

l rotating 
disk 

Scheme of a  torsion.  creep apparatus. 

angle of torsion is measured digitally, and from the measured values the 
creep compliance in shear is calculated. 

According to Figure 7.9, the strain for a cylindrical  geometry  is  given by 

(7.76) 

where e(t) is the torsional angle at time t and L is the length of the specimen. 
For a relaxation experiment (0 = constant), the evolution with  time  of the 
torque necessary to keep the twist  angle constant is  given  by  (see € 9 . 2 )  

nR4 G( t) 
2L M(t) = ~ 8 (7.77) 

In the same  way, the time  dependence  of 0 in a creep experiment can be 
written as 

MLJ( t) 
K 0(t) = ~ (7.78) 

where J(t) is the creep compliance and K is a geometric factor that for 
cylindrical geometry  is  given by 

nR4 K ~ -  
2 (7.79) 

In Eq. (7.48a) it is demonstrated that this geometric factor is bd3/3 for a 
rectangular cross section, where the thickness d is  very  small in comparison 
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Torsion of a cylindrical bar clamped at the lower end. 

with the width b. More geometric factors can be found in Ref. 4, pp. 98, 132, 
and 156. 

any other experimental possibilities for measuring the creep  compli- 
ance are available. For example, in a torsion creep apparatus designed by 

lazek  (21), the rotating system  is  magnetically  suspended and the torque is 
applied magnetically by means of a motor.  In this way,  all sources of friction 
are avoided, increasing the accuracy of measurements. The sample is con- 
tained between  two parallel plates, and the apparatus has been  designed for 
measurements of  solid as well as liquid samples. Several  geometries are 
allowed. 

Creep experiments are often carried out by hanging a weight on a strip of 
material of rectangular or cylindrical cross section  (ref. 4, page l32  and 362). 
n this case, the tensile  creep compliance D(t) is calculated as 

(7.80) 



where z(t)  is the change in length, m is the mass  of the applied weight, and E 
is the length of the sample. A linear variable differential transformer 

T) can be  used to measure the extension. Unfortunately, it is not 
easy to achieve a pure and uniform extension  experiment  in this way, 
because near the clamps the deformation, and consequently the strain, dif- 
fers from that close to the center of the sample. It is  possible to correct the 
sample length, but it is more accurate to determine the fractional change in 
the distance between  two marked points close to the center of the sample. 
Moreover, as the sample extends, it also becomes thinner, and this fact 
needs to be taken into account in calculating the stress. 

The measurement of the stress relaxation (21) can simply  be made by con- 
necting the sample in series  with a spring of enough rigidity to undergo 
negligible deformation in comparison with that of the sample. For this 
reason any arrangement for a creep experiment can in  principle  be  used 
for a stress relaxation experiment if the applied force can be accurately 
measured as a function of  time  while the deformation is constant. This 
can be  achieved by using a dynamometer or stress gauge to play the role 

Strain gauge 
Spring 

S a ~ ~ l e  
Clamps 

Adjustable knob 

Scheme of a  stress relaxation  apparatus in elongation. 
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Sketch  of the  range of  frequencies for the different apparatuses 
measuring  viscoelastic properties. 

of the stiff spring mentioned above. An LVDT or strain gauge associated 
with the spring element can be  used to record the stress. The tensile  relax- 
ation modulus is then given  by 

where A and L are respectively the cross-sectional area and the length of the 
sample, f is the force to maintain the deformation constant,  and zo is the 
elongation of the sample. In this test, as in  creep experiments, the tempera- 
ture of the sample is  conveniently controlled by means of a thermostatic 
device (Fig. 7.10). 

A sketch of the different experimental methods and the corresponding 
frequency  ranges  is  given in Figure 7.1  1. 

Show that during a dynamic experiment, work is done  on the system only in 
the first quarter of the cycle. 

Assume that E = so sin cut. In this case, the total work done on the material 
in the part of the cycle  lying in the rate O-x/n is  given by 

n/no 
W = G ' ( ~ ) E ~ O  J, sin ot cos ut dt (P7. l. 1) 

Making the substitution sin cut cos cut = (sin 2cut)/2 in the integral, the value 
of W will  be 
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sin 2mt dt = - 2  4 (P7.1.2) 

The value  of W will  be maximum when  cos(27c/n) = -1, that is for n = 2. 
Therefore, work is done on the system from 0 to ~ / 2 .  The work done on the 
system during a quarter of the cycle  will  be 

W = ~;G’(m)/2 (P7. l .3) 

During the other three-fourths of the cycle the work  will  be  recovered. 
Actually, 

&;G@) sin mt cos cot dt = - - 2 (P7.1.4) 

The total work done during the cycle  is zero. 

A circular rod of a viscoelastic material of length h and radius R located 
between the two clamps of a torsion pendulum is rotated slightly from its 
equilibrium position by a deflecting torque. The torque is  released, and the 
system  begins to oscillate. Calculate the resonance frequency  of the system. 

In response to the torque M ,  the top clamp has an angular acceleration 
d20/df2, where 0 is the angle  of  deflection.  Accordingly,  Newton’s  law  of 
motion can be written as [see Eq. (7.10)] 

d20 
dt2 

r -+ke=o (P7.2.1) 

where k = M/$ is the torque applied to the specimen for unit deflection, and 
I is the moment of inertia of the pendulum around the central axis. The 
constant k is given  by  [see Eq. (7.78) and Problem 5.21 

7cR4 k=-”-G’ 
2h 

(P7.2.2) 

The solution of Eq. (P7.2.1)  is 0 = fJO exp(iot). By substituting this expres- 
sion into Eq. (P7.2.1) we obtain 
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(P7.2.3) 

ence, G‘ can be obtained from the resonance frequency  of the torsion 
pendulum by means of the expression 

21h 
R114 

G’(@) = -rn2 (P7.2.4) 

The amplitude 8, of  free oscillations decreases  in such a way that 
8oi+l -= Relate the loss tangent to the logarithmic decrement. 

he logarithmic decrement A is  defined  as 

A = ~ n ( ~ )  (P7.3.1) 

where 8oi+1 and 0,, are the amplitudes of the cycle i + l and i, res~e~tively. 
y taking into account that 

(P7.3.2) 

g. (P7.3.1) can be written as 

where it has been taken into account that Sti  - 8zi+l and 8ti+l are, respec- 
tively, proportional  to the dissipated energy [Eq. (6.1 5)] and the elastic 
energy [Eq. (P7.1.3)].  Hence, 

G’’(@) = G’(@) tan 6 = -G’(@) A (P7.3.4) 
n; 
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In  a plate-plate geometry, the top of the sample is attached to a rigid frame 
of moment of inertia I ,  which  in turn is supported by a thin wire. A  torque 
M* = MO exp(iot) is applied to the rigid frame. Determine the relaxation 
moduli of the sample. 

The net torque acting on the system  is M* = k0* + A@*$*, where k0* and 
A,G*0* are respectively, the torques due to the wire and  to the sample, and 
the response 0* = 00 exp[l(ot - p)] is the sinusoidal angular motion. The 
constant k depends on the length of the wire and its shear modulus, while 
A, = nR4/2h, where R and h are, respectively, the radius and height  of the 
cylinder and G” is the complex shear modulus of the sample. An angular 
mome~tum Id20*/dt2 is produced in the frame, which  is related to the net 
torque by the equation 

MO exp[i(ot)] - (k + A,G*)OO exp[i(ot - v)] = -Iw2B0 exp[i(ot - p)] (P7.4.1) 

y dividing the terms of this equation by exp(iot) and multiplying the terms 
of the resulting equation by exp(ip) we obtain 

(P7.4.2) 

Hence, 

Io2 - k  MO G’(w) = ~ M0 
A, A80 A s 0 0  

+ -cos cp and G”(w) = -sin v, (P7.4.3) 

Note  that the expression for G‘ is  similar to  that of Eq. (P7.2.4) if the torque 
of the wire  is  negligible in comparison with that of the sample and the 
torque is  nil. 

From the expressions  given for G’ and G”, the following relationship is 
obtained for tanp: 

A,GN(o) tan9 = A,G’(w) - (Io2 - k )  
(P7.4.4) 
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Evaluate the frequency  of  resonance  in  Problem  7.4. 

The expressions given for G’ and G” in Eqs. (P7.4.3) lead to the ratio 

00 1 - (P7.5.1) ” 

([A,G’(o) + k - Io2]’ + [A,G”(co)]~)~/~ 

y substituting the value of G”(o) given in Eq. (P7.4.4) into  Eq. (P7,5,1) we 
obtain 

00 1 - (P.7.5.2) 
MO [A,G’(cD) + k - 1021(1+  tan2 q)f 

If p 90°, resonance  is  achieved  when A,G’(o) + k - Io2 = 0. Then the 
frequency of resonance will  be  given  by 

” 

o, = ~ ~ G ’ t ~ )  + k)’/2  (P7.5.3) 

If k is negligible, then Eq. (P7.5.3)  is similar to  Eq. (P7.2.3). 
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The effect  of temperatur~ on the response of  viscoelastic  systems to pertur- 
bation fields can be qualitatively observed  in Figure 8.1, where the time 
dependence of the deformation is sche~atica~ly represented for a viscoelas- 
tic liquid. It can be  seen that  at the glass transition temperat~re the defor- 
mation remains nearly constant for comparatively long times. 
the temperature of the system  increases, the deformation und 
matic increase, which  is larger the higher the te~perature. 
is  canceled out after steady-state conditions are reached, the time 
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Ti m 

(a)  Schematic representation showing the influence of temperature  on 
the strain of a creep experiment. (h) Creep  and recoverable strains. 

dependence  of the recoverable deformation [E,($) = ~ ( t )  - crt/q] is obtained. 
Note  that the higher the temperature, the greater the unrecoverable contri- 
bution to the shear deformation, i.e., the viscous deformation 

A real  example  of the effect  of temperature on the viscoelastic functions 
at T > T' is  shown in Figure 8.2. Here double logarithmic plots of the 
compliance function J(t) versus  time are shown at several temperatures 
for a solution of  polystyrene (Mv = 860,000) in  tri-m-tolyl phosphate (1) 
in  which the weight fraction of  polymer  is 0.70. Because the glass transition 
temperature of the solution is 15"C, the isotherms were  registered at 
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Double  logarithmic plots of the creep  compliance function in the time 
domain at various  temperatures for solutions of  polystyrene  in  tri-m-tolyl phosphate; 
the weight fraction of  polymer  in the  solution is 0.70. The  subscript p in &(l) indicates 
that  the values  of this function have  been  reduced to a  common  temperature. 

T > 15°C. For T 36"C, the isotherms corresponding to Jp(t) and the 
creep  recovery compliance J",.(t) are similar. These  curves are plotted in 
Figure 8.3. An inspection of the curves  shows  only a small change in the 
shear compliance function obtained at 16°C.  However, the values  of J(t) at 
26°C change by nearly  two  decades  in the interval of four decades  of the 
logarithmic time  scale. The isotherm obtained at 43°C above Tg exhibits a 
plateau in which  only a small augmentation is  observed in log J(t) with 
increasing  time. Finally, at temperatures much  higher than Tg, for example 
115"C, the isotherms reflect a sharp increase in the creep compliance func- 
tion with increasing temperature. Obviously, the time  necessary to reach 
steady-state conditions, i.e., dlog J(t)/d log t = 1,  is  lower the higher  is 
the temperature. For example, at a temperature 100°C above Tg, these 
conditions are reached in this system in about lo4 S. 

According to Eq. (5.16), J(t) can be written as 

t  t 
r r J( t )  = Jg + &@(l) + - = J,(t) + - 
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where Jr( t )  is the recoverable compliance function, which  involves the 
Hookean ( J g )  and the entropic [Jd\Tr(t)] contributions. Separation of the 
recoverable compliance from the compliance function can be  achieved by 
canceling out the shear stress once steady-state conditions are reached  (see 
Sect  5.3.1).  Owing to the fact that  at temperatures close to Tg a time much 
larger than the time  scale  of the experiment could be  needed to reach steady- 
state conditions, the experimental determination of the recoverable compli- 
ance function in these  cases can be performed by using the following 
method: A shear step stress cr is  imposed on the material at temperatures 
well above Tg, and once steady-state conditions are reached the system is 
cooled to the required temperature. Then the shear stress is  canceled out and 
Jr( t )  is obtained from the ratio of the recoverable deformation to the shear 
stress, taking as the origin of the time  scale the time at which the stress was 
canceled out. By comparing the isotherms of J ( t )  and Jr( t )  obtained for the 
polystyrene-tri-m-tolyl phosphate (70%) solution, plotted in Figures 8.2 and 
8.3, respectively, one finds that the two functions nearly coincide at tem- 
peratures close to T'. This is  consequence  of the fact that  at these tempera- 
tures, and in the interval of  time in which the measurements were 
performed, the viscous contribution to the deformation is  nearly  negligible, 
and consequently only the elastic contributions are  important.  To detect 
differences  between J ( t )  and Jr( t )  at a low temperatures would  surely require 
unattainably large times.  However, large differences  between the values  of 
J ( t )  and Jr( t )  are observed at high temperatures because, in this case, the 
viscous contribution to the deformation is dominant. The values  of J ( t )  and 
Jr( t )  at these temperatures are similar  only at short times. 

A fundamental characteristic of the so-called thermorheologically simple 
systems  is that consecutive isotherms have  similar habits, so they  overlie 
each other when  they are shifted horizontally along the log t axis. In other 
words, the time-temperature correspondence principle holds. This property 
in creep  experiments can be  expressed by the relation (2,3) 

where  log aOT is the logarithmic displacement shift factor necessary to super- 
pose the reference isotherm at To on the isotherm at T. A schematic illus- 
tration of the tim~temperature shift factor is  shown  in Figure 8.4. If 
T > To, then aOT < 1,  whereas if T To, aOT > 1. Equation (8.2) gives 
the expression 
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Double logarithmic plots of the recoverable creep compliance function 
in the time domain for the solution of Figure 8.2. 

Schematic representation of the shift factor in creep experiments. 
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which  reduces the results at temperature T to the reference temperature To. 
A careful observation of the experimental results suggests that in order to 
achieve a good superimposition the isotherms should be  slightly  shifted  in 
the vertical direction. As  discussed  in Chapter 9, molecular theories suggest 
that G(t, T )  - p T  and J(t, T )  - p-' T-', where p is the density. 

where the vertical shift factor bor is  given  by 

Equation (8.4) can alternatively be written as 

where J,(t, T )  [= J(t, T)/bo,] is the reduced  creep compliance function and 
t ,  = t/aolD is the reduced  time. 

~orizontal  shifts of double logarithmic plots of the isotherms with 
respect to the reference isotherm produce a master curve that extends 
over the whole  time  scale. It should be  recalled that the isotherms measured 
at high temperatures reflect  only the responses  of  viscoelastic  mechanisms 
associated with the longest retardation times. The responses associated with 
the shortest retardation times cannot be detected in transient experiments 
carried out at temperatures well above T', dynamic experiments  being 
necessary to achieve this purpose. oreover, only the responses  of  visco- 
elastic mechanisms taking place at relatively short times are detected at 
temperatures close to T' by means of transitory experiments. 
Consequently, only master curves can describe the viscoelastic behavior in 
the whole  time  scale, thus covering the responses occurring at short, med- 
ium, and long times. Thus the time-temperature correspondence principle 
sheds  light on the viscoelastic behavior of materials within a very large time 
scale. 

The viscosity  increases as the temperature decreases, this increase  being 
sharp in the vicinity  of the glass transition temperature. According to Eq. 
(&l), the value  of q can be determined by means of the equation 
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The viscosity  of  viscoelastic  liquids at temperatures slightly above Tg can be 
determined by the procedures outlined above. Thus  a step shear stress  is 
imposed on the viscoelastic  liquid at temperatures well above T', and once 
steady state is  reached the sample  is  cooled to the temperature of interest; 
then the straight line of J ( t )  vs. t is recorded, and the viscosity  is  determined 
from the reciprocal of the slope of the straight line. By assuming that the 
elastic and viscous  mechanisms  have the same temperature dependence, the 
shift factor can be written in  terms  of the viscosity as (2,5) 

where the longest relaxation time has been  considered to be proportional to 
the viscosity, as the Rouse theory predicts  (see Chap. 9). A superposition of 
the isotherms for polystyrene carried out using the shift factors determined 
by Eq. (8.8)  is  given  in Figure 8.5. One can observe that the superposition is 
poor, suggesting that the viscous and elastic  mechanisms  differ  in their 
temperature dependence. In fact, good superposition can be obtained only 
at long  times at which the viscous contribution dominates. However, good 
superposition is  achieved throughout the time domain if the elastic and 
viscous contributions to J(t) are separated before the superposition is  per- 
formed, as the master curve of Figure  8.6  shows. 

Double logarithmic plots showing the evolution of the tensile relaxation 
modulus of a viscoelastic  liquid on  a time  scale  of  three  decades are 
shown, for illustrative purposes, in Figure 8.7. Although the modulus 
decreases  with  increasing  time, the decreasing rate of E(t) depends on the 
temperature of the isotherms. For example,  while the modulus exhibits a 
slight  dependence on time  only at -80.8"C,  it  undergoes a sharp decrease 
with  increasing  time at 70.6"C.  At  -4O.l"C the variation of the modulus 
with  time is rather small, and  at 50°C E(t) drops very rapidly. Thus  a 
temperature can be reached at which the relaxation modulus  can decrease 
to zero  within the time span of the experiment. In the case  of  solids, E(t) 
cannot decrease  below the value  of the equilibrium relaxation modulus, Ee. 
Similar  behavior  presents the shear relaxation modulus, G@). 

Since the habits of neighboring relaxation curves of Figure 8.7 are 
similar, the isotherms can be  superposed on  a reference isotherm. By refer- 
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Double logarithmic plots of the creep compliance function versus t/nT, 
where aT = ( ~ / ~ o ) ( p o T ~ / p T )  and the subindex 0 refers to 100°C. (From Ref. 5.) 

ring to the shear relaxation modulus, the time-temperature correspondence 
principle establishes that 

where  log aOT is the amount by  which the reference isotherm at temperature 
T has to be translated horizontally along the time  axis to achieve  coinci- 
dence  with the isotherm at temperature To. This equation can be written as 

(8.10) 

On the other  hand, molecular theories suggest that G(t ,  T) - PT, and  as a 
consequence, G(t ,  T)bOT = G(t, To), where bo* = poTo/pT. Hence, Eq. 
(8.10) can be more appropriately expressed as 

(8.1  1) 
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Master curve for the results of Figure 8.5 expressed in terms of the 
recoverable creep compliance function. (From Ref. 5.) 

or 

where Gp(t ,  T) = boTG(t,, T) is the reduced shear modulus and t, = t/aoT is 
the reduced time. A master curve showing the time  dependence  of the 
reduced  tensile relaxation modulus over a wide time scale  is  shown in 
Figure 8.8 (6). It should  be pointed out  that E(t) [or G(t)]  for a viscoelastic 
solid would not fall to zero but  to  the equilibrium relaxation modulus, Eg 
(or G ? ) *  

Isotherms at several temperatures  showing the frequency  dependence of the 
real component J'(w) of the complex  compliance J*(w) of a viscoelastic 
material are plotted on a double logarithmic scale in Figure 8.9 (7). At 
high  temperatures and low frequencies, J'(w) decreases  slightly  with increas- 
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Double  logarithmic plots showing the  relaxation  modulus of  polyiso- 
butylene  in the t i m  domain.  (From Ref. 6.) 
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Master curve  showing the tensile relaxation  modulus of polyisobuty- 
lene  in the time domain at 25°C. (From Ref. 6.) 
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Double logarithmic plots showing isotherms reflecting the transition 
between the glass-like and rubber-like consistency for poly(n-octyl methacrylate). 
(From Ref. 7.) 

ing frequency. The dependence  of this viscoelastic function on frequency 
increases as the temperature of the isotherm decreases, a relatively sharp 
decrease  with increasing frequency taking place as temperatures decrease 
from 70°C to 120°C. At temperatures close to T’, J’(w) decreases  slightly 
as the frequency  increases.  As occurs with all the viscoelastic functions of 
thermorheological simple  systems, the habits of neighboring curves are sirni- 
lar and the isotherms can be superposed. The master curve obtained from 
the isotherms of Figure 8.9 at the reference temperature of  100°C  is  shown 
in Figure 8.10. 
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Master  curve of the results  of Figure 8.9 at the reference temperature 
To = 100°C. 

By writing t/aoT in  terms of the reduction time, t, = t/aoT, Eq. (6.24) 
allows one to relate the values  of J’(w) at temperature 1‘ to those corre- 
sponding to the temperature of  reference, To. Thus (3) 

J’(o, T )  = J: - o [J,“ - J( t )  sinot] dt I 
This equation leads to the relationship 

(8.13) 

(8.14) 

where bOT is the vertical  shift that  must be performed on the isotherms to 
superpose them. Arguments similar to those used for J’(o) lead to the 
following relationship for the loss  compliance: 
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(8.15) 

Alternative forms of Eqs. (8.14) and (8,15) are 

and 

where J i  and J: are, respectively, the reduced  values  of the real and loss 
c o ~ ~ o n e n t s  of the complex compliance function and m, = maOT is the 
reduced frequency. 

The plots of the compliance viscoelastic functions JY(t) E= J(t) - t/q], 
J'( l/t), and J N ( l / t )  for a 40% solution of polystyrene in  tri-m-tolyl phos- 
phate  are shown in Figure 8.1 1 (8), where the substitution m = l / t  was 
made. It can be  seen that Jr(t) > J'( l/t), though. at very  high and very 
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Logarithmic  plots  showing  the  recovery  compliance  and  the  complex 
Compliance  function for a 40% (w/w) solution of polystyrene (M = 800,000) in  tri-m- 
tolyl  phosphate.  (From Ref. 8.) 
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low values oft,  J’(l/t) x Jr(t). At very  low  frequencies ( t  -+ m), both J ( t )  - 
t/q and J’(l/t) approach Je, while at very  high  frequencies ( t  -+ O), both J 
( t )  - t/q and J’(l/t) approach Jg. Also, Jr(t)  > J”(l/t) - t/q, but in the 
transition region in which Jr(t) undergoes a sharp increase, 
J”( l/t) - t / q  x Jr(t ) .  At very  low  frequencies, the loss J”( l/t) of  viscoelas- 
tic liquids continuously increases as t increases (the frequency  decreases). 
For viscoelastic solids, J”( 1 / t )  -+ 0 when t -+ 00. 

Double logarithmic plots of the storage relaxation modulus 
quency for a viscoelastic material are shown  in Figure 8.12 (9). 
into account Eq. (6.3), the correspondence between the results at tempera- 
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Logarithmic plots showing storage relaxation modulus of  polyiso- 
butylene in the frequency domain. The isotherms coresponding to the terminal 
region are  not drawn. (From Ref. 9.) 
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ture T and those at the reference temperature To for  a viscoelastic  solid can 
be written as 

00 

G’(o, T )  = o c [G(t) - G,] sinot dt 

where the  substitution t, = t/aorr has been made. Obviously, G, = 0 for 
viscoelastic liquids. Hence, the time-temperature correspondence principle 
for  the  storage relaxation modulus can be written as 

where bor is the vertical shift that must be performed on the isotherms 
before they are  translated horizontally with respect to the reference isotherm 
to  obtain the master curve. In the same  way, the relationship between the 
relaxation loss moduli at T and To is  given by 

borG”(o, T) = G”(oaoT, To) 

These equations  can be written in the alternative  forms 

(8.20) 

(8.21) 

and 

G:(@, T) = G’(or, TO) (8.22) 

where G: and G: are, respectively, the  storage  and loss relaxation moduli 
reduced at the reference temperature To and or is the reduced frequency. 

Master curves  showing the frequency dependence of the  storage  and 
loss relaxation moduli for 40% solution of polystyrene in tri-m-tolyl phos- 
phate  are shown for illustrative purposes in Figure 8.13. The curve for G’(o) 
indicates that  the liquid has a high  rigidity at high  frequencies; the rigidity of 
the system  decreases  with  decreasing  frequency until  a  plateau is  reached. In 
the region  where the flow  is dominant,  the  storage relaxation modulus drops 
rather rapidly, the slope of the double logarithmic plot G’(@ vs. U) being 2, 
as  Eq. (6.47a) predicts. Comparison of the curves for G”(co) and G’(co) 
indicates that  in  the zone where the  storage relaxation modul~s presents 
a  plateau, the loss presents a minimum and the slope of the double log- 
arithmic  plot of G”(w) vs. o in the low  frequency  region  is  1, as Eq. (6.4%) 
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Master curves  showing the  storage  and loss relaxation  moduli of a 
solution of  polystyrene in tri-m-tolyl phosphate at the reference temperature 
To = 0°C. (From Ref. 8.) 

suggests. The differences  between  liquids and solids as far as the frequency 
dependence  of the dynamic relaxation moduli  is  concerned appear in the 
teminal region.  As indicated elsewhere, G’(0) = G, for solids,  whereas for 
liquids G’(0) = 0. Although Eq. (6.48) suggests that the slope of the double 
logarithmic plot of G”(m) vs. m should be equal to l in the teminal region, 
this  behavior  was  never  observed  in  solids. The reason  may  be that frequen- 
cies  used to observe that behavior  were not low enough. 

The shift factors are usually obtained by empirical methods that involve the 
horizontal translation of the isotherm representing the reduced  viscoelastic 
functions in the time or frequency domains, in double logarithmic plots with 
respect to the reference isotherm. However,  analysis of the components of 
the complex relaxation moduli  in the terminal region (m -+ 0) permits 
obtaining expressions that relate the shift factors to the steady-state com- 
pliance and the zero shear rate viscosity.  Actually,  in the region  of  very  low 



frequency, Eqs. (6.49) and (6.52)  suggest that G’(o) and GN(o) are related to 
the terminal viscoelastic functions q and J: by the expressions 

G’(w, T) = w~J~(T)~~(T); G”(co, T)  = w ~ ( T )  (8.23) 

By substituting these  expressions into Eqs. (8.19) and (8.20), one obtains 

These equations lead to the following  expression for the horizontal shift 
factor (2,3): 

while the vertical shift factor can be written as 

(8.25) 

(8.26) 

Therefore, whenever the temperature dependence  of the steady-state com- 
pliance and the zero shear rate  are known, the shift factors for viscoelastic 
liquids can be obtained directly from Eqs. (8.25) and (8.26). 

When o ”+ 0, the loss compliance function for viscoelastic solids is  given  by 

[\I/(oo) - \I/(t)] dt = W (8.27) 

where the substitution cos ot x l has been made in Eq. (6.24). At very  low 
frequencies, the loss relaxation modulus can be  expressed in terms of the 
components of the complex  creep compliance by the equation 

J N ( U )  S,”rJe - J(t>l dt G”(W) = 
J ‘ 2 ( ~ )  + J”2 (~ )  Je2 

(8.28) 
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where it has been  considered that when a -+ 0, J’(a) = Je and 

(8.29) 

This equation suggests a procedure  to obtain the real component of the 
complex  viscosity from the compliance functions at zero  frequency. 
taking Eq. (8.29) into account, Eq. (8.27) can be rewritten as 

J”(co) = w J ; ~  ’(0) (8.30) 

y applying the time-temperature correspondence principle to J N ( a )  and J‘ 
(a) at low  frequencies, one obtains 

These equations lead to the following  expression for the shift factor (3): 

(8.32) 

This expression is similar to the one obtained for viscoelastic  liquids [Eq. 
(8.25)], the only  difference  being that q is the zero shear rate viscosity  in 
liquids  while q ’(0) for viscoelastic  solids  represents the real component of 
the complex  viscosity at zero  frequency. 

The experimental  evidence  shows that the higher  the temperature, the larger 
the response of a viscoelastic  system to a mechanical perturbation. This 
behavior  may be a consequence of the fact that  on the one  hand an increase 
in temperature facilitates the confo~at ional  transitions about the skeletal 
bonds, thus allowing the chains of the system to comply  with the external 
perturbation, and  on the other hand it increases the free  volume, thus 
diminishing the friction coefficient  between the moving  segments of the 
molecular chains. These assumptions lead to the conclusion that the higher 
the free  volume the lower the values of the relaxation/retardation times, 7; 

associated  with the viscoelastic mecha~isms intervening  in the process.  Since 
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the free  volume  is  governed by the temperature, the higher T is, the lower z 
will be. Moreover, the time-temperature correspondence principle suggests 
that the retardation/relaxation times associated with the viscoelastic 
mechanisms in the so-called the~orheologically simple  systems have the 
same temperature dependence. According to this, the relaxation or  retarda- 
tion times at temperature T associated with the viscoelastic  mechanism i 
may  be  assumed to be related to  the free  volume by the empirical expression 

(8.33) 

formulated by Doolittle  and  Doolittle (10). Here, 4> = (v - VO)/V, v and v0 
being the  total  and occupied  specific  volumes,  respectively, and B is a para- 
meter of the order of unity that is  assumed to be related to the ratio between 
the critical volume v* necessary for a relaxation process to  take place and 
the volume v, of the segments intervening in the relaxation. By assuming 
that  the specific  volume  is a linear function of temperature, 

Eq. (8.33) can be written as 

m In zi(T) = A' +"----- 
T - T m  

(8.35) 

where Too may  be interpreted  as the temperature at which the free  volume 
would be zero  were it  not  for  the  formation of the glassy state,  and 
m = Buo/rxf &/a. Equation (8.35), known as  the Vogel-Fulcher- 
Tammann-Hesse (VFTH)  equation (1  1-1 3), was  first  empirically formu- 
lated to describe the variation in the viscosity of inorganic glasses at 
T > T'. In general, this equation gives a good account of the  temperature 
dependence of the relaxation phenomena of viscoelastic substances. The 
zero shear rate viscosity of substances in the vicinity of the glass transition 
temperature  can be formulated in terms of the empirical expressions 

(8.36a) 

and 

m' 
T - T m  lnq(T) = C' + ~ (8.36b) 
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where @(E), m[, and Tm have the meanings indicated above. At temperatures 
well above Tg, the free  volume  is not so critical for the flow, and the tem- 
perature dependence  of the viscosity exhibits Arrhenius behavior. Typical 
examples  of the variation of the viscosity  with T are given  in Figure 8.14 

If the time-temperature correspondence principle holds, Eq. (8.35) sug- 
gests that the temperature dependence  of the shift factor in the time (or 
frequency) domain can be written as 

(14). 

where To is the reference temperature and the rest  of the parameters have 
the physical meanings indicated earlier. After a simple mathematical hand- 
ling, Eq. (8.37) becomes 

where the constants Cl and Cz are given by 

(8.38) 

(8.39) 

- 40 Q 40 80 120 160 
Temperature ? c )  

Influence  of temperature  on  the viscosity  of  tri-m-tolyl phosphate 
(TTP), -polystyrene, and  solutions of solutions of polystyrene  in  tri-m-tolyl phos- 
phate.  (From Ref. 14.) 
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Equation (8.38), empirically formulated by Williams, Landel, and Ferry in 
the 1950s, is known as the WLF equation (15). Examples  of the variation of 
aOT with temperature are shown  in Figure 8.15. The plots of (T - To)/ 
(In aOT) against T - To are straight lines  whose  slopes and intercepts are 
-l/C1 and -C2/Cl, respectively. Though an analysis of  limited data led 
to the postulation that Cl and C2 were  universal constants at T', this 
assumption was not supported when the results obtained for a wide  variety 
of  viscoelastic materials were considered. 

The parameters of the VFTH equation can be calculated from the 
values  of Cl and Cz by using the expressions of Eq. (8.39). An alternative 
way  of obtaining m and T,, is to plot in aOT versus l/( T - T,,) and deter- 
mine by trial and  error the value of Tm that best  fits the plot to a straight 
line. It should be pointed out  that in most cases T,, m Tg - 50 K. 
paring Eqs. (8.33) and (8,35), the volume fraction and the coefficient  of 
expansion at T' are given  by (16) 

(8.40) 

It is  worthwhile to indicate that for most systems the values  of +,/B lie  in 
the interval 0.025 zt. 0.005 and af - 5 x IC-'. The use  of the assumption 
that B a: l has led to the postulation that the relative  free  volume for amor- 
phous systems is 0.025 f 0.005 at 2"'. 

0 -  

-3 - 

-6 - 

-9 - 

0 20 40 60 80 100 120 

Illustrative plots showing the variation of the shift factor with  tern- 
perature for the results of Figure 8.2 (Reference temperature 2OoC, T' = 15OC.) 
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While an increase  in temperature speeds up the viscoelastic response, an 
increase  in  pressure  slows it down. In the so-called  piezorheologically  simple 
systems, all the response  times  have the same dependence on pressure, and 
the generalized  shift factor is  expressed by the Fillers- 
equation (l  7 )  

where 

(8.41) 

(8.42) 

In this latter equation, Po is the reference pressure and P is the e~perimental 
pressure. Obviously, Eq. (8.41)  reduces to the WLF equation when P = Po. 

Four regions can be distinguished in the master curves  of the viscoelastic 
functions. A s  an example,  let us take the double logarithmic plot of J(t) vs. t 
depicted  in Figure 8.6. ere, the following  regions are observed: (l) the 
glass-like zone in  which logJ(t) slightly  increases  with  time, (2) the transi- 
tion region in which a dramatic change of  several  decades  may take place  in 
log J(t), (3) the rubbery region or plateau zone where  log J(t) increases  only 
slightly  with  time, and (4) the viscous or teminal zone in  which the flow  is 
dominant. The terns “glassy’ and “transition” used,  respectively, to desig- 
nate the first and second  zones are indeed unfortunate because no thermo- 
dynamic changes occur in the material at T > Tg. A careful inspection of the 
changes taking place  in the recoverable compliance between the plateau and 
the terminal zone,  which  seem to be  small on the logarithmic scale  shows 
that they are even larger than those occurring in the transition zone when 
the results are expressed in absolute terms, as can be  seen  in Figure 8.16, 
where J(t) is represented versus log t. 
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Semilogarith~ic plots showing the recovery compliance of poly- 
styrene in the time domain at To = 100°C. (From Ref. 8.) 

ike and T~an~it ion-~ i  

The use  of the term “glassy-like” for this zone  arises from  the fact that  the 
viscoelastic  mechanisms associated with the response are believed to involve 
local motions, such as occurs in the glassy state. The response in this  region 
is independent of molecular weight, and the creep compliance function 
obeys Andrade’s equation (1 8,19) 

J(t) = Jg + @‘l3 (8.43) 

By plotting J(t) against t1j3 a  straight line  is obtained whose intercept with 
the ordinates axis gives the glassy  creep compliance function.  Note  that the 
value of this quantity is of the  order of lo-’ Pa”. Equation (8.43)  is often 
used to obtain  the values of J(t) at very short times.  These  values are 
particularly useful  when the retardation spectrum is calculated from J(t) 
by computing methods. Since Gg = l/Jg,  the glassy relaxation modulus [Gg 
= G(O)] has a value of the order of IO9 Pa. Moreover, because t E I/o, the 
values of J’(o0) and G’(o0) converge to those of Jg and Gg, respectively. 
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The transition region  seems to be produced by  viscoelastic  mechanisms 
in which  between 20 and 50 segments  may intervene. The values  of  log J(t) 
and log J’(o) increase by several decades in this region at the time  increases 
or frequency  decreases, the changes being nearly independent of  molecular 
weight for long chains. In contrast with what occurs with the compliance 
functions, the values  of  log G(t) and log G’(@) decrease by several  decades in 
the transition zone (roughly from lo9 Pa to 106-107 Pa for high  molecular 
weight chains) as the time  increases or the frequency  decreases. 

For low molecular weight fractions, the variation in the values  of the 
compliance function increases as either the chain length or the temperature 
increases. The changes observed in the compliance with temperature for 
very  low molecular weight fractions are illustrated in Figure 8.1’7 (16). 
This lack of thermorheological simplicity  was also observed for other amor- 
phous polymers,  specifically  poly(ethy1 methacrylate) (21),  poly(n-butyl 
methacrylate) (22),  poly(n-hexyl methacrylate) (23), and low molecular 
weight  poly(methylpheny1  siloxane)  (24). 

The tangent of 6 exhibits a prominent peak in this region, and the 
viscoelastic  loss functions G”(w) and J”(w) may also exhibit an absorption 
in the transition zone. The relative location of the maxima of the loss 
functions G”(w) and Jt‘(w), if they  exist, can be obtained by taking into 
account that at the maximum  of the peak of tan& the following relation 
holds: 

m 
0 
-l 

-7 

- 8  

-9  

-10 

Log t I aT ,sec 

Isotherms showing the recoverable  creep  compliance for a  narrow 
polystyrene distribution with  molecular  weight 3400. (From Ref. 16.) 
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d log[tan 6(o),,,] - d log G”(@) d log G’(o) 
d log 0 d log 0 d log U) 

- - =O (8.44) 

ecause G’(w) is a monotonous increasing function of frequency, Eq. (8.44) 
suggests that  at the frequency at which the maximum  of tan 6 is located, one 
obtains 

d log G”(o) d log G’(o) 
d log W 

- - 
d log o >O  (8.45) 

~ccordingly, when tan &(a) reaches its maximum, the maximum  of the peak 
corresponding to G”(w) has not yet  been  reached; consequently, 
w( t an6~a~)  w ( G ~ a ~ ) .  On the other  hand, at the peak ma~imum of tan6, 
the following relation must be  fulfilled: 

d log(tan)[6,,,) - d log $”(m) d log J’(o) 
d log W dlogo  dlogo 

- - =O (8.46) 

Since J’(w) is a monotonous decreasing function of CO, 
cates that  at the frequency at which the maximum  of tan6 appears, the 
following inequality holds: 

d log J”(0) d log J’(w) 
d log W d log o 

- - <O (8.47) 

This expression  suggests that the maximum  of the J”(w) peak has already 
been  passed  when the maximum  of tan6 is  reached; therefore, 
o(tan S,,,) > w(J~a~). This analysis leads to the inequalities (8) 

~ccordingly, the loss compliance function presents a ~ a x i ~ u m  in the fre- 
quency d o ~ a i n  at lower frequency than the loss relaxation modulus. This 
behavior is illustrated in Figure 8.18,  where the complex relaxation modu- 
lus, the complex  creep compliance function, and the loss tan 6 for a visco- 
elastic system  with a single relaxation time are plotted. imilar argu~ents  
applied to a minimum in tan 6 lead to the inequalities 

he  relative locations of the peaks corr~sponding  to tan 6, G”( T), G’( T) 
in the isochrones follow trends opposite to those observed  in the isotherms. 
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Illustrative curves describing the relative locations in the frequency 
domain of the complex relaxation modulus, the complex creep compliance function, 
and tan 6 for a viscoelastic  model  with a single relaxation time; J, = 1 C3Pa-l; Jd = 
9 C3Pa-l; tan& = tanSJ. (See Chap. 10 for details.) 

In this case, the derivative  of tan 6 with  respect to temperature at the peak 
m a x i ~ u m  gives 

d log tan 6,,, - d log G”(T) d log G’(T) 
dT dT  dT 

- - =O (8.49) 

ecause G’(T) is a decreasing function of temperature at the glass-rubber 
relaxation temperature, the following relationship at the peak maximum of 
tan 6 holds: 

dlog G”(T) - dlogG’(T) < 
dT - dT (8.50) 

~onsequently, T ( G ~ , , ~ )  -c T(tan  that is, the maximum of G”(T) is 
located at a lower temperature than  that of tan6 in the isochrones. 

oreover, the left-hand side  of Eq. (8.49) can also be written as 

d log tan ljrn,,, - d log J”( T )  d log J ’ (T )  
dT dT dT 

- - (8.51) 
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Owing to the fact that  at the glass-rubber relaxation temperature the 
storage compliance function is an increasing function of temperature, the 
inequality 

d log J”( T )  d log J’( T )  , 
dT  dT 

- - (8.52) 

holds at the temperature at which the maximum of tan 6 occurs. Therefore, 
T(J&J > T(tan timax); in other words, if J”(T) exhibits an absorption in the 
glass-rubber relaxation, the peak appears at a temperature higher than  that 
of tan 6. The temperatures at which the maxima  of the peaks are located in 
the isochrones follow the order 

While the transition region  is not very  sensitive to the molecular weight, M ,  
provided that the value of M is  relatively high, the number of  decades in the 
time or frequency domain over  which the rubbery plateau extends increases 
as the molecular weight  increases. In this region, only  small changes are 
detected in the values  of the transient functions of  viscoelastic liquids, and 
the material behaves as if it were a solid. A plateau is also observed in the 
storage compliance function J’(w) and the storage relaxation modulus 
G’(w). An illustrative plot showing the length of the plateau for several 
fractions of different molecular weights  is shown in Figure 8.19 (25). This 
behavior, which reminds one of that of a cross-linked rubber, has been 
attributed to the formation of entanglements between the chains. The entan- 
glements act  as temporal or physical cross-linking points, thus hindering the 
flow and impeding the total compliance of the response  with the force  field. 
Theories that can explain the rubbery plateau are discussed in Chapter 11. 

The rubber elasticity theory predicts that the relaxation modulus is 
given  by 

P G; == -RT (8.54) 
M e ,  

where MeC is the molecular weight  between cross-linking points and p/Mec is 
the concentration of  elastically  active chains. By analogy, the molecular 
weight  between entanglements, Me in temporal networks can be written as 
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-6 -4 -2 0 
~ o g  waT, sec” 

2 4 

Influence of molecular weight on the plateau length of narrow dis- 
tribution polystyrene. The curves represent the storage relaxation modulus in the 
frequency domain reduced to 160°C. Viscosity-average molecular weights from left 
to right, ~ 1 0 ” ~ :  58,  51, 35,  27.5,  21.5,  16.7,  11.3, 5.9, and 4.7. (From Ref. 25.) 

(8.55) 

where J i  and G& are, respectively, the plateau Compliance function and the 
plateau relaxation modulus. Moreover, it has been  considered that 4 = 
I/G& for elastic  systems. 

The small  changes taking place in the compliance function with  time at 
the plateau also obey Andrade’s equation for creep, that is  (26-28), 

t 
rl 

J(t) = J A  + + - (8.56) 

Values  of JA have  been obtained by plotting results for J(t) against in 
the plateau region,  where the viscous contribution is small, and further 
extrapolation to t = 0. The results thus obtained for JA differ  by  less than 
10% from those determined for JN by other procedures described  below. 

As  shown in Figure 8.20 (29), the loss functions JN(m) and G”(m) pre- 
sent absorptions at the plateau that  are related to J i  and G:, respectively. 
Since for solids q -+ m, Eq. (6.35) leads to the expression 
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7. 

lo 

Plateau levels  in G' and J', together with the  absorptions for G" and 
J", corresponding to l ,2-polybutadiene of numb~r-average molecular  weight  99,000. 
Integration of  these  curves  using Eqs (8.58) and (8.60)  gives the  dashed  horizontal 
lines corresponding to the values  of G: and &. (From Ref.  29.) 

(8.57) 

which  gives the equilibrium compliance for  a viscoelastic  solid  in terns of 
the loss  compliance function. y analogy, the value of J; can be obtained 
from the peak that  appears in J"(u,) by means of the equation (2) 

(8.58) 

where the lower integration limit a is usually obtained by considering that 
the peak  is symmetrical, and the term Jg has  been  neglected. Note  that  the 
contribution of the viscosity to J" in the plateau region  of uncross-link~d 
polymers can be considered negligible.  The integration limits are usually 
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obtained by extrapolating the curve compassing the peak until J”(w) = 0 
and consequently are somewhat uncertain. It should  be noted, however, that 
owing to  the large decrease taking place in the values  of JN(w) in the extra- 
polated part of the absorption,  the  error committed is  in  most  cases rela- 
tively small. 

The relationship between the relaxation modulus and  the loss relaxation 
modulus established by Eqs. (6.8) leads to  the expression 

lim G”(o) dln o = Gg 
t-to “00 

(8.59) 

where it has been considered the G, = 0 for liquids. The curves  of G ” ( ~ )  in 
the frequency  domain  may present a peak in the high  frequency region, 
associated with the glass-rubber transition, followed  by another peak 
reflecting both the generalized  motions  of the chains between the entangle- 
ments and  the disentanglement of the chains. Obviously, the mechanisms 
associated with  generalized  motions  between  temporally entangled points 
have higher rigidity than those corresponding to  the terminal region. 
Therefore, Eq. (8.59) suggests that the relaxation modulus of a viscoelastic 
liquid at the plateau can be written as (2) 

(8.60) 

Usually Eq. (8.60) is evaluated by considering that in the low  frequency  zone 
the slope of the curve G”(w) vs. CO is unity. The extrapolation of the peak  in 
the high frequency zone  is carried out by assuming that  the peak  is  symme- 
trical. The  values  of G& should  be the reciprocal of those of JL. 

The results of Figure 8.6 show that the values  of the recoverable compliance 
function increase between the plateau and terminal regions. This increase, 
which  seems to be small in the double logarithmic plot of JY(t) vs. t ,  is 
considerably large when the data are plotted in the normal form represented 
in Figure 8.16. Schematic  double logarithmic representations of the compli- 
ance function J ( t )  vs. t in the terminal region, shown  in  Figure 8.5, indicate 
that J(t) undergoes a dramatic increase as time increases owing to  the fact 
that the viscous contribution  to  the compliance function is dominant in the 
terminal region. A similar increase takes place in the value of the loss 
compliance function in the low  frequency region. 
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As can be  seen in Figure 8.7, the tensile relaxation modulus drops 
rapidly to zero in the terminal region. The fall of E(t) occurs at shorter 
times as the molecular weight  decreases. The shear relaxation moduli in 
the frequency domain decrease as  the frequency  decreases, the double log- 
arithmic plots of G’(m) and G”(@ versus  frequency  being straight lines with 
slopes  of 2 and l, respectively,  when m -3- 0. Knowledge  of the viscoelastic 
behavior of  polymeric liquids in the terminal region  is important in deter- 
mining the zero shear rate viscosity qo and the steady-state compliance, J;, 
two parameters of great technological importance in the processing  of  vis- 
coelastic materials. These parameters, qo and J:, govern, respectively, the 
flow and orientation of the molecular chains under the effect  of a force field. 

The zero shear rate viscosity  is strongly dependent on molecular weight. 
According to the Rouse theory (see Chap. ll), the viscosity  is related to M 
through the friction coefficient CO, so that q / M  Co. This parameter 
depends on the free  volume, and as a result its value  increases  with  molec- 
ular weight, approaching a constant limiting  value Coo at high molecular 
weight. The friction coefficient can be  expressed  in terns of the Doolittle 
equation 

(8.60a) 

wheref,  the fractional free  volume,  is the ratio between the free  volume wf = 
(W - wo) and the specific  volume W and B is a parameter in the vicinity  of 
unity. According to Eq. (8.60a), Lo and Goo are related by the equation 

(8.60b) 

where the subscripts M and 0 to ,f refer to the fractional free  volume at 
molecular weights M and infinity,  respectively. It has been proposed (30) 
that the specific  volume  is a linear function of the reciprocal of the number- 
average molecular weight, and  as a consequence the fraction free  volume 
can be  expressed as 

A 
fi4=fO+=- (8.60~) 

M a  

Equations (8.60b) and (8.60~) suggest that CO COO for moderately high 
molecular  weight. To obtain a ratio q / M  independent of molecular weight 
requires, in the low molecular weight  region,  expressing the viscosity in 
terms of q500/(o (31). It should be pointed out  that the friction coefficient 
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can be obtained either from viscoelastic results [see Eq. (1  1.46) or (l l .48)] or 
from viscosity data [see Eq. (1  1.34)l. Representative double logarithmic 
plots of r\ against molecular weight are shown in Figure 8.21. The experi- 
mental results can be  generalized by means of the following  scaling  laws 
(2,32,33). 

(8.61) 

An increase in molecular weight favors the overlapping of the domains of 
different chains, thus increasing the number of entanglements per molecular 
chain. Flow implies disentanglement of the chains, and this process  involves 
dissipation of  energy,  which  will  be larger, the larger is the entanglement 
density and consequently larger the molecular  weight. A comparison of the 
critical molecular weight obtained from the viscous data with those obtained 
from the viscoelastic functions G!& or 4 for molecular weight  between 
entanglements permits the conclusion that 

MC 'v 2Me  (8.62) 

The double logarithmic plot of 2 against molecular weight,  shown  in 
Figure 8.22  (34), indicates that the steady-state compliance is a linear func- 
tion of M until a critical molecular  weight M,' is reached, above which e is 
nearly independent of molecular weight.  Accordingly  (32), 

(8.63) 

The analysis  of the experimental data  at hand suggests that 
M,' M 3Mc M 6Me. For nearly monodisperse flexible  polymers, 2 is found 
to be related to the plateau modulus by the approximate expression  (35) 

(8.64) 

The steady-state compliance shows a strong dependence on the mole- 
cular heterodispersity. Thus the value  of J: for a mixture of  two fractions of 
the same polymer, one of  low and the other of  high molecular weight,  may 
be up  to 10 times as high as  that of each component. This behavior can be 
explained  by taking into account that J: is the total recoverable deformation 
per unit of shear stress. The chains of  high molecular weight  have a very 
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l0 

Double  logarithmic plots of  viscosity against molecular  weight for 
ymers indicated. The slopes of the lines are 1 on the left and 3.4 on  the right. 

In the low  molecular  weight  region the viscosity  is  represented  in terns of I$&J&,, 
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O 0  0 

Logarithmic  plot of the  steady state compliance, at -3O"C, versus 
weight-average  molecular  weight for poly(&-isoprene). (From Ref. 34.) 

large number of friction points, and therefore they share a disproportionate 
shear stress in the mixture  with the  short chains. As a consequence, the long 
chains are much  more  extended than  the  short ones  in the force field.  Since 
the large chains relax  very  slowly, they are conformationally  much  more 
distorted than  the  short chains in the steady state, hence the high value of 2 
for heterodisperse polymers. 

The terminal viscoelastic functions show a strong dependence on the 
molecular  topology (32). The exponent of the viscosity-molecular  weight 
relationship of star molecules,  comb-like polymers, etc., is larger than 3.4, 
the exponent  corresponding to linear chains, whenever the molecular  weight 
of the branches  is larger than MC. Moreover, the steady-state compliance of 
these chains is a linear function of molecular weight, in contrast with  what 
occurs for linear flexible polymers, in which J: remains constant  for 
M M,' 6M,. 

The intrinsic viscosity  is an  important physical  parameter related to the 
volume  occupied by the molecular chains in solution. This quantity, repre- 
sented by [v], is  defined as 
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(8.65) 

where q and qo are  the viscosities of the  solution  and  the solvent, respec- 
tively, and C is the  concentration of the solute. For flexible  polymers, [q] 
may  be  even larger than 1 dL/g, indicating that in very dilute solutions 1 g of 
polymer may occupy a volume of 100 cm3. This experimental fact suggests 
that molecular coils are highly expanded. In the case of  very dilute solutions, 
the macromolecular domains are independent. However, a critical concen- 
tration  can be reached above which the domains of the molecular chains 
overlap. Obviously, the response of the polymers to external mechanical 
~~rturbat ions is strongly influenced by the intermolecular interactions aris- 
ing from the overlapping of the molecular domains. By assuming that  the 
critical concentration  corresponds to that at which the concentration of 
segments in the molecular coil is similar to the average concentration of 
segments in the  solution (Fig. 8.23), one finds (36) 

(8.66) 

where iV is the number of segments of each molecular chain and R is the 
radius of the coils  given by 

R - bNV (8.67) 

Here b is the length of each  segment and  the exponent v is about 0.6  in good 
solvents. For these solvents, Eq. (8.66)  suggests that the critical volume 
fraction of polymer  scales  with molecular weight as 

Coil domains of molecular chains at various  concentrations. (From 
Ref. 36.) 
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The strong effect of molecular chains on the viscoelastic  behavior of poly- 
meric solutions, even  in the most dilute ones,  is  shown  in Figure 8.24 (37). 
Here the recoverable  compliance  of a very dilute solution of polystyrene  of 
weight-average  molecular  weight 860,000 in  tri-m-tolyl phosphate is  com- 
pared  with that of the solvent. It is noteworthy  that the value of the 
steady-state compliance for the solvent  is cm2/dyn while that of the 
very dilute solution (wpol = 0.001) is near l~lO-~ cm2/dyn. In other words, a 
very  small fraction of the molecular chains are responsible for the fact that 
the steady-state compliance  of the solution is more  than lo6 times that of 
the solvent 

g -9.5 
.-l 

-9.7 

- 9.9 
0 1 2 3 

Log t, sec 

Double  logarithmic plots of the recoverable  compliance function in 
the time domain for (a) a dilute (0.1%, w/w) solution of  polystyrene  in  tri-m-tolyl 
phosphate (b) tri-~-tolyl phosphate.  (From Ref.  37.) 
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Figure 8.25 shows double logarithmic plots of both J(t) and J,.(t) 
against t for several concentrations. The plots indicate that  for the solutions 
in which the weight fraction of  polymer  is larger than O.Ol?  the value  of J: 
decreases, reaching a minimum value for the pure polymer. The cause of this 
behavior lies  in the fact that  an increase in concentration increases the over- 
lapping of the molecular domains, thus favoring the formation of entangled 
networks. ~ntanglement formation prevents the chains from totally comply- 
ing with the external perturbation as would  be the case  if the chains were 
u~entan~led,  and  as a consequence J: decreases  with increasing concentra- 
tion. 

In the glass-like  zone, the values  of the creep compliance function seem 
to be independent of the concentration; however, the changes that take place 
in the values  of J(t) in the transition zone are larger the lower the concen- 
tration. The length of the plateau increases  with the concentration, and the 
plateau and terminal zones  merge into a single  region at low concentrations. 
The location of the isotherms on the time  scale  is  shifted to shorter chains as 
the concentration decreases. 

Double  logarithmic plots showing the  master curves  of J(t) (contin- 
uous line) and J(t) - t / q  (dashed line) in the time domain for polystyrene (lOOo/~)  
and several concentrations of  polystyrene (M, = 860,000) in tri-m-tolyl 
phosphate.The curves are arbitrarily located in the time domain.  (From Ref. 14.) 
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he formation of an entangled structure depends on the interactions 
between  segments  of neighboring chains that partially or totally share the 
same domain. The probability of  these interactions is proportional  to the 
square of the concentrations of  polymer in the solution, and therefore the 
molecular weight  between entanglements should vary  with the square of the 
concentration. In the same  way, the steady-state compliance will  be larger, 
the lower  is the density  of entanglements in the network. Based on this 
simple reasoning, the following  scaling  laws are expected for the concentra- 
tion dependence  of  several important viscoelastic functions (2,s): 

The plots of log JL and log J: against log C for semidilute and concentrated 
solutions of polystyre~e in tri-~-tolyl phosphate, shown in Figure 8.26, give 
straight lines  with a slope  of -2, in agreement with the relationships givefi 
above. 

As in  all amorphous systems, the viscosity  of  polymer solutions under- 
goes an anomalous increase  in the vicinity  of the glass transition tempera- 
ture. Illustrative plots showing the temperature dependence of the viscosity 
of different concentrations are shown  in Figure 8.14. As a consequence  of 
the effect  of the dilution on the glass transition temperature, a decrease in 
concentration shifts the curves to lower temperatures. Because the diluents 
increase the molecular weight  between entanglements, the critical molecular 
weight at which the scaling  law q - M3.4 holds is  shifted to higher  values  of 
M as the concentration decreases. ~llustrative results showing the depen- 
dence  of  viscosity on concentration are shown  in Figure 8.27 (38). 

The effects  of  cross-linking on the viscoelastic functions in the transition 
zone are rather small  unless the cross-link  density is so high that it hinders 
the segmental motions involved in the development  of this region. In 
any case, cross-links shift the transition region,  to larger times or lower 
frequencies. 

Cross-linking effects are more important in the plateau and terminal 
zones. For moderately cross-linked polymers, such as soft vulcanized rub- 
bers, the equilibrium modulus is  similar  in magnitude to the entanglement 
network modulus before vulcanization. In some  cases,  however, the former 
modulus may  be  higher  by as much as a factor of 2 than the latter one, thus 



344 

-4 

7 

cn - 5  
0 
J 

-6 

-1.5 
I 1 ,\ 

-1.0 -0.5 
Log c 

0 

Chapter 8 

Double  logarithmic plots showing the  concentration dependence  of 
both  the creep  compliance and  the  relaxation  modulus at the plateau. (From Ref. 8.) 

implying that the entanglements may outnumber the cross-links. In these 
cases cross-links do not contribute too much to the plateau, but they 
strongly affect the viscoelastic behavior in the terminal zone.  Time- 
dependent processes  in this region  may  proceed for one day or more, so 
the attainment of elastic e~u i l i~ r ium is  difficult.  Even  when the degree  of 
cross-linking  is  high,  progressive changes in stress and strain are detected 
over  relatively long periods. In some  cases  chemical degradation may occur, 
and in this situation it is  necessary to distinguish between stress relaxation 
and loss stress due to chemical degradation. 

A great number of  experiments  in soft cross-linked rubbers are made at 
substantial finite deformations. There are experimental grounds suggesting 
that the relaxation stress can be factored into a function of  time and a 
function of strain (39,40), 



Viscoelastic ~ ~ ~ a v i o r  Above Tg 345 

'I Double  logarithmic  plot of  viscosity  versus the  product of  polymer 
concentration (+) and molecular  weight (M) of  polystyrene,  in the  concentration 
range 25-100%. The curves  were adjusted to a constant friction coefficient c. (From 
Ref. 38.) 

where h(= 1 + E) is the extension ratio  and l?@) is a function of h that 
approaches h - 1 as E approaches zero. Relaxation experiments performed 
at different finite deformations permit the empirical determination of the 
function l"@), and further extrapolation to h -+ 1 leads to the determination 
of El($ Though the equilibrium tensile relaxation modulus cannot be 
obtained directly from these measurements? it can be estimated from the 
following empirical equation, which  gives a good account of many such 
experimental data (41): 
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The unknown values  of this equation can be estimated by finding the value 
of E, that best  fits the double logarithmic plot of [E( t )  - EJE,  against t to 
a straight line. The values  of m and m log tm can then be obtained from the 
slope and the intercept, respectively. By taking into account that Poisson's 
ratio is  nearly 1/2 in this region [see Eq. (5.89)], the values  of G(t )  are 
approximately equal to E ( t ) / 3 .  

In the same way, the difficulty  involved in obtaining the equilibrium 
shear compliance from the extrapolation of  creep  experiments to infinite 
time leads to the determination of J ,  by means of an expression analogous 
to Eq. (8.71) (42),  

J(t) = I.[ I + (~)-~]-] (8.72) 

The values  of J,, m, and t,H were obtained by determining the value  of J ,  that 
best  fits the double logarithmi~ plots of [J,  - J ( t ) ] / J ( ~ )  vs. t to a straight line. 
It has been found that the values  of J,, from creep and 3 / E ,  from the stress 
relaxation are in rather good agreement for several rubbers. 

It is important to discuss, at least qualitatively, the variation of GN and 
G, for cross-linked rubbers as a function of the number of cross-linking 
points. According to Eq. (8.55), GN(= l / J N )  can be written as 

1 
JN 

GN = - = gNVNRCI" (8.73) 

where g N  is a factor in the vicinity of unity and UN is the moles  of network 
strands per unit volume terminated by entanglements and cross-links. For 
uncross-linked  polymers, G, = 0 and GN = G;. However, after the gel point 
has been  reached  in the cross-linking reaction, G N  increases more rapidly 
than G, as the cross-link density increases  because  cross-links and trapped 
entanglements contribute to the former modulus whereas the  latter is aug- 
mented only by cross-links. A schematic representation of trapped entangle- 
ments is  shown  in Figure 8.28 (43). A degree  of cross-linking can be  reached 
at which all the entanglements become trapped and contribute as much to 
G, as  to G N .  In this situation G, = GN and the plateau region disappears. 
The evolution of GN and G, at different stages  of cross-linking is shown in 

For densely  cross-linked networks, values  of e~uilibrium modulus 
higher than lo7 Pa are obtained. In this case the molecular  weight  between 
cross-linking points may  become  so  low that Gaussian distributions of the 
segments  between cross-links can no longer be assumed. The fact, however, 
that the modulus is approximately proportional to absolute temperature 

igure 8.29 (Ref. 7, p. 445). 
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Schematic representation of trapped  entanglements.  (From Ref. 43.) 
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G N  plotted  against G, for three  rubbers  [polybutadiene (PB), 
iene  copolymer  (SBR), and  rubber  (NR)] at different  stages 

of  cross-linking  by (0) dicumyl  peroxide ) sulfur. (From  Ref. 44.) 
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suggests that the storage energy in these networks is  mainly  based on  an 
entropic effect. 

The molecular weight  between entanglements of a homogeneous polymer- 
diluent mixture in which the concentration of diluent is  0.15 g/cm3 is 20,000 
g/mol. Make a rough estimation of the solvent that should be added to 100 
cm3  of the mixture to give a molecular  weight  between entanglements of 
25,000 g/mol. 

According to Eq. (8.69), for narrow molecular weight distributions, 
Me M C 2 ,  that is, Me = K C 2  where K is a constant. Then the polymer 
concentration in the mixture will  be 

C = 0.85 x (20,000/25,000)~'2 g/cm3 = 0.76 g/cm3 

And the final  volume  is  given  by 

V = 100 x (0.85/0.76) = 11  1.8 cm3 

Hence, the volume  of diluent that must be added is 1 1 1.8 - 100 = 1 1.8 cm3. 

A fraction of  poly(methy1 acrylate) presents maximum damping at 0.50 Hz 
at 25°C. Make a rough estimation of the diluent that must be added to shift 
the maximum damping to 100 Hz at the same temperature. The glass transi- 
tion temperatures of the diluent and the polymer are "70°C and 10°C, 
respectively, and their expansion coefficients are 8.5 x lom4 K"' and 
4.2 x IC-', respectively. 

According to Doolittle relation, 

(P8.2.1) 
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where the symbols z andf refer to the relaxation time and frequency  (in  Hz), 
respectively,  while the subscripts p and d refer to  pure  and dilute polymer, 
respectively. Let us  assume further that @/B at the respective 7"' values for 
the polymer and the diluent is  0.025 and B = 1. Then 

= 0.025 + 4.2 X 1OW4(25 - 10) = 0.0313 

dc>d = [0.025 + 8.5 X 10-4(25 + 70)I~l + 0.0313(1 - V I )  

where vl is the volume fraction of diluent. Hence 

1 In  100 = ln0.5 - [ 0.1057~1 + 0.03  13(  1 - V I )  0.03  13 

From this equation one obtains v1 = 0.083 cm3/cm3. Therefore the addition 
of diluent to a concentration of 8.3% would produce roughly the desired 
result. 

Consider a polymer that presents a maximum  in damping at 10 Hz  and 
50°C. If the glass transition temperature of the polymer  is  20"C, the thermal 
expansion  coefficient p = (1/u)(au/a7')p  is equal to 4.5 x lom4 K-' in the 
range  of temperatures considered, and the compressibility  coefficient, 
K = l / u  (au/ap),, is  roughly constant and equal to 8.5 x 10"" cmW2/dyn 
in the interval 1-50 atm, calculate the frequency at which the maximum 
will appear at 20 atm  and 50°C. Note @,/B = 0.024 for this  polymer and 
U is the specific  volume. 

Since the lower the free  volume the larger the relaxation time, the effect  of 
the pressure on "G can be interpreted in  terms of the Doolittle equation. 
Accordingly, 

(P8.3.1) 

where the subscripts 0 and P refer,  respectively, to the pressure at 1 and P 
atm. 

Hence, 
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(P8.3.2) 

wheref is the frequency  in Hz. The values  of clDo and clDp can be written as 

Q0 = 0.024 + (4.5 X 10-4)(50 - 20) = 0.0375 

@p = 0.0375 - (8.5 X 10-")(20 - 1) X 9.8 X lo5 = 0.0359 
(P8.3.3) 

8.3.2) and (P8.3.3), fp = 3.24 Hz; that is,  the damping max- 
imum shifts from 10 to 3.2 Hz when the pressure increases from 1 to 20 atrn. 

The shift factors corresponding to different isotherms representing the 
recovery  creep compliance function of a solution of polystyrene  in  tri-m- 
tolyl ~hosphate are given  in the table. Find the parameters of the WLF 
equation. 

17.0 
20.0 
23.0 
26.0 
30. l 
36.2 
40.0 
45.0 
50.0 
58.0 
68.3 
83.3 
90.8 

102.0 
115.0 

0.93 
0.00 

-0.96 
-1 ."l0 
-2.65 
-3.94 
-4.52 
-5.29 
-5.90 
-6.90 
-7.80 
-8.80 
-9.20 
-9.80 
- 10.60 

The reference temperature To is  20°C. According to Eq. (8.38), plotting (T 
--To)/(log aT) against T - To gives the straight line  of Figure P8.4.1. From 
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-3 - 

-5 - 

-7 - 

-9 - 
Y =  -0.06247~ - 3.17347 

R2 = 0.99673 

-1 1 
-40 -20 0 20 40 60 80 100 120 

the slope (m = -0.0625) and the intercept (I = -3,173) and taking into 
account that m = -l/CI and I = -G2/C1, we find that Cl = 16.00 and C2 
= 50.80 K. 

The data in Table P8.5.1 and Figure P8.5.1 correspond to the system  poly- 
styrene (PS) + tricresyl phosphate (TCP) '70% (in  PS) at 20°C. 
the strain at 45°C at 

t = 1, lo2, lo4, and lo6 S 

for  a stress of G = 0.1 MPa, knowing that the shift factor and viscosity are 
given by the expressions 

logar = 785 - 15.64; log = ~ 790 + 1.69 
T - 239.8 T - 243 

According to the time-temperature superposition principle, 

J'(t, 3  18 K) = J,(t/aT,, 290 K) 

where for 45°C = 318 IS 
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"1 
-0.8 
-0.6 
-0.4 
-0.2 

0 
0.2 
0.4 
0.6 
0.8 
l .o 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3 .O 
3.2 
3.4 
3.6 
3.8 

-9.81 
-9.80 
-9.785 
-9.770 
-9.745 
-9.72 
-9.69 
-9.67 
-9.637 
-9.60 
-9.57 
-9.53 
-9.48 
-9.44 
-9.38 
-9.32 
-9.255 
-9.18 
-9.10 
-9.05 
-8.90 
-8.795 
-8.67 
-8.525 
-8.37 

4.0 
4.2 
4.4 
4.6 
4.8 
5.0 
5.2 
5.4 
5.6 
5.8 
6.0 
6.2 
6.4 
6.6 
6.8 
7.0 
7.2 
7.4 
7.6 
7.8 
8 .O 
8.2 
8.4 
8.6 
8.8 

-8.215 
-8.05 
-7.89 
-7.73 
-7.54 
-7.37 
-7.19 
-7.01 
-6.83 
-6.68 
-6.53 
-6.41 
-6.30 
-6.215 
-6.14 
-6.085 
-6.04 
-6.00 
-5.98 
-5.96 
-5.95 
-5.94 
-5.925 
-5.915 
-5.90 

9.0 
9.2 
9.4 
9.6 
9.8 

10.0 
10.2 
10.4 
10.6 
10.8 
11.0 
11.2 
11.4 
11.6 
11.8 
12.0 
12.2 
12.4 
12.6 
12.8 
13.0 
13.2 
13.4 
13.6 

-5.88 
-5.87 
-5.855 
-5.84 
-5.82 
-5.80 
-5.785 
-5.765 
-5.74 
-5.72 
-5.69 
-5.67 
-5.645 
-5.62 
-5.60 
-5.57 
-5.54 
-5.52 
-5.51 
-5.49 
-5.485 
- 5.48 
-5.48 
-5.48 

logar = (T ::9.8 

which  gives 

aT = 10-5.602 

Hence, 

Jr(t, 318 K) = Jr(105.602t, 290 K) 

On the other  hand, 
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J(t) = Jr(t) + - 

where 

logq = ~ 790 + 1.69 and log q(290 K) = 18.499 T - 243 

As a consequence, 

Note  that  for all the times  considered  in this problem, except t = lo6 S, the 
viscosity contribution to the compliance is  negligible, so that in the present 
case one has J J, for t lo4 S. 

According to the values  of the compliance given  in Table P8.5. l, we 
obtain 

t = l  S: 
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J( 1 S ,  3 18 K) = J( l  05.602 S ,  290 K) = 1 0-6*82 Pa" ; 

1 = lo2 S: 

~ ( 1 0 ~  318 K) = ~ ( 1 0 ~ 3 ~ ~ ~  290 K) = 1 0 - ~ . ~ ~  pa-'; 

t = io4 

4104 318 K) = ~ ( 1 0 ~ . ~ ~ ~   2 9 0 ~ )  = pa-'; 

t = lo6 S: 

J(1O6s, 318K) = J(1011*602, 290K) 

E = Jo = = 0.105 

E = Jo = = 0.145 

The shear modulus G' of a polymer at 2"' + 20 is  given  by 

~ssuming that the tim~temperature superposition principle holds, estimate 
the frequency at which the modulus at Crg + 50 is equal to the modulus at 
Tg + 20.  Assume that Tg = 100°C. 

From Eq. (8.40), 

y assuming that Tm = 2"' - 50, one has m G 2000. Then 

m lnz=A+"--- T-T, 

and 

(P8.6.1) 

(P8.6.2) 

(P8.6.3) 
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Hence, 

In- == 2000 x 02 

(393 !. 323 - 423 - 323 a1 
Z 6.35  (P8.6.4) 

and 
02 = 57201 (P8.6.5) 

The following data were  obtained from  a viscoelastic  experiment in the 
plateau of a polymer at 400 K. 

log O G’’ (Pa) 

-3 
-2.5 
-2 
-1.5 
-1 
-0.5 

0 

1.8 x io4 
3.2 x io4 
7 X io4 

1.35 x lo5 
1.4 x lo5 
1.1 x io5 
9.5 x io4 

Estimate MC if the density of the polymer  is p = 1-1 x IO3 kg/rn3. 
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According to Eq. (8.60), 

(P8.7.1) 

After smoothing the curve of  figure  P8.7.1 to avoid the contributions of the 
glass - rubber relaxation, one obtains by numerical integration: 

G & ~ -  ' x 2*303 r'7 G" d logo % 4.9 x lo5 Pa 
3,142 

According to Eq. (8.54), 

pRT - 1.1 x lo3 x 8.34 x 400 
M,=- G:: 4.9 x 105 

= 7.45 kgfrnol 

By taking into account that MC 2: 2Me, finally one has MC = 14,900  glrnol. 

A sample of  poly(methy1 acrylate) (PMA) has a T' of 8"C, and the constants 
for its WLF equation are Cl = 18.1 and C2 = 45.0K. Find the fractional 
change in its viscosity  per  degree at 50°C (data taken from Ref. 7). 

The required percentage change can be obtained by  deriving an expression 
that relates the viscosity to temperature, as for example the Williams- 
Landel-Ferry equation. 

Actually, 

qr 18.1(T - Tg) log- = - 
q T8 45.0 + T - T' (P8.8.1) 

Taking natural logarithms and deriving the resulting equation with  respect 
to temperature gives 

" dlnqr - 1875.8 - 
dT (45.0 + T - Tg)2 (P8.8.2) 
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and by substitution of the values proposed, we find 

" In __ -0.2478 K-' 
dT 

That is, the percentage is -24.78%. 

(P8.8.3) 
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elastic and viscous  mechanisms  involved  in the viscoelastic responses 
have traditionally been  modeled by combining ideal elastic elements, repre- 
sented by springs, and ideal viscous elements, represented by dashpots. 
shall refer to this treatment in Chapter 10; here we use another  approach, 

359 
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based on the analysis of the experimental curves, to express the viscoelastic 
functions in terms of the retardation and relaxation spectra. 

It is an experimentally demonstrated fact that when a viscoelastic material 
undergoes a small shear deformation, the stress necessary to maintain the 
deformation evolves  in  such a way that du/dt decreases as time  increases. 
For a simple  system we could express the velocity  of  response  by the relation 
da(t)/dt  = -so(t), By integrating this equation we obtain 

o(t) = o(0) exp(--st) (9.1) 

which  expresses the evolution of CT with  time  in the conditions of the experi- 
ment. By dividing the two  sides  of this equation by the deformation, we 
obtain the relationship 

G(t) = Go exp(--st) (9-2) 

Because st is  dimensionless, s has the units of reciprocal time and is com- 
monly  expressed as s = l/z. The parameter z, called relaxation time,  is taken 
to be the time at which t = z, that is, the time at which G(t) = Go/e. This 
approximation, however,  fails  even for rather simple  viscoelastic  systems. In 
fact, the curve obtained for G(t) using Eq. (9.2) drops much more rapidly 
than  that corresponding to real systems  (see Fig. 9.1). A better description of 
these  systems  is  achieved by using a sum  of exponentials (l-5), for example, 
G(t) = xi Gi exp(--sit). By assuming that the relaxation times  of the viscoe- 
lastic mechanisms  involved  in the relaxation process  vary continuously 
between 0 and cm, the sum can be  replaced  by an integral in such a way 
that G(t) may  be  considered the Laplace transform of an unknown function 
N(s) (2). According to this, 

This expression  is customarily written in terms of the relaxation times, 
giving 
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Relaxation  modulus in the frequency domain for (---) a system  with a 
single relaxation time and (-) a high  molecular  weight  polymer. 

where H(t)  = N( 1 /z)/z is a priori an unknown function called the relaxation 
spectrum. H dlnz is  defined as the contribution to rigidity  of  viscoelastic 
mechanisms associated with relaxation times  whose logarithms lie in the 
range In z to In z + d In z. For viscoelastic  solids, Eq. (9.3) becomes 

00 

G(t) - G, = N(s)e"st ds = LEN@)] (9.5) 

which alternatively can be written as 
00 

G(t) = G, + J H(z)e"/'d In z 
"00 

Following the same procedure, the components of the complex relaxation 
modulus can be  expressed in terms of the relaxation spectrum. Thus, by 
substitutin~ the difference G(t) - G, given in Eq. (9.5) into Eq. (6.3), we 
obtain the following  expression for the storage relaxation modulus: 

G'(o)  - G, = o N(s) ds Jo exp(-st) sin(ot) dt Jo 
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where L represents the Laplace transform. Since  L(sin at) = a/(a2 + s2), 
Eq. (9.7) becomes 

G‘(o) - 

The storage relaxation modulus for liquids is also given  by Eq. (9.8) with 
G, = 0. Proceeding in the same way for the loss modulus, one obtains 

G”(m) = (U ~~ N(s) ds 6 exp(-st) cos ot dt = o N(s)G(cos mt)ds (9.9) .Iff 
ince  L(cos at) = s/(s2 + a2), G”(a) is  finally  given  by 

It should be noted that Eq. (9.10) is similar for solid and liquid  viscoelastic 
systems. 

In the preceding section, it was  assumed that a monotonousl~ decreasing 
viscoelastic function, such as the relaxation modulus, can be  expressed  in 
terms of the Laplace transform of an unknown function N’(s). Owing to the 
fact that the transient creep complia~ce function, J( t ) ,  is a monotonous 
increasin~ function of  time, the use  of a strategy similar to the one used 
for the relaxation modulus requires that J(t) be related to a decreasing 

y taking into account that for viscoelastic  solids J(t) = Jg + Jdv’ 
(1) and Je = Jg + J d v ’ ( o o ) ,  the difference  between v’(00) and @(t) can be 
written as (2) 

\Ir(oo) - \Ir(t) = C{N’(s)} = W’(s)exp(--st) ds (9.1 1) J, 
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~bviously, "(0) = 0, so according to Eq. (9.1 l), *(m) is  given  by 

00 

@(W) = I N'(s) ds 

Therefore the memory function @(t) can be written as 

(9.12) 

(9.13) 

and therefore the compliance function is  given  by 

The S parameter is the reciprocal  of a time IC.(= 1/s), called the retardation 
time,  because it is associated  with  mechanisms of response that are delayed 
with  respect to the perturbation, It should be pointed out  that the relaxation 
times are somewhat  lower than the retardation times. y writing Eq. (9.14) 
in terms of the retardation times, we obtain 

(9.15) 

where L(T) [= N'(~/T)/Ic.] is the retardation spectrum. L(T) represents the 
contribution to the compliance of the viscoelastic  mechanism  with retarda- 
tion times  whose logarithms lie  in the range In z to In z + d In IC.. In the case  of 
liquids, the viscous co~tribution is independent of the entropic elastic con- 
tribution and J ( t )  for viscoelastic  liquids  is  given  by 

(9.16) 

et us  now  proceed  with the ~evelopment of the expressions for the 
com~onents of the complex  compliance function. According to 
and (9. 1 l), the storage compliance function is  given  by 
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J'(w) = J," - wJd [W(w) - W(t)]  sinwt  dt J: 
00 

= J," - wJd J, N(s)C(sin o t )  ds 
(9.17) 

where it has been taken into account that L(sin at) = a/(w2 + s2). Writing 
S = l/z and L(z) = JdN( l/z)/z, Eq. (9.17) becomes 

00 

d l n z  (9.18) 

In the high  frequency limit, Eq. (9.18) can be written as 

The substitution of J: given  by Eq. (9.19) into Eq. (9.18)  leads to the 
expression 

00 M3 02T2  
J'(w) = Jg + L(z) d In z - L(z) ~ d l n z  J-, -00 1 + 0 2 2 2  (9.20) 

d l n z  

which  is another form of expression the real component of the complex 
creep compliance. This equation is also valid for solids. 

To obtain the frequency  dependence  of the loss compliance function for 
liquids, use must be made of Eq. (6.29b).  Accordingly 

[*(W) - W(t)] COS at dt 

1 
" (9.21) 

Finally, writing S and N(s) in terrns  of z and L(r), Eq. (9.21) becomes 
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The limit n+ 00 leads this expression to the equation 

365 

(9.22) 

(9.23) 

which  describes the frequency  dependence  of the loss compliance for solids. 

Some important inequalities among viscoelastic functions can be  developed 
by analyzing their mathematical expressions. For example, the difference 

between G’(w) and G(t = l/@) can be written as (1,2) 

Owing to the fact that  for any value  of COT > 0, o”,c2/(1 + 0 ~ 2 ~ )  > the 
two alternative inequalities between transient and dynamic relaxation func- 

tions are obtained: 

G’(u) > G(:); G(t) 
G’(:) 

(9.25) 

In the same way, the fact that 

(9.26) 

leads to the following inequalities between compliance functions: 

1 
J’(w) J(:) - -- J( t )  - > Jf:) 

Ori? rl 

Finally, from Eq. (621a) one obtains 

1 
J’(w) < - 

(9.27) 

(9.28) 
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llustrative curves  showing  these inequalities for liquid  viscoelastic  systems 
are represented in Figures 9.2 and 9.3. 

ethods have  been  described in preceding  sections to relate J: and q to 
viscoelastic functions in  limit conditions, for example,  when ci) -+ 0. In this 
section, the procedures to evaluate these paramete~s from the relaxation and 
retar~ation spectra are analyzed. 

0th the steady-state compliance function, J:, and the equilibrium com- 
pliance, Je, can readily  be obtained from the retardation s~ectrum. Actually, 
by taking the limit  of Eq. (9.20) in the limit ci) ”+ 0, the following relation- 
ship for J; and Je is obtained: 

1 10 0 

Q 

-1 0 

I I I 

-l -10 0 

Double logarithmic plots of the creep compliance function J(t) and 
the components J’ and J” of the complex compliance function for a 10% solution of 
polystyrene in tri-m-tolyl phosphate. 
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Double logarithmic plots of the storage compliance function ( 
the reciprocal of the storage relaxation modulus (0 ) for a 40% solution of poly- 
styrene in tri-m-tolyl phosphate. 

On the other hand, Eqs. (6.12) and (9.10) lead to the expression 

(9.30) 

which permits us to evaluate the viscosity at zero shear rate from the relaxa- 
tion spectrum. The equilibrium recovery compliance function can also be 
readily  expressed in terms of the relaxation spectrum. Thus by comb in in^ 
Eqs. (6.52), (9.8), and (9.30), the steady-state compliance function in terms 
of the relaxation spectrum is obtained: 
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This equation also allows  us to determine the mean relaxation time from q 
and J:. Actually, the mean relaxation time, (T), can be  expressed as 

(9.32) 

Combining Eqs. (9.31) and (9.32)  gives 

This equation indicates that the mean relaxation time  is the product of two 
terminal viscoelastic functions, the zero shear rate viscosity and the steady- 
state compliance. The mean relaxation time can also be  expressed  in terms 
of the relaxation modulus by means of the expression 

tG(t) dt 
(‘) = jr G(t)  dt = r l O 2  

where  use  was made of Eq. (6.53). 

The Laplace transform of the relaxation modulus is  given  by 

(9.34) 

(9.35) 

For small  values of S, the exponential e”st can be expanded in  series  so that 
Eq. (9.35)  becomes 

(9.36) 

By taking into account Eqs. (9.34) and (6.45), Eq. (9.36) can be written as 

sG(s) = qos(1 - (7)s + 0 e )  (9.37) 

where ( 2 ; )  is the mean relaxation time. This expression leads to the equation 

G*(co) = i ~ q o ( l  - ( z )~o  + * * e)  (9.38) 



~ e t a ~ d a t i o n  and Relaxati~n Spectra 369 

which  describes the behavior of the complex relaxation modulus at low 
frequencies. For example, G’(m) - m2 and G”(@) - a, in agreement with 
Eqs. (6.45) and (6.46).  Since J*(m) = l/G*(m), the complex  creep compliance 
function is  given  by 

1 (1;) 
J”(0) ==r -+-+. . . (9.39) 

i o r o  r l o  

The transform of J has a pole at S = 0, 

- 1 1 (1;) 
J(S)==- 2+-+- r l o  ( S S 1 

The inverse  of this transform gives the expression 

1 
r l0  

J(t) = -(t + (1;) + . . .) 

(9.40) 

(9.41) 

which  describes the behavior of the creep compliance function at long times. 
Equation (9.41)  suggests that the mean relaxation time and the viscosity can 
be obtained from the slope and the intercept with the abscissas  axis,  respec- 
tively,  of the straight line drawn through the experimental values  of J(t) at 
long times  (see Fig. 9.4). 

In order to compare the relaxation and retardation times,  let  us consider 
first the Laplace transform of the relaxation modulus of a solid. According 
to Eq. (6.4), 

Schematic representation of the compliance function versus  time. 
values of q and (1;) are indicated. 

The 



sG(s) = G, + S So"[G(t) - Ge]e"st dt (9.42) 

Y following the same procedure as before, for small  values  of S, Eq. (9.42) 
becomes 

where q '(0) is the real component of the complex  viscosity at frequency 
zero, which, according to Eqs. (6.4) and (6.1 l), is  given  by 

(9.44) 

while the product q '(O)T, in analogy with Eq. (9.34), can be written as 

q. (9.43), the complex relaxation modulus is  given at low  frequencies 
by 

G*(@) = G, + q ' ( O ) [ i ~  - ( T ) ( ~ o ) ~  + * * a] (9.46) 

From the reciprocal of G*@), the expression for J*(o) is 

J*(@) = J,{ l - J,q'(O)iCo + J,qo[(z) + J,q'(o)](i@)2 - * f *) (9.47) 

where it was taken into account that for solids Je = l/Ge. The transform of 
Eq. (9.47)  gives 

S&) = Je{ 1 - J,q'(O)s + J,q'(O)[(z) + J,q ' ( 0 ) ]S2  - f *) (9.48) 

n order to determine the terms of Eq. (9.48),  let  us  express the creep 
complia~ce function as the identity J( t )  Je - [Je - J(t)]. The Laplace 
trans for^ of this equation is  given by 

(9.49) 

or low  values  of S, q. (9.49) can be written as 
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t[J, - J( t )]  dt - 

y comparing Eqs. (9.48) and (9.50) we obtain 

Hence, 

On the other hand, the mean retardation time (‘c’) is  defined as 

This equation in conjunction with Eqs. (9.51a) and (9.51b)  gives 

3 71 

(9,50) 

(9.51a) 

(9.5 1 b) 

(9.52) 

(9.53) 

(9.54) 

Accordingly, the mean retardation time  is  always greater than the mean 
relaxation time. 

In the previous sections we have  seen that the compliance and relaxation 
viscoelastic functions can be  expressed  in terms of the retardation and 
relaxation spectra, respectively.  owever, the spectra cannot be determined 
beforehand; they can only  be calculated from viscoelastic functions. For 
example, N(s) and N’(s) in Eqs. (9.5) and (9.1  1) can be obtained by using 
the expressions 

N(s)  = L”[G(t) - G,] (9.55a) 

and 

N’(s)  = L”[J, - J( t )]  (9.55b) 
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where the symbol ,CA1 represents the inverse  of the Laplace transform. In 
principle, once N(s) and N'(s) are known, H(T) and L(T) can be obtained 
immediately.  However, in most cases it is not  an easy task to get the analy- 
tical functions of G(t) and J(t) .  Even if these functions are known, the 
~etermination of M(s) and N'(s) by analytical means from Eq. (9.55) may 
not be  possible. In spite of  these  difficulties, approximate methods have  been 
devised to determine the spectra from viscoelastic functions; these are briefly 
described  below. 

The function exp(--t/l;) in the integrand of Eq. (9.6) converges to 0, 1 when 
2- -+ 0, 00. By plotting exp(--t/T) against - ln(t/z), a sigmoidal curve is 
obtained that intercepts the ordinate axis at e"(= 0.34). The area beneath 
the curve  of Figure 9.5 is considered to be equal to the area of the rectangle 
of  height unity. Actually the area in  excess  between the asymptote e-'/' = 1 
and the curve in the first quadrant is roughly compensated by the area 
limited by the curve and the abscissa  axis in the second quadrant (2). It 
should be pointed out  that in the first quadrant the relaxation times are 
larger than the time  of observation, while the opposite is true in the second 
quadrant. As a result e-'/' can be approximated by: 

-3 -2 -1 0 l 2 3 
log 0 2 ,  -log t I z 

Plots of the kernels of the  relaxation modulus and  the  storage relaxa- 
tion modulus versus - log t / z  and log 02, respectively. 
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H(t / z )  = 0,  ln(t/T) > 0 
H( t / z )  = l ,  ln(t/T) 9 0 

(9.55c) 

Consequently the relaxation modulus is  given approximately by  (1,2) 

(9.56) 

where it has been taken into account that the lower  limit  of the integral in 
this approximation is 2- = t .  Hence Eq. (9.56) suggests that a first-order 
approximation for the relaxation spectrum can be obtained by means of 
the relationship 

(9.57) 

Because the relaxation spectra are similar for transient and dynamic relaxa- 
tion viscoelastic functions, H ( t )  can also be obtained from the storage 
relaxation modulus. The plot of the kernel  of the integral of Eq. (9.8), 
02r2/(1 + 02z2), versus  log oz is a sigmoidal curve that intercepts the ordi- 
nate axis at 0.5 and reaches the value of 1 in the limit oz "+ 00 (see Fig. 9.5). 
The kernel can be approximated by the step function 

H(ut )  = 0, ln(ot) 0 
H(ut )  = 1, ln(wt) 2 0 

(9.57a) 

Therefore the storage relaxation modulus can be written approximately as 

(9.58) 

The value  of - In (I) in the lower  limit  of the integration arises from the fact 
that here z = l /o.  Then the relaxation spectrum is approximately given  by 

(9.59) 

In order to obtain the relaxation spectrum for G"(o), it is convenient to 
write Eq. (9.10) as 
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00 

dlnz 2 H(z)o dlnz (9.60) 
-1nw 

From this equation the relaxation spectrum  is  approximately  obtained  in 
terms of the loss relaxation modulus, 

In the transient compliance function, J(t), the retardation spectrum L(z) is 
modulated by the function 1 - exp(-t/zl)  [see Eq. (9.15)]. Plotting this func- 
tion against In t/‘t gives the sigmoidal curve  shown  in  Figure 9.6. We  should 
note  that the time  of observation (t) in the first quadrant is greater than  the 
retardation times, and  as a result ‘t varies  between zero and t .  Then the creep 
compliance function for viscoelastic liquids is approximately  given  by (1,2) 

in t t 
r( 

(9.62) 

0.0 - 
z > t  

-3 -2 -1 0 1 2 3 

‘I; < t  

log t l z  

l I I I I I 

Plot of the kernel of the creep compliance function versus  log t/z. 
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The approximate  value of the retardation spectrum  is  obtained from this 
equation by means of the relationship 

For viscoelastic  solids (q = a)), Eq. (9.63)  becomes 

(9.64) 

he  approximate value of L(T) can be derived from  the storage compliance 
function J'(w) following the method outlined to calculate H(T) from G'(m). 
Thus by taking into account Eq. (9.18), J'(m) can  be written as 

(9.66) 

Finally, by  following a method  analogous to  that used to determine the 
relaxation spectrum from G"(w), Eq. (9.22) can be written as (2) 

00 1 
rl -1nw rl 

dln.1; +L 2 oL(T) d l n ~  +- (9.67) 

Therefore, a first-order approxil~ation  for the retardation spectrum  can  be 
derived from the loss compliance function by means of the expression 

L(T) = [,~'(W) - ~] [ 1 + d log W 1 Z=l/W 

dlog(J"(0) - l/oq] 
(9.68) 

The calculation of  viscoelastic functions by  means  of spectra calculated by 
first-order approximations  may lead to values  of  these functions that  are in 
error with  respect to the true values. These errors  are lower  if correction 
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factors obtained from the assumption of a certain function for the spectra 
are used. For example, the fact that G($) - G, is a monotonous decreasing 
function of  time  suggests, as first approximation, that H(z) could be 
expressed by (1,6) 

H(z) =  AT-^ (9.69) 

It should be noted that the equation assumed for the spectrum should be 
valid  over at least two decades in the time  scale. Substituting 
Eq. (9.6) and making t / z  = U, gives the relations~ip 

Eq.  (9.69) into 

where l? is the gamma function. By taking into account 
ap~roximation [Eq. (9.57)], we find 

(9.70) 

the first-order 

(9.71) 

Accordingly, H,(z) is in error with  respect to the assumed function, 
by the factor r(m + l), and consequently, 

(9.72) 

 quat ti on (9.72) provides a more precise method for determining the relaxa- 
tion spectrum. The strategy to follow in the calculation of the relaxation 
spectrum involves the determination of provisional values  of H(z), at t = z, 
at a series  of points equally spaced on the logarithmic scale  using m = 0 in 
Eq. (9.72). Then from a double logarithmic plot of H(z) against z, the slope 
--m is determined at each point. The reciprocal of r(m + 1) multiplied by the 
provisional value  of H gives the value  of the relaxation spectra. 

This method can be  used to obtain the retardation spectrum from the 
compliance function J(t). Equation (9.15) can be written as 

Since J(t) is a monotonous increasing function of  time, the relation L(z) = 
can be  assumed to be a good approximation for the retardation spec- 

trum. Then the integral of Eq. (9.73) is  give  by 
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where the W substitution t / z  = U was made. According to Eq. (9.57), 
Ll(z) = [-dQ->(z)/dlnzJI,=, = --Azmmr(-m)l,=,, the value  of the spectrum 
at t = 'c is  in error by the factor r(1 - m) with  respect to the assumed 
value.  Since $('c) = Je - [J(t) - t/q], L(z) is  finally  given by 

(9.75) 

It should be pointed out  that m is  positive, and its value  lies in the range 
0 m 5 1. Following analogous procedures, the retardation and relaxation 
spectra can be obtained from dynamic relaxation and dynamic compliance 
functions, respectively. The pertinent equations can be found in  Ref. 1. 

Other approximations of  higher order can be  used  in the evaluation of 
the relaxation and  retardation spectra. Let  us  define the function 

$(t) = Sm @(h) exp(--At) d h  = L[@(A)] (9.76) 
0 

where $(t) == G(t) - G, in relaxation experiments and $( t )  = J(t) - Je - t/q 
in creep experiments. Moreover, Eqs. (9.4) and (9.15) indicate that +(h) = 
T H ( ' ~ ) ~ , = ~ - ~  and $(h) = ~ L ( z ) l , = ~ - ~  in the respective experiments. According 
to this, 

Owing to the fact that t is  restricted to real  values, the evaluation of the 
reciprocal of the Laplace transform in the real  axis  of the complex plane can 
be performed by using the Post-Widder equation (7) 

Since 

(9.78) 

(9.79) 

Eq. (9.78) can be written 
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(9.80) 

This expression indicates that the inversion  of $(t) can be carried out by a 
differentiation process  of  infinite order, an approach  that is not feasible. 

owever, an a~proximation of order k can be obtained. The first-, second- 
and third-order approximations are given  by (5) 

(9.8 la) 

(9.8 1 b) 

(9.81~) 

n the other hand, the approximations of  first, second, and third order for 
the retardation spectrum are 

(9.82a) 

(9.82b) 

(9.82~) 

An alternative procedure for calculating the spectra involves fitting the 
e~perimental results for the viscoelastic functions by means of  spline func- 
tions. The derivatives  of Eqs. (9.81) and (9.82) are determined by means of 
these functions, and thus the spectra can be obtained. A s u m ~ a r y  of  these 
and other approximations used to calculate retardation and relaxation spec- 
tra from the measured compliance and relaxation functions, respectively, 

ouble logarithmic plots of the retardation spectra versus the retardati~n 
times are represented in Figure 9.7. For high molecular weights the spectra 
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Double  logarithmic plots of the  retardation  spectra as a function of 
on time for different fractions of  polystyrene of narrow molecular we 

dist~butions: (8)) 4.7 x lo4, (B) 9.4 x lo4, ( ) 1.9 x lo5, (0) 6.0 x lo5, and 
3.8 x lo6.  The  spectra were  shifted to superpose them  in the glassy-like  region. 
(Reference temperature 100°C;  molecular  weight,  1.9 x lo5). (From Ref, 8.) 

present a softening  peak  associated  with the transition from the glassy-like 
region to the rubbery region,  followed  by a minimum corresponding to the 
plateau region and finally another peak  associated  with the terminal  region. 
The distance between the two retardation peaks  decreases as the molecular 
weight  decreases ( ef.  1, Chap. 3). The two  peaks  tend to overlap as the 
molecular  weight approaches the critical m ular weight, forming a single 
peak for molecular  weights  below MC (see 9.8).  Consequently, the two 
peaks  exhibited by the retardation spectra of high  molecular  weight  poly- 
mers  reflect  their  entangled nature. 

The influence  of the concentration on the formation of  entangled net- 
works  in polymer~iluent mixtures  is  shown  in  Figures  9.9 and 9.10,  where 
the retardation spectra for several concentrations of a high  molecular  weight 
polymer  in solution are shown. For concentrated solutions the spectra pre- 
sent the rubber  and teminal peaks, as occurs  with undiluted polymers, and 
the two  peaks  merge into a single  peak for semidilute and dilute solutions. It 
is not possible to superpose the retardation spectra by any horizontal trans- 
lation of the logarith~ic plots. This behavior  suggests that the two  peaks 
differ  in  their  dependence on concentration. However, the softening peak L, 
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.8 Double  logarithmic  plot of the  retardation  spectrum versus the retar- 
dation time for a  polystyrene fraction of  molecular  weight 3400 with  a narrow 
molecular  weight distribution. (From Ref. 8.) 
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Log "/a, 
Double  logarithmic plots of retardation  spectra  against reduced  time 

for several  high concentrated  solutions of  polystyrene  in  tri-m-tolyl phosphate, 
(From Ref. 9.) 
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Retardation  spectra versus  reduced  time for concentrated, semi- 
dilute, and dilute solutions of  polystyrene in tri-m-tolyl phosphate.  (From Ref. 9.) 

and the terminal peak L, can be  independently  superposed as Figures  9.11 
and 9.12  suggest. Figure 9. 1 1 shows the results of superposing the spectra of 
Figures 9.9 and 9.10 for the more concentrated solution in the vicinity  of the 
short-time L, peak. The peaks  were  shifted  by an amount loga,, along the 
log z axis and by A log L, along the vertical  axis, so that they are super- 
imposed on the spectrum of the pure polymer at the reference temperature 
To. Again, the terminal peaks of the retardation spectra of  different con- 
centrations were  shifted both horizontally and vertically by the amounts log 
ac,w and A log& respectively,  with  respect to the terminal peak of the 
undiluted polymer. 

The distance between the L, and L, peaks, A log z,, decreases as the 
concentration decreases  (Ref.  1, Chap. 4) (see Fig. 9.13). This distance is 
important because it provides an objective  measure  of the length  of the 
rubbery plateau. The results at hand seem to suggest that the plot of A log 
z, against log +M, where + is the volume fraction of  polymer,  gives a line of 
slope  3.4. The line intercepts the abscissa at a value of log(+M)  that is 
identical with that  found  from the break in the logqo vs log(+M) plot, 
where qo is the zero shear rate viscosity. 
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Reduced plots of the retardation spectra of the more concentrated 
solutions of polystyrene in tri-m-tolyl phosphate represented in Figure 9.9. The 
superposition was carried out in the neighborh~od of the L, (short time) maximum. 
The reference curve corresponds to polystyrene at 100°C. (From Ref. 9.) 

I I I I I I I 

-7 

Reduced plots of the retardation spectra of solutions (10% and 
above) of polystyrene in tri-m-tolyl phosphate represented in Figure 9.9 and 9.10. 
The sup~rposition was carried out in the nei~hborhood of the L, (long time) max- 
imum. The reference curve corresponds to polystyrene at 100°C. (From Ref. 9.) 
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Double  logarithmic  plot showing the  concentration dependence 
of h log.c, for concentrated  solutions of  polystyrene in tri-m-tolyl phosphate. 
(From.  Ref. 9.) 

Illustrative curves  showing the double logarithmic plot of the relaxation 
spectra of  polymers against the relaxation time are shown  in Figure 9.14. In 
the transition from the glassy-like to the rubbery region, or softening region, 
H(%) decreases as z increases. It remains nearly constant in the rubbery 
region and finally drops  to zero  in the terminal region. As occurs with the 
retardation spectra, the region  of the relaxation spectra corresponding to the 
plateau region disappears for unentangled chains, that is, for chains with M 
-= MC (Ref. 1, Chap. 3). 

Once a relaxation (retardation) spectrum is obtained from a relaxation 
(creep  compliance)  viscoelastic function, any other function can be 
obtained. Alternatively, approximate methods have  been  developed to cal- 
culate viscoelastic functions from one another (10). By taking into account 



10 

- 10 - 5  0 

log 7 + A 
Relaxation  spectra  for  high (111) and  low (11) molecular  weight frac- 

tions of polymers: (I) represents  the  relaxation  spectrum of a dilute  polymer  solution. 
(From Ref. 1.) 

that  the relaxation spectrum is the same for  transient  and  nontransient 
viscoelastic functions, it is  possible to  obtain the complex relaxation mod- 
ulus from the relaxation modulus and vice versa. The method entails expres- 
sing the kernel of a viscoelastic function in terns of the kernels of other 
viscoelastic functions with the same relaxation (or  retardation) spectrum. 
For example, the  function used to evaluate the storage relaxation modulus 
from the relaxation modulus has the form 

G’(@) = G’(l / t )  
(9.83) 

= AIG(t) + AzG(2t) + &G(t/2) + A4G(4t) + B4(t/4) + * * 

where Ai and Bj are specified constants. A. detailed study of these methods 
with analysis of errors can be found in Ref. 10. 

Calculate the relaxation time spectrum from  the  equation 
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*iom 

Assume that E"(w) is continuous, non-negative, and such. that 

(P9.1.1) 

Let  us  assume further that the function to be found (continuous, non- 
negative, and of bounded variation in the neighbourhood of  each point) is 
in L'(0, m), i.e., it is modulus-integrable, and 

After  making the changes 

(P9.1.2) 

the integral equation becomes 

J -00 

or, alternatively, 

G(S2) = E"(T:;'~-") and g(t) = +(zoe'))zoet (P9.1.4) 

G(S2) = I g(t)2"sech (S2 - t) dt, --CO < S2 < CO (P9.1.5) 
00 

-00 

In Eq. (P9.1.5) the function g is continuous, non-negative, and of bounded 
variation in the neighbourhood of each point; moreover, the following con- 
dition holds: 

00 

g E L'(R) and g(t) dt = 1  (P9.  1 .6) 

On the other hand, G is continuous, non-negative, and satisfies the expres- 
sions 

To apply Fourier t r a n s f o ~ s ,  Eq. (P9.1.5) can be written as 
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G = G(2"sech) * g (P9.1.8) 

Note  that if U, v E L'(R), the convolution is  given  by 

00 

(U * v ) (x )  = (2n)-1'2 f q x  - y)v(y) dy (P9.1.9) 

except for a null measure set. Denoting the Fourier transform by a caret (*), 
we obtain 

&(S) = G ( 2 - I  sech  j($&) 

= 2" mech (ns/2)&) 

where we have  used the equation 

(sechj(s) = Jn/2 sech(ns/2) 

so that 

&(S), --CO S CO (P9.1. 1 1) 

Now, g being integrable, continuous, and locally of the bounded variation, 
we can use the Fourier inversion formula to find 

(where PV means principal value). Taking into account that 

7 = Toet 

9.1.12) can be written as 

(P9.1.13) 
-00 

and for the solution of the integral equation we find 
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If G has an analytical prolongation to the horizontal  band, 

n n " - < I r n z < -  2  2 

and 

it is  possible to show' that there exist limiting functions such that 

G st f I - E L2(R) ( 2 
and 

(P9.1.15) 

&s)cosh(i S) E L2(R) (P9.1.16) 

On this basis, the function 

g(t) = [G(t - i;) + G(t  + ii)], -00 t 00 (P9.1.17) 

is  in L2(R) and is a solution of the integral equation. By considering Eq. 
9.1.4) and taking into account that 

z t = ln- 

we obtain 

4 ( z ) = ~ ~ / / ( ~ )  +.//(-~)] (P9.1.18) 

'EC Titchmarsh,  Introduction to Theory of Fourier Integrals. 2nd  ed.  Oxford IJK: 
Clarendon Press  1937,  Sect.  118. 
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The following  semiempirical  model has been proposed to represent the 
complex modulus El" at lr = constant. 

were Elo and Em are, respectively, the relaxed and unrelaxed moduli and T ~ ,  
k, h, and 6 are  adjustable  parameters.  Find  the corresponding relaxation 
time spectrum. 

Let 

where 

E* =E;i,+(EW - E o ) j  zg(z) d In z 
-00 1 + iwz 

and 

00 

I, zg(z) d In z = 1 

(P9.2. la) 

The relaxation time spectrum is calculated through Eq. (P9.1.18) as 

(P9.2. l b) 

H(z) = .g@) = - E" - + EN 
2n [ (:) (-~)] 

After long algebraic calculations, the following result is obtained: 

(P9.2.2) 

(P9.2.3) 
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Fig. a 
k = 0.00, 0.05, 0.10, 0.15, 0.20, 0.30, . . , 0.80 
h = 0.8; S =L: 1; zo = 1"'s 

Fig. b h = 0.40,  0.45, 0.50, . . , 0.90 

Fig. c 
k = 0.4; S = I; = io-% 

6 = 0, 0.2, 0.4, . .. , 2.0 
h = 0.8; k=0.4; TO = lo-% 

Diagrams showing the change  in the distribution of  the relaxation times for different parameters 
of the proposed model. 

which  is  the  expression for  the  relaxation  time  spectrum. 

is shown  in  Figures P9.2. l a ,  b, and c, respectively. 
The variation o f  the  relaxation  spectrum  with  the  parameters k, h, and 6 
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For a polymer melt, 

Find the mean relaxation time (z). 

E~uations (9.30),  (9.31), and (9.32) lead to 

(P9.3.1) 

and 

('c) = x io9 = 103 

Derive an expression for the first-, second-, and third-order approximation 
of the relaxation spectrum for a Maxwell  element in shear. 

As  is  well  known, a Maxwell  element in shear is  defined  by 

G( t )  = Go exp( - t/To) (P9.4.1) 

According to  Eq. (9.81) and taking into account that 

dG(t) t 
dln t 'c0 
" - -C,"cxp(-;) (P9.4.2) 

(P9.4.3) 

we obtain the expression 
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(P9.4.5) 

(P9.4.6) 

(P9.4.7) 

Show that as a consequence of the retardation spectrum  being positive, 

d In J( t )  
OS- d l n t  

~~ consider the function J(t) as the sum of positive functions ?v such that 

t 
T 

q( t> = 1 - exp( - -) (P9.5.1) 

Now, we have 

as  can easily  be  shown. A s  a consequence, 

or 

This equation holds for  the sum of such functions ?v, that is, for J. 

(P9.5.2) 

(P9.5.3) 

(P9.5.4) 

Give an approximate expression for the retardation spectrum of a visco- 
elastic solid  whose creep compliance  is  given  by 
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J(t) = J,[ 1 + ( ~ ) - m ] - l  

According to Eq. (9.64), 

Substituting the equation 
(P9.6.1), we obtain 

or, alternatively, 

(P9.6.1) 

proposed for the creep compliance into Eq. 

L(z) = mtm Je 
211 + cosh][ln(.c/tm)”] 

(P9.6.2) 

(P9.6.3) 

rob1 9. 

Find the complex dynamic moduli corresponding to a “box” distribution of 
relaxation times spectrum, i.e., that 

The normalization condition requires 

so that 

Hence, 

(P9.7.1) 

(P.9.7.2) 

(P9.7.3) 
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According to Eqs (9.8) and (9.10), one obtains 

(P9.7.4a) 

The loss  modulus  has  a  maximum at 

for which 

(P9.7.4b) 

(P9.7.5) 

1. 

2. 

3. 

4. 

5. 

6. 
7. 

8. 
9. 

10. 

JD Ferry. Viscoelastic Properties of Polymers.  3rd ed. New York: Wiley- 
Interscience,  1980. 
H  Markovitz. Lectures in Linear Viscoelasticity: An  Introduction. Carnegie- 
Mellon  University,  1978. 
AC Pipkin. Lectures on Viscoelasticity Theory. New York: Springer-Verlag, 
1972. 
JJ Aklonis, WJ MacKnight.  Introduction to Polymer  Viscoelasticity. 2nd. ed. 
New York: Wiley,  1980. 
NW Tschoegl. The Phenomenological Theory of Linear Viscoelastic  Behavior. 
Heidelberg:  Springer  Verlag,  1989. 
JD Ferry,  ML Williams. J Colloid  Sci  7:  347,  1952. 
DV  Widder. The  Laplace  Transform.  Princeton,  NJ:  Princeton Univ  Press, 
1946. 
DJ Plazek. J Non-Cryst Solids  131-133:  836,  1991. 
DJ  Plazek, E Riande,  H  Markovitz, N Raghupathi. J Polym  Sci  Polym Phys  Ed 
17:  2189,  1979. 
FR. Schwarzl. Rheol  Acta 10:  166,  1971. CE Struik, FR. Schwarzl.  Adv. Mol. 
Relax. proc. 201,  1,  1968. 



10. l ~~t roduct ion  
10.2  Maxwell’s Model 
10.3 The Kelvin-Voigt Model 
10.4  Three-Element Standard Solid 
10.5  el 
10.6  Kelvin-Voigt  Generalized Models 
10.7 Ladder  Models 
10.8 Distributed  Constants Models 

em  Sets 
ences 

394 
395 
398 
400 
404 
406 
408 
409 
413 
422 

he  mechanical response of viscoelastic materials to mechanical excitation 
as traditionally been  modeled in terms of elastic and viscous components 

such as springs and dashpots (1-3). The  orr responding theory is analogous 

many respects the use of mechanical models plays a didactic 
r l in interpreting the viscoelasticity of materials in the simplest  cases. 

ever, it must be emphasi~ed that the representation of the  visco~lastic 
behavior in terns of springs and dashpots does not imply that these 
elements  reflect the molecular  mechanisms causing the actual relaxation 

ic circuit theory, which  is  extensively  described in engineerin 

394 
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behavior of  complex materials. Moreover, there are a multiplicity of models, 
nearly all equivalent, to represent the same  viscoelastic behavior, 

A s  is  well known, springs and  dashpots represent, respectively, ideal elastic 
and viscous  responses to step stress perturbations.  In a similar way, a com- 
bination of the two can be  used to describe the viscoelastic  behavior  of 
materials. The  Maxwell  model, a spring in series  with a dashpot, is the 
more immediate idealization of this behavior (Fig. 10.1). 

Let us consider first the response of the Maxwell  model to a step stress 
CT = ooH(t), where H(t )  is the step unit. The strain E is  given  by 

E = El + E2 (10.1) 

where and  are the strains of the spring and  dashpot, respectively.  Since 
the stresses  in the spring and in the dashpot  are  the same, we have 

. G  
€2  =- 

rl 

Equations (10. l), (10.2), and (10.3) lead to the equation 

(10.2) 

(10.3) 

(10.4) 

This expression allows the evaluation of the response to a step stress or step 
strain. A convenient  way  of  solving this differential equation is to take  the 
Laplace transform, 

SE($ - E(O+) = 1 [s6(s) - G(O+)] + 6(s) 
G rl 

n 

Schematic  representation of  the  Maxwell  model. 

(10.5) 
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According to Eq. (10.5), the response of the model  is to  a step stress input 
cr(t) = croH( t )  is  given  by 

where the  boundary  conditions ~(0') = and ~(0') = cro were used. The 
inverse of the Laplace transform of Eq. (10.6) gives 

where G = c r O / ~ O  (see Fig. 10.2). Consequently, 
tion is  expressed by 

The Laplace transform of this equation leads 
function 

(10.7) 

the creep compliance func- 

(10.8) 

to the complex compliance 

(10.9) 

where it has been taken  into  account  that sJ(s) = J*(s) and T = q / G  is the 
relaxation time. The complex function in this equation  and  other  equations 

t 

ur Response of an ideal liquid to a  shear step stress input. 
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given  below can be  expressed  in a more common form by carrying out the 
substitution S = im. In this way, Eq. (10.9) can be written as 

1 J*(io) = - 1 + - G ( tAz) (10.10) 

For a stress relaxation experiment, the response to the input strain ~ ( t )  
= EOH(t) can be obtained by considering that according to Figure 10.1, 

Eo = E1 + E2 (10.1 l )  

Hence, 

&l + E2 = 0 

By combining Eqs. (10. l l), (10.12),  (10.2), and (10.3), we obtain 

whose Laplace transform adopts the form 

1 m )  - [s6(s) - O(O+)] + - = 0 
G rl 

From this expression, we find 

(10.12) 

(10.13) 

(10.14) 

(10.15) 

whose  inverse  gives 

o( t )  = o(0') exp( - -) t 

z 
(10.16) 

where T = q/G. The input  and  output of the system are schematically repre- 
sented in Figures 10.3a and 10.3b. The relaxation modulus is given  by 

and the complex relaxation modulus by 

(10.17) 
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E 

Response of a Maxwell liquid to a shear step strain input. 

(10.18) 

An alternative model  with a degree of complexity  similar to  that of the 
axwell  model  is the Kelvin-Voigt  element. This model, consisting of a 

spring in parallel with a dashpot (see Fig. lo.?, is adequate to describe 
creep behavior. The total stress in the model is the sum of the stress in 
the spring and  that in the dashpot, 

0 

Schematic representation of the Kelvin-Voigt model. 



Viscoelastic Models 

o = o l + 0 2 ,  or o = G ~ + q ( i  

The  Laplace  transform  of this equation  for a step input gives 

?!? = GE(s) + q[SE(S) - E(()+)] 

Since &(Of) == 0, Eq. (10.20) can  be written as 

The  inverse  of E($) gives 

399 

(10.19) 

(1 0.20) 

(10.21) 

(10.22) 

The response to the stress input of the Kelvin-Voigt  element is schematically 
represented in Figure 10.5. From Eq. (10.22), the creep compliance function 
is  easily obtained as 

(10.23) 

where J = 1/G for  an elastic spring, The corresponding  complex  compliance 
function is 

t 

E 
""""-"" 

"" 

(b) 

Response of a Kelvin-Voigt  solid to a shear step stress input. 



400 

S@) 1 J 
J*(S) =r - = ~ - 

CTO G(l +ST) (1 +ST) 
- (10.24) 

The Maxwell and Kelvin-Voigt  models are unable to represent conveniently 
the material response of a viscoelastic  system. A better approach  to the 
actual behavior is  achieved by using more complex models. 

What is  commonly  called the three-element standard,  or simply the  standard 
solid (or Zener's solid), is a  combination of either a Kelvin-Voigt  element in 
series  with a spring or, alternatively, a Maxwell  element  in parallel with a 
spring (see Fig. 10.6). The  strain response of the first  model to the stress 
input ci = croH(t) can be written as 

From this equation  and  taking  into  account  that 

CT = GOEI; CT =1: G l ~ 2  + qdz 

we find 

(10.26) 

Two equivalent  schemes of the Zener's solid. 
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G1 ci -&+E=- l + -  o+- 
'I  'I ( 3 Go 

(1 0.27) 

For a stress history G = croH(t), the Laplace transform of Eq. (10.27)  gives 

where 1: = q/Gl. The inverse  of C($) is the strain response  given by 

(10.28) 

(10.29) 

Then the creep compliance function can be written as 

1 1  t 
~( t )="+-[ l  Go G1  ex^(-^)] = J ~ + J ~ [ ~  -exp(-S)] (10.30) 

where Jg = Go1 and J1 = G;'. From the Laplace transform of Eq. (10.30), 
the complex compliance function is obtained as 

J1 

l +ST 
$*(S) = Jg + ~ (10.31) 

For a step strain input E = EOH(t), the Laplace transform of Eq. (10.27)  is 

-&(S) = - 1 + o(s) + - sii(s) - o(0") 
rl 'I l (  ZJ- ~ o [  1 (10.32) 

The Laplace inverse  of Eq. (10.32)  gives the response of the model to the 
step strain input: 

= { ( 1 ~ ~ ~ G J  " 1 + G1 /Go exp[ - 2 (1 + 2) t] } (10.33) 

where cro = o(0') = cOGO. Then the relaxation modulus can be written as 

while the complex relaxation modulus obtained from the Laplace transform 
of Eq. (10.34)  is  given  by 
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(10.35) 

Let us consider now the  response of the  solid standard  model  located on 
the  right-hand side o f  Figure  10.6  to a step  strain  function  (Fig. 10.7). In this 
case, 

0 = 01 + 0 2  (10.36) 

where o1 = GO€ and 

Equations  (10.36) and (10.37)  lead  to  the generalized 

(10.37) 

differential  equation 

(10.38) 

where 7' = q'/G[ and z = q /GI .  The  response o f  the  model  to  the  input 
strain ~ ( t )  = EoH(t) is easily obtained  from  the inverse o f  the  Laplace  trans- 
form of Eq. (10.38). The  pertinent  equation is 

o(t) = E*[G;) + G; exp(--tl?;')] (10.39) 

"""" 

t 
( 4  

Response of the Zener mode1 (Fig. 10.6a) to a shear step stress input. 
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The relaxation moduli  in the time and frequency  domains are given  by 

G(t) = G; + G; exp(-t/T’)  (10.40) 

and 

G i n ‘  
sC;(s) = G*(s) = GO + - 1 +ST’ (10.41) 

The  schemes  of the strain  input  and the stress response are given in 
Figures 10.8a and 10.8b. In the same  way, the response of the model to 
the shear stress input CT = aoH(t)  can be  obtained  from the Laplace trans- 
form of Eq. (10.38).  The  corresponding equation is 

(10.42) 

where T’ = ( T / G ~ ) ( G ~  + GI). 
By comparing Eqs. (10.29) and (10.42) on the one  side and Eqs, (10.33) 

and (10.39) on the other,  it is  easy to  obtain  the equivalence between the two 
models of three elements. The pertinent relationships are 

E 

t 

Response of the Zener  model (Figure 10.6b) to a shear step strain 
input. 
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and 

and conversely 

and 

(10.43a) 

(10.43b) 

(10.43~) 

(10.44a) 

(1  0.44b) 

(10.444 

The Burgers  model, also called a linear liquid of four elements, is a combi- 
nation of the Maxwell  model  with  a  Kelvin-Voigt  element  (see Fig. 10.9). 
For a stress input, the strains  are additive, 

E = El + E2 + 83 (1 0.45) 

G2 

Schematic representation of the Burgers  model. 
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Moreover, 

* 0 0  

=G,;  
G2 0 0  E2 = -; &3 +-&g =- 

771 v 2   v 2  
(1  0.46) 

After  eliminating g2,  and between  these equations, one obtains 

The response to a step stress input CT = oOH(t)  is  given by 

&(t )=  0 0  {GI ~ + ~ + ~ [ 1  771 G2 -.XP(-~)]} (10.48) 

where z2 = q2/G2. The complex  compliance function obtained from the 
Laplace transform of Eq. (10.48)  is 

1 1  1 
J*(S) = - + ~ + (10.49) 

G1 771s G2@2 + 1) 

For a strain step input ~ ( t )  = E ~ H ( ~ ) ,  Eq. (10.47)  becomes 

where 8(t) is the Dirac delta function and the parameters q ,  r2, 41, and 92, 
are 

771772 41 = 771;  42 = - G2 

(10.51) 

Solution of Eq. (10.5)  gives 

rl, r2 and A being 

(10.53) 
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where zI and 22 are the roots of the  equation r2z2 + rlz + 1 = 0. The linear 
liquid standard model of four elements  is adequate to study the response of 
a liquid system  under a creep recovery test. 

The  elementary  models studied above describe the rheological behavior  of 
only  very  simple  systems. The models  assume that a  single relaxation time 
governs the response of the material to a mechanical perturbation, 

owever, there exists experimental evidence  of a distribution of relaxation 
or  retardation times.  Such a distribution may  be considered either discrete 
or continuous. On this experimental basis it is  possible to generalize the 
models so that they more  closely represent the actual behavior  of materials. 
These generalizations can  easily  be carried out by assuming an  arran~ement 
of  Maxwell elements in parallel or, alternatively, an arrangement of  Kelvin- 
'Voigt  elements  in  series. The corresponding  schemes are displayed in Figure 
10.10. In Figure 10.10a an elastic element  has  been added  to account for  the 
instantaneous response. In Figure 10.10b a Maxwell  element  has  been added 
in  series to reflect the liquid behavior. 

The relaxation and  retardation functions for these models in the case of 
a discrete distribution of relaxation or  retardation times are obviously given 
by 

and 

(1 0.5421) 

(10.54b) 

where Jg = Gil and Ji = G';'. In the case  of a continuous distribution of 
retardation  or relaxation times the retardation J(t) and relaxation G(t) func- 
tions can  be written as 

00 

G(t) = G, + I G(z) exp - dz 
-t 
z 

(10.55a) 

and 
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(a)  Maxwell's  elements  in  parallel (b) Kelvin-Voigt  elements  in 
series. 

where 

(10.55b) 

(10.56) 

Equations (10.55a) and (10.55b)  can alternatively be written as 

CO 

G(t) = G, + J H(T)exp-  d1n.r: 
-t 
z 

(10.57a) 
"CO 

and 
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where H(z) = zG(z) and L(z) = zJ(z) are, respectively, the relaxation and 
retardation times to which we have already referred in Chapter 9. 
Obviously,  Maxwell  elements in parallel can describe the liquid viscoelastic 
behavior of materials if the spring G, is eliminated from Figure 10.10a. In 
the same  way, the Kelvin-Voigt  elements in series  of Figure 10.10b also 
describe the viscoelastic behavior of  solids if the dashpot qo in the 
Maxwell  element  is eliminated. 

As we have  seen in Eq. (10.18), the complex rela~ation modulus ob~ained 
from the Maxwell  model  is  given  by 

G s  
S + z-1 

G*@) = (10.58) 

When we deal with n terms of the same type, their sum can be represented by 
means of a rational fraction 

(10.59) 

where n - 1 and n are the degrees  of the polynomials P(s) and Q(s) appear- 
ing in the numerator and de~ominator, respectively,  of the fraction. By 
taking into account that J*(s) = [G*(s)]", the complex compliance function 
can be written as 

(10.60) 

By developing Eq. (10.60) according to the continuous fraction formalism, 
the following ladder function is found: 

J*(s) = [G*(s)]" = 1 
bts + 1 

a2 + (10.61) 
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This expression corresponds to the mechanical model shown in Figure 
10.11, called the discrete ladder model, where ai and bi are the coefficients 
of the elastic and viscous components respectively. This model was  initially 
proposed by Marvin and Gross. 

ELS 

It is  well known that the behavior of  electrical transmission lines can be 
represented in terms of distributed passive  elements.  As we mentioned at the 
beginning  of this chapter, there exists an analogy between the electrical and 
mechanical behavior of the systems. Returning to the Maxwell  model, one 
has 

G 6(s) = sE(s)- (10.62) 
S + It--1 

On the other hand, according to Ohm’s  law, the electrical admittance is 
given  by 

(10.63) 

The electromechanical analogy indicates that &(t) can be  identified  with I(t) 
(electrical intensity of current) and o(t) with V(t )  (electrical  voltage). 
Therefore, SE@) and O(s) correspond, respepctively, to I(s) and V(s) so 
that the mechanical admittance can be written as 

S 1  Y(s) = - + - 
G T t  

(10.64) 

where  use  was made of Eq. (10.62).  Accordingly, the dashpot viscosity 
corresponds to the electrical resistor, and the inverse  of the spring elasticity 

a1 a2 a3 

.l l Ladder model. 

an 
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modulus  corresponds to the capacitance. The  analogous electrical scheme  of 
axwell  model  is  given in Figure 10.12. The equivalences  between 

elastic and electrical parameters are 

R = q ;  G"==C;  T - R C  
(10.65) 

Y(s) = CS + G; G = R-1 == q-' 

e notice that the elements in series  in the mechanical  model are  trans- 
rmed in parallel in the electrical analogy. The converse is true  for the 
elvin-Voigt  model. The electrical analog of a ladder model  is thus  an 

can generalize the analogy by considering the viscoelastic materials 
as a continuum where the theory of transmission lines  can  be applied. In this 
way, a continuous distribution of  passive  elements  such as springs and dash- 
pots  can be  used to model the viscoelastic  behavior  of materials. Thus the 
relevant equations  for a mechanical transmission line  can  be written follow- 
ing the same patterns as those in electrical transmission lines. 
ing the impedance and admittance per unit of length by g and j respectively, 
one  has 

dV d l  
___ = g l ;  - = J V  
dx dx 

while the mechanical  analog  can be written as 

From Eq. (10.6'7) one has 

(10.66) 

(10.67) 

Electrical scheme analogous to the Maxwell model. 
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0" = a.0; E" =jg& 

The solutions of these second-order differential equations  are 

CT, == A cosh Px + B sinh Px 

ti, = A' cosh Px + B' sinh Px 

#l l 

(10.68) 

(10.69) 

where x is the distance from the terminus of the line to a characteristic point 
of the same line, and p = (gj)1'2 is  called the  propagation  constant.  From 
the  boundary conditions one finds 

For x = 0 , o(0) = A and (3 = A' (10.70a) 

P x = L, , B  = A I -  == A ' E  = k~ (10.70b) 
j P  

where the characteristic mechanical  impedance G is  given  by 

(10.70~) 

(10.71) 

Accordingly, Eqs. (10.69) can  be written as 

CT, = o(0) cosh f3.x + &G sinh Px (10.72a) 

ix = $0) cosh Px + - sinh Px (10.72b) o(0) 
G 

Several  specific situations can be considered: 

1. For a short-circuit regime, the stress at the end  of the line is null, 
~ ( 0 )  = 0, and Eqs. (10.72) become 

and 

ence, 

l 

G, = i(O)G sinh Px 

ri, = k(0) cosh p 

(1 0.73a) 

(10.73b) 
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= G tanh Px o x  

&x 
(10.74) 

The Laplace transform of Eq. (10.74)  gives the complex relaxation modulus 
of the viscoelastic material in terms of its characteristic impedance, 

G*@) = sG(s) tanh P(s)x (10.75) 

2. For x = L, Eqs.  (10.72)  become 

oL = o(0) cosh PL + E(O)G sinh PL (10.76a) 

and 

iL = k(0) cosh PL + - sinh PL G (1 0.76b) 

crL and tiL being the values  of the shear stress and the strain  rate at the 
beginning  of the trans~ission line  where the mechanical excitation line  is 
applied. From these equations one easily  finds 

o(0) = oL cosh PL - kLG sinh PL (10.77a) 

k(0) = kL cosh P&- - sinh PL (10.77b) oL, 
G 

3. For  an infinitely long chain, x ”+ 00, lim tanh px ”+ 1, and from 
Eq. (10.74) one finds 

(10.78) 

That is, the characteristic impedance G is the impedance at any point of the 
transmission line. 

4. Equations (10.72) can be written in terms of the distance to the 
origin, adopting, in this case, the foms 

or = o(0) cosh P(L - r) + k(0)G sinh P(L - r) (10.79a) 

and 

ir = i(0) cosh P(L - r) + - sinh P(L - r) 4 0 )  
G (10.79b) 
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where r = L - x. Alternatively, the substitution of the values  given for o(0) 
and k(0) in Eqs. (10.72) into Eqs. (10.79)  gives 

0,. = oL cosh pr - kLG sinh pr 

k,. = kL cosh pr - - sinh p r  G L  
G 

(10.80a) 

(10.80b) 

For an infinite transmission line (r -+ 00, L -+ m), Eqs. (10.80)  become 

or = oL exp(- pr) and i,. = kL exp(-- pr) (10.81) 

These  expressions indicate that the input impedance is the same at any point 
of the line. Alternatively, if the final impedance of a transmission line  is the 
characteristic impedance, such a line  behaves as  an infinite  line. 

Determine the harmonic response for  an  input given  by 

E(t) = 0, t t o  

E(t) = E@?iot, t 0 

of a material whose  viscoelastic behavior is  given  by a standard solid formed 
by a spring in parallel with a Maxwell  element. 

0. 

From Eq. (5.50) 

o(t) = Go&(t) 4- .I' E(T)d(t - T) dT 
"W 

(P10.1.1) 

If E(t) = exp(iot), one obtains 
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= EO srp(iOt)[ Go + f~ d(s) cos OS ds + i ] (P10.1.2) 

G*(io) = G'(o) + iG"(w) = Go + 

For a standard solid  such as that shown in Figure  P10.1.1, the relaxa- 
tion modulus is  given by 

G(t)=  Go+Gexp - , G - ~ o  ( ~ o t )  - - 
rl (P10. 1 .4) 

Then 

G@) = --e+;) G 
TO 

and Eq. (P10.1.3)  becomes 

00 

G*(io) = Go + e-'@'G(s) ds 

From Eqs. (P10.1.5) and (P10.1.6)  one obtains 

m"; GOT 

1 + 022; 1 + W"; G*(ioo) = Go + G- + i 0  

(P10.1.5) 

(P10. I .6) 

(P10.1.7) 
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y applying a Laplace  transform to a three-element standard solid, the 
transitory response can also be obtained.  In this case, Eq. (P10.1.7)  can  be 
written as 

Gzs 
Go +- l +TS = G*(s) (PlO. 1.8) 

where S = h By assuming a sinusoidal excitation ~ ( t )  = sin cot, one 
obtains 

(P10.  l .9) 

where it was considered that 

&OW 
&(S) = - (P10.1.10) 

W2 + s2 

A s  usual, in order  to calculate the inverse transform of  (P1  0.1.9) the follow- 
ing  decomposition  can  be  used: 

- ST W A Bs+ CO2 
F(s) = - - ~ 1 +ST (O'+z) = 1 +ST+ CO2 +S2 

(PlO.l.11) 

where 

(P10.1.12) 

Therefore 

- E;($) = - W2T2 ( - ) + - ( - ) - - ( - ) (P10.1.13) 
l +W222 0 2  +S2 1 +W222 0 2  +S2  1 + d T 2  S +  l/% 

whose  Laplace  inverse can be written as 

W2T2 COT 

l + W T  l + O T  
F(t)=7sin.wf+7coscut--- -t/z (P10.1.14) 

1 + *2T2e 

The final result for ~ ( t )  is  given  by 
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(P10.1.15) 

The last term on the right-hand side  of this equation is the transitory 
response that decays rapidly with  time. 

Thus at long time, Eq. (P10.1.15)  leads to Eq. (P10.1.7). 

A standard solid  (Kelvin-Voigt  element  in  series  with a spring) (Figure 
102.1) is under a stress U for a long time, Calculate the response of the 
solid after the load is eliminated (creep  recovery experiment). 

~~~~~~ l 
The strain response to a load cr(t) = u,H(t) has two components. The first 
corresponds to  an elastic element  given by 

(P10.2.1) 

G2 

to t rl 
Standard solid 

GpJ2 G ,==J," 
l 

t 

ur 
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where H(t)  is the step unit. The second  is a creep function governed by the 
equation 

(P10.2.2) 

The solution of this differential equation is  given by 

(P10.2.3) 

The total strain response can be written as 

(P10.2.4) 
O < t ( t O  

When the load is eliminated at t = to, Eq. (P10.2.2)  gives 

&Q + &G2 = 0 

from which 

E = Cexp(--?) t - to (P10.2.5) 

The constant C is  given  by E = € ( to+) ,  and consequently for t to, 

E(t0+) =r G2 [ 1 - e x p ( ~ ) ]  (P10.2.6) 

By combining Eqs. (P10.2.5) and (P10.2.6), the recoverable compliance is 
obtained as 

E(t) = 2 [ 1 - e x p ( ~ ) ]  exp- -0 - to) 
G2 z (P10.2.7) 

= 2 [ e x p ( ~  - 1) e x p ( ~ ) ] ,  t 2 to 
G2 
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~ ~ t ~ 0 ~  2 

From  Eq.  (5.39, 

(P10.2.8) 

Taking the Laplace transform, we have 

E(S) = S6(S)&Y) (P10.2.9) 

Let  us calculate sJ(s) for Kelvin-Voigt  element. The constitutive equation is 

G=GE+T\€ 

The Laplace transform of this equation is  given  by 

&(S) = (G + qs)Cl(s) 

ence, 

with 

T\ and J =  G-' 

After adding an elastic element, we obtain 

By taking into account that for a stress step input 

l 
6(S)  = -Go 

S 

the inverse Laplace transform of Eq. (P10.2.13)  is  given  by 

E(0 = oo(J1 + J2I1 - exP(-~l22>1j~( t> 

(P10.2.10) 

(P10.2.11) 

(P10.2.12a) 

(P10.2.12b) 

(P10.2.13) 

(P10.2.14) 

(P10.2.15) 

where J1 = GC' and J2 = G?', the same  result as that obtained by the first 
method. 
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For a creep recovery test, we obtain 

~ ( t )  = ooJ(t), 0 5 t < to 

or 

E(t) = oo[J(t) - J( t  - to)], t 2 to  

From Eqs. (P10.2.15) and (P10.2.17) we finally  find 

(P10.2.16) 

(P10.2.17) 

which  is the same result as that obtained  by the first method. 

In  a dynamic  viscoelastic test the following results are obtained: 

0.1 l 0. l 
10 0.8 x lo-' 0.08 

Fit this behavior to  that of a  standard solid (spring in  series  with  Kelvin- 
Voigt element). 

For the standard solid  model, the real and imaginary parts of the complex 
compliance function are 

and 

(P10.3.1) 

(P10.3.2) 
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According to the data of the problem, 

~ " ( 0 . 1  HZ) = 10" X 10-~  Pa-1 

J"(10 Hz) = 0.08 x 8 x 10-loPa" 

From Eqs.  (P10.3.1) and (P10.3.2) we obtain 

1 0 - ~  = J~ 1 + ( 1 + J1/Jo (0.2nT)2 ) (P10.3.3) 

(P10.3.4) 

(P10.3.5) 

(P10.3.6) 

From these equations the following parameters are obtained: 

T = 0.205s; J, = 8.08 x 10"OPa-'; Jo = 3.16 x 10"9Pa" 

Find the response of a Burgers  element to a creep  recovery  experiment. With 
the help  of a sketch  of the strain response,  find the parameters of the model. 

The mechanical history for a creep  recovery  experiment  is  given  in Figure 
P10.4.1. 
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&(t)= crg -+-+- 1 -exp -- {di ;, i2 [ ( :)l} 
Hence, 

For t > to, we obtain 

& ( ~ ) = . g [ { ~ + ~ + ~ ( l  r l l  G2 - exp( -~ ) ]}  

- { ~ + ~ + ~ [ 1  - e x p ( - ~ ) ] } ]  

or, equivalently, 

E(t) =z . g { ~ + ~ e x P ( - ~ ) [ e x ~ ( ~ )  1 - 11) 
Hence, 

The parameters of the Burgers  model are shown  in Figure P10.4.2. 

I f 

(P10.4.1) 

Op10.4.2) 

(P10.4.3) 

(P10.4.4) 

(P 10.4.5) 
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0 0   0 0  t o  &(O) = -; &(CO) = - 
G1 r l l  

Although in  principle it would  be  possible to find the parameters ql ,  q2, GI, 
and G2 of the model from a creep  recovery experiment, in practice technical 
difficulties prevent finding  them  with acceptable accuracy. 

1. N Tscoegl. The Phenomenological Theory of Linear Viscoelasticity.  Berlin: 

2. B Cross. J Polym Sci  20:  123,  1956. 
3. RS Marvin, H Oser. Natl Bur Stand 66B:  171,  1962. 

Springer, Chaps 3 and 5. 
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In  theta solvents, excluded  volume  effects vanish and flexible  molecular 
chains behave as phantom chains (1). The characteristic ratio 
Cn = (v2)*/~Z2, where (v2)* is the mean square end-to-end distance of a 

423 
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chain with iV bonds each of average  length I ,  depends on short-range inter- 
actions and consequently  is conditioned by the chemical structure. Each 
molecular chain on average  occupies  in  these conditions a spherical  region 
of radius R = ~(~2}o~1'2. In  good solvents the net interaction between the 
polymer  segments  is  repulsive and the excluded  volume parameter v is  posi- 
tive and large. In these conditions, the radius of the coil (or the spherical 
domain of the chains)  increases. In general, R - N", the value of v being 0.6 
in good solvents (1,2). 

In dilute solutions, interactions between  neighboring domains are neg- 
ligible.  Any  physical property such as the osmotic  pressure 01: the intrinsic 
viscosity can be  expressed  in  terms  of  power  series  of the concentration of 
the polymer.  However, as the concentration increases, the polymer domains 
come  closer together. A critical concentration C* can be  reached at which 
molecular domains  start  to overlap, and the average concentration of poly- 
mer  segments  in the solution is  similar to  that inside the coil.  This  concen- 
tration is estimated as 

(11.1) 

where R is the radius of the coil, M the molecular  weight  of the chain, and 
i V A  Avogadro's number. Since R M", the molecular  weight  dependence of 
C* can be written as (2) 

c* o( MI--3v ( 1  1.2) 

The higher the molecular  weight, the lower the value of C* ,  For polystyrene 
of M = 106 in a  good solvent (v = OA),  C* f 3 ~  0.005 g/mL. Solutions in 
which C C* are called dilute solutions. 

For solutions in  which C > C*, overlapping of domains occurs. 
Solutions whose concentration lies  in the range C* C c C** are said to 
be semidilute,  while concentrated solutions are those for which C C**. 
The crossover concentration from semidilute to concentrated is  estimated as 
(3) 

( 1 1 . 3 )  

where MO and b are, respectively, the molecular  weight and length of the 
statistical chain segments, and W is the excluded  volume parameter. For 
concentrated solutions, C > C**. Obviously, the high concentration limit 
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is the melt. It should be pointed out  that  the crossover point between dif- 
ferent regimes  is not  sharp  and is consequently difficult to determine. 

While both dilute and semidilute solutions are characterized by the large 
and correlated fluctuations in  segment density, the fluctuations become 
small  in concentrated solutions and  can be treated by a simple  mean-field 
theory. 

As has been  shown  elsewhere  in this book (Chapter l), a flexible  high 
molecular weight chain can be represented by a large number N of  freely 
jointed segments of length b. According to Eqs. (1.13) and (1.14), the free 
energy associated with a freely jointed chain whose end-to-end distance is r 
can be written as (4) 

3k T 
2b2 

F(r) = F(0) + "%.2 (11.4) 

where it has been considered that 

Hence, the force necessary to keep the two ends of the chain at the distance r 
is  given by 

(1 1.5) 

This equation indicates that  an isolated molecular chain behaves  like a 
Hookean elastic element. 

In  a real situation,  the motion of the segnents of a chain relative to the 
molecules of the solvent environment will exert a force in the liquid, and  as  a 
consequence the velocity distribution of the liquid medium in the vicinity of 
the moving  segments will  be altered. This effect,  in turn, will affect the 
motion of the segments of the chain.  To simplify the problem, the so-called 
free-draining approximation is often used. This approximation assumes that 
hydrodynamic interactions  are negligible so that  the velocity  of the liquid 
medium  is unaffected by the moving  polymer  molecules. This assumption 
was  used  in the model  developed by Rouse (5) to describe the dynamics of 
polymers  in dilute solutions. 
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In the Rouse model, each molecular chain is subdivided into several 
submolecules that  are each large enough that they  obey Gaussian statistics. 
Each submolecule is represented by a spring, which accounts for its elasti- 
city, while its mass, which  is  responsible for the energy dissipated by the 
moving  submolecule in the viscous medium, is represented by a bead. 
Therefore a molecular chain is  considered to be a succession  of beads 
whose spatial location is  defined  by the vectors r in Figure 1 1.1 p separated 

springs along the vectors . According to Eq. (1 1 A), the 
lmholtz free  energy  of the nt in depends on the energies corre- 

sponding to the neighboring (n - l)th and (n + 1)th subchains: 

Therefore the force exerted on the nth submolecule from the two neighbors 
is  given  by 

(1 1.7) 

The work done by the driving force is dissipated by the friction energy 
of the moving  submolecule, represented by a bead, in the viscous medium, 
so that 

(1 1.8) 

Sketch of the spring-bead model. 
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where CO is the friction coefficients per submolecule. Because r,+l - 
rr, - rrn-l are infinitesimal increments, the combination of Eqs. (1 1.7) and 
(1 l .S) leads to  the second-order differential equation 

y using the boundary conditions 

the solution of Eq. (1  1.9) is the wave function (6) 

(11.9) 

(11.10) 

(11.11) 

where zP and r: are, respectively, the relaxation time and amplitude of the 
wave associated with the p mode (p = 1, 2,3,  . . .) and N is the number of 
submolecules in the chain. y substituting Eq. (1 1 .1 1) into  Eq. (1 I.9), we 
obtain 

(11.12) 

The largest relaxation time = I) is the characteristic time of the  rotation 
of the whole chain. The value of this quantity is  given  by 

(11.13) 

he relaxation time associated with the p mode ('p > 1) is related to the 
largest relaxation time  by the expression = 2,/p2. Thus  the second  mode, 
~2 = ~ , / 4 ,  describes  changes over distances of one-half the molecule, and so 
forth.  Equation (1 1.13) suggests that T, is strongly de~endent on molecular 
weight  and temperature. The dependence of this latter  parameter on tem- 
perature arises from the factor l/ jr and, especially, the enhancement  caused 
in the molecular mobility (1 /co) by an increase in tem~erature. Accordingly, 

use theory is in qualitative agreement  with the e~perimental results. 
Ouse theory predicts that  the diffusion coefficient  of the chains in 

very dilute solutions can  be written as 
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(11.14) 

f3y taking into account that N - M ,  the scaling relations for I) and z, are 
found to be 

(11.15) 

These results are in disagreement  with the scaling  laws obtained from experi- 
mental results in theta conditions, which can be  summarized as (Ref. 3, p. 
96) 

This failure has been attributed  to the fact that hydrodynamic interactions 
are neglected in the Rouse model. 

The theory of Z i m  (7) uses the assumptions of the Rouse theory and in 
addition considers hydrodynamic interactions between the moving submo- 
lecules and the solvent. The theory also makes use  of the method formulated 
by Kirkwood and Riseman for the evaluation of the viscosity  of dilute 
polymer solutions. A parameter h = where vs is the 
viscosity  of the solvent, is  defined to account for the hydrodynamic inter- 
action whose  value  is  close to zero (h  << 1) for vanishing interactions (free- 
draining) and much larger than l(h >> 1) when  these interactions are domi- 
nant (non-free-draining). The mathematical details, which are beyond the 
scope  of this book, are given  elsewhere (7). It is convenient to point out, 
however, that scaling arguments can be  used to obtain in any easy  way 
expressions for  both D and z, that  are in agreement with those obtained 
in  Zimm's theory. Actually, the diffusion coefficient  of  molecular chains in 
very dilute solutions depends on b, N ,  vs, and the thermal energy kBT. The 
use  of dimensional analysis  gives 

(11.17) 

Since the statistical property of a Gaussian chain does not depend on 
the local structure, the original Gaussian chain consisting  of N segments  of 
bond length b can be substituted for a new Gaussian chain consisting of N' 
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= N / h  segrnents  with bond length bh", where v = 1/2 and 0.6  in theta and 
good solvents,  respectively. The tra~sformation from the old to the new 
chain involves the transformation (Ref. 3, p. 104) 

N +  N / h  and b+ bh" (11.18) 

By applying this transformation to Eq. (1  1.17),  we obtain 

(11.19) 

f (N) = constant x N-V ( l  1.20) 

so that f (N /h )  = constant x (N/h)-'. Hence, 

k l '  
D = constant x N-" 2~ - kB l' 

rlSb rlSR 
(1  1.21) 

where R = bN" is the radius of the coil. 
In the same way, the rotational relaxation time can be  assumed to 

depend on 6, kBT, qs, and N .  In this case, the two-dimensional analysis 
suggests that 

Applying the transformation of Eq. (1  1.18) to Eq. (1  1.22)  gives 

Fulfillment  of Eq. (1 1.23) for any arbitrary value  of h requires that 

f (N) = constant x N3" 

Hence, z, can be written as 

(1 l .22) 

(1 1.23) 

( l  1.24) 

(11.25) 
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In  theta solvents U 1/2, and consequently R Therefore, Eqs. 
(1 1.21) and (1 1.25)  suggest that  the scaling  laws for the diffusion coefficient 
and the rotational relaxation time are 

in  agreement  with the experimental results. 

verlapping of  molecular  domains  imposes serious constraints on the 
motions of polymers that strongly affect their dynamical properties. A 
wealth of information  suggests that as long as the polymer  is linear and 
flexible and its molecular  weight is above a critical value MC, the viscosity  of 
polymer melts and concentrated solutions scales  with the 3.2-3.4  power of 
molecular  weight (8). Moreover,  these  systems exhibit an ostensible elasti- 
city. If a specimen  of a melt  is stretched and  the resulting deformation is 
maintained, the restoring force decreases  with time. ne can observe that 
the specimen shrinks like rubber if stretching is  released before the restoring 
force vanishes completely. The longest relaxatio ime  of the restoring force 
obeys the scaling  law T~~~ - Mx, with x = 3.4 0th the viscosity and the 
elasticity of melts and concentrated solutions suggest that relaxation of the 
molecular conformation is strongly retarded by the entangled structure of 
molecular chains. 

These observations are accounted for by the tube model  developed in 
the decade of the 1970s  (9-1 1). According to this model, topological con- 
straints in melts and concentrated solutions confine molecular chains in a 
tube-like region made of the surrounding chains. bviously, the  tube of 
each chain is continuously renewing itself, the time  of  renewal  being strongly 
affected by temperature, concentration, and molecular  weight.  The chain 
reptates inside the dynamic tube, different relaxation times defining the 
motions of the chains inside the tube. The primitive path  for a given con- 
formation of the polymer  is the shortest path connecting the two  ends of the 
chain with the same  topology as the chain itself relative to the constraints 
(Fig. 11 2 ) .  At very short times, the polymer  is  regarded as wriggling around 
the primitive path, On the longtime scale, the conformation  of the primitive 
path changes as the polymer reptates, creating and destroying the ends of 
the primitive path. 

The  main  assumptions made in the theory of the reptation theory are as 
follows  (3). 



~ o l e c ~ l a r   ~ o ~ e l s  of Viscoelastic Polymers 431 

(a) Overlapping of molecular domains in melts and concentrated 
solutions. (b) Schematic  representation of the  tube model;  the  dashed line represents 
the primitive  chain. 

1. The primitive chain has a constant  contour length L, so fluctua- 
tions of the contour length are neglected. 

2, The primitive chain reptates along  itself  with a diffusion constant 
that can  be  identified as the diffusion coefficient  of the 
model. Under  the action of a force f, the velocity  of the polymer 
in the tube is W =f/(, where ( is the overall friction coefficient  of 
the chain. It is  expected that c is related to the friction coefficient 
of the individual segments, CO, by the expression 

5 = CON (1 1.27) 

where iV is the number of  segments  of the polymer. 
overall diffusion coefficient  of the chain in the  tube can  be written 
as 

(1 1 .28) 

where Dl = kBT/rO is the diffusion coefficient  of the individual 
monomer or segment  of the chain. 

3. The conformation of the primitive chain becomes  Gaussian on a 
large length scale. This means that if the position of  two points on 
the primitive chain are r(s, t )  and r(s’, t),  where S and s f  are the 
contour lengths measured  from the chain end, then 



for 1s - s'l >> a. Hence, the mean square end-to-end vector  of the 
primitive chain is La. The parameter a is  identified as the step 
length of the primitive chain. 

The three parameters necessary for the characterization of the primitive 
chain, L, D, and a can be  expressed in terms of the Rouse model parameters 
N ,  b, and 5. Thus D is  given  by Eq. (1 1.14), while La is equal to Nb2, the 
mean square end-to-end distance of the Rouse chain. As a result, the length 
of the primitive chain can be written as 

Nb2 L = . -  
a 

(11.30) 

The parameter a has been  identified as the radius of the tube, and its value  is 
close to the root means square of the end-to-end distance of the chain with 
molecular  weight M,, that is, the molecular weight  between entanglements. 

At very short times, the moving  segments are  not constrained by the 
tube formed by neighboring chains, and the dynamics are described by the 
Rouse theory. A time T, can be  defined  such that for t T, the chain 
behaves  like a Rouse chain in free space. For t 2 T,, tube constraints become 
important and the dynamics of the chains involve  two  processes, the relaxa- 
tion of the contour length and the disengage~ent from the deformed tube, 
that  are characterized by the Rouse relaxation time T, given  by Eq. (1  1.10) 
and the disengagement  time zd, respectively. This latter parameter is taken 
as the time  necessary for the chain to move the distance L defined  in Eq. 
(1 1.30). At time t = T,, the chain is  confined in a deformed tube. However, 
for t > ze, the polymer reptates, and as time  passes, the ends of the chains 
become  disengaged from the deformed tube while the remaining parts in the 
middle are still  confined  in the tube. Consequently, at t = ze, the Rouse-like 
behavior smoothly crosses  over the reptation behavior. Complete disengage- 
ment of the polymer from the tube occurs at t = zd. 

To emphasize the central role played  in chain dynamics  by both T, and 
let  us  assume that the system  is deformed instantaneously and then 

allowed to relax. Just upon deformation, the tube and the chain are 
stretched and oriented so that the curvilinear length of the tube becomes 
greater than the length L of the undeformed tube given  by Eq. (1 1.30). As 
time  passes, the deformed tube will shrink back to the equilibrium curvi- 
linear length L as a consequence  of the fact that the chain inside the tube 
regains the looseness that had been  reduced  by the deformation. Such a 
process  is not hindered by entanglements, and it takes a length of  time  of 
the order of T,. 
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At the end of the first relaxation process, the chain is  still  inside the old 
tube that existed right after the deformation, in the sense that the orienta- 
tions of its parts  are those produced by the deformation. The chain renews 
the tube by reptation, thus relaxing those orientations. This process requires 
a time zd that is much greater than the Rouse relaxation time zR. The two 
processes  merge into a single one for unentangled chains. In this case the 
chains relax according to the Rouse time zR. 

The relationship between zd and molecular weight can easily  be 
obtained by using  scaling arguments. Thus zd can be  viewed as the time 
necessary for the chain to diffuse along the primitive path. Hence (Ref. 2, 
Chap. S), 

(11.31) 

where Eqs. ( l  1.28) and (1 l .30)  have  been considered. This expression indi- 
cates that the disengagement or maximum relaxation time  scales  with the 
third power  of molecular weight. 

In the same way, the scaling  laws for the diffusion  coefficient of the 
chains in the melt or in concentrated solutions can be obtained by taking 
into account that during the time zd the reptating chain moves along its tube 
a length L - Na, However,  because the tubes are  contorted, the real dis- 
placement of the chain is R x N112b. Moreover, after such a time zd the 
memory  of the original conformation is lost, and  as a consequence  succes- 
sive  time intervals of length zd are statistically independent. Therefore the 
molecular weight  dependence  of the diffusion coefficient  of the reptating 
chain in the melt  is  given by 

where it has been taken into account that for melts and concentrated soh- 
tions of flexible  molecules the relationship t i 2  - N holds. It is noteworthy 
that whereas the scaling  law obtained from the reptation model for the 
diffusion  coefficient  of the chains is  in agreement with the experiment 
results, the theoretical molecular  weight dependence zd - M3 is  weaker 
than the experimental one; the experimental exponent ranges from 3.2 to 
3.4. 

The theory predicts (Ref. 3, p. 214) that z, 2 2-2zR and zd E Zzr, 
where 2 = L / a  = Nb2/a2 is the number of steps of the primitive chain, 
often referred to as the number of entanglements per chain. These relation- 
ships have  been  confirmed  by computer simulations (12). 
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ost polymers exhibit a wide distribution of molecular  weights. The mol- 
ecular weight  of  polymers  is  given as an average  value, the averages most 
often used  being the number average M,, and the weight  average MW, The 
breadth of the distribution is  usually characterized by the ratio ~ W / ~ ~  in 
such a way that the larger the ratio, the wider the distribution. 

A s  an effect  of the polydispersity, the distribution of relaxation times  of 
melts and concentrated solutions becomes broader. The stress carried by the 
shorter chains relaxes sooner than  that associated with the larger chains. 

owever, the relaxations of short  and long chains are  not independent of 
each other,  and  as a consequence the effects are  not simply additive. 

In interpreting the relaxation behavior of  polydisperse  systems by 
means  of the tube model, one must consider that renewal  of the tube occurs 
because the chain inside it moves thermally, either by reptation mode, by 
~uctuation of the tube length in  time (breathing motion), or in both ways 

oreover, the tube wall can be  renewed independently of the 
motion of the chain inside the tube because the segments  of the chains of 
the wall are themselves  moving. The relaxation mechanism associated with 
the renewal  of the tube is  called constraint release. 

For nearly monodisperse systems, many chains reptate away before the 
tube wall changes significantly. ~onsequently, the contribution of constraint 
release to relaxation is nearly negligible. However, for polydispers~ systems 
the situation is quite different. Let us consider a system made up of short  and 
long chains with molecular weights MS and M[,  respectively.  Let us assume 
further that the disengagement  times are z, and 21. It is  expected that the 
shorter chains relax as in a monodisperse melt.  However, the tubes of long 
chains in the mixture are partly made up by the short chains that move faster, 
and consequently the contribution of the constraint release to the relaxation 
may  become signi~cant, Limiting situations can be reached in which short 
chains merely act as diluents of the relaxation behavior of long chains. 

The interpretation of the relaxation behavior of  polymers  with an arbi- 
trary distribution of molecular weights  is  complex. This problem has not yet 
been  resolved and so far remains an empirical matter. 

S indicated above, low molecular weight polymers are  unentan 
melt, and according to the reptation theory these  systems should obey 
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Rouse dynamics. After some lengthy mathematical handling, beyond the 
scope  of this book,* the Rouse theory predicts that the relaxation modulus 
is  given by 

(1  1.33) 

where c is the concentration of  segments in the melt, N is the number of 
segments  per  molecular chain, and z, is  given  by Eq. (1  1.13). Consequently, 
the term c/lV is the concentration of  molecular chains in the melt. An 
alternative way to obtain Eq. (1  1.33) qualitatively is to use the theory of 
rubber elasticity in conjunction with the phenomenological theory of  vis- 
coelasticity. Actually, the rubber elasticity theory indicates that the relaxa- 
tion modulus is  expressed by G = (c /N)kBT.  Moreover, dissipation of 
energy occurs by friction of the moving beads with the viscous  medium, 
and in this situation the phenomenological theory of  viscoelasticity predicts 
that G(t) decays  with  time according to the equation 

We should note that z1 = z,,/2, which accounts for the factor 2 appear- 
ing in Eq. (l 1.33). This equation in combination with Eq. (6.49) leads to the 
expression 

(1 1.34) 

which relates the viscosity to the number of sements of the molecular 
chains. In the same way, the steady-state compliance 2 can be obtained 
from Eqs. (6.52) and (1 1.33),  giving 

*For details, see Ref.  3, Chap. 7 
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By taking into account that c = ( p / ~ ) N N ~ ,  where p is the density  of the 
polymer  in grams per cubic centimeter in the melt, A4 is the molecular 
weight  of the chains, N A  is Avogadro's number, and N is the number of 
segments  per chain, we obtain 

and 

(1 1.36a) 

(1 1.36b) 

where it was considered that z, - M2 [see Eq. (1 1,13)]. The experimental 
results obtained for the viscosity and steady-state compliance of polymer 
melts  of  low molecular weight  fit rather well to the theoretical predictions 
(8.15). 

For t > z,, the number of part of the polymer  disengaged from the deformed 
tube, beginning from the ends, increases  with  time.  Since  only the segments 
remaining in the tube  are oriented and contribute to the stress, the relaxa- 
tion modulus for t >> z, can be written as 

where G: is a certain constant (in fact, it is the relaxation modulus at the 
plateau indicated in the Fig. 1 l .3) independent of molecular weight and d>(t) 
is the fraction of the segments  confined in the tube given  by (3) 
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log t 

log W 

Schematic curves showing the times at which Rouse-like behavior 
smoothly crosses  over reptation behavior ( t  = T ~ )  and the region ( t  > zd) in which 
disentanglement of the chains from the tube occurs (from Ref.  3.). 

with 

(1  l  .37a) 

(1  1.37b) 

From Eqs. (6.49), (1 l .37a), and (1 1.37b), the following expression is 
obtained  for qo 

whereas the steady-state compliance  is  given by 

(11.38) 

(1  1.39) 
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where  scaling  of both "cd and qo with the third power  of molecular weight 
was considered. The scaling relationships suggested by the theory for the 
representative viscoelastic functions of  highly entangled systems can be 
summarized as 

?l - M 3 ;  J," - M o ;  I) (1 1.40) 

The Doi-Edwards theory provides expressions for G;, q,  J,", and D that 
contain two adjustable parameters: the friction coefficient and the primitive 
path step length L. The friction coefficient can be obtained from the rela- 
tionship between the viscosity and molecular weight in the Rouse theory 
[Eq. (1 1.36)] or from the relaxation spectrum discussed  below. Moreover, 
the step length a can be determined from the plateau modulus G;. Actually, 
according to the Doi-Edwards theory 

(1 1.41) 

where R2 is the mean square end-to-end distance. Equation (l 1.41), in con- 
junction with Eq. (8.54),  allows us to express the parameter a as a function 
of the molecular weight  between entanglements, Me 

(1 1.42) 

where R&e is the mean square end-to-end distance of the chain between 
entanglements. It is then possible to express the values  of the viscosity, 
steady-state compliance, and diffusion coefficients in terms of measurable 
magnitudes. Thus (1 3), 

and 

(1 l .43a) 

(1 1.43b) 

(1 1.43c) 

where .DR and qR are, respectively, the diffusion coefficient and the  viscosity 
predicted by the Rouse theory. 



~ o l e c ~ l a r   ~ o d e l s  of  ‘Viscoelastic  Polymers 439 

The overall shape of the theoretical double logarithmic plot of G(t)  versus t 
is  shown in Figure l l .3 (see ef. 3, p. 229). For t z,, log G(t)  is a linear 
function of log t with slope - 1/2.  The relaxation modulus  is nearly flat in 
the range of time z, t zd; since zd - M 3 ,  the width  of the plateau 
increases with  molecular  weight. Finally, G(t)  drops  for t > zd because the 
fraction of  segrnents still confined in the deformed tube  and consequently 
contributing to the stress decreases rapidly. The  main features of the plot are 
in rather good  agreement  with the experimental results. 

y comparing theory and experiment we find that the reptation model 
gives a good  account  of the molecular  weight  dependence of the diffusion 
coefficient and the steady-state compliance in highly entangled polymer 
systems.  However, the exponent 3 predicted by the theory for the molecular 
weight  dependence of both qo and zd differs from  the values 3.43.7 found 
for this quantity in experiments. There are  strong arguments supporting the 
exponent 3  that the theory predicts. Actually, according to  the linear theory 
of  viscoelasticity, the mean relaxation time  is  given by (z) = qoJ: [see Eq. 
(9.33)) After Eq. (1  1.32), the  ratio between (x) and zd can  be written as 

(1 l .44) 

It is  expected that (2) and z d  are the same order of magnitude so that l? should 
be  independent of molecular  weight.  However,  since D - M-2, R2 - M, and 
J: - M’, one  finds that l7 - if the exponent  3.4  is  used for  the mol- 
ecular weight  dependence of the viscosity. In this case, l? would continuously 
increase with  molecular  weight, a result that seems to be unlikely. However, 
the ratio becomes  independent of molecular  weight if the exponent 3 is used, 
in  consonance  with  what  one  would expect. The  power  law q / M 3  cx 
describes reasonably well the experimental results (l 6) for values  of M up  to 
200M~, but,  as Figure l1 ‘4 shows, a  pattern of negative departure develops 
beyond this range. Craessley conjectured that  pure  reptation behavior will  be 
observed only for molecular  weights higher than 800M~. Thus an exponent 
larger than  3 would  be the result of a crossover region in the viscosity  from 

Though theory predicts the molecular  weight  independence of J: for 
M >> M:(= 6M,), the theoretical values  of J: are somewhat  lower than the 
experimental ones. It should  be  pointed out  that  a certain degree of  poly- 
dispersity may  enhance the experimental values  of the steady-state compli- 
ance  of  even so-called monodisperse  systems. Finally, the theoretical 

Ouse-like behavior to pure  reptation behavior. 
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I * ' I  

Molecular weight  dependence  of the ratio q / M 3  for different narrow 
molecular  weight distribution fractions of polystyrene. (From Ref.  16.) 

prediction for chain mobility  expressed by the diffusion  coefficient  is  in 
rather good agreement with the limited experimental results available (17), 
as the plots of Figure 11.5 indicate. Actually, the results of this figure  show 
that D - LW" for low molecular weight fractions ( M  MC), as the Rouse 
theory predicts, while for long chains (M > MC) D - M " 2 ,  in agreement 
with the tube theory prediction. 

For t << T,, the dynamics of entangled polymer  melts are described by the 
Rouse model.  Owing to the fact that T, << T,, Eq. ( l  1.33) can be written as 

Hence, d log G(t)/d log t = - 1/2 at short times; moreover, since z, - N2, 
Eq. (1 l .45) suggests that G(t) and G: are independent of molecular weight. 
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Double logarithmic plots showing the diffusion coefficient  versus 
molecular weight for linear polystyrene. (From Ref. 17.) 

The friction coefficient  is customarily obtained from either the relaxa- 
tion or  retardation spectrum, H(z) or L(z), respectively. At  short times, i.e., 
on the transition from the glassy-like to the rubbery plateau, the viscoelastic 
processes  obey Rouse dynamics, and the relaxation modulus is  given  by Eq. 
(1 l .45).  Since H(z) = -dG/d In zlt=z, one obtains 

(1 1.46) 

where  use  was made of Eq. (9.37). In Eq. (1 l .46), p is the concentration of 
polymer (g/cm3 or kg/m3), MO the molecular weight  of the statistical link, 
and b its length. A double logarithmic plot of H(z) against z should give a 
straight line  with  slope - 1/2 in the region  of long times  of the glass-rubber 
relaxation of amorphous polymers (18). Typical spectra for this relaxation 
process are shown in Figure 11.6, An inspection of  these spectra suggests 
that the molecular theory is  valid  in a region  covering  only about two to 
three decades of z. By writing Eq. (1  1.46) as 
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Double logarithmic plot showing the relaxation spectrum in the 
transition zone for six methacrylate polymers reduced to 100°C. E, B, H, 0, DD, 
and 2-EB  refer to ethyl, n-butyl, n-hexyl,  n-octyl,  n-dodecyl and 2-ethyl butyl, respec- 
tively. Dash lines represent the portions of the spectra where the slope is - 1 l 2  (From 
Ref. 18.) 

2nMo log6, == 2logH + logz + log (kp6T) - log (m) (1  1.47) 

the coefficient  of friction can be determined by taking the corresponding 
values  of H and z in the region  of the spectrum where the molecular theory 
holds, that is,  where the slope of the double logarithmic plot of logH(z) 
versus z is - 1/12. 

The coefficient of friction can alternatively be obtained from the retar- 
dation spectrum, In this case, 

(1  1.48) 

A double logarithmic plot of L(z) versus z gives a straight line  with  slope 1/2 
at short times.  Values  of CO can be obtained from Eq. (1  1.48)  by  using the 
procedures described above to evaluate this parameter from the relaxation 
spectrum. 

In general, the coefficient  of friction is not sensitive to molecular weight 
provided that the chains are  not very short. This coefficient  decreases for 
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polymers containing side chains that act as internal plasticizers. The friction 
coefficient  is  governed  by the free  volume, and its temperature dependence  is 
described by the VFTH equation. 

It is  expected that the same picture that gives a good account of the linear 
viscoelastic  behavior  of  polymer  melts  should  also hold for semidilute and 
concentrated solutions. In the case  of  semidilute solutions some  conclusions 
can be drawn  from scaling arguments (19,3, p. 235). In this  way, concentra- 
tion dependence of the maximum  relaxation  time T~,, the zero shear rate 
viscosity qot and the plateau modulus G; can be obtained, where qs is the 
viscosity  of the solvent. The relevant parameters needed to obtain zma, as a 
function of con cent ratio^ are b, c, N ,  kBT, and vs. imensional  analysis 
shows that 

(1 1.49) 

where h segments are grouped, 

N -+ N/h;  b "+ bh"; c -+ c /h  (11.50) 

Equation (1 1.49) must  be invariant under this t ransfo~at ion,  whence 

b3fi(cb3, N) "+ b3h3"fi ( ib3h3", F) = b3h3"' (cb3h3'"'., F) (11.51) 

This  requires that 

b3fi (cb3, N )  = N3"b3fi (cb3 N3'"') (1 1.52) 

y taking into account  that the critical concentration c* at which  overlap- 
ping of molecular domains occurs is 

Eq. (1 1.49) becomes 

(11.53) 



(11.54) 

The concentration dependence of -cmax can be obtained by imposing the 
condition  that T~~~ - N3. In this case, N3'b3~(cb3N3'-') N N3'b3 
(cb3N3'"')" - N3. Accordingly, (3v - 1)x + 3v = 3, and x = 
(3 - 3v)/(3v - 1). For good solvents (v = 0.6), so that Eq. (1 1.54)  becomes 

q N3"b3 c (3-3v)/(3v-I) 
Tmax 2 + (2) 01 c3/2M3 (1 1.55) 

where it has been considered that C (g/mL) - c  and M - N. 
The  parameters governing the zero shear rate viscosity qo are the same 

as those indicated above for  the longest relaxation time. Dimensional ana- 
lysis  shows that 

To = Th(Cb37 W (1 1.56) 

Invariance under the transformation of Eq. (1 1 S O )  leads to 

f i(cb3, N )  +h(cb3h3"", F) (11.57) 

For this to be  satisfied, f2(cb3, N) = ~ f ~ ( c b ~ N ~ ~ - ' ) .  Hence, Eq. (1 1.56) can be 
written as 

The condition qo - N3 consistent with the  reptation prediction 

yo qs(cb3N3'"')" - N 3  (1 1.59) 

requires that (3v - 1)x = 3. Therefore, x = 3/(3v - l), and  Eq. (1  1.59)  is 
given  by 

(11.60) 

Let us  now analyze the  concentration dependence of the diffusion coeffi- 
cient of polymer solutions. By using the methods outlined above, we find that 

(11.61) 
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The invariance of this equation under the transformation of Eq. (1 1 SO) ,  

1 1 
-f3(cb3,  b N) = 

f3 ( cb3h3'"' F) (1 1.62) 

requires that 

1 1 g f3(cb3, N) = - f 3 ( ~ b ~ N ~ ' " ~ )  
b W  

(1 1.63) 

Consequently, Eq. (1 1.63) can be written as 

(1 1.64) 

If the restriction L) - i T 2  is imposed, then (3v - 1)x - v = -2, and 
x = (v - 2)/(3v - 1). In this case Eq. (1 1.64) becomes 

(1 1.65) 

Finally, by taking into account that G; - No,  the plateau modulus depen- 
dence  of the concentration is  expressed by 

(1 1.66) 

The exponents of C in Eqs. (1  1.55), (l 1.60), (1  1.65), and (1 1.66) were 
obtained assuming  v m 0.6. These equations approximately agree  with the 
experimental results in the semidilute  regime  in good solvents. The validity 
of the scaling arguments in theta solvents has  not yet  been established. It 
should be pointed out  that the exponents in the molecular weight depen- 
dence  of qo and z,,, are somewhat higher than 3. 

For high concentrations the dynamics of the chains are the same as in 
melts.  Excluded  volume  effects and the hydrodynamic interaction are  not 
important. However, both the radius of the tube and the friction coefficient 
strongly depend on the concentration. Because the depedence  of CO on C is 
nontrivial, there are  no scaling  laws relating T~,, and qo to the concentra- 
tion. For the plateau modulus, it was found experimentally that (8) 

G& o( C2 (1 1.67) 
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S indicated in Chapter 8, the viscoelastic properties of  high molecular 
weight branched polymers  differ from those of linear polymers. Most of 
the experimental work related to the viscoelastic behavior of branc~ed poly- 
mers  was carried out  on star-shaped polymers  in  which three or more arms 
are connected to a center. The diffusion  coefficient of a polymer of this kind 
is significantly  lower than  that of a linear polymer of similar molecular 
weight (20). The steady-state compliance is proportional to the molecular 
weight,  even  if M is high, thus showing Rouse-like behavior in this regard 
(21). The zero shear rate viscosity  of the melts  of star-like polymers  increases 
more rapidly with molecular weight than  that of linear polymers (22J3). 

analyze the tube model for star-like molecules  in concentrated 
ach arm of the star is surrounded by its tube of topological 

constraints such as occurs for linear chains (see Fig. 11.7). 
star-like molecule cannot reptate in the tubes because the branch point 
shared by  all the arms opposes the reptation. The motion of the arms in 
the tubes is promoted by the fluctuation of the tube length over  time. This 
motion, called chain breathing, superimposes upon reptation, thus contri- 
buting to a faster relaxation. Actually, when the length of the tube becomes 
shorter than average  in its breathing motion, the end parts of the tube 
vanish. Though breathing motion also occurs in linear chains, its contribu- 
tion to relaxation is a marginal one. However, breathing is the only mechan- 
ism  by  which star-like polymers can relax. 

Owing to the strong dependence  of the motion of star-like molecules on 
fluctuations, the relaxation time must be  inversely proportional  to the prob- 
ability that the fluctuation of an  arm brings the corres~onding tube to  an 
essentially zero length. Obviously, the relaxation time should be a rapidly 
increasing function of the arm length. According to the tube model, the 
relationship between the relaxation time and the molecular weight  is  given 
by (14) 

(b) (C) 

Reptation of star  chains in the  tube model. (From Ref. 3.) 
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(11.68) 

The model also predicts for qo and J: the following expressions ( 
28 1): 

and 

(1 1.69a) 

( l  1.69b) 

where f is the number  of arms of the  star  and Me is the molecular  weight 
between entanglements. These equations  are in qualitative agreement  with 
the experimental results. However, there is a strong discrepancy between 
theory and experiment. For example, the viscosity  is smaller than the cal- 
culated values and the best agreement  with  experiments  is  obtained by 
replacing the numerical factor 15/8 by a smaller one, 1/2. It should  be 
pointed out, however, that the viscosity  of a branched  polymer of not  too 
large molecular  weight  may  be  lower than  that of its linear counterparts. 
Actually, the comparison  is  made at equal values  of the overall molecular 
weight, and  for  stars with  relatively short  arms  the exponential factor of Eq. 
( l  1.70) may  be  lower than  the  third power  of Eq. (1 1.40). 

Calculate the number of macromolecules sharing the same  domain in a 
polyethylene melt  with a molecular  weight of 140,000 g/mol. 

Data: Density = 0.9 g/cm2; characteristic ratio (rz)/ng2 = 7.6, where n is 
the ?umber of segments per macromolecule and tbond = 1.53 
A (l A = 10"' m). 

The macromolecular radius is  given  by 

112 
R = (r2)li2 = (7.6 x ~ 1407000 x 1.532) = 4 2 1 . d  14 
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Volume0 of an isolated macromolecule = (443) x 421.83 = 

Number of macromolecules per  volume unit: 
3.14 x 10' A3. 

0.9 g/cm3 
140,000 g/mol 

x 6.023 x loz3 molecules/rnol = 3.87 x 10l8 molecules/cm3 

Number of  molecules sharing the same domain (1  cm3 = A3) 
3.14 x lo8 x 3.87 x 1018/1024 = 1216  rnacromolecules/domain 

Using  scaling arguments, show that the square root of the mean square end- 
to-end distance of a flexible chain is  given by 

where  angled brackets denote average and v is the scaling exponent. 

It is  expected that R will not only  be a function of the number of  segments  of 
the chain, N ,  but will also depend on the segment length, b. Therefore, 

R = b f ( N )  (P1  1.2.1) 

Let us group h segments  of the chain in such a way that 

N 
h N + - ;  b--+bh" 

Since R must be invariant under this transformation, we obtain 

R = b f ( N )  = bh" f - (3 
The only way that Eq. (P1  1.2.3) holds is that 

f ( N )  = constant x N" 

Consequently, Eq. (P1  1.2.1)  becomes 

(P1 1.2.2) 

(P1 1.2.3) 

(P1  1.2.4) 
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R = constant x bN" m bN" (P1 1.2.5) 

The value  of v in ideal (theta) and good solvents  is,  respectively,  0.5 and 0.6. 

By using  scaling arguments, show that D - N-' and z, - N2 in the Rouse 
theory. 

Dimensional analysis suggests that D is the product of two factors: one 
containing the thermal energy (k,T), the friction coefficient (C), and the 
bond length (b), and the other containing the number of  segments N .  
Accordingly, 

Hence 

L2 T" = (ML2 2"2)u(MT"')dLc 

-2a--d=-1 

a+d=O 

2 a + c = 2  

Solution of these equations gives a = 1; d = -1; c = 0. Consequently, 

By performing the transformation N -+ N/h; C -+ h(; b -+ bh", we obtain 

This equation requires that 

f(N) = constant x N" and D = - f ( N )  N - - iV" kBT kBT 
C O  CON 

l In the same  way, 
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The last equation requires that f ( N )  = constant x N1+2v. Hence, 

Taking into account that v = 1/2 in the Rouse model, we obtain 
Tr N2. 

Discuss the dete~inat ion of the statistical segment for polyethylene  whose 
structural unit is (-CH2 -CH2 -)x knowing that CM = (r2}o/nZ2 = 7:6, 
where (r2}* is the mean square end-to-end distance of a chain of n skeletal 
bonds each of length I (= 1.53 A), and nZ2 is the mean square end-to-end 
distance of the chain in the idealization that the skeletal bonds are freely 
jointed. 

We can replace the y1 skeletal bonds of length I eayh  by n freely jointed 
skeletal bonds of length Z'. Then 7.6nZ2 = nl 2 ;  hence I' = 7.61/2 
I = 2.761 = 4.2& I' is often represented in the literature by b. 

An alternative way  of expressing the statistical weight  segments  is to 
assume that the chains are formed by n' segments,  each  of length I' that 
obey the relationships 

rmax = n'l' (P1  1.4.1) 

and 

n'll2 = 7 . 6 ~ 1 ~  (P1  1.4.2) 
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where rmax is the ma~imum length of the chain. Since the C- C - C  bond 
angle is 1 lo", rmax ,= nZcos  35" = 0.82nZ. Hence, n/nl  2 9.2 and E' = 0.82 x 
1.53 X 9.2 = 11.5  A 

The double logarithmic plots of qo versus M for low  molecular  weight 
fractions ( M  MO) may not obey the Rouse scaling law (q - M )  unless 
corrections for the dependence of the coefficient of friction on  molecular 
weight  is  made  (see Chap. 8, Sect.  8.6.3).  If the viscosity  of a polymer chain 

of average  molecular  weight 5000 is  2 x lo3 poise and Tg = -55"C, estimate 
the viscosity corrected for the chain length effect at -3O"C, knowing the 

following data  for chains of high  molecular  weight: (r2)0/nZ2 = 6.2;  number 
of skeletal bonds,  2;  molecular  weight per monomer, 7 1. Moreover, in the 

transition region  in  which d log H ( T ) / ~  log T = - 1 /2, H(T) is  2 x lo6 dyn/ 
cm2 for z = S at -30°C; p = 0.97 g/cm3; Qg/B = 0.031; and 

As  shown in Eq. ( l  1.14), 

r( = kroM (P1  1.5.1) 

where To is the coefficient  of friction, which  depends on molecular  weight. 
By multiplying the two  sides  of this equation by the ratio coo/co, where coo 
and CO represent the friction coefficient for chains of molecular  weight  infi- 
nity and M ,  respectively, Eq. (P1 1 S .  1)  becomes 

rlioo/To = kc00 = k' (P1 1.5.2) 

The  mean square end-to-end length per monomer unit is  given  by 

b =  [ ~ ~ ~ ~ ~ ~ 1 2 ]  "'1 = (6.6 x 2)'/2 x 1.53 A = 5.56 A/monomer (P1 1.5.3) 

According to  Eq. ( l  1.47), the friction coefficient for a fraction of  high 
molecular  weight  is coo = 1.364 x dyn.s/cm. 

y  assuming that  the coefficient  of friction is governed by the free 
volume, the values  of coo (high molecular  weight fraction) and Go (low 
molecular  weight fraction) can  be written as 
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(P1  1.5.4) 

where ciDoo and Qro represent, respectively, the free  volumes  of the fractions 
of high and low  molecular  weight. 

Hence, 

(P1 1.5.5) 

The values  of Qroo and Qj0 at -30°C are 0.040 and 0.0423 cm3/cm3, respec- 
tively. Therefore, CO = 3.5 x dyn.s.cm".  Hence 
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When an  amorphous material in the liquid state is cooled, a temperature is 
reached  in the vicinity of which a transition from the liquid state to the 

454 
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glassy state occurs. The  glassy state may also be  formed  if a molten crystal- 
line material is cooled at a heating rate high  enough that  the development  of 

crystalline order is prevented. Low  molecular  weight organic substances, 
inorganic salts and oxides, polymers, etc. can develop the glassy state, As 

Eq. (6.33) indicates, the mean relaxation time of a liquid is  given  by 
(z) = qoJ:, where qo and J: are, respectively, the viscosity and  the 

steady-state compliance. The  viscosity  undergoes an  anomalous increase 
with decreasing temperature as the temperature  of the liquid comes  closer 
to Tg, so the value of (z) becomes larger than  the time  scale  of  any available 

experiment. In this situation,  the system  falls out of equilibrium and the 
glassy state is formed. 

The temperature  dependence  of the viscosity  of liquids led to their 
classification as fragile and  strong liquids (1). For fragile liquids the varia- 

tion of the viscosity  with  temperature  is described by the Vogel- 
) equation, while for  strong liquids the viscosity 

follows  Arrhenius behavior. As  shown in Figure 12.1, the  jumps in the 
specific heat at Tg are much larger for fragile liquids than  for  strong ones. 
Examples of fragile liquids are organic liquids, polymers, and inorganic 
salts; liquids like Si02 and Ge02 are examples  of strong liquids. It should 
be pointed out  that polymeric materials are the most fragile liquids 

1 f"Et0H I 

0 0.2 0.4 0.6 0.8 1.0 
Tg/ T 

Variation of the viscosity and the specific heat (inset) with tempera- 
ture for various glasses. (From Ref. l.) 
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identified to  date. However,  they cannot be accommodated in Figure 12.1 
without modification, because the viscosity  of a polymer liquid is  largely 
 ont trolled by its molecular weight. 

Let us  analyze  now the variation of the heat capacity of a molten 
crystalline substance with temperature. If the melt  is  slowly cooled, a tem- 
perature is  reached at which a sharp decrease in the heat capacity C,, caused 
by the liquid "+ crystal transition, occurs. The variation of Cp with tem- 
perature is shown in Figure 12.2. The heat capacity decrease  with  decreasing 
temperature at T Tm, becoming  zero at T = 0 K. However, the heat 
capacity of a supercooled melt  slowly  decreases as the temperature declines, 
the difference C' (liquid) -Cp (crystal) increasing as the temperature 
decreases. At the temperature at which the liquid -+P glass transition occurs, 
a sharp fall in C, takes place, and the value  of Cp at Tg becomes  only  slightly 
higher than  that of the crystal at the same temperature. The curves showing 
the variation of both the heat capacity and the entropy for the crystal and 
the supercooled liquid at 7" Tg indicate that a temperature TK is reached, 
called the Kau~mann temperature, at which the crystal and the glassy liquid 
exhibit the same entropy (2).  Because the structural entropy of the crystal is 
zero, one would  expect that the value  of this quantity also would  be  nil for a 
completely  relaxed  glass at the Kauzmann temperature. This reasoning 

Variation of the  heat  capacity for fragile  glass formers in crystal (C), 
supercooled liquid (LK), equilibrium liquid (Leq) and glass (G) phases. TK is the 
Kauzmann  temperature. 
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suggests the possibility of reaching an ideal  glassy state if the cooling rate is 
slow enough. It should  be pointed out, however, that local motions of 
particles  would  hinder the possibility of reaching  ideal  glassy structures. 

A  dramatic change  in the viscoelastic functions is the most  important 
characteristic of the glass-rubber transition. An abrupt decrease is  observed 
in the values  of the compliance functions J(t) and J‘(w) in the liquid -3 glass 
transition, in contrast with what occurs  with the values  of the moduli G(t) 
and G’(w), which undergo  a sharp increase. The opposite occurs  in the var- 
iation of  these  viscoelastic functions in the glass ”+ liquid transition. The loss 
functions J”(co), G”(o), and  tan 6 exhibit a maximum  in the transition (3). In 
contrast with the sharp changes undergone by the viscoelastic functions in 
the glass -3 liquid transition, the temperature dependence of  these functions 
in the glassy state is comparatively small.  However, the isochrones corre- 
sponding  to  tan 6 or any other viscoelastic  loss function exhibit  noticeable 
absorptions in the glassy  region  (4),  suggesting that  important mechanical 
activity  may take place  in the glassy state, even at temperatures well  below 
TB. Illustrative plots showing the temperature dependence of the storage 
relaxation modulus  and the logarithmic decrement  in the glassy state and 
the glass-rubber transition are shown  in  Figure  12.3. 

The curves  showing the frequency  dependence of loss functions [tan& 
G”(W), or J”(o)] permit the detection  in the frequency domain, at tempera- 
tures just slightly above the glass transition temperature, of a prominent 
absorption or a process. The unavailability of experimental  devices to mea- 
sure mechanical  viscoelastic functions at high  frequencies  impedes the 
detection of a fast process or p relaxation in the high  frequency  region. 
This latter process  is  usually  detected  in the glassy state at low  frequencies. 

The presence  of the a and p processes  in the frequency domain is 
observed, for example,  in the curves of the dielectric  loss obtained at tem- 
peratures slightly above Tg. It should be noted  that in this case  experimental 
devices are available that permit  measurement of the complex  dielectric 
permittivity from  to lo9 Hz. As the temperature increases, both the 
a and p processes are shifted to higher  frequencies.  Owing to the fact that 
the activation energy  of the a process  is  much greater than  that of p relaxa- 
tion, an increase  in temperature decreases the distance between the a (low 
frequency) and p (high  frequency)  processes. The two relaxations eventually 
overlap, forming the ap relaxation (5). This  behavior  is  observed  in Figure 
12.4,  where the dielectric  loss  in the frequency domain for poly(methy1 
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Illustrative curves  showing the  temperature dependence  of both  the 
storage  relaxation  modulus G’ and  the l o g a r i t ~ i c  decrement A in the glassy state 
and glass-rubber transition. (From Ref. 47.) 

0. 
41 

The dielectric loss in the frequency domain, at different tempera- 
tures, for poly(methy1 acrylate). (From Ref. 6.) 
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acrylate) is  shown (6). It is  noteworthy that  no thermodynamic  change 
occurs above Tg for  amorphous substances, and consequently the a relaxa- 
tion in the frequency  domain  is not associated with a thermodynamic 
change in the material. The average relaxation time  of the a process also 
obeys the VFTH equation. 

The a relaxation in the frequency  domain can be interpreted in  terms of 
a stretch mean relaxation time, as discussed  below.  According to Eq. (5.37), 
the response of a viscoelastic material to a shear stress cr(t) is  given  by 

(12.1) 

Here Jd, = J,, - J,,, where Jrcl and Ju, are, respectively, the unrelaxed and 
relaxed compliance functions in the a relaxation process. The  values  of these 
quantities could in principle be  obtained  by extrapolation methods  from 
complex plane plots of J”(w) versus J‘(w). If ~ ( t )  = 00 Im exp(iot), then 
Eq. (12.1) can be written as 

Since J*(w) = E ( ~ ) / [ c T ~  Im exp(iwt)], Eq. (12.2) leads to the expression 

(12.2) 

(12.3) 

where G signifies the Laplace transform. Here the buildup function \Ir(t) has 
been  replaced  by the decay function @(l) = 1 - Q(t). For relaxation experi- 

ments we obtain 

(1  2.4) 

G,, and G,, being the unrelaxed and relaxed relaxation moduli at infinite 
and zero frequencies, respectively. 

It is an experimentally demonstrated fact that the a relaxation in the 
tim-e domain  fits the stretch exponential decay function @(t) or  the 

ohlrausch-~illiam ) equation (7,8) 

(12.5) 
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where 0 7 5 1. The parameter 70 is a mean relaxation time  whose  tem- 
perature dependence in the vicinity  of the glass transition temperature is 
governed by the VFTH  equation. The value  of ;j; depends on the breadth of 
the a relaxation in the frequency domain. In the case  of a process  described 
by a single relaxation time or Debye-type relaxation, the value  of the expo- 
nent ? is unity. As the complexity  of the a relaxation process  increases, the 
value  of 7 decreases. In other words, the wider the distribution of relaxation 
times, the smaller the exponent of the KWW equation. Substitution of the 
KWW equation into Eq. (12.3) or (12.4)  allows the determination of the 
compliance and relaxation functions, respectively, in the frequency domain 
at temperatures slightly  higher than T'. 

The experimental evidence indicates than when a non crystallizable liquid is 
cooled, a temperature is  reached at which the ap absorption splits into two 
relaxations: the slow a relaxation, which  obeys the VFTH equation and 
remains  kinetically  frozen at temperatures below T', and the faster p relaxa- 
tion, which  follows Arrhenius behavior and remains operative below T'. This 
behavior, illustrated (9) in Figure 12.5,  is  exhibited  by  low and high  mole- 
cular weight liquids. To interpret this bifurcation it is convenient to consider 
that condensed  phases  owe their existence to interactions between the con- 
stituent particles: atoms, ions, or molecules.  These interactions are embodied 
in a potential energy function cli>(rl, r2, . . . , rN) that depends on the local 
position of those particles, a schematic representation of  which  is  given in 
Figure 12.6(2). 

The evolution of the system  is conditioned by the interparticle interac- 
tions, and the classical Newtonian equations give a good account of the 
dynamics  of the system. Minima, maxima, and saddle points are detected 
in the topographic representation of the potential energy function. The 
minima correspond to mechanically stable arrangements of the particles 
of the system in space, with  vanishing force and torque in each particle. 
Any  small  displacement from such an arrangement produces a restoring 
force that returns the particles to their undisplaced arrangement. The 
lower  minimum  would  be  occupied by the system if it were  cooled to abso- 
lute zero slowly enough to maintain thermal equilibrium. This situation 
corresponds to a perfect crystal. Above the melting temperature, higher 
minima appear  that correspond to particles packing in the equilibrium 
liquid phase. As the temperature of the liquid  decreases, the configuration 
point of the system, r(t), is  forced into regions  of  increasingly  rugged and 
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Illustrative curve showing the temperature dependence of peak 
relaxation frequencies for a glass-forming liquid. (From Ref. 9.) 
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Transition  states 
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Schematic diagram of the potential energy hypersurface in the multi- 
dimensional con~guratio~al space for a many-particle system. (From Ref. 2.) 
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heterogeneous topography, seeking out ever  deeper basins or craters. The 
craters  are in turn connected by elementary basins that account for reor- 
ganization of the particles at the local level. 

The p relaxation will arise from transitions between  elementary basins, 
while the a relaxation will  be produced by large-distance intercrater transi- 
tions. This behavior  is illustrated in Figure 12.7. This latter transition 
involves a large sequence  of  elementary transitions, and consequently the 
activation energy associated with the a relaxation is  much larger than  that of 
the p process. At the glass transition temperature, the intercrater distance 
will  be too great, and only  elementary transitions within  each crater will 

g  to the wide variety of elementary basins within each crater, p 
hibit a wide distribution of relaxation times. 

The differences  between strong  and fragile liquids to which we referred 
earlier can  be explained in terms of the topographic view  of the potential 
energy function <P(rl, . . , rN) .  Surfaces with few minima (craters) and high 
energy barriers between  minima generate strong liquids (2).  Owing to the 
low density of craters in the potential energy surface of strong liquids, large- 
distance intercrater transitions that produce a relaxation rarely occur; in this 
case, only  elementary interbasin transitions associated with the p relaxation 
are  important. Consequently, the a relaxation has  very  low intensity, and 
the bifurcation shown in Figure 12.5  is not clearly detected. In contrast, the 
rather high con~gurational jumps in CP at T' suggest that fragile liquids 
should  have a high density of minima per unit energy increase. The  high 

craters facilitates long-distance intercrater transitions in fragile 
re the a relaxation has  high intensity, and the bifurcation appear- 

ing in the temperature  dependence of the peals relaxation of glass-forming 
liquids in clearly observable. 

I I 

Con~gurat io~al  space explored by a fragile liquid in the vicinity of 
the glass trarisition temperature (From Ref. 2). 
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In general, the components of both the complex relaxation modulus and  the 
complex  compliance function of  glassy  systems exhibit a small dependence 
on frequency. This behavior  is  mainly responsible for  the small magnitude 
of the loss tan 8, so  high  precision  is  necessary to determine it. 
system  from the liquid state  to the glassy state produces a large portion of 
excess  volume that shifts the dispersions to  shorter times. As will  be  dis- 
cussed later, the dependence of the free  volume on  the thermal history may 
be responsible for the lack of  agreement  among results reported by different 
authors. 

The  information  obtained for glassy  polymers  from shear experiments is 
not equivalent to  that obtained from elongation experiments  owing to the 
perceptible change  in  volume  produced by elongation (10). As can be  seen  in 
Figure 12.8, both G' and E' may  undergo a gradual increase of nearly 50% 
with increasing frequency. However, the inflection occurring in G' lies at 
about a tenfold lower frequency. It is  noteworthy that the values of tan 6,(= 
E"/E') and tan&(= G"/G') are similar within experimental error. 
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Values  of G', E', tan 6G, and  tan CjE for poly(methy1 methacrylate) in 
the vicinity of 25°C. The numbers between G' and E' denote values of  Poisson's 
ratio.  (From Ref. lo.) 
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The mechanical activity detected in the glassy state can be determined from 
isochrones showing the temperature dependence  of a loss function. The 
curves present an ostensible  glass-rubber absorption (glass-liquid absorp- 
tion for low molecular weight amorphous substances), called a relaxation, 
followed at decreasing temperatures by one or more absorptions called p, y, 
etc., relaxations. Illustrative curves  showing  these relaxations are plotted in 
Figure 12.9. The temperature dependence  of the relaxation times associated 
with the glass-rubber relaxations of  high molecular weight materials and 
glass-liquid relaxations of  low  molecular  weight materials is  described by 
the VFTH equation [Eq. (8.35)]. A s  occurs with the glass-rubber relaxation, 
secondary relaxations shift to higher temperatures with increasing frequen- 
cies. The kernel  of Eq. (9.10) presents a maximum for 01; = l, indicating 
that  for a sub-glass absorption with a single relaxation time 1;, the value  of 1; 
is  given  by the reciprocal of the frequency at which the maximum  of the 
peak is observed, Consequently, the average relaxation time, 
T(= 1/0 = 1/2nf, where f is the frequency in hertz), of a given absorption 
in the glassy state corresponds to the temperature of the isochrone 

-1 50 -100 -50 0 50 

Temperature dependence of tan 6 for poly(viny1 chloride) at frequen- 
cies  of (0) 0.1 Hz, ( ) 0.3 Hz, (a) 3 Hz, and (A) 10 Hz. 
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(see Fig. 12.9) at which the maximum  of the peak is located. The curves 
representing the variation of the storage relaxation modulus with tempera- 
ture exhibit an inflection point in the vicinity  of the temperatures at which 
the loss plots present a maximum. Illustrative plots are shown in Figure 
12.10. 

Sub-glass (p) relaxations can be obtained in the frequency domain at 
1” T’. In principle, a and p dispersions can be obtained in the frequency 
domain at temperatures slightly  higher than the glass transition tempera- 
ture. However, the low range of  frequencies available renders it difficult to 
detect them  by  mechanical  experiments. 

Sub-glass relaxation phenomena are thermally activated processes that exhi- 
bit Arrhenius behavior, 

= zo exp (S) (1 2.6) 
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Temperature dependence  of the tensile storage  relaxation  modulus 
for poly(viny1 chloride) at frequencies  of (0) 0.1 Hz, ( ) 0.3 Hz, (U) 1 Hz, ( 
Hz, and (A) 10 Hz. 
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where Ea, the activation energy associated with the process, depends on the 
viscoelastic  mechanisms  involved in the relaxation. By taking into account 
thatf = (~KT)", wheref is the frequency in hertz, Eq. (12.6) can be written 
as 

where Tmax is the temperature corresponding to the maximum  of the peak. 
~rrhenius plots give intercepts, logfo,  lying  in the range 13-15; for most 
polymeric  systems the value  of this quantity is  13.5 jt 1 Assuming that 
logyo = 13, Eq. (12.7) leads to the expression (1  1) 

Ea =: [0.060 - 0.0046 log.flT,w) (12.8) 

where E@ is  given in kilocalories  per  mole. Forf = 1 Hz, Eq. (12.8) predicts 
that Ea = 0.0601;, (1 Hz). In Figure 12.1 1, the values  of the activation 
energy for the sub-glass relaxation of a series  of  polymers are plotted against 
the temperature associated with the maximum  of the peak at 1 Hz. It can be 
seen that the predictions of Eq. (12.8) hold satisfactorily for polymers  with 
flexible  side groups. However, the predictions are  not so satisfactory for 
other types  of molecular chains. 

Sub-glass relaxations in polymers  with  flexible  side groups are believed to 
arise from motions taking place in these groups either alone or coupled with 
local motions of the backbone. The curves  showing the temperature depen- 
dence  of the loss functions of acrylate and methacrylate polymers containing 
cyclohexyl  rings in the alcohol residue  (12,13),  shown in Figure 12.12, pre- 
sent a strong secondary absorption in the glassy state located at -80°C at 1 

z, The fact that the activation energy  of this process (m 11 kcal/mol) is  of 
the same order of magnitude as  that determined by NMR for the chair-to- 
chair inverse conformational transition of the cyclohexane  ring  led to the 
conclusion that flipping motions of the ring are responsible for the second- 
ary relaxation process. In general, polymers  with  flexible  side groups present 
specific secondary relaxations, and consequently dynamic experiments car- 
ried out  on the glassy state  are useful for the characterization of  polymeric 
systems  (4,14,15). 
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Activation  energy Ea as a function of  the  temperature  associated 
with  the  peak  maximum of the p relaxation at 1 Hz. Filled  symbols,  main-chain 
motions;  open  symbols,  side  group  motions;  crosses,  motions  within  molecules  dis- 
solved  in  the  polymer  matrix.  (From Ref. 1 l.) 

Secondary  (sub-glass) relaxations appear  not only in the relaxation 
spectra of polymers containing flexible  side  groups but also in symmetrical 
molecular chains [poly(ethylene  glycol terephthalate), polyethylene, etc.] or 
in  asymmetrical chains without  flexible  side  groups  [poly(vinyl chloride), 
polypropylene, etc]. Illustrative curves showing the sub-glass relaxations 
of  polymers  without  flexible  side  groups are shown  in  Figure 12.13. In 
this case, secondary  processes are believed to be  produced by local motions, 
that is, by local conformational  changes occurring in the main chain. The 
lack of  dependence  of the relaxation times associated with these processes 
on  the chain length suggests that there must  be cooperativity in the con- 
formational  transitions taking place  in the intervening segments  in order  to 
ensure that  the volume  swept  by the adjacent tails of the chains is  negligible; 
otherwise the friction energy, and hence the relaxation times,  would increase 
with  molecular  weight. Simultations carried out in simple  polymers  such as 
polyethylene show that the conformational transitions are mostly  of the 
following type (1 6): 
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Temp, 'C 

Variation of both  the  storage  and loss relaxation  moduli with  tem- 
e) at several  frequencies.  Results obtained at ( 

(12.9) 

As shown  in Figure 12.14, these transitions produce changes only in the 
central segment, the extreme  segments remaining in positions parallel to the 
initial ones. 

The fact that the relaxation times associated with the glass-rubber transition 
and the secondary relaxations are independent of molecular weight  suggests 



Glassy  and ~e~icrys ta l l ine  Polymers 469 

7O8 

lo7 

l I - 200 - 100 0 l00 200 

Shear loss relaxation  modulus G" as a function of temperature for 
three amorphous polyesters in the glassy state. (From Ref. 1 l .) 

some sort of cooperativity among the molecular segnents taking part in the 
response. The relaxation time associated with the rotation  about a C- C 
bond placed  between  two  methylenic units may  be about S at room 
temperature (17). In isolated chains the intramolecular response  implies 
more complex motions involving  even triads. Obviously, the activation 
energy should slightly  increase  with the segment length. 

The dynamics of  polymers  may  be interpreted by assuming the existence 
of domains. At high temperature (T >> T'), each domain is  occupied by a 
single conformer and the interactions between neighboring segments or 
conformers are considered to be negligible.  Once the potential barrier is 
crossed, conformers relax independently of their neighbors. Each domain 
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Molecular models illustrating secondary  conformational transi- 
tions for symmetrical chains. (From Ref.  16.) 

contains the rotational states associated with each conformer; in most cases, 
there are three such states (trans, t; gauche positive, g"; and gauche nega- 
tive, g"). The number of conformers occupying a domain increases as the 
temperature decreases, that is, as the densification  of the system  increases. A. 
temperature T, can be  defined at which different domains merge, forming a 
macrodomain of  infinite conformers. Between the two  extremes are the 
domains associated with the condensed matter. In what follows we study 
cooperativity processes  in  systems in thermodynamic equilibrium. 

atsuoka (17) developed a theoretical approach to describe the glass tran- 
sition of  polymer chains that is  briefly  described  below. 

Statistical mechanical  principles  suggest that the conformational 
entropy Sc of 1 mol of conformers occupying NZ domains is  given  by 

S, = N,k3 In c1 (12.10) 

where cl is the number of rotational states of each conformer and kB is the 
oltzmann constant. If each molecular chain behaves as if it were isolated, 

that is, a single conformer occupying one domain, the conformational 
entropy of l mol of conformers, S*, can be written as 

S* = NAk3 In cl (12.1  1) 

where NA is Avogadro's number. Because z = NA/N,  from Eqs. (12.10) and 
(12. l l), the number of conformers per domain is  expressed by 

(12.12) 



Glassy  and Se~icrys ta l l i~e  Polymers 4 71 

This expression indicates that the size z is proportional  to the reciprocal of 
the  conformational  entropy. 

Therefore, when T" >> T', NZ % N A ,  and consequently S, - S". For 
T -c T", S, will diminish with decreasing temperature more rapidly when 
S*, reaching the value of zero at Tw. On the other  hand, the conformational 
population will  be  in the lowest  energy state at T = 0 K; in this case, cl = 1 
and S* = 0. Curves  showing the temperature  dependence  of the enthalpies 
H, and h* are plotted in Figure 12.15. At high  temperature (T = T"), the 
molecular chains behave as if  they  were isolated, and H,(T*) = h*(T*). Here 
the enthalpy is  approximately proportional  to the concentration of higher 
energy  conformations calculated from rotational isomeric statistics. Curve 
in Figure 12.15 includes the intermolecular interactions between neighbor- 
ing bonds,  which  begin to be larger than zero at T > Tw. Taking into 
account that ACE, = ( ~ ~ / ~ T ) E ,  yields the expression 

where it has  been considered that 

H(T*) = h(T*) 2! AC,(T* - T,) clzc ac;,* 

H,(T) = ACP(rr - T,) 

h*(T) = Ac;T 

On the other  hand, near equilibrium, H % TS, so 

A 
I /  

T T T*  

(12.13) 

(12.14a) 

(12.14b) 

(1 2.14~) 

(12.15) 

Variation of the enthalpy of a glass-forming liquid with tempera- 
ture. For T > T" each conformer occupies on domain. (From Ref. 17.) 
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Combining Eqs. (12.14) and (12.15), the ratio of entropies can be written as 

(12.16) 

The probability for a conformer to relax is p = exp(--hg/RT), where 
hg is the free  energy barrier, while the probability that the z conformers of 
the same domain relax simultaneously is  given  by 

p'=exp -- ( L:;) (12.17) 

Consequently, the ratio between the relaxation time (z) associated with the 
domains occupied by z conformers and  that (z*) corresponding to those 
occupied by a single conformer can be written as 

(12.18) 

where  use has been made of Eqs. (12.12) and (12.17). It should be pointed 
out  that Eq. (12.18)  is  similar to  that proposed by Adam and Cibbs, with the 
difference that in Matsuoka's approach inter- and intramolecular interac- 
tions are considered. From Eqs. (12.14),  (12.16), and (12.18), the Vogel- 
Fulcher-Tammann-Hesse (VFTH) equation is obtained: 

(12.19) 

where the expression 

T* - T, 
Ag* = Ag7 (12.20) 

was  used. Traditionally, the VFTH equation has been written 

T 1 1 
T* N.(T - T,) - N ~ ( T *  - T,) 

In-" = (12.21) 

where T* is the reference temperature and cy[== (l /  V)(6 Y/6T),] is the 
expansion coefficient. By comparing Eqs. (12.19) and (12.21) we obtain 
the relationship 
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(12.22) 

where R is the gas constant. Because for most polymer  systems 
a, m 6 x lov4 K-', Eq. (12.22)  suggests that Ag" exhibits a nearly  universal 
value  of 3.3 kea1 per  mole  of conformer. By considering, however, that 
Ag = Ag" T"/(T* - T,,), it is  possible to conclude that the intramolecular 
relaxation of one skeletal bond is greater with  polymers that have  higher 
T,, and hence  higher Tg. Comparison of Eqs. (8.40) and (12.22)  allows us to 
relate the free  volume fraction at Tg with the potential barrier Ag". The 
expression obtained is 

(12.23) 

Experimentally it is found that Tg - T,, 50 K for most polymers;  hence 
polymers having the same  value  of Ag" will  have the same  value  of <pg. 

Owing to the fact that the glassy state is a nonequilibrium or metastable 
state, the thermodyna~c properties of a glassy  system  (volume, enthalpy, 
etc.) in isothermal conditions will  evolve toward thermodynamic equili- 
brium. The evolution of the volume is usually  expressed  in terms of 
6 = (v - v,)/v,, where v and v, are, respectively, the specific  volume at 
time t and at equilibrium. After a T-jump cooling experiment, the variation 
of 6 with  time, in isothermal conditions, follows trends similar to those 
shown  (18) in Figure 12.16. This process  is known as structural recovery. 

The nonequilibrium state of a glassy  system  is often identified by its 
fictive temperature Tf (19). This parameter can be determined by drawing a 
line through the specific  volume  value on a volume-temperature plot with a 
slope equal to  that of a glass  line. The value  of Tf is that  at which the glass 
line intersects the equilibrium liquid line  (see Fig. 12.17). In other words, Tf 
can be  defined as the temperature at which the excess in a thermodynamic 
property (volume, enthalpy, etc.) would  be zero. Because  of the structural 
recovery  of  glassy  systems, the fictive temperature decreases as the aging 

time, tage, increases  (20). This behavior is shown  in Figure 12.18,  where the 
fictive temperature of polycarbonate is plotted against log tage at three tem- 
peratures. Here Tf is  roughly a linear decreasing function of log tage, In 
general, the value  of a given thermodynamic property of the glassy  system 
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r 

Isotherms showing the contraction of  glucose  glass at selected 
temperatures. (From Ref. 18.) 

is above the corresponding value at equilibrium, except  in the case  in  which 
the glassy  system  is rapidly heated. This situation is  reflected  in Figure 12.19, 
where it can be  seen that the expansion volume or enthalpy undergoes a 
delay  with  respect to the heating rate so that the values  of  these thermo- 
dynamic parameters lie  below those corresponding to equilibrium. 
Therefore, the glass transition temperature determined by this method will 
be  higher than the fictive temperature, and  as a consequence the difference 
between Tg and Tf will  increase as  both the heating rate and the time  of 
aging  increase.  However, if a glass  is heated more slowly than it was cooled, 
an exothermic peak is  observed as result of the contraction toward the 
equilibrium curve during the slow heating. This behavior is  schematically 
reflected in Figure 12.20. The intensity of the exothermic peak increases as 
the ratio of the heating rate to the cooling rate decreases. 

emory effects  play an  important role in structural recovery (IS), as can 
be  seen in Figure 12.21,  where illustrative plots of the evolution of  volume 
with  time for different thermal histories are shown. Curve 1 presents the 
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Temperature 

,119 Endotherm peaks for the expansion coefficient a or the specific 
heat Cp generation without annealing below Tg by heating at  a rate greater than 
that of the preceding  cooling. The corresponding curves for the volume V and 
enthalpy are shown in  the upper curves. 

variation of 6 with  time at 30°C for  a sample of  poly(viny1 acetate) 
quenched from 40°C  (liquid state)  to 30°C. Equilibrium (6 = 0) is  reached 
in about 1000 h in this case.  Curves 2, 3, and  4  correspond  to glasses 
prepared by quenching the same  polymer from 40”C, to respectively,  10°C 
(for 160 h), 15°C (for 140 h), and 25°C (for 90  h),  followed in all  cases  by 
upward jumps to 30°C. It can be  seen in these  curves that 6 is  nearly zero 
at  short times.  However, the glass does not remain at equilibrium, but 
“remembers” its previous history, and as  time  passes 6 goes through  a 
maximum  before  it approaches  the response of a downward jump directly 
to 30°C at long times.  Such behavior can be described by means of sums 
of exponential functions  (distributions of retardation times) or stretched 
exponential functions. 

The evolution of the the~odynamic properties with  time  governs the 
viscoelastic  response of materials in the glassy state.  The volume relaxation 



Glassy and ~e~icrys ta l l ine  Polymers 477 

Temperature 
.PO Negative expansion coefficient obtained by heating more slowly 

than the previous rate of cooling. (From Ref. 20.) 

that takes place  in the glassy  system  is  called  physical  aging  in  polymers 
and structural relaxation, annealing, or stabilization in inorganic glasses. 
The term “physical aging” was  coined  by Struik (21) to refer to the 
variation of the physical properties of materials with  time  when  they are 
kept at temperatures below the glass transition temperature. In general, 
the importance of  aging  increases as the temperature of the glass  comes 
closer to T,. Obviously,  aging  effects are much more important in organic 
glasses than in inorganic glasses as a consequence  of the fact that the 
temperature of use  is  closer to the glass transition temperature in organic 
systems than in inorganic systems. Among the properties and applications 
affected  by  physical aging are the design and manufacture of composite 
materials (e.g., parts for automobiles), permeability  of materials for packa- 
ging,  adhesives, materials for use in nonlinear optics, curing of  epoxy 
resins,  mechanical properties of materials used in reprography, and 
glass-metal joint seals. 
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Structural recovery  of  poly(viny1 acetate) at 30°C after several 
thermal histories. See text for details. (From Ref. 18.) 

hysical  aging  affects  in an  important manner the time  scale of the mechan- 
ical relaxation properties of  glassy  systems. Rate processes  such as those of 
viscoelastic and dielectric dispersions, slow down with increasing aging time. 
Thus, transient viscoelastic functions such as the creep  compliance function 
and stress relaxation modulus shift to longer times  when plotted as functions 
of the logarithm of time,  while dynamic properties such as the complex 
complian~e function and the complex shear modulus shift to lower frequen- 
cies  in the frequency domain. The conjunction of aging effects with the 
thermodyna~ic, properties leads to nonlinear processes in glasses that may 
complicate the analysis and interpretation of the mechanical properties of 
polymers. Consequently, the behavior of a glassy material depends not only 
on the actual state of the system but also on  its previous history. 

henomenological equations have  been  developed that describe reasonably 
well the structural recovery  of  glasses (22-24). 

The evolutiqn of the tensile  creep compliance of a glassy  epoxy  resin at 
different aging  times  is shown, as  an example, in Figure 12.22. The glasses 
were obtained by quenching the resin from T' + 22°C to T, - 9°C and were 
kept at this temperature for different intervals of  time. The results obtained 
show that as the aging  time  increases, the values  of J(t) for comparable 
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Evolution of the creep compliance with  time for an epoxy  glass 
Tg + 22°C to Tg and kept a is temperature for (U) 28 min, (0) 

126 min, (A) 503 min, (V-) 201 3 min, and ( 4026 min. (From Ref. 25.) 

times decrease (25). Actually, an increase in the aging of the glass also 
increases its densification; that is, both the fractional free volume and the 
excess  of entropy decrease, and  consequently the molecular mobility 
diminishes. The results at hand suggest that when a system  undergoes a 
temperature jump  from above Tg to below T,, the volume  recovery  is 
accompanied by a mechanical response of the glass.  The creep curves 
obtained at different aging times after the temperature jump can  be super- 
imposed by a shift factor along the time axis. 

Horizontal shifts of the isotherms obtained in aging processes  combined 
with suitable vertical shifts give master curves that permit prediction of the 

viscoelastic  behavior  of  aged  systems over a wide interval of time. The time- 
aging time correspondence principle for poly(vinyl chloride) (26)  is  shown  in 
Figure 12.23. The  retardation times in these creep experiments are related to 
the aging time, t,, by means  of the expression 

zg = Tat; (1  2.24) 

where zg and zo are, respectively, the  retardation times of volume *for the 
aged and non-aged  glass and p is the Struik shift factor (21). This equation 
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.P8 Small strain tensile  creep  curves for poly(viny1  chloride) quenched 
ove 2'"') to 20°C and  further aged for different lengths  of  time. The 
was obtained by horizontal displacement of the curves  with only 

slight  vertical shifts. (From Ref. 26.) 

indicates that the retardation time  increases  with increasing aging  time. The 
viscoelastic  creep  observed in Figures 12.22 and 12.23  suggests that mole- 
cular chains have significant  mobility in the glassy state. Chain mobility is 
determined by the free  volume, vf ,  and configurational entropy, Sc, both 
parameters being functions of temperature. The decrease that aging pro- 
duces in vf and Sc results in the lengthening of zg with  aging. In the linear 
viscoelastic  regime, the experiments at hand indicate that  the slope of the 
double logarithmic plot of the shift factors versus  aging  time  is equal to  or 
less than unity. Though the aging  regime  exists  mainly above the p relasa- 
tion, there is little doubt  that aging also occurs during this process. 
However, the structural recovery  is different in p and a relaxations, and 
the time-aging  time super~osition will break down in this regime. It is 
noteworthy that  data from stress relaxation experiments carried out  on 
poly(methy1 methacrylate) (7"' = 104°C) at different aging  times could not 
be superimposed below 80°C, and this was attributed  to the influence  of the 
strong and  broad p relaxation in this polymer. 

The temperature dependence of "to in physical  aging  may  be espressed in 
terms of the Adam-Gibbs equation (27,28) 

(12.25) 

where TK is the thermodynamic Kauzmann temperature (the temperature at 
which the configurational entropy vanishes), Tf is the fictive temperature, 
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and A and B are constants. Above the glass transition temperature, Ti. = T ,  
and Eq. (12.25)  simplifies to the VFTH equation. The Kauzmann tempera- 
ture and the parameters A and B can be obtained by fitting equilibrium data 
to the VFTH equation and used further to predict the glassy state effective 

activation energy BR/(l - TJT'). It should be pointed out  that the predic- 
tions thus obtained are often accurate for both polymeric and nonpolymeric 
materials although the relationship between equilibrium (linear) and none- 
quilibrium (nonlinear) relaxations is not well understood (28). 

When the temperature of the aged  glass  is  increased above the glass 
transition temperature, the aging  effects are erased. Therefore, the same 
aging  curves are produced if the system undergoes the primitive thermal 
history. In ideal conditions, a change in temperature or 6 (volume)  causes 
each retardation time to be  shifted by the same amount,  and the amount of 
shift due to changes  in temperature is independent of that due to the depar- 

ture from  equilibrium^ i.e. structure (22). 
The shift factors are also dependent on the aging temperature (31), as 

shown in Figure 12.24,  where double logarithmic plots of the aging  time 
shift factor versus  aging  time are shown for an epoxy  aged at different 
temperatures. It is noteworthy that upon aging two types  of behavior are 
detected in the glassy state. On the one hand, at aging temperatures far 
below T', the aging continues for the duration of the experiment. On the 
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Double logarithmic plot of the aging time shift factors versus aging 
epoxy  glass  aged at different temperatures below its Tg. T - Tg: (0) 

30°C, (X) 24'C, (m) 20.8'42; (0) 10.3'C; ( ) 6.3'C. (From Ref. 30.) 



other hand, at aging temperatures close to T‘, the aging  seems to nearly 
cease at some  time t” that might be  expected to be an equilibration time for 
thie glass. 

The time-aging  time correspondence principle  does not hold for all glasses. 
The diminution of both the entropy S, and the fractional free  volume wf by 
the effect,  of  aging  increases the retardation and relaxation times, but the 
stress may also affect both Sc and zf, and as a result the mechanical beha- 
vior  is nonlinear. The application of a stress to a glassy material gives  rise to 
an increase in free  volume. This produces a decrease  in the values  of the 
relaxation times, so situations may arise in which the values  of  these para- 
meters are lower than those corresponding to temperatures slightly  higher 
than ir,. In other words, at a given  time the creep compliance at large 
stresses is shifted to shorter times  relative to the small stress response. 
Accordingly,  with an increase  in  aging  time, the slope  of the double loga- 
rithmic plot of  the  time-aging  time shift factor versus  aging  time  decreases 
with  increasing stress of the creep  experiments. An illustrative plot reflecting 
this behavior is  shown in Figure 12.25. This behavior has been interpreted as 
indicative that the large stress erases the prior aging. For this reason this 
process  is  called rejuvenation. 

Many authors have attributed  the yield point  and the fragile -+ ducti~e 
transition occurring in many glasses to the decrease  in the values  of the 
retardation times  resulting from the increase  in  volume produced by stress 
in the glassy  system. 

The nonlinearity exhibited by the aging  process  suggests that the char- 
acteristic relaxation time +co of the K W  equation is not a constant but a 
variable. A nonlinear function can be obtained for the KWW equation by 
defining a reduced  time  given by (28,29) 

so that Eq. (12.5) can be written as 

(12.26) 

(1 2.27) 

where the integration begins at the time at which the system  was last at 
equilibrium. 
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Aging  may  be  affected by external factors such as the absorption and 
desorption of  gases in glassy  systems. Thus, the free  volume  decreases 
with  aging, and consequently this process  affects  adversely the solubility 
of  gases  in the glass. In the same  way, occupation of the free  volume by 
gases  increases the values  of the retardation  or relaxation times, thus 
delaying the aging  processes.  Conversely, the rapid desorption of absorbed 
gases  speeds up aging  processes.  Aging  decreases the free  volume, thus 
increasing the diffusive path,  and  as a result the diffusion  coefficient  of 
gases  decreases. 

Aging or  structural recovery has a strong influence on engineering prop- 
erties such as yield,  creep rupture, and dimensional stability. There is a 
wealth of experimental work  showing that the yield stress of a glass-forming 
polymer  increases  with  increasing aging time after quenching, Though the 
failure of materials is  influenced  by  aging,  relatively little work has been 
done  on the failure of materials in creep 'rupture  conditions. 
logarithmic plots of creep rupture time  versus applied stress for poly(methy1 
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methacrylate) are shown  in Figure 12.26. The plots indicate that the time to 
failure, for a given stress, increase with  aging time (30). However, this 
behavior is not general; for example, it is not observed in polystyrene. 

The nonexponential and nonlinear character of aging processes makes it 
difficult to analyze the influence of mechanical and thermal histories on the 
viscoelastic behavior of  glassy  systems.   he no me no logical theories have 
been  developed that describe aging processes  of strong glasses that undergo 
purely thermal histories (22-24). However,  these theories are  not  appropri- 
ate  for fragile  glasses such as polymers. Theories are also lacking that 
describe the effect  of nonthermal perturbations on the aging behavior of 
polymers. 
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obtained for (A) freshly  quenched  samples and (0) samples  aged at 24°C for 5 
years. (From Ref. 30.) 
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The viscoelastic behavior of crystalline polymers  is strongly affected by their 
morphology. Amorphous and crystalline phases separated by  immobilized 
interfacial layers coexist  in  semicrystalline  polymers. There are two tempera- 

tures at which the viscoelastic  response  of  semicrystalline materials changes 
dramatically: the melting temperature, Tm, and the glass transition tempera- 

ture, Tg. At Tg the relaxation modulus experiences a relatively sharp  drop, 
depending on the degree  of crystallinity. Above Tm, semicrystalline  poly- 

mers are viscoelastic liquids for which the power  law that relates the visc- 
osity at shear zero rate  for  amorphous polymers to their molecular weight 
holds. Thus, above a critical molecular weight, M,, the viscosity  of  melts 

scales  with the 3.4  power  of the molecular weight,  while  below MC the 
viscosity  is proportional to the molecular weight. In addition to the sub- 

glass absorption and glass-rubber absorption, crystalline polymers may, at 
temperatures close to the melting temperature, present an additional absorp- 

tion called a relaxation. When  semicrystalline  polymers present this relaxa- 
tion, the glass-rubber relaxation (a absorption for  amorphous polymers)  is 
called p relaxation and the sub-glass absorption (p absorption  for  amor- 
phous polymers)  is denoted y relaxation (3,4,14,15). The a relaxation pre- 

sumably is produced by motions in which the crystalline entities play an 
important role. It is  believed that the perturbing effect  of the crystals in 
response to the force field  is  confined to the imobilized interfacial phases, 

and therefore the remaining amorphous phase is not perturbed. 
The crystalline phase affects the viscoelastic dynamic functions describ- 

ing the glass-rubber relaxation. For example, the location of this absorption 
in the relaxation spectrum is  displaced  with  respect to  that of the amorphous 
polymer and greatly broadened. Consequently, the perturbing effects  of 
crystal entities in dynamic experiments propagate throughout the amor- 
phous fraction. The empirical  Boyer-Beaman  law (32) 

1 T 2  “(A 
2 Tm<3 (12.28) 

is  useful to predict the interval of temperature at which the glass-rubber 
relaxation appears (17). As for the sub-glass relaxation, it is  believed to 
arise, at least in part, from local motions taking place in the amorphous 
phase, though some researchers have  considered it to have an  important 
component from the crystalline phase also. 

By considering their crystallization behavior, crystalline polymers can 
be  classified into three overlapping categories:  low, medium, and high 



486 Chapter 12 

crystallinity  *polymers. The principal characteristic of the first  kirid  of  poly- 
mers  is that their crystallization iati ais  "her small, so their degree of 
crystallinity can vary from zero to 50% at most. These  polymers can be 
obtained in  completely amorphous f o m  by quenching them from the melt. 
Actually, as thk undercooling (difference  between the melting temperature 
and the. crystallization temperature) increases, the crystallization rate 
increases until a maximum 'is reached, after which it decreases, its value 
being  nearly zero at relatively  high undercoolings (see Chapter 2, sect 

amples  of  low crystallinity polymers are poly(ethy1ene terephtha- 
aromatic polycarbonates. The degree  of crystallinity of  medium 

crystallinity polymers  lies- in the range 30-60%. Unlike low crystallinity 
polymers,  medium  'crystallinity  polymers do  not become amorphous when 
they are quenched 'from the melt'.  Examples  of  these  polymers are poly- 
amides and alipliatic polyesters. Finally, high crystallinity polymers exhibit 
degrees  of  Crystallinity  lying  in the range of 60-80%. The degree  of crystal- 
linity  of  these  polymers, quenched from' 'the melt, is-  about 50%. 

olyethylene," polypropylene~ polyoxymethylene, and  polyox~ethylene  are 
examples  of this kind  of  polymers. 

Illustrative curves  showing the temperature dependence  of the storage and 
loss relaxation moduli of  samples  of  poly(ethy1ene terepht~alate)  'with 
degree  of crystallinity varying from zero to 40% are plotted in' Figure 
12.27. The relaxation corresponding to the glass-rubber transition of the 
amorphous polymer  is  reflected by a sharp  drop of  several  decades in the 
storage. relaxation modulus. A s  the crystallinity content of the sample 
increases, the fall  in G' associated with the glass transition, decreases; a 
plateau appears wliose  leligth  increases as the degree  of crystallinity 
increases (33). The isochrones- representing the temperature dependence  of 
G" present an absoption" associateed  with the glass-rubber transition. In 
these latter samples another sharp  drop occurs in G' when the melting 
temperature is reached. The intensity of the glass-rubber relaxation 
decreases  with increasing crystallinity, and the location of the relaxation is 
shifted  in most cases to higher temperatures as the crystallinity  increases. 
Moreover, the width  of the glass-rubber relaxation becomes broader as the 
crystallinity of the samples  increases. It should be pointed out that a relaxa- 
tion at high temperatures is not observed in the relaxation spectrum of  these 
polymers and  as *a result the notation a and p is  used for the glass-rubber 
and sub-glass relaxations, respectively,  of  these  polymers (33). 

The isochrones showing the temperature dependence  of the components 
of the complex relaxation modulus are rather insensitive to the crystallinity 
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Variation of the complex relaxation  modulus of  poly(ethy1ene ter- 
ephthalate) with temperature, in the vicinity  of the glass-rubber relaxation, for sam- 

ious crystallinities obtained in isothermal crystallizations: (U) 46%, (0) 
(V) 26%, (U) 2-3%, and (0) 0%. (From Ref. 33.) 

of the samples, This behavior can be  observed  in Figure 12.28;  where the 
variation of the complex relaxation modulus  with t e ~ ~ e r a t u r ~ ,  irkthe glassy 
region, is  shown.  The curves corresponding to  the storage relaxation mod- 
ulus present an inflection in the vicinity of’-80”C, the temperature at which 
the loss presents a maximum. The intensity of this absorption, called p 
relaxation, shows  only a slight dependence on  the crystallinity of t4e 
samples. 

Like other  retardation processes, the strength of the mechanical glass- 
rubber relaxation can, in principle, be  determined by means of the empirical 
Havril iak-~ega~i equation (34) 
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'28 Temperature dependence of the complex relaxation modulus of 
poly(ethy1ene terephthalate), in the glassy region, for the same samples of Figure 
12.27. 

where J, and J, represent the relaxed and unrelaxed compliance functions 
corresponding to zero and infinite  frequencies,  respectively, 70 is the mean 
relaxation time  of the process, and csi and p are empirical parameters lying in 
the range 0-1. Taking the mirror image  of the J" versus J' plot for Eq. 
(12.29), the complex relaxation modulus can be written as 

G* = G, + (G, - G,.)[l + (~ozo)-']-' (12.30) 

where Gr and G, are the relaxed and unrelaxed storage relaxation moduli at 
0 and 00 frequencies,  respectively. In general, the relaxation strength of the 
glass-rubber relaxation, expressed as G, - G, decreases as the degree of 
crystallinity increases,  whereas the relaxation strength of the sub-glass 
relaxation is quite insensitive to the crystallinity of the material. 

Sub-glass relaxations for crystalline and  amorphous polymers in the 
frequency domain are described by the empirical  Fuoss-Kirkwood equation 
(35) 

G"(w) = G"(omax)sech (12.31) 
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where m, an empirical parameter related to the width of the relaxation, lies 
in the interval 0 -c m 5 1. The larger m is, the narrower is the relaxation, so 
that m = 1 for a Debye peak. With the assumption that the relaxation obeys 
Arrhenius behavior, that is, m = A exp(Bff/RT), Eq. (12.31)  becomes 

G"(T) = GN(Tm,,)sech. (12.32) 

Sub-glass relaxations fit this equation. Plotting cosh"' [G"( Tmax)/G( T)] ver- 
sus 12"" gives straight lines from whose  slopes (= mEff/R) the evolution of 
the parameter m with the frequency  of the isochrones can be evaluated. The 

Fuoss-Kirkwood equation also allows determination of the relaxation 
strength of  sub-glass absorptions. 

mecs 

The isochrones showing the temperature dependence  of the storage relaxa- 
tion modulus exhibit a small drop in the glassy  region  followed  by a strong 

decrease  in the value  of this parameter at higher temperatures. The curves 
corresponding to the loss relaxation modulus exhibit relaxation peaks in the 

regions in which the storage relaxation modulus drops. Though strong 
relaxation is  believed to be associated with the glass-rubber relaxtion, it is 

not possible to know at first  sight whether this assignment  is correct, because 
these  polymers cannot be obtained in the amorphous  state by quenching. 

This difficulty can be  circumvented by investigating whether the same 
relaxation process  observed in the solid can be detected in the melt. 

However, the relaxation appearing at moderate frequencies  in the solid 
shifts to frequencies so high in the melt that it is unattainable by mechanical 

experiments. In this case it is  necessary to combine mechanical and dielectric 
experiments. For example, the strong glass-rubber relaxation process  of 
nylon  6,lO  moves to higher  frequencies  with increasing temperature, and 

it is  possible to follow it in the melt by performing dielectric measurements 
at frequencies  close to 10 CHz (36). 

Aliphatic polyesters  may present a crystalline a process, and as a con- 
sequence the notations p and y are  adopted  for the  glass-rubber and sub- 
glass relaxations, respectively, Although fully amorphous polymers cannot 
be  achieved  by quenching, it is  possible to obtain polyesters  with different 
degrees  of crytallinity by copolymerization with a noncrystallizable diol. For 
example, the polyester  of  1,6-hexanediol condensed with adipic acid  is about 
60% crystalline, while the polyester  of this diacid with  2,5-hexanediol  is 
completely amorphous. By varying the 1,6-hexanediol/2,5-hexanediol 
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ratio, copolyesters with different degrees  of crytallinity can be obtained.  The 
complex relaxation modulus of copolyesters with different degrees  of  crys- 
tallinity is shown (37) in Figure 12.29. The isochrones present a p absorption 
whose intensity decreases  with increasing degree of crystallinity. The crystal- 
line entities severely restrict the micro-~rownian motions of the chains in 

Khrves showing t~e~variation of the complex relaxation  modulus 
with t e ~ p e r a t ~ r e ,  at l* Hz, for aliphatic polyesters  of different degrees of crystallinity: 
(U) 60%, (&)-44%,, (0) 36%, (0) 30%, and (+) 20%. (From Ref. 37.) 
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the amorphous phase, thus producing a dramatic decrease in the intensity of 
the f3 relaxations. 

Aliphatic polyesters also present a prominent y absorption caused by 
motions taking place in the amorphous phase. Neither the location nor the 
intensity of this process  is  sensitive to the degree  of crystallinity. The varia- 
tions observed in the intensity of the y relaxations in Figure 12.29 are due to 
changes in the chemical composition rather than to changes in the crystal- 
linity. 

The most distinguishing feature of  highly crystalline polymers  is that they 
present an a relaxation in  whose  development crytalline entities play an 

important role. The shape of the curves  of tan6 versus temperature for 
semicrystalline  polymers depends on  both the degree  of crystallinity and 

the chemical  flaws  (imperfections) produced during the synthesis  of the 
molecular chains. These  effects are observed  in the relaxation spectrum of 
polyethylene. The synthesis  of  polyethylene  via radical polymerization at 
high  pressure  gives  rise to molecular chains with branche of 2 to 4. methyl- 

enic groups every  1000 carbon atoms of the backbone. ranching hinders 
molecular packing in the c talline entities? and the degree of crystallinity 

of the polymer  decreases.  using organic oxides, at low pressure poly- 
ethylene can be obtained i hich branching is  nearly nonexistent. Finally, 
the so-called linear low density polyethylene (LLDPE) is obtained by copo- 

lymerization of  ethylene and a small fraction of l-butene? l-hexene, or I- 
octene as a comonomer. Branched  polyethylene can develop a crystallinity 
of the order of 50%; it is then called  low density polyethylene (LDPE). The 
degree  of crystallinity of  polyethylene in which branching is  negli ' 
be as high as 80%, that is  why it is  called  high density polyethylene 
The degree  of  crystallinity  of LL may  be  lower than  30%. 

Curves  showing the variation in the storage and loss  tensile relaxation 
moduli with temperature for HDPE,  LDPE,  and  LLDPE  are shown in 
Figures 12.30 and 12.31,  respectively  (38). A common characteristic of the 
curves  is that they all present the y and a relaxations. However,  only 

branched polyethylene exhibits a well-developed f3 absorption, suggesting 
that the development  of this process requires the presence  of branches in the 
chains. On the other hand, the fact that the intensity of the f3 relaxation 
increases  with the degree" of branching indicates that this process  is  mainly 
caused by motions taking place  in the amorphous phase of the polymer. 
Consequently, this relaxation has been associated with the glass transition of 
polyethylene.  Since the f3 relaxation is centered in the interval -10°C to 
+27"C, depending on the crystallinity of the polymer, the glass transition 
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l Loss tensile relaxation  modulus  plotted versus temperature for 
various polyethylenes (From Ref. 38). 
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temperature would  be located in the vicinity  of  these temperatures. It should 
be noted that the relatively  low relaxation strength of the p process  of 
HDPE is not due to a lesser  degree  of softening through the process but 

rather to a stronger y process that results in a lower  unrelaxed modulus for 
the p relaxation. 

The y relaxation of  polyethylene,  expressed in terms of tan 6, is  centered 
in the vicinity  of - 120°C at 1 Hz. This relaxation is  believed to be  caused by 

molecular motions occurring in the amorphous phase as indicated by the 
fact that the relaxation is  very  weak  in  highly crystalline polyethylene 

crystallized from dilute solutions (39,40). The relatively  high intensity and 
universality  of the y relaxation in  polyethylenes, independent of  whether 

they do  or  do not have branches in their structure, seems to suggest that 
the y relaxation may  be associated with the glass transition. According to 
this interpretation, the glass transition temperature of  polyethylene  would 
be located in the vicinity  of  -120°C. 

It is  convenient to point out  that the elucidation of the glass transition 
temperature of  polyethylene  is  still an unresolved  issue. In fact, values  cover- 

ing the range of  -120°C to +30"C have  been reported for T' in the litera- 
ture. In favor of associating the y relaxation with Tg is the fact that it is 

displayed by both high  density and low  density  polyethylenes. Opposing this 
interpretation is the fact that the y relaxation exhibits an activation energy 
much  lower than  that reported for the glass-rubber relaxation of most 
polymers. 

As indicated above, a relaxation is associated with  molecular motions in 
which crytalline entities take part. However, the development of this process 
apparently requires the presence  of an  amorphous phase. Actually, as shown 

in Figure 12.32, the relaxation curves  of  polymethylenic  waxes  in  which the 
crystallites are formed by totally extended chains (degree  of  crystallinity 
100%) do not present a relaxation (41,42).  Since neither totally crystalline 

nor totally amorphous polymers  display a relaxation, one must conclude 
that this absorption is caused by molecular motions occurring in the crystal- 

line-amorphous interphase. 
Other highly crystallinity polymers  such as polyisopropylene and poly- 

oxymethylene also exhibit in order of  increasing temperature the y, p, and a 
relaxation processes. It is worth noting that while polyisopropylene exhibits 
a well-developed p absorption, polyoxymethylene,  like HDPE, exhibits two 
prominent a and y relaxations and a small p relaxation whose intensity 
seems to increase as the degree  of crystallinity decreases  (43). This behavior 
is illustrated in Figure 12.33,  where both the shear relaxation modulus 
and the logarithmic decrement of  polyoxymethylene are plotted against 
temperature. 
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ison of storage and loss tensile relaxation moduli of a par- 
(0) respectively] an low molecular weight HDPE 
1860 MW; (U) and 00 MW]. (From Ref. 42.) 

ost crystalline polymers  with  metylenic groups in their structure and with 
degree  of crystallinity below 50% present a sub-glass relaxation whose 

intensity and location scarcely  differ from those observed for the amorphous 
polymer in the glassy state. The temperature dependence  of this relaxation 
follows Arrhenius behavior, and its activation energy  is  of the same order as 
that found for secondary processes  in amorphous polymers. 

Crystallinity strongly affects the relaxation associated with the glass 
transition. The intensity and breadth of the relaxation are, respectively, 
smaller and higher than those reported for the same S stems  in the amor- 
phous state. Therefore, the stretch exponent in the W equation is 
lower than  that reported for the amorphous state. The storage relaxation 
modulus of  glassy  semicrystalline  polymers  reaches a value  similar to  that 
e x ~ i b i t ~ d  by amorphous polymers in this state. As the temperature 
increases, the modulus slightly  decreases, a small  inflection appearing in 
the vicinity  of the temperature at which the m a x i ~ u ~  of C" is located (see 
Fig. 12.28). A sharp decrease  in the value  of the storage relaxation mod- 
ulus occurs in the vicinity  of the glass transition, the diminution of the 
modulus being  lower the higher the degree  of crystallinity of the polymer 
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(see Fig. 12.27). Another  abrupt decrease takes place as a result  of the 
melting of the crystalline  entities. 

Annealing promotes crystallite  thickening at the expense  of the crystal- 
line-amorphous interphase and the amorphous phase. This process 
decreases the intensity of the glass-rubber relaxation and enhances that of 
the a relaxation if the crystalline  polymer  develops this absorption. 

Semi~rystalline polymers are heterodisperse  systems in which the free 
volume  of the coexistent  phases  is different. As a result, the time- 
temperature correspondence principle  does not  hold unless methods are 
developed to separate the contributions of the different  phases to the 
viscoelastic functions (44). This behavior  becomes  evident  in the inspection 
of the results of Figure 12.34,  where the loss  compliance function in the 
frequency domain for polyethylene  is shown. One can observe that if the 
isotherms superpose in the high  frequency  region, the superposition fails  in 
the low frequency  region and vice versa. The  master curve obtained by 
empirical superposition of the results  in the high  frequency  region,  shown 
in Figure 12.35,  suggests the presence of a relaxation in the vicinity of 30°C. 
It is  advisable to stress,  however, that semicrystalline  polymers are not 
thermorheologically  simple  systems, and ~onsequently conclusions cannot 
be drawn  about the nature of the relaxations observed  in master curves 
obtained from partial superpositions. 

The viscoelastic properties of the crystalline  zones are significantly  different 
from those of the amorphous phase, and conse~uently semicrystalline  poly- 
mers  may  be  considered to be made  up of two  phases  each  with its own 
viscoelastic properties. The best  known  model to study the viscoelastic 
behavior of polymers  was  developed for copolymers as ABS (acrylonitrile- 
butadiene-styrene triblock copolymer). In this system,  spheres  of rubber are 
immersed  in a glassy matrix. Two cases can be  considered.  If the stress  is 
uniform in a polyphase, the contribution of the phases to the complex  tensile 
compliance should be additive. However, if the strain is uniform, then the 
contribution of the polyphases to the complex modulus is ad~itive. The 
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Loss compliance isotherms in the frequency domain of linear poly- 
ethylene crystallized from the melt. (From Ref. 44.) 

application of this model to semicrystalline  polymers  gives the following 
equation for the tensile relaxation modulus (45): 

(12.33) 

where Q, is the effective fraction of amorphous mass  in the direction parallel 
to the force, h is the value of this quantity in the transverse direction, and EA 
and Ec are, respectively, the tensile relaxation moduli for the amorphous 
and crystalline  phases. The  parameters Q, and h can be calculated by means 
of the relationships 
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(12.34) 

where x, is the degree of crystallinity. These last expressions, formulated by 
erner (46), have  been  successfully applied by Takayanagi  and coworkers to 

many crystalline systems. It should be noted that since EA << Ec the evalu- 
ation of EA from  Eq. (12.33) requires only k n o ~ l e d g ~  of the degree of 
crystallinity and the  tensile relaxation modulus of the crystalline phase. 

The theory of two potential wells of nearly equal  depth  has been  used to 
explain secondary relaxations in amorphous polymers.  ecent results by L. 
C. E. Struik led to the result 
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where G, and G, are, respectively, the relaxed and unrelaxed moduli, c is a 
constant, and T is the absolute temperature. Assuming that the temperature 
decrement of the modulus in the glassy zone caused by the thermal expan- 
sion  coefficient  is  nearly K-', estimate the temperature dependence  of 
the relaxation strength of secondary relaxations. 

The proposed equation can be written as 

1 T 1  -=-+- 
AG c G, 

(P12.1.1) 

where AG = Gg - G, is the relaxation strength. 

arrangements, we obtain 
After derivation with  respect to the temperature and subsequent re- 

(P12 1.2) 

Since G,/G, l and dln G,/d ln T 0, then 

d l n A G  
din T 
" 

Note  that for weak relaxation, where G,/G, is  close to unity, 

d l n A G N  "- 
d l n  T -1  

(P12.1.3) 

(P12 1 .4) 

These results indicate that the relaxation strength decreases  with  increasing 
temperature. 

Find the temperature at which the storage shear relaxation modulus of 
PMMA at 10 Hz will  be the same as at l Hz and 118°C. Activation energy 
for the p relaxation in this region  is 75 kJlmol. 



By assuming that the time-temperature superposition principle holds in this 
zone, we obtain 

According to the Arrhenius equation, the relationship between the two 
frequencies  is 

from which x = 41.4"C. 

The shear modulus of a PMMA sample at 18°C can.  be written as 

G(t) = 2.6 x 109[0.262 + 0.3843 exp("1.309t) + 0.3535  exp(-105.97t)] Pa 

Find the modulus at t = 1 S, and estimate the modulus at 30"C,  assuming 
that the activation energy  is 75 lsJ/mol. 

From the given equation, we immediately  find 

G(l) = 0.951 x 109Pa 

To estimate the modulus at any temperature we can assume the validity of 
the time-temperature su~erposition principle in this region, that is, 

G(t, 7') = G(aTt, 7 " )  (P12.3.1) 

The shift factor can be written approximately as 

InaT ="-----(--- 75 x io3 1 
8.314  273 + 18  273 + 30 

; hence aT = 3.413 

Then 

G(03pc = 2.6 x 109[0.262 + 0.3843  exp("4.4676t) + 0.3535  exp("361.676t)I Pa 

and 

~ ( 1 ) ~ ~ ~ ~  = 0.693 X 109pa 
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Show that  for  an exponential decay function the complex  compliance fol- 
lows the Debye equation. 

O ~ U ~ ~ O  

From Eq. (12.3), 

If 

1 t 
T T 

$(t) = exp(-b), then h(t) = --exp(--) 

(P12.4.1) 

(P12.4.2) 
00 1 C(-$(t)) = Jo e' 5 (P12.4.3) 

If S = ico 

J*-J,  1 
" 

Jo - J, 1 + i0.c 
- (P12.4.4) 

and splitting this into its real and imaginary parts, the well-known  Debye 
equations are obtained: 

JO - J, J'=J,+- 
1 + 0222 (P12.4.5a) 

(P12.4.5b) 

A convenient way to analyze  physical  aging  processes (structural recovery) 
is to use a relaxation function +(t) defined as 

where M(t)  is the magnitude  under analysis at a time t after starting the 
aging  process, MO is the unrelaxed  (time  zero) magnitude,  and M ,  is the 
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fully  relaxed magnitude in  analogy  with the viscoelastic properties. The 
curves of Figure P12.5.1  present the evolution with  time  (in  minutes) of 
the recovery function for the storage modulus (a), specific  volume (O), 
and enthalpy (A) of a sample of PMMA after a  sudden cooling  process 
from Tg + 20°C (T' = 104°C) to 103°C. 

Compare the kinetics of these three relaxation processes. 

According to the time  scale  of the experiment, and for values  between  100 
and 1000 min, the following  results are obtained: 

o !  I 4 

10 100 1000 10000 

Vmin 

1. The kinetics of relaxation in  volume  is about 14  times  as fast as 

2. The kinetics of the storage modulus is  43  times  as fast as that of 

3. The kinetics of the storage modulus is about 3  times as fast as that 

that of the enthalpy. 

the enthalpy. 

of the volume. 

It is  well known that the molecular origin of the y relaxation in  polyethylene 
(PE) (- 120"C, 1 Hz) is the motion of  linear  sequences  of - CH2 - group 
in the amorphous phase,  whereas the a relaxation (50"C, 1 Hz) can be 
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attributed to the crystalline phase. From a dynamic mechanical test at con- 
stant frequency, the following data were obtained for two  samples  of linear 
PE: 

X (% crystallinity) G g a x  (Pa),y Ggax (Pa),a 

84 8.7 x lo7 12.7 x lo7 
55 11.7 x io7 3.4 x lo7 

Estimate the maximum shear loss modulus for a sample  with 70% crystal- 
linity. 

By assuming a linear variation of the crystallinity with the maximum of the 
shear loss modulus for the y and a mechanical relaxations, a simple linear 
interpolation leads to 

Ggax(X == 70%) = 10.05 x lo7  Pa, for the y relaxation 

Gga,(X == 70%) = 8.2 x lo7 Pa, for the M. relaxation 

Show that when the loss modulus attains the maximum  in a double loga- 
rithmic plot, the slopes  of the storage modulus and tan 6 are the same but of 
opposite signs. Estimate the value  of this slope in terms of tan 6. 

Starting from the equation 

E If 
E 

tan6 = (P12.7.1) 

taking logarithms, and deriving  with  respect to log m we have 

d log tan 6 d log E” d log E’ 
dlogo dlogo dlogo 
”” - 

At the maximum  of the loss modulus, 

(P12.7.2) 
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as required by the problem. 
Moreover,  according to Problem 6.5 of Chapter 6, 

Chapter 12 

(P12.7.3) 

(P12.7.4) 

and after substitution of Eq. (P12.7.4) into  Eq. (P12.7.3), we easily obtain 

(P12.7.5) 

A function extensively  used to represent empirical dynamic data in the glass 
transition zone  is the Havriliak-Negami (HN) function given  by 

AG G* = G, + 
[l + o'wzo)-"]P 

where G, is the relaxed  modulus, AG is the strength of the relaxation, and r0, 
a, and p are adjustable parameters. Calculate the frequency and intensity of 
the loss maximum,  knowing that a and ap 5 1. 

Splitting the HN equation  into its real and imaginary parts, we obtain 

G' = G, + AGrPf2 COS p0 (P12.8.la) 

mod G" = AGrPf2 sin p0 (P12.8.lb) 

where 

(P12.8.2) 

and 
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(azo)-' sin(n/2a) 0 = arctan 1 + (oTo)-a cos(n/2a) 

From the condition of  maximum, 

and after some calculations we obtain 

sin($ a - p0) 
sin p0 (oTo)-a = 

Equation (P12.8.3)  leads to 

sin 0 
sin(? a - 0) = 

505 

(P12.8.3) 

(P12.8.4) 

(P12.8.5) 

(P12.8.6) 

From Eqs.  (P12.8.5) and (P12.8.6) and taking into account the trigono- 
metric relation 

we find 

-a = (1 + p)e n 
2 

Hence 

(P12.8.7) 

(P12.8.8) 

(P12.8.9) 

Therefore, the value of the loss ma~imum can be obtained by substituting 
Eq. (P12.8.9) into Eq. (P12.8.1b) and taking into  account Eqs. (P12.8.2) and 
(P12.8.3). The final  result  is  given  by the expression 

(P12.8.10) 
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An important conclusion of  these results is that  for p > 1 the maximum 
loss appears at higher  frequency than  that corresponding to the character- 
istic relaxation time. 

The semiempirical function 

was proposed by Hill (Nature 275:  96,  1978) to represent both dynamic 
mechanical and dielectric relaxation losses. In this function, AG is the 
strength of the relaxation and mp, S,  n, and m are adjustable parameters. 
Describe a simple  way to estimate these parameters 

After derivation of the equation with  respect to the frequency m, the con- 
dition of maximum  gives 

COrnax = 0 
I-n 

from which 

On the other hand, the asymptotic behavior is  given  by 

(P12.9.1) 

(P12.9.2) 

(P12.9.3) 

Assuming that the strength of the relaxation is known (by means of a Cole- 
Cole plot or  other procedure), the preceding four equations allow us to 
estimate the parameters appearing in Hill's equation. Notice that mp does 
not correspond to the maximum frequency, that is, the frequency at the top 
of the peak (except in the case  where m = l - n), although it is  of the same 
order of ~agn i tude  as  that frequency. 
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The flow  of  polymer  melts and concentrated solutions is a complex  process 
in  which degradation of  energy and memory  effects embodied in the visc- 
osity and the equilibrium recovery compliance function, respectively,  play a 
determinant role. While the viscosity  of monomers is  perfectly  defined at a 
given temperature, the answer to the question “What is the value  of the 
viscosity  of a polymer?’9  is not a simple one, because the value.  may  vary 
~ i t h i n  several orders of magnit~de. Actually, -the viscosity of polymers 
depends on molecular weight, molecular weight distribution, topology of 
the chains (linear, comb-like, and  star structures; irregular branching; etc.), 
and temperature. In addition, the viscosity  of molecular chains, unlike that 
of monomers or low  molecular  weight compounds, shows a strong depen- 
dence on the shear rate. In most cases the viscosity  decreases  with increasing 
shear rate. Normal stress effects are also detected in these  fluids. For exam- 
ple, in steady Couette flow,  high molecular weight  polymers exert a greater 
normal thrust  on the rotating inner cylinder than  on the steady outer cylin- 
der, in opposition to what one would  expect on the basis  of considering only 
inertial forces. In cone-plate  flow, a greater normal thrust is  exerted on the 
plate near the center than at the  edge. In general, normal stress effects 
increase  with shear rate. 

A mathematical expression relating forces and deformation motions in 
a material is known as a constitutive equation. However, the establish~ent 
of ~onstitutive equations can be a rather difficult task in most cases. For 
example, the dependence  of both the viscosity and the memory  effects  of 
polymer  melts and concentrated solutions on the shear rate renders it diffi- 
cult to establish constitute equations, even in the cases  of  simple  geometries. 
A rigorous treatment of the flow  of  these materials requires the use  of  fluid 
mechanics theories related to the nonlinear behavior of  complex materials. 

owever, in this chapter we aim  only to emphasize important qualitative 
aspects of the flow  of  polymer melts and solutions that, conventionally 
interpreted, may explain the nonlinear behavior of  polymers for some 
types  of  flows. Numerous books are available in which the reader will 
find rigorous approaches, and the corresponding references, to the subject 
matter discussed  here (1-16). 

The laws  of  mechanics alone are  not sufficient to determine the relationships 
between  forces and motions in a body. It is  necessary to know the evolution 
with  time  of functions that depend on the nature of the material, that  are in 
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turn specified  by means of constitutive equations that must satisfy certain 
basic  physical  principles  in order to be  valid  models  of the physical behavior 
of materials. These  principles are the causality indifference  principle, the 
local action principle, the frame indifference  principle, and the material 
indifference principle (2,4,6,17-22). 

The cu~suZity  ind~ference  principle states that the physical behavior of a 
material at a time t is independent of  all future events. Thus, the stress of 
material at a point P at time t depends only on motions at times 0 5 t .  

The local action  ~rinciple establishes that the behavior of a particular 
element  of a material is determined by the motion properties of that element 
and is independent of the behavior of  any other element. The causality 
indifference  principle together with the local action principle  lead to the 
principle of deter minis^, which states that the stress of a given  element  of 
a material at time t depends only on the deformation of that element at 
times 0 5 t .  

The frame ind~ference  principle states that constitutive equations must 
exhibit coordinate indifference, that is, the properties of a material must be 
independent of the reference frame. 

Finally, the ~ u t e r i u 2   i n ~ ~ f e r e n c e  principle establishes that the physical 
behavior of a material is independent of the motion of an observer  (21). 

Most constitutive equations have  been  developed for incompressible 
fluids  owing to the fact that the treatment of  these substances is  easier 
than  that of  compressible  fluids. In what follows,  the constitutive equations 
of different kinds of  fluids are briefly summarized (22): 

1. The inviscid  perfect  fluid  is a fluid under only hydrostatic pressure. 
It has constitutive equations 

CYij = -ptjg; 7cij = crij +p6, = 0 (13.1) 

where p is the hydrostatic pressure and 6, is the Kronecker delta. 
2. The constitutive equation of the so-called Newtonian liquids reflects 

the behavior of  fluids  in  which the stress is a linear function of the shear rate; 
specifically, 

where j,[= (1/2)(8ii/3xj + 84/8xj)] is the shear deformation rate  and v, the 
viscosity,  is independent of the shear rate. The substitution of this equation 
into the first  law  of Cauchy [div 0, + pbi = 2; Eq. (4.13)] leads to the 
Navier-Stokes equation. Except in extreme conditions, for example  in tur- 
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bulent flow, the behavior of fluids of  low molecular weight  obey Eq. (13.2), 
and therefore this expression  is one of the most used in hydrodynamics. 

3. The Reiner-Rivlin equation is  based on  the assumption that the 
relationship between the stress and  the shear rate does not necessarily 
have to be linear. The constitutive equation  can be written as 

(13.3) 

where PI and P, are  functions of two of the principal invariants of XI 
and 111, defined by the expressions 

(13.4) 

Because the coefficients of the  invariants  are  not specified, the use  of the 
Reiner-Rivlin equation is rather  arbitrary. On the  other  hand, the time- 
dependent characteristics of viscoelastic  fluids are  not described by this 
equation. Neither are  normal stresses in Couette flow correctly described 
by Eq. (13.3). 

4. The Rivlin-Ericksen constitutive equation gives a good account of 
some characteristics of both  the time  dependence of the viscoelastic behavior 
and  the  normal stress effects. This relationship is  based on  the assumption 
that the stress depends not only on  the velocity (&) and  the shear rate 
gradient ( ~ ~ ~ / ~ x ~ )  but also on derivatives of higher order ( 2 k ,  
65p/3xy. . . x?), S X $ ~ ) / G X ~ ) .  As  a consequence of the principle of material 
indifference, all the terns depending on  the velocity ij and  its higher  time 
derivatives vanish, so the Rivlin-Ericksen constitutive equation  can be writ- 
ten as (19) 

(13.5) 

whereAy  is an  isotropic  function  and A:) are symmetrical tensors defined as 

and 

(13.6a) 

(1 3.6b) 
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The two latter constitutive equations indicate that  the stress vanishes if the 
fluid  is steady. Consequently, these equations  cannot reproduce the relaxa- 
tion phenomena in  which, though the fluid  is motionless, relaxation stress is 
occurring in response to a previous deformation. 

5. The models to which we have  referred above are special  cases of the 
so-called  memory  fluid or simple fluid. In this fluid it is  assumed that the 

stress at  a given particle, and at a given  time,  is appropriately determined by 
the relative deformation gradient F&(@). To define F~k(8), let us take  the 

configuration of the body at time t as  the reference configuration. Let us 
assume further  that xk are  the  coordinates of a given material point in the 
reference configuration with  respect to a specified coordinate system. As the 
fluid defoms, the position of the material point changes, and  its  coordinates 
at time 8, ((e), will depend on  the  coordinates at the previous time t ,  so that 
(,(e) == (i(xk, 8; t). Therefore, F@ is  defined by 

(13.7) 

Obviously, when 8 = t, no  deformation with  respect to the reference con- 
figurations has taken place, and Fi(xk, t ;   t )  = Ijik, where 6ik is the Kronecker 
delta. The actual  strain of the relative deformation tensor is better expressed 
by the symmetrical tensor 

(13.8) 

According to  Eq. (13.8), Jg = 0 for  a rigid body, while Jg + 0 for  a  strained 
material.  The constitutive equation  for  a memory  fluid can be written as (2) 

(13.9) 

where ai is a  functional whose  value  is determined when its argument Jk.(t - 
8) is known for all times 8 previous to the  current time t. In  the evaluation of 
Jk~(t  - e), the reference configuration is taken as  the one corresponding to 
time t. 

Though  the stress at time t in memory  fluids  is  expected to depend on the 
history of the  deformation, the dependence  is stronger  for recent deforma- 
tions than  for ancient ones. In  other words, these  fluids exhibit fading mem- 
ory (23). The s l o w ~ o w  and small ~ ~ f o r m a t ~ o ~  approximations have  been  used 
to establish constitutive equations  for memory  fluids. In the s l o w ~ o w  approx- 
imation (23), a sequence of deformation histories is  assumed in which each 
history differs from  a reference history in that  the time  scale  is  slowed by a 
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factor a, where 0 a 1. This means that the deformation occurring at time 
t is the same as occurred in the reference history at time at. The stress in this 
approximation can be  expressed  in terms of  power  series  of a. If the series is 
truncated at the nth term, the equation for the stress is  called the constitutive 
equation for the nth-order fluid. Thus, the inviscid  fluid  is the zero-order fluid; 
the first-order fluid  is the Newtonian fluid. The constitutive equation  for the 
second-order fluid  is  given  by 

“ij = -p6ij + qoA, + p l 

k 
(13.10) 

where A!) are the Rivlin-Ericksen tensors defined  by Eq. (13.6); qo is the 
viscosity; and p and y are given by the expressions  (24) 

(13.11a) 

(13.11b) 

(13.11~) 

where the relationships between the viscosity qo and the relaxation modulus 
G(t) and between the integral of y and the steady-state compliance J; are 
given  in  Eqs.  (6.49) and (6.53), respectively. 

In the small ~ ~ ~ o ~ ~ a t ~ o n  approximation, it is  assumed that the deforma- 
tions undergone by the material are small, at least in the recent past. 
Approximations of different orders can be  developed. The approximation 
of  first order for  an incompressible  fluid  is  given by Boltzmann’s equation of 
linear viscoelasticity, 

(13.12) 

where G(t) is the relaxation modulus and yij is the infinitesimal strain tensor. 
For a fluid of second order with no limitation to  in~nitesimal deformation, 
the constitutive equation can be written as (22) 

where G, a,  and b are material functions. 
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Many constitutive equations have  been proposed in addition to those 
indicated above, which are special  cases  of  fluids  with memory. Most of 
these  expressions arise from the generalization of linear viscoelasticity equa- 

tions to nonlinear processes  whenever  they  obey the material indifference 
principle. However,  these generalizations are  not unique, because there are 
many equations that reduce to the same linear equation. It should be noted 

that a determined choice among the possible generalizations may  be suitable 
for certain types  of  fluids or special kinds of deformations. In any case, the 

use  of  relatively  simple  expressions  is  justified by the fact that they can 
predict, at least qualitatively, the behavior of  complex  fluids. 

Three functions ( Q ,  p, and y )  are necessary to characterize the flow  of a 
second-order fluid. Let us determine these functions for a memory  fluid 
under simple shearing flow (25, 26), as shown in Figure 13.1. In this case, 

the coordinates of a given point at time t will  be x1 = xl ,  x2(t) = 
[x2(t)/xI]x1 = x1 tan6(t), and x3 = x3. The velocity  field  is  given  by 

where K = [i2(t)/xr] is a constant called the rate of shear. The position of 
the point at time 0 can be obtained by  solving the differential equations 

4, = 0; 1;2 = K c l ;  r ,  = 0 (13.15) 

Let us take the configuration at time t as the configuration of  reference.  If 
the coordinates of the point at time t are xl, x2, and x3, the coordinates at 
time 8 will  be 

he components of the relative deformation gradient Fii and the symmetri- 
cal tensor .Jv can be calculated, respectively, from Eqs. (1  3.7) and (1 3.8), 
giving 
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(a) Simple shear. (b) Shear stress and  normal stresses for a fluid 
under a shear force. 

where in the  last  matrix  the  substitution t - 0 = U was made. Hence, by 
taking  into  account the Rivlin-Ericksen tensors defined in Eq. (13.6), 
Jg(t - U) can be written as 

where A!) and A:) are independent of t and  are given  by 

0 1 0  

(13.19) 

0 0 0  
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The constitutive equation of second-order fluids indicates that the 
stress tensor is  determined by Jg( t  - U), and consequently og(t) is  indepen- 
dent of t and depends  only on Ai) and A:). Thus the function reduces 
to a function pi,., and the constitutive equation for second-order  fluids  [Eq. 
(1  3.591 can be  expressed as 

where the principle of material indeference  requires that pg be an isotropic 
function. 

For simple shear experiments,  somewhat  lengthy mathematical  arguments 
indicate that the stress tensor for second-order fluids  is  given  by  (2) 

This expression  in combination with Eqs. (13.10) and (13.18)  leads to the 
relationship 

(13.22) 

Hence, 

where O(K) is the shear  stress and ~ c ~ ( K )  and TC~(K) are called the normal stress 
functions. A schematic representation of the shear and  normal stresses for a 
liquid under a shear force  is  given  in Figure 13.1.  According to Eq. (13.23), 
the viscosity  is a constant for second-order fluids as it is for Newtonian 
fluids.  However, the normal stresses are nonzero, and consequently 
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second-order fluids  exhibit normal stress effects. On the other hand, while 
the shear stress is an odd function of the shear rate, the normal stress 
functions are even functions of K, that is, 

G(K) = -G(-K);  "Cl(K) = "Cl(-lC); 7C2(K) = ?T2(-K) (13.24) 

From Eqs. (13.23) and (13.1 l), the primary normal stress difference can be 
expressed in terms of  viscoelastic parameters as 

NI = IC22 - "Cl1 = 022 - t i l l  = .2q;gx2 (13.25) 

In the region in which the fluid  is Newtonian, G = q0lc, Eq. (13.25)  becomes 

NI = 2J,0cr2  (13.26) 

which  suggests that the Nl/02 ratio remains practically constant in the 
Newtonian regime for second-order fluids. In other words, the normal stress 
N I  is a linear function of the square of either the shear rate  or the shear 
stress for second-order fluids. 

Finally, it should be  stressed that second-order fluids  present normal 
stresses and,  as a consequence, nonlinear effects at shear rates correspond- 
ing to the Newtonian regime. It is noteworthy that the first normal stress 
coefficient starts at  2Jeqi, and, like the viscosity, it decreases  with  increasing 
shear rate for complex  fluids. 

Actually, from Eqs. (6.52) and (13.25), 
The parameter iV1 is also related to the storage 

Accordingly, the value  of NI at very  low shear rates 
storage relaxation modulus at very  low  frequencies. 

relaxation modulus. 

(13.27) 

is  twice that of the 
The second normal 

stress difference, N2 = 7cl - 7c33, is negative and smaller  in magnitude 
than the first normal stress difference. The ratio -N2/N1 lies  in the interval 
0.1-0.3. 

 hene ever the flow is laminar, the shear stress is a linear function of the 
shear rate  for liquids of  low molecular weight. The viscosity  of  fluids  of this 
type  is in~ependent of the shear rate, and €or this reason they are known as 
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Newtonian  fluids.  Complex  fluids,  such as polymers, exhibit Newtonian 
behavior for low values of the shear rate until a value of K is  reached 
above  which the shear stress falls  below the linear relationship of er12 versus 
K. Hence the apparent viscosity  decreases as K increases, and these  fluids 
exhibit non-~ewt~n ian  behavior. For a comparatively small number of 
fluids, the viscosity increases as  the shear rate increases. Typical curves 
showing the dependence of the shear stress on the shear rate  are shown in 
Figure 13.2. For some  fluids,  known as Bingham  fluids,  a critical stress is 
necessary for flow to occur. The flow  behavior for different Bingham fluids 
is also shown in Figure  13.2. 

In measurements  of  viscosities,  several  flow geometries can  be  used 
(2~,28), the most important being capillary, concentric cylinders 
(Couette), cone-plate7 and concentric disk geometries (Fig. 13.3). The 
type of geometry  used  depends on the shear rate at which  one  needs to 
measure the viscosity. ~scillatory measurements are used at very  low 
shear rates. For low and moderate shear rates, the viscosities can be  mea- 
sured using  cone-plate, plate-plate, concentric cylinders and capillary geo- 
metries, The  latter two geometries are commonly  used to measure  viscosities 
at moderate shear rates and, finally, capillary geometry  is  used to measure 
viscosities at moderately  high shear rates. 

Schematic representation of different kinds of flows. A, Newtonian; 
B, Bingham Newtonian; Cr, shear thinning (pseudoplastic); D, shear thickening 
(dilatant); E, Bingham shear thinning; F, Bingham shear thickening. 
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Geometries used in rheometry.  a, capillary; b, cylindric;  C, cone" 
plate; d, plate-plate. 

A schematic representation showing the intervals of shear rates at which 
different geometries are used  is  given in Figure 13.4. In this figure, the 
interval of shear rates at which  polymeric materials are processed  is also 
included. It should be noted that injection molding tends to the upper shear 
rate values  while compression molding tends to the lower shear rates. 

Rheometry is an  important subject from a practical point of  view. 
Though the properties of a material depend on molecular weight and molec- 

1 ELONGA~IONAL I 

OSCILLATORY /VIBRATIONAL 

I ROTATIONAL 

. ." 

I CAPILLARY RMEOMETERS 

-4 -3 -2 -1 0 I 2 3 4 5 

LOG SHEAR RATE ( K ) ,  S'' 

Approximate  shear rate ranges for different geometries. 
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ular weight distribution, the way that molecules are packed together, which 
controls  the final properties of the material, is controlled by the processing 
conditions. These conditions  are often dictated by the rheological behavior 
induced through the fabrication method-melt drawing, film blowing, spin- 
ning, etc. 

Capillary viscometry  was the first method used to measure the viscosity of 
fluids. This procedure, based on the relationship between pressure drop  and 
flow rate, was independently developed by Hagen and Poiseuille (see Ref. 
29). It is one of the most widely  used techniques for studying the flow 
behavior of  fluids. 

When there is a difference of pressure between  two points of a capillary 
tube, the fluid  flows from the high pressure side to the low pressure side of 
the tube. Let us assume that  a Newtonian liquid flows through  a capillary 
tube of radius r and length AI, (Fig. 13.5). Once steady-state  conditions  are 
reached, that is, the applied energy  is totally dissipated into friction energy, 

a simple balance of energy  gives 

Hence, 

r dP r AP o(r) = - - - - - ” ~ 

2 dz 2 AL 

2nr  dz a( r )  
P+  dP 

z Z+dZ - Direction of flow (for dP>O) 

(13.29) 

(P+  dP)Kr2 

Force  balance in capillary flow. 



Since AP < 0, ~ ( r )  > 0. The shear stress increases as r increases, reaching a 
maximum  value at the wall  of  the capillary tube. The value  of the shear 
stress at the wall  is  given  by 

R AP 
0, =-- - 

2 AL 

From Eq. (13.29) and Newton’s  law, 

which  yields 

v(r) = (- &)(R2 - r2) 

(13.30) 

(13.31) 

(1 3.32) 

This expression indicates that the fluid presents a distribution of  velocities 
whose  profile corresponds to a paraboloid of revolution; the velocity  of the 
fluid  reaches its maximum  value  [vmax = (AP/4q AL)R2] at the center of the 
capillary and 0 at the capillary wall. The flow  of the fluid through  an 
infinitesimal  cylinder  defined  by r and r + dr is dQ = 2n;r dr v(r). Then the 
volumetric flow rate can be written as 

(13.33) 

Equation (13.32) leads to the following  expression for the shear rate: 

(13.34) 

In this equation, ~ ( r )  > 0, because AP < 0,  y combining Eqs. (1 3.33) and 
(13.34), the shear rate at the wall  is obtained: 

4Q K, =- 
nR3 

(13.35) 

e t e~ ina t ion  of the viscosity  involves  the measurement of the pressure 
gradient and Q, from whose  values the results for uw and K, can be 
obtained. The viscosity  is then determined by means of the relationship 

‘1 = ~ W I K ,  (13.36) 
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An analysis similar to  that described for Newtonian  flow  shows that the 
shear stress at the radius r, ci(r), and  at the wall, G,, is  given  by Eqs. (13.129) 

and (13.30),  respectively.  However, the shear stress and the shear rate  are 
related in these liquids by the power  law 

(13.37) 

where q is the apparent viscosity. From Eqs. (13.29) and (13.37), we obtain 

(13.38) 

Integration of this equation gives the following expression for the profile  of 
the velocity  along the radius: 

(13.39) 

where it has  been considered that  the velocity vanishes at the capillary wall. 
Then the volumetric flow rate, Q is  given  by 

(13.40) 

where K , ~ ~ ,  the shear rate  for non-Newtonian  flows,  was  obtained  by mak- 
ing r = R in Eq. (13.38). This latter magnitude  is related to Q by the expres- 

sion 

3n+ l   3n+1  4Q - 3 n + l  
KWNN = ~ nnR3 Q = 4n (S) - 4 n K w  (13.41) 

where K, for the Newtonian  flow  is  given  by Eq. (13.35). Equation (13.41)  is 
written in a more convenient way as 

(1  3.42) 
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where it has been taken  into account that Q/n = AP(dQ/dAP), Equation 
(13.42), known as the Rabinowitsch expression  (30),  allows the deterrnina- 
tion, of the shear rate  for  non-Newtonian flows. The strategy to follow  in the 
calculation of the  apparent viscosity as  a  function of the shear rate involves 
the measurement of Q for different values of increments of pressure. Then 
the values of dQ/d AP for different values of AP are  obtained  from  the 
slopes of the  plots of Q versus AP. The values of c r W  calculated by Eq. 
(13.30) are  plotted  against those of K,NN [Eq. (13.41)] for each value of 
AP, and  the results for  the  apparent viscosity are  obtained  from  the slopes 
of the resulting curves. 

The Rabinowitsch correction and  the velocity  profile are simple analy- 
tical functions of the power  law exponent n. A schematic diagram of  velocity 
profiles for power  law  fluids  is  shown in Figure 13.6. 

Owing to the coiled configurations of molecular chains, the viscosity q of 
dilute polymer solutions increases  with  respect to  that of the solvent, qs. The 
difference q - qs is proportional  to the radius of the coil and the number of 
coils per unit of volume  is ( C / M ) N A ,  where C is the  concentration of poly- 
mer in the solution, M is the molecular weight  of the polymer, and NA is 
Avogadro’s number. Since the radius of the coil can be expressed in terms of 
the mean square end-to-end distance, (r2),  the specific increment of the 
viscosity  of the solution  due to the polymer can be written as 

{ u2) 3’2 S- rl-rl CNA“ 
rls M 

When C -+ 0, Eq. (13.43)  becomes  (3  1) 

(l 3.43) 

UI Velocity  profiles for different power-law  fluids. 
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(1 3.44) 

where [q] is the intrinsic viscosity and is a universal constant whose  value 
is  2.5 x 1021 when the intrinsic viscosity  is  given in deciliters  per gram and r 
in centimeters. In theta solvents, the segment-segment and segment-solvent 

interaction energies are similar, and consequently excluded  volume  effects 
vanish. The coils are unperturbed by the solvent, and their dimensions 
correspond to those of the isolated chains. For long chains, 
( ~ 2 ) o / ~  = constant,  and Eq. (13.44)  becomes  (32) 

(1 3.45) 

where (r2)o is the mean square end-to-end distance of the unperturbed 
chains. Accordingly, the intrinsic viscosity  of  polymer solutions in theta 
solvents scales  with the 1/2 power  of molecular weight. In good solvents, 
( r2) / ( r2)o  = a2, where a is the expansion coefficient,  which  scales  with the 
exponent v  of molecular weight (a - M"). Then Eq. (13.44) can be written 

as (32) 

( l  3.46) 

where a = 0.5 + 3v. The value  of the exponent v for flexible chains in good 
solvents is  0.1, so the exponent a in Eq. (13.46)  lies in the range 

0.5 5 a 5 0.8. 
The intrinsic viscosity  is  usually  measured  in a Ubbelohde-type visc- 

ometer, a scheme  of  which  is  given  in Figure 13.7.  If the volume V of  liquid 
between the marks a and b flows in a time t ,  then Q = V / t .  The liquid  flows 
under the increment  of pressure given  by 

ha - 
In. h l h b  

LAP = pg- (1 3.47) 

where h, and hb are, respectively, the length of the capillary tube from the 
marks a and b in Figure 13.7 and p is the density of the solution. According 

to Eq. (13.33), the viscosity  of the liquid  flowing through the capillary tube 
can be written as 

q = Apt (1 3.48) 
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Ubbelohde viscometer. 

where A is a constant depending on  the geometry of the viscometer. The 
specific  viscosity  is  defined as 

(1 3.49) 

where t and t, are, respectively, the times required for the solution and 
solvent to flow.  The ratio between the specific  viscosity and the concentra- 
tion, called the reduced  viscosity,  is  given by (33) 

22 = [v] + k’[q12C C (13.50) 

where k‘ is the Huggins constant. The intrinsic viscosity  can then be 
obtained by extrapolating qsp/C to zero concentration, An ~lternative 
way of obtaining fq] is the extrapolation of  (ln q,)/C at zero concentration, 
where qv = t/t,y is the relative viscosity.  The  corresponding relation invol- 
ving qr is  given  by 
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(13.51) 

where k“ is the Kraemer constant. When C -+ 0, k‘ - k” = 0.5. 
Interest in the intrinsic viscosity  lies  in the fact that this magnitude 

pemits one to obtain the hydrodynamic  volume of the molecular  coils 
[see Eq. (13,45)], on  the one hand,  and the molecular  weight  [see Eq. 
(13.46)], on  the  other  hand. However, the intrinsic viscosity  depends on 
the shear rate, and  care should  be taken  that  the measurements are carried 
out under  laminar  regime. Actually, the coils  of  very  flexible chains are 
nearly spherical, and consequently the viscosity  of the solutions show  only 
a weak  dependence on the shear rate. However, as the rigidity of the chains 
increases, the symmetry  of the coils  decreases, the chains adopting  an ellip- 
soidal shape. In this case the energy dissipated during  flow  depends  on the 
direction of the larger semiaxis  with  respect to the flow, reaching a minimum 
value when this semiaxis  is parallel to the direction of  flow.  As a result, the 
orientation of the coils  depends on the rate of shear, and the intrinsic visc- 
osity is strongly dependent  on shear rate. 

Illustrative curves representing the variation in the reduced  viscosity 
with the shear stress for solutions of semirigid chains (34) are shown  in 
Figure 13.8. The  reduced  viscosity  remains nearly constant at low  values 
of CT until a critical value CY, is  reached at which there is a relatively sharp 
drop in the values  of qsp with increasing shear stress. It can  be  seen that the 
critical shear stress is  independent of the concentration of the solutions. The 
intrinsic viscosity  was  obtained as a function of the shear stress from the 
results of Figure 13.8, and the ratio of the value of this magnitude at K to 
that  at K =I: 0 is plotted as a function of K in Figure 13.9. It is interesting to 
note  that the intrinsic viscosity at high shear rate can reach a value that is 
only  50%  of that corresponding to zero shear rate. 

In poly(benzy1 glutamate), helix  conformations are stabilized by intra- 
molecular  hydrogen  bonding  between  hydrogens of the amide  groups and 
the carbonyl groups. Conformations of this kind are maintained  in solvents 
such as cresol, and the corresponding configuration of the chains is an 
ellipsoid. However, the helix  conformations are destroyed by solvents 
such as chloroacetic acid, the chain passing from an ellipsoidal to a coiled 
configuration. The transition from  helix to coil gives  rise to a big decrease in 
the intrinsic viscosity.  Values  of the intrinsic viscosity ratio  are plotted as a 
function of the shear rate in Figure 13.10. The intrinsic viscosity  of the 
solution in  which the configuration of the chains is an ellipsoid  experiences 
a sharp  drop after a critical shear stress is  reached  (35).  However, the 
decrease observed for  the intrinsic viscosity ratio of the coiled configuration 
is, in comparison, rather small. 
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(M, = 3.30 x lo5) in cadoxene. Lines are theoretical curves. (From Ref. 34.) 
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‘ O t  

HELIX FORM IN 
m-CRESOL 

3 4 5 

Reduced  viscosity in dL/g  as  a  function of the  shear rate for solu- 
tions of poly(benzy1 glutamate) in  m-cresol and  dichloroacetic acid. (From Ref.  35). 

Assume a slit rheometer made up by a reservoir and a rectangular channel 
having a width, W, much greater than its thickness, h, as shown in Figure 
13.1 1. Assume further that the edge  effects are negligible  in the flow  geo- 
metry, so the steady flow  may  be  considered two-dimensional, If the refer- 
ence frame is located in such a way that the y ordinate is measured from the 
center of the plane defined  by wh, a force balance on a rectangular element 
of the fluid  gives 

O&W + wy LIP = 0 (13.52) 
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Flow through a slit rheometer. 

where AP is the driving force. Hence the shear stress is  given  by 

Therefore, shear stress at the wall  is 

(1 3.53) 

(13.54) 

Since 0, 0, =- 0. The shear stress is related to the shear rate by the 
power  law 

(13.55) 

Considering the boundary condition v = 0 for y = h/2,  the integration of 
q. (13.55)  gives the velocity  profile  along the y axis: 

he volumetric flow rate can be written as 

rom Eq. (13.56), the shear rate at the wall  is  given  by 

(13.56) 

(13.57) 

(13.58) 
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For Newtonian and non-Newtonian liquids, the shear stress at the wall 
is  given  by Eq. (13.54). The shear rate at the wall for Newtonian liquids can 
be  expressed  in terms of the volumetric flow, making YI = 1 in Eqs, (13.5'7) 
and (13.58). In this case, this quantity can be written as 

(1  3.59) 

In the case  of a non-Newtonian fluid, the true wall shear rate ywNN can be 
calculated by using a procedure similar to the Rabinowitsch equation for 
capillary flow, obtaining 

where K, and G, are given  by Eqs. (1 3.59) and (1 3.54),  respectively. 
Capillary rheometers allow observation of  flow  by optical techniques 

and also permit the installation of  pressure transducers along the slit, thus 
eliminating the need for end corrections. 

In the study of  flow through capillary and slit rheometers, the temperature 
and the specific  volume are assumed to be constant. However,  owing to the 
high  viscosity  of  polymer  melts, heat is generated during flow that gives  rise 
to  an increase  in temperature and hence to a decrease in viscosity (36). 
Considering that the work done during flow degrades to heat, the volume 
average temperature rise  is  given by 

A P  AT=- 
PCP 

(13.61) 

where p is the density and cp is the specific heat. For example, if it is assumed 
that A P  = 108 N/m2, p = 1000 kg/m3, and cp = 2.2KJ/kgV K, the value  of 
AT is about 45°C.  However, the distribution of temperature is not uniform 
along the radius, since T is larger in the high shear region near the wall. On 
the other hand, the consideration of  incompressibility in liquids, an assump- 
tion often made in the study of the flow  of  these substances, must be 
removed. Actually, polymer liquids are highly  compressible. For example, 
a pressure of 108 N/m2 will cause approximately a 10% increase  in density, 
which in turn will  give  rise to a viscosity  two to five  times larger than  that 



532 C h a ~ t e ~  13 

corresponding to 1  atm.  Although  temperature  and pressure effects  may 
individually be large, they are to a large extent mutually canceling, 
Obviously,  rninimization of these  effects  would require minimi~ing  the pres- 
sure effects by using capillary tubes in which the  length-to-radius  ratio is 
small. 

Another source of error  in  the de te~ina t ion  of the  apparent viscosity 
in capillary flow  lies  in the fact that  as  the polymer liquid converges from  the 
barrel to the capillary, the convergence of the flow requires a  sharp pressure 
drop  due  to  the  elongational viscosity  flow. This effect  is illustrated in 
Figure 13.12. The  drop in pressure is not (P2 - PI)/L  but  rather 
(P2 - Pl)/L*, in which L* is related to L by 

L* = L + m R  (13.62) 

where m lies  in the range 1 m 15.  Bagley  (37) realized that  a  plot of the 
driving pressure versus the capillary length-to-radius  ratio (L/R) at  a fixed 
wall shear rate gives a  straight line  with an intercept a (see  Fig.  13.13) at 
AP = 0. The value of a, which  is dependent on  the wall shear rate, should be 
used to correct the wall shear stress. Accordingly, 

R hP 

2(L + aR) 
ow = (13.63) 

This method needs  extensive e~perimentation, and in practice the choice of 
two capillary tubes may  be adequate.  The best results with this approach  are 

l 
L 

Variation of pressure along a capillary tube. 
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Bagley plots to determine the effective length of a capillary tube. 

obtained by combining a relatively long capillary (L/R = 32)  with an orifice 

In the evaluation of the rheological equations for the shear rate, it is 
assumed that there  is no polymer  slippage at the capillary  wall.  However, it 
is an experimentally demonstrated fact that viscous  low  molecular  weight 
liquids  display  brittleness at very  high d e f o ~ a t i o n  rates, behaving  like 
glassy  solids. From  a qualitative point of view,  loss  of  fluidity  occurs  in 
these  cases  when the reciprocal  of the deformation rate is  much  lower 
than the mean relaxation time  of the system. There are some grounds for 
believing that polymer  melts  lose  fluidity at deformation rates at which 
transition from the fluid to the highly  elastic state occurs, without display in^ 
the brittleness  typical of the glassy state. 

The streamlines for Newtonian fluids at low  Reynolds numbers stretch 
in a regular manner  from the reservoir down to the capillary or the slit. 
However, the streamlines of  viscoelastic  fluids  present  vortices  in the cor- 
ner  regions, as shown  in Figure 13.14.  These  vortices  may  become pulsat- 
ing,  leading to flow instabilities and distortions of the melt extrudate. 
There is also a high  degree  of  tensile  extension at the entrance of the 
slit or capillary, and it is  possible to obtain an  apparent extensional 
viscosity  using entrance drop measurements. A s  a consequence,  some 
linear polymers  display a jumpwise  increase  in the flow. This phenomenon 
is  very important in  polyethylene, spurting being both  more  pronounced 
and occurring at a low deformation rate in PE samples  with narrow 
molecular  weight distributions (38). Figure 13.15  shows the volumetric 

@/R = 0). 
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flow rate of nearly monodisperse  polybutadiene of molecular  weight 2.4 x 
lo4 through  a capillary 1 mm  diameter and 25 mm  in length. Photographs 
accompanying the graph, which  show the appearance of the polymer 
extrudate at the capillary outlet, indicate that development of shape dis- 
turbances or elastic turbulence occurs at flow  regimes  close to Newtonian. 
When the critical stress and the shear rate corresponding to spurting are 
reached, the polymer discharge increases jumpwise. The  extrudate in this 
regime  begins to exhibit a screw form, then follows a cylindrical section 
whose  diameter and length are close to those of the capillary. In this 
regime a shear stress G, can  be  reached at which the extrusion rate may 
increase by a decimal order  or more.  The curves of Q vs. CT show a small 
dependence on the L/D ratio of the capillary for this system  in the sense 
that the anomalous jump in Q takes place at lower  values  of G as L/D 
increases. However, as shown in Figure 13.16 the stress at which the 
anomalous  jump occurs seems to be rather insensitive to molecular  weight 
and temperature. 
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Flow as a function of the  shear stress 
fractions of polybutadiene  (From Ref. 38.). 

for different monodisperse 
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In  the last decade of the nineteenth century, Maurice Couette invented the 
concentric cylinder  viscometer. This instrument was probably the first 
rotating device  used to measure viscosities.  Besides the coaxial cylinders 
(Couette geometry), other  rotating viscometers  with  cone-plate and plate- 
plate geometries are used. Most of the viscometers  used nowadays to  deter- 
mine apparent viscosities and  other  important rheological functions  as  a 
function of the shear rate  are  rotating devices. 

An earlier scheme  of coaxial cylinder, shown  in Figure 13.1’7 illustrates 
how a coaxial cylinder works. The rotation is produced by a weight that 
transmits  a  torque to  an inner cylinder  via a  string  and  a pulley. In this 
design the inner cylinder rotates  and the outer one is  fixed. Coaxial cylinders 
are also available in  which the  torque is transmitted to the outer cylinder. In 
this case the outer cylinder rotates  and the inner cylinder  is steady. 
Commercially sophisticated instruments  are now available with computer 
control  and software for  data analysis that allows the measurement of 
apparent viscosity as  a  function of the shear rate in an easy  way. 

The fluid  fills the gap between the two  cylinders, and the outer cylinder 
acts as  a reservoir for  the fluid. The layer  in contact with the rotating 
cylinder rotates with the angular velocity  of the cylinder. Drag reduction 

1. Pulley 
2. Rope 
3. Weight 
4, Shaft 
5. Rotating  cylinder 
6. Body 

.g 1 Old version of a  coaxial  viscometer 
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in the  angular velocity  of concentric cylindrical  layers occurs as the distance 
from  the layers to the  rotating cylinder  increases. The angular velocity  of the 
layer  in contact with the steady cylinder  is zero. 

Couette flow has a velocity  field  whose contravariant components are 
(2,22929) 

21 = 0; i 2  = o(r);  iyj = 0 (13.64) 

in a cylindrical coordinate axis with x1 = I, x2 = 0, and x3 = z. 
Let  us  assume that  the coaxial cylinder has a length L and  that  the radii 

of the inner and  outer cylinders are R1 and R2, respectively. The shear stress 
acting on  a cylindrical layer of fluid of radius I is related to the  torque M 
applied to the inner cylinder by the expression 

M = 2nr2Lorfj  (1  3.65) 

On the  other  hand,  the  angular velocity W of the concentric layers of fluid 
decreases from  the inner to the  outer cylinder, and  the shear rate  can be 
written as 

d o  
dr 

K = -r- 

From Eqs. (13.65) and (13.66) and Newton's 

M d o  
" 

2n?L - -v- dr 

(13.66) 

law (ore = I ~ K )  we obtain 

(13.67) 

The negative  sign  in this expression arises from the fact that  for  a device 
with the inner cylinder rotating  and  the  outer one steady, the  angular velo- 
city  decreases as r increases.  However, the sign  of dcu/dr is  positive  when the 
outer cylinder rotates  and the inner one is stationary.  Integrating Eq. (1 3.67) 
yields 

(1  3.68) 

The constant C can be obtained  from  the second boundary condition given 
below: 

m(&) = s t ;  Cif(&) = 0 (13.69) 

The  angular velocity  profile  is  given  by the expression 
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(13.70) 

y taking into account that v = cor, the velocity  profile  of the fluid 
layers in the Couette viscometer  with rotating inner cylinder is  given  in 
Figure 13.18. Equation (13.7'0)  in combination  with the first boundary con- 
dition in Eq. (13.69)  gives 

(33.71) 

where $2 is the angular velocity  of the  rotating inner cylinder. Accordingly, 
once the torque  and the angular velocity are known, the viscosity can be 
determined. A similar expression is obtained  from an experimental device  in 
which the inner cylinder  is steady and  the  outer one rotates. 

For non-Newtonian  fluids a power  law can be  used to determine the 
viscosity. In this case. 

(13.72) 

Solving this equation using the boundary conditions indicated in Eq. 
(13.69), we obtain  the expression (29) 

i~ i 
I I 

i I 
I 

Schematic representations of a coaxial cylinder  (left) and velocity 
profiles (right), The inner cylinder rotates and the outer one is steady. 
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(1 3.73) 

The exponent y1 can  be  obtained  from the slope of the double logarithmic 
plot of M versus S2 and  the  apparent viscosity  from the intercept. 

End effects,  mostly  due to  additional resistance of the outer cylinder 
bottom, may alter the viscometric  measurements  performed  with coaxial 
cylinders. These  effects  may  be greatly reduced by  using a small-gap geo- 
metry. End effects  can  be evaluated by measuring the viscosities  of standard 
Newtonian  fluids  with a series  of constant-diameter cylinders of different 
lengths and  the same gap. The plot of torque versus length for various 
values  of the angular velocity  gives a straight line, the intercept of  which 
with the abscissa is a correction term L,. This  term is equivalent to the 
additional length due to  the end  effects. Therefore, L + L, should  be  used 
instead of L in Eqs. (13.70) and (13.73). 

The cone-plate  geometry  is  widely  used  in rheological measurements of 
viscoelastic  fluids. The fluid  is  placed  between a plate of radius R and a 
cone of the same radius. The angle, a, between the cone and the plate is 
usually smaller than 3"  (see Fig. 13.19). 

In cone-plate  geometry, the velocity  field  of a simple shearing flow  has 
the following  components in a spherical coordinate system (2,123,129): 

x, = 0; x2 = o(0); x3 = 0 (13.74) 

in a spherical coordinates reference  frame  with x1 = 8, x2 = 4, and x3 = r. 
The shear stress can be  obtained by taking into account that the torque 

applied on  an infinitesimal surface of the fluid in contact with the  rotating 
plate is ~M = 27toe,r2 dr. Hence, the shear stress and  the shear rate  can be 
written as 

. rS2 S2 
2nr2dr ' h a  

Goa = - K = - = -  (13.75) 

where a is the angle between the cone and  the plate. In Eq. (13.75) the 
relation h = r tan a a was used. Accordingly, 
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Schematic representation of a cone-plate rheometer 

(13.76) 

Integrating this equation gives the following  expression for  the  torque: 

The cone-plate geometry has several advantages over other geometries, one 
of the most important being that  the shear rate is constant along the radius. 
This does not occur  with alternative geometries.  On the  other  hand,  a very 
small amount of sample is required, an aspect of great im~ortance in the 
determination of  viscosities of polymers obtained in small amounts in 
research laboratories.  The system  allows  good temperature  control,  and, 
finally, end effects are negligible for low rotational speeds. 

~mportant disadvantages of this geometry are  evaporation  and free 
boundary effects for polymer solutions prepared with volatile solvents. 
Moreover, measurements are restricted to relatively  low shear rates because 
polymer  melts and  other fluids will not stay in the  gap at high rotational 
speeds. The cone-plate geometry  is not recommended for measuring the 
viscosity  of multiphase systems  because in some  cases domain sizes  may 
be  of the same order of magnitude as the  gap size. 
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In plate-plate  viscometers (Fig. 13.3), the shear stress and the shear rate are 
related to the torque M and angular velocity $2 respectively,  by the expres- 
sions 

dM rS2 
0,e = ~ and K =- 

2nr2dr h (13.78) 

where h is the gap separation. For Newtonian fluids the relation between the 
shear stress and the shear rate is  given  by 

dM rS2 
2nr2dr - h ” 

From this expression we obtain 

nR4S2 
2h 

M = q -  

(13.79) 

(1  3.80) 

The shear rate in this geometry depends on the radius, and since the visc- 
osity of non-Newtonian fluids depends on the shear rate  and thus changes 
with the radius, integration of Eq. (13.79)  gives 

(13.81) 

This equation is more conveniently written in terms of the shear rate by 
means of the expression 

(1 3.82) 

where  use  was made of the expression  given for the shear rate in Eq. (13.78). 
In Eq. (13.82), KR(= QR/h) is the shear rate at r = IC. By taking the deri- 
vative  of Eq. (13.82)  with  respect to the maximum shear rate, we obtain 

(13.83) 

where  Leibnitz’s rule was  used. This expression can alternatively be 
expressed in a more convenient way as (14) 

(13.84) 
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This equation suggests that the determination of the viscosity of non- 
Newtonian fluids  with  plate-plate  geometry requires that  1nM first  be 
plotted against lnIrR. Consequently, the determination of the shear-depen- 
dent viscosity requires that the torque be  measured at different shear rates. 
The value  of the viscosity  is then determined with the value of the local slope 
in conjunction with Eq. (13.84). If the fluid  obeys a power  law, then 

1nN - nlnKR (13.85) 

q. (1  3.84)  becomes 

(13.86) 

Plate-plate  geometry has all the disadvantages of the cone-plate  geo- 
metry and none of its advantages. However, this technique is better than the 
cone-plate  geometry for measuring the viscosity  of  polymer  melts, pastes, 
and suspensions containing large particles. 

Normal stress  effects are observed in many experiments. For example, con- 
centrated polymeric solutions climb up the stirrer by  effect  of the normal 
stresses, in contrast with what occurs with  low  molecular  weight liquids, in 
which inertial effects are dominant. Schematic representations of this beha- 
vior are shown in Figure 13.20. The streamlines of  flow  in  polymer  melts 
and concentrated solutions are arcs that pull out or partially stretch the 

(a) Rod-climbing effect of a viscoelastic  fluid  caused by rotation of 
the rod in the fluid. (b) The  same situation  for  a  Newtonian fluid. 
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polymer chain. The chain tends to coil back up due to entropic driving 
forces and displays a retractive force, a component of  which  is  given  in 

Figure  13.21,  This force squeezes the inner fluid  of the vessel, forcing it  to 
climb the stirring rod. 

Normal stress differences  can  be  observed  in  Couette  flow,  cone-plate 
and plate-plate geometries, and capillary flow.  The  only  nonzero  compo- 
nents of the stress tensor in coaxial cylinders are o,.e(r), o,.,.(r), cree(r), and 
ozz. The r component  of the  equation of motion [Eq. (4.13)]  is  given  by 

(14,22)  [see Eq. (P4.6.6)] 

(13.87) 

For any z position, Eq. (13.87) can be written as 

After integrating this equation,  the difference  of total pressures measured at 
the outer  and inner cylinders  is  given  by 

Schematic representation of a rod-climbing experiment, for a poly- 
mer solution viewed from the top. The dashed line represents a force component 
resulting from the retraction force of the chain. 
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where NI(= e,, - 000) is the primary normal stress difference.  Since the 
radius dependence  of NI is not known. Eq. (13.89) cannot be integrated. 
However, for a small gap some mathematical handling of Eq. (13.89) leads 
to the approximate relationship (14) 

(13.90) 

For low  molecular  weight liquids, NI = 0 and, according to Eq. (13.89), 
n,,(R2) > nrr(Rl). This means that the inertial component forces the liquid 
to climb the outer steady cylinder. For polymeric  melts and concentrated 
solutions, NI > 0 and n,,(R2) n,,(Rl), so the pressure at the wall  of the 
inner rotating cylinder is greater than the pressure at the outer wall  of the 
steady cylinder. A s  a result the fluid  will climb the inner cylinder  wall. The 
act of the solution climbing the rotating cylinder  is  called the Weissenberg 
effect. 

By effect  of the normal stresses, a thrust among the plates occurs in non- 
Newtonian fluids that tends to separate them. This behavior is a conse- 
quence of the fact that tension along the lines of force causes the outer 
layers  of  liquid to squeeze inward upon the inner layers. Thus a pressure 
is built up between the cone and the plate from near zero in the edge to a 
maximum in the center. 

Since there is no shear force in the r direction, the r@ and re components 
of the stress tensor are zero and the flow  is  symmetrical  with  respect to @. By 
neglecting the inertial forces (pa2 -+ 0), the r component of the equation of 
motion [Eq. (4.13)] for this system can be written as (14,22)  [see Eq. (P4.7.3)] 

(13.91) 

By taking into account that the total components are xii = p  + c ~ ~ ~ ,  Eq. 
(1  3.91)  is  expressed  by 

(13.92) 

or in the alternative form, 

(1 3.93) 
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(1  3.94) 

and since the  normal stress difference,  which  is a unique function of the 
shear rate,  has  a  constant value, one obtains 

(13.95) 

By taking this expression into  account,  Eq. (13.93) can be written as 

a 
- @ + oee) = (044 - s e e )  + 2(oee - 0,) = constant (13.96) alnr 

Integration of this equation from r = r to r = R gives 

According to this equation,  the  thrust profile can, in principle, be measured 
on  the upper cone or lower plate.  Note  that  the  normal stress differences are 
assumed to be independent of position. By plotting n;ee(r) against - ln(r/R), 
a  straight line  is obtained from whose  slope a  combination of the primary 
(044 - q e )  and secondary (tree - err) normal stress differences  is obtained. 
Though  the pressure profile  is  difficult to measure, the primary stress dif- 
ference can be readily determined from the force F exerted on  the cone or 
plate. The value of F is  given  by 

(1  3.98) 

By substituting Eq. (13.9'7) into  Eq. (13.98) and  integrating by parts, we 
obtain 

S 
2 F = ---TCR~TCB~(R) + --nR2(n++ + - 2nrr) (13.99) 

By using the  boundary  condition  that at the free surface (r = R) the sample 
presents a spherical shape with no effect  of surface tension, we have nrr(R) = 
-pu where pa is the atmospheric pressure. Then rearrangement of Eq. 
(1 3.99)  gives 
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Eq. ( 1 3.100)  becomes 

Hence the primary normal stress difference NI is  given  by  (14,39) 

(13.101) 

(13.102) 

(13.103) 

(13.104) 

where F* = F -pa is the normal force in excess  of that due to the atmo- 
spheric pressure. 

In the development  of Eq. (1  3.104), inertial forces  have  been  neglected, 
and consequently this expression can be  used  only for low shear rates. It 
should be pointed out  that in the shear rate region  in  which the flow beha- 
vior  is Newtonian, the scaling  law NI - 1c2 predicted for second-order fluids 
is  fulfilled. Centrifugal forces  give  rise to circulation of  fluid toward the 
center at the fixed plate and toward the edges at the rotating cone. This 
produces higher torques and negative normal forces for Newtonian fluids. 
Therefore, to minimize ce~trifugal force effects  in the ~easurements of the 
primary normal stress difference  of  polymer  melts and solutions, it is con- 
venient to use  high  viscosity  solvents. Methods have  been  developed for 
torque and normal force corrections that the reader will  find  elsewhere 
(14). In spite of the shortcomings involved in the cone-plate geometry, 
this is at present the best method for measuring NI for polymer  melts and 
solutions. 

The main factors governing the non-Newtonian behavior of  polymer  melts 
and concentrated solutions are the weight-average molecular weight,  mole- 
cular weight distribution, and molecular topology (branching), and concen- 
tration. A s  can be  seen  in Figure 13.22, the curves  showing the evolution of 
viscosity  with shear rate for several fractions of the same  polymer  of  differ- 
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Schematic plot showing the influence of molecular weight on the 
variation of the viscosity  with the shear rate. 

ent molecular  weights exhibit the same shape. In the curves, one region, A, 
can be distinguished at low  values  of K where the viscosity  remains nearly 

independent  of the shear rate, followed  by another, B, in which a relatively 
sharp fall in the value of the viscosity  with increasing shear rate occurs. 

Moreover, the region in which the behavior  is nearly Newtonian  becomes 
shorter  as the molecular  weight increases. 
To explain the non-Newtonian  behavior of polymer melts it is  conve- 

nient to remember that the domains of different molecular chains overlap 
and  the chains become entangled. Entanglements confer a physical  network 

structure  to polymer melts and concentrated solutions. Though the entan- 
glements, unlike chemical cross-linking, are  not permanent, the response of 
entangled networks to  an external shear stress is similar to  that of a cross- 

linked rubber at short times (40). ence the entangled structure of polymer 
melts and concentrated solutions governs the flow properties of these mate- 
rials. As was  shown  elsewhere [Eq. (9.33)], the average relaxation time  of an 

entangled network  can  be  expressed as 

(,G = TOJ: (13.105) 

where qo and J: are, respectively, the viscosity at zero shear rate  and the 
steady-state compliance. The value of (z) can be  viewed as the average time 
necessary for  the renewal  of the entangled network. For flows in which the 
reciprocal of the shear rate is larger than (z), that is, for low  values  of K, the 
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process occurs in a network whose entanglement density is not affected by 
the flow process. In these conditions, the viscosity does not depend on  the 
shear rate  and the flow  is Newtonian. For shear rates at which 
K " ~  qoE(= (+c)), the flow  will  be compatible only  with an entangled net- 
work  with a lower relaxation time, that is  with a network of  lower entangle- 
ment density. Since the energy  is dissipated in  the entanglement points 
during flow, a decrease  in the density of these points with  increasing shear 
rate should decrease the viscosity. As a consequent, the higher the shear 
rate,  the lower the viscosity must be. According to this approach,  a critical 
shear rate K, will  be found above which the viscosity  decreases  with increas- 
ing  values of K, that is, the system exhibits non-Newtonian behavior. The 
value of K, can be obtained by means of the equation (39) 

m 1 (13,106) 

The viscosity at zero shear rate is strongly dependent on molecular  weight 
for long chains (q = KM3*4, M P 2Me), while 8 remains nearly constant 
for nearly monodisperse fractions (Je = constant, M > 6 ~ ~ ) .  As a conse- 
quence, Eq. (13.106)  suggests that  the critical shear rate above which the 
flow exhibits non-Newtonian behavior strongly decreases  with increasing 
molecular weight. 

In  addition to regions A and B in the curves  showing the shear rate 
dependence of the viscosity, a  third region, C, could be postulated. This 
latter region  would occur at shear rates high enough that  the fluid structure 
in terns of molecular entanglements is lost.  In this case  only segmental 
frictional forces would  resist the flow, just  as occurs in low ~olecular  weight 
compounds, thereby giving  rise to a Newtonian response (40). the reason the 
onset of this Newtonian region  is not experimentally observed  is that  the 
molecular chains cannot move fast enough to rearrange  and relieve the 
incurred shear stress. As result, chain scission occurs, mostly  in the longest 
chains that have the longest relaxation times. Moreover, lowering the tem- 
perature causes a decrease in molecular mobility, and consequently the 
response  time will increase. Hence, for  a given molecular  weight, a decrease 
in temperature will cause more chain scission at  a given shear rate. 

The influence of molecular heterodispersity (or molecular  weight distribu- 
tion) on  the evolution of viscosity  with shear rate is  shown  (41) in Figure 
13.23.  As the width of the  distribution increases, the flow departs  from 
Newtonian behavior at lower  values of K, than would occur in a nearly 
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3 Influence  of the  width of the molecular  weight distribution on  the 
shear rate dependence  of the viscosity. (A), Narrow distribution; (O), wide distribu- 
tion. (From Ref.  41.) 

monodisperse polymer  with a molecular weight  similar to the average  mole- 
cular weight  of the heterodisperse polymer. Moreover, the drop in  viscosity 
with increasing values  of shear rate is  lower in wide distributions than in 
narrow ones  with the same molecular weight average. This behavior can be 
explained by taking into account that wide distributions embody extremely 
high and low molecular weight tails. Long chains in the heterodisperse 
distribution enhance the steady-state compliance (2) and qo, thus shifting 
the critical shear8 rate  to lower  values  (39,40). In  contrast, the low  molecular 
weight tails exhibit non-Newtonian behavior at relatively large values  of K. 
The combined effects  give a smaller drop in viscosity than  that occurring in 

a narrow dist~bution with comparable average molecular weight. 
Moreover, the fall  of q with K extends over a rather wide range of  values 

of shear rate. 
Molecular topology has a decisive  influence in the non-Newtonian 

behavior of  polymers.  Branches  of  high molecular weight produce an anom- 
alous dependence  of q on M in the sense that the value  of the viscosity  is 

greater than  that corresponding to linear chains of similar molecular weight 
(42,43). In contrast with what occurs in linear chains, the steady state com- 
pliance for branched chains increases  with increasing molecular weight. 
Consequently, qJ: is larger for branched polymers than for linear ones, 
and hence branches of  high molecular weight  decrease the shear rate at 
which the flow departs from Newtonian behavior (see Fig. 13.24). 
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Schematic representation showing the influence of branching on 
the variation of viscosity  with shear rate. 

The viscosity  of  polymers  is strongly dependent on temperature. The vis- 
cosity at zero shear rate obeys the VFTH equation at temperatures above 
T', while at temperatures  much higher than T' it is  described  by the 
Arrhenius equation. Curves  showing the dependence of  viscosity on shear 
rate, at different temperatures, are plotted in  Figure  13.25 (44). Owing to  the 
fact that qo decreases dramatically with increasing temperature  while 2 
undergoes  only a relatively small increase, the shear rate at which the flow 
departs from  Newtonian  behavior increases as the temperature increases, As 
shown in Figure 13.26, horizontal shifts of the normalized isotherms with 
respect to reference  isotherm  produce a master curve that permits us -to 
predict the dependence of q on  the shear rate in a wide interval of values 
Of K. 

Several  models  have  been  proposed to describe the dependence of  viscosity 
on shear rate. One of the most  used in engineering applications is the two- 
parameter  Ostwald-De  Waele  model  given  by (45) 

(13.10'7) 
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0 0.01 0.1 1.0 

Variation of  viscosity  with shear rate at indicated  temperatures for 
linear  polystyrene (From Ref. 44.) 

where n <: l for shear thinning fluids and y1 > 1 for shear thickening fluids. 
A serious drawback  of this model  is that the viscosity of shear thinning 
fluids  goes to infinity as the shear rate approaches zero. In general, the 
model gives anomalously  high  values for the viscosity  of shear t h i n ~ i ~ g  
fluids  in the region where the shear rate is  very small. 

0.1 1 I I I I I 
0 0.1 0.3 1 .o 3.0 IO. 0 

Y To 
( To’” q o  Jz) 

Time-temperature superposition for the results  of Figure 13.25 
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The Ellis (46), Carreau (47), and Cross-Williamson  (48)  models are 
three-parameter models. The Ellis  model  gives the viscosity as a function 
of qo, the shear rate Q, the parameter 0 1 ~ 2 ,  which  is the shear rate  for which 
the viscosity  is qo/2, and a dimensionless parameter a. The equation is 

(13.108) 

The model predicts a zero shear rate viscosity at low  values  of the shear rate; 
at higher  values  of K, the model predicts shear-thinning behavior, while q is 
underpredicted at very  high shear rates. 

The Carreau model  is a function of qo, a characteristic time t l ,  and a 
dimensionless parameter n. It can be written as 

(13.109) 

Though the model predicts very  well the variation of  viscosity  with shear 
rate  for polymer solutions, it slightly underestimates the zero shear rate 
viscosity. 

The Cross-Williamson model is  expressed by 

(13.110) 

This model also gives a good account of the shear rate dependence  of the 
viscosity for shear thinning polymers. It slightly overpredicts the value  of qo 
and it also predicts longer transitions from the zero shear rate to the shear 
thinning behavior. 

Four-  and five-parameter models  have also been proposed. An  example 
of the four-parameter model  is the Cross-Williamson  model  given  by  (14) 

(13.111) 

where qoo is the viscosity  when K "+ m. The corresponding extension to the 
four-parameter Carreau model can be  readily made (49). 

By comparing the viscosity  of  polystyrene  samples obtained by oscillatory 
measurements and in steady-state conditions, Cox and Merz (50) found that 
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the modulus of the complex  viscosity at the  angular frequency m was 
roughly equal to the viscosity obtained at a shear rate = m. That is, 

where Iq*(m)l = [qt2(o) + qtt2(m)]1'2. This relationship holds for homoge- 
neous polymer solutions and melts, as shown in Figure 13.27 for poly(ox- 
yethylene) solutions (51). The empirical Cox-Merz relation is important 
because  it  allows  us to determine the shear rate dependence of the viscosity 

at shear rates significantly  higher than those permitted for cone-plate and 
plate-plate  geometries. 

b 

Diluents and plasticizers  in  polymeric  systems increase the steady-state com- 
pliance and decrease the zero shear rate viscosity.  These  two  combined 
opposing effects give  rise to a diminution in the value of qoJt. Hence the 
critical value of the shear rate in dilute systems  is shifted to higher  values as 
the  dilution increases (see Fig. 13.28). 
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7 Comparative plots showing the  variation of the viscosity q and  the 
modulus of the complex  viscosity, /V*/, as  functions of the  shear rate, K, and  the 
frequency, a, respectively. (From Ref.  51.) 
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Schematic plot showing the influence  of concentration  on  the 
shear rate dependence of the viscosity  of  polymer solutions. 

The flow behavior of blends  depends on the compatibility of their  com- 
ponents. The viscosity  of a compatible blend, for exampie  polystyrene and 
polyoxyethylene,  is the average  of the viscosity  of the components (52). 

lends  made up of high  viscosity incompatible polymers  may  have  lower 
viscosity than either component (53) (see  Fig. 13.29). This  effect  may  be the 

6" 
1 o3 

High viscosity  blends prepared  from  incompatible polymers 
275°C. ("----- ), polycarbonate (PC); (- - -), 4-methyl pentene-l (M); (- e 

50/50 PC," blend. (From Ref. 36.) 

at 
"17 
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result of the weakness at the planes between the interfaces. Finally, low 
viscosity  melts  may form blends that have higher viscosity than either poly- 

mer  component alone (36)  (see Fig. 13.30).  These latter blends are highly 
elastic, presumably as  a consequence of the large internal surface that is 
produced at a I pm  level. During flow, the spherical shape  of the droplet is 
deformed to  an ellipsoidal form, thus greatly increasing the surface area. 

The high elasticity exhibited by  these blends is the result of the fact that the 
work done  during the flow process is  recovered as  the stress is  removed and 

the  droplet reverts to  its spherical shape. An interesting review  of the rheol- 
ogy  of  polymer blends is  given in 

Fillers usually  enhance the viscosity  of the polymer  melts.  The  viscosity 
of these systems  depends not only on the characteristics of the melt but also 
to a great extent on  the  nature  and volume  of the filler.  Several empirical 

relationships have  been  proposed  between the viscosity  of the melt and  that 
of the melt  filled  with nonintera  e particles for Newtonian  flow,  Among 

them, the empirical equation of ron  and Pierce (55) stands  out: 

-2 
'IC= (1 "t) 
rl 

(13.113) 

lends of low  viscosity  polymers: ("----- ), nylon 66; ( S  * *), poly- 
propylene; (- . . . -), 70/30  nylon-polypropylene blend. 



where q is the viscosity  of the polymer, qc is the viscosity  of the filled  melt at 
a volume concentration c of  filler, and c. is the volume concentration for 
close packing. The value of c. for highly  filled  polymers  may range from 
0.61 for glass beads to 0.34 for mica. 

A s  shown in Figure 13.3  1, the curves describing the variation in the 
viscosity  of  polymers  filled  with homodisperse noninteractive spheres are 
reminiscent  of those of the unfilled  polymers, at least up  to a solid fraction 
close to maximum packing (56). The data fit to the Carreau equation (4’7) 

where the subscript S refers to the suspension, qso is the zero shear viscosity, 
and ts is a characteristic time. The results at hand suggest that the non- 
Newtonian viscosity of a filled  polymer at a certain shear stress can be 
obtained from that of the polymer at the same shear stress by means of 
Eq. (13.113). Finally, polymers  filled  with  polydisperse  spheres  exhibit  lower 
viscosity than their counterparts containing the same  volume fraction of 
homodisperse fillers. 

In most cases the elastic response  of  filled  polymers  is  severely  reduced 
with  respect to  that of the polymer, though occasionally  fillers  may form  an 
entangled structure with the melt exhibiting an anomalous elastic response. 
The study of the flow behavior of polymers filled  with interacting particles 
presents serious complications. A major one is the agglomeration of 

10’ 

re Influence of the volume fraction of  glass spheres dispersed in a 
t h e ~ o ~ l a s t i c  polymer at 150°C on  the viscosity. (From Ref. 56.) 
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particles when interparticle interactions compared to viscous  forces are 
important. 

Because the value  of N1 depends on the square of the viscosity,  all the 
parameters enhancing the viscosity  will  affect the primary normal stress 
difference. Thus N1 increases  with  molecular  weight and concentration 
(51)  (see Fig. 13.32). The typical behavior of the shear rate dependence of 
both the shear stress and the normal stress difference NI for a fluid is shown 

in Figure 13.33. At very  low shear rates, Nl is  lower than the shear stress. 
However, by taking into account that NI - and 012 - K, a shear rate K, 
may  be reached above which NI > o12, the difference N1 - o12 being larger 

the larger the shear rate. The fluid  is Newtonian (viscosity  is constant) for 
values  of K in  which NI < o12; however, for K > K, the curves  show that 
o12 < q0", and consequently the behavior is non-Newtonian. 

The time-temperature correspondence principle holds not only for the 
viscosity but also for the normal stresses. In the latter case,  however, the 

igure l Primary normal stress difference as a function of the shear rate and 
molecular weight for 3% (mass)  poly(oxyethy1ene) solutions in water and glycerine. 
(From Ref. 5 1 .) 
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Variation of shear stress (a’, b’, c’) and  primary  normal stress 
(a, b, c)  with the  shear rate for three fractions of a v~scosity-t~innin~ polymer. 

temperature  dependence  of the results expressed  in  terms  of Nl /02  [Eq. 
(13.26)]  is nearly negligible. Actually, the decrease that takes place in N I  
as an effect  of the increase in  temperature  is  balanced by the relative 
decrease that occurs in 02, and hence the ratio N1/n2 remains  nearly con- 
stant. 

The shear rate dependence of the viscosity and  that of the normal stress 
difference N I  for a viscoelastic  fluid  follow opposite trends. Thus the first 
parameter  decreases  with increasing values  of K, while the second increases. 
It is noteworthy to remark  once  more that viscoelastic  fluids  may present 
nonlinear effects,  expressed  by the normal stresses, in regions in  which the 
shear stress is a linear function of the shear rate. However,  these  viscoelastic 
systems are still called  Newtonian  fluids due  to the fact that the viscosity  is 
independent of the shear rate. 

The  non-Newtonian  behavior  of  polymers  has important technological 
implications. Thus the decrease in viscosity  with increasing shear rate 
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makes it possible in  many  cases to carry out the processing of polymeric 
materials at temperatures low  enough to avoid degradative effects  in the 
molecular chains. The  molecular chains flowing  in a capillary are partially 
uncoiled and oriented in the direction of  flow.  Once the oriented chains 
leave the capillary, they  re-coil, and the diameter of the extrudate becomes 
higher than  that of the capillary. When the length of the capillary increases, 
the residence  time  of the macromolecules  in the capillary increases and the 
molecules  have  more  time to  adopt  the conformations of  lower  energy 
compatible  with the force field.  As a consequence,  re-coiling of the oriented 
molecules after they  leave the capillary decreases as the length of the capil- 
lary L, increases. Consequently, the die swelling ratio DIDo, where D and Do 
are the diameters of the  extrudate  and capillary, respectively,  decreases as L, 
increases. This  behavior is schematically represented in Figure 13.34. 

From  a phenomenological point of  view, the swelling  of the  extrudate 
can be explained in  terms of the  normal stresses, As the melt  leaves the die, 
the confinement by the capillary wall  is no longer acting and the tension 
along the lines  of  flow  draws the  extrudate back so that  it rearranges in a 
larger diameter. Since the first normal stress NI is dependent  on the  square 
of the shear rate,  the D/Do ratio will increase with increasing values  of K. 
Equation (13.25) also predicts, at least at the qualitative level, the effect  of 
temperature on the DIDo ratio. Actually, the first normal stress experiences 

Schematic representation of  swell ratio with shear rate at various 
temperatures for commercial  polystyrene. (From Ref. 41 .) 



a sharp decrease  with  increasing temperature because NI - qi .  Hence, for a 
given shear rate, the D/Do ratio will  decrease as temperature increases  (41). 
This behavior  is  clearly  shown  in Figure 13.35,  where  values  of D/Do for 
polystyrene are plotted as a function of the shear rate at selected tempera- 
tures. 

Molecular  heterodispersity has a strong influence on the swelling ratio. 
According to Eq. (13.25), NI depends on the steady-state compliance, 2. 
Since ,Jf undergoes a high  increase  with  molecular  heterodispersity, D/Do is 
expected to increase  with distribution breadth at constant shear rate (41). 
The dependence of D/Do for narrow  and wide distributions, shown  in 
Figure 13.36,  is  in  agreement  with  this prediction. In general, the viscosity 
and the swell ratio show opposite dependence on the shear rate. Thus while 
the viscosity  decreases  with  increasing shear rate, the swell ratio increases. 
This  behavior  is illustrated in Figure 13.37. 

The melt  index test, widely  used for technological purposes, measures the 
rate of extrusion of a polymer  melt through a given  capillary  (57). This is a 

Variation of swell ratio with  shear rate at various  temperatures  for 
commercial  polystyrene.  (From  Ref.41.) 
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l os 1 1 0 7  
Shear Stress (dynes/cm* ) 

Curves  showing the  variation of the swell ratio for narrow  and 
broad molecular  weight distributions. (From Ref.  39.) 

1 0” loo 10’ lo2 103 
W [S”)  

re Dependence  of both viscosity and swell ratio on  the  shear rate. 
(From Ref.  39.) 
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simplified variant of the capillary flow experiment. A sketch of the melt 
index apparatus together with the pertinent dimensions and specifications 
is  given in Figure 13.38.  Polymer in granular form is  fed into the apparatus 
and is  melted by heating at a temperature 1" > Tm, where Tm is the melting 
temperature of the polymer. Then the viscoelastic  liquid at temperature T is 
forced through the capillary by a pressure  induced by a piston of mass M. 
The flow  is determined by  weighing the extrudate that has flowed through 
the orifice  in a given  time. This test  is  especially  useful in quality control and 
product specification  of  polyethylene. In this case, the flow rate at 190°C 
under a mass of 2.160kg (G 0.30 MPa), measured in grams per l0 minutes, 
is the melt Bow index (MFI).  In order for resins  with different apparent 
viscosities and melting points to be indexed, another 12 tests have  been 
specified  with 12" in the range of  125-275°C and pressure in the interval 
0.045-3.0 MPa. 

For Newtonian fluids the viscosity  is independent of  time. 
for most non-~ewtonian fluids the viscosity at a shear rate high enough 
to place the fluid in the non-Newtonian region  evolves  with  time as 

schematically indicated by the lower  curve  of Figure 13.39. The viscosity 
decreases  with  time until steady-state conditions are reached. This phe- 
nomenon is  called thixotropy. The cause of this behavior lies in the fact 

Melt index  apparatus. 
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Rheopectic (C) 

Newtonian (B) 

Thixotropic (A) 

Time 
Time dependence of viscosity for different types of fluids: A, thix- 

otropic; B, Newtonian; C, rheopectic. 

that  at the beginning of the experiment the entanglement density is  com- 
patible with that of the Newtonian region. It takes time to reach a struc- 
ture compatible  with that of the specific shear rate in the non-Newtonian 
region. A certain amount of  time  is  needed to reach the steady state. 
Obviously, the transition time  will  be  dependent  on external variables 
such as temperature and pressure that affect the liquid structure as 
well as internal variables such as molecular  weight,  molecular  weight 
distribution, and degree  of branching. 

The  viscosity  of  some  fluids (particle solutions or suspensions) measured 
at a fixed shear rate  that places the fluid  in the non-Newtonian  regime 
increases with  time as schematically shown by curve C of Figure 13.39. 
This behavior  can  be explained by assuming that in the Newtonian  region 
the particles pack  in an orderly manner, so flow can proceed  with  minimum 
interference between particles. However,  high shear rates facilitate a more 
random arrangement for the particles, which leads to interparticle interfer- 
ence and  thus  to  an increase in viscosity.  Models that illustrate the thixo- 
tropic  and rheopectic behavior of structural liquids can be found elsewhere 
(58,59). 

During stretching flow, material is  drawn  from  one cross-sectional area to 
another. This type of  flow  dominates  fibre,  film,  blow  molding, and vacuum 
forming  processes (57). Let us assume that a filament of a molten  polymer  is 
hauled  off  under a force F (see Fig. 13.40). Taking  the die of the extruder as 
the origin of the reference frame, the cross-sectional area A of the filament 
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Filament of  liquid  polymer continously pulled 
a force F. 

from a reservoir 

decreases  as z increases.  Both the stress G[= P/A(z)] and  the velocity of the 
extrudate increase as z increases.  If at time t the velocity  of a  point at 
distance z is v, the motion of the  point  after  a time  dt  is dz = v  dt.  In moving 
the point  from z to z + dz, the cross-sectional area changes from A to 
A + dA. By considering that Az = (A + dA)(z + dz), we obtain 

dA dz 
A Z 
" " - (13.115) 

where the second order dA dz  was considered negligible. On the  other  hand, 
the volume flow Q(= AV)  is constant  and consequently independent of z. 
Then dQ = A dv + v dA = 0, leading to the relationship 

dA dv 
A V 
" " - 

From Eqs. (13.115) and (13.116) we obtain 

dz dv d&, = - = - 
z v  

(13.116) 

(13.117) 

where  is the change in strain  as  the element  moves for z to z + dz. Let us 
assume that  the extrusion process  is carried out at temperature high enough 
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that the response can be  considered to be  mainly  viscous. In  that case the 
strain rate can be written as 

(13.118) 

where Eq. (13.117) together with the expression dz = v dt have  been con- 
sidered. If it is  assumed further that the flow  is Newtonian, that is, ut = qL 
d€~/dt, then the apparent value  of the elongational viscosity  is  given  by  (57) 

F FV 
A dvldz Q dvldz 

qL=" - (13.1  19) 

Accordingly, the measurements of both F and Q and the experimental 
determination of the values  of v versus z permit us to determine the appar- 
ent extensional viscosity. This parameter can alternatively be obtained from 
the total strain, which, according to Eq. (1  3. l 17),  is  given  by 

(13.120) 

where  v1 and v0 are the velocities at the haul-off and the die  exit,  respec- 
tively. Then qL can be written as 

(13.121) 

where d = vt  is the draw distance between the die  exit and the haul-off. 
Equation (13.121)  suggests an easy  way  of determining the elongational 
viscosity. 

Chain branching has a strong effect on stretching flows. For example, 
high density polyethylene  (linear chains) (HDPE)  and low  density  polyethy- 
lene (branched chains) (LDPE) have  similar shear flow behavior and similar 
elastic response, but their stretching flows exhibit dramatic differences  (36). 
Curves showing the dependence  of the elongational viscosity, qL, on the 
tensile stress, U,, for  HDPE  and  LDPE  are plotted in Figure 13.41. At low 
stresses, the curves present a region  in  which qL is independent of the stress. 
However, at high  stresses, qL decreases  with C F ~  for HDPE and increases 
with U, for LDPE. This behavior suggests that when molecular chains 
become  highly ordered by stretching flow, branching points act as hooks, 
thus increasing the resistance to flow. In  contrast, highly ordered linear 
chains easily  slide  by each other as the liquid elongates, and the stretching 
flow  increases at high elongational stresses. LDPE may  show a resistance to 
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(a) Shear flow and stretching flow behavior of (- - -) linear and 
e-"-- ) branched polyethylene. MFI (melt flow index) = 0.3 at 150°C. (b) Effects 
of stress concentrations on stretching films. (From Ref. 36.) 

high stress extensional flow two orders of magnitude larger than  that of 
PE. This result is  remarkable  indeed if it is considered that this behavior 

occurs even  in the cases  in  which  high and low density polyethylene exhibit 
similar shear viscosity.  The  tendency  of LDPE to stiffen at high shear stres- 
ses  means that local stress concentrations have  less  of a destabilizing effect 
in stretching flows for this polymer than  for HDPE. An incipient neck  in 
HDPE will remain  localized in the stretching flow, and failure will occur at 
relatively  low extension. Local  stresses  in the incipient neck  of LDPE will  be 
counteracted totally or in part by the increased viscosity.  The tension- 
stiffening response of branched polyethylene confers stability to the bubble 
in polyethylene film blowing, and this is  one  of the major reasons that low 
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density polyethylene and linear low density polyethylene are widely  used  in 
the film market. 

Though  the results at hand seem to indicate that branching strongly 
in~uences elongational flow, it is far from clear what the optimum branch 
length is,  how  branches are distributed along the chains, and how the 
branches operate. Tension-stiffening melts  can also be  prepared  from  poly- 
esters, polyacrylates, etc, by incorporating specific functional groups in the 

owever, there have  been  few studies of stretching flows for 
polymers other  than branching polyethylene. 

Elongational flow experiments  were carried out  on poly(methy1  metha- 
crylate) at temperatures well above its glass transition temperature by using 
an extensometer in which the sample  is  clamped at  both ends, with con- 
trolled elongational velocity. Illustrative results are shown  in Figure 13.42. 
For short times the elongational viscosity  obeys a unique and increasing 
function of time (60). A plateau is detected for the results obtained at the 
lowest elongational rates, i.e., i = 0.002 S”’, while for higher rates the elon- 
gational growth function increases  with  time at large times. In this case, the 
plateau is not  attained, mostly  because of experimental limitations. The 
results of Figure 13.42 also show that Trouton’s  law, 

T(L = 3rl0 

1 o8 

107 

(13.122) 

loo 10’ 103 
t (S) 

Dependence  of the  elongational viscosity on time for poly(rnethy1- 
methacrylate) at 170°C; MW = 130,000, Mw/Mn = 1 .g. (From Ref. 60.) 
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is  verified at low elongational rates under steady-state conditions. The mea- 
surement of elongational flow  of  low  viscosity  fluids  involves  severe  diffi- 
culties. Although many experimental techniques have  been  developed, the 
results obtained with  them can differ by several orders of magnitude (61). 

A capillary tube of radius 0.25 mm and length 15 cm  is connected to the 
bulb indicated in Figure P13.1. 0.9 cm3 of a liquid contained between the 
two marks a and b flows through the capillary, placed in vertical position, in 
4 min. If the density of the liquid  is p = 1.2 g/cm3 and h2 = 16.5 cm,  esti- 
mate (a) the shear stress at the wall  of the capillary; (b) the viscosity  of the 
liquid; and (c) the velocity  of the liquid at the center of the capillary. 

(a) The liquid  flows under the driving pressure, AP, given by 

h2 - h1 16.5 - 15 AP = pgh, = pg- = 1.2 x  980 
ln(h2/h1)  In(  16.5/  15) 

= 1.8  x lo4 dyn/crn2 

According to Eq. (13.30), 

2.5 x x 1.85 x lo4 
G, = 2 x  15 = l 5.4 1 dyn/crn2 

(b) From Eqs. (13.30),  (13.35), and (13.36), the viscosity of the liquid  is 
obtained as 



Flow Behavior of Polymer Melts and Solutions 569 

nR4hPt 3.14 x (2.5 x 10-2)4 x 1.85 x lo4 x 240 q=-- 
8 VL 

- 
8 x 0.93 x 15 = 4.87 x 1 O Y 2 g  cm* S 

(c) According to Eq. (l 3.32), 

1.89 x lo4 x (2.5 x 10-2)2 
4 x 4.98 x 10-215 

v, = = 3.95 cm/s (P13.1.1) 

The zero shear rate viscosity  of a narrow molecular weight distribution 
fraction of  polystyrene  is 6.5 x lo6 poise at 160°C. If the molecular weight 
between entanglements in this polymer  is about 18,000 g/mol, make a rough 
estimate of the shear rate K,, above which this fraction will  display non- 
Newtonian behavior. 

According to Eq. (8.55), the value  of the plateau relaxation modulus G; is 

G; = -RT 2 2 x lo6 dyn/cm2 P 
M e  

(P1  3.2.1) 

The steady-state compliance can be obtained by means of the approxirna- 
tion [see Eq. (8.64)] 

2 3  
G; - 

8 = - 1.2 x cm2/dyn (P13.2.2) 

According to Eq. (9.33), the mean relaxation time  of the entangled network 
is 

(z) = qoJ,O 2 7.8 S (P13.2.3) 

Hence, the approximate shear rate at which non-Newtonian behavior 
appears is 

K, = l / ( ~ )  = 0.13s" (P. 13.2.4) 
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A  fluid  obeying a power  law  given  by ci = qrco.' [see Eq. (13.37)l  with 
viscosity 250 N - s/m2, flows through a  slit  channel  of narrow rectangular 
section, driven by a pressure drop per unit length of A P / A L  = 2.5 x lo6 Pa/ 
m. The  channel has h = 2 mm thickness, and its width  is W = 20 cm, Find  an 
equation giving the velocity  profile into the channel and the velocity gradi- 
ent at the wall as a function of the flow rate Q. 

According to Eq. (13.56),  with y1 = 0.5, 

(P13.3.1) 

~ubstituting the corresponding  values the velocity  profile  is found  to be 

1 
30 v = - - [ l  - (103~)31 m/s (P13.3.2) 

The  flow rate from Eq. (13.57)  is  given  by 

(P13.3.3) 

y substituting the numerical  values we find 

Q = 10cm3/s (P13.3.4) 

The  velocity gradient at the wall  is 

(P13.3.5) 

A  viscoelastic lubricant enters vertically  with pressure p. into the center of 
the lower  of  two circular horizontal plates (Fig. P1 3.4. l), filling the recess  of 
radius R. before being discharged radially into a thin chamber containing 
bearing elements. 
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(a) Determine the velocity distribution in this squeeze-film  of external 

(b) Calculate the mean  velocity  of  flow and  the outflow rate of the 

alculate the pressure as a function of the radius and the flow rate 

radius RI. 

lubricant. 

required to maintain a hydrostatic film  of thickness h. 

+ 

t"-4 k- 
r dr 

Let us assume  Newtonian behavior. By considering the equilibrium of an 
element  of  volume at radius r and height y above the central line, and 
assuming by considerations of symmetry that there are  no forces  on the 
face  determined by the coordinates r, y, we obtain the equilibrium condition 

(P13.4.1) 

where the Newtonian  viscosity  law has been used. 

y = h/2 ,  we obtain 
After integrating twice  with the boundary condition given  by  v = 0 at 

(P. 13.42) 

which  gives a parabolic velocity  profile. 

the film, that is, 
The  mean  velocity  can  be found by averaging v  along the thickness of 
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(P13.4.3) 

From  Eq. (P13.4.3) we find that the mean velocity  is two-thirds of the 
maximum  velocity (at y = 0), that is, 

-ii = (2/3)v,  (P13.4.4) 

where 

h2 dP v, =-- - 
8q dr (P13.4.5) 

On the other hand, dP/dr can be evaluated on. continuity grounds, equaliz- 
ing the volume  of liquid swept in a time dt to the volume  of  liquid  crossing 
the periphery of the circular plate in the same instant, that is, 

n;r2dh = 2n;rhV dt (P13.4.6) 

according to which 

- r dh v = -  - 
2h dt 

From Eqs. (P13.4.5) and (P13.4.7), we find 

dP 6qr dh 
dr h3 dt 
"" - 

(P13.4.7) 

(P13.4.8) 

from which an alternative expression for the velocity  profile can be obtained 
as 

3 r  dh 
4h dt (P13.4.9) 

The outflow rate of the lubricant, at a radial distance r ,  can be found by 
using the value of the mean  velocity. The pertinent value is  given  by 

(P1  3.4.10) 

By integration with  respect to r with the boundary conditions P = 0 at 
r = R, the external radius, we have 
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6rle R P = -1n- nh3 r 
(P13.4.1 l)  

and by integration between the internal and the external radius we obtain 
for the flow 

(P13.4.12) 

where Po is the supply pressure at radius Ro. 
Note  that the thrust load F to be applied to the upper part of the 

bearing is supported by the pressure Po acting over the area of radius R. 
and by the variable pressure P acting over the remaining area of the bearing. 
Accordingly, 

R 
F = n&po + S, 2 n r ~  dr (P13.4.13) 

Substituting the expression for P given in Eq.  (P13.4  l  l)  into (P13.4.13), 
after some calculations we obtain 

(P13.4.14) 

The last two equations are useful in bearing design. 

olut~o 

(a) For low concentration solutions 

When c -+ 0, (q, - is a second-order in~nitesimum and 

(P13.5.1) 

(P13.5.2) 



(b) From Eq. (P13.5.1), we obtain 

(P13.5.3) 

~ubstitution of Eq. (13.50) into Eq. (P13.5.3)  gives 

!!?..!L = [q] + k'[qI3c - f ([q]' + k2[qI4c2 + 2k'[qI3c)  (P13.5.4) 

For low concentrations, the contribution of  the terms for which the expo- 
nent of c is larger than 1 is  negligib1e, so that by comparing Eqs. (1 3.51) and 

13.5.4), we obtain 

(P13.5.5) 

ence 

k' - k" = 112 (P13.5.6) 

A paint described by the Bingham model, with a yield stress of 12 Pa, is 
applied to  a vertical  wall. Calculate the maximum  film  thickness of the paint 
that can be applied without dropping. 

From the equation of motion, we obtain 

do, -~ +pg=o (P1  3.6.1) 
dx 

where p is the density of the paint. Integrating this equation, assuming no 
air resistance  in the liquid film, that is, G,, = 0 for z = 0, gives 

G, = P g ~ l n a x  (P13.6.2) 

where 6m,x is the maximum  thickness  of the paint. y assuming that 
p = 1000kg/m3, we obtain 6,,, = 12/(1000 x 9.8) = 1.17 x 10-3m. 
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A thin layer of a molten  polymer of 2 mm thickness is sandwiched  between 
two plates. If a shear stress of  120 kPa is applied to the melt, and the 

apparent viscosity  of the melt  is 4 x IO4  kg(m S)" , calculate the relative 
sliding  velocity  of the two plates. 

The  uniform shear stress through  the layer will also cause a uniform strain 
rate given  by 

dv 120 x io3 
"" 

d r - q -  4 x  lo4 
= 3 S-1 (P13.7.1) 

Hence, AV = 3 x 2 = 6 mm/s. 

The velocity and radius of a filament leaving a die exit are v. = l ms" and 
ro = l mm, respectively,  while the radius of the filament and the force at the 
haul are, respectively, rl = 0.8 mm and F = 100 N. Assuming  Newtonian 

behavior, calculate the tensile  viscosity  if the distance between the die and 
the haul is  0.5 m. 

According to  Eq. (13.117), the  total  strain is  given  by 

(P13.8.1) 

where vl  and v. are, respectively, the velocities at the haul-off and die exit. 
Assuming  Newtonian behavior, the elongational viscosity can be written as 

(P13.8.2) 

where d = vt is the  draw distance between the die exit and the haul-off. 
Equation (13.121)  suggests an easy  way  of  determining the elongational 
viscosity.  Because xrovo = x r ~ v l ,  v1 = 1.56 m/s. From  Eq. (P13.8.2) we 
obtain 

2 



qL = 100 x 0.5/[3.14 x low6 1n(1.56)] = 3.6 x lo7 Pa. S 

Oscillation  experiments are performed in a polymer  melt  with  cone-plate 
geometry, obtaining G' and G" = lo1 and lo3 N/m2, respectively, at 
U = rad/s. If  in this region G' and G" are linear functions of frequency, 
estimate the force per unit area tending to separate the cone and the upper 
plate when the lower plate rotates at  an angular velocity st = radls. 
The cone-plate  angle  is a = 2". 

From Eq. (l 3,98), the force tending to separate the cone and the upper plate 
is  given  by 

F/7cR2 = (022 - (r&2  (P13.9.1) 

On the other  hand, according to Eq. (13.105), for small shear rates the 
following  expression holds: 

0 2 2  - 01 l = 2rloJeK 2 0 2  (P13.9.2) 

The shear rate is K = 90 x 10-4/n = 2.86 x S-'. 

From Eqs. (6.1 lb) and (6.52), we obtain 

qo = 103/10-3 = 106Pa + S and J: = 10' (low6 x 10l2 = 10-'m2/N 

Then 

= 1o12 x 10-~  x 2.862 x N/m2 = 0.82 X lo2 N/m2 

Polymer  melts  flowing through a capillary are subjected to high pressures. 
Estimate the increase in the density  of a ~olyethylene melt at 140°C and 
160°C  when the pressure  increases from 1 atm to 100 atm. It is  assumed that 
the ~ o m p r e s s i ~ i ~ i t ~  coefficient  is  nearly constant in this interval of pressure 
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and  its values at 140°C and 160°C are 0.102 x and 0.103 x loy3 atm", 
respectively. 

The compressibility  coefficient  is given  by 

(Pl3.lO.l) 

where v and p are, respectively, the specific  volume and  the density of the 
melt. This equation leads to 

(P13.10.2) 

Since p is  assumed to be constant,  Eq. (P1  3.10.2)  becomes 

= exp(p AP) (P13.10.3) 
P1 

Hence, p2/p1 = exp(O.O1O1) = 1.010 at 140"C,  while at p2/pl = exp(0.0102) 
= 1.010 at 160°C. Therefore the density  increases by 1 YO when the pressure 

increases from 1 to 100 atm. 

le 

During processing,  polymer  melts are subjected to high pressures. 
Determine the work carried out  to compress 1  kg  of  polyethylene  melt 
from 1 atm pressure to 1000 atrn at 140"C,  assuming that  the process  is 
carried out under isothermal and reversible conditions. 

lU 

The work  involved  in a reversible  process can be written as 

W =  Pdw f (P13.11.1) 

where v is the specific  volume.  Assuming that the compressibility  coefficient 
p is constant,  then, according to Eq. (P13.10. l), the pressure dependence of 
v on P is  given  by 
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II = v. exp( - PP) (P1 3.11.2) 

Hence, the work per gram is 

1]+P2exp(--PP2) (P13.11.3) 1 
It should be pointed out  that in order to simplify Eiq. (P13.11.3), the 

initial pressure was  assumed to be 0 instead of l atm.  Note  that the error is 
negligible. Taking for p and vug the values  of lom4 atrn and 1.29 cm3/g, W = 
-5914 J/kg. It should be  stressed that this quantity is the lower bound of W 
because the compression in real situations is not performed in a reversible 
manner and the actual value  of W may  be  significantly larger. 

Determine an expression for the isothermal flow  of an incompressible  fluid 
on  an inclined plane, assuming that the film  thickness  is 6 and the angle 
formed by the plane with the vertical  is p (see Fig. P13.121). Assume that 
the flow behavior of the fluid  is  described  by a power  law equation. 

In this case, the components of the velocity are 

v, = 0, vy = 0, v, = v&) 

The shear stress is related to the shear rate by 

(P13.12.1) 

(P13.12.2) 

Neglecting the inertia1 term, the motion equation of the film can be written 
as 
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do,, 
" 

dx pgcos p = 0 (P13.12.3) 

where  p  is the density of the fluid and g the acceleration of gravity. 
Integration of Eq. (P13.12.3) leads to 

0, = pgxcos p = o g  (P13.12.4) 

where it was  taken into account that  at z = 0, G, = 0 and 00 = pg6 cos p. 
By considering the boundary condition v, = 0 at x = 6, the,integral of the 

equation resulting from the substitutio~ of Eq. (P1 3.12.4) into  Eq. 
(P13.12.2)  yields the velocity  profile  of v, along the x axis as 

The flow  will  be  given  by 

(P13.12.5) 

(P13.12.6) 
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The most common type  of  stress-strain tests is that in which the response 
(strain) of a sample subjected to a force that increases  with  time, at constant 
rate, is measured. The shape of the stress-strain  curves  is  used to define 
ductile and brittle behavior. Since the mechanical properties of polymers 
depend on  both temperature and observation time, the shape of the stress- 
strain curves changes with the strain  rate and temperature. Figure 14.1 
illustrates different types  of  stress-strain  curves. The curves for hard  and 
brittle polymers (Fig. 14. la) show that the stress increases more or less 
linearly  with the strain. This behavior is characteristic of a~orphous  poly- 

582 
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Typical  stress-strain  curves for polymers. (The scales  reflect the 
order of magnitude commonly found.) 

mers at temperatures well  below the glass transition temperature (T << T,); 
these materials (e.g., polystyrene, T, % 100°C) fail at low strains, leading to 
brittle fracture at room temperature. ~emicrystalline polymers and therrno- 
set  resins at T << T' also exhibit the pattern shown in Figure 14.la. The 
curve in Figure 14. 1  b represents polymers  showing a ductile behavior that 
yields before failure. The  most ductile polymers  undergo  necking and cold 
drawing. ~emicrystalline polymers are typical examples that display this 
behavior at temperatures intermediate between melting and glass transition 
(T, T .c Tm) (e.g., polyethylene at room temperature). The curves in 
Figure 1 4 . 1 ~  are characteristic of elastomers (T > T,) (see Chapter 3). 
inspection of the curves  of Figure 14.1  shows that  the brittle behavior is that 
displayed by a sample that fails due  to  fracture at the maximum stress with 
relatively small strains (< IO%), while ductile samples display a ma~imum 
in the stress, failing at higher strains. Although  very ductile 'plastics, like 
polyethylene, can. reach strains of up to 250% prior to final failure, some 
polymers fail immediately after yielding. 
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In polymer materials it is  difficult to distinguish between elastic defor- 
mation (recoverable) and plastic deformation (nonrecoverable), since the 
degree to which a sample recovers its original dimensions depends on tem- 
perature and time, High molecular mass thermoplastics can  return  to their 
original dimensions from high strains if they are heated after the load is 
removed. A s  in elastomers (see Chap. 3) the recovering force giving  rise to 
this process has an entropic character. Entanglements among chains in 
thermoplastics play a role similar to  that of  chemical cross-links in elasto- 
mers, and  as a result the strain can be  recovered as long as the entangle- 
ments are  not destroyed. The most important mechanisms that can lead to 
plastic deformation in  polymers are shear yielding and crazing. Shear yield- 
ing takes place at constant volume and leads to a large change in specimen 
shape. Crazes are the result  of  localized  yield and are formed by microcav- 
ities  bridged by fibrils; crazing leads to an increase  in  volume and is pre- 
cursor to brittle fracture. Yielding  is  involved in ductile failure of  polymers 
and also in local crazing, which  precedes brittle fracture. The understanding 
of  yield in crystalline polymers is not  as advanced as in other poly~rystalline 
materials such as metals and ceramics. The reason is that the physical 
microstructure of a polymer  is much more irregular and heterogeneous, 
making it more difficult to establish a correlation between  yield and struc- 
ture. Moreover, the mechanical behavior of  polymers  is  viscoelastic. 
Therefore, yield in polymers depends on temperature and strain  rate  and 
is also affected by pressure, and the stress-strain  curves are dependent on 
the type  of test: tension, bending, or compression. 

Figure 14.2 shows a stress-strain curve corresponding to a tensile  test for 
ductile polymers. Nominal stress, G,, is plotted against nominal strain, E,. 
The lower diagram shows a side  view  of the change in the cross section  of 
the specimen  used in the test in the different strain regions. In region OA the 
dependence  of ci on E is linear. In this region  Hooke’s  law  is  obeyed and the 
polymer  recovers the original shape when the stress is  removed  (linear elastic 
or viscoelastic behavior). Starting at point A the curve changes  slope until it 
reaches a maximum point, called the yield point, defined  by its coordinates, 
i.e., the yield stress oy and the corresponding strain, E ~ .  In general, the yield 
point marks the beginning  of the plastic deformation of the material. 
However,  when we are referring to polymer materials such a statement 
has to be  considered  with care. In polymers it is  possible to detect plastic 
deformation before the yield point, and for strains greater than E~ polymers 



Yield Crazing and  Fracture 585 

Nominal stress, CY,, versus strain, E, for a  ductile  polymer and  con- 
sequent change  in the dimensions  of the specimen. (X indicates final fracture.) 

can recover the undeformed macroscopic shape if the temperature is suita- 
bly increased. For example, in glassy and semicrystalline polymers the plas- 
tic deformation is  recoverable if the polymer  is heated above its glass 

transition temperature, T' or melting temperature, Tm, respectively. In gen- 
eral, it can be stated that for polymer materials the value of stands at 
around 5%, which  is notably higher than for metal ( E ~  around 0.1%). For 
strains higher than E~, the nominal stress decreases until the value corre- 
sponding to point B. In the region BC the material is strained without any 
apparent change of the nominal stress, giving  rise to the phenomenon called 

cold drawing. Starting from point C the material becomes  rigid, and the 
slope  of the stress-strain  curve again changes, increasing considerably. After 
that, fracture of the material occurs at point F .  

The changes observed in the stress-strain curve of Figure 14.2 are 
related to the change of shape undergone by the polymer shape, as is 
shown  in the bottom diagrams. In the first region, or linear zone, the 
deformation occurs uniformly, and the cross section  decreases as length 
increases  [scheme  (a)].  When the yield point oy is  reached, the cross section 

of the sample  decreases appreciably in a defined  region and the neck  is 
formed [scheme  (b)]. The formation of a neck  always  involves the concen- 



tration of permanent deformation in a small  region  of the specimen. This 
can occur  in  two different ways. First, if the cross section  of the sample is 
not uniform, the volume  element  of  smaller cross section will  be subjected 
to higher  stresses and therefore will reach yield faster than any other 
volume  element.  Second, a fluctuation in the properties of the material 
could cause a localized reduction in the yield stress in a volume  element in 
which  case  yield occurs at a lower load value.  When an element of the 
sample has undergone yield, it is  easier to continue the deformation from 
this element.  Once the neck forms, it extends along the gage  section 
(region  of the specimen  with  reduced area) at a fairly constant flow or 
propagating stress. The process by  which the neck is extended along the 
sample is  called the cold drawing process  [scheme  (c)]. 
sample starts from a certain value  of strain, region CF in Figure 14.2. This 
behavior, observed in many polymers,  always occurs at high strains when 
the polymer chains are oriented in long extensions. Under these condi- 
tions, the  neck propagates through the length  of the specimen until it 
reaches the fracture point F [scheme  (d)]. 

hen a solid undergoes shear yielding, the local packing of its constituent 
units-atoms,  molecules, or ions-changes  to a new con~guration  that is 
stable in the absence  of  stresses. In glassy and semicrystalline  polymers the 
plastic deformation takes place by means of  local shear strains, without any 
appreciable changes in volume or density. 

In glassy polymers, the local shear strains provoke the displacement of 
the polymer chains to new equilibrium positions, probably metastable posi- 
tions. Local shear is  accomplished by the disruption and  reestablishme~t of 
weak intermolecular forces, The covalent bonds along the chains are  not 
affected, and consequently the deformation. process in glassy  polymers 
occurs through changes in the c o n f o ~ a t i o n  of the polymer chains. The 
scheme  of the deformation process  of a polymer chain, shown  in Figure 
14.3, explains the essentially recoverable nature of plastic defor~ation when 
a glassy  polymer  is heated above its glass transition temperature Tg. Above 
Tg, polymer chains tend to recover the original conformations correspond- 

emicrystalline polymers must be  considered two-phase mixtures of 
amorphous regions  between lamellar crystals. It has been demonstrated 
that the yield stress increases  with increasing crystallinity  when the defor- 
mation process occurs at temperatures above the glass transition tempera- 
ture of the amorphous phase and below, but close to, the melting 

~ a x i ~ u r n  entropy (see Chap. 3,  Sect.  3.3.1). 
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(a) Isotropic polymer chain. (b) Chain extended and partially 
oriented by the  action of  local shear. (c) The conformation  corresponding to (b)  is 
maintained in  glass (or crystal) due  to  the fact that new intermolecular forces  have 
been established. Forces of an  entropic  nature cause the  chain to  adopt its original 
conformation when the sample  is heated. 

temperature of the crystalline phase (1-3). Above T', amorphous materials 
behave approxi~ately as rubbers, without  undergoing shear yielding,  while 
below T' they  deform as glassy polymers. There are several interpretations 
of  yielding  in se~icrystalline polymers. One of them (2-4) considers that 
the dominant mechanism  in  yielding  involves partial or local ~ e l t i n g  due 
to heating produced by local stress concentration.  The melted chains 
stretch in response to the applied stress and recrystallize  in oriented fibril- 
lar morphology. This process causes the original spherultic microstr~cture 
to be converted to  a fibrillar one. Another alternative to the melting 
t ransfo~at ion  model  is  based on more conventional approaches to crystal 
plasticity according to which the crystalline regions deform by a co~b ina -  
tion of slip and twinning (5-7). Figure 14.4  shows a scheme  of the change 
in sp~erulitic morphology during the d e f o ~ a t i o n  process. The 
model (8) repres~nted in Figure 2.1 l (see Chap. 2) assume that polymer 
chains constitutin~ the crystalline structure slip along the d e ~ o ~ a t i o n  
direction, giving  rise to large macroscopic strains  that produce a fibrillar 
morpholo~y. 
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Strain 

Diagram of the change of a spherulite during the cold drawing of a 
semicrystalline polymer. (From Ref. 25.) 

A brief description of mechanical tests that can be performed to obtain 
information on yielding in polymer materials is  given  below. Figure 14.5 
shows  some diagrams that reproduce the conditions of each type  of  experi- 
ment. 

Figure 14.5a  refers to the most common procedure corresponding to 
uniaxial tension deformation. The material is  tested in the gage  section  of 
reduced area Ao, which has a length lo. The larger section  zones are used as 
attaching points for the clamps. The clamps are separated at a constant rate, 
and the force F is measured as a function of this separation. The stress can 
be obtained as the true stress = F / A ,  where A is the area of the section 
tested at each instant,  or  as the nominal stress on = F/Ao, A. being the area 
of the original section  of the tested  piece. The strain is calculated as the 
displacement of the clamps per unit length and is commonly written as 

E ,  = (l - l())/lo = Al/l() (14.1) 

where I is the instantaneous gage length of the zone tested. The true uniaxial 
strain is the integral of the in~nitesimal nominal strains: 

(14.2) 
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Y 

Scheme of tests used for determining yield  in  polymers: (a) Tension; 
(b) uniaxial compression;  (c) plane strain compression;  (d)  simple shear. 

Although the uniaxial  tension  test  is the one  most widely  used, it has two 
drawbacks when it is  used to provide information on the yielding  of  poly- 
mers. First, the tensile  stress  applied can lead to brittle fracture before  yield 
takes place, and second,  yield  occurs  in an  inhomogeneous way due to the 
formation of a neck  accompanying the tensile test. In any  case,  given that 
the section of sample  decreases as the stress  increases, c ~ p ~ .  

Figure 14.5b  represents the uniaxial  Compression test, which  uses  sam- 
ples  with  cylindrical or rectangular cross section. The stress and strain are 
defined  in an  analogous way to  that of the tensile test. This  test  overcomes 
the disadvantages mentioned  in relation to a tensile test. The stress  is 
compressive, and consequently  there  is no possibility of the brittle fracture 
observed  in  tensile deformation. Plastic yield can even  be  seen  in thermo- 
stable materials, which, under other conditions, can be brittle. In addition, 
the determination of the yield  stress  is  made under conditions of stable 
deformation since there is no geometrical  reason for the formation of a 
neck  such  as  occurs  in tension. A problem that  can arise  in this test  concerns 
the diameter/height ratio of the sample. If this ratio is too large friction 
between  plates and sample will introduce a constraint, and if it is  very  small 



the sample could buckle. In practice, a ratio of 0.5 is a good compromise. 
Finally, since the cross-sectional area of the specimen  increases  when the 
test  is conducted, G, < G,, in contrast  to what occurs in a tensile test. 

Another alternative is the plane strain compression test, shown in 
igure 14.5~. The advantage displayed by this experiment  is that the area 

of the specimen remains constant over the test and therefore G, = G,. This 
test can be  classified as a pure shear test as only two of the three sample 
dimensions are changed. 

Finally, Figure 14.5d  shows a schematic of  simple shear deformation. 
The specimen  is  clamped  between  steel  blocks. The blocks must move par- 
allel to each other in order to get a shear strain that is uniform along the 
waisted region. The shear stress is calculated as z = P/A ,  where P is the 
force applied to the plane of area A. In this test it is not necessary to 
distinguish between nominal and true stress because the shear strain does 
not affect A. The shear strain is  defined as y = Ax/y, where Ax is the 
displacement  of  planes separated by a distance y, Ax being measured in 
the direction of the force applied, which  is perpendicular to y .  As  in the 
case of the compression plane strain test, there is no change in the dimension 
of the sample along the z axis. 

The curves  shown  in Figure 14.6 represent the  mechanical behavior of  poly- 
mers in tensile deformation. Some  polymers deform by forming a stable 
neck during the deformation process and undergoing cold drawing, as 
shown by curve B. In  other polymers  necking starts at the maximum 
value  of G, but the neck rapidly becomes thinner, causing failure of the 
specimen  immediately after yielding  begins  (curve A, Fig. 14.6). In other 
words, the volume  element that experiences  yielding undergoes a reduction 
in area (A Ao) in such a way that the true stress, G,, is  sufficiently  high to 
produce fracture. The Consid6re construction, which  is  discussed  below, 
considers the possibility  of the formation of a stable neck as response  of 
polymer materials to the action of a uniaxial tensile stress. 

If the strain takes place at constant volume, then 

where A and I represent the area of the cross  section and the length of the 
sample, respectively, at each instant,  and the subscript 0 refers to the origi- 
nal  values  of the two magnitudes. 

According to Eq. (14. l), 
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Curve of nominal stress  versus nominal strain, curve A with  necking 
and fracture, curve B with formation  and  propagation of a stable neck. The  broken 
lines  represent the  magnitude of the yield  stress oy, and is the  nonrecoverable 
plastic strain. 

l 
- = l + & , = h  l0 (14.4) 

earing in  mind the definitions of true stress, ot, and nominal stress, G,, 
given in the previous section and Eqs. (14.3) and (MA), the following rela- 
tion is  easily  deduced: 

(14.5) 

For a uniaxial tensile test, h > 1, and consequently G, G,. 
When the development of the neck starts,  the applied load on the speci- 

men  ceases to increase as the strain increases, reaching a maximum  in the 
curve of G, vs. E, .  ~athematical~y the condition for obtaining a maximum  is 
met  when d ~ / d & ~  = 0 or du,/ds, = 0. If this condition is applied to Eq. 
(14.5), one obtains 

Hence, 

(14.6) 

(14.7) 
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Equation (14.7) corresponds to the slope  of the tangent to the curve cr, 
vs. E, drawn from the point E, = -1 or h = 0. Figure 14.7  shows the  true 
stress versus nominal strain curves for polymer  samples A and B. Curves BI 
and B2 are compatible with curve B of Figure 14.6. The so-called  ConsidGre 
construction, Eq. (14.7),  is  satisfied  with the tangent to the curves drawn 
from E, = -1. The tangential point corresponds to the maximum  observed 
in  the curve 0, vs. E, and therefore with the maximum load that the speci- 
men can support.  In practice, the ConsidGre construction is  used as a criter- 
ion to decide  when a polymer will form an unstable neck or form a neck 
accompanied by cold drawing. 

For curve A it is  possible to draw only one tangent from E, = -1. This 
implies that once the neck has started in the sample it will continue becom- 
ing thinner and thinner until fracture is reached. In the case  of  curves B1 and 
B2 there is the possibility  of drawing two tangents that fit Eq. (14.7). The 
second tangent in each case c~rresponds  to the appearance of a minimum in 
the curve  of nominal stress versus nominal strain, which  is  necessary for the 
neck to be stable. Therefore it can be stated that the formation of a stable 
neck, and thus the existenced  of  cold drawing, will take place  when the 
condition established by Eq. (14.7)  is  met at two points of the curve  of cr, 
vs. E,. 

Considkre construction for tensile strain. The maxi mu^ and m i n i ~ u ~  
values  of G, in Figure 14.6 are given  by the tangents to the curve of true stress ot from 
E, = -1. Polymer A forms an unstable neck; polymers 23, and 232 forrn stable necks. 



Yield Crazing and  Fracture 593 

Two phenomena can be  observed  once  yielding starts. These are strain 
softening and strain hardening. Strain softening can be  defined as a drop in 
the true stress  with  increasing strain (9). This  behavior  is  observed  in  curve 
B2 of Figure  14.7. Strain softening  is an intrinsic property of polymers and 
can be detected fundamentally in  compression and shear tests.  All amor- 
phous glassy  polymers  show strain softening, though some materials 
become oriented and quickly harden. The behavior  in  which no strain soft- 
ening  is  observed,  represented  by  curve B1, is  typical  of  some  crystalline or 
fiber-forming  glassy  polymers that crystallize on drawing. The orientation, 
or strain hardening, can also be observed  in  many  polymers and corre- 
sponds  to the region  where the true stress  increases after yield. It occurs 
in the zone of high strains in  which orientation of the polymer chains in the 
direction of the applied  force has already largely taken place.  Curves B1 and 
B2 of Figure  14.7  show strain hardening. This phenomenon is important  to 
stabilize  regions of unstable plastic deformation, particularly when the 
material is  being strained under tension. If the material does  not harden, 
the regions  affected by  yield  will continue to be strained until failure takes 
place due  to  one of various possible  mechanisms. Most commercial  poly- 
mers  show strain hardening; those that  do  not display  this characteristic are 
difficult to process and are not very  reliable  in  service. 

One criterion of  yield  is the critical condition that has to be  met  by the 
applied  stress tensor for yield to take place. In order to represent the state 
of stress of a body it is  convenient to choose a suitable set  of orthogonal 
coordinates such that the shear stresses are zero. In this  case the stress state 
is  described by three normal stresses gl, 02, and cr3. 

(a) The Tresca Yield Criterio~ 

The yield criterion first  suggested for metals  was  Tresca’s criterion, which 
proposes  that in isotropic materials yield  occurs  when the maximum shear 
stress T reaches a critical  value (lo)*. 

If ol, 02, and o3 are the principal stresses and 01 > 02 > o3, then 

G1 - G3 = 2T, (14.8) 

where rcY is the stress  required for yield  in pure shear and depends on tem- 
perature, strain rate, and pressure. In a simple  tensile test, o1 is equal to the 
applied  stress and o2 = o3 = 0, so that  at yield 

*Normal stresses in other  chapters  are represented by oji and  shear stresses by a@, 



594 C h ~ p t e ~  14 

01 = 27, = oy (14.9) 

where oy is the yield stress in tension. Although the Tresca  yield criterion 
was  developed for metals, most metals obey the von  ises criterion better. 

(b) The von ~ i s e s  ~ ~ i ~ e ~ j o ~  
In spite of the relative  simplicity  of the Tresca criterion, conditions for shear 
yielding in isotropic polymers are best  summarized by the von 
ion (1 l), 

quation (14.10) corresponds to the condition that yield occurs when the 
elastic shear strain energy  density  in the stressed material reaches a critical 
value. 

In the case  of  simple tension, o2 = o3 = 0, and  Eq. (14.10)  becomes 

oy = (14.11) 

Equation (14.1 1) can be compared with Eq. (14.9),  which corresponds to the 
Tresca criterion. According to Eq. (14.9) the shear yield stress is one-half the 
tensile  yield  stress,  whereas Eq. (14.1  1) predicts that the shear yield stress is 
l/& times the tensile  yield stress. 

xperi~ental data show that neither the Tresca nor the von 
criterion adequately describes  the shear yielding behavior in  polymers. 

(c) ~ r ~ s s ~ r e - ~ e ~ e n ~ e n ~  Yield ~ e ~ ~ v i o r  
Fi~ure  14.8  shows  stress-strain  curves for polycarbonate at 77 
tension and in uniaxial compression (12), where it can be  seen 
stress differs in these  two  tests. In general, for polymers the compressive 
yield stress is  higher than the tensile  yield  stress, as Figure 14.8  shows for 
polycarbonate. Also,  yield stress increases  significa y with hydrostatic 
pressure on polymers, though the Tresca and von ses criteria predict 
that the yield stress measured in uniaxial tension is the same as  that mea- 
sured in compression. The differences  observed  between the behavior of 
polymers in uniaxial compression and in uniaxial tension are due to the 
fact that these materials are mostly van der aals solids, Therefore it is 
not sur~rising that their mechanical properti  are subject to  hy~rostatic 
pressure effects. It is  possible to modify the yield criteria described in the 

revious section to take  into account the pressure de~endence. Thus, zy in 
q. (14.10) can be  expressed as a function of hydrostatic pressure P as 
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Stress-strain  curves for polycarbonate at T = 77 K determined 
under tension and uniaxial compression.  The  nominal stress  curves, D,, correspond 
to the dashed  lines, and those for the true stress, of, correspond to solid  lines. The 
material tested under tension fractures immediately after reaching  yield,  unlike the 
situation that  occurs  under compression. (From Ref.  12.) 

,cy = ,c; - pP (14.12) 

where .c: is the strain rate dependent  yield stress at zero pressure, p is a 
material constant  that describes the effect  of pressure, and P is  given  by 

1 
3 P = -(q + D2 + 03) (14.13) 

The hydrostatic pressure P is taken to be positive for uniaxial tensile loading 
and negative in uniaxial compression. In a compressive stress field (hydro- 



static pressure P 0) the strain energy terms on the left-hand side of Eq. 
(14.10) must increase;  yield  is more difficult at higher  pressures. 

(d) Geometric ~ e ~ r e s e n t a t i o n  of the ~ o ~ i f i e d  von  Mises  and  Tresca 

For macroscopically isotropic polymers, the Tresca and von  Mises  yield 
criteria take very  simple analytical forms when  expressed in terms of the 
principal stresses ol, er2 ,  and 03. Thus the yield criteria form surfaces  in the 
principal stress  space. The shear yield  surface for the pressure-dependent 
von  Mises criterion [Eqs (14.10) and (14.12)]  is a tapering cylinder  centered 
on the 01 = o2 = o3 axis ([ 1,1,1] crystallography direction), which broadens 
as the applied  pressure  increases. The shear yield  surface  of the pressure- 
dependent Tresca criterion [Eqs (14.8) and (14.12)~ is a he~agonal pyramid. 
To determine  which  of the two criteria is the most appropriate for a parti- 
cular polymer it is  necessary to determine the yield  behavior  of the polymer 
under different states of stress.  This  is done by working  in  plane  stress 
(cis = 0) and obtaining yield  stresses for simple  uniaxial  tension and  com- 
pression, pure shear (ol = --o2), and biaxial  tension (ol,o2 > 0). Figure 
14.9  shows the experimental  results for glassy  polystyrene  (13),  where the 

Criteria 

a2 I MN m"* 
c 

100 

Section  of the yield  surface  in the  plane o3 = 0 choosing  the Tresca 
criterion (hexagonal envelope) and von  Mises criterion (elliptical  envelope) for poly- 
styrene. The  points  correspond to experiments performed  under  pure  shear 
(01 = -9), biaxial tension ( G ~ ,  o2 =- 0), and  uniaxial tension and  compression. 
(From Ref. 13.) 
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cross sections correspond to the modified  von  Mises criterion and the Tresca 
criterion that fit the experimental data. Points lying  closer to the origin than 
to the yield surface represent a recombination of  stresses  where  yield does 
not occur; points on or outside the surface represent a combination. of 
stresses  where  yield occurs. 

The yield behavior in polymers  is strongly dependent on the temperature 
and  rate of testing. In general,  glassy and semicrystalline polymers tested at 
T << Tg show  negative temperature dependence  of the yield strength G,,, (14) 
and positive strain rate dependence  of CY,,, (14).  These behaviors are depicted 
in Figures 14.10 and 14.1  1,  respectively.  When the temperature chosen for 
mechanical testing approaches the glass transition temperature, the visco- 
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Tensile  stress-strain  curves for polycarbonate as a  function of 
perature at ti, = 0.083 S-*. The yield  stress c"y ( ~ a x i m u ~  in the curve)  decreases 
increasing temperature. (From Ref.  14.) 

tem- 
with 
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Tensile  stress-strain  curves for polycarbonate as a function of 
strain at 25°C. The yield stress, C T ~  (maximum in the curve G, vs. E,), increases 
with increasing strain rate. (From Ref. 14.) 

elastic behavior of  glassy  polymers  becomes more evident, Figure 14.12 
shows the temperature and strain rate dependence of the elastic modulus 
of  polystyrene (T' = 100°C) tested at 75°C and 80°C (15).  Semicrystalline 
polymers are usually treated as two-phase mixtures  of amorphous regions 
coexisting  with crystalline zones. There are two important temperatures for 
semicrystalline  polymers, T' for the amorphous regions and Tm for crystals. 
The viscoelastic behavior described for glassy  polymers  close to T' is the 
same as that exhibited by semicrystalline polymers at Tg T -c Tm. 

The Eyring model (16) was  developed to describe the viscous  flow in 
liquids. The fundamental ideas of this model can be applied to clarify  some 
aspects of  yield behavior of  glassy  polymers. 

The model assumes that when. a segment  of a macromolecule has to 
move to  an adjacent site it must pass over an energy barrier represented as 
AE* (see Fig. 14.13a). In the absence  of stress, the segments  of the polymer 
jump over the barrier infrequently, and they do so in random directions. The 
frequency  with  which the segments jump the barrier is represented by the 
Arrhenius equation, 
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True  strain 

True stress-true strain curves for polyestyrene  determined in plane 
strain compression at 75°C and 80°C as a function of strain rate. (From Ref. 15.) 

Backward jump 

Eyring's  model. (a) Before  applying the stress, the  positions of the 
segments  identified as 1 and 2 are  separated by an energy barrier AB*. The  jump 
between the two is equally probable in both directions, 1 ;.I? 2. (b) After  application 
of the stress the energy barrier drops by AE* - zA*x in  such a way that  the  jump 
from  position 1 to 2 is favored,  therefore causing jumping over the barrier to occur 
preferentially in the direction of the stress. (From Ref. 36.) 
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v. = ~ ' e x p [ - ~ ]  AE* (14.14) 

where A' is a constant and AE* is the energy required to take a segment 
from the potential well to the top of the barrier (see Fig. 14.13a). 

According to the Eyring model, the application of a shear stress modi- 
fies the barrier height. In the direction of stress, the rate at which  segments 
jump forward over the barrier will  be increased, and consequently the height 
of the barrier will  be reduced. If z is the shear stress applied and A" is the 
effective area of the polymer  segment, the height  of the barrier is  reduced by 
an amount zA*x that corresponds to the work done in moving a segment a 
distance x. The new situation is illustrated in Figure 14.13b. The frequency 
with  which the segments jump the new barrier in the forward direction is 

1 (14.15) 

Equation (14.15)  implies that the jump rate along the direction of shear 
stress is increased. Consequently, the energy barrier for polymer  segments 
jump in^ in  the backward direction (opposed to the shear stress) is raised. 
The frequency in the backward direction is  given  by 

(14.16) 

The net rate of  flow in the stress direction is the difference  between Eqs. 
(14.15) and (14.16): 

v1 - = A '  [ exp ( - AE*;;A*"> ( - exp - " '"'31 (14.17) KT 

Since the frequency with  which the polymer  segments jump in the back- 
ward direction [Eq.  (14.16)]  is  very  low, the reverse jump  rate can be 
neglected in comparison with the forward jump rate, and Eq. (14.17) 
becomes 

Net  rate of flow = A' exp (14.18) 

The product A*x = V* has the dimensions of  volume and is  called the 
activation volume. Equation (14.18) corresponds to the final form of the 
Eyring equation. According to Eq. (14.1 S),  yielding  is  described as viscous 
flow  in  which the activation energy barrier AE" for load shear dis~lacements 
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of  polymer  segrnents  is  decreased  by the applied stress z. The imposed strain 
rate, (iy can be  considered proportional to the net rate flow, and z can be 

considered the maximum shear stress; then ?; = oy/2, oy being the tensile 
yield stress. Consequently, Eq. (14.18)  becomes 

cy . .  = Eo exp (g) exp ( ~ )  
where (io is a constant. 

Equation (14.19) can be arranged as 

(14.19) 

(14.20) 

Equation (14.20)  describes the temperature and strain rate dependence of 
the yield stress, oy. 

Figure 14.14 shows the plots of oy vs.  log by for polycarbonate 
(TR = 140°C) in the range of temperature 21.5"C T 140°C (17). The 
data of this figure indicate that the Eyring model accounts for many features 

of  yielding  in  glassy  polymers. On the one hand, the negative temperature 
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Eyring plot of oy/T  versus logti for polycarbonate at different 
temp~ratures. (From Ref. 1'7.) 



dependence  of the yield stress cry is revealed, since at strain rate  constant oY 
/ T decreases  with increasing temperatu 
the positive strain  rate dependence of 
increases linearly with log S,. Also, th 
employed to describe the time-dependent  yielding  of  polymers subjected to a 
constant applied stress (18,19). This model  can predict the delay time, i.e., 
the time  between application of the load  and  the onset of  yielding. 

wever, Eq. (14.20)  fails  when it tries to describe the yield  behavior  of 
rs over a wide range of temperatures. This has led to a modi~cation 

of the model  (20,21) that assumes that  the d e f o ~ a t i o n  process involves  two 
different flow  processes that have different values  of hE" and V". 
another simple modi~cation of  Eyring's equation [Eq. (14.20)]  (22)  is to 
include the effect  of hydrostatic pressure. This modi~cation reflects the 
different yield  behavior  of  polymers  observed  in tension and those in  com- 
pression. 

razing is a characteristic of thermoplastic polymers and plays a major role 
in their fracture, particularly in cases  of brittle fracture  and ambient degra- 
dation. It can  even  be stated that  fracture in  polymers cannot be explained 
without  mentioning crazing. C zes are usually observed on the surface of 
glassy  polymers  such as PS and MMA (23,124) when  they are subjected to a 
tensile stress; their appearanc like that shown in Figure 14.15. It was 
initially thought  that crazes were  microcracks that occurred on  the surface 
of the samples, but  it has  been  demonstrated that they are  not simply 
microcracks. The  basic  difference  between crazes and cracks is that crazes 
contain polymer, about 50% by volume,  whereas cracks do not. If a craze at 
the tip crack extends through the cross section of a sample, the sample  will 
still exhibit some capacity to resist loads. 

Crazes are observed  in  high  molecular  weight  glassy  polymers other 
than thermosets. They  can also occur  in crystalline polymers  such as poly- 
propylene and polyamides. Crazes are  found in the interior of the material 
and  on its surface as well as at the tips of cracks. In glassy  polymers the 

ostructure of crazes is  generally  independent  of  where  they are located. 
formation of crazes is affected by the distribution of microscopic  defects 

on the surface and inside the samples. Crazes that occur on  the surface, in 
particular,  are considerably affected by the environment. In general, crazing 
is  significantly accelerated by the presence  of organic liquids and grease. In 
practice, the use  of  many  glassy  polymers is limited by their tendency to 
undergo crazing at low  stresses  in the presence  of crazing agents. 
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Crazes in a sample of polystyrene. 

In  most cases, the propagation of the crack is  preceded  by crazing at the 
crack tip. Crazing at the crack tip requires a large amount of  energy and can 
therefore cause a relaxation of the concentration of stresses in that  area. 
general a craze commences  when a tensile stress causes microcavities at 
points of  high stress concentration in the polymer  due to scratches, defects, 
cracks, dust particles, molecular heterogeneities, etc. These ~icrocavities 
develop in a plane perpendicular to the principal tensile stress, but they 
do  not  join  up  to form a real crack because  they  become stabilized by  fibrils 
of oriented polymer material that  are plastically strained. As a result, an 
interpenetrating system  of  cavities and polymer  fibrils  is obtained, known as 
a craze. Crazing occurs before the yield point is reached. The breakage of 
the fibrillar structure of a craze generates a crack. 

shown  in Figure 14.16,  where the stress necessary to provoke crazing in 
samples of  polystyrerie (a uniaxial tensile stress is applied) are plotted 
against temperature. The  crazin~-initiating stress drops as the temperature 
increases and  as the rate of loading decreases. Crazing  may initiate at stres- 
ses  below those that can cause shear yielding  (26). As can be  seen in Figure 
14.17, the yield stress for polystyrene rises  when  temperature  decreases, but 
more  quickly than the crazing stress. So for this polymer, crazing will  be the 

Crazing stress depends on both temperature and strain rate (25). 
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dominant micromechanism of failure of the material except at high  tem- 
peratures close to the glass transition  temperature (W 100°C). 

~~for tuna te ly ,  the initiation  and evolution of crazes do  not concern 
only the majority of thermoplastic glassy  polymers,  which exhibit brittle 
behavior. Crazes usually also constitute  the  dominant mic ro~echan i s~  
for failure when  many  polymers  generally considered tough are subjected 
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ure Relationship between  yield  stress and  crazing stress  with tempera- 
ture, for polystyrene. (From Ref. 26.) 
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to a high  degree  of strain, aggressive ambient, liquids, etc. Therefore, a 
ductile-brittle transition will  have an influence on these polymers in  service 
and has to be taken into account in design. 

Crazes, in all  cases, consist of elongated cavities and fibrils oriented in the 
main direction of the stress. (This means that the structure is not signifi- 
cantly dependent on the environment.) The structure is  like that of a sponge. 
It is  accepted that the fibrils  within the craze are formed by  local  yielding 
and cold drawing processes, the fibrils remaining intact because  they contain 
oriented molecules and  are stronger than the uncrazed polymer. The crazes 
form thin lamellae in a plane perpendicular to the tensile  axis  because the 
tensile stress is  highest across this plane. The surrounding uncrazed material 
constrains the craze, and consequently it grows  only laterally and thickens. 

Crazes in amorphous polymers can be  classified into three types depend- 
ing on where crazing occurs:  (1)  surface  crazes, (2) crazes at a crack tip, and 
(3) internal crazes. Surface crazes occur on the surface of a sample. An 
example is shown in Figure 14.15. The length of  crazes can reach  values 
around 10 mm, while their thickness is  very  small,  between 0.1 pm and 
several micrometers. Environmental factors have an important influence 
on this type  of craze. 

Crazes can also be initiated at the tips of cracks and be propagated in 
the direction normal to the maximum stress. Depending on the load condi- 
tions, these  crazes can grow and cross the entire sample. Crazes of the third 
type occur in the interior of a polymer and  are caused  by mechanical con- 
ditions. The environment has a minor influence on the initiation and growth 
of internal crazes. Figure 14.18 illustrates an internal craze in a notched 
sample of polycarbonate. Internal crazes can occur in isolation or in large 
numbers. In the latter case, internal crazes constitute an important mechan- 
ism to improve toughening in polymers  such as high impact polystyrene and 
other styrenic polymers. 

Crazes can also be  observed in semicrystalline  polymers  such as nylon 6. 
In general, the morphology and structure of  crazes in semicrystalline  poly- 
mers are affected by the crystalline structure. Crazes that form in crystalline 
polymers above their 2"' (i.e., PE  at room temperature) are  short  and irre- 
gular because their growth is  affected by local stress directions and the 
spherulitic structure. The crazes formed at temperatures below the Tg of 
semicrystalline  polymers are in general  very  few in number and  are long 
compared with those formed above the Tg. They  grow normal to the prin- 
cipal stress direction as in an  amorphous polymers. Although the appear- 
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(From R kef. 24 .) 

ance  of the internal structure of  crazes in crystalline polymers  is similar to 
that found in amorphous polymers, the craze  fibrils are much thinner. 

(a) l n ~ r ~ d u c ~ i ~ n  
Crazing involves a localized or  inhomogeneou~ plastic strain of the material 
as in the formation of shear bands.  everth he less, while  yield  essentially 
occurs at constant volume, crazing is a cavitation process and takes place 
with an increase in volume. The initiation of crazing normally requires the 
presence  of a dilative component of the stress tensor and can be inhibited by 
applying a hydrostatic pressure, though it is favored by the presence of 
triaxial tensile  stresses. This latter state of stress exists  in  defects  of bulky 
samples  subjected to plane strains reover, under such conditions crazing 
is favored, because the applicatio a tensile stress necessary for yield  is 
high  owing to the restriction displayed by the chains. The cavitation 

qlved in the crazing permits the material to achieve plastic strain faster. 
the presence of marked cracks or defects in bulky  samples  will favor the 

initiation of crazing. These  defects are points of  high con~entration of  stres- 
ses and can cause the formation of initial microvoids. 

Some criteria have  been proposed for craze initiation. The earliest  cri- 
terion states that crazing occurs when the uniaxial tensile stress reaches a 
critical value (27). Since the crazing stress depends on the strain rate and 
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temperature and can also be affected by molecular orientation and environ- 
ment, this simple criterion is inadequate  to describe the behavior in multi- 
axial stress systems.  Since crazing formation is a  dilatational process, a 
criterion has  been  suggested that includes a  dilatational stress component. 

(b) ~ te rns~e in -~ngch in  Criterion 
Sternstein and Ongchin  (28) considered that if cavitation occurs in crazes the 
criterion for crazing initiation should include the dilative stress component. 
They  proposed the criterion to fit the experimental data for surface craze 
initiation in P M ~ A  when the polymer  is subjected to biaxial tension. The 
segmental mobility of the polymer will increase due  to dilative stresses, thus 
provoking cavitation and the orientation of  molecular  segments  along the 
maximum stress direction. 

The §ternstein-Ongchin criterion is  expressed  in  terms  of the stress such 
that 

where C T ~  is the stress required to orient the fibrils, and A and B are time- and 
temperatur~-dependent parameters. Il is the first stress invariant of the 
stress tensor and represents the dilatational component: 

1, = GI + 0 2  3- 0 3  = 3p > 0 (S 4.22) 

where 01, u2, and c r 3  are  the principal stresses and p is the hydrostatic 
pressure or mean stress [see Eq. (14.13)]. It is  difficult to evaluate for  a 
general triaxial state of stress. A s  with the yield criteria, the easiest  way to 
test craze criteria is to make  measurements in plane stress. In plane stress 
conditions ul > u2 and u3 = 0, so C T ~  = C T ~  - 02, and  Eq. (14.21)  becomes 

(14.23) 

This equation is plotted in Figure 14.19,  where A and B were  chosen  by 
fitting the curve to experimental data of crazing in PMMA under biaxial 
stress. Crazing cannot occur  unless there is  sufficient overall hydrostatic 
pressure [i.e., (CT~ + u2 + 03) > 01 to allow cavitation to  take place.  The 
curves obtained from  Eq. (14.23)  will  be  asymptotic to the line  where 
C T ~  = -02. Figure 14.19 also shows the pressure-dependent von  Mises curve 
corresponding to criteria for shear yield  (see Sect. 14.2.5).  Having both the 
yield and craze envelopes on the same  figure permits prediction of the type 
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Envelopes for the initiation of crazing and shear yielding in 
PMMA. (From Ref. 28.) 

of  yielding that may occur under any general state of stress. In the first 
quadrant of stress space, the crazing envelope  is  inside the shear yielding 
envelope. This means that for PMMA all combinations of  tensile  biaxial 
stress produce crazing instead of shear yielding.  However,  in the second and 
fourth  quadrants the behavior is different. The pure shear line,  defined by 
o1 = -02, establishes the boundary between hydrostatic compression and 
hydrostatic tension. Below this line, crazing does not occur because the 
pressure component of the stress matrix tends to reduce  volume instead of 
increasing it. Above the line, crazing is the main mechanism  of failure. For a 
particular combination of  stresses the shear yielding  envelope and the craz- 
ing  envelope intersect, For stresses  having Il less than the value  of I, at 
which this intersection takes place, the preferred mode of plastic deforma- 
tion is shear yielding rather  than crazing. 

Although crazing is a response to stress, an externally applied stress is 
not always required to cause it.  Internal stresses can be generated from 
differential contraction during cooling in injection molding or by relaxation 
or oriented molecules. On the other hand, craze initiation in the presence  of 
an aggressive liquid differs from craze initiation in air. The surface becomes 
very  susceptible to crazing under an applied tensile stress, and the stress 
required to initiate crazing does not depend on the value  of Il. 

The effect  of  polymer structure on crazing has been  explained in terns of 
molecular entanglements. It has been  suggested that molecular entangle- 
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ments not only determine whether a polymer  will undergo crazing, as 
opposed to shear yielding, but also influence the micromechanical behavior 
of  crazes. For a craze to be stable, there must be molecular entanglements 
(29). The deformation of a craze can be related to the deformation of the 

molecular segments  between entanglements. For polymer chains of  molecu- 
lar weight  high enough that they can be considered Gaussian coils, the 

maximum extent that the chain between entanglements can be stretched, 
L a x 7  is 

where Ze is the chain contour length between entanglements and d is the 
average distance between entanglements, which can be  considered as the 

root mean square end-to-end distance of a chain of molar mass Me (the 
entanglement molar mass): 

(14.25) 

In Figure 14.20,  values  of the experimental extension ratios (average 
extension ratios), h, of  crazes for various homo- and copolymers are plotted 
against the theoretical maximum extension ratios, h,,,. The results indicate 

that the experimental values  agree quite well  with the h,,, values calculated. 
For some  polymers  such as poly(~e~~-butylstyrene) (PTBS), the experimental 
h is much greater than h,,,. This occurs at high  values  of h,,, at which  high 

stresses  in the crazes cause scission or disentanglements that lead to values 
of h greater than h,,,. For small  values  of h,,, (greater entanglement 

density), the polymers  tend to deform by shear yielding (at temperatures 
below Tg). The crazing to shear yielding transition can be  explained by 

considering that the increase in entanglement density facilitates shear yield- 
ing versus crazing. However, thermoset polymers  (with a very  low Ze value) 

exhibit a high  degree  of strain localization at a crack tip, and when chain 
scission occurs in these materials the localized  zone  is formed via shear 
deformation. The explanation for these results is not obvious from the 

above arguments. 
Since entanglements are so important in the deformation of  crazes, the 

molecular weight  will  influence the number and configuration of  crazes. The 
higher the molecular weight, the higher the entanglement density, and  as a 

consequence  fibrils  will  have more difficulty forming a craze. Therefore 
crazing stress should increase  with increasing molecular weight.  However, 

experimental results on the molecular weight  dependence  of crazing stress 
for surface crazes  of  PS (Fig. 14.21)  reveal that for M, > 2Me that depen- 
dence does not exist (30). For Mn 2Me, the process leads only to fracture. 
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Experimental  extension  ratios of  crazes, h, in  homo-  and  copoly- 
mers  versus  the  theoretical  maximum  extension ratio h,. (From  Ref. 29.) 
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For M, 2 2Me, crazing occurs and the failure starts from crazes, the fracture 
stress increasing as the molecular  weight increases. 

In general, environmental agents reduce the stress or  strain required to 
initiate crazing. Environmental liquids decrease the surface energy  during 
cavitation and accelerate the fibril orientation in crazes. They act as plasti- 
cizers  of the polymers due to absorption. This absorption depends on the 
solubility parameters of the polymer and solvent. The  glass transition tem- 
perature T, of polymers  will decrease, and as a consequence  molecular 
segments  will  move at lower  stresses. Figure 14.22  reveals the decreases  in 
T' of PS versus the critical stress of crazing (31).  The data correspond to two 
sets  of  samples treated differently; in  one set, samples of PS were  plasticized 
with  dichlorobenzene  in advance; in the second set, samples of PS were 
swollen to equilibrium in various solvents. All the results indicate that a 
decrease in Tg causes accelerated crazing independently of the method of 
swelling used. 

Analogous results have  been found  for  other polymers. Crazing at crack 
tips exhibits exactly the same behavior. In order to evaluate the acceleration 
of crazing by action of a solvent, the interaction between the polymer and 
the solvent can  be quantified by  means  of the solubility parameter, 6, defined 
as the cohesive  energy density (AN,,/V)'/2,  where AHv is the vaporization 
enthalpy and V is the molar  volume. Figure 14.23  shows the relationship 
between the critical crazing of a polymer and the solubility parameter of 
solvents. When the solubility parameter of the polymer, Sr, is similar to  that 
of the solvent, 6,, the polymer will  dissolve in the liquid or will  be cracked. 
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Effect  of a decrease  in Tg on  the cri 1 strain for crazing, for 
) Swollen  samples in various solvents, ( samples  plasticized  with 

dichlorobenzene. (From Ref. 3 l .) 
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Crack or 
dlssoiutlon 

~ubility parameter 6, (bx) 

Relationship between the critical strain of a polymer and  the sol- 
vent  solubility parameter.  (From Ref. 24.) 

Crazing will occur if and 6, are different. This figure  reveals the situation 
for a nonpolar polymer and a nonpolar liquid. However,  when polarity or 
hydrogen bonding are involved, a different relationship might be expected. 
Crazing can also be  accelerated by agents such a nitrogen, oxygen and 
carbon dioxide at cryogenic temperatures. 

As could be  expected, the mechanical properties of a crazed  polymer  differ 
from those of the bulk polymer. A craze contain in^ even 50% microcavities 
can still withstand loads because  fibrils,  which are oriented in the direction 
of the load, can bear stress.  Some  experiments  with  crazed  polymers such as 
polycarbonate were carried out  to get the stress-strain  curves  of the craze 
matter. To achieve this aim, the polymer  samples  were  previously  exposed to 
ethanol. The results are shown in Figure 14.24  where the cyclic  stress-strain 
behavior of bulk polycarbonate is also illustrated (32). It can be  seen that 
the modulus of the crazed  polymer  is similar to  that of the bulk polymer, but 
yielding of the craze occurs at a relatively  low stress and is  followed by strain 
hardening. From the loading and unloading curves, larger hysteresis loops 
are obtained for the crazed  polymer than  for the bulk polymer. 

Similar  stress-strain  curves  have  been obtained for polystyrene  crazes. 
However,  these results do not necessarily  reveal the real mechanical beha- 
vior  of the craze. The removal  of the solvent from samples  will  cause shrink- 
age and have a significant  plasticizing  effect on the craze fibrils. This has to 
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Stress-strain behavior of crazes in polycarbonate.  (From Ref. 32.) 

be taken into account if the real  mechanical  behavior of crazes  (in the 
absence  of an  environmental liquid)  needs to be predicted. 

Fracture is the creation of  two  new surfaces  in a material by the application 
of external forces. Fracture failure  of  engineering components has cata- 
strophic consequences, and  one of the main  objectives  of the materials 

engineers and researchers  is to develop materials and designs that are resis- 
tant  to fracture failure. Fracture can be  studied  by regarding the material as 
a continuum, ignoring its molecular structure. Nevertheless, a complete  idea 
cannot be  gained  of  how fracture occurs  in  polymers without taking into 
account their  molecular structure and  morphology. Therefore, we begin  this 

section  with a description of the phenomenology, then study the molecular 
processes that take place and the theories and models  applicable to the 

fracture of polymers, and finally we describe the behavior of polymers 
under particular load conditions such as impact  and fatigue. 

Figure 14.125 shows  how a typical amorphous thermoplastic, poly(methy1 
methacrylate) (T' = 105"C), changes  in  behavior from brittle to ductile  with 
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Stress-strain  curves for poly(methy1 methacrylate) (PMMA) in 
uniaxial  tension at constant strain rate at several temperatures.  (From Ref. 33.) 

a simple increase in  temperature  (33). At low temperatures the fracture is 
brittle, whereas at high temperatures the polymer  shows  yield and ductile 
failure. The deformation of a thermoplastic is consid~red  to be a competi- 
tion between crazing and shear yielding.  If crazing dominates, the behavior 
of the polymer  is brittle, but if shear yielding occurs, the polymer  is ductile. 

nce the brittle-ductile transition can be explained by considering that 
ttle  fracture  and yield are independent  processes that differ in their 

dependence on temperature  (34), as is illustrated schematically  in  Figure 
0th the fracture strength (stress required to cause brittle fracture), 

C T ~ ,  and the yield stress, oy, decrease with increasing temperature, but  the 
variation of oY is  more marked. There will  be a critical value  of  tempera- 
ture, TB, at which oB = C T Y .  At temperatures  below TB, the yield stress 
exceeds the brittle fracture strength and the process that takes place is the 
one requiring the lowest stress, i.e., brittle fracture. At T > TB? the situatio~ 
is  reversed and oy oB, leading to yield and ductile failure. The  tempera- 
ture TB is  called the  brittle-~uctile transition temperature. 

On the other  hand,  it is  expected that the strain rate also influences TB. 
It has  been found  that while brittle fracture is hardly affected, the yield 
stress changes signi~cantly with the strain  rate. As shown in Figure 14.26, 
when the strain  rate increases, oY increases. Therefore the brittle-ductile 
transition temperature increases, as does the strain rate. This is  easily  illu- 
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~uctile-brittle transition. (a) Variation with temperature of the 
brittle strength, oB (measured in flexion), and of the yield stress, oY (measured in 
tension), for PMMA. (From Ref. 34.) (b) Effect of the strain rate  on TB. (”---- 1 
Low rate of strain; (- - -) high rate of strain. 

strated by changing the strain  rate  in a sample  of  nylon subjected to uniaxial 
tension: At  low strain rates the sample  is ductile and displays cold drawing, 
but at high strain rates fracture occurs in a brittle manner. 

The brittle-ductile transition temperature  depends on  the characteristics 
of the sample  such as thickness, surface defects, and  the presence  of  flaws or 

notches. Increasing the thickness of the sample favors brittle fracture; a 
typical example  is  polycarbonate at room tem~erature. The presence  of 
surface defects (scratches) or the introduction of  flaws and notches  in the 
sample increases TB. A  polymer that displays ductile behavior at a particular 
temperature  can  break in the brittle mode if a notch is made  in it; examples 
are PVC and nylon. This type of behavior  is explained by analyzing the 
distribution of  stresses in the zone of the  notch, When a sample  is subjected 

to a uniaxial tension, a complex state of  stresses  is created at the tip of the 
notch and  the yield stress oY increases, thus increasing TB. If TB increases 
above the temperature at which the test is  conducted, the sample will display 
brittle behavior  known as “notch brittleness.” Brittle behavior  is favored by 

sharp notches and thick samples  where plane strain d e f o ~ a t i o n  prevails 
over plane stress deformation. 

oreover, the brittle-ductile transition temperature  depends on the 
molecular structure  and morphology of the polymer sample. The correlation 
between  chemical structure  and  fracture behavior  is not yet  well understood. 
It is recognized that entanglements control the fracture behavior of  glassy 
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thermoplastics, through their effect on crazing and shear yielding. 
Entanglements are essential for stable craze formation (see  Sect.  14.3). 
They determine whether a polymer undergoes crazing or shear yielding 
and, as a result, its brittle or ductile behavior. The dependence  of the frac- 
ture strength on the molecular weight  is also controlled by entanglements. 
Low molecular weight  polymers  have  very  low  tensile strengths; the strength 
increases as the molecular weight  increases. Although attempts have  been 
made to relate TB to molecular relasation processes, in particular to the 
glass transition, T', no general relationship has been established yet. 
Molecular relasations are detected in the linear viscoelastic zone, at low 
strains, while TB is detected at high strains and depends on factors such 
as the presence  of notches and cracks, which do  not affect the molecular 
relaxation processes. In some  polymers,  such as  natural rubber and poly- 
styrene, TB virtually coincides  with Tg, but other polymers  display ductile 
behavior at T T,. Moreover, TB is not clearly related to other viscoelastic 
relasations taking place at T T', although some  energy absorption can 
take place through low-strain deformation of the sample due to viscoelastic 
relasations. The addition of  plasticizers  reduces oY and therefore also 
decreases TB. Plasticizers are used to increase the toughness of  polymers; 
a typical  example  is  poly(viny1 chloride) (PVC),  which,  when not plasticized, 
displays brittle behavior at room temperature. TB increases as the cross- 
linking and crystallinity of the polymer  increase (both factors tend to 
increase C T ~  without significantly  affecting of;.). Thermosets (highly  cross- 
linked  polymers,  with  high Tg values) are brittle polymers  (see Fig. 14.la).  In 
contrast with  glassy thermoplastics, there is not conclusive  evidence for 
crazing occurring in  cross-linked  polymers,  which leads to brittle fracture 
with  localized plastic defomation  at the crack tip. The fracture behavior of 
semicrystalline  polymers presents some  differences  with  respect to  that of 
amorphous polymers.  Semicrystalline  polymers can exhibit different 
morphologies (see Chap. 2), going from oriented fibers to the spherulites 
produced in isotropically crystallized  polymers. Figure 14.27  shows the 
stress-strain  curves for crystalline polymers  with different morphologies. 
Oriented polymer  fibers  have  high  stiffness and strength, while isotropic 
~rystallized polymers are tough and flexible,  especially at T 3 Tg. 

(a) ~ ~ e o ~ ~ t i c ~ l   ~ t r e ~ g t ~  of a Solid 
When a sample of  polymer  is fractured, the creation of the new surfaces 
must necessarily  involve the breakage of primary (covalent) bonds or sec- 
ondary bonds (van de Waals interactions and hydrogen bonds), or  both 



Yield Crazing and  Fracture 61 7 

semicrystalline polymer ,. T, 

Strain 

7 Schematic  stress-strain  curves for crystalline polymers. 

simultaneously. From the potential energy  describing the interactions 
among the atoms or molecules, it is  possible to estimate the energy  needed 
for breaking the bonds and  to calculate a theoretical value for the strength 

of a solid. To  do this, it is  necessary to assume an isotropic solid  with 
perfectly elastic behavior. A s  shown in Figure 14.28, the application of a 
tensile stress ci0 causes an increase in the interatomic distances with  respect 

to the equilibrium position h, and therefore an increase in the potential 
energy. The force involved in the interatomic separation, x, will increase 
until it reaches the value corresponding to the point of  inflection  of the 
potential, in which that force (first derivative of the potential) achieves its 
maximum  value. The dependence  of the stress on x can be  expressed  in an 
approximate way  by a sinusoidal function: 

oo = oT sin(2nxlh) (14.26) 

where ciT is the m a x i ~ u m  value of the tensile stress and h is the wavelength 
of the sine function. For low strains (x -+ 0), 

Go = o772nx/h (14.2’7) 

Since the material is assumed to be  perfectly  elastic,  having a modulus E, 

0 0  = Ex/he (14.28) 

The work done in stressing the sample to fracture will  be equal to the 
surface energy  of the new surfaces created, Go: 
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Strain of an isotropic elastic  solid. (a) Application of a stress cro to a 
sample  having an  equilibrium  separation of atomic planes, h,. (b) Potential energy as 
a  function of the  separation x. (c)  Dependence  of cfo on x. (From Ref. 35,) 

(14.29) 

ntegratin~ gives 

Go, called the intrinsic fracture energy, is the energy  per unit area necessary 
to create the new surfaces, i.e., required to break  bonds (secondary or 
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primary). Combining Eqs. (14.27)  (14.28), and (14.30), the theoretical 
strength of a perfectly elastic solid to tension is  given  by 

(14.31) 

From  the usual values  of Go = 2y (y being the surface energy), E,  and h,, 
Eq. (14.31)  can  be appro~imated  to 

(14.32) 

For most materials the values  of the tensile strengths (fracture stress) 
are significantly  lower than the values  obtained  from Eq. (14.312). This  is 

attributed to the presence  of  defects or flaws. For polymers, the strength 
values are of the  order of E/50-E/100 (see  Table  14.1).  Only for some 
single-crystal  fibers containing few  defects,  which are  not capable of under- 
going plastic strain, does the strength approach the theoretical value. 
other  hand, the fracture energy  in  polymers  is  much higher than the surface 
energy, The strength is  reduced  by the presence  of  defects or flaws,  while the 
fracture energy increases due  to the appearance in the fracture of  localized 
viscoelastic and/or plastic strain processes,  such as microyield and micro- 
crazing at the crack tip, that  absorb energy. 

Elastic Modulus E, Experimental Tensile Strength”, oF, and 
Theoretical Strength of Selected Polymers 

~- 

Glassy polynler 3,000 50 300 

Semicrystalline polymer 2,000  20  200 

Thermoset polymer 3,500 70 350 

Polymer fiber 6,000 500 600 

Single-crystal  fiber 60,000 2,000 6,000 

(PMM~) 

( H ~ P E )  

(epoxy  resin) 

(nylon 6) 

(polydiacetylene) 

aMeasured at raam te~perature and moderate rate of strain. 
Source: Ref. 35. 
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(b) ~ o i e c ~ i a r  Sliding  and  Bond  Breakage 
The fracture of polymers can take place  via the breakage of covalent 
bonds and/or intermolecular interactions. Both mechanisms appear, but 
the extent to which each occurs depends on the type of  polymer and  on 
the test conditions. In thermoset resins the failure is produced by the 
breakage of primary bonds; in thermoplastics the failure can occur by 
sliding  some chains over others, without any molecular breakage. When 
an amorphous thermoplastic in  which the chains are oriented at random is 
subjected to tension, the chains tend to orient themselves in the direction 
of the strain, This process  of  sliding and separation of chains can occur in 
preference to molecular breakage, because the covalent bonds are stronger 
than the intermolecular interactions. In semicrystalline  samples or in cross- 
linked  polymers, the crystalline zones and the cross-links prevent the 
chains from sliding. In highly entangled thermoplastics, entanglements 
act as cross-links, making it difficult for the chains to be  pulled out  at 
T < Tg. When the fraction of crystals or entanglements is  very high, chain 
sliding  is prevented, so the chains are subjected to tension from the start 
of the strain, and they can therefore break. This happens in oriented 
polymers  when  they are subjected to tension in the direction of the 
orientation. Only  molecular chains that have  been oriented will  with- 
stand the external stress. Therefore, a nonuniform distribution of  stresses 
will appear at the molecular level.  These polymers usually  display brittle 
fracture, the breakage of the primary bonds being the dominating factor. 
Similarly, the chains in the amorphous and crystalline zones  of  semicrys- 
talline  polymers withstand different loads. When the tensile stress 
increases, the extended chains start  to break; when the number of broken 
chains is high, microvoids start  to form that will  become  crazes and 
microcracks. A single crack is enough to initiate macroscopic fracture. 
The cracks will propagate by breaking chains (primary bonds) or 
destroying intermolecular interactions at their tips, and if microvoids 
have been formed in the sample they  will facilitate the propagation of 
the crack, 

Nowadays, techniques exist that permit calculation of the number of 
primary bonds broken during the fracture process. The most widely  used  is 
electron spin resonance (ESR) spectroscopy, which detects the free 
radicals produced in the breakage of the covalent bonds of the polymer 
chains and can quantify the number and  nature of the radicals 
originated. Polymers in which the sliding of chains dominates over the 
breakage of the primary bonds display crazing  (localized plastic strain) 
and yielding (plastic strain  that is extended over large zones  of the 
sample). 
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fa) O r i g i ~  of the fracture: ~ i c r o c r a c ~ s  

The theoretical strength of a solid to fracture is  of the order of a tenth of its 
Young's modulus [see Eq. (14.32)]. Although the elastic moduli of brittle 

polymers (T -c T') are of the order of 3 GPa, with  which one could expect a 
resistance  of 300 GPa, the e~perime~tal  strengths are very much lower (10- 

100 MPa), as occurs in many other materials. The most useful theory to 
explain fracture in brittle polymers  is that of Griffith, which  was  initially 

developed to explain the brittle behavior of  glass. In this theory, the low 
toughness of brittle solids  is attributed  to the presence  of  defects.  These 

defects could be internal flaws or microcracks (of the order of 1 pm) or 
surface scratches that appear naturally in materials during their manufac- 
ture or are caused by external damage. The stresses applied to the material 
are amplified in the defects;  i.e., the local  stresses  in the proximity of  vertices 
or the tips of the microcracks are significantly greater than those applied to 
the material as a whole. 

Let us consider a thin sheet  of width W and thickness B containing an 
internal elliptical crack, as shown in Figure 14.29. The axes  of the ellipse are 
2a and 26, and the laminar sample is  assumed to have  infinite width, i.e., 
W >> 2a. If a force I; is applied at the end  surfaces, the sample  will  be 

supporting a stress, G; 

CT = F/WB 

t t "  1' 

T 
L 

2b 

(14.33) 

Internal elliptical crack in an elastic lamina subjected to a  stress 0, 
~istribution of local  stresses  in the positive x direction. 



The  presence  of the crack originates a local distribution of  stresses in its 
environment (36-38). Figure 14.29  shows the variation of  stresses  along the 
line OX. The stress in the direction Y ,  uZ2, reaches a maximum value, om, at 
the surface of the ellipse (X = 0) and decreases as X increases, taking the 
value CT at distances away from  the crack. The stress in the direction X, oll , 
is zero on the surface of the ellipse and increases with X, reaching a max- 
imum  value  close to U, becoming zero at large distances from the crack. The 
amplification of the stress is  maximum at the end  of the major  axis and is 
described by (37) 

(14.34) 

Therefore, the stresses are amplified in the tips of internal cracks. The  ratio 
U,/O for circular cracks ( a  = b) takes the value 3, but  for thin holes (a =. b) 
it will  be much greater. Equation (14.34)  can  be written as a function of the 
radius of curvature, p = b2/a: 

which for  sharp cracks ( a  >> p) can  be  approximated to 

(14.35) 

(14.36) 

Therefore, sharp cracks cause a concentration of  stresses  with a maximum 
amplification at their tips, which  can reach the value of the rnateria1,s 
strength, even for low applied stresses, thus giving  rise to interatomic 
separation, propagation of the crack via its tip, and  fracture of the lamina 
later. The cracks are  not necessarily perfect ellipses;  even so, their effect 
would be similar, and when p -+ 0 the amplification would  be infinite and 
the failure imminent. For this reason, local stresses alone cannot be taken as 
a criterion for fracture. The solution to this problem is  given  by Griffith's 
theory of fracture (39), which  defines the critical energy  of fracture, and  the 
alternative proposed by Irwin (40),  which  defines the critical stress intensity 
factor; the two are related. Moreover, as has already been  mentioned, plastic 
strain processes  (localized crazing and localized  yield)  occur  in  polymers at 
the crack tips. These  processes absorb energy and delay failure, so the crack 
will propagate only  if the  total energy  of the system decreases. Although 
Griffith's theory is formulated for perfectly elastic solids (linear elastic beha- 
vior, low strains), it is also applicable to real situatio~s in which plastic 
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strain occurs at the crack tips provided that there is  no  bulk  yielding  in the 
sample. 

{h) ~ r i f f i t ~ ’ s  ~ ~ e o r y  of Fracture 

Griffith’s theory (39) is  based on the energy  changes  produced  when a crack 
propagates in a material, setting the condition that the crack will propagate 
only if the  total energy  of the system decreases. The  total energy  of the 
system  is divided into two terms: the stored elastic energy and the work 
done in the crack propagation.  The  fracture occurs if the energy required to 
produce the new surfaces is  balanced  by a decrease in the elastically stored 
energy. Let  us consider a thin lamina  (such as that shown  in Fig. 14.30) of 
thickness B, with a  sharp internal crack of length 2a perpendicular to  the 
direction of the applied stress G. The stress is applied as  the ends of the 
lamina are kept  fixed. The elastic strain energy per unit volume at distances 
far  from the crack will  be 02/2E.  If the sample  has a volume V, the  total 
elastic strain energy without the presence  of cracks will  be Va2/2E. The 
introduction of the crack  modifies the local distribution of  stresses in its 
environment  (see preceding subsection). When the stresses are calculated at 
all points around the crack, and from  them the elastic energy  is evaluated, it 
is found  that the introduction of a crack decreases the stored elastic energy 

6 

Sharp crack of length 2a inside a thin lamina of thickness B sub- 
jected to a  tensile stress. 
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by a factor n2na2B/E. A simple approsimation suggests that the crack 
suppresses the stored elastic energy  in a cylindrical  volume  of radius a 
centered on the crack. The decrease  in  elastic  energy  would  be 

cr2 cr2na2B Volume of cylinder x - = ~ 2E 2E: 

which  differs from the correct result by a factor of 2. 
The work done to propagate a unit area of crack is G,. Griffith’s theory 

assumes that  no heat is dissipated and that the work is done to form the two 
new surfaces without plastic deformation taking place. The work  needed to 
form a crack of length 2a is 

Surface area of crack x G, = 2aBG, 

and the total energy change is 

(14.3’7) 

The dependence of A U on the length a is  shown  in Figure 14.31. For small 
values  of a, the second term on the right in Eq. (14.37) (the term linear in a), 
which represents the work done when the crack propagates, is dominant. 
For large values of a, the first  term on the right in Eq. (14.3’7) (a2 term), 
which represents the decrease in elastic  energy  in the propagation of the 
crack, becomes dominant. When the crack is at the initial point of growth 

AU 

Increase in surface energy 

AU = Total energy change 

a 

Strain  energy  decrease 

Dependence  of the  total energy change, AU, on a at constant G. 
(2a = crack length; a, = critical size.) 
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under the stress ci, the decrease  in  elastic  energy just balances the work of 
crack propagation: 

(14.38) 

Therefore 

C T ~ E U  = EG, (14.39) 

This point represents a maximum  in the curve AU vs. a, with ci being kept 
constant. The value of a at the maximum, a,, represents the limit from 
which the crack ceases to be stable: 

(1  4.40) 

For values  of a > a,, d At.J/da is  negative and the energy  of the system 
decreases as a increases;  in this case the crack will propagate  up to the 
fracture of the lamina. For values  of a a,, the crack will not propagate, 
since this implies an increase  in total energy,  i.e., fracture is  prevented for 
the stress G. Therefore, from Eq. (14.39)’ the stress  required to propagate a 
crack of length 2a up  to fracture, c iF (fracture strength), is 

OF I== ~ ~ ) 1 / 2  (plane stress) (14.41) 

Equation (14.41)  is  obeyed under the condition of  plane  stresses at the tip of 
the crack (ci33 = 0), which  occurs  in laminae of narrow thickness (thin 
laminae). For thick laminae, the condition that occurs  is that of plane strain 
( ~ ~ 3  = 0), and this  leads to (38) (see  also Chapter 16) 

EG, 1 / 2  

OF = (.(l - “ 2 ) U )  
(plane strain) (14.42) 

where v is Poisson’s ratio. In thin laminae, the thickness of the lamina at the 
tip of the crack decreases due to the Poisson contraction, leading to the 
condition of plane  stress (oil # 0, u22 # 0, ci33 = 0). In thick  laminae, the 
thickness of the sample at the tip of the crack does not decrease due  to 
Poisson’s contraction, since  stresses are generated [cr33 = v(cill + c ~ ~ ~ )  # 01 
that balance the contraction, leading to the condition of plane strain 
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(g33 = 0). Equations (14.41) and (14.42) are equivalent and can be written in 
a generalized way as 

(1 4.43) 

where E" is the reduced modulus, equal to Young's modulus for thin lami- 
nae and  to E/(1 - v2) for thick laminae. The fracture energy, G,, is consid- 
ered a material parameter that depends on the test conditions. The fracture 
strength is controlled mainly by the size of the largest cracks in the sample, 
This theory gives good predictions for the fracture of brittle polymers such 
as polystyrene and po1y(~ethyl methacrylate) at room temperature. Figure 
14.32  shows the variation in the fracture strength under uniaxial tension for 
samples of  these  polymers in which notches of length a have been made. W e  
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Variation of strength (fracture stress at uniaxial tension) with the 
length of the crack, a for polystyrene and poly(~ethy1   et ha cry late). (From Ref. 41 .) 
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can see that,  as predicted by Griffith’s theory, there is a clear correlation 
between uF and a. Nevertheless, a discrepancy exists  with  respect to G,. 
When G, is calculated on the basis of those curves through  Eq. (14.43),  using 
the Young’s  modulus  of  these polymers, the values  obtained are G, m 210 

A and G, = l700 J/m2 for PS. These  values are very  much 
higher than the surface energy  of these polymers,  which are estimated to be 
of the order of y m 1 J/m2. (The surface energies  of solids are calculated 
from the measurement of the surface contact angles of liquids, using the 
~Oung-La~lace equation). The discrepancy G, >> 2y  is explained by con- 
sidering that Griffith’s theory assumes linear elastic behavior, without tak- 
ing into account that polymers display plastic deformation. A s  has already 
been  remarked,  even  polymers that show brittle fracture without  any  gen- 
eralized  yield display plastic strain at the local level at the  tip of the cracks. 
The energy  absorbed in the plastic strain is  much greater than the surface 
energy-hence the high  values  obtained for G, in comparison  with y. Thus 
G, is interpreted as the energy required to increase the crack per unit area, 
which includes all the energy  losses. G, = Go + Q, where Q is the energy 
dissipated in plastic and viscoelastic  deformations at the tips of the crack 
and Go is the intrinsic fracture energy.  If only secondary  bonds are broken  in 
the fracture, then Go = 2y, but if fracture involves the breakage of covalent 
bonds,  then Go > 2y.  Since Q is frequently the biggest contribution  to G,, 
this latter parameter is sharply dependent  on the rate  and temperature at 
which the test is conducted. 

Griffith’s theory establishes that the fracture of a material is  determined 
by the size  of the cracks present in it. Consequently, the strength of a sample 
can  be increased by reducing the size  of the cracks. For example,  glass  fibers 
become  superficially  damaged  by  rubbing against others, which  reduces 
their resistance. To avoid this damage,  glass  fibers are subjected to a surface 
treatment of coating with a protective layer of polydimethylsiloxane (sila- 
nizing). Another treatment that increases the resistance of the glass to frac- 
ture consists of washing the fibers  with hydrofluoric acid, which  reduces the 
surface cracks. In brittle polymers, such as PS and PMMA (Fig. 14.32), the 
reduction in the size  of the cracks also leads to  an increase in the strength 
(41). Nevertheless, this increase is not unlimited, and below a determined 
crack size  of approximately 1 mm for PS and 0.07 mm for PMMA at room 
temperature, oF becomes  independent of the crack size. Brittle polymers, 
therefore, behave as if  they had inherent cracks on the limit size,  which do 
not modify their strength to fracture. However, although PS behaves as if it 
had  natural  or inherent cracks of  size 1 mm, these cracks have  never  been 
detected in nonstrained samples. The inherent cracks are formed  during the 
strain processes;  in particular, crazes of approximately 1 mm can  be  seen in 
PS when the material is subjected to tension at room temperature, while for 
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P ~ ~ A  the crazes are much  smaller. Therefore, it is  deduced that fracture 
takes place  via  crazes that  are transformed into cracks. When the samples 
display  artificial cracks bigger than inherent ones, fracture takes place by 
propagation of the artificial cracks. 

Irwin (40)  gave an alternative formulation to fracture by considering the 
distribution or field  of  stresses around a crack in an elastic material. He 
proposed that such a distribution could be  expressed as a function of a 
parameter K ,  known as the stress intensity factor, and he established that 
the fracture would occur when K exceeds a critical value Kc characteristic of 
each material. Figure 14.33  shows a sharp crack of length 2a  in an infinite 
lamina subjected to a tensile stress CT. The equations defining the local 
stresses oll, C T ~ ~ ,  c12 are (42) 

(34.44a) 

(14.44b) 

(14.44c) 

with 023 = 013 = 0 and o~~ = 0 (plane stress) or C T ~ ~  = u((sll + oZ2) (plane 
strain). A s  should be  expected, the local  stresses are  proportional to the 
external stress, CT. In these equations, when r -+ 0 the local  stresses approach 

Sharp  crack of length 2 4  in an infinite lamina, subjected to a  tensile 
stress G. 
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infinity. As mentioned earlier, this means that the distribution of  stresses 
cannot be taken as a criterion of fracture, since the value  of the strength of a 
material, which  is  always  finite,  would  be  exceeded at the tip of sharp cracks. 
Equations (14.44) can be rewritten in the generalized form 

where KI is the stress intensity factor, the subscript I indicating the mode of 
the load normal to the crack (other modes are  not going to be  considered 
here). In general, KI can be  expressed as 

K1 = QCJU”~ (14.46) 

where Q is a dimensionless  geometrical factor, so that for an infinite lamina 
with an internal crack of length 2a K takes the value dl2. The whole stress 
field at the crack tip is known when KI is known. Cracks of different sizes, 
e.g. a and 4a  have  similar stress fields if they are loaded to o and 20, 
respectively. KI determines the intensity of the local  stresses around the 
crack, due to which Irwin postulated as the criterion for fracture the con- 
dition 

KZ = KZc (14.47) 

where KI, is known as the fracture toughness. KI c  is a measure of the crack 
resistance of a material. For infinite laminae 

KIc = ~rF(n;a)’/~ (1 4.48) 

where oF is the stress at fracture. The determination of KIc by means of Eq. 
(14.48) requires measurement of the strength oF at which an internal crack 
of length 2a will start to propagate. The use  of KI, to determine whether a 
material will support a particular stress o implies  knowledge  of the size a of 
the cracks present in the sample. If KI = o(na)1’2 2 KI,? the material will  fail 
due to brittle fracture. 

On the basis of Eqs. (14.41),  (14,42), and (14.48), the relationship 
between KIc and G, is obtained. In the case  of thin laminae, 

= (EG,)”~ (plane stress) (14.49) 

and for thick laminae, 
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Klc = [EG,/(l - v2)]”’ (plane strain) (14.50) 

as can be  seen  in Chapter 16. 
The criterion for fracture based on reaching a critical value Kf, is iden- 

tical to considering a critical value for the fracture energy, G,, The relation- 
ships given above for G and K correspond to solids that behave  like 
perfectly elastic materials. The experimental values  of K, and G, vary 
with the sample thickness. This is  because there is always  some  local plastic 
deformation at the crack tips in  polymers and the state of stress near the 
crack tip is plane stress in thin laminae and plane strain in thick ones. 
Yielding cannot occur in pure triaxial tension. The yield stress is greater 
in a triaxial stress field (plane strain) than in a biaxial one (plane stress). 
Therefore, in  thick laminae (plane strain), yielding at the crack tip is  reduced 
and so too  are G, and K,. In practical cases, it is worth considering states of 
plane strain since the materials display the lowest  values  of toughness for ICI, 

(plane stress) Kf, (plane strain) and G, (plane stress) > G, (plane strain). 
Owing to the amplification of  stresses at the crack tip, the value  of the 

yield stress can be exceeded in that zone, leading to localized plastic strain. 
evertheless, the size  of the plastic zone at t crack tip can be  assumed to 

be  sufficiently  small that the sample  obey  ooke’s  law as  far  as linear 
elastic fracture mechanics (LEFM) is concerned. The size  of that zone 
(see Fig. 14.34) can be estimated by determining the distance from the 
crack tip, r*, at which the local stress oll exceeds the yield stress oy. 
~ubstituting oy = oll into Eq. (14.44),  with 8 = 0, gives 

(14.51) 

In the case  of plane strain, the zone with plastic strain is  smaller than the one 
with plane stress (38): 

Zone of plastic strain at the tip of a crack. 
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(d) ~ ~ ~ s u r ~ ~ ~ ~ t  of K,, 
In the definition of KIc [Eq. (34.48)] we assumed a lamina of infinite width 
with an  internal crack of length 2a. In practice, the'd~termination of oF in 
extremely  wide  laminae ( W  >> a) is not satisfactory, and therefore we resort 
to other geometries. The dimensions of ICIc and ICI are always  going to be 
those of the  product of a stress and  the  square  root of a length, so the 
change in geometry  implies just  the  introduction of a dimensionless  geome- 
trical factor, Q, as in Eq. (14.46): 

KIc = sF(a)"2Q (14.53) 

The simplest  case  would  be a finite  lamina  of  width W and thickness I3 with 
an internal crack of  size 2a, as shown  in  Figure 14.35, subjected to a stress 
c3" = F/(BW), where F is the value of the applied force at which the crack 
starts  to grow. The expressions for .KI and KIc are (43) 

and 

F 

(14.54) 

(14.55) 

Crack of length 2a in a finite  lamina of width W and thickness B. 
(2a and W are of the  same order of magnitude.) 
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Clearly, for W/a -+ 00, Eq. (14.55)  becomes Eq. (14.48). A case that derives 
from the above is that of a lamina with a side crack (see Fig. 14.36). The 
equations in this case for Kr and Kre are identical to Eqs. (14.54) and (14.55), 
except that they are simply  multiplied by a geometrical correction factor to 
account for the additional strain in the free surface. The  onf figurations or 
geometries most often used in studying the fracture of  rigid  plastics are 
compact tension and three-point bend, also illustrated in Figure 14.36. 
The most usual techniques to evaluate the geometrical factor Q involve 
numerical methods the expressions  of KI for the three configurations are 
summarized in Table 14.2. In all cases the value  of B has to be  sufficiently 
large that at the tip of the crack the state of plane strain occurs. It has been 
found that this condition is  met if B, W - a, and a are greater than 2.5 
( K I c / ~ y ) 2 .  Under these conditions, the zone of plastic strain at the tip of the 
crack is  less than 2% and the KIc that is determined is a genuine property of 
the material. The measured  values  of Krc are dependent on the sharpness of 
the crack in such a way that when blunt cracks are used, unrealistically  high 
values  of ICrc are obtained. The crack must be sharp because Eq. (14.44), 
which  is the origin of the definition  of ICr, is  limited to  sharp cracks. Despite 
this, linear elastic fracture mechanics  is  always  used in engineering to obtain 
the failure conditions in the worst case for greater security. If an element  is 

""". 
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Single-edge crack  Compact-tension 
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Three-poi n t bend 
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Three-poi n t bend 
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Scheme of the most typical specimen  geometries  used in studying 
the fracture of brittle polymers. 
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Expressions  of KZ for Specimens  of Different  Geometries Commonly 
Used  in the  Fracture of  Polymers 

Geometry Expression for KI 

Single-edge  crack 

Three-point bend 

-21.71 ( ~ ) 3 + 3 0 . 3 8 ( ~ ) 4 ]  

or 

K1 = 1. 12a(nay2 a/  W 3 0 

= 3SF/2BW2 

S = 8 W  

KZ = ~ ( ~ ~ ) " ~ [ 1 . 1 1  - 1.55(~/W) + 7.71(~/W)~ 

- 13.5(~/W)~ + 14.2(a/W)4] 

S = 4 W  

K;- LT=: c~(na)'/~[1.09 - 1.73(~/W) + 8.20(~/ W)2 

- 14.17(~/W)~ + 14.55(~/W)~] 

Compact tension K1 = o(~a)"~[16.7 - 104.7(a/W) + 369.9(a/W2 

- 573.8(a/ W)3 + 360.5(a/ W)4] 

CT = F/WB 

aF = applied  force; B = thickness; W = width; S = span between supports. 
Source: Refs. 44 and 45. 

designed  so that it will not fail when it develops sharp cracks, then it will 
become  safer if the cracks are blunt, since in that case the amplification of 
stresses at the crack tip is  less. 

The values  of the fracture toughness KIc depend on the structural and 
morphological characteristics of the polymer sample such as molecular 
mass, degree  of cross-linking, and degree  of crystallinity, but they also 
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depend on the conditions under  which the test is conducted,  such as tem- 
perature  and  strain,  and even on the thickness of the specimen  being tested 
(as was already discussed). Table 14.3 gives the values  of ICrc for some 
typical polymers. The  comparison of the toughness  values  has to be  made 
with care considering their dependence on the factors mentioned above. In 
general, it can  be stated that thermoset  (highly cross-linked) resins  have  low 
values  of ICrc and therefore are brittle materials. Traditional t ~ e ~ o p l a s t i c s ,  

and PMMA, present low  values  of toughness, in contrast to 
plastics, such as polyamides (nylon), poly(ethy1ene terp 

), poly(methy1ene  oxide) (PPO), or poly(ether etherketones) 
which are tougher. 

Impact strength tests  determine the capability of a material to maintain its 
structural integrity and  to  absorb energy  in a sudden impact. 
applications require materials to be resistant to impact loa 
toug~ness is the deciding factor in the selection of these materials. Many 
polymers that  are ductile in normal conditions, with  high  values  of fracture 
toughness  when  they are tested under tension with moderate S 
display brittle fracture under  impact loads (very  high strain rate). 
the brittle behavior is more  likely to occur if the impact  on the sample takes 
place at low  temperatures and if the sample contains stress concentration 
centres such as cracks and notches, The resistance to impact  depends on  the 
geometry  of the sample and  on the type  of test, and therefore it is not a 

'Values  of KIc for Some  Polymers at 20°C 

Polymer 

Epoxies 
Polystyrene (PS) 
Poly(methy1  eth ha cry late) (PMMA) 
Poly(viny1  chloride)  (PVC) 

Poly(methy1ene  oxide) (PMO) 
Nylon 6.6 
Poly(ethy1ene terephthalate)  (PET) 
Poly(ether  ketone) (PEEK) 

olypropylene (PP) 

0.6 
0.74.1 
0.7-1.6 
2.04.0 
3.04.4 

- 4  
2.5-3.0 

-5 
7 

Source: Ref. 37. 
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defined property of the material. The most commonly  used tests are those of 
Izod and Charpy. In these tests, a bar of material is struck by a pendulum, 
as shown  in Figure 14.37, and the energy required to fracture the sample is 
determined by the loss  of  energy  of the weight or hammer. The impact 
energy  is calculated as the energy  per unit surface area of fracture, though 
it is  sometimes tabulated as energy  per unit length of the notch. Table 1 
gives  some  values  of the impact energy  determined for rigid  polymers by the 
Izod test. Obviously, there has to exist a proportional relationship between 
the impact energy and the fracture toughness KI, or fracture energy G,, but 
as a consequence of their dependence on the factors mentioned above (geo- 
metry  of the sample) as well as the actual sample characteristics (capacity to 
display  yield at the tip of the notch), there is no universal formula to corre- 
late the values  of the impact energy  with those of G,. 

Classy polymers, A and PS, are suitable for many applications, but 
they are brittle when  subjected to impact loads, The same things happens 
with thermoset polymers  such as epoxy or phenolic resins. To solve  this 
problem, impact-resistant polymers  have  been  developed that basically 
consist of a matrix of the brittle polymer  in  which a second elastomeric 

Izod Impact Test for Rigid Polymers at 24°C 

Polymer 
Impact energy 

(kJ/m2> 

Polystyrene 
High-impact PS 

ABS poly(acrylonitryl-c~-b~tadie~e-c~-styrene) 
Rigid PVC 
PMMA 
Nylon 
P M 0  
Low density PE 
High density PE 
PP 
Polycarbonate (bisphenol A) 
Epoxy resin 

(polystyrene + polybutadiene) 

1  .3-2.1 
3-42 

5-53 
2-1  6 

2.1-2.6 
5.3-16 
10-16 
2. 84 

2.6-105 
2.6-1 1 
63-95 
1-26 

Source: Ref. 46. 
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43" 

Charpy 

.a7 (a) Schematic diagram of an  impact test  machine. (b) Geometry of 
the specimen  in the  Izod  and  Charpy tests. 

phase has been  dispersed (25,47). There are two mechanisms to obtain this 
morphology; the first  is  by  blending an immiscible elastomer with the 
polymer; the second  process  is  via the synthesis of block copolymers in 
which one part of the molecule consists of the glassy  polymer  while the 
other gives  rise to the elastomeric phase, both phases  being  immiscible. In 
this latter case the chemical bonding between the glassy  blocks and the 
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elastomer  blocks  ensures a good interfacial join between the phases. A 
typical  example  is the ABS  block  copolymer acrylonitryl-eo-butadiene- 
eo-styrene. In the preparation of  high impact epoxies, the resins  before 
cross-linking are mixed  with the elastomer, for example a nonvulcanized 
rubber, which  usually contains nitryl groups. The polarity of  this rubber 
causes it to be  miscible  with the resin prior to cross-linking, and when the 
cross-linking of the epoxy  resin  is carried out the elastomer  phase  becomes 
dispersed  in the form of small  aggregates. The molecules of rubber usually 
contain terminal  carboxyl groups ~poly(butadiene-eo-acrylonitryl) temi- 
nating in carboxyl groups; CTBNI that react  with the epoxy matrix in 
order to ensure good  anchorage of the two  phases:  elastomer and brittle 
epoxy matrix. In general, for the resistance to  impact to be enhanced by 
dispersion of an elastomer  phase  in the vitreous matrix, (1) the T'' of the 
rubber must be much  lower than the working temperature; (2) the rubber 
must be  immiscible  with the glassy matrix; and (3) there must be a good 
adhesion between the elastomer and the glassy  phases. The introduction of 
the elastomeric  phase into the glassy matrix converts the brittle polymer 
into  a  tough material. Figure  14.38  shows the stress-strain  curves for PS 
and high-impact PS; untreated polystyrene  displays brittle behavior, while 
polystyrene  modified  with butadiene displays  ductile behavior, yielding 

t 'i 1 I I I 

Stress-strain  curves for polystyrene and high impact polystyrene. 
(From Ref. 48.) 
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and failing with a strain of 40°/o, Table  14.5  gives the values of the elastic 
modulus and the fracture toughness of various polymers  modified  with 
rubber. 

Yield and crazing are plastic strain mechanisms that  absorb energy 
and increase G,. It can. therefore be  expected that the procedures for 
increasing the toughness of polymers, such as modi~cation with elasto- 
mers, will  be  effective  because  they favor the plastic strain in a way that 
can  be controlled at the local level. Indeed, the elastomeric phase dispersed 
in the glassy  matrix  possesses an elastic modulus that is  several orders of 
~agni tude  lower than  that of the matrix  itself,  giving  rise to a concentra- 
tion of  stresses at the surfaces of the particles when the material is strained 
that is similar to the concentration produced at the tips of cracks. This 
concentration of  stresses  produces  microcrazing or yield at the local level 
around each elastomer particle, and because  of that the material will 
absorb a great amount of  energy  during strain, thereby increasing its 
toughness and resistance to impact. In the case  of  high  impact polystyrene, 
large microcrazes starting  from the particles or aggregates of butadiene 
can  be  seen  when the material is  observed  with a transmission electron 
microscope. In the modification of a dispersion is  achieved of 
very small particles of poly~~-butyl a o-styrene) that have a refrac- 
tive  index similar to  that of the PM rix and are smaller than the 
wavelength of visible light. This dispersion incr he  toughness of the 
material without altering the transparency of A. In this case, the 
mechanism that confers toughness  is  assumed to be the shear bands 
around  the particles, which, because they do  not give  rise to changes in 
density, cannot be detected by an electron microscope  in the way that 
microcrazing can. 

Young's Modulus, E, and  Fracture Toughness, ICIc, for Some 
Polymers 

Polymer 

PS 3.0 1.1 
High. impact PS 2.1 5.8 
PMMA 3 .O 1.2 
PMMA modified  with rubber 2.1  2.4 
Epoxy  resin 2.8 0.5 
Epoxy  resin  modified  with rubber 2.4  2.2 

~ _ _ _ ~  

Source: Ref. 25, 
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The term “fatigue” refers to the fracture undergone by a material when it is 
subjected over a long period of  time to stresses that  are lower than its 
strength.  Under certain conditions, the microcracks  existing  in a material 
grow  slowly, and, with this, K; increases until it reaches the critical value 
&. At that moment, a sudden brittle fracture occurs in the  part  that  had 
been supporting  constant  or alternating loads over a long period of time. 
Two types of fatigue can  be distinguished: static and dynamic. 
called static fatigue occurs under conditions of constant load in  which the 
stress applied is  less than  that needed to produce a fracture, uF, under 
conditions of monotonically  growing load (stress-strain tests). Static fatigue 
is represented by  curves  of the applied stress versus the time required for 
failure. Illustrated in Figure 14.39 is an example  of polyethylene at various 
temperatures. Clearly, the greater the stress applied, the less the time taken 
for the sample to fail. In static fatigue, both failure mechanisms, ductile and 
brittle, can occur. In general, at high  stresses and  short times, ductile frac- 
ture occurs, while at low  stresses and long times, the failure is brittle. The 
ductile-brittle transition is shifted to longer times as the temperature 
decreases  (see Fig. 14.39). This transition does not depend  only on the actual 
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Applied  stress  versus failure time (static fatigue) for a sample  of 
high  density  polyethylene at various  temperatures.  The inflection  shows the  point of 
change  from brittle failure to ductile failure. (From Ref. 49.) 
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characteristics of the material (molecular mass, microstructure, crystallinity, 
etc.) and temperature; it is also affected by external agents in such a way that 
chemically  aggressive environments favor brittle fracture (50). 

Dynamic fatigue is the failure or fracture of a material under oscillatory 
loads (CT << C T ~ ) .  Dynamic failure is a very serious problem because materials 
fail at stress levels much lower than under monotonic loading.   ore over, 
for a given stress amplitude, the time to failure is shorter than in static 
fatigue. Most common dynamic tests  employ sinusoidal loading, controlling 
the stress amplitude [G, = ( 1/2)(omax - crmin)] over unnotched specimens, 
with different loading methods, e.g.,  bending or torsion. The classical 
fatigue curves represent the stress amplitude versus the logarithm of the 
number of  cycles to failure, such as those shown  in Figure 14.40. The 
time to failure increases  with  decreasing stress amplitude. The curves  have 
a sigmoidal shape, but at intermediate stress a linear relation is obtained. 
For large numbers of cycles (lo7) the curves  become horizontal. Thus there 
is a limit stress amplitude value under which the material can be  cycled 
without causing failure; it is  called the endurance limit. The fatigue of  poly- 
mers  is strongly dependent on the load frequency. Figure 14.41 illustrates 
the typical fatigue behavior of a thermoplastic at several  frequencies. The 
viscoelastic behavior of  polymers provokes some heat dissipation in each 
loading cycle,  which, together with the lower thermal conductivity of poly- 
mers,  causes large increases in the temperature of the material at high 

103 105 lo7 
Cycles-to-failure , Nf 

Stress amplitude versus log NJ. for several  polymers. iVf = cycles to 
failure, (From Ref. 51.) 
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ure II Stress amplitude versus  log Nf for a polyacetal  copolymer at (+) 
0.167, (v) 0.5, (0) 1.67, (0) 5.0, and (A) 10.0 Hz. Nf = cycles to failure. (From 
Ref. 52.) 

stresses and high  test  frequencies. Under these conditions, the failure takes 
place  by  way  of thermal softening; this type  of failure is  called thermal 
fatigue failure. The curves  of fatigue in Figure 14.41  show to different 
regimes, one for conventional mechanical fatigue and the other for softening 
thermal fatigue. Mechanical fatigue involves the initiation and posterior 
propagation of a crack. Fatigue cracks are developed from surface or inter- 
nal defects or flaws. In the propagation stage, the fatigue crack grows by a 
small amount in each  cycle; this stage seems to control the fatigue life. Thus 
the usual studies of fatigue involve monitoring the growth of a crack that 
has macroscopic dimensions over the number of  cycles applied. For brittle 
polymers the propagation rate is proportional to the stress intensity factor 
range, AKz = Klmax - Klmin (53,54): 

da 
dN - = A A K y  (14.56) 

where m and A are constants for each  polymer sample that depend on 
temperature, frequency, stress ratio, and the characteristics of the polymer 
such as molecular weight and crystallinity. In Figure 14.42, double logarith- 
mic plots of da/diV versus AKz are presented for several  polymers. It can be 
seen that the behavior is linear. However, in some  cases the pattern may  be 
sigmoidal  because A and m are  not truly constants. 
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Fatigue crack growth rate da/dN versus A& for several  polymers. 
(From Refs. 55 and 56.) 

The  stress-strain curve for a material can  be represented by means  of the 
function U, = 12 E ’ * ~ ’ ,  where D, represents the true tension stress in 
and E is strain. Calculate the value of the strain at the necking point  and  the 
value  of the yield stress, oY 

According to Eq. (14.5), the nominal stress and  the  true stress are related by 

Also, necking takes place  when 

(P14 1 *2) 
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According to Eq. (P14.1 .l), 

0, = 12E0~*'/(1 + E) 

y substituting Eq. (P14.1.3) into  Eq. (P14.1.2), we obtain 

12 x 0.85~-'.'~ 12~'.*' 
,...."-" 

I + &  (1 + - O 
This expression leads to 

10.20 
12 - 10.20 E =  = 5.67 

Then the value of oy is  given  by 

0; = 12 x 5.67'.*' = 52.44MPa 

(P14.1.3) 

(P14.1.4) 

(P14.1.5) 

(P14.1.6) 

A  sample of polypropylene tested at 30°C and s-l shows a yield stress 
of  35 MPa in uniaxial tension and 38 MPa under uniaxial compression. 
Calculate the hydrostatic pressure that must  be  superimposed  in order  to 
reach yield stress of  80 MPa. Assume that  the material obeys the pressure- 

Equations (14.10) and (14.12)  give the pressure-dependent von 
ion. Also, for any state of  stresses, P is an  invariant given  by the expression 

P = (1/3)(ol + n2 + 03). On the basis of this expression, in a uniaxial 
tension test (02 = o3 = 0) 

P = (1/3)0l  (P14.2.1) 

According to (P14.2.1), in tension, 

P = (1/3)0, = (1/3)(35) = 11.67MPa 

and in  compression, 

P = (1/3)al = (1/3)(-38) = --12.67MPa  (P14.2.3) 



644 Chapter 14 

From Eqs. (14.11) and (14.12), 

oy = a($ - JAP) 

Therefore, in tension, 

35 = &(T: - p1  1.67) 

and in compression, 

(P14.2.4) 

(P14.2.5) 

38 = &(T: + ~~12.6'7) (P14.2.6) 

From Eqs. (P14.2.5) and (P14.2.6) we obtain T; = 21.04 MPa  and p = 
0.0'71 (for P in MPa). When the mechanical  test  is made in a pressure 
chamber, the hydrostatic stress term is  expressed as the sum of the hydro- 
static component of the stress applied in the mechanical experiment and the 
pressure superimposed. Then 

By substituting Eq. (P14.2.7) into  Eq. (P14.2.4) we obtain 

(P14.2.7) 

(P14.2.8) 

Since o;, = 80 MPa, T; = 21.04 MPa,  and p == 0.071 (for P in MPa), Pimposed 
= -381 MPa. The negative  value  expresses the fact that the pressure is 
compressive. 

For a sample of  polyethylene, the values  of the yield stress oy for different 
strain rates at T = 25°C and T = 18°C are given. in the following table: 

T = 25°C T = 15°C 

& x lo2 (8) 0.833 8.33 83.3 0.833 8.33 83.3 
c"y (MP4 22.6 26.9 31.9 25.6 30.52 34.56 

Determine AE and V* for the yielding  of  polyethylene. 
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According to Eq. (14.20), a plot of oY/T vs. logiY (Fig. P14.3.1) gives a 
straight line from whose  slope, 

d(o /T) 2 x 2.303R Y -  
d(1ogEJ - V* 

the value of V* can be obtained. Thus, 

(P14.3.1) 

(P14.3.2) 

For a constant value  of oy/T at two  different temperatures, one obtains: 

AB* AI?* 
- + 2.303 X R X lOg[rS,(T~)] = - + 2.303.R 10g[E~(572)] 

572 571 
(P14.3.3) 

J 

0.10 

0.075 

0.05 

T = 298 
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Therefore, 

2.303R{log[&y(T2)] - log[&(  TI)]} 
1/Tl - v 2  

AE* = = 15  1.2 kJ/mol (P14.3.4) 

The physical  meaning  of V" and AB*, if any, is obscure. The  size  of V" 
per jumping  segment  is 

v* 2.45 x 1 0 - ~  - - 
Avogadro's number 6.02 x - 

- 4.  l nm3 (P14.3.5) 

Taking into account that  the volume  of a unit cell  of polyethylene, with 
four units of  CH2 inside, is  0.254 x 0.736 x 0.492 = 0.1 nm3, V" is a 
volume containing nearly 160 polymer carbon  atoms.  The value of AE" 
is typical of a deformation  process associated with polymers. Although it 
cannot usually be related to any  molecular relaxation process, AE" near 
Tg may approach the activation barrier energy  of the a molecular relax- 
ation. 

A wide  sheet  of  polycarbonate that  contains a central sharp crack of length 
2a = 20 mm fractures at a stress of  13.5 MPa. 

(a) Calculate KIc for polycarbonate. 
(b) Calculate the  fracture stress of a wide sheet containing a crack of 

(c)  Will a crack of 10,mm in a similar sheet fracture under a stress of 
length 40  mm. 

10 MPa? 

(a) According to Eq. (14.48), 

(b) The fracture stress [Eq. (14.48)]  is  given  by 

(P14.4.1) 

(P14.4.2) 
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(c) 

647 

(IP14.4.3) 

Since KI KIc, the sheet  will not fracture. 

A rectangular bar of polymer of thickness B = 8 mm and width W = 20 mm 
has a central notch of length a = 10 mm. The  bar is loaded in a three-point 
bending test with an 80 mm span, S, at room temperature. The  bar fractures 
when the force applied is 300 N. Calculate (a) KIc for the polymer and (b) 
the force needed to  fracture in a  compact tension test  a  specimen  of  dimen- 
sions W = 50 mm, B = 10 mm,  having a single-edge sharp crack of a = 25 
mm. 

(a) According to the expression given  in  Table 14.2 for the three-point 
bending test with the geometry S = 4 W ,  

KIc = Y (P14.5.1) 

where Y is a geometric factor [see Eq. (14.53)] (Q = d 2  Y) ,  

Y = 1.09 - 1.73(a/W) + 8.20(a/W)2 - 14.17(a/W)’ + 14.55(a/W)4 

Since a/W = 0.5, 

Y = 1.09 - 1.73 X 0.5 + 8.20 X (0.5)2 - 14.17 X (0.5)’ + 14.55 X (0.54) 
Y = 1.413 

(P14.5.2) 

For this kind of test the elasticity theory gives  (see Table 14.2) 

3SF 3 x 0.080 x 300 - .25 MPa 
rJF”” 

2BW2 - 2 x 0.008 x (0.0~O)2 - 
(P14.5.3) 

Therefore, 

KIc = 11.25 x ( 0 . 0 1 ~ ) ’ ~ ~  x 1.413 = 2.82 (MPa (P14.5.4) 

(b) On the other  hand,  for compact tension tests (see Table 14.2), 
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(P14.5.5) 

where 

Y = 16.7 - 104.7(a/W) + 369.9(a/JQ2 - 573.8(a/V3 + 360.5(~/W)~) (P14.5.6) 

Since a/W = 0.5 and Y = 7.63, 

2.82 
7.63 x (R x 0.025)"' 

GI; = = 1.3 MPa (14.5.7) 

Therefore, 

= GBW = 1.3 x lo6 x 0.010 x 0.05 650N (P14.5.8) 

A rectangular bar of polycarbonate of  thickness B = 20  mm and width W = 
20 mm  is loaded in a three-point bending  test  with an 160  mm span. 
Calculate (a) the force needed to fracture the bar if it has a notch of length 
a = 10 mm and (b) the minimum notch length, a, needed to initiate brittle 
fracture before  yield  occurs. 

Data for PC: E = 3.2 CPa, v = 0.40, c iy  = 64 MPa, and G, = 1.5 kJ 
(plane strain). 

According to Eq. (14.50), 

3.2 x 109 x 1.5 x 103 = = 2.39 x lo6 Pam'/' = 2.39  MParn1I2  (P14.6.1) 
1 - 0.42 

For three-point bending with S/W = 8 (see Table 14.2), 

KfC = oI;(7ca)1/2 Y 
(P14.6.2) 

1-11 - 1.55(~/W) + 7 .71(~ /W)~  - 13.5(~/W)~ + 14.2(~/C.V)~ 

where Y is a geometric factor. 
For a/W = 0.5, 
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Y = 1.11 - 1.55 X 0.5 3-7.71 X (0.5)2 - 13.5 X (0.5)3 + 14.2 X (0.5)4 = 1.46 
(P14.6.3) 

Then the fracture stress [Eq. (14.53)  with Q = n;1/2 Y ]  is obtained as 

2.39 
OF =- - 9.24 MPa 

Y(na)'/2 - 1.46 x 0.010 x n)'l2 - 
(P14.6.4) 

Since  (see Table 14.2) 

OF = 3SF/2BW2 (P14.6.5) 

the force necessary to fracture the bar is 

9.2413:332106 x 2 x (0.020)2  0.020 
3 x 0.160 F =  = 77N (P14.6.6) 

(b) Brittle fracture occurs when ICI 2 KIc, so 

5 l ~ ,  = oy(na)'/2 Y 

Y = 1.11 - 1.55(a/W) + 7.71(a/W)2 - 13.5(a/W)3 + 14.2(a/W)4 
(P14.6.7) 

Hence, 

2.39 x lo6 5 64 x 106(na)'/2 

x [l  .l 1 - 1.55 x (a/0.02) + 7.71 x (a/0.02)2 - 13.5 x (a/O.O2P + 14.2 

X (1/0.02)~] 
(P14.6.8) 

Therefore, a 2 0.4 mm. 

The table shows the force needed to fracture single-edge bars of  several 
polymers at room temperature in a three-point bending test. Bar  dimensions 

are W = 10 mm, 13 = 6 mm, a = 5 mm; the test span S is 80 mm. The 
second column in the table gives the corresponding yield stress. Calculate 

KIc for each polymer, and indicate in  which  cases  valid plane strain condi- 
tions exist. 
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Polymer 

Epoxy  resin 
Epoxy  (toughened (CTBN) 
Nylon 66 
Polycarbonate 
Poly(oxymethy1ene) 
Polystyrene 

16.4 
63 
85 
60 

156 
30 

100  0.60 0.09 
65  2.3 3.  l 
75  3.1 4.3 
63 2.2 3.0 
62  5.7 21.1 
50 1.1 1.2 

or three-point bending  tests  (see Table 14.2), 

(P14.7.1) 

(P14.7.2) 

hen S = 8W, 

KIC = o&n)1/2 Y 

where 

Y = 11 - 1.55(a/W) + 7.71(~~/W)~ - 13.5(a/W)3 + 14.2(a/W)4 

y substituting the values of the  bar dimensions into Eq. 

= 2 x 1 0 5 ~  (P14.7.3) 

and 

ICIC = 2 x lo5 x F x (0.005 x 7c)1/2 x 1.46 (P14.7.4) 

where the force in newtons is given  in  second column of Table 
The results for Krc calculated from Eq. .7.4) for each polymer ar 
in the third column of  the table. The dimensions B, W - a, and a should be 
greater than 2.5(#, /0y)~ for plane strain fracture (plane strain conditions 
at the crack tip) so the plastic deformation at the crack tip will  be  negligible 
and the Krc calculated a true material property. The fourth column in the 
table shows the values obtained for 2 . 5 ( ~ r ~ / ~ ~ ) 2  in  each  case. 
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As can  be  seen, the value of 2.5 (KIc/Jy)2 for pol~(oxymethy1ene)  is 
larger than the di~ensions of B, W - a,  and a; therefore, this sample under- 
goes plastic de fo~a t ion   a t  the crack tip and the KIc value  is not reliable. 
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In general, polymers  have  low  stiffness and strength in comparison with 
other materials, e.g., metals and ceramics, and consequently these materials 
present serious difficulties in structural applications. To improve their 
mechanical properties, polymers are reinforced by the addition of  rigid 
particles or fibers to form composite materials (l). Thus, polymer matrix 
composite materials are made up of a low modulus phase, the polymer 
matrix, and a high modulus phase, the reinforcement, which  is  usually 
carbon  or glass, The modulus of the composite is  higher than  that of the 
polymer matrix, and the increment is proportional  to the volume fraction of 
the reinforcement. In general, the properties of the composite depend not 

653 
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only on  the properties of the components and their relative proportions,  but 
also on the shape, size, and distribution of the reinforcement and the degree 
of adhesion  between the phases. 

Composites  can  be  classified into three groups  according to the forms  of 
reinforcement: partic~late-reinforced,  fi~er-reinforced,  and laminate compo- 
sites (see Fig. 15. l). A. reinforcement is considered to be a “particle” if all of 
its dimensions are similar; particles can have spherical, platelet, or any 
regular or irregular geometric fom.  Particles, usually referred to as fillers, 
are in  some  cases  added to polymers to reduce costs rather  than  to reinforce 
them. Fiber-reinforced composites contain fibers  whose lengths are much 
greater than their cross-sectional dimensions. 

Composites 

i 

Longi~udinal 
dlrectlon 

Continuou~  Discontinuou~ Laminates 

(a1 (d 1 
(aligned)  (short 1 

AI i gned ~ ~ n d o m l y  
oriented 

(b1 (C1 

rransverse 
%ti on 

(C 1 

Classification of composites according to the reinforce~ent forms. 
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fiber length, the materials are called discontinuous fiber composites. On the 
other  hand, when the properties do  not change  when the length of the fibers 
is increased, the material is considered a  continuous fiber-reinforced com- 
posite. Laminar  composites are formed by combination. of layers of materi- 
als. This structure confers an anisotropic character to the composite. 
Particulate-reinforced polymers exhibit isotropic properties when particles 
are uniformly distributed. Fiber composites  may  be either isotropic or ani- 
sotropic. Fiber-reinforced composites are more  prominent than  other types 
of composites  because  most materials are stronger and stiffer in the fibrous 
form  than in any other form, so we will  refer preferentially to them through- 
out this chapter. 

Fiber polymer  matrix  composites can offer  mechanical properties that 
make  them competitive with  common metals such as aluminum and steel. 
Structural weight reduction is  one  of the major  advantages  in using polymer 
matrix  composite materials instead of metals. The remarkable  specific prop- 
erties of polymer  matrix  composites  can  be  seen in Table  15.1,  where a 
comparison of the properties of polymer  matrix  composites and metals is 
given (2). In  addition, fiber-reinforced composites  can  be tailored to present 
high strength and modulus  in the directions in which the high loads will  be 
applied. Fiber-reinforced polymers  can  be  designed  with  excellent structural 
damping features, and consequently  they are less  noisy and transmit vibra- 
tions less than metals, making  them  useful for automotive and marine con- 
struction. Polymer  composite materials are widely applied, their uses 
ranging  from  consumer products  to aerospace components.  A great variety 
of consumer  products are manufactured  with  inexpensive  glass  fiber  corn- 
posites (e.g., panels and small boats). Advanced  fiber  composites  formed by 
small diameter  high strength, high  modulus  fibers give  rise to anisotropic 
materials; owing to their high cost, these  composites are used  mainly  in 
aerospace applications, where their expense  is  offset  by their high  specific 
strength (strength/density) and high  specific  modulus (modulus/density). 

The main functions of the matrix  in a fiber-reinforced composite are  to bind 
the fibers and to transfer loads to  and between  them;  only a small amount of 
the applied load is supported by the matrix. Let us consider a bunch of 
unidirectionally aligned  continuous  fibers subjected to a  tensile stress. If a 
fiber  breaks  down, it becomes  useless; but if the fibers are embedded  in a 
polymer  matrix (see Fig. 15.la), the load distributes around the break point 
and the fiber  remains useful. Furthermore, the matrix protects the fibers 
from self-abrasion and scratches on handling, keeps the reinforcement in 



Typical Values of the Properties of Polymer Matrix Composites and Metals at 20°C 

Materiala 

Coefficient Specific Specific 
Young's Tensile Elongation of thermal Young's tensile Heat 

Density modulus strength to fracture expansion modulus strength resistance 
(g/cm3) (GN/m2) (MN/m2) (%) OC-') (106m2sb2) (103m2ss-2) ("C) 

___ ~~ ~ ~~ 

High strength 2.80 72 503 11 24 25.7 180 350 

Quenched and tempered 7.85 207 2 ~ 5 ~ 6 0 0  12-28 11 26.4 261-76 800 
Al-Zn-Mg alloy 

low alloy steel 
Carbon fiber-epoxy resin 

unidirectional laminae 
(Vf = 0.60) 
Parallel to fibers 1.62 220 
Perpendicular to fibers 1.62 7 

1400 0.8 -0.2 135 
38 0.6 30 

865 260 

i Gjass fiber-polyester resin 
unidirectional laminae 

Parallel to fibers 1.93 38 750 1.8 11 19.7 390 250 
(Vf = 0.50) 

Perpendicular to fibers 1.93 10 22 0.2 

a V,  is the volume fraction of fibers. 
Source: Ref. 6. 



the original orientation, and provides resistance to crack propagation; it 
also contributes to fracture toughness. On the other hand, the matrix is 
the “weak” part of the composite. The modulus of the matrix is  significantly 
lower than  that corresponding to the fiber. The matrix determines the com- 
pressive strength and interlaminar shear of the composite. It is desirable to 
prepare matrices with  high modulus, strength, and toughness. High modulus 
and high toughness favor compressive strength and avoid delamination, 
respectively, but a good combination of  these properties is not entirely 
achieved.  Also, for practical reasons, the matrix selected should be  easy to 
process. The matrix generally  limits the service temperature of the composite 
and its environmental resistance, i.e., chemical corrosion or oxidation and 
moisture absorption. 

One of the most important characteristics to consider in choosing a 
matrix is its adhesion with the fiber. The fiberlmatrix interfacial adhesion 
plays a critical role in the mechanical properties of the composite. The loads 
are transferred from the matrix to the fiber through the interface, and the 
strength of the composite depends on the bond between  fiber reinforcement 
and matrix. 

Organic matrices are divided into thermosets and thermoplastics. The 
main thermoset matrices are polyesters,  epoxies,  phenolics, and polyimides, 
polyesters  being the most widely  used  in  commercial applications (3,4). 
Epoxy and polyimide  resins are applied in advanced composites for struc- 
tural aerospace applications (l ,5). Thermoplastics like  polyolefins,  nylons, 
and polyesters are reinforced  with short fibers (3). They are known as tradi- 
tional polymeric matrices. Advanced thermoplastic polymeric matrices like 
poly(ether ketones) and polysulfones  have a higher service temperature than 
the traditional ones (1,6), They  have  service properties similar to those of 
thermoset matrices and  are reinforced  with continuous fibers. Of course, 
composites reinforced  with discontinuous fibers  have  weaker  mechanical 
properties than those with continuous fibers. Elastomers are generally  rein- 
forced  by the addition of carbon black or silica. Although they are rein- 
forced polymers, traditionally they are studied separately due to their 
singular properties (see Chap. 3). 

In the~oplast ic  matrices, the intrinsic characteristics derived from the lin- 
ear chain structure have to be considered, mainly the capability of  flow 
under stress at high temperatures. Thus, in amorphous  and semicrystalline 
matrices, the service temperatures will  be determined by Tg or Tg and Tm, 
respectively. ~ i t h o u t  reinforce~ent, creep  is a major problem at tempera- 
tures lying  in the interval T’ < T < Tm, but when the matrices are 
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reinforced  with  fibers, the increase in stiffness  enables  them to be  used at 
temperatures approaching the T, of amorphous polymers or the melting 
temperature of crystalline  polymers. On the other hand, the degree  of  crys- 
tallinity increases the modulus of the polymer, so reproducible control of 
crystallinity is  very important in  processing  these matrices. In many cases 
the composite materials have to be resistant to solvents, e.g., when  they are 
used as pipes and tanks for hydraulic fluids and fuels. Se~icrystalline ther- 
moplastic matrices also ensure solvent  resistance. 

olyolefins  such as polyethylene and polypropylene are semicrystalline 
polymers.  These  polymers  have  very  low  glass transition temp~ratures, so 
they tend to creep under stress. Linear polyethylene presents a high  degree 
of crystallinity, but side-chain branching reduces it. Increasing crystallinity 
augments density, stiffness, hardness, tensile strength and thermal and che- 
mical stabilitiy, and decreases  creep and stress-crack resistance. 

has lower density. To improve their stiffness and to reduce d e f o ~ a t i o n  
and deflection under load, glass  fibers are incorporated into these  polyole- 
fins. 15.2 presents some data for these  polymers (7). 

tic ~olyamides (nylons) and thermoplastic polyesters are linear 
polar polymers containing polar -CONH - and -600 - groups, 
respectively,  in the repeating unit. Therefore, they  have  some common char- 
acteristics (3). For example, polyamides and polyesters are semicrystalline 
polymers  whose  glass transition temperatures are above room temperature. 
A s  a consequence  of intermolecular interactions, these  polymers  have  high 
melting points, usually  higher than 200°C, and due to their high crystallinity 
they are resistant to most organic solvents. Nylons and thermoplastic poly- 
esters have  similar mechanical properties such as high toughness, high 
impact strength and fl~xibility,  and good fatigue and abrasion resistance. 
The mechanical properties of  nylons are significantly  affected by humidity, 

olypropylene (PP) is  similar to high  density  polyethylene (H 

Properties of High  Density  Polyethylene ( H ~ P E )  and Polypropylene 
(PP) 

Modified PP 
HDPE PP (30% glass  fiber) 

ensity (g/cm3> 0.96  0.90  1.12 
oung's modulus  (GPa) 0.8 1.5  6.5 

~ l o ~ g a t i o n  to  fracture (%) 30 50 4 
eat  distortion temp. ("C) 20 - 20  148 

Source: Ref. 7 
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while those of  polyesters are little affected. Glass fiber reinforcement of  these 
polymers  leads to a substantial increase in tensile strength, hardness, creep 
resistance, and heat distortion temperature, so they can operate up  to rela- 
tively  high temperatures. These  glass  fiber-reinforced thermoplastics are 
used  in many engineering applications. Glass-reinforced nylons are the 
most important group of  glass-reinforced thermoplastics, Carbon fiber- 
reinforced  nylons  have an important use in the airframe industry. 

In recent  years  new thermoplastic matrices have  been  developed to 
improve the stiffness/toughness balance and the service temperature, in 
comparison to the epoxy thermoset matrices used  in  high performance 
composites. These materials, usually  referred to as advanced the~oplast ic  
matrices (S), include polymers that have great structural similarities,  with 
aromatic moieties  in  the  main chain spaced  by groups of the type dia- 
grammed below. 

In Table 15.3 are shown the chemical structures and Tg and Tm of some 
representative thermoplastic polymers for use at high temperature (3,9). 
These matrices have  high continuous service temperatures ( 1~0-200°~) 
even under wet environmental conditions. Advantages of thermoplastic 
over thermoset matrices are their shorter fabrication cycle  (generally con- 
trolled environment storage is not required) and the possibility to be repro- 
cessed and reconsolidated after manufacture. Poly(ether ether ketone) is a 
strong contender with  epoxy  resins for use as a matrix in composite prepregs 
with carbon fibers to be  utilized  in structural aircraft components. 

Thermoset matrices have dominated the composites industry for a number 
of  years;  epoxies,  polyesters,  phenolics, and bismaleimides are the most 
widely  used  (1,3). In all  cases the precursor is a the~oset t ing resin formed 
by  relatively  small  molecules (monomers or oligomers). Thermosetting 
resins  become set, i.e.,  infusible and insoluble, as a consequence of chemical 
cross-linking reaction referred to as curing; after curing the thermoset is a 
network molecular structure of primary covalent bonds (see Chap. l). 
thermosets are cross-linked by heat or a combination of heat and pressure. 
The curing of a thermoset is a complex  process that begins by formation of 
linear chains that soon become branched and then  cross-linked (10). In this 
process the original viscous  liquid  is transformed into an elastic gel formed 
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by a network of  infinite molecular weight. This irreversible transformation is 
called gelation. Celation is characteristic of thermosets and it is critical for 
processing;  beyond gelation the polymer it is unable to flow, and it cannot 
be  recycled and reused.  However, gelation does not inhibit the curing pro- 
cess. The reaction will  proceed increasing the cross-link density to  that of the 
fully cured thermoset. Another transformation occurring during the curing 
process  is vitrification of the growing chains or network. As the curing 
reaction proceeds, the glass transition temperature of the polymer  increases, 
and when it reaches the curing temperature, the system  vitrifies (the viscous 
liquid or elastic gel turns  into a glass). After vitrification, curing is practi- 
cally halted. 'Vitrification  is a reversible transition. The most convenient 
curing temperature is one that leads to vitrification after gelation, when 
the full cure is reached. 

Thermosets with  high  cross-link  density  possess  high thermal stability, 
high  rigidity, and dimensional stability as well as resistance to creep. 
Compared with thermoplastics, thermosets have some advantages, the 
most important being  low  melt  viscosities  in the prepolymer stage, which 
favor good fiber  wetting and require lower  processing temperatures. But the 
processing  time  is longer, and they  need controlled storage as they  have a 
finite  shelf  life. 

(a) Epoxies 
Epoxy  resins are the major matrices for low temperature applications (from 
-50°C to +120"C) and have  gained  wide acceptance in composites for aero- 
space applications (5). Epoxy  resins contain the epoxide group: 

- G  - G -  

The prepolymer stage  in most cases  is DCEBA (diglycidyl ether bisphenol 
A) (see Fig. 15.2a). 

DGEBA is a living  commercial liquid having a number-average mole- 
cular weight of 340-400 (n % 0). Larger molecular weights around 3000 
(n = 13) correspond to the solid  resin. A curing agent (hardener) is  used 
for the cross-linking  process  (3). For room temperature curing the hardener 
is  usually a polyfunctional amine such as triethylenetetramine. For higher 
curing temperatures, curing agents such as aromatic amines or acid anhy- 
drides are used. In Figure 15.2b the reaction scheme for DGEBA with a 
diamine is shown. In epoxy polymerization no volatiles are evolved, so 
epoxies are free  of void-forming volatiles.  Epoxies provide low shrinkage 
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(b) OH 
i 
CH-  Cw;! ,~$-CH-CH-CH 

$H- CH2  'CI$"H- nr-l I OH I 
/ 'N-R- N )N--R-N, 

-CH -CH2  CH2"CH- 

OH 
.,. . 

O H  

(a) Bisphenol A diglycidyl ether. (b) Curing  reaction on  an epoxy 
resin. with. a diamine. 

on curing. For room temperature curing, the epoxy  resin and the hardener 
are supplied separately in a two-parts formulation. When the hardening 
reaction proceeds at high temperature, the supplier often adds the hardener 
to the epoxy  resin  in a single-part formulation. In this case, the material is 
usually  supplied in the form of a prepreg, i.e., in sheet form, constituted by 
fiber cloth impregnated with  resin and hardener, ready for curing. Epoxy 
matrices are suitable for use with glass, carbon~graphite, aramid, boron,  and 
other reinforcements and hybrids. These matrices have to be  modified to 
improve their impact resistance. The toughness of  epoxies  is improved by 
adding a rubber (see  Sect.  14.4.5),  usually a carboxyl-terminated copolymer 
of butadiene and acrylonitrile designed to react with the epoxy group of the 
resin through the "COOH group before the hardening reaction has  pro- 
ceeded  very far. A s  a result, a microstructure of small rubber particles 
bonded to  the epoxy matrix is originated. This confers toughness to the 
composite without major losses  in other mechanical properties. Moisture 
absorption decreases the glass transition temperature of  epoxy  resins. The 
absorbed moisture worsens  the  mechanical properties, especially at high 
temperatures, and this  effect has to be  considered in design. 

(6) ~ ~ ~ y e s ~ e ~ s  

~nsaturated polyesters  have  reactive double carbon-carbon covalent bonds 
that can be cross-linked to form thermosetting materials. The polymers are 
usually  cross-linked  with  vinyl-type  molecules such as styrene, using a per- 
oxide to generate free radicals (see  Fig.  15.3). Commercial resins are viscous 
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Cross-linked polyester 

Cross-linking of an  unsaturated polyester  with  styrene. 

l i~uids with  molecular  weights  lying in the range 1500-3000,  which are sup- 
plied  dissolved in styrene monomer (30-50% composition). In practice, the 
peroxide cure agent is  blended into the resin before the resin is applied to the 
reinforcement, which  is usually glass fiber. Glass-reinforced polyester resins 
are low cost composites  widely  used in commercial, industrial, and  transpor- 
tation ap~lications. They  offer  good  mechanical properties such as stiffness, 
strength, toughness, and good  chemical resistance (3).  The  maximum  service 
temperature  of these composites  is about 100°C. Polyester resins present 
problems of adhesion to  carbon  and aramid  fibers, which, together with 
the large shrinkage during curing (in  comparison  with  epoxies) Q), limit 
the application of polyester matrices in high  performance composites. 

(c) ~ ~ ~ f f ~ l i c s  

Phenolics are the oldest of the thermoset polymers. They are obtained by 
reaction of phenol  with  formaldehyde through a condensation reaction 
leading to a cross-linked polymer  (see Chap. 1).  These resins have  good 
dimensional and thermal stability (3). Most phenolics have different fillers 
incorporated in  them to reduce cost and shrinkage on curing and also to 
improve  some properties such as electrical insulation and heat resistance. 
Unfortunately, during the curing process  water  evolves as a by-product, 
producing voids. The presence  of voids introduces local stress concentra- 
tions that, if high, can result in initial localized failure. However, these resins 



produce low  smoke and less  toxic by-products during combustion, so they 
are used  in aircraft interior panels. 

(d) ~ o l y i ~ i d e s  
Polyimides, are  among the most  recently  developed  matrices;  they are 
obtained by the reactions of dianhydrides with  diamines  in a two-stage pro- 
cess (3). In the first  stage a soluble and fusible  polymer  is formed, and 
processing  is carried out  at  that moment.  Then the second  stage  begins; 
the resin  is  heated until an insoluble and infusible  polymer (thermoset) is 
formed, whose structure is  shown  in Figure 15.4.  Polyimide  glass  fiber  corn- 
posites are applied  in  electronics and aerospace. The limitations in the pro- 
cessing  of  these substances have  led to the development of  modified 
polyimides  such as polybismaleinimides.  These  polymers are obtained from 
bismaleimides  by reaction with bifunctional compounds like  diamines, as 
shown  in Figure 15.5.  If the reaction is carried out with a deficiency  of 
diamine, the polymer  will  have terminal double  bonds capable of  being; 
cross-linked. The linear  polymer  is  easily  processed  like a thermoplastic 
and then cross-linked to  form  a thermoset. ~olybismaleinimides are used 
as matrices  with  glass and  carbon fibers  in advanced composites. In general, 
polyimides do  not possess the easy  processibility and toughness of epoxy 
resins, but they  have superior heat resistance. 

The reinforcement  is  mainly  responsible 
composite such as strength and stiffness. 

for the structural properties of a 
Fibers are the most effective  rein- 

Polyimide Poly (amic acid) 

Reaction to obtain  a polyimide. 
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0 
Bismaleimide  Poiybismaieinimides 

Reaction to obtain  a polybismaleinimide. 

forcements  because  of their geometry.  Almost  all  fibers  in  use today have 
cylindrical  geometry, the aspect ratio, a (length/diameter), being  much 
higher than unity. The ratio of surface area to volume  of  fibers  increases 
with a, so to maximize the reinforcement-matrix interaction interface, fibers 
with  large a values are the most convenient. On the other hand, a fiber  is 
inherently stronger than the bulk material, because the size  of the flaws  is 
limited by the smaller diameter of the fiber. The smaller the diameter, the 
greater the strength of the fiber. A s  has already been mentioned, matrices 
can be  reinforced  with short (discontinuous) or long  fibers. In either case, 
fibers are manufactured as bundles  of continuous filaments. A filament  is the 
basic structural element,  with a diameter in the range of 5-10 pm. A bundle 
of a large number of filaments (3000-1~,000) is  known as tow or yarn. 
Usually the bundles  of  filaments are characterized by the linear  density 
expressed as the weight  in  grams  of  fiber  tow  per 9000 m (denier). The 
unit proposed by ASTM is the tex  (weight  in  grams  per  1000  m). The planar 
textile structures produced by interlacing yarns are called fabrics. The prin- 
cipal  types  of  fibers  used as reinforcements  of  polymer  matrices are glass, 
carbon, aramide, and polyethylene  fibers. 

Class fibers are the most  widely  used  reinforcements  in  composites  owing 
to their  low cost and ease  of  processing. Glass fibers are  produced by 
drawing  monofilaments  of  glass from a furnace containing molten  glass 
(6). Their composition is  based on silica (Si02). The fiber structure is a 
noncrystalline  network of silicon tetrahedra linked together by  oxygen 
atoms. Other oxides  such as B203 and  A1203 can form  part of the net- 
work; the groups BO$- and AlO$- can replace  some  of the SiOt- tetra- 
hedra. Other oxides  such as MgO and  CaO, known as modifiers, are 
added  and in  this  case  metallic ions are interspersed throughout the net- 
work.  The oxygen atoms enter the silica  network at points joining the 
tetrahedra. A consequence of this structure is the isotropy of  glass  fibers; 



i.e., the modulus, thermal expansion, and other properties have the same 
value  in the axial and radial directions. The most common glass  used  is 
known as E-glass, a calcium aluminoborosilicate glass  having good 
mechanical,  chemical, and electrical properties. Certain special  glasses, 

-glass,  of  higher strength and stiffness  have  been  developed to 
glass for specific applications. S-glass  is a magnesium alumino- 

silicate  with a higher alumina content than E-glass. In Table 15.4 typical 
values  of the density, strength, and modulus are given for individual 
filaments of reinforcing fibers (7). The fiber strengt strongly dependent 
on the processing and environmental conditions. isture and rubbing 
provoke surface damage, and consequently the strength of the fibers  in 
use  is  roughly  half that of the freshly drawn ones. To protect glass  fibers 
they are coated with  silane coupling agents, which are compatible with 
polyesters and epoxy matrices. Coupling agents are very  efficient in 
ensuring good matrix-fiber interaction. An additional advantage of 
glass  is its transparency to visible light. Glass fiber composites take the 
color of the matrix. 

Carbon fibers are obtained from several precursor fibers  such as polyacrylo- 
AN), cellulose (rayon), and pitch fibers. ~ A ~ - b a s e d  fibers  offer the 

highest strength and the best balance of  mechanical properties. The prepara- 
tion of these  fibers  involves the t ransfo~at ion of PAN  into graphite 
through controlled steps of heat treatment and tension to form the appro- 
priately ordered graphite structure (6). Graphite has a layered structure in 
which the carbon atoms in the layers are covalently bonded in hexagonal 
arrays, with  weak secondary bonds between  layers. In  carbon fibers, layers 
are parallel to the fiber  axis, and as a consequence  these  fibers are highly 
anisotropic. Regular structure and the absence  of  voids 
required to get  fibers  of  high modulus and high strength. 
the heat treatment used during processing, carbon fibers are available in 
three forms: high  tensile strength (HTS) fiber, high modul 
and ultrahigh modulus (UHM) fiber. 

Typical  values  of density, modulus, and strength of  these  fibers are 
given  in Table 15.4. It must be noted that  as a consequence  of the aniso- 
tropic structure of fibers the modulus in the transverse fiber direction is 
much  lower than the modulus in the axial direction. Carbon fibers are 
among the stiffest and strongest fibers. Furthermore, taking into account 
that carbon fibers  have  lower density than glass  fibers, their outstanding 
specific properties (modulus and strength) make them  ideal for reinforcing 
composites in spite of their much higher cost. With proper selection and 



15.4 Typical Properties of Some Reinforcing Fibers 

Carbon Carbon Carbon Aramid 
Property E-glass S-glass HTS HM UHM (Kevlar-49) 

Density (g/cm3> 2.54 2.49 1.79 1.86 1.95 1.45 
Axial tensile modulus (GPa) 72 86 230 340 480 124 
Axial tensile strength (GPa) 1~5-3.5~ f .9-4.6 3.2 2.5 1.8 2.8 

a Freshly drawn fibers. 
Source: Ref. 7. 



placement of carbon fibers, composite structural elements that  are  stron- 
ger, stiffer, and much lighter than steel can be prepared.  In Figure 15.6, 
tensile  stress-strain and specific  stress-strain  curves for various types of 
reinforcing fibers are presented. It can be  seen than  the fibers are linearly 
elastic up to fracture. The high modulus fibers (carbon)  are limited to 1 YO 
strain  or less,  while  glass and  aramid fibers can accommodate strains of 3- 
4%. However, the same linear range may not be achieved  in composites 
because of the nonlinear response of the  matrix.  Carbon fiber composites 
have  much better response to fatigue than glass or aramide composites. 
Fu r the~ore ,  the thermal expansion coefficient  in the axial direction is 
negative, thus allowing the design  of composite structures with almost 
no thermal volume change. Carbon fibers impart black color  to the com- 
posites. 

0 0.01 0.02 
Strain E 

0 0.01 0.02 
Strain E 

Tensile stress versus  tensile strain (a) and specific stress versus strain 
curves (b) for some reinforcing fibers. (From Ref. 7.) 
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High performance polymer  fibers (HPPF) have  excellent  mechanical proper- 
ties compared to traditional textile  fibers such as nylon. The typical HPPFs 
are aramid and polyethylene  fibers  (6). Aramid is a generic name for a class 
of aromatic polyamide  fibers, most of  which are varieties  of  poly@-pheny- 
lene terephthalamide). Kevlar is the trade name of the varieties  of aramid 
polymers introduced commercially by Dupont. The molecules in the fibers 
of  these materials are oriented in the axial direction. Poly@-phenylene ter- 
ephthalamide) is a rigid  molecule  with the following structure: 

As  was mentioned in Chapter 2, these rod-like molecules pack together, 
establishing hydrogen bonds between them. In fibers  of  these materials, 
molecules are oriented in the axial direction, thus presenting anisotropic 
properties. Consequently, Kevlar fibers  have  high strength and high mod- 
ulus in the longitudinal direction and weak strength and comparatively low 
modulus in the transverse direction. Polyaramids have  low density, so their 
specific  tensile strength and axial specific modulus are higher than those of 
other types  of  fibers  (see Table 15.4 and Fig. 15.6). Aramid fibers  have good 
high temperature properties, and their glass transition temperatures lie in 
the vicinity  of  360°C.  However, Kevlar fibers  have poor compressive 
strength compared to  carbon fibers, so when  higher  compressive strength 
is required, hybrid composite materials of Kevlar and  carbon fibers are 
used. Kevlar has extreme toughness and thus a high capacity to  absorb 
energy upon impact; for this reason Kevlar composite fibers are applied 
in items  such as bulletproof vests. A drawback of Kevlar is its hygroscopic 
character, which has to be taken into account in  design. 

Ultrahigh molecular  weight  polyethylene  fibers  (e.g., Spectra) have  been 
recently  developed. Their structure corresponds to  that of  extended chain 
crystallites. Polyethylene  fibers  resist impact better than glass or carbon  and, 
like aramids, are used in antiballistic protective gear. Polyethylene has the 
lowest density of any fiber so its specific properties are superior to those of 
Kevlar. The major drawback of PE fibers  is  PE’s  service temperature, lim- 
ited by its relatively  low  melting temperature (130°C). An additional diffi- 
culty in using HPPFs is its poor wettability by liquid organic resins,  which 
leads to weak adhesion with the matrices. The fibers can be surface treated 
to improve their wettability. 
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It is important  to predict the properties of a composite from its components. 
ome properties, like density, can be estimated by using the simple  rule  of 

mixtures, knowing only the relative proportions of the components. The 
theoretical prediction of mechanical properties is not easy  because of the 
complexity  of the stress and strain distribution in the composite under load. 

owever, reasonably accurate predictions can be made for simple  fiber 
arrangeme~ts using  some assumptions about the stress and strain distribu- 
tions. 

Let us consider a composite of  mass m, volume V, and density p that 
contains a mass  of  fibers, mf, and a mass  of  polymeric matrix, m,, occupy- 
ing a volume Vm. Then 

m = mf +m, (15.1) 

~ s s u m i n ~  that there are no voids, 

v = Vf + v, (1 5.2) 

ividing Eq. (15.1) by V and substituting mf = V’’pr. and m, = V,p,, 
where pf and p, are the  densities  of the fiber and matrix, respectively, the 
following rule of mixtures is obtained 

In practical cases, composite materials contain voids formed by air or 
vapors trapped in the resin and in the resin/fiber interface. These  voids 
are a source of  weakness, points of stress concentration that favor crack 
propagation. In advanced composite materials the proportion of  voids  is 
limited to  about 0.5% (2,5,7). 

The voids fraction, evaluated from the density of the composite and the 
components, is taken as a quality control. If the mass of voids  is considered 
negligible and the volume  they  occupy  is Vu, then 

v = Vf + v, + v, (1 5.5) 
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As in the previous case, from Eq. (15.1) we obtain 

P = +fPf + +mPm 

Since the volume fraction of  voids  is  defined as 

+v = VVlV 

Eq. (15.5) can be written as 

1=+f++m++V 

and 

where 

Similarly, 

(1  5.6) 

(15.7) 

(15.8) 

(1  5.9) 

(15.10) 

where Wf and W, are, respectively, the weight fractions of  fiber and matrix in 
y substituting Eqs. (15.9) and (15.10) into Eq. (15.8), we 

obtain 

Appropriate rearrangement of Eq. (15.1  1) leads to 

(15.11) 

(15.12) 

an expression that allows us to evaluate (b, from the weight fractions and 
densities  of the matrix and fibers and the density of the composite. 

The weight fractions W, and wf are determined from a weighed  piece  of 
composite, eliminating the polymer matrix and weighing the remaining 
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fibers (2). If the fibers are glass  fibers, the polymer matrix is eliminated 
by oxidation at 600°C in air atmosphere, but in the case  of carbon fibers 
the polymer has  to be degraded by  chemical reaction, e.g., concentrated 
HN03 for epoxy. 

Consider a unidirectional composite with  fibers so long that end effects can 
be ignored, as shown in Figure 15.7.  Assume further an ideal composite in 
which matrix and fibers are linearly  elastic, the two are perfectly adhered, 
and the fibers are uniformly distributed. When a load is applied parallel to 
the fibers  (axis l), the strain in the fibers and in the matrix are the same 
(2,6,1,11): 

&f, = E,, = E1 (15.13) 

and the total load is shared by the two components: 

where P is the load and the subscripts c, m, andf refer to composite, matrix, 
and fiber, respectively.  Since P = oA (IT. being the stress and A the cross- 
sectional area), Eq. (15.14) can be written as 

~ ~ i d i r ~ c t i o ~ a l  composite. 
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where A,, A’, and A ,  are the cross-sectional areas. Since the fibers  extend 
over the entire length of the composite, the ratio A,/A,  can be  replaced  by 
the volume fraction (b, = V,/ VC and, similarly, (bf = A f / A C .  Then Eq. 
(15.15)  is  given  by 

an expression that represents the rule  of mixture for stresses. Considering 
that fibers and matrix are linearly elastic gives 

and 

where E’, E,, and E, are the respective  tensile moduli of  fibers, matrix and 
composite. Equation (15.16) can be rewritten to give the following rule of 
mixtures for moduli: 

The analysis is  based on the assumption that fibers and matrix carry 
pure axial tension with no stress in the transverse directions. This is not 
strictly true, since the difference  between the Poisson’s ratios of matrix and 
fibers (v, + v’) will  give additional transverse stresses.  However, the experi- 
mental values  of Eel obtained for many fiber composites differ  by  less than 
2% from the corresponding ones calculated from Eq. (15.18).  An  example  of 
the application of Eq. (1 5.18)  is  given  in Figure 15.8 for a glass  fiber  polye- 
ster composite (E, = 3.8 GN/m2 E’ = 86 GN/m2). It can be  seen that  for 
the typical  volume  fiber fraction of  0.5, the modulus of the composite is  10 
times that of the matrix, Most polymer matrices have a similarly  low mod- 
ulus, about 2-6 GN/m2, while  fiber reinforcement is available in a wide  high 
modulus range, 80-350 GN/m2 (see Table 15.4). Therefore, without serious 
error, the matrix contribution to the modulus of the composite can be 
neglected and Eq. (1 5.18) can be written as 

EC, 2: Eh(bf (15.19) 

It is worth noting that ideal arrangements of  fibers of circular cross 
section  with the highest packing, hexagonal arrays with the fibers touching, 
would  lead to a theoretical volume  fiber fraction of c 1 ~  0.9. This value  is  never 
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Predicted tensile moduli for aligned  glass  fiber  reinforced  polyester 

in parallel direction to the fibers (Ec1) and  in  transverse direction (Ec2). (From  Ref. 
7.) 

achieved  in practice, the maximum  volume  fiber content in  high perfor- 
mance composites being around 0.7. This fiber content prevents contacts 
between  fibers,  which cause fiber damage. Since the strains on the compo- 
nents are equal [Eq. (1 5.13)], the ratio between the loads carried by the fiber 
and the matrix is  given by 

(1 5.20) 

A s  a consequence  of the fiber’s  high modulus, the load on a composite will 
be  Carrie9  mostly  by the fibers, thus ensuring that of is  higher than a critical 
value, of = E,,/(Ef + Em). 

For the study of the properties in the transverse direction, let us con- 
sider a unidirectional composite with a load applied at right angles to the 
fiber direction. The real composite could be  replaced  by the simple  model 
shown  in Figure 15.9, where the fibers are grouped together as a continuo~s 
phase. In these conditions, the thicknesses tf and t ,  are  proportional to the 
volume fractions of the fiber and matrix, respectively. The applied load 
transverse to the fiber acts equally on the fiber and the matrix, so that 

Of2 = Om, = QC:, (15.21) 

where the strains are 



t 
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Simple composite model, with  fibers grouped together. 

(1  5.22) 

The total extension, 6, caused by the load is the sum of the extensions of the 
two components: 

&c, = &h + &m, ( l  5.23) 

where = Ei2t i ,  i = c, f or m. 
Therefore Eq. (15.23) can be written as 

(15.24) 

That is, 

Since the volume fractions of  fiber and matrix can be  expressed as 

4 m =h. 7 4f=-  tf (15.26) 
I t ,  tc 
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Eq. (15.25) can be written as 

cc2 = Ff24f + Ern24rn (1 5.27) 

This equation indicates that the total  strain is the weighted sum of strains in 
fibers and matrix. As we are assuming elastic behavior, Eq. (1 5.5)  becomes 

the transverse modulus of the composite is  given by 

(l 5.28) 

(1 5.29) 

where  use  was made of Eq. (15.21). 
Figure 15.8  shows the variation of Ec2 calculated from Eq. (15.29)  with 

df for a glass  fiber  polyester composite. As can be  seen, the modulus of the 
fiber co~posi te  is  lower in the transverse direction than in the longitudinal 
direction. In this example, matrix and fibers are isotropic and E does not 
depend on the direction. All matrices are isotropic, but some  fibers,  such as 
carbon  and aramid, are anisotropic, and  as a consequence their longitudinal 
modulus E;.l is  higher than transverse one, E'2. The simplifications made 
using the above model are unrealistic, because the fibers are  not grouped 
together and the load distributes differently  between  fibers and matrix. 
Therefore the values calculated for Ec2 from Eq. (15.29) are less accurate 
than those obtained for  Ecl through Eq. (15.18). 

Since the elastic modulus of  fibers  is  higher than  that of polymer 
matrices, Eq. (15.29) can be  simplified as 

(1 5.30) 

This equation suggests that Ec2, unlike Ecl, is strongly influenced by the 
matrix: modulus. Therefore, if the modulus of the matrix in practical cases 
decreases due to water absorption  or creep relaxation, the transverse mod- 
ulus  will  be  seriously  affected, in contrast to &. 

When a shear stress is applied parallel to the fibers  of a unidirectional 
composite (Fig. 15.7), the prediction of the shear modulus GcI2 == GcI3 can 
be  deduced  with a model similar to the one used above to obtain Ec2. The 
pertinent expression, similar to Eq. (15.29),  is 
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(15.31) 

It is  difficult to determine the shear modulus of fibers, though some- 
times it is  estimated from E’ and Poisson’s ratio, v’, using the relationship 

for an isotropic material, G = E/2(1 + v) (see Table 4.1). It should be 
pointed out  that it is  necessary to assume a value for v owing to the difficulty 
involved  in de t e~ in ing  this  coefficient.  As  expected, the values of G’ are 
much  higher than those of G, and as a consequence Gc12 will also be 
determined  mainly by the shear modulus of the matrix. The same  model 

can be  used to predict  Poisson’s ratio for the composite. Thus, the expres- 
sion for vCl2 = vCl3 [the contraction in  axis 2 when a load is  applied parallel 
to the fibers (along axis l)] is 

(15.32) 

The strength of composites  is more difficult to predict than their stiffness 
because the strength is an extremely  microstructure-sensitive property, and a 
composite  can fail  in  different  ways  involving  fiber, matrix, or interface 
failures,  depending on the external loading conditions. The objective  is to 
know the behavior  of the composite  under load in order to predict its 
strength in  terms of the strength of both fibers and matrix. To achieve 

this, simple  models are also  used.  As for the stiffness (E modulus), the 
prediction of the strength in the longitudinal direction  is more suitable 
than in the transverse direction. Let  us  consider a unidirectional lamina in 
which a tensile load is  applied  in the direction of the fibers.  Assume further 

that the fibers are perfectly bonded to the matrix (E, = E, = ~ f )  and  that all 
fibers  have the same strength. In this  case, the stress  of the unidirectional 
composite will  be  given  by 

Notice  that subscripts l and 2 in  this  section are omitted because  only 
one direction is  considered. 

Fibers are linearly  elastic up  to fracture (G = EE), but the stress-strain 
relations of  typical  polymer  matrices are nonlinear, as a consequence of 
their  viscoelastic  behavior  (see  Fig.  15.10); therefore, G, cannot be  replaced 

by E,&,. F u r t h e ~ o r e ,  the fibers and the matrix in the laminae are assumed 
to fail  independently,  as if they  were  each  tested alone. The behavior of the 
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Tensile stress versus  tensile strain curves for brittle fibers in a duc- 
tile matrix. 

composite  depends on  both bf and the strain to failure of the components. 
Two cases  must  be considered: E; c and E; c E;, where the asterisk 
denotes the corresponding fracture value. These cases'represent a composite 
where the brittle component  is the fiber or the matrix, respectively. 

The  first case, €7 €2, is typical of polymer  matrix composites; sche- 
matic  stress-strain- curves are given  in Figure 15.10.  When E; c E;, two 
different modes of failure can take place  depending on <br . Figure 15. l 1 
gives a schematic representation on  the stress-strain  curves  of the compo. 
nents multiplied by their respective  volume fractions as well as the stress- 

Strain Strain 

Tensile stress versus  tensile strain curves for aligned  fiber compo- 
site containing brittle fibers and ductile matrix. (a) Low fiber volume fraction (bf; (b) 
high (bf. (From Ref.  7.) 



strain curve of the composite calculated by Eq. (15.33) for low and high 
values  of bf (7). As the  strain increases, the fibers  begin to break at G;. For 
composites  with  low bf, the matrix will carry the extra load at rupture, so 
the fibers  can  be ignored. In this case the strength of the composite  is  given 
by 

(3; = (1 - +f)OL (1 5.34) 

and the strain at failure is E: = E;. 
When +f is large, the load is  very  high  once the fibers  break at F;, 

matrix cannot  support  the  load, so the composite  fails at E: = E;, and the 
composite strength is  given  by 

where c& = CT,(E?) is the stress of the matrix at the failure strain of the 
fibers. 

The  dependence of 02 on is illustrated in Figure 35.12. The crossover 
point obtained  from Eqs. (15.34) and (15.35)  is 

(1 5.36) 

d> gives the l~inimum fiber  volume for which c$ (l  - bf)oT,. In reality a 
real fiber strengthening would require 0: to  #be higher than 

1.0 
V o l u m ~  fraction of fibers 

, a  

Dependence of  tensile strength a: on fiber  vdlume fraction for 
aligned  fiber composite containing brittle fibers and ,ductile matrix. 



ok, i.e., [of*.Qtf + oA(1 - clpf) 2 o;]. Thus a critical fiber  volume fraction is 
needed to achieve a strengthening effect: 

(15.37) 

A s  Figure 15.12  suggests, the composite tensile strength is mainly provided 
by the fibers, so, except for very  low  values  of +f, the critical stress at 
rupture can be approximated as 

o; 2 +fO. (15.38) 

For most polymer matrix fiber composites, Eq. (15.38)  gives a reasonable 
description of the tensile strength. 

When E; E?, two different modes  of failure can occur depending on 
+f (see Fig. 15.13). As noted, the strength of the composite for small  fiber 
volume fractions depends essentially on the matrix. When the matrix fails, 
all the load is transferred to the fibers, but,  as there are  not enough fibers to 
take the load, the composite will fail. The strength of the lamina can be 
written as 

0; = +fOj + (1 - +f)O& (15.39) 

I 

where of = of(&;) is the stress of the fibers at the failure strain of the 
matrix. For high  values  of +f, the fibers will take most of the load after 

0 1.0 
Volume fraction of fibers (bt 

,l 3 Dependence of  tensile  strength. G: on fiber  volume fraction +f for 
aligned  fiber composite containing ductile fibers and brittle matrix. 



the matrix fails, and the failure strength of the composite, G:, will  be deter- 
mined by the failure strength of the fibers, $ given  by 

0; = +p; (1 5.40) 

Figure 15.13  reflects the variation of cr: with cbr. The crossover point 
obtained from Eqs. (15.39) and (14.40)  is  expressed  by 

(T;f = 0;/<0; - of! + 0;) (15.41) 

It can be  concluded that the changes  in failure behavior depend not only 
on the fiber  volume fraction but also on whether the failure strain of the 
fibers, E;, is  higher or lower than  that of the matrix, E;. When the compo- 
nent having the smaller fracture strain (the brittle one) breaks, the load 
carried by this component is transferred to the other one. If the component 
with a higher fracture strain can bear this additional load, the brittle com- 
ponent will  show multiple fracture before the composite breaks. Figure 
15.14 illustrates schematically the details of failure for a unidirectional 
lamina under a longitudinal tensile  stress. In a11 the cases,  high strengths 
are obtained for high  fiber fractions, in good agreement with experimental 

measurements. When the unidirectional lamina is under a ,  tensile stress 
applied in any direction other than parallel to the fibers, its response will 
be  much  weaker. This can be understood by considering that 0; < a-; for all 
matrices, so a crack can easily propagate through the matrix and the fiber 

matrix interface, avoiding the fibers. A s  a result, the strength of the matrix 
in the direction normal to the fibers determines the strength of the compo- 
site. The transverse tensile strength of the lamina is  reduced  with  respect to 
that of the matrix by a factor of about 2. In  contrast  to the effect  of  fiber on 
the longitudinal tensile strength, the fibers  now  have a negative  reinforcing 
effect. This is attributed  to stress and strain concentrations in the matrix, 
which reach maximum values  between the fibers. The prediction of the 

strength in the transverse direction is not so simple as in the longitudinal 
direction because many factors influence this property, among them the 

matrix strength, interface bond strength, presence and distribution of 
voids, and internal stress and strain distributions. 

A s  we have  seen above, unidirectional laminae present maximum strength 
and modulus along the direction of the fibers.  However, the laminae are  too 
weak in the transverse direction, tensile failure occurs at very  low  stresses, 
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Different  failure  behaviors  depending on relative  values of fiber 
and matrix failure strains and fiber  volume fraction. 

and the, transverse strength does not differ by much from the matrix 
strength. To overcome this problem, laminates consisting of stacks of  lami- 
nae (also called  plies) bonded together are prepared, The elastic properties 
of  the laminate depend on the elastic properties of the individual laminae 

). A simple  flat laminate with unidirectional laminae orie~ted  at 90" to 
other is shown  in Figure 15.15a. n general, the arra~gements of the 

laminae are more complicated. 
The influence  of the orientation of the laminae on the stiffness  of the 

composite is illustrated in Figure 15.15b,  where  generic  stress-strain  curves 
for unidirectional cross-ply random laminates are shown. In the design  of 
laminates it is necessary to define not only the orientation of the plies but 
also the stacking sequence,  i.e., the order in which the plies are placed 

h the thickness. Figure 15.16  shows  examples  of  symmetrical and 
non- sy~~e t r i ca l  laminates. The most standard ply orientations are O", 
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train 

(a)  Simple  laminate  with  unidirectional  laminae  oriented at 90" to 
each  other.  (b)  Stress-strain  curves for unidirectional (- ), cross-ply (---) 
and  random (- * -) laminates. The tensile  load  is  applied  in  the  direction  indicated 
by  the  angles  shown  in  the  figure. 
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Angle-pi y 

Symmetrical and nonsymmetrical laminates.  The angle 0 indicates 
the  orientation of each  lamina. 

45",  -45", and 90". There are laminate sign conventions and symbol rota- 
tions. Thus (0, 45,  -45, 90)s is a symmetrical and equilibrated laminate 
[there are the same number of laminae at 0 (45") and -8 (-45")l; this 
configuration confers nearly isotropic properties to the laminates (quasi- 
isotropic laminate). The properties of a laminate consisting of various com- 
binations of laminae placed at different angles are calculated from the prop- 
erties, orientation, and distribution of the individual laminae (laminate 
theory). To produce the best  design, it is important  to predict the response 
of the laminate to external loads. 

Although the best  mechanical properties of  polymer composites are reached 
with continuous fiber reinforcement, many composites, especially those with 
thermoplastic matrices, are reinforced  with short fibers. In general, contin- 
uous fibers are more expensive than  short ones, and,  on the other  hand, 
short fiber composites offer the possibility  of  using  processing techniques 
such as extrusion or injection molding, which are faster and cheaper than 
lay-up processes. There is no specific length that distinguishes short  and long 
fibers. Instead, a critical fiber length, IC, is  defined for each matrix-reinforce 
couple in order to assess the effectiveness  of the fiber reinforcement. This 
parameter Ec is often used as a reference to discriminate short  and long fibers 
in such a way that fibers  with length E > 152, are usually  considered long or 
continuous fibers. Figure 15.17  shows a schematic representation of the 
deformation in the vicinity  of a short fiber  embedded  in a matrix of lower 
modulus (Em E/.) subjected to a tensile load parallel to the fiber.  As a 
consequence  of their different moduli, matrix and fiber exhibit different 
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Deformed 
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ure 11 5.9’7 Representation of deformation in the vicinity of a  long fiber (a) 
and (b) a  short fiber  embedded  in a matrix. 

strains. It can be  seen that the strain in the fiber  end  regions is lower than 
that in the matrix. This strain difference  causes important shear stresses at 
the fiberlmatrix interface that transmit tensile  stress to the fiber. The shear 
stress at the interface, z, and the tensile  stress  in the fiber, of, have  been 
theoretically  calculated  assuming that  both fiber and matrix behave 
elastically and are perfectly bonded.  The tensile  stress distribution along 
the fiber length, represented  in Figure 15.18,  reveals that the tensile  stress 
is  zero at the fiber  ends and reaches its maximum  value at the center. In 
contrast, the shear stress around the fiber attains maximum values at the end 
of the fibers and the lowest at the center. A s  the fiber  stress  falls to zero at 
the ends, the average  stress in a short fiber  embedded  in a matrix is  lower 
than  that in a continuous fiber  subjected to the same external load. 
Consequently, the axial  tensile modulus of unidirectional short fiber  com- 
posites  (see  Fig.  15.19)  becomes  lower than  that of continuous fiber compo- 
sites, and its value  is  given  by (2,4,7) 
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site stres 

Tensile stress distribution in a fiber and shear stress distribution at 
the interface. 

where qL 1 is a correction factor  that, according to Eq. (1 5.18), 
approaches unity for continuous  fibers. Thus  the stiffening and reinforcing 
effects  of short fibers  will  be  lower than those obtained  with continuous 
fibers. 

The reinforcing efficiency  of  fibers also depends on the interface 
strength, since the load transfer needs a strong interfacial bond. A s  the 
interfacial stresses are concentrated at the fiber ends, these are the weak 
points in the composite, where the interface first fails and interfacial shear 
debonding  begins.  This  effect occurs when ?; reaches the interfacial shear 
strength, x*. It is clear that as the strain augments, the tensile stress in the 
fiber increases until the maximum stress that can  be s~pported by the fiber, 
of, is reached, after which the fiber eventually breaks (see Fig. 15.20a). 

owever, rupture of  fibers  will  occur  only  if the fibers are longer than a 

~ I " - j  

~nidirectional short fiber composite. 
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(a) Variation of the stress  in a  short fiber along its length. A total l, 
at the two ends carries less than maximum  stress CY,,, = CY-.  (b) Interfacial strength 
of the  matrix fiber. 

critical length, l,; if l l,, the debonding process will extend  along the full 
length of the fiber and the fibers  will not break. The critical fiber length, IC, is 
the m i n i ~ u m  fiber length that will  allow  tensile failure of the fiber rather 
than shear failure of the interface. 

In  order to determine I,, we now consider a simple  model  of a fiber  of 
length l embedded in a  polymer  matrix  (see Fig. 15.20b).  The  tensile stress 
on the fiber required to produce  fiber  debonding and pullout is  determined 
in a first approximation by balancing the tensile and shear forces, 

CYxr = 2xrl1;* 2 (15.43) 

where (T is the applied tensile stress. Thus  the fiber length debonded will  be 

E = CYr/2z* (15.44) 

The plot of (T vs. l given  in Figure 15.20a  shows that (T increases with 1. 
However, a sharp cutoff occurs when CT = c$, corresponding to the fracture 
of the fiber, and consequently the critical length lc is  given  by 
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l, = c$r/2.c* (1 5.45) 

A similar  balance can be made for fibers  embedded in a  matrix of a com- 
posite under tensile  stress, but in  this  case we have to take into  account  that 
both  ends on the fiber carry interfacial shear stress, so the critical fiber 
length will  be 

l, = $d/2.c" (1 5.46) 

where d is the fiber diameter, 
Figure 15.21 shows the stress  versus  fiber  length diagrams correspond- 

ing to the three possibilities E < l,, E = &, and E > Zc. If the fiber has a length 
I IC, the stress variation along the fiber  indicates that the stress  never 
reaches the value  necessary to break  and the debonding regions  extend 
along the full  length  of the fiber. When the matrix finally  fails, the fiber 

Tensile  stress distribution in short fibers: (a) l l,; (b) l = l,; 
(c) l > l,. 
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simply  slides out of the matrix. If E = E,, the stress reaches the maximum 
value c$ just at the midpoint of the fiber; but  for E > E,, the fiber length that 
supports the maximum stress O;: is  longer and the fiber  becomes more 
effective. In these  cases the composite will fail through tensile fracture of 
the fiber rather than shear failure at the interface. 

Typical values  of IC for carbon fibers  in an epoxy matrix and for glass 
fiber  in  epoxy and polyester matrices are 0.2, 0.8, and OSmm,  respectively. 
The average  fiber stress (G-) can be d e t e ~ i n e d  by calculating the area under 
the stress versus  fiber length curve and dividing it by the fiber length. For 
E < E, 

(G) = l;*l/d (1 5.47) 

For E = E,, 

(G) = z*l,/d (1 5.48) 

and for I > E,, 

(G) = (1 -&)G; (1 5.49) 

It is  evident that getting the average  fiber stress as close as possible to 0; will 
require fibers considerably longer than the critical length. 

Depending on TT, c$, and U;, two failure modes are possible for aligned 
short brittle fiber composites: fiber pullout and fiber fracture. Let us con- 
sider a composite in  which E; > E;. If I < I,, the average stress in the fiber 
will  be  given  by Eq. (15.47),  so the strength in the composite can be written 
as 

z* l 
d 

0: = "(bf + (1 - (bf)G; (15.50) 

In this case, fracture occurs when the matrix stress is reached; stress in the 
fibers  is  insufficient to cause  fiber fracture, and the fibers  pull out of the 
matrix. For low  values  of cbfl Eq. (15.50) can be compared with the corre- 
sponding one for a long-fiber composite [Eq. (15.34)]. It can be  seen that the 
strength of short-fiber composite exceeds that obtained for continuous fibers 
at low $ f .  The second failure mode will occur in the most practical case  in 
which E > I, at high 4-. A s  in long fibers, the strength of the composite is 
limited by the fracture strength of the fibers [Eq. (l 5.35)].  However,  when 0; 
is reached the average stress on the fibers is  given  by Eq. (15.49), and this 
expression combined with Eqs. (15.35) yields 
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(15.51) 

where G; is the stress of the matrix at the failure strain of the fibers. This 
strength is  significantly  lower than  that obtained for continuous fibers. 

iscontinuous fibers are normally supplied with standard lengths 
between 3 and 50 mm. These  values are higher than the Zc values. In practice, 
the strength and modulus of short fiber composites are  sig~ificantly lower 
than those theoretically predicted. Equations (15.50) and (15.51) apply to 
ideal composites having uniaxial arrangements of  fibers. In real cases,  how- 
ever,  fibers are  not totally aligned parallel to each other. This reduces the 
efficiency  of the reinforcement, and  as a result the fiber orientation is 
strongly dependent on the processing techniques. Finally, it is  worthwhile 
noting that a direct consequence  of the more random distribution of  fibers  is 
less  efficient packing, so lower qr values can be  reached than when long 
fibers are used. 

Calculate (a) the modulus of  elasticity,  (b) the tensile strength, and (c) the 
fraction of the load carried by the fibers for a continuous glass  fiber-rein- 
forced  epoxy resin, with  60% by volume  E-glass  fiber,  stressed under iso- 
strain conditions. The tensile strength and modulus of the fibers are 1800 

a, respectively, and the values  of  these quantities for the 
a and 2.4 GPa, respectively. 

he modulus of elasticity  of the composite, calculated by applying the 
rule  of  mixtures for binary composites [Eq. (15.18)],  is 

E, = 2.4 x 0.4 + 76 x 0.6 = 46.6GPa (P15.1.1) 

(b) According to Eq. (15.16), the tensile strength of the composite is 

CT, = 60 x 0.4 + 1800 x 0.6 = 1 1 0 ~ ~ P a  (P15.1.2) 

(c) The fraction of load carried by the fibers is 
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(P15.1.3) 

Consequently, 

Pf/P,  = (76 X 0,6)/(76 X 0.6 + 2.4 X 0.4) = 0.98 

A  composite  sample of carbon fiber and epoxy  weighs 2 g.  When the sample 
is  submerged  in  water (density = l g/cm3), its weight is 0.633 g. The weight 
of the fibers  is  0.966  g after the epoxy  is  degraded  with concentrated nitric 
acid. Calculate (a) the volume fraction of  fibers, (b) the density of the 
composite, and (c) the volume fraction of voids. 

Data: Densities (g/cm3): carbon fiber,  1.85;  epoxy resin, 1.3. 

(a) Volume  of the initial sample: 2 - 0.633 = 1.337  cm3. 
Volume fraction of  fibers, ( b f :  

1  0.52 cm3 0.966g x = 0.52 cm3? so 
1.85 g/cm3 4f = 1.337 cm3 

= 0.389 

(b) Volume fraction of the matrix, (bm: 
Mass of the matrix: 2 - 0.966 = 1.034  g 

0.795 cm3 1.034g x = 0.795 cm3? hence, 4, = = 0.595 1.3 g/cm3 1.337 cm3 

According to Eq. (15.4); the density of the composite  is 

pc = 0.389 X 1  .85 + 0.594 X 1.3 = 1.492 g/cm3 

(c)  As the sample has voids, the  total volume of the composite  is 
VC = Vf + Vm + Vu, where Vu is the volume  of the voids. Thus, 
1.337 = 0.52 + 0.795 + Vv = 1.315 + Vu. Therefore, 

V, = 0.022 and 4, = 0.017 



The same result for the volume fraction of  voids  will  be obtained by apply- 
ing Eq. (l S. 12),  which  allows the determination of +, from the weight frac- 
tion and densities  of the matrix and fibers and the density of the composite. 

For a short-fiber Nylon 6.6-E glass  aligned composite material, tested in 
tension in the fiber direction, predict the mean  fiber stress at failure and the 
axial tensile strength of the composite made up of 40% fiber  volume (inter- 
face shear strength .c: = 20 MPa, fiber diameter d = 12 pm, and length E = 1 
mm). The tensile strengths of the E-glass  fibers and the nylon matrix are 
1800 MPa  and 70 MPa, respectively. The tensile moduli are 76 GPa  for E- 
glass  fibers and 2.7 CPa for nylon 6.6. 

The critical fiber length, Zc3 is the minimum  fiber length that will  allow  tensile 
failure of the fiber rather than shear failure of the interface. It can be 
calculated from Eq. (15.46): 

The strain of the matrix is 

E ;  = 6 = 70/2700 == 2.59 x 
Ern 

(15.3.1) 

(P15.3.2) 

while the strain of the fiber  is 

E; = - 0; = 1800/76,000 = 2.37 X 
Ei. 

(P15.3.3) 

As a consequence, failure occurs in the fiber  first, and the strain in the 
composite is 

E = 2.37 X lom2 

The stress carried by the matrix is 

= E,,& = 2700 x 2.37 x = 64MPa (P15.3.4) 
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The mean stress carried by the fibers can be calculated by using Eq. 
(1  5.49): 

and the stress in the composite is  given  by 

oc = 0.4 x 1314 + 0.6 x 64 = 564MPa 

(P15.3.5) 

(P15.3.6) 

A unidi~ectional laminate consists of continuous glass  fibers  in an epoxy 
matrix and has a 60% fiber  volume fraction. Calculate the strains (a) when a 
tensile stress of  100 MPa is applied in the fiber direction and (b) when a 
stress of  20 MPa is applied in the direction transverse to the fibers. The 
tensile moduli and Poisson’s ratios for the glass and epoxy are Er. = 80 CPa, 
E, = 2.5 CPa, vf = 0.2 and v, = 0.35, respectively, 

(a) The axial strain, (see Fig. 15.7)  is calculated by using Eq. (15.17), 
where the axial tensile modulus of the laminate, Eel, can be evaluated by 
using the rule  of mixtures [Eq. (1  5-18)]: 

Ec1 = 0.4 x 2.5 + 0.6 x 80 = 49 CPa (P1 5.4. l )  

el = (100 x 106)/(49 x lo9) = 2.04 x loa3 (P15.4.2) 

The tensile stress provokes a contraction in directions transverse to the 
fibers. The corresponding strain, Q ,  is calculated from the Poisson’s ratio 
of the laminate, vc12, obtained through Eq. (15.32): 

~,12 = 0.4 X 0.35 + 0.6 X 0.2 = 0.26  (P15.4.3) 

e2 = -v,~~E~ = -0.26 x 2.04 x = -5.3 X (P15.4.4) 

(b) When the load is applied in the direction transverse to the fibers  (see Fig. 
15.7), the strain transverse to the fibers  is obtained from Eq. (15.22) by using 
Eq. (15.29) to calculate the transverse tensile modulus, Ec2: 
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80 x 2.5 
0.6 x 2.5 + 0.4 x 80 E c 2  = = 5.97 GPa (P15.4.5) 

= (20 x 106)/(5.97 x io9) = 3.35 x 10-~  (P1 5.4.6) 

In order to calculate the contraction in the axial direction, the Poisson's 
ratio, vC21, must be estimated. According to linear elasticity theory, 

vc21 = v,.2Ec2/ECl = 0.26(5.97/49) = 0.032  (P15.4.7) 

ence, 

= - v ~ ~ ~ E ~  = 0.032(3.35 x = 1.07 x lom4 (P15.4.8) 

Consider a unidirectional glass fiber-epoxy matrix laminate. 
(a) Calculate the fiber  volume fraction needed to reach an axial modulus 

10 times as high as  that of the matrix. 
(b)  If  some  of the glass  fibers are replaced by carbon fibers,  with the 

total fiber  volume fraction remaining unchanged, determine the fraction of 
carbon fibers  needed to double the original axial modulus. 

Data: Moduli of the glass  fibers, carbon fibers, and epoxy matrix: 
Efg = 76GPa; Ejc = 300 CPa; Em = 2.5 GPa. 

y substituting the condition given, Ecl = 10Em, into Eq. (15.18), we obtain 

earranging and substituting in the pertinent data give 

(P15.5.2) 

ith a fraction of the glass  fibers  replaced with carbon fibers, the mod- 
ulus of the laminate according to the rule of mixtures [Eq, (15.18)]  will  be 
given by 



Reinforced Polymers 

On  the  other  hand, 

695 

$)fc + $jk = 0.31 and +, = 0.69 

and the modulus of the composite is 

Eel = 2 x 10 x Em = 50GPa 

Consequently Eq. (P15.5.3) becomes 

(P15.5.4) 

(Pl5.5.5) 

(P1  5.5.6) 
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The design  of  pieces that form part of either a  structure  or  a machine often 
requires an analysis of the  distribution of stresses and  strains in  these  pieces. 
Without  taking  into  account,  for  the moment, the therrnal and calorific 
effects, the tensions and  deformations at each point of the sample should 
simultaneously satisfy the balance and constitutive equations. 

One must note  that  the balance equations  are  not dependent on either 
the type of material or  the type of action  the material undergoes. In  fact, the 
balance equations  are consequences of the laws  of conservation of both 
linear and  angular momenta and, eventually, of the first law  of thermody- 
namics. In  contrast,  the constitutive equations  are intrinsic to the  material, 
A s  will  be shown later, the incorporation of memory  effects into constitutive 
equations  either throu~h the superposition principle of Boltzmann, in dif- 
ferential form,  or by means of viscoelastic  models  based on the 
Voigt or Maxwell  models,  causes solution of viscoelastic problems to be 
more complex than the solution of problems in the purely elastic case. 
Nevertheless, in many situations  it is  possible to convert the viscoelastic 
problem into  an elastic one through the employment of Laplace transforms. 
This type of strategy is  accomplished by means of the correspon~ence prin- 
ciple. 

Owing to the multiaxial character of the problems addressed in this 
chapter, the field equations depend not only on time but also on the position 
defined by their coordinates. Finally, it is  necessary to stress that the solu- 
tion of viscoelastic problems requires, as in the elastic case,  specification of 
adequate  boundary  conditions.  In this chapter, in addition  to considering 
both integral and differential multiaxial stress-strain relationships, some 
viscoelastic problems of interest in technical applications are solved. 

Among the  equations  that govern a viscoelastic problem, only the  constitu- 
tive equations differ formally from those corresponding to elastic relation- 
ships. In  the context of an in~nitesimal theory, we are interested in the 
formulation of adequate stress-strain relationships from some  conveniently 
formalized experimental facts. These relationships are assumed to be linear, 
and field equations must be equally linear. The most convenient way to 
formulate  the viscoelastic constitutive equations is to follow the lines of 
Coleman and No11 (l), who introduced  the term “memory” by stating 
that  the  current value of the stress tensor depends upon  the  past history 
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of the strain tensor. The main hypothesis, formulated in the context of the 
theory for simple materials with fading memory, can be formally expressed 
as in Eq. (5.2)  by means of the functional relationship 

(16.1) 

where Ci is a tensor-valued functional that transforms the strain history into 
stress history. As a rule, all the field variables should be  considered functions 
of position. If it is  assumed that the history of the deformations is contin- 
uous and the functional is linear, then a theorem of  Riesz permits us to write 
such a functional as a Stieltjes integral (2-9, 

where G i j ~ ~ ~ ( t )  is a fourth-order tensor. The nonconvolutive term was intro- 
duced through the integration of Dirac delta functions in order to account 
for discontinuous strain histories. An  expression identical to Eq. (16.2)  was 
f o ~ u l a t e d  in Chapter 5 on semiempirical arguments. In fact. Eq. (16.2) is 
formally equivalent to the continuous form of the superposition principle  of 

oltzmann, which represents the linear stress-strain relationship for viscoe- 
lastic materials. The convolutive form of Eq. (16.2) ensures the property of 
translational invariance, thus implying that a shift of the mechanical input 
along the time scale results in a corresponding shift of the response without 
another change (24). On the other  hand, the symmetry  of the stress and 
strain tensors implies that 

f Gijkl(t) and  its first derivative are continuous in 0 5 t 00, then Eq. (16.2) 
can be written as 

Another approach to f o ~ u l a t i n g  the constitutive stress-strain relation- 
ship is through a simple variables change, 8 = t - z. After integration by 
parts, we obtain 

(16.5) 
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If y ~ ~ ( t )  is continuous, and if it is null for t -= 0, then 

Since G(t)  is  zero for negative  values of t ,  we can set the upper limit  of 
integration equal to infinity, that is, 

(1  6.6b) 

This integral representation has the advantage that its formulation does not 
require an appeal to models  based on dashpots and springs, and it is  purely 
formal. Alternatively, the roles  of stress and strain could be  reversed,  giving 

(16.7) 

where the following  symmetry conditions also hold: 

The requirement of isotropy permits the representation of the fourth- 
order tensor in terms of  two material functions in such a way that the stress- 
strain relationship becomes 

where h is the trace of yq and K - (2/3)G = h, the first  coefficient  of Lam6 
(see Chap. 4). Note  that E# = 2yy for i + j and E# = yy for i = j [see Eq. 
(4. IS)]. The Laplace transform of Eq. (16.9) is  given by 

2 -  (16.10) 

which  is formally equivalent to Eq. (5.7'5). 
In order to describe the viscoelastic behavior of a system  subjected to 

multiaxial tensions, it is  convenient to separate the shear (deviatoric) effects 
from the purely dilatational components. This is due to the fact that in 
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viscoelastic materials the response to shear can be different from  that  in 
dilatation  or  bulk.  In  other words, different types of stress can produce 
different responses. In these conditions,  Eq, (16.9) can be written as 

whose Laplace transform is 

D&) = GijsK(s)A(s) + 2sG(s) 

As a consequence 

o$(t) = 2G(t - 0) ~ ~ ~ ( 0 )  
"-00 

and 

where 

(16.12) 

(16.13a) 

(16.13b) 

(16.14a) 

and 

(16.14b) 

and the superscript d indicates deviatoric components. 
Laplace transforms  and  the properties of the integral of convolution 

permit us to establish simple relationships between distinct functions defined 
in the present context such as those outlined in Chapter 5. Thus, 

c5$(s) = 2 s G ( s ) ~ ~ ( ~ )  = sG(s)~;(s) (16.15a) 

and 

(16.15b) 

In  the same  way, the following  inverse relationships hold: 
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1 
2 $(S) = - s,7(s)5$(s) (16.16a) 

and 

(16.16b) 

where B and J are, respectively, the bulk and shear compliances [see Eq. 
(5.79a)  of Chap. 51. 

The integral form is not the only  possible form in  which  stress-strain  rela- 
tionships can be written. The constitutive equation for an isotropic material 
whose  response  is  sensitive to the derivatives of stress and strain can be 
written as (5) 

f(o,cr,ij )... ; y , y , y  ).,. )=O (16.17) 

where both the stress and strain depend on time and the dots over the letters 
indicate time  derivatives. In this  case, the memory  is  represented by  these 
derivatives. In a more  compact form, one  can write 

where the derivative temporal operators are given  by 

(16.19) 

where D is the operator dldt. 
Though the preceding equations represent a convenient way to express 

the~relationship between  stress and strain, it is  necessary that they  be con- 
sistent  with the integral formulation of Section  16.2 (6). Consequently, tak- 
ing the Laplace transform of both formulations and identifying  them, we 
obtain 

N N 

(1  6.20) 
r=k r=k 



where c$-~)(O) designates the (k - r)th  order derivative of the stress and 
strain at t = 0. The conditions of linearity imposed require that p,. and 4,. be 
independent of the stress and  strain, though obviously they can be functions 
of time. 

Ap~ropriate combinations of the coefficients  of Eq. (16.20) can repro- 
duce  determined  idealized  behavior of  viscoelastic materials such as those 
corresponding to the ~ a x ~ e l l  and  ~elvin-Voigt models. Thus,  for the 

axwell  model  in shear, 

elvin-Voigt  model, 

PO = 1, p1 = 0; 40 I=: 26 ,  41 = 2q (16.22) 

Additional  terms in the general equation, Eq. (16.18), give  a better 
account of the  actual behavior of the material. owever, the resulting equa- 
tions are  not easily  solved  unless  Laplace transforms are used. In this way, 
the expression obtained is 

(1 6.23) 

For a viscoelastic  solid this equation  can be written in an alternative form 
as (’7) 

(16.24) 

In some  cases rational polynomial fractions such as those appearing  in 
Eq. (16.24) can  be  decomposed into a constant plus a sum of elementary 
fractions, 

(1 6.25) 

where ci and pi are, respectively, the real zeros and poles of these fractions. 
oreover, they  should  be alternated  on the negative real axis  according to 

for the creep function and 

c1 P1 -== c2 P2 < * - * c Pn-1 c, P,  (l 6.26b) 
for  the relaxation function. As  Bland (7) bas proved, this is a consequence of 
the properties of linear dissipative systems. 

The  Laplace  inverse  of  simple fractions such as 
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is a decreasing exponential characterized by a relaxation time (&)-l. The 
sum  of  such exponentials would  correspond to a discrete collection of  vis- 
coelastic elements, each  governed  by a relaxation time, that is, a collection 

axwell elements in parallel or a collection of  Kelvin-Voigt elements in 
series.  Following the continuum fraction methodology, ladder models can 
also be  obtained  (see Chap. IO). 

Alternatively, if  we dispose of  dynamic data in a sufficient  wide  range  of 
frequencies, for example, the master curves for E’(m) and EN(m) (or for the 
corresponding compliances), it is  possible to represent E*(m) as a quotient of 
two  polynomials  of equal degree. This is  achieved (8) by approximating the 
curve representing the double logarithmic plot of the modulus E*(@) versus 
frequency to  an alternative succession  of horizontal  and straight lines  with 
slope +l.  In this way, the experimental curve is replaced by an approximate 
contour (called the approximate  Bode’s contour) whose representative equa- 
tion has the form 

(1  6.28) 

where j m  = S and ci and pi indicate zeros and poles  of the function E*(m), 
which  can  be considered as a transfer function that fulfills the conditions of 

The loss angle, or equivalently the phase angle, can  be  obtained by 
simple addition of the contributions  from each factor  that  appears in Eq. 
(16.28), that is, 

land theorem (Eqs. [16.26a] and [ 16.26bl). 

i= 1 
(16.29) 

Evidently, this procedure  is  valid only when the slope of the double loga- 
rithmic plot is  less than one. 

If the dilational and deviatoric components are  separated, reasoning similar 
to  that used in the case of integral representation leads to  the  equations (5, 
P. 78)  
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where  now PI, P2, Ql, and Q2 are  operators of the type 

Comparison of Eqs. (16.15) and (16.30)  gives 

(16.3  1) 

(1 6.32) 

As Eqs. (5.84) and (5.87) indicate, the tensile modulus and  the Poisson ratio 
are related to the shear and bulk relaxation moduli by the formulae 

9KG 3K - 2G E="---- 
3K+G and v =- 6K + 2G (16.33) 

Equations (16.32)  suggest that these relationships for  a viscoelastic material 
under multiaxial stresses can be written as 

and 

P1Q2 - P2Q1 Q" 
P2Q1+ 2P1Q2  P" 

V =  - 

(1  6.34a) 

(16.34b) 

Note that equations similar to Eq. (16.33) hold for the dynamic functions, 
that is, 

9K"G" 3K* - 2G" 
6K" + 2G* 

E* = 
3K* +G* and v* = (16.35) 

In  the same  way, the relationships between the different elastic functions can 
be generalized for the viscoelastic  case. 

As mentioned above, the shear response of some  viscoelastic materials 
can differ from  the  dilatational response. Thus, while the response in shear is 
viscoelastic, the  dilatational response  is  elastic. It is  clear that in these con- 
ditions, the analysis of the multiaxial problems differs from  that of the 
uniaxial and simple shear cases. 
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For a material that behaves as a Hookean solid  in hydrostatic compres- 
sion but as a Maxwell  element  in shear, the corresponding values  of the 
operators are 

P2 = 1; Q2 = 3K  (16.36a) 

and 

PI = 1 +--S;  Q1 =2qs  rl 
G (l 6.36b) 

The results of the previous  example  as well other more complex  models that 
are analyzed  in the problems  section at the end of the chapter show that the 
relationships between the different components of the stress and strain ten- 
sors for viscoelastic materials can be established  in  terms  of the operators P 
and Q. For example (9), for an elongational test 

PEo, == QEyxx; -Q"rxx (16.37) 

where  now the superscripts E and v refer to the tensile modulus  and the 
Poisson ratio, respectively. When all  these relationships are  transformed 
through the Laplace transform into functions of the operational variable, 
they  express the already cited  elastic-viscoelastic  correspondence  principle. 

Consequently, the direct and inverse  stress-strain relationships present 
in  terms of the P and Q operators the form 

and 

A s  for the relationships of G and K with E and v, we obtain 

" Q 1  - QEIpE . Q2 QE/p 
PI 1 + Q"fP"' P2 1 - 2Q"/Pv 
" - 

(16.38a) 

(16.38b) 

(16.39) 

The balance equations can also  be transformed in terms of the operational 
variable, thus completing the preliminary step in the solutions of a visco- 
elastic problem. 



706 

A theory of thermoviscoelasticity that includes the temperature  dependence 
of the relaxation or  retardation functions is  necessarily nonlinear, and con- 
sequently the elastic-viscoelastic  correspondence principle is not applicable. 
Nevertheless, a linear theory of thermoviscoelasticity can  be  developed in 
the framework  of rational thermodynamics  with further constitutive 
assumptions (Ref. 5, Chap. 3; see also Ref. 10). 

However, for thermorheologically simple materials, that is, for those 
materials for which the time-temperature superposition principle holds, 
the mechanical properties data can  be shifted parallel to the time or fre- 
quency  axis.  This fact suggests an additional hypothesis that can  be  very 
useful  in  solving  some  specific thermoviscoelastic problems.  According to 
this hypothesis, the net effect  of  temperature in the response must  be equiva- 
lent to a variation in the rates of creep or relaxation of the material. Thus  for 
T > To the process occurs at a higher rate  than at To. 

In general, the effective time t, will  be related to t according to the 
expression 

d t  = a(T(t), TO)& (1 6.40) 

where the function a can  be considered to be associated with  some activation 
energy  of the material in the range of temperatures considered. Moreover, 
Eq. (16.40) leads to 

(16.41) 

When a is  dependent  on T - To [that is, a Williams-Landel-Ferry (WLF) 
dependence] or  on T (Arrhenius dependence), then t, is a linear function of 
time. 

To formalize the main hypothesis, the nonisothermal functional given 
by Eq. (16.1) is  modified  by a new isothermic functional with a modified 
time  scale to account for the temperature history. NOW, according to the 
basic hypothesis of linear theory, the specific  form  of the stress-strain rela- 
tionship can  be written as 

(1 6.42) 
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where a is the strain caused in the stress-free state by changes in tempera- 
ture, being a function of the current temperature, and I; is  given  by Eq. 
(16.41). The form of Eq. (16.42) for the isotropic case  is  given  by 

(l 6.434 

and 

Equations (16.43a) and (16.43b) are the relevant constitutive equations to be 
solved.  However,  they are  not of the convolution type, and for this reason 

we cannot apply the Laplace transform to them. Nevertheless, note that 4 is 
a monotonically increasing function of t ,  and by inverting the functional 

relationship given  by Eq. (16.41) the convolution integrals in terms of the 
new  time  scale 4 are obtained. The pertinent equations are 

(l 6.444 

and 

Notice that the same symbol is  used for the dependence  of the strains on 6 
and t in Eqs. (16.43) and (16.44). 

Note also that i n ~ n i t e s i ~ a l  temperature changes are  not required in this 
approach. An interesting particular case  is that one which external forces are 

absent. In this situation, the deformation (expansion or contraction) of the 
viscoelastic  system can be due only to temperature effects. 
temperature jump AT, Eq. (16.44b)  leads to the relation 

(1 6.45) 



where p is  identified  with the thermal expansion coefficient and p AT is the 
relative change in volume  caused by the  de€ormation. 

The solution of a problem in linear viscoelasticity requires the determination 
of the stress, strain,  and displacement histories as  a  function of the space 
coordinates.  The uniqueness of the solution was  proved  originally  by 
Volterra (l 1). The analysis carried out in this chapter refers  exclusively to 
isotropic materials under isothermal conditions. As a rule, it is not possible 
to give a closed solution to a viscoelastic problem without previous knowl- 
edge  of the material  functions. The experimental de te~ina t ion  of such 
functions  and  the relationships among them have  been studied in a specific 
way in separate  chapters,  and therefore the reader's knowledge of them is 
assumed. At the same  time, the methods of analysis carried out in this 
chapter  and  in  Chapter 17 will  allow us to optimize the calculation of the 
material  functions. 

The necessary conditions  to be  fulfilled are the equilibrium conditions, 
the  strain-dis~lacement relationships (ki~ematic equations),  and  the stress- 
strain relationships (constitutive equations). As in linear elasticity theory 
(12),  these conditions  form  a system  of  15 equations  that permit us to  obtain 
15 unknowns: three displacements, six strain  components,  and six stress 
components. 

Boundary conditions allow us to  obtain specific results for each three- 
dimensional viscoelastic problem. If the stresses on the surface of the 
body are  stated (first boundary problem), then the system  of  15  basic equa- 
tions is  reduced to one of only six independent differential equations con- 
taining the six independent stress components. The strategy  to follow 
implies the formulation of the compatibility equations in  terms  of the stress 

If the displacements on the surface of the body are given (second 
boundary problem), the stress~isplacement relationships are  obtained 
first, and their substitution  into the equilibrium equations permits us to 
eliminate the stress variables and  thus  to  obtain  the three equilibrium 
equations in terms of the displacements (see Navier equations in 

eltrami-Michell compatibility equations). 
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Chapter 4). Mixed boundary conditions are possible, of course,  where 
tractions are prescribed for part of the surface  whereas  displacements 

are given for the rest  of the surface. 

In general, it is not possible to solve any viscoelastic problem in a unified 
way. On the contrary, special  techniques are required for each particular 
situation (13,14). In the present chapter some  specific problems, interesting 
from a practical point of  view, are studied. In particular, problems  with 
special  symmetries,  plane strain or plane stress as well as dynamic problems 

are considered.  These  problems are also interesting from the academic point 
of  view because  their solutions illustrate the strategies to be  followed  in 
solving  typical structural problems  in  viscoelasticity. Most of the problems 
studied here are simply the viscoelastic counterparts of clasical  elasticity 
problems. For this reason, the elastic  problem will  be  solved prior to solving 

the viscoelastic one. As  mentioned  in the preceding  section, the usual tool 
for solving a problem of this  type  is the elastic-viscoelastic correspondence 

principle,  which  requires  Laplace transforms. In  Chapter I1  of  Ref. 6, a 
complete account is  given  of the elastic-viscoelastic constitutive and field 
equations to be  solved  via  Laplace transforms. The main limitation to this 
approach lies  in the character of the boundary conditions. In fact, the 
applicability  of the correspondence principle  is  restricted to situations 
where the prescribed boundary conditions are independent of  time. A repre- 
sentative situation of the time-dependent boundary conditions that is related 

to a curved indentation, is  considered  here. 
The inertial terms present  in the equilibrium equations convert the pro- 

blems into dynamic  ones. The most  studied  dynamic  viscoelastic boundary 
problems have  been those referring to the unidirectional propagation of 
waves. In particular, forced  oscillations  have  been  widely  used  in the deter- 
mination of dynamic moduli. 

The technique of separation of  variables, that is, the possibility  of 
separating the spatial and  temporal variables  in the stress and strain fields, 

is particularly useful  in the solution of dynamic  viscoelastic  problems.  As a 
rule,  this  requires us to assume that the Poisson ratio is constant, a reason- 
able assumption in  many  cases.  Alternatively, the divergence  of the dis- 
placement  vector must be constant. A particularly important case of 

application of the variables separation method, where the assumption 
concerning the constancy of the Poisson ratio is  relaxed,  occurs  in  those 
problems  in  which the boundary conditions or the forces of  volume are 



harmonic functions of  time in a stationary regime. Furthermore, the 
incorporation of inertial terms in these  cases  does not pose an additional 
complication. 

In linear elasticity or viscoelasticity, the superposition principle states that 
the resulting effects  of the different causes  (stress or displacements), acting 
separately, can be superposed to give the total values due to these combined 
causes. This principle  is a consequence  of the linearity of the equations 
governing the stress, strain, and displacements. 

According to the Saint Venant principle, the stresses  of  two statically 
equivalent applied loads are closely  similar  except near the point of applica- 
tion of the load. This principle, which can be ~mpirically tested, allows the 
boundary conditions to be  expressed in terms of a resultant force rather 
than  an exact distribution of stresses.  Obviously, this principle is  of great 
signi~cance in many practical problems. 

The geometric characteristics of  some interesting viscoelastic problems have 
special  symmetries. For example, spherical shells have wide applications in 
pressure vessels, heat exchangers, and nuclear reactors. Loading of these 
structures can occur not only in accidental conditions but also in normal 
situations, e.g., during overpressurization. These spherical shells are radially 
symmetrical. 

To  start with, let us determine the stress and the deformation of a 
hollow sphere (outer radius R2, inner radius RI) under a sudden increase 
in internal pressure if the material is elastic in compression but a standard 
solid (spring in  series  with a Kelvin-Voigt  element)  in shear (Fig. 16.1).  As a 
consequence  of the radial symmetry  of the problem, spherical coordinates 
with the origin in the center of the sphere will  be  used. The displacement, 
obviously radial, is a function of r alone as a consequence of the fact that the 
components of the strain and stress tensors are also dependent only on r.  A s  

e Navier equations, Eq. (4.108), predict that  rot 
= 0. This implies that 

div U! = tryij = 3m (1 6.46) 

From the result of Problem 4.7 in Chapter 4, the following differential 
equation. for the displacement U (assuming U, = U) is obtained: 
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. Hollow  sphere  with inner  and  external radii RI and R2. 

du U I d  
dr r r2 dr 

div U = - + 2- = --(r2u) = 3m 

where m is a constant 
The solution of Eq. (16.47) is  given by 

y2 ~ = m r + -  
r2 

(l 6.47) 

(16.48) 

where y1 is an integration constant to be  determined  from the  boundary 
conditions. 

The  nonzero strain tensor components are easily  obtained as 

2n  n 
r3 

yrr = m - - and yse = ywv = m + 3 (l 6.49) 

The radial and transverse stresses can be  determined from the stress- 
strain relationships. Owing to the orthogonality of the spherical coordi- 
nates, the formal structure of the generalized  Hooke's law, given  by Eq. 

4.1 l), is preserved, so that the nonzero  components of the stress tensor are 
expressed in terms of the strain tensors as 

(16.50) 

and 
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(16.51) 

It should be noted that these equations were obtained from Eq. (4.76)  by 
substituting the Lam6 moduli in terms of the tensile modulus E and the 
Poisson ratio U, by means of the relations of Table 4.1, as is usual in elas- 
ticity theory (see also Problem 4.12). 

By substituting the values  of the strain given  in  Eqs.  (16.49)  in Eqs. 
(16.50) and (16.51), the following  expressions for the components of the 
stress tensor are obtained: 

mE 2nE 1 
l -2v  l + v  r3 

or, = - - - (-) 
0 0 0  = ow = - mE +"(L) 1-2v l + v  r3 

(1  6.52a) 

(l 6.52b) 

The values  of m and YI in Eqs. (16.52) can be found by solving  these two 
equations for the two boundary conditions 

or, = --p1 for Y = _R1 (16.53a) 

and 

G,, = --p2 for r = R2 (16.53b) 

where pl, p2 are  the internal and external pressures, respectively. The values 
of m and y1 thus obtained in combination with Eq. (16.48)  give the displace- 
ment as 

(16.54) 

Before  proceeding  with the calculations of the stresses and displacement 

Case 1. Consider a hollow sphere under an internal pressure. Here the 
for any specific input, we consider several  special  cases. 

boundary conditions are 

P1 = P  (1  6.55a) 

and 

P2 = 0 (16.55b) 

Then the displacement  given by Eq. (16.54)  becomes 
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whereas the components of the stress tensor can be written as 

R: - R: 

and 

(1  6.56) 

(16.57a) 

(16.57b) 

Case 2. Consider an infinite  medium  with a spherical cavity  of radius 
R subjected to hydrostatic compression. In this case the boundary condi- 
tions are p1 = 0, p2 =p. After making Rz approach infinity and putting 
RI = R, Eqs. (16.52a) and (16.52b)  become 

Grr = -p( 1 - g )  
and 

(16.58a) 

(16.58b) 

and the tangential stress in the surface of the cavity  is  given  by 

3 I r=R= ow lr=R= - 2P (16.59) 

Moreover, the displacement can be written as 

where the displacement at R is  given  by 

(1  6.60) 

3 l - v  u(R) = - --PR - 2 E  (16.61) 
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Case 3. Consider an infinite medium with a spherical cavity of radius 
R subjected to internal pressurization. If the boundary conditions p l   = p  
and p2 = 0 are assumed, then the components of the stress tensor are 

and 

(1  6.62a) 

(1  6.62b) 

(1 6.63a) 

(16.63b) 

Case 4. For a spherical ball subjected to an external pressure p, RI = 0 
and R2 = R. The corresponding stresses and displacement are 

and 

1 -2v 
U = -pr- E 

(16.64b) 

Case 5. For a thin spherical shell, Rz - RI = h << RI,  R2, and the fol- 
lowing app~oximation holds: 

qs, (16.54) and (16.65)  we obtain 

l - v  
E 

U="-- (1  6.66a) 

(l 6.66b) 

(16.66~) 

where the average  value of G,, is  given by 
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(1 6.67) 

Let us return  to the proposed  problem of calculating the displacement 
of a viscoelastic thin hollow sphere after a sudden internal press~ri~ation, 
According to  Eq. (16.66a), the determination of the displacement U requires 
to obtain  an expression for (1 - v)/€? in the viscoelastic  system. From  the 
differential operators of a  standard solid and the equations  for the tensile 
modulus and  the Poisson ratio developed, respectively, in Problems  16.2 and 
16.4 at the end of this chapter,  the following expression for (1 - v ) / E  is 
obtained: 

(1 6.68) 

On the other  hand,  for  a step input pressure p(t)  = poH(t ) ,  where H(t)  is the 
eaviside step function, the Laplace  transform of Eq. (16.66a), in combina- 

tion with Eq. (16.6Q gives the displacement  in terms of the  operational 
variable S as 

(16.69) 

where it was taken  into account that  the Laplace  transform of p( t )  = poH(t )  
is pols. The inverse  of Eq. (16.69)  is 

(1 6.70) 

The values  of U for two  extreme situations are given  below. Thus,  for t = 0, 

(16.71) 

and  for t -+ 00, 
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(16.72) 

It is also interesting to consider now a sinusoidal input of  frequency ci). 
Taking into account that  the Laplace  transform  of the sine function is 
given  by 

W C (sin at) == - 
W2 + S2 

(1 6.73) 

we obtain  for  the displacement in terms  of the variable S the expression 

The  inverse of Eq. (16.74) can easily  be  obtained  by considering that 

l rl 
G2 

+- T = -  (16.75) 

from  which 

B = -A; 
A C=-  
W Z  

The final result for the displacement  in the time domain  is 

l 1 u(t) = - 
sinat +- 6G2 ( (1 + W222)"2 ) 

where 

6 = arctan(co7) 

(1  6.76) 

(16.77) 

(1  6.78) 

Although  in  viscoelasticity  pure static problems do  not exist, the example 
discussed  above  can  be considered quasi-static, because inertial terms are 
neglected.  Let us consider the dynamic  problem  concerning the radial vibra- 
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tions of the same  viscoelastic sphere to which we referred in the preceding 
section. We  follow the main line  of  Bland  (7, Chap. 3). 

In the present case the equation of motion is obtained by adding the 
inertial term to the right-hand side  of the equilibrium equation as follows 
[see Eq. (P4.7,3)]: 

(1  6.79) 

The stress~isplacement equations can be more conveniently  expressed  in 
terns of the Lamtit coefficients  (see Table 4.1  of Chap. 4),  giving 

where according to Eqs. (16.48) and (16.49) 

au U 
-+2-=trYij=Yrr+Yee+Y,,  ar r 

The substitution of Eqs. (16.80a) and (16.80b) in Eq. (16.79)  gives 

or, equivalently, 

(16.80a) 

(36.80b) 

(16.81) 

(16.82) 

(16.83) 

where c', the square of the speed  of the radial wave propagation, can be 
written as 

(16.84) 

It should be noted that the quasi-static case  is a limiting situation of the 
corresponding dynamic problem when the value  of c is large. 
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Owing to the radial symmetry of the problem, and taking into account 
that the excitation is harmonic, the solution for the differential equation can 
be  assumed to be 

u(t) = u(r)drn' (16.85) 

ubstituting Eq. (16.85) into  Eq. (16.83), we  find 

(16.86) 

with 

u(0, r) = U(0, r) = 0 (16.87) 

as initial boundary conditions for the displace~ent. 

equation. 
Equation (16.86) can  be considered the  Fourier transform of the motion 

As in Section 16.10, several  specific  cases  will  be  discussed. 
Case I ,  Let us consider first the free vibrations of a hollow sphere with 

outer  and inner radii R2 and R I ,  respectively, as in the q~asi-static example 
described above. A solution of Eq. (16.86)  is 

(Ax - B)cosx - (A + Bx)sinx 
X 2  

U =  (16.88) 

where x = or/c and A and B are  constants. The  boundary conditions at 
r = RI, Rz for the free vibrations case are given.  by 

(h+2G)-+2h-=O au U 

dr r 
(16.89) 

ubstitutin~ Eq. (16.88) in Eq. (16.89)  gives 

[(h + 2G)[(2 - x:) sin xi - 2x cos xi] + 2h(xj cos xi  - sin x,))A 
(1 6.90) 

+[(h + 2G)[(2 - x:) cos xi + 2xj sin xi] - 2h(xi sin xi + cos xi))B = 0 

where the subscript i = 1,2, x1 = oRl/c,  and x2 = mR2/c. Eli~inating A 
and B from Eq. (l 6.90), we obtain  for the eigenvalue equation the expression 

kxl + (x: - k )  tan x 1  kx2 + ( x i  - k )  tan x2 
(x: - k)  - kxl tan xI (x i  - k )  - kx2 tan x2 

- - (16.91) 
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where 
4G 2(1 - 2 ~ )  

k=-.”--- ~ 

h+2G-- 1 - v  
- 

71 9 

(1 6.92) 

Equation (16.91)  gives the free vibration modes  of the sphere. From the 
trigonometric relationship 

tan x2 - tan xl 
1 + tanx2 tanxl tan(x2 - xl) = 

and using the series expansion 

(1 6.93) 

(16.94) 

the simplified  frequency equation 

for a thin spherical shell  is 

where x = oR/c, R being 

x2 - -xk+k2 = 0 (1 6.95) 

obtained. The value  of x in Eq. (16.95)  is  given  by 

2 2(1 + v)(l - 2v) x =  
(1 - v)2 

(1 6.96) 

the mean radius of the spherical shell.  Since 

2n 2 2G(1 -v) 
T P(1 - 2v) 

m = -  and c = 

the period of oscillations of the elastic hollow sphere is  given  by 

(1 6.97) 

(1 6.98) 

It should be pointed out, however, that the frequency  of vibrations for 
a viscoelastic material is a complex quantity. Let us  assume a 
material with a constant Poisson ratio v = f .  According to Eq. (10.18), 
the complex shear modulus can be written as 

Gs 
S + z-1 

sG(s) = ~ (1 6.99) 

It follows from this equation that the following approxi~at~on for a low loss 
material can be made: 

(16.100) 



where s = io and z = q/G. From Eqs. (16.97),  (16.98), and (16.100), we 
obtain the following approximate relationship for the complex  frequency: 

or, more conveniently, 

Accordingly, the temporal component of the wave  is  given  by 

(16.101) 

(16,102) 

(16.103) 

The mechanical  loss, represented by the imaginary part of Eq. (16.102) or by 
the decaying exponential in Eq. (16.103),  is  obviously  caused  by the internal 
friction due to the viscoelastic character of the material. 

Case 2. Let us consider now a solid sphere. The following equation 
represents a solution of the problem that is finite in the center of the sphere: 

cos x - sin x wr 
r2 C 

u = A  (16.104) 

According to Eq. (16.89), on the surface of a freely vibrating sphere, 

This equation leads to 

(16.105) 

(16.106) 

After some calculations similar to those of  case  1, the following equation is 
obtained for the frequency: 

h+2G 2 I-" 1-xcotx="--x =- 
4G X2 2(1 - 2) (16.107) 
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where x = oR/c. If, as before, v is taken  to be 1/4, the resulting equation  for 
the eigenvalues  is 

x tanx = 1 - (3/4)x2 
(16.108) 

whose first real solution is x1 = 2.5635. Consequently, the frequency  of a 
Maxwell material under the same conditions as in case 1 can be written as 

(16.109) 

Here only free vibrations have  been considered. For forced vibrations, it is 
difficult to obtain a closed analytical solution by  Laplace inversion (6). 

A plane strain  state is  defined as a state of strain where the components of 
the vector displacement take the form 

(16.110a) 

(16.110b) 

(16.110~) 

These equations imply that  the  strains yzz, yx,, and y,, are zero. From  the 
stress-strain relationships, Eq. (4.79, 

erxz = eryz = 0 (16.111) 

The equilibrium equations  are reduced by two, since G,, is  a function of 
only x and y ,  as  Eq. (4.75)  immediately shows. Consequently, no body force 
exists in the z direction in a plane strain  state. Problems of this type are two- 
dimensional and therefore are governed by only eight equations, which  let 
us find eight unknowns: G,, G,,,  G,,, y,,, y,,,  y,,, U,, and U,. As  will  be 
shown  below, G,, depends on G,, and G,,. 

In practice, the body  must  be cylindrical or prismatic with  uniform cross 
section and fixed ends. An alternative condition to the last one  is that the 
tractions on the lateral surface are  normal  to  the axis  of the system and  are 
functions of only x and y .  Obviously, these conditions are only approxi- 
mately  fulfilled  in actual situations. 
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The  use  of cylindrical coordinates is particularly suitable in the solution 
of axisymmetrical problems. It is worth noting that for a non-simply con- 
nected cross section, as occurs in the case of a hollow cylinder, the  compat- 
ibility equations  are  not sufficient to  guarantee single-valued displacements. 
In this situation,  the displacements themselves  must  be considered. 

Let  us consider now the  deformation  and stresses  of a cylindrical pipe 
under  two different boundary conditions (Fig. 16.2). In  both cases the 
length of the pipe is considered constant according to the requirements 
for a plane strain problem. The external and  internal radii are R2 and RI, 
respectively. If the applied forces and  the displacements are also uniform, 
the deformation  is purely radial, and in cylindrical coordinates U ,  = u(r). 
According to  the Navier equations, rot 0. Hence, Vdiv 
implies 

div U = constant (16.1  12) 

y using cylindrical coordinates [see Eq. (1 6.8 l)], Eq. (1  6.1  12) can be written 
as 

where m is  a constant.  Equation (16.113)  immediately leads to 

and 

y1 

r 
u = m r + -  

The only nonzero  components of the  strain tensor are 

(16.1  13) 

(16.1  14) 

(16.115a) 

I Cylindrical  pipe  with internal and  external radii _R1 and Rz. 
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n 
ye$ = m + - 

r2 
(16.115b) 

That is, the only non-null components of the stress tensor are those corre- 
sponding to the diagonal. The  constants m and n can  be obtained  from the 
boundary conditions, Let  us consider two  cases. 

Case 1. Let us assume first a uniform internal displacement in  which 
the external radius is  rigidly constrained, that is, 

u(R,) = uo; u(R,) = 0 (16.116) 

Then 

n 
U0 = rnRI +- 

R1 

and 

O = m R , + ~  
R 2  

From these equations we obtain 

and 

(16.117a) 

(16.117b) 

(16.118a) 

(16.118b) 

The values  of m and n indicated above, substituted in Eqs. (16.1  15a) and 
(16.1  15b),  give the strain tensor components as 

(16.119a) 

(16.119b) 

The stress-strain relationship [Eq. (P4.1 l)] together with Eqs. (16.119a)  and 
(16.1  19b)  give the stress tensor components as follows 
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(16.120a) 

(16.120b) 

0, = (16.120~) 

Case 2. *If the pipe  is internally pressurized, then the boundary condi- 
tions are 

(16.121a) 

(16.121b) 

In this case, the system of equations to be  solved to find m and IZ is 

E 
O =  (1 + v)(l - 2v) [(l - v ) ( m - ~ )   + v ( m + ~ ) ]  (16.122a) 

(1 + v)(l - 2v) [(l - v)(m -G) + v(m +~)] (16.122b) 
E -p L7= 

The values of m and n obtained from these equations are 

(16.123a) 

(16.123b) 

~ubst i tut in~ Eqs. (16.123a) and (16,12313) into Eqs. (16.115a) and (16.115b), 
we obtain the components of the strain tensor, 

(16.124a) 

(16.124b) 

and from Eqs. (16.114),  (16.123a), and (16.123b), the displacement  is 
obtained as 
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(16.125) 

Combining Eqs. (4.79, (16.124a), and (16.124b),  gives the components of 
the stress tensor as 

(16.126a) 

(16.126b) 

(16.126~) 

To complete the problem for a viscoelastic material, it is  necessary 
to assume a constitutive equation that, in the present  case, is the one 
corresponding to a standard solid  defined as in case 2 of Problem 16.2. 
That is, 

Laplace transforms of Eqs. (16.120),  (16.124),  (16.125), and  (16.126~) 
require the calculation of v, (1 + v)/E, and (l + v)( 1 - 2v)/E in terms of 
Eqs. (16.127). From Eqs. (16.34), the pertinent expressions are 

(16.12%) 

From these  expressions, the inverse Laplace transforms of the two  cases 
considered above are given  by 



(16.129a) 

(16.129b) 

where T = q / G a ,  and 

(16.129~) 

(16.130~) 

(16.130d) 

ri where T = -". 
G2 

The results for a thin-walled pipe can be  easily found by using in Eqs. 
(l 6.129) and (l 6.130) the approximations 

(16.131) 
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where h = R2 - RI and 

727 

(16.132) 

It is said that a state of plane stress exists  when the stress components fulfill 
the conditions 

CYzz = CY,, = CYyz = 0 (16.133) 

According to these equations  and using, as above, cylindrical coordinates in 
the stress-strain relationships, the zz component of the stress tensor can  be 
written as 

For this equation one  immediately obtains 

(16.134) 

(16.135) 

After substituting Eq. (16.135) into  Eq. (4.761, the remaining  stresses are 
given  by 

E 
1 -v2 

Grr = - (Yrr + VYW) (16.136a) 

and 

(16.136b) 

An inspection of  these results permits us to conclude that all the plane 
stress equations may  be  converted to the corresponding equations  for the 
state of plane strain if E and v are replaced by E' and v', respectively,  where 

E E'=-.-"-- 
1 -v2 (16.137a) 
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V 
V I  =- (16.13713) 

l - v  

Conversely, all the plane strain equations may  be converted to those of 
plane stress if E and v are replaced by E" and v", respectively,  where 

E(1 + 2v) 
(1 - V)* 

E" = (16.138a) 

and 

V VIt - (16.138b) 
1 "v 

In fact, the solution for a plane stress problem can be determined from 
the solution of the corresponding plane strain problem and vice  versa. Note 
that in contrast to the plane strain case, the remaining stresses in the plane 
stress are  not required to be independent of z. In fact, the three-dimension- 
ality of plane stress is  closely  linked to the fact that the conditions fulfilled 
by the stresses no longer lead to a single nontrivial compatibility equation. 
In other words, if the remaining stresses G,, uYY, and G,, are functions of 
only x and y, the strain~isplacement equations cannot  in general  be satis- 
fied. 

We shall see that for a prismatic or cylindrical  body  with the same 
symmetry as in the case  of plane strain and loaded normal to the z axis 
but now  with its ends load-free, a plane stress problem is obtained in which 
the nonzero stresses  vary  with z. Strictly speaking, a true plane stress state is 
present  only in thin plates with the main surfaces load-free and with external 
forces z-independent but symmetrically distributed through its thickness. 

To illustrate the plane stress situation let  us consider the problem of a 
viscoelastic  cylinder rotating uniformly around its axis,  with  special applica- 
tion to flat geometries  (discs) (Fig. 16.3). 

The starting point is once more the Navier equations. At equilibrium, 
the gravitational force corresponding to the inertial tern is  included  in the 
linear momentum equation [Eq. (4.35), where bi = pgiJ, so that 

do, -+ pg, = 0 dXj 
(16.139) 

where g is the gravity and p the mass density. Then the Navier equations 
become 
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Rotating disc  with angular speed U). 

1 2(1 + v) Au+- grad div U = -pg- 1 -2v E 

or alternatively 

1 -2v (1 + v)(l - 2v) grad div U - ~ rot rot U = --pg 2(1 - 2v) E(1 - v) 

(16.140) 

(lG.141) 

If the gravitational force is  replaced  by centrifugal force and Eq. 
(16.1  13)  is considered, then Eq. (16.141)  becomes 

(1 - v)E 

where m is the angular velocity. 
The solution of Eq. (16.142)  given in Ref.  15, p. 19  is 

and the maximum displacement obtained from 

-=o 
ar 

is  given by 

(16.142) 

(J6.143) 

(16.144) 

From the stress-displacement relationships, the following  values for the 
stresses are obtained: 
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3 - 2v 
1 - v  

= pw” (“)[(3R2 - r2) - 2v(R2 + r2)] 
8 l - V  

(16.146a) 

(16.146b) 

These expressions are valid for plane strain. However, we are dealing with a 
plane stress problem, and consequently the ends  of the cylinder are  not 
restricted. For this reason, close to such parts, 

if cr,,(2nr) dr = 0 (16.147) 

where,  according to the equilibrium equations in cylindrical coordinates, 

(16.148) 

It should  be noted  that U, = B close to the ends of the cylinder. From Eqs. 
(16.147) and (16.148), and after some calculations, we obtain 

pw2R2v( 1 + v)(l - 2v) 
U = - -  

2(1 - v)E (16.149) 

2 
CT,, = - v [( 1 - 2v)R2 - 221 4 (16.150) 

The inclusion of a new term  in Eq. (16.142)  does not modify the main result. 
Note  that the condition expressed  by Eq. (16.147)  is an integral instead 

of G,, = 0; this fact represents the application of the Saint Venant principle 
to the z face  of the cylinder. For this reason the stress state in the cylinder is 
only  precise  enough for points far  from the ends of the cylinder. 

According to Eq. (16.138), it is  possible to convert the equations  for 
plane strain  to those corresponding to plane stress, thus finding (15, p. 17) 

U =  
8E (16.151) 

From Eqs. (16.144) and (16.15 l), the maximum  displacement  is  found to be 
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(16.152) 

(16.153) 

(16.154) 

oreover, the stresses  obtained  in the usual way are 

G,.,. = -"(R~ PO2 - r2)(v + 3) 
8 

and 

oOO = - [(3K2 - r2) + v(R2 - 3r2)] = - [R2(v + 3) - r2(1 + h ) ]  (16.155) PO2  PO2 
8 8 

These results are  adequate  for plane discs. 
Let  us consider now another  important problem consisting of an annu- 

lar disc  with internal and external radii represented, respectively,  by RI and 
&. The equation to be  solved,  according to  the plane stress conditions, is 

~ ( ~ + ~ )  = po2r- 1 -v2 E 

A convenient solution is  given  by 

From the stress-strain relationships [Eq. (P4.1 l)], we obtain 

(16.156) 

(16.157) 

(16.158) 

where 

au 
Yrr = G (16.159) 

and 
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Yee = ; 
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(16.160) 

The  boundary conditions indicate that for r = R I ,  R2 

CYrr = 0 

Hence the constants appearing in Eq. (16.157) are 

pw2(1 - v2)  3 + v 
‘1 = 8E (G) (R: + 

c2 = 8E 

By combining Eqs. (16.157)-( 16.163) we obtain 

CF, = -s(~; PO2 - r2> 

crge =-(v+3) PO2 R; - - E r 2  - R: 
8 [ 3 + v  

(16.161) 

(16.162) 

(16.163) 

(16.164a) 

(16.164b) 

(16.164~) 

Now we are ready to solve the corresponding viscoelastic problem. As 
usual, a step input angular velocity o = ooH(t) is  assumed.  According to 
that, o2 = oiH(t), implying that 

W2(S) = &S (16.165) 

Moreover, the material is  considered  elastic  in  compression but viscoelastic 
(standard solid)  in shear. Accordingly, 

Since 
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P1Q2 - P2Q1 

2P1 Q2 + P2Q1 
V =  (16.167) 

(16.168) 

(16.169) 

the calculation of the corresponding Laplace  inverses for the solid  disc and 
the annular disc  leads to the following  expressions. 

For a solid  disc, 

(16.170a) 

9KG 
2(3K + G1)(3K + G1 + G2) 
- exp[- 3K + 

3K+Gl+Gz (l,li Z: 

or equivalently 

sxp[- 3K + G1 (91)  
3K+G1+G2 T 

For  an annular disc, 
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(16.171a) 

21K + 4GI 9KGZ 
3K + 2G1  2(3K + G1)(3K + G1 + G2) 

- 

(16.171b) 

with z = q/G2. 
Note  that if  we take the limit r -+ 0 in Eq. (16.170c),  we obtain 

(16.172) 

In  a similar way,  if  we take the limits I -+ 0 and RI -+ 0 in Eq. (1 6.17 l b), we 
obtain 

These results suggest that  the value  of the tangential stress close to the 
central hole of the annular disc is  double that corresponding to the solid 
disc.  This fact indicates that a little hole close to r = 0 is under  a stress 
concentration factor of 2. 

Finally, the m a ~ i ~ u m  values  of the radial and  angular stresses for the 
annular disc are easily  obtained  from the stress equations as 

for (16.174) 

and 
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(16.175) 

The calculation of the maximum displacements is  left to  the reader as an 
exercise (Ref. 16, p. 611). 

Contact problems  have their origins in the works of Hertz (188 l)  and 
Boussinesq  (1  885)  on elastic materials. Indentation problems are  an  impor- 

tant subset of contact problems  (17,18). The assessment  of  mechanical prop- 
erties of materials by means  of indentation experiments  is an  important issue 
in polymer  physics.  One  of the simplest  pieces  of  equipment  used  in the 

experiments  is the scleroscope, in which a rigid metallic ball indents the 
surface of the material. To gain some insight into this problem, we consider 

the simple  case  of a flat circular cylindrical indentor, which presents a rela- 
tively  simple solution. This problem  is also interesting from the point of 
view  of  soil  mechanics, particularly in the theory of the safety of founda- 

tions. In  fact, the impacting cylinder can  be considered to represent a cir- 
cular pillar and the viscoelastic  medium the solid upon which it rests. 

The problem  is  specified as the determination of the state of stress and 
the deformation  produced  in  viscoelastic half-space (z 5 0) by a circular 

punch of radius a whose force is P (Fig. 16.4).  As  is  well  known (Ref. 15, 
p. 25), the displacement of a half-space caused by forces applied to its free 

surface with the condition of null deformation at infinite distance is  given  by 

r = (x2 + y2 + (16.176) 
4nrG 

where G and (x, y, z) are, respectively, the shear modulus and the coordi- 
nates of a characteristic point. The  displacement of the surface can  be 

written as 

(1 - v)P 
% L o  = - 2nrG ’ r = (x2 + y 2 y 2  (16,177) 

Since the deflection  of all the points of the punch are the same, it follows 
from  Eq. (16.17’7) that 

/ 1 - v p ( x / ,  y’)dx’dy’ 
=-Ss 2nG ( x ’ ~  + Y ’ ~ )  = constant 

S 

(16.178) 
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ur ,, Plane indentation caused by a flat cylindrical indentor of radius r 
under a total force P, 

where ;he integral is taken on the surface S to which the force is applied and 

In Eq. (16,178) p(x’,  y ’) indicates the distribution of  forces on the sur- 
X f 2  + y  5 u2* 

face due to the load P given  by 

Changing Eqs. (1  6.178) and (16.179) to polar coordinates and solving the 
resulting expression, we obtain 

(16.180) 

If the mean. pressure P/m2 is denoted by po, then the distrib~tion p(r) can be 
expressed as 

(16.181) 
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A s  can be  seen  in Figure 16.4, the pressure  increases from p0/2  at the center 
of the indentation to infinity at the edge. For this  reason the solution is 
hardly realistic  in the vicinity  of r = a. 

To study the viscoelastic  case it is  convenient to assume a constant 
Poisson ratio. This hypothesis  is  essentially correct in most cases. In fact, 
if the material is  incompressible, one  has v = 1/2. Taking the input as the 

applied  force  instead of the distribution p(r), Eq. (16.177)  suggests that the 
time  dependence of the displacement for a viscoelastic materials is  given  by 

(16.182) 

where J ( t )  is the compliance function in shear and P(t) = 0 for t 0. 
Moreover, the upper limit of the integral is  set to infinity for convenience. 

For a step function P(t) = POH(t), the Laplace transform of Eq. (16.182) 
gives 

6(s) = -sJ(s)P(s) = l - v  - - 
2nr 

(16.183) 

where &) = Pols. This equation will  be applied to three different situa- 
tions. 

Case 1. For a standard solid  in shear, the complex relaxation modulus 
(see Chap. 10 for details) is  given  by 

(16.184) 

The Laplace  inverse of the equation resulting from substituting Eq. (16.184) 
into Eq. (16.183)  gives 

u(t) = ~ - v)po {l  - ~ e u p [ - -  G1 Ol) 1; == q/G2 (16.185) 2nrG1 GI + G2  G1 +G2 T ’ 

where the initial and final  values  of the displacement can be written as 

(16.186a) 

and 

(16.186b) 
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Case 2. Let us consider now a viscoelastic material for which 

J(t) = Jo sinh at (16.187) 

Then the Laplace transform of the shear compliance function is  given  by 

Under an  input Po sin at, Eq. (16.183)  becomes 

(16.188) 

(16.189) 

The evaluation of the inverse  of this equation requires us to decompose it 
into rational fractions, as follows: 

S A B Cs+D 
LI=: 
+-+p (S2 - a2)(s2 + 02) S + a S - a S2 + 0 2  

where 

(16.190) 

(16.191a) 

(16.191b) 

(16.191~) 

Then the inverse  of Eq. (16.189)  gives the displacement  in the time domain 
as 

1 - V JoPoao 
u(t) = - (-)[Coaot - cosat] 2nr o2 + a2 

(16.192) 

Case 3. Let us consider now the case of a depression in the surface 
produced by impact. According to Newton's second  law, 

P(t) = -mii (16.193) 

The Laplace transform of Eq. (16.193)  gives 

P(s) = -m(s2u - Yo) (16.194) 
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where V. is the initial impact  velocity at t = 0, obtained from  the height 
from which the ball impacts. On the other  hand,  Eq. (16.183) leads to 

F(s) = -su(s)G(s) 
2nr - 

l - U  

Finally, Eqs. (l 6.194) and (16.195)  give 

5(s) = “0 

S2 + [2nr/m(l - u)]sG(s) 

(16.195) 

(16.196) 

A simple  way to solve this equation  for low  damping materials (tan 6 5 0. l) 
is to make 

sG(s) = G*(s) z G*(o;,) (16.197) 

where G*(o) = G’(o) + iG”(o). In this case, the following  approximation 
holds for the displacement U in the S space: 

V0 
s2 + o2 + (as/o;,)G” 

$S) 2 

where 

2nr 
m(1 - U) 

a=- 

S = io;, 

Equation (16.198)  can alternatively be written as 

whose  inverse  gives 

(16.198) 

(16.199a) 

(16.199b) 

(16.19%) 

(16.200) 

V0 u(t) = (16.201) 
COLI - (tan2 ~j)/d~]’/~ 

where 
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aG " tan6 = - 
632 

Chapter Id 

( 1  6.202) 

The expansion of the term [l - (tan2 S)/4]'/2 in series permits us to write Eq. 
(16.201)  in a more convenient way as 

Now we consider roller ball indentations. Let  us consider first a rigid ball 
that does not roll but indents a viscoelastic  half-space; this analysis will  be 
extended to a rolling ball. This is a typical situation in which  the  elastic- 
viscoelastic analogy is, in general, no longer applicable. 

According to Figure 16.5, immediate geometric considerations indicate 
that  for z = 0 (the plane in which the indentation takes place) and r 5 a(t), 

x2 + y2 = ( 2 R  - [a(t) - u(t)])[a(t) - u(t)] E 2R[a(t) - u(t)J (1 6.204) 

where r is the radial coordinate, R the radius of the indentor, a(t) the 
displacement, and a(t) the radius of the contact area. This expression 
leads to 

....., '.,...........,,,.,,...I .... . .......,......... 

x 

Y 

Spherical indentor of radius R. Boundary  conditions  are tirne- 
dependent,  and  the  correspondence principle is not a~plicable. 
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x2 + y2 u(x ,   y ,  2) Ei a(t) - - ( l  6.205) 2R 

where H(t )  is the unit step function. 
It should be pointed out  that for z = 0 and r 2 a(t), 

G ~ , = O  and oYz = C F ~ ~ = O  (1 6.206) 

To solve this problem, we shall refer to the elastic solution given  in  Ref.  15 
(p. 25). According to this approach, the displacement  of a point (x, y) of the 

half-plane caused by the load applied at (X’, y’) is  given  by 

(16,207) 

where P is the applied force and G the shear modulus. The radial stress at 
z = 0 is  expressed (1  5)  by 

(1 - v)P 
G,, = 2n[(x - + cy - (1  6.208) 

Using the same approach  as in the plane indentation of elastic materials, 
the displacement of a viscoelastic  system by the action of a concentrated 

load is  given  by 

where 

p = [(x - + cy - y’)2]1/2 (16.210) 

and U is  assumed to be constant. In the case  of distributed forces, Eq. 
(l 6.209) becomes 

x2 + y2 = a(t) - - 2R 

where p(x’,  y’, 0) represents such a 
contact area. 

(16.21 l )  

distribution and in, is the maximum 
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For a given pz this problem  can  be  solved by using the correspondence 
principle. Thus,  for  a monotonically increasing a(t), Gm can  be replaced by 
the current contact  area G(t).  In these conditions, Eq. (16.21 1) can  be writ- 
ten as 

W&, y ,  0, t )  = - ""ss p - l4 (x ' ,  y ' ,  a(t)) dx' dy' = a(t) - ~ x2 + y 2  H(t)  (16.212) 2n 2R 
W O  

where 

P" 
(16.213) 

The  value of q for the corresponding elastic problem  is  given by 

4 
= n(1 - u)R [a2(t) - (x2 + y2)p2 

On substituting Eq. (16.214) into Eq. (16.212), we find 

a2 ( 4  a(t)  = - R 

(16.214) 

(16.215) 

as in the elastic case. 
By inverting Eq. (16.213) and noting that sJ(s) = [sG(s)]", we obtain 

(16.216) 

so the  total force is  given  by 

Substituting Eq. (16.216) into Eq. (16.217), the evolution of P with  time 
can  be written as 

S" G(t - @)--n3(@) d e  P(t) = d 
3(1 - u)R 0 de 

(16.218) 
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The response to a total applied force given  by P(t) can  be  easily found 
by inversion of Eq. (16.21 8). The pertinent result is 

a3(t) = 3(1 J( t  - 0) dP(0) (16.219) 

These results indicate that the area of contact 7ca2(t) is proportional  to the 
two-thirds power  of the applied force, whereas the depth of indentation is 
proportional to the first  power  of that force. 

The integral in Eq. (16.21 1) can  be  solved  analogously to similar pro- 
blems  in the theory of the potential in electrostatics, In  fact, the integral is 
close to  that of a uniformly  charged  ellipsoid or sphere. ~mi t t ing  the tech- 
nical details, which can be found in ef. 15, the function p&’, y’, t )  has the 
form 

3P 
2na2 Pz = - 

where the total force over the contact  area is given  by 

The  mean pressure is 

(1  6.220) 

(16.221) 

P 
E42 

Pm =- (16.222) 

so that  for r = 0 Eqs. (16.220) and (16.222) indicate that 

P@, 0) = 3/2Pm (1  6.223) 

Accordingly, the pressure in the center of the region  is 1.5 times the mean 
pressure. ~ubstituting the value given for pz in Eq. (16.220) into Eq. 
(16.21 l), we obtain 

where  now a depends on time. According to Ref. 15 (p. 29), the integral of 
the right-hand side  of Eq. (16.224) for a spherical indentor is  given  by 
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") .x2 +y2 dU 
2 a2 + U u1/2(a2 + U) 

C h ~ p t e ~  16 

(1  6.225) 

from which Eq. (16.224)  becomes 

This expression must be  fulfilled  by any values  of x and y, so, on account of 
the right-hand side of Eq. (16.21 l), we obtain 

and 

(16.227) 

(1  6.228) 

Since the values  of the second integrals in these equations are, respec- 
tively, n / a  and n/2a3, Eqs.  (16.227) and (16.228) can be written as 

1  3(1 - v)P O0 1 
R- 
" S, J(t-@)-"dQ 

a3W 

and 

3(1 - v)P O0 1 
a(t) = J( t -e)-de 

4 9  

(16.229) 

(16.230) 

The response  of a standard solid  (a spring with shear rigidity  given by 
GI in parallel with a Maxwell  element  with shear rigidity G2 and viscosity q) 
to a sudden force Po can be found from Eq. (16.219)  by taking, as usual, 
Laplace transforms. After the pertinent calculations [see Eqs. (16.127) and 
(16.184)] we obtain 

Conversely, if a(t)  or a(t) is  given, then P(t) can be found from the visco- 
elastic properties of the material in terms of J ( t )  or G(t).  

Now let  us deal with the rolling contact problem (19). The analysis of 
rolling contact for spherical or cylindrical machine elements  is an  important 
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issue in precision  assemblies and machinery. In fact, a good design  of  these 
elements  usually  implies the need to ensure precise spacing between  moving 
surfaces. In rolling contact bearings, the preservation of the sliding  is 
ensured by introducing compression between the elements. A transition to 
sliding  would cause overheating in  high  speed applications such as aircraft 
engines. In general, as the rolling  speed  increases,  two  effects occur: 

1. A size  effect that produces an overall reduction in the area of 
contact caused by the stiffening  of the viscoelastic material, 
which  increases  with the speed (or frequency)  of indentation. 
Speed U and angular velocity CO are related to some length a that 
depends on the specific configuration involved  in the rolling pro- 
blem. This length is interpreted as the diameter of the contact 
surface. 

2. A shape effect due to the asymmetry  of the contact caused by 
damping or delayed  recovery  of the viscoelastic material. 
Usually this asymmetry is restored at high  sliding  speeds but the 
contact area is reduced. The asymmetry  arises from the inability of 
the viscoelastic material to slide,  owing to asperities on the surface. 
These asperities, equivalent to periodic indentations, generate heat 
by hysteresis and in turn induce a softening effect. Thus, an 
increase  in  frequency  causes  stiffening, but the accompanying tem- 
perature rise creates a compensating softening effect. 

Geometric considerations indicate that the circle  of contact in  rolling 
spheres has the equation (Fig. 16.6) 

x2 + y2 = a2 = - [R - cx(t>j2 (l 6.232) 

where a, a, and u(t) are defined  in the figure and the equation of the sphere is 

W 

. Roller ball indentation. 
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x2 + y2 + [u(t) + R - cx(1)]2 = R2 (16.233) 

where u(t) is the depth of the indentation. 
From Eqs, (16.232) and (16.233), we obtain 

u(t) = (R2 - x2 - y2y2 - [R - a(1)] = (R2 - x2 - y 2 p 2  - {R2 - [~( t ) ]2}1 '2  (16.234) 

o simplify the problem, let us assume that the circle  of contact is constant. 
he modulus of the penetration velocity  will  be  given by 

(16.235) 

where the linear speed of the rolling sphere is U = dxfdt.  If the assumption is 
made that the elastomer follows  Kelvin-Voigt behavior, then 

O = = G & + ? l &  (1 6.236) 

ote that, assuming the Poisson ratio to be constant, the tensile modulus E 
is pro~ortional  to the shear modulus G, and for this reason the conclusions 
concerning the behavior of G are the same as for E. Moreover, the strain 
and the rate of strain are given  by 

(16.237) 

~ubst i tut i~g Eqs. (16.234),  (16.235), and (1 6.237) into Eiq. (16.236)  gives 

€742 
" 

2GR - 1"  (1  6.238) 

an expression that can be approximated to 

(16.239) 

where the dimensionless quantity p = qu/GR has been  used. 
third-order terms, we obtain 

(16.240) 
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Equation (16.240)  suggests that the values  of x = -xo and y = - y o  obtained 
from CT = 0  are given  by 

where 

Equation (16.241)  can  be  solved in terms of xo/a, giving 

This expression can  be written approximately as 

(16.241) 

(16.242) 

(1  6.243) 

(1 6.244) 

where the left-hand side represents a dimensionless asymmetrical contact, 
One  should note  that 

( l  6.245) 

where m = u/a is a  pseudofreque~cy of deformation  experienced  by the 
viscoelastic material. Consequently, from Eqs. (16.244) and  (16.249, we 
obtain 

(16.246) 

This expression leads to the conclusion that the asymmetry contact  factor 
decreases as the viscous  damping, tan 6, increases. 

The evolution of the semi-contact length a for  a  standard solid  with 
speed v  and consequently  with angular velocity  frequency v/a can be 
obtained from  Eq. (16.231) by noting that  at low frequency (low  speed v), 
that is, long times, the following limit holds: 

a o( ( l  6.247) 
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In  contrast,  for very high  frequency  (very  high  speed v), that is, short 
times, 

a o< (G1 + G2)-l13 (1 6.248) 

Summing up, the overall decrease in the  contact  area with increasing 
speed can be predicted by assuming that  at zero  speed the elastic contact 
condition prevails. However, at high  speed the material is  viscoelastic,  giving 
rise to the aforementioned stiffening, and  it is  assumed that  the new (and 
smaller) area of contact is related to the viscoelastic moduli in a similar  way. 
Finally, at very high  speed, the  contact tends to also be constant. 

Wave propagation is the result of an applied disturbance in a medium. 
When the applied disturbance% is  of mechanical origin, stress waves are 
produced. If the material upon which the stress wave propagates is  viscoe- 
lastic, there is not only attenuation in the propagation of the viscoelastic 
waves but also a dispersion effect due  to the fact that the phase velocity  is 
freque~cy-dependent.  In  other words, the shape of the wave  is changing as  it 
propagates across the viscoelastic material.  The  propagation of mechanical 
disturbances is one of the most thoroughly studied problems in dynamic 
viscoelasticity (6, Chap. IV; 20-24). The interest in wave propagation was 
primarily motivated by the advances in testing techniques and  the facility 
with  which stress waves  of  relatively  high  frequency are produced and 
detected. 

The mechanical properties of materials can be determined from wave 
propagation techniques. Thus  the responses of composite polymers to 
mechanical perturbations  as well as  information  on specific problems related 
to microstructural inhomogeneities can be obtained by using  these tech- 
niques. 

Although most of the  important features associated with  wave propa- 
gation occur in a single dimension, one must not forget that  the material 
may also undergo shear stresses, and in this case the  motion of the particles 
would occur not only  in the direction of the wave motion  but also, in some 
cases,  in the transverse direction. 

Strictly speaking, a wave in a  continuous medium  is a  propagating 
surface of discontinuity. The  propagation involves the motion of such a 
surface. In the present context, we are concerned with the propagation of 
discontinuous stress and  strain waves. That implies the  propagation of dis- 
continuities in the first derivative of the displacement. Waves  of this type are 
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commonly called  shock  waves. In general, the surface of discontinuity is  said 
to be singular surface of nth order if it is singular with  respect to the nth 

derivative of the displacement.  Accordingly, a second-order wave  is a dis- 
continuity in the acceleration. 

Laplace of Fourier transforms can be  used to solve  wave propagation 
problems. In certain special  cases, for example, for harmonic excitations, the 
inversion integral can be evaluated directly or through the use  of  residues 
theory. However, in the general  case an analytical evaluation in impractic- 
able. 

In the first part of this chapter we studied the radial vibrations of a solid 
or hollow sphere. This problem was  considered an extension to the dynamic 

situation of the quasi-static problem of the response of a viscoelastic sphere 
under a step input in pressure. Let us consider  now the simple  case  of a 
transverse harmonic excitation in which separation of variables can be  used 

to solve the motion equation. Let us assume a slab of a viscoelastic material 
between  two parallel rigid plates separated by a distance h, in  which a 
sinusoidal motion is  imposed on the lower plate. In this case we deal with 

a transverse wave, and the viscoelastic modulus to be  used  is,  of course, the 
shear modulus. As  shown  in Figure 16.7, let us consider a Cartesian coor- 
dinate system associated with the material, with its x2 axis perpendicular to 
the shearing plane, its x1 axis parallel to the direction of the shearing dis- 
placement, and its origin  in the center of the lower plate. Under steady-state 
conditions, each part of the viscoelastic slab will undergo an oscillatory 
motion with a displacement uI(x2, t )  in the direction of the x1 axis  whose 
amplitude depends on the distance from the origin x2. 

The stress-strain relationship in dynamic shearing can be written as 

On the other hand, the equation of motion for the uniaxial case is  given  by 

. Slab of viscoelastic material between  two  rigid plates. 
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(16.250) 

where Eq. (4.34)  was considered. Combining Eqs. (16.249) and (16.250), we 
obtain 

(16.251) 

This is the equation  for  the displacement propagation wave. It should  be 
noted that a similar equation could  be  obtained for  the stress propagation 
wave. 

For a prescribed harmonic excitation uT(x2, t )  = u(x2) exp(iot), the solu- 
tion of Eq. (16.251)  can  be conveniently written as 

u(x2, t )  = A exp(ax2) exp[i(bx2 + at)] + Bexp(-ax2)  exp[-i(bx2 - at)] (16.252) 

The  values  of a and b can  be  determined from  the  boundary conditions 
given  by 

u(0, t )  = uo exp(iot) (16.253a) 

and 

u(h, t )  = 0 (16.253b) 

The results obtained indicate that a and b are the real and imaginary  com- 
ponents of a complex quantity  m* according to 

where /G* I means the modulus of G*. This expression suggests that b > a. 
From the results obtained,  the  motion of the wave  along the x2 axis  is 
described by 

exp[(a + ib)(h - q)] - exp[-(a + &)(h - xz)] 
u(x2, t )  = uo exp(iat) 

exp[(a + ib)h] - exp[-(a + ib)h] 
(16.255) 

sinh m(h - x2) 
sinh mh 

= uo exp(iat) 
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y writing Eq. (16.255)  in terms of trigonometric and hyperbolic functions, 
we obtain 

sin[b(h - x)] cosh[a(h - x)] - i  cos[b(h - x)] sinh[a(h - x)] 
sin(bh)  cosh(ah) - i cos(bh)  sinh(ah) u(x2, t )  = uo exp(iot) 

(1 6.256) 

and the wave propagation equation can be written as 

4 x 2 ,  t)  = [u,(x2) + iui(x2)l exp(iot) (1 6.257) 

where the subscripts r and i, respectively,  refer to real and imaginary parts. 
The equation representing the spatial propagation of the wave  is  complex, 
which means that 
being 

Several  cases 
(16.258)  becomes 

However, if x2 "+ 

where the limits 

different points are  not in phase, the out-of-phase angle 

4 x 2 )  
4 x 2 )  

tan6 = - (1  6.258) 

can be analyzed. For example, if bh = ~/2 ,  then Eq. 

tanh[a(h - x2)] 
tanh[b(h - x2)] 

tan6 = (1  6.259) 

h, the phase  angle  is  given  by 

tan6 = 2 
b ( l  6.260) 

tan x/x "+ 1  and tanhxlx "+ 0 for x "+ 0 are used. 
Equation (16.259)  suggests that  tan 6 increases as x2 increases, reaching 
the limiting  value  of a/b when x2 = h. The limiting  value  of the phase 
angle  of the traveling waves  will  be 4.5". For a pure viscous material, 
G' = 0, and from Eqs. (16.253) and (16.260), tan6 = l .  

If bh = E ,  the phase angle  becomes 

sin[b(h - x)] cosh[a(h - x)]  - i  cos[b(h - x)] sin h[a(h - x)] 
sin h(ah) 4x2) = (16.261) 

y plotting the modulus of the amplitude against x2, a curve with a max- 
imum  value  of h = E is obtained. The phase angle  increases  with x2 until a 
limiting  value  is obtained. 
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The general solution [Eq. (16.248)]  suggests that the characteristics of 
the motion are very  sensitive to the distance h. For this reason two  limiting 
cases  will  be considered. 

Case 1. h is  very large (h -3 00). This case  is equivalent to considering 
a semi-infinite rod.  In this situation, Eq. (16.255) the wave propagation 
equation has the form 

u(x2, t) = uo exp(iot) expi-(a + ib)x2] (16.262) 

This equation represents the motion of a harmonic plane wave that depends 
on space and time,  with amplitude oscillating  between f u o  exp(-ax2). The 
amplitude attenuates with the distance from the perturbative shearing plate, 
approaching zero as x2 -+ 00. As a consequence, the exponent a in Eq. 
(16.262)  is  called the attenuating factor per unit length. The zeros  of U in 
Eq. (16.262) occur when bx2 = nn;, n = 1 2,3, . at distances x2 = h/2, h, 
3h/2, . . .. This requires that b = 27c/h, where h is the wavelength. The velo- 
city  of the propagating wave  is v = hu, where U is the linear frequency.  Since 
U = 1/T, where T(= 27c/o) is the period, v = o/b.  Equation (16.254) indi- 
cate that the higher the loss modulus and the lower the storage modulus, the 
higher  is the attenuation factor. This is the origin of the use  of  high damping 
viscoelastic materials for vibration damping and isolators (25). 

The wavelength  of the transverse wave propagating along the x2 axis  is 
given  by 

while the speed  of the wave propagation can be written as 

(16,263) 

(1 6.264) 

In the development  of  these  two latter expressions Eq. (16.254)  was  used. 
For an elastic material ((G” -+ 0), v = 

Case 2. If the distance between the two plates is  very  small (h  -3 0), 
(16.256) can be approximated to the first two terms the exponentials in Eq. 

of the series expansion 

which  gives 

h - x2 
4x2, t)  = U0 - h exp(icut) 

(16.265) 

(16.266) 
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This result indicates that in this case the amplitude of the wave  oscillates 
between  two straight lines and all the points of the material in motion are in 
phase. The expression obtained for the shear deformation demonstrates that 
this quantity does not depend on the position but only on time. 

Let us  consider  now the more complicated case  of an arbitrary excita- 
tion. The approach to be  followed in this case  uses the Laplace transform. 
From Eqs. (16.249) through (16.251), the transformed equations for the 
displacement and stress can be written as 

a2zl(x, S) PS2 
" 

ax2 G*($) 
- - G(x, S) 

and 

a26(x, S) 
" 

ax2 G*($) 
- 6 ( x ,  S) 

(16.267a) 

(16.267b) 

The general solution of these equations is  given  by 

where 

(16.269) 

where G*(s)/p is the square of the velocity  of propagation of the transverse 
wave  when the loss  is  very  small [see Eq. (16.264)] and A(s) and B(s) are 
functions to be calculated from the boundary conditions 

o(0, t )  = ooH(t )  and o(h, t )  = 0 (1 6.270) 

whose Laplace transforms are 

G(0, S) = oo/s and 6(h, S) = 0 (16,271) 

After the corresponding calculations, Eq. (16.268)  becomes 

sinh(h - x>%(s) 6(s) = - (1 6.272) 

It is important  to note that when the slab is  very  thin. (h  "+ 0) the 
hyperbolic functions can be  replaced  by their arguments, and Eq. (16.272) 
adopts the form 

&(S) = (1 - ;) 
S 

(16.273) 
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This indicates a linear dependence  of the shear wave on the distance x2 and 
consequently a time  dependence  of the strain in phase with the displacement 
and the stress. In other words, a thin slab is  nearly consistent with a linear 
response. 

Another interesting case to be  considered  is  when h -+ 00. The constant 
A must be taken equal to zero. The solution of the differential equation for 
the stresses  will  be 

The Laplace inverse presents difficulties  except  in  some  special  cases. For 
example, Christensen (6, p. 113) has given a closed solution for a Maxwell 
material under velocity step input. Alternatively, an asymptotic solution can 
be obtained to overcome  these  difficulties. 

In the table the values  of the dynamic modulus IE*(a)l are given as a func- 
tion of the frequency for poly(2-chlorophenyl acrylate) at 75°C. The data 
were obtained by superimposing the experimental results for the real and 
imaginary parts of the complex modulus obtained at different frequency 

TA  apparatus (26,  27). 

0.5 
1 
1.5 
2 
2.5 
3 
3.5 
4 
4.5 
5 
5.5 
6 

5.2 x 10" 

1.99 x 10' 
3.25 x 10' 

6.22 x 10' 
6.81 x 10' 
9.41 x lo8 

1.12 x 10' 

4.54 x 10' 

1.09 x 109 
1.20 x io9 
1.28 x 109 
1.32 x lo9 
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ode three-section contour  for the data.  That is, approach the 
experimental data by a contour formed by three horizontal segments alter- 
nating with three segments  of  slope + 1. Find also, by Laplace inversion, the 
tensile relaxation modulus in the time domain. 

It is  clear that the choice  of the number as well as the place  of the different 
sections necessary to obtain an approximate fit  of the experimental curve is 
arbitrary. Obviously,  accuracy  increases  with the number of sections. Once 
the number of  sections  is chosen, their locations can be optimized to obtain 
the minimal mean square deviation from the experimental results. 
as a general rule, the middle point of  each  section on the experimental curve 
is taken, The choice  of the point where the first  slope  section starts deter- 
mines the rest  of the sections. The middle point of the last section can be 
determined once the values  of the relaxed moduli are known and a careful 
choice has been made. In the regions  of  high and low  frequencies, the 
horizontal sections will  be longer than in the central zone  of the relaxation, 
where the representative curve of the modulus has a greater slope. 

In Figure P1 6.1.1 the data  are represented together with an approximate 
boundary contour made by three horizontal sections and three sloping  sec- 
tions. 

1 .E+10 

1 .E+09 

h 
€3 
0 

1. E+08 

1 .E+07 
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According to Eqs (16.24) and (16.26b), the complex relaxation modulus 
can be written as 

(P16.1.1) 

where S' = s/2n;. The transfer function that results from this approximation 
is 

(S' + 0.55)(s' + 86)(s' + 27,000) 
(S' + 1 l)@' + 363)(s' + 45,000) 

s'E(s') = 1.40 X 10 

Hence, 

with 

(P1 6. l .2) 

(P16.1.3) 

(P16.1.4) 

Therefore the tensile relaxation modulus is  given by 

E(t) = 1.40 x 109[7.11 x +0.1214exp(-69.1lt) 
(P16.1.5) + 0.4694  exp("2281t) + 0.402  exp(-282,745t)] 

Write the equations corresponding to E and v for a material that behaves as 
an elastic in bulk compression but reacts as a standard solid model in shear. 
Analyze the sign  of the viscoelastic  Poisson ratio. 

Let  us analyze the two  cases  of standard solids (see Chap. 10). 
Case I.  For a stress input in shear it is more convenient to use 

the three-element  model of Figure P16.2. l ,  whose differential equation is 
given  by 
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U I  .l. 

where 

Ql(s) = 2( 1 + $ S )  

In bulk the behavior is  purely  elastic, so 

According to Eq. (16.34), 

(P16.2.1) 

(P16.2.2) 

(P16.2.3) 

Case 2. A convenient model for a strain  input is shown in Figure 
P16.2.2. The general constitutive equation for this model  is 
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(P16.2.6) 

(P16.2.7) 

In bulk  one obtains 

P~(s) = 1, Q~(s) = 3K  (P16.2.8) 

According to  Eq. (16.34), E and v are given  by 

e  note  that in this second  case the complex shear modulus can be written 
as 

E" can be  reformulated as 

(P16.2.1 l)  

(P16.2.12) 

This equation has a  structure similar to  that of Eq. (P16.2.1 l), the relation- 
ship between the corresponding  parameters  being  given by 

Moreover 

with 

(P16.2.15) 
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(P16.2.16) 

(P16.2.17) 

Thus, if a material is elastic under hydrostatic compression but visco- 
elastic in shear, according to a solid standard model, then it is  viscoelastic  in 
elongation and in the transverse d e f o ~ a t i o n  produced by such elongation, 
according to a similar  model but with different parameters. 

The expression obtained for the complex  viscoelastic  Poisson ratio, Eq. 
(P16.2.10),  is  given by 

a + bs 
c + ds 

v*=-- - si@) (P16.2.18) 

with 

The inverse Laplace of v(s) has the form 

a bc - ad v(t) = - + ~ 
c cd exp( - ; t )  (P16.2.20) 

Two  limiting  values for U are obtained: 

b 

d If t + 0 ,  v + - ;  if t + m ,  v + - -  (P16.2.21) a 
C 

As a rule, 3K > 2G1, but 3K is comparable to 2(G1 + G2). 

exhibit a negative  Poisson ratio. Thus we find 
In this case b can be  negative, so for very short times the material can 

v=O  fort=--1n ~ 

( a ~ ~ b c )  (P16.2.22) 

For times  below that given  by Eq. (P16.2.22), the Poisson ratio becomes 
negative. This means that in this case the cross-sectional area of the long- 
itudinally strained material will  increase, a result that, even though it has not 
been  experimentally observed, is not  mathematical~y impossible. 
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Express the equations of motion in terms of  displacements for a linear 
viscoelastic  system. 

By combining the equations that define the strain tensor in terms of dis- 
placements  (see Chap. 4) with Eq. (16.9), and substitutin~ the remaining 
equation into the equilibrium equation (see Chap. 4), we immediately obtain 
the equation 

Calculate the longitudinal strain of a viscoelastic rod of a material that 
behaves  like (a) a Maxwell model, (b) a Maxwell  solid  in shear but  an elastic 
solid  in  bulk and (c) a viscoelastic  solid standard in shear but an elastic solid 
in bulk. The material is constrained in such a way that the lateral dimensions 
cannot vary  when it is under uniform forces  of compression at both ends of 
the rod. 

Let  us  assume that the z axis corresponds to the principal axis  of the rod. In 
this case, the only non-null component of the strain tensor is yzz. When 
Lamb  coefficients are expressed in terms of the tensile modulus and 
Poisson ratio [see Eq. (4.102)], the relationship between the stress and  strain 
tensors is  given  by 

Conversely, the relationship between the strain 
written as 

1 
E yij = - [( 1 + v)oij - 

(P16.4.1) 

and the stress can be 

(P16.4.2) 

[see Eq. (4.124)]. A s  a consequence, the only non-null components of the 
stress tensor for the present case  will  be 
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E(l - V) Ev 
o z z  = (1 + v)(l - 2 v p  and = 0;v = (1 + v)(l __ 2v)Yzz 

(P16.4.3) 

Let us  assume that a uniform compression force is applied to the 
material on the lateral side  in such a way that 

CYzz = PH(t) (P16.4.4) 

where H(t )  is the unit step function. In this  case, 

(1 - v)(l - 
Yzz = 2v) PH(t) E(l - V) (P16.4.5) 

where E and v are given  by Eq. (16.34), as was  seen in Problem 16.2. 
Consequently, from Eq. (P16.4.5), 

(”16.4.6) 

Case a.  For a material that behaves as a Maxwell  element  (in compres- 
sion and shear), we have 

where T‘ == and T” = g .  
Accordingly, Eq. (P16.4.6)  becomes 

(P16.4.7) 

(P16.4.8) 

where E and v have  been  replaced  by their respective  values. 
Taking the Laplace inverse  of Eq. (P16.4.8), we obtain 

By using an analogous procedure, the following equations for the transverse 
stresses are obtained: 
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(P16.4.10) 

It is noteworthy that if the relaxation times in compression and shear are 
equal, that is, if 

the previous  expressions for the strain and the transverse stresses will remain 

Case b. If the material is  viscoelastic  in shear but elastic in compression, 
then 

P~(s) = 1 and Q2(s) = 3K  (P1  6.4.13) 

and the following  expressions are obtained: 

(P16.4.14) 

If the material behaves as  an elastic  solid in bulk but  as a viscoelasti~ 
standard solid  in shear, as in many cases occurs, from the results of Problem 
16.2  (case l) and after some algebra, we obtain 

and 

or, equivalently, 

(P16.4.16) 
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The Laplace inverse  of  these  expressions leads to 

(P16.4.19) 

and 

(Pl6.4.20) 

where q = TG~.  

A thin rod of PMMA rigidly clamped at its ends is  initially at 18°C. 
Suddenly it is heated to 60°C. Determine the stress 1 h after starting the 
experiment, knowing that at 18°C the tensile relaxation modulus is  given  by 

0.143 

E(t) = '7.25 x lo9  Pa 

The dilatation coefficient  is p = 4 x lov4 K"', and the activation energy at 
the temperature range under study is 75 kJ/mol. 

We assume constant length, and the possibility of flexion  is  ruled out. 
According to the boundary conditions for a doubly clamped rod in the x 
direction, 

yxx = 0 and oyy = G,, = 0 (P16.5.1) 

The nondiagonal components of the stress and strain tensors are also null. 
For the thermoelastic case, the stress-strain relationship is 
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from which 

0, = --P AT E (P16.5.3) 

If AT > 0 the sample  is  compressed, and if AT 0 the sample  is stretched. 
The remaining components of the strain are 

Y,, = Yzz = " + PAT E (P16.5.4) 

The de~omposition in deviatoric and dilatational components of both 
the stress and strain tensors are 

(P16.5.5) 

and 

0 

YYY 

0 

0 o ) = ( ~  

YYY 0 

0 

3 

0 

0 

% 

0 
3 

0 

0 

3Y.x 
3 

(P16.5.6) 

We make  use of the auxiliary variable = aTt, which  in  fact  is an 
effective  time  related to the real  time through a time-dependent function 
aT ,  that is  also dependent on an activation energy. Taking  into  account Eqs, 
(P16.5.5) and (P16.5.6), the corresponding stress-strain relationship for the 
viscoelastic  case are found to be 

(P16.5.7) 

and 
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where C and K are,  respectively,  the  shear  and  bulk  relaxation  moduli. 
Taking  Laplace  transforms, we find 

6JS) = -2sG(s);jlyy(s)  (P16.5.9) 

and 

is,(s) = 3sE(s)[2;jlyy(s) - 3;jl(s)], where y = PAT (P16.5.10) 

These  equations  lead to 

and 

ti,&) = -sE(s)Y(s) 

where,  as  indicated  in  Chapter 5, 

9G(s)E(s) 
G(s) + 3K(s) 

E(s) = 

and 

3K(s) - 2G(s) 
2[G(s) + 3E(s)l 

?(S) = 

(P16.5.11) 

(P16.5.12) 

(P16.5.13) 

(P16.5.14) 

We  note  that  elastic  and  viscoelastic  solutions  have  the  same  formal 
structure. For a  step  temperature  input,  the inverse Laplace of  Eq. 
(P16.5.12) is given by 

oxx(t) = -PAT E(aTt) (P16.5.15) 

where 

(P16.5.16) 

Here  it  has  been  assumed  that  the  Arrhenius  equation  is  valid  for  the glassy 
zone o f  this  polymer. 
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Since Ea = 75 kJ/mol, To = 291K, and T = 333  from Eq. ( 

The stress will  be  given  by 
obtain aT = 0.0200. 

1 + (1.778 x 10-2)(t/0.02) 
1 + (1.778 x 10t-2)(t/0.02) 

0.143 

G,, == -(4 x 10-‘)(333 - 291)(7.25 x 10’) 

(P16.5.17) 

Therefore, for t = 3600 S, c r x x  = 3.26 x lo7 Pa. 

Let  us  assume a viscoelastic material that exhibits instantaneous elasticity 
[see Eq. (l 6.24)] 

Estimate the long-time behavior after a discontinuous change in the stress at 
x = 0 produced by a shear wave  in a slab of infinite thickness. 

The  Laplace transform of the stress input cr(0, t )  = croN(t) is given. by, 

C(0, S) = - 

Consequently, from  Eq. (16.274)  we  have: 

0 0  (P16.4.1) 

6 ( x ,  S) = -exp[-rn(s)x] 0 0  (P16.6.2) 

where m is given  by Eq. (16.269). For  short frequencies (S = io), that is, 
large times, 

S + 0 
ro ro 

From  Eq. (16.269):, 

&(S) = ( ~ ) 1 / 2  ( S 
1 +sa+**.) 1/2) 

(P16.6.4) 

where 
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a="" 41 rl 
40 ro 

Therefore, Eq. (P16.6.2) can be written as 

S 

(1 + sa + * )l 

(P16.6.5) 

(P16.6.6) 

By expanding Eq. (P16.6.6) in  series, and after some approximations, we 
obtain 

6(s) R5 - 0 0  [ 1 - x  ( ~ ) 1 / 2 (  - 1,2)] 0 0 [ ~ - x ( ~ ) 1 / 2 ( ( l  +sa)112)] l 
S (1 + sa + f .) 

(P16.6.7) 

whose Laplace inverse  is  given by 

(P16.6.8) 

where we have  used the following formula for the Laplace transform of a 
fractional power of (S + a): 

(P16.6.9) 

where the symbol I' represents the gamma function. Equation (P16.6.8) 
indicates that  for long times  the  velocity  of the disturbance is damped, 
with the time due to the dissipative character of the material. 
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The analysis  of the stresses and strains in beams and thin rods is a subject of 
great interest with many practical applications in the study of the strength of 
materials. The geometry associated with problems of this type determines 
the specific type of solution. There are cases  where  small strains are accom- 
panied by large displacements, flexion and torsion in  relatively  simple struc- 
tures being the most relevant examples. Problems of this type  were  solved 
for the elastic case  by Saint Venant in the nineteenth century. The flexion  of 
viscoelastic  beams and the torsion of  viscoelastic rods are studied in this 
chapter. 

In a first approach  to the study of  beam  bending, it is convenient to make 
some hypotheses (1). The first  of  these hypotheses is that the sections that 
are flat  before  flexion remain flat after flexion. For slender  beams-that  is, 
for beams  whose transverse dimensions are small in comparison with their 
length-this hypothesis is substantially correct. In this case, the shear effects 
in the cross sections are relatively  negligible. It will  be further assumed that 
the inertial forces arising from the rotation of  each  element around its center 
of  mass can be ignored. This is, in fact, the second  hypothesis. 

In a beam under flexion,  some parts  are stretched and others are com- 
pressed, A “neutral” surface exists  inside the beam in which the components 
of the stress vanish. Let us take the origin of the coordinate reference frame 
on this surface, and let  us  assume that the free length of the beam  is located 
along the X axis.  Let  us  assume further that the length of the undistorted 
bar is L and the deformations in flexion are produced in the X Y  plane. It is 
clear that  for homogeneous beams  of uniform cross section, either rectan- 
gular or circular, the axis  will pass through the center of  gravity  (see Fig. 
17.1). In this case the neutral surface is a line that can coincide  with the X 
axis. 

The analysis of the balance of  forces on the lateral surface of the beam 
carried out on the basis  of the preliminary hypothesis indicates that the only 
nonzero component of the stress tensor is e,,. A deformation of this type is 
a compression or a simple extension, In fact, some parts of the transverse 
section are under tension, and others are under compression, and the two 
effects  combined produce the flexion. According to Figure 17.1, the compo- 
nent yxx of the strain is  given  by 
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Y 

Element of a  beam  showing  the  stresses  and  the  neutral  line. 

dx' - dx dx' 
dx Y x x = T " -  - I (17.1) 

Since 

we obtain 

Yxx = Y / R  ( 1  7.2) 

where R is the local radius of curvature of the neutral line.  Of course, yx*x = 
0 on this neutral line. 

According to the differential operators  for the tensile  modulus E@", 
p) and the Poisson ratio v@", P") in Eqs. (16.34) and (16.37), the remain- 
ing  components of the viscoelastic strain  and stress, respectively, are given 
by 

y,, = yzz = " p v Y x x  Q" = --(-) Q" Y 
P" R 

(17.3a) 

and 

(17.3b) 
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The force acting on the transverse  section S of the beam4  is  given  in the 
viscoelastic  case  by 

f, = I,7i Y (p) Q" ds (17.4) 

On the other hand, the bending moment M on  a cross section of the beam 
can be written as 

(1 7.5) 

By applying the differential operator p to both sides  of Eq. (17.5) and 
using  (17.3b), we obtain 

where I is the polar moment  of inertia of the transverse  section*. The 
brackets of  type p(.) can be interpreted either as a commutative differential 
operator (2) or as a Boltzmann convolution integral. These  two  different 
possibilities  arise from the two  different forms  that  can be  used to represent 
the viscoelastic  stress-strain relationship as defined  in the preceding chap- 
ters. The inverse of the Laplace transform of Eq. (17.6)  leads to the follow- 
ing  expression for the flexural  moment: 

In the preceding calculations, a radius of curvature of the neutral line 
appears, which  in the case  of thin beams can be identified  with the radius 
of curvature of the beam.  According to Figure 17.2, 

"In this  Chapter  the  polar moment of inertia of a cross-section  area (dimensions L4)  and the mass moment of inertia 
(dimensions ML4) are  represented by I and J, respectively. 
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i i  

Sketch of a slender  beam to calculate the  radius of curvature. 

du du 
tan0 = 2; 8 = a r c t a n 2  

dx dx (17.8a) 

1 de  de dx d2uY,fdx2 
" """- - (17.8b) 
R - dl - dx dl - [l + ( d ~ ~ , / d x ) ~ ] ~ / ~  

where uy is the displacement, and it is  considered that 

dl = R  de and (dQ2 = (dx)2 + (duY)2 (17.9) 

For small curvatures, Eq. (17.8b)  becomes 

1 d2uY 
R - dx2 
"W" (17.10) 

and by combining this equation with that of the flexural moment [Eq. (17.6)] 
we obtain 

pE(A4) = -rQE(u;) (17.11) 

This expression  is  similar to 

and  on the same grounds as Eqs. (16.6a),  (16.6b), and (17.1 1) can be written 
in integral form as 
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:q I unit length : 

Section of a beam  showing the flexural m o ~ e n t ,  shear force, and 
external applied force and the way  of calculating the relations among them. 

where D is the tensile compliance, or, alternatively, as 

(17.13b) 

where E is the tensile  modulus.  Taking the Laplace  transform of Eq. 
(17.13a) leads to the expression 

I "- 
R4 
- Iiq(S) = - S n ; i ( S ) B ( S >  (17.14) 

which  is equivalent to the Laplace  transform of Eq. (17.13b), 

~ S ~ ( S ) ~ ; ( S )  = "(S) (17.15) 

as a consequence of the fact that  the complex  compliance function is the 
reciprocal of the complex  tensile  modulus.  The  corresponding equation  for 
an elastic material is  given  by 

U; = " / H  (17.15b) 

This expression, known as  the  Euler-~ernoulli  equation, is standard in texts 
on strength of materials. 
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Let us consider (Fig. 17.3) a beam  element  under a small deflection  in  which 
two  close sections are separated by an infinitesimal distance dx = dl. M and 
T in the figure are, respectively, the flexural momentum and the shear force, 
while q is the external applied force (including the weight  of the beam) per 
unit length. From the momentum balance, and momentarily  isr regarding 
the vectorial character of the magnitudes, we obtain 

dL 
2 n/r-(IM+dM)+(T+dT)dL-qdL-=O (17.16) 

Neglecting the second-order in~nitesimals? Eq. (1 7.16)  becomes 

dM 
dx 
” - T  (17.17) 

This equation represents, in fact,  the momentum balance condition for a 
beam  element located between  two sections separated by a very small dis- 

owever, this is not the only balance condition. The resulting force 
acting on a bar element  is dT + qdx, where dT is the difference  between the 
forces acting on two limiting sections of the beam element. If 

dT 
q = - -  

dx 
(17.18) 

then the resultant force in the balance equation vanishes. This  is the force 
balance equation  for the bent  beam. 

In cases in which the external forces applied to the beam are concen- 
trated in a specific section, then in the regions of the beam  where the forces 
do  not  act,  the balance equation is greatly simplified. Actually, if q = 0, then 
T is constant.  Integration of Eq. (17.17)  gives 

M = Tx + constant (17.19) 

Moreover, if the flexion  of the beam  is  produced  by concentrated forces, T 
experiences a jump in the points at which the forces are applied. 

Finally, if the flexion  of the beam  is  produced  by concentrated torques, 
then T is constant  throughout the beam and  the momentum M experiences 
jumps at the points at which the torques  are applied. 

y combining Eqs. (1  7.16),  (1  7.17),  and  (17.1 a), the following equations 
for viscoelastic materials in  terms  of the operational variable S are obtained: 
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I S ~ ( S ) ~ ~ ( s )  = "(S) (17.20a) 

I sE(s)ii"',(s) = - T ( S )  (17.20b) 

I s ~ ( S ) ~ ~ ( s )  = L;r(s) (17.20~) 

Equations (17.20) are Laplace transforms of the equations of  viscoelastic 
beams and  can be considered a direct  consequence of the elastic-viscoelastic 
correspondence principle. The second, third, and  fourth derivatives  of the 
deflection,  respectively,  determine the forces moment, the shear stresses, and 
the external forces  per unit length. The sign  on the right-hand side of Eqs. 
(17.20)  depends on the sense  in  which the direction of the strain is taken. 

It should be noted that the solution of any  viscoelastic  beam problem 
requires  knowledge  of the boundary conditions at the ends  of the rod. These 
conditions depend on whether the bar is supported, articulated, clamped, 
free, etc., and for this  reason the boundary conditions play a crucial  role  in 
the solution of the problem. 

Let  us  consider  now a double-sided  plane indentation for a clamped  beam 
(Fig.  17.4). To simplify the problem, we  will study a slender  beam,  neglect- 
ing shear and  rotatory inertial terms.  Let d(t) and P(t) express the time 
dependence of both the displacement of the indentor and the applied 
load. Furthermore 2a  is the length of contact, and I is the half-length  of 
the beam. The origin  of coordinates will  be taken at the center  of the beam. 
Owing to the symmetry of the problem,  only the solution for x 2 0 will  be 
considered. 

From the conditions of the problem, and taking the deflection as 
positive 

where Cl, C2, C3, and C4 are functions of  time. The condition that the shear 
at the ends  of the beam  balance the applied load P($), in conjunction with 
Eq. (1721), allows  us to write Eq. (17.20b) as 



Flexion and Torsion of Viscoelastic  Beams and Rods 

X 

Y 

Plane  indentation of a  double-clamped  beam. 

From the  boundary  conditions, 

Eq. (17.21b)  can  be  written  as 

777 

(17.23) 

(1 7.24a) 

(1  7.24b) 

On  the  other  hand,  the  boundary  conditions at the  edge of the  contact 
region (x = a), 

(17.25) 

lead Eq. (17.21b) to 

C1 + Cza + C3a2 + C4a3 = d(t) (17.26a) 

C, + 2c3a + 3c4a2 = o (1  7.26b) 
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It is clear that the system  formed  by Eqs. (17.22),  (17.24), and (17.26)  is 
nonlinear. Two  cases  will  be considered: (1)  when the applied load is  known 
and (2)  when the displacement  is  known. 

Case 1. If P(t) is  known, the Laplace transform of Eq. (17.22)  gives 

from  which Cq(t) can be obtained. The  remaining  unknown Ci parameters 
can  easily  be found by  solving Eqs. (17.24) and (17.26b).  The results are 

l2 3 cl = C, --(I - 3a); C, = 3C4al; C3 = - - C4(1+ a) 
2 2 (1 7.28) 

while  from Eq. (17.26a) we find 

c4 d(t) = -(l - a)3 2 (1 7.29) 

ccordingly, from Eqs. (17.21) and (17.28) the deflection  in case l is found 
to be 

3 l 2  x3 - -x2(1 + a) + 3 x d +  y(1- 3a) 2 ( l  7.30) 

Case 2. Let us consider now the case in  which d(t) is known. Solution 
of the system  formed  by Eqs. (17.24) and (17.26)  gives 

12(1 - 3a)d(t). --3(1+ a)d(t) c1 = 7 c3 = 
(1 - a)3 (1 - a)3 

aking the inverse  Laplace  of Eq. (17.27), we obtain 

P(t) = ~ 241 L-l[SE(S)d(s)] 
( l  - 

(17.31a) 

(17.31b) 

(1 7.32) 

y substituting the value of C4 given in Eq. (17.31) into Eq. (17.21b), we 
obtain  the deflection for this case: 

uy(x, t) = ~ d(t) [2x3 - 3x2(1 + a) + 6xaZ + 12(E - 3a)l  (17.33) 
(l - a)3 
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In the first case [P(t) is  known], let us consider a standard solid that is 
viscoelastic in shear (spring in parallel with a Maxwell element) but elastic in 

y assuming a step input, we obtain in the usual way 

GI(G1 + G2) e n p [ ~ ( j ) ] } .  G1 + G2 T ' T = - rl (17.34) 
G2 

where K is the bulk relaxation modulus; GI, Gz, and q are  the characteristic 
parameters of the  standard solid material; and Po is the intensity of the step 
input in the load. 

In  the same conditions as above, the solution for  the  load in the second 
case [d(t) is  given]  can  be written as 

27K2 G2 
+ (3K + G,)(3K + G1 + G2)enp G2 

(17.35) 

where do is the step input of displacement  of the  indentor. 

It is  well known that the elementary theory of beams  described  above 
becomes inadequate  for beams  with transverse dimensions of the same 
order of magnitude as their length. This section deals with the theory to 
be applied to thick non-slender beams.  This  theory appears to be relevant in 
the context of dynamic  mechanical analysis. The first fact to be considered is 
that when the beam  is  flexed it experiences a shear stress that provokes  a 
relative sliding  of the adjacent transverse sections. A s  a  consequence, the 
larger the transverse section, the higher is this shear strain. The final effect  is 
an increase in the  total deflection  of the beam (Fig. 17.5). 

The starting  approach will  be the elasticity theory (3). In the elementary 
theory of  beams, the only component of the stress tensor differing from zero 
is oxx == Ey/R,  which,  according to the theory developed for  the elastic case, 
can be written as 

(17.36) 

y considering a plane stress, that is, o,, = ox, = oyz = 0, at  equi~ibrium, 
Eq. (4.14) can be written as 
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Bending and  shear deflections of a  non-slender  beam. 

(17.37) 

where the body forces are neglected. By combining Eqs. (17.36) and (17.37), 
we obtain 

(17.38) 

where it is  assumed that  the shear stress T is  independent  of y. Integration of 
Eq. (17.38) leads to  the expression 

(1  7.39) 

For a rectangular beam,  such as  that shown in Figure 17.6, oxy = 0 for 
y = rJzd/2, so c = -d2/8. As a consequence, Eq. (17.39)  becomes 

(1  7.40) 

This expression reflects a parabolic distribution of the stresses  whose  max- 
imum value ~ i ~ ~ , ~ ~ ~  = Td2/81 is  reached at y = 0. For a rectangular section, 
1 = hd3/12 and  the maximum shear stress is  given  by 

3T oxy = ~ 2bd (17.41) 
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781 

Transverse  section of a rectangular  beam. 

On  the other hand, Eq. (17.36) indicates that the maximum for the long- 
itudinal stress is: 

so that, for a rectangular beam, 

6M 
bd2 
" oxx,max - 

Note  that 

%="( T d2/4 - y 2  ) 
0X.X 

(1 7.42) 

(l  7.43) 

(1 7.44) 

Since T I M  and  (d2/4 - y2)/y are of the order of 1;"' and d, respectively, 
and for slender  beams d/L << 1, Eq. (17.44)  suggests that the shear stresses 
are negligible along the beam. 

Another component of the stress, o;?., can be obtained from the remain- 
ing equilibrium condition, 

(17.45) 

From Eqs. (17.40) and  (17.49, the following  expression  is obtained: 
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integration of  which  gives 

For y = -d/2, oyy = 0, and C is  given  by 

c = 4 / 1 2  

~onsequently, Eq. (17.47) can be written as 

and 

Note  that 

Chapter 17 

(17.46) 

(1 7.47) 

(1 7.48) 

(17.49) 

(17.50) 

(17.51) 

so that the values  of oyy are of  the order of (d/L)2,' L being the total length 
of the beam. The results expressed  by Eqs. (17.44) and (1  7.51) justify the 
assumptions made in the elementary theory of  beams. On the other hand, if 
the cross-sectional dimensions of the beams are of the order of their lengths, 
the shear effects can become important. 

The viscoelastic counterpart of  these equations can easily  be obtained 
by using the differential operators as in the previous section. However, we 
postpone the viscoelastic analysis for a forthcoming paragraph. 
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After the study of the stresses produced by shear, to obtain the additional 
deflection we analyze the corresponding strains. The relevant components of 
the strain  are 

8% 
Yxx = 

and 

(17.52) 

(17.53) 

On the other hand, the absolute value  of the radius of curvature is  given  by 
Eq. (17*10), 

(17.54) 

where uy is the vertical  displacement or deflection. From Eqs. (17,52), 
(17.53), and (17.54), we obtain 

The strain-stress relationships in the present case are 

(17.56) 

and taking derivatives  of Eq. (17.56), we find 

The substitution of Eq. (17.57) into the derivative of Eq. (17.53) leads to the 
following  expression 

(17.58) 

Finally, from Eqs. (17.40) and (17.48), we obtain the second-order differ- 
ential equation 
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which can be written as 

(17.59) 

(17.60) 

Where G in Eq. (17.59) has been written in terms of the tensile modulus 
[E = 2G(1 + v); Table 4.11. Equation (17.60)  expresses the additivity of the 
deformations as the superposition principle indicates. In fact, the second 
term on the right-hand side represents the additional deflection due to shear 

It is worth noting the explicit  dependence  of both the radius of curva- 
ture and the deflection on y [see Eq. (17,60)]. For the neutral line, and 
assuming a rectangular cross section for which I = bd3/12, we obtain 

(17.61) 

The double integration of the second term on the right-hand side  of this 
equation gives the deflection due to shear effects uys as 

3TL 2 + v  
uYs =-- ~ 2bd ( E ) (l 7.62) 

The corresponding viscoelastic equations can easily  be found by using  dif- 
ferential operators  for the viscoelastic modulus or alternatively the integral 
representation, For this purpose the following main conclusions of the pre- 
ceding analysis should be considered: 

1. The cross sections  have a parabolic shape after deformation. 
2.  Owing to the nonuniformity of the shear stress in the section, an 

effective  value A* for the area of this section, instead of the geo- 
metric value A = bd, should be used. This is a consequence of 
considering only the deformation of the neutral fiber  of the 
beam. In this way, A * / A  would  be the relationship between the 
“mean” shear effects and the shear effects in the neutral fiber. Its 
value is always  less than 1. The controversial question is  now to 
decide the real meaning of the word “mean” in the present context. 
If the “mean” value corresponding to the neutral fiber  is taken, 
then according to Eqs. (17.61) and (17.62), A* = 2A/3.  However, 
this is a naive assumption. A much more convenient approach  to 
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finding the relationship A*/A is the energetic one. Let us consider 
the free  energy  of the deformation per unit of  volume, f ,  which at 
constant temperature is  given  by (1, p.8) 

df = 0ijdyij (1  7.63) 

According to Euler’s theorem of thermodynamics, 

(1  7.64) 

where the partial derivatives are taken at constant temperature. 
This equation in combination with that obtained from Eq. (17.63), 

gives the free  energy as 

1 
f = p Y i j  

(17.65) 

(17.66) 

Alternatively, by substituting the strain in Eq. (17.66) as a linear function of 
the stress, the free  energy can be represented as a quadratic function of oij. 
Applying  once more the Euler theorem, the corresponding counterpart of 
Eq. (17.64) in terms of the stress is obtained as 

Comparison of Eqs. (1  7.66) and (1 7.67)  gives 

(17.67) 

(17.68) 

Accordingly, the total free  energy  of the deformed body due to shear effects 
will  be  given  by 

(17.69) 

where dV is the element  of  volume. By writing the strain tensor in Eq. 
(17.66) in terms of the stress tensor following procedures described  in 
Chapter 4, the deformation energy can be written as 
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(17.70) 

In order to calculate the integral in Eq. (17.69) the values  of the stress 
tensor components in Eq. (17.70) must be substituted for those given in Eqs. 
(17.40) and (17.49). The limits of the double integral in Eq. (17.69) are 0, L 
for the variable x and  -d/2, d/2 for the variable y. The terns Jf(g)2dx and Jt M$$ dx appearing in the double integral can be interpreted and calcu- 
lated as Stieltjes integrals. The values  of the first and second integrals are 
zero and T2L/2, respectively. 

The final result for Eq. (17.69) contains two separate terms: the free 
energy  of the flexion in the absence of shear effects, and the free  energy due 
to the shear effects. The latter is  given  by the expression 

(17.71) 

This equation also reflects the fact that F is a quadratic function of T (the 
shear force). According to  Eq. (17.68), and considering the beam as a whole, 
the additional deflection due to the shear effects  is  given by the derivative of 
Eq. (17.71)  expressed by 

(17.72) 

where l(= L/2) is the half-length of the beam. 
A comparison with Eq. (17.62) indicates that the “effective”  section in 

this case  is  given by A* = 5A/6. This value  seems to be much more con- 
venient than  that corresponding to the neutral line. 

In a 1975  review  (4), Kaneko concluded what the best  value for A*/A is 
(5 + 5v)/(6 + 5v), This value  is  only  slightly  higher than  that obtained from 
energetic considerations. For this reason we adopt  for the additional deflec- 
tion a corrected version  of Eq. (17.61),  given  by 

(1  7.73) 

where K is A*/A. Then the total deflection  is obtained by addition of the 
bending and shear contributions. For a rectangular cross section double- 
clamped  beam loaded at its midpoint by a force P, 1“ = P/=?. By integrating 
Eq. (17.73), taking into account the boundary conditions uy = ziy = 0 at 
x = fd /2  for a double-clamped beam, the total deflection  is found to be 
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where U$ and uys are, respectively, the values of the bending and shear 
deflections. For K = 5/6, 

uy = 241E [ 1 + 3 2  + v)(')2] 

Alternatively, by  assuming K = A*/A = (5 + 5v)/(6 + 5v), we obtain 

(17.75) 

(17.76) 

For Poisson ratio values  of 0.3, 0.4, and 0.5, the following shear corrections 
are obtained from these formulas: 

V = 0.3 V = 0.4 V = 0.5 

2.76 2.88 3 

(6+ 5v)(2" v) 2.65 2.74 2.83 
5(1 + v) 

As we can see, the differences  between the values calculated for the two 
proposed expressions for A*/A are  not significant. On the other hand, 
uncertainties in the Poisson ratio  are  not critical for the calculations. 

Equation (17.76) can be written as 

P - = KE 

where 
"I 

~ = 2 ~ ~ ) 3 [ l + ~ ( 2 + v ) ( ' ) 2 ]  

(17.77) 

(17.78) 

or 
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= 2 h o ] [  5(1 +v) 
(6 + 5v)(2 + v) (~ )2 ] -1  (1  7.79) 

depending  on the value  assumed for A * / A .  
It is worth noting that the so-called  geometrical factor that affects the 

determination of the modulus E does not have a pure geometric character 
since it depends  through v on the material properties. 

Until now, we have  considered  only  elastic  beams. To generalize the elastic 
results to the viscoelastic  case  is  relatively  easy.  Actually, the correspon- 
dence  principle (5) indicates that if E tends to E* then G approaches G*, 
where the asterisk  indicates a complex magnitude.  Then, according to Eqs. 
(17.75) and (17.78), we can write 

(17.80) 

where v* = (E,*/2G:) - 1, and the subscripts r and a refer to the real  (cor- 
rected for shear) and  apparent (uncorrected) values  of the complex  tensile 
modulus. By separating real and imaginary parts, after some mathematical 
handling, we find 

In the glassy  zone,  where the loss is small, Eq. (17.8 la) can be  simplified to 

(1 7.82) 

The same  expression  is obtained for the relationship between E: and E:. 
These  results  lead to tadjE S tan?jEa; in other words, tan 6 is  much  less 
sensitive than the moduli to the corrections for shear stresses. The correc- 
tions in the moduli  depend on the dl8 ratio. For dl8 = 0.1, the correction is 
about 3%, of the order of the experimental error, whereas for d/E = 0.2, the 
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correction is about  12%, which cannot be  neglected. Note  that in the eva- 
luation of the errors it is  assumed that E: 3GL. 

When a beam  is loaded at its midpoint, the sections  tend to bend. 
Symmetry considerations indicate that the central section must remain 
plane. However,  since a discontinuous change  in the sections adjacent to 
the central one is not possible, a progressive  bending  of the cross  sections 
starting from the central one is produced, so that only at a certain distance 
from the center are the values  predicted by theory expected. In other words, 
in the central section  where the load is applied, the shear forces are smaller 
than those predicted by theory. Consequently, the deflection  will also be 
smaller. The distribution of stresses  in a beam under the action of a con- 
centrated load is an important  problem addressed by several authors (see 
Ref. 6), who  concluded that the modulus calculated by means of Eq. (17.82) 
is  overestimated by about 25-30%. 

Vibrations of beams frequently occur  in  engineering applications (7). In 
this context, the use  of  polymers  in the design  of better damping structures 
has become an  important topic of structural mechanics (8). On the other 
hand, vibrations can be  artificially produced in order to study the viscoe- 
lastic properties of polymers and other materials. Transverse vibrations in 
viscoelastic  beams are, in  this  respect, a particular case  of  wave propaga- 
tion, and the inherent study of  this  type of waves  is  closely  related to the 
physical situation existing  in  several  experimental  devices  used  in the mea- 
surement of the viscoelastic properties of  polymeric materials. This  section 
is  mainly  focused on the study of the vibrations of  clamped rods, though 
this study can easily  be  generalized to other cases.  We  shall  proceed  by 
steps,  considering  first  slender  beams,  in  which shear and inertial effects 
are negligible. Afterwards, a more general theory, including rotary inertia 
and shear deformations, is  considered for both free vibrations and sinu- 
soidal excitations. 

or re 

As has been  shown  in  preceding paragraphs, the classical theory of Euler 
and Bernoulli  describing  transverse vibrations in  elastic  beams can be  gen- 
eralized for the viscoelastic  case.  According to Eq. (17.13b), and based on 
the same grounds as Eq. (16.6b), we can write 
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(17.83) 

where M is the flexural moment, E the viscoelastic  modulus, and I the polar 
moment of inertia of the transverse section. The  corresponding equation of 
motion is obtained by equalizing the second derivative of the moment, that 
is, the force, with the inertial term: 

(17.84) 

where the transverse section A and  the mass density p are assumed to be 
y combining Eqs. (17.83) and (17.84)  we obtain 

(17.85) 

Free vibration, 
is  governed  by Eq. 
made zero. Let us 
where f ( x )  specifies 

the motion  that persists after the excitation is removed, 
(1 T7.85), in  which the applied transverse force has  been 
assume a solution of the  form u,(x, t )  = f ( x )  exp(iot), 
the lateral displacement and o is the angular frequency 

of the motion. For low loss viscoelastic materials, the free vibrations can be 
assumed to be quasi-harmonic, and therefore the complex  modulus in the 
equation of motion can  be used. The Laplace transform of Eq. (17.85)  gives 

Is~?(s~'(.x, S) = --pAs2f(x)  (17.86) 

or alternatively, 

f''(x) = h4f(x) (1  7.87) 

where 

(17.88) 

The  most general solution of Eq. (17.87)  is  given  by 

f(x) = sin hx + C2 cos hx + C3 sinh hx + C, cosh AX (1  7.89) 

where Cj are  constants  to be  determined  according to the boundary condi- 
tions. For a double-clamped  beam, these conditions are 
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uv = U; = O for x = O,28 ( l  7.90) 

Equation (17.89)  has the trivial solution C1 = C2 = C3 = C, = 0, except for 
the values of h satisfying the secular equation 

cos 2h8 cosh 2he = 1  (17.91) 

This equation is obtained by equalizing to zero the determinant  formed by 
the coefficients Cl, C2, C3, and C4 in Eq. (17.89)  under the four  boundary 
conditions given  by Eq. (17.90). This eigenvalue  equation has infinite solu- 
tions for hi?. The  six first values are given  in the following table. 

n 0 1 2 3  4  5 

0 2.365  3.9265  5.498  7.0685  8.6395 

In general, 

n; h,8 E (2n + 1) - for n =- 5 4 (1  7.92) 

Each  eigenvalue determines, through  Eq. (17.91), a  natural frequency of free 
vibration of the beam,  while Eq. (17.89)  gives the mode  shape function 

From  an experimental point of  view,  knowledge  of the modes  is  impor- 
tant because it makes it possible to optimize the location of the detector and 
supports in the experimental devices  in order  to minimize  effects  due to 
spurious stiffness, inertia, or damping (5, p. 90) (see also Chap. 7). By 
making S = --h + ico, as corresponds to a free vibration experiment, expres- 
sions for the real and imaginary parts of the dynamic  modulus and  for  the 
loss tangent at the resonance  frequency co = co, can be obtained.  The result- 
ing equations  are 

(1  7.93) 

(1  7.94) 

and 

20,h 
a; - h2 

tan6 = - (1  7.95) 
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and  for low damping, 

and 

2h tan6 = - 
a, 

Chapter 17 

(1 7.96) 

(1  7.97) 

For a beam of circular cross sections I = x$/ 12,  where r is the radius of the 
cross section. According to Eq. (17.96), the storage modulus can be written 
as 

(17.98) 

where.& = o,/2n and m = pAL is the mass  of the beam. 

In the case  of forced vibrations, a term corresponding to the external forces 
must be added to the motion equation, giving 

( l  7.99) 

where the separation of variables method has been  used as  it corresponds to 
a harmonic excitation. A convenient method to solve this equation (9) is 
based on the double application of the Laplace transform, first  with  respect 
to time and then with  respect to the x variable, that is, 

Thus, the following equation is obtained: 

(17.100) 

where 
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UJO, x) = 2iy(O, x) = 0 (17.101) 

Taking the  Laplace transform with  respect to x, Eq. (17.100)  becomes 

from which 

Let  us  consider a sinusoidal excitation at x = l ‘: 

FG(x - l’) sin cot 

(17.103) 

(17.104) 

where 6 is the impulse function. Consequently, 6 = 0 for all x f l‘ and 

After  some rearrangements, Eq. (1 7.103)  becomes 

where 

(17.105) 

(17.106) 

(17.107) 

The inverse  Laplace  of Eq. (17.106)  with  respect to x is obtained by making 
q4 - h4 = (q2 - k2)(q2 + h2). The pertinent result  is 

il,(x, S) = [ (L) [sinh h(x - l’) - sin h(x - l ’)l 
2h2 s2 + co2 sE(s)Ih 

(17.108) 
1 111 

h +$(O, s)(cosh hx - COS Ax) + - ii JO, s)(sinh hx - sin hx) 

which  is  valid for l 5 x 5 24. For 0 5 x 5 l, the solution is found  from the 
symmetry  of the boundary conditions. To evaluate iii(0, S) and ii JO, S) we 
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make U,(%, S )  = hY(2l, S )  = 0, and  the following system  of equations is 
obtained: 

h&”(0, s)(cosh 2hl - cos 2hl) + ii”’y(O, s)(sinh 2hl - sin 2 x 4  

= c;l[sin h(2C- l’) - sinh h(2C- C’)] (17.10%) 

hiiJ(0, s)(sinh 2hl + sin 2hl) + ~2”’~(0, s)(cosh 2hl - cos 2hC) 

= &[COS h ( 2 l -  l’) - coshh(2.t - C’)] (17.109b) 

where 

(17.110) 

Substituting the expressions obtained for U”(0, S) and 6”’,(0, S) from Eqs. 
(17.109) into  Eq. (17.108)  gives 

Cosh hx - COS hx ” 1 - cosh 2hl cos 2hl [sinh hl’ + sin hC + sin h ( 2 l -  l ’) cosh 2he 

- cos h(2C- l ’) sinh 2hl + sinh h(2l - l ’) cos 2hC- cosh h(2l - C ’) sin 2hCl 
sinh hx - sin hx 

1 - cosh 2hC cos 2he [- cosh hl ’ - cos hl ’ - sin h(2C- l ’) sinh 2hl 

+ COS h ( 2 l -  l’) cosh 2hl + sinh h ( 2 l -  l’) sin 2hl 

+ cosh h(2C - l ’) COS 2hC] 

(17.1 1 1 )  

In order  to handle Eq. (17.1 l l), the trigonometric and hyperbolic func- 
tions can  be  expanded  in  series by assuming that  the arguments  of these 
functions are smaller than unity. According to  that, 

x3 x5 x2 x4 
3! 5! 2! 4! 
x3 x5 x2 x4 
3! 5! ’ 2! 4! 

s inhx=x+-+-+. - . ;   coShx= 1 +-+-+--+ 
(17.112) 

s i n x = x  --+-”...* cosx= 1 --+”-... 
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It is further assumed that the excitation is  applied at the center of the beam, 
that is, 4’ = 8. In this  way, after long but not difficult calculations, the 
following  expression for the deflection  is obtained: 

(17.1 13) 

In the center  of the beam x = 8, and Eq. (17.113) can be written as 

l 

(17.114) 

To obtain a closed solution it is  necessary to assume a viscoelastic 
model. For example, if a standard solid  model  is adopted, the ~ o l l o ~ i ~ ~  
value for the dynamic modulus is found: 

0 ,  

By making use  of the decomposition 

l +TS As+B c 
(S2 + 02)(1 + T’S) - S2 + 02  + It”s - 

where 

(17.115) 

(17,s 16) 

(17.117) 

and after Laplace  inversion of Eq. (17.113), we find 

(17.118) 

where 

(17.119) 
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Equation (17.118)  suggests that  the viscoelastic  response of the material 
is the sum  of a sinusoidal wave  delayed  with  respect to the input wave and  a 
damped exponential. This last  component  corresponds to the simple three- 
element standard model  governed by a single relaxation time. For a  distri- 
bution of relaxation times, the response obtained would include a sum of 
such exponentials. 

As mentioned above, when the transverse dimensions of the beam are of the 
same order of magnitude as the length, the simple  beam theory must be 
corrected to  introduce the effects of the shear stresses, deformations,  and 
rotary  inertia. The theory becomes inadequate  for  the high  frequency  modes 
and  for highly anisotropic  materials, where large errors  can be produced by 
neglecting shear deformations. This problem was addressed by Timoshenko 
et  al. (7) for  the elastic case starting  from  the balance equations of the 
respective moments and transverse forces on  a beam element. Here the 
main lines of Timoshenko et al.’s approach  are followed to solve the visco- 
elastic counterpart problem. 

From Figure 17.7, the moment with  respect to an axis normal  to the xy 
plane that passes through  the center of gravity of the element of beam under 
consideration is  given  by 

(17.120) 

Rotary inertia 

igure 117.7 Sketch of a section  of a beam  showing the bending moment,  the 
shear force, the  rotatory inertia, the inertial force, and  the  curvature  due to bending 
and shearing. 
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where $uyb/3t2 is the acceleration and the subscript b denotes bending. In 
the absence of external forces,  this  effect must be added to  that due to pure 
flexion, so Eq. (1  7.85)  becomes 

as U a2 U a4u 
ax4ae at2 ax2at2 

11; E(t - e ) L d e  + p A 2  - p 1 1  = 0 (17.121) 

Moreover, owing to the shear forces, the slope of the neutral fiber  of the 
beam  will  be greater than  that predicted by the Euler-Bernoulli theory (see 
Fig. 17.7). For the elastic  case,  these shear forces are given  by 

(17,122) 

where the subscript S denotes shear. By taking into account  that the total 
deflection y is the sum of the bending yB,  and shear, y,, deflectio~s, Eq. 
(17.122) can be written as 

For the viscoelastic  case, Eq. (17.123)  becomes 

where 

-+ dUyb 
dx 

The equation for the bending  moment  is 

or alternatively, 

(17.123) 

(17.124) 

(17.125) 

(17.126a) 

(17.12633) 

On the other hand, the differential* equations for the translation and rota- 
tion of the beam are 
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and 

(17.127) 

(17.128) 

Then, after replacing M and T by their respective  values  given  by Eqs. 
(17.124) and (17,126b) a id  some  mathematical handling, we obtain the 
following equations  for the deflections uvb and uy: 

(17.130) 

The$  total  de~ection, uv, can  be  obtained  by eliminating uyb between these 
two equations after taking Laplace transforms with the boundary conditions 
given  by 

U,(& 0) == Zi,(x, 0) = 0; U,&, 0) = Ziy&-, 0) = 0  (17.131) 

In this way, we find 

A similar equation  can be written for uyb. These are the viscoelastic equa- 
tions correspo~din~  to the elastic ones  in the elastic beam theory (7). 

The  classical solution of these equations (10) requires obtaining the 
secular equation  for the eigenvalues  by  means  of suitable boundary condi- 
tions. For  that purpose, it is convenient to use the reduced variable 5 = x / L ,  
where L, is the total length of the beam. Accordingly, 

YIV + Y”b2(r2 + t2) - b2(1 - h2r2t2)Y = 0 (17.133) 

where Y is a function of S and 5, while the parameters b, r, and t are given  by 

pAsL4 I) I &)I 
&)I ’ 

‘ 12” - (17.134) b2 = -- r2 =- 
AL2 ’ A*G(s)L2 



Flexion and Torsion of Viscoelastic Beams and Rods 799 

An expression  similar to Eq. (1  7.133)  is obtained for Ye, where YB is the 
new variable corresponding to uvb after the aforementioned change of vari- 
able x + 6 has been made. For  double-cla~ped bars the following bound- 
ary conditions hold: 

Y=O,  YB=o 
for 5 = 0 and 1 

%o, r; ,=o (17.135) 

The roots of the characteristic equation corresponding to  Eq. (17.133) are 
given  by 

where 

4 1/2 
((? - t2)2 + $) > r2 + t2 (17.137) 

The general solution of the fourth-order differential equations (17.133) 
will  be  given,  respectively,  by 

Y = C1 cosh ab5 + C2 sinh ab5 + C,  cos Pbc + C4 sin Pb5 (17.138a) 

YB = C ;  sinh ab5 + C; cosh ab5 + C; sin (3bt + C; cos  (17.138b) 

According to the boundary conditions, the constants appearing in these 
equations are  not independent. In fact, they must fulfill the following con- 
ditions: 

Y(0) = Cl + c3 = 0 (17.139a) 

YB(0) = c; + c; = 0 (17.139~) 

Y (  l)  = C1 cosh ba + C2 sin  hba + C, cos bp + C, sin bp 0 (17.139b) 

YB( l) = C ;  sinh ba + C; cosh ba + C; sin bp + C4 cos bp = 0 (17.139d) 

where 
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Cl = -[l L - b2t2(a2 + r2)]Ci; C; b (T)cl a2 + t2 
ba 

L 
ba 

C2 = -[l - b2t2(a2 + 3 ) ] C ~ ;  C; = 

(17.140a) 

(1 7.140b) 

(17.140~) 

(17.140d) 

To obtain solutions different from the trivial  ones for Eq. (17.139, the 
following characteristic equation must be  fulfilled: 

b (17.141) + 
2(1 - b2?r2)1/2 

[b2t2(r2 - t2)2 + (3t2 - r2)] sinh ba sin bp = 0 

A procedure similar to  that outlined in the elementary theory of  flexion 
allows the determination of the normal modes.  However, this method  is not 
only  tedious but also has the inconvenience that some  terms  in the secular 
equation depend  explicitly on the material properties, that is, on the rnod- 
ulus. Instead of developing a solution of Eq. (17.132)  in the classical  way, it 
is more convenient to establish a  method based on  comparison of the appar- 
ent and real  viscoelastic moduli (1  1,12). The basic  idea  is to  compare Eq. 
(17.132)  with the Laplace transform of Eq.  (17.85),  which  is 

where EA is the apparent  modulus, that is, the modulus  without taking into 
account the shear and  rotatory inertial effects. By using the reduced  length 
5 = x/L as a variable, Eq. (17.142) can be written as 

where 
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The expression  cos a1/2 cosh a1/2 = 1 is the  characteristic  equation whose 
eigenvalues have previously  been obtained. 

By assuming that  the mode shapes are approximately sinusoidal, as 
occurs in the absence of shear and  rotary  inertia,  the new solution proposed 
for  Eq. (17.143)  is 

Y = C cos cot sin a1/25 (17.145) 

where a is  given  by Eq. (17.144). Substituting  Eq. (17.145) in Eq. (17.133), 
we obtain 

a2 - ab2(? + t2) - b2(1 - b2r2t2) = o (17.146) 

By replacing b2 by - ~ A s ~ ~ / ~ ( s ) ~  in such a way that ~ ( ~ ) / ~ ~ ( s )  = a2/b2 and 
replacing r2 and t2 by their respective  expressions given  in Eqs.  (17.134), we 
obtain  the  equation 

2(s) = &(S) [ 1 + - ;L2 (l +a) - ( ~ ) 2 ( ~ ) ]  (17.147) 
K G ( 4  KG@) 

where K = A*/A, as  defined  before. From this equation,  the  actual value of 
the dynamic modulus is obtained  as 

(17,148) 

For  a rectangular beam of thickness d ,  the  polar moment of inertia is  given 
by 

” 

This equation in combination with Eq. (17.148)  finally  gives 

(17.149) 

(17.150) 

or, equivalently, 
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(17.151) 

This expression can  be written approximately as 

(17.152) 

From these results it is clear that  the calculated modulus  without inertial 
and shear corrections is smaller than  the  actual one. These corrections, as 
mentioned above, depend not only  on the geometrical dimensions  of the 
sample but also on  its material properties. 

Let us consider now the more general case involving forced vibrations 
together with rotatory inertia and shear stresses. Under harmonic excita- 
tion, Eqs. (17.129) and (17.130)  must  be  modified to introduce the external 
excitation as follows. 

pA - a2uy - A* 1~ G(t - 0) (- a3 uY -  de = F@, t )  (17.154) 
at2 ax2 de ax2 de 

where F(x,  t )  =f(x)g(t) = &6(x - xo) sin ot is the applied external force 
and x0 is the coordinate of the point where the force is applied. Following 
the main  lines  of the method  developed for free vibrations, after taking the 
Laplace transform  and using the reduced length variable 5, one obtains 

YIV + b2(r2 + t2)Y” - b2 Y(l - b2r2t2)Y 

(17.155) 
= [F(tlg(s)(l - b2r2t2) - F”(5)g(s)t2] 7 L4 

IE 
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where g(s) is the Laplace transform of the sine function. Laplace transforms 
of the delta function and its second  derivative; 

p(&) = FLcg6(x - xO) = -e~p(--q&~) F0 
L (17.156a) 

P’(&) = F ~ L ~ ~ ” ( x  - xO) = z q  exp(-q&O) F0 2 (17.156b) 

where to = xo/L, together with the boundary conditions given  by 

F(& 0) = ?’(S, 0) = 0 (17.157) 

lead Eq. (17.155) to 

L3 

The solutions of the characteristic equation are 

Then the characteristic equation can be written as 

where 

q4 + q2b2(r2 + t2)  - b2(l - b2r2t2) = (q2 - b2a2)(q2 + b2p2) 

= - q b 2  - 422) 

4: + q; == b2(a2 + p2) = b2 

(17.158) 

(17.159a) 

(17.159b) 

(17.160) 

(17.161) 

y taking into  account the equality 
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1 A B - 
(q2 - 4:>(q2 + (r;) q2 - 4: q2 + q; 
“ +”---- (17.162) 

where 

A = (4: + B = -(q: + (17.163) 

we find 

(17.164) 

The inverse Laplace  of this equation leads to 

where 

(17.166a) 

(17.166b) 

By considering further the boundary conditions 

a system of  equations  for I“’(s,O) and f“”(s, 0) is obtained. With the values 
determined for 0) and F (S, 0) and after the corresponding substitu- 
tions, Eq. (17.165) finally  becomes 
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-( 42 1 1 l - b2r2t2 + t2q2 sin 42(5 - 50) 

+( 92 1 1  l - b2r2t2 + t242 sin4250 

1 - b2r2t2 ( t y  1 - b2r2t2 
[cosh 41 sin q2(1 - CO)] - - + 

41 

1 
42  

415 - -sinq&) ([t2q: - (l  - b2r2t2)] coshq,k0 

-[t2qi(l - b2r2t2)] cos 42k0 + [(l - b2r22) - t2q:] cos 42 coshql(1 - go) 

+[t2qi + (1 - b2r28)] cosh 41 cos 42(l - to) 

+ [ ~ ( 1  - b2r2t2) - t2qlq2 sinq2sinhgl(l - to) 1 
-[t2qlq2 + (1 - b 2 2 2  r t )- q2 sinhgl  sinq2(l - to) 

41 1 
(17.168) 

To handle this equation, it is  necessary,  as  above, to introduce the 
customary  approximations into the hyperbolic and trigonometric functions 
appearing in it. Then, after long calculations, Eq. (17.168) can be written 
as 
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(17.169) 

It should be noted that the rotary inertia is  relevant  only at high  frequencies 
> io4 HZ). In most cases, 

1 >> b2t2(r2 + t2) and 1 - b2r2t2 S 1 (17.170) 

so Eq. (l 7.169) can be  simplified to 

F~WL’ 
IsE(s)(s2 + CO2) 

F($, 5) = - 

Therefore the deflection at x = x. = COL is  given  by 

f;,WL3 Y(s,  x) = 
1921sE(s)(s2 + a2) 

(17.172) 

Y(s, x) = 1921sE(s)(s2 + 02) [ ,+ T. (:?;l (17.173) 



Flexion and Torsion of Viscoelastic Beams and Sods 807 

(17.174) 

If the out-of-center distance is 6 = .xo - g ,  the error  factor  can be written as 

(17.175) 

This means that the value of the modulus  is smaller than  the  actual value by 
a factor given  by Eq. (17.175). It should  be  pointed out  that when the 
inertial and shear effects are  not considered, then Eq. (17.172) can be written 
as 

3 

?(S, x )  = (17.176) 

For a load applied at the center of the beam, Eq. (1'7.114)  is  recovered: 

FowL3 
F(s, L/2) = 

192IsE(s)(s2 + 02)  
(17.177) 

and consequently the error involved  in the application of the load out-of- 
center is  given  by 

(17.178) 

It can be  seen that  the  error  for 6 / 8  = 0.1 is about  3%. However, as the 
displacement is, in general, independent of the free length, the  errors will  be 
larger for  shorter samples. 

It is interesting to compare the shear corrections obtained by the three 
different methods  analyzed here. Let us assume, for instance, that A*/A rt;= 
5/6 and v = 0.5. The pertinent corrections are 

1. From elasticity theory [Eq. (17.'75)] 3(d/02 
2. From the free vibration modes theory 

3. From the forced vibrations theory [Eq. (17.173)] I .8(~ i /Z)~ 

As mentioned above, the first correction must  be  reduced by a factor 'of 
about 0.7, and  as a consequence, the resulting value, 2. l(d/Z)2, for the 
correction derived from the elasticity theory agrees with the value obtained 

(first normal mode) [Eq. (17.152)]  2.144(d/Z>' 
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from the free vibration theory when the first normal mode is considered. On 
the other hand, the correction derived through the forced vibrations theory 
is the lower one. 

In Chapter 7, the effects  of clamping on the free length and the effective 
modulus of  viscoelastic  samples  were  discussed.  Owing to the fact that the 
samples are simultaneously subjected to both mechanical and thermal fields, 
it is important to consider now the influence  of thermal history on the 
measured properties. Moreover, in dynamic mechanical  tests, measurements 
are usually carried out in two ways: (l) nonisothermal constant-rate 
frequency  multiplexing or (2)  multiplexing at isothermal steps. The first 
type  of measurements are usually conducted well  below the glass transition 
temperature. The second  type  is a good prescription for measurements 
around the glass transition in order to improve equilibrium conditions. 
On the other  hand, samples are usually clamped at room temperature. As 
some instruction manuals for equipment state, clamping force affects the 
measured modulus, and the best  value  of this viscoelastic function is 
attained at a certain level  of the clamping force. Although it is  possible to 
reclamp the sample at low temperatures to ensure good clamping condi- 
tions, this practice should be  avoided to prevent condensation or freezing  of 
water on  or close to the sample. Moreover, brittle materials must be 
clamped  close to their Tg to avoid rupture of the sample. In this case it is 
convenient to reclamp at temperatures progressively  lower than Tg. In any 
case, it is  clear that the sample undergoes a complex thermal history prior to 
the measurements. This thermal history is superimposed on the mechanical 
force field, and this fact obviously  influences the material response. In these 
conditions, the beam  may  be  subjected to axial tension or compression in 
addition to the transverse load. Axial tension tends to straighten the beam 
and,  as a result, to reduce the bending moment produced by the transverse 
load. In contrast, axial compression, having the opposite effect,  increases 
the moment and consequently the deflection. 

Let us start by outlining the thermoviscoelastic problem associated with 
the thermal cooling or heating of double-clamped beams  where  these  effects 
are more critical than in  single-clamped  beams. The analysis will  follow the 
main lines  developed  in Chapter 16 (Section 5) though conveniently  simpli- 
fied, due to the complexity  of the phenomena involved.  However,  some 
insights can be  gained into the spurious effects appearing in clamped sam- 
ples that undergo heating or cooling histories. 
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It will  be assumed that the temperature field  is uniform, that is, the 
sample  is  homogeneously  cooled or heated, and for this  reason there is no 
spatial temperature dependence.  Also a constant dilatation coefficient and a 
sudden  jump in the temperature will  be  assumed.  This thermal history, 
though  not very  realistic,  refers to the most unfavorable situation. 

To complete the solution of the problem, it is  necessary to specify the 
viscoelastic properties of the sample. For  simpli~cation reason, the Poisson 
ratio will  be  assumed to be constant. According to the results  of  Problem 
16.5, which  presents a similar situation, the Laplace transform of the stress 
is  given  by 

whose  inverse  Laplace  gives 

(17.179) 

(17.180) 

This expression  indicates that the viscoelastic  response for this special  case 
has the same formal structure as the elastic one, except for the shifting 
variable, 6 = art. Therefore the longitudinal tension Q in the beam  will 
be  given  by 

Q =Z -pATAE(nTt) (17.181) 

where A is the area of the transverse  section of the beam.  According to the 
time-temperature correspondence principle, the modulus appearing in Eq. 
(17.18 1) is  equivalent to the modulus at some temperature above or below 
the  clamping temperature, depending on the sign of A?'. However,  in the 
glassy  zone the tensile modulus varies smoothly with temperature, and in 
order to avoid  unnecessary  complications, E will  be assumed to be constant. 
This means that the viscoelastic  problem can be  handled  in a first approx- 
imation as an elastic one. 

Obviously, the sign  of the longitudinal force  will  depend on the sign  of 
the temperature jump. If the sample  is  clamped at room temperature or 
higher, then under cooling (AT 0), the sample will  be stretched. On the 
other hand, if the sample  is  clamped at low temperature, a compression will 
appear in the sample after heating (AT > 0). 

It should be pointed out  that the analysis of the complete  problem 
requires  us to take into  account the longitudinal stretching of the sample 
when  it  is  transversely loaded by an alternating force. In this case,  even  in 
the absence of an external longitudinal stress, a temperature jump gives  rise 
to  a force along the rigidly  clamped bar. This force  is a consequence  of the 
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longitudinal displacement  caused by the transverse loading. Accordingly, 
the total  strain, which  in this case  will  be obviously different from zero, 
will  be thel’sum of the strain due,  to this force and the strain due  to  the 
thermal  effects: 

y i x = % + B A T  (17.182) 

where the two terns on the right-hand side  correspond to the stress and 
thermal contributions, respectively. Strictly speaking, p should  be inter- 
preted as the difference  between the thermal  expansion  coefficient of the 
material under study, usually a polymer, and the corresponding  thermal 
expansion  coefficient  of the metallic clamps  due to the fact that the clamps 
also undergo dilatation  or compression  under  thermal histories. 

For a slender beam, 

I Al? 
Yxx = 7 (17.183) 

where l represents the half-length of the beam.  On the other  hand,  it is  easy 
to show that  the  total half-length of the deformed  beam, considered as a 
curved  line,  is  given  by 

(17.184) 

s For relatively small flexural forces, and after expanding the integrand of 
q. (17.184)  in  series, we can write 

or, equivalently, 

The total stress, 

(17.185) 

(17.186) 

(17.187) 

together with Eq. (17.186),  gives the longitudinal tension as 
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(17.188) 

From this result, it is clear that the axial tension depends on  the deflection, 
Moreover, if AT 0 (cooling), Q > 0 and the sample  is strengthened; if A 
T > 0 (heating), the sign  of Q will  depend on  the relative values of each  term 
on  the right-hand side  of Eq. (17,188). 

Once the longitudinal tension has  been calculated the deflection  of the 
beam  under  simultaneous axial and transverse loading will  be addressed. Let 
us return first to the equilibrium equation  for  the beam [Eq. (17.17)) In the 
simplified analysis of the equilibrium conditions described above, the vec- 
torial character of the moments and forces in the balance equations has not 
been considered. Strictly speaking, if the vectorial character of the magni- 
tudes is taken  into account, the equilibrium for the momentum, 

, should  be written as (l,  p. 76) 

(17.189) 

where the symbol x indicates a vector product. Rividing this equation by 
dL, and defining t == d ~ / d L  as the unit vector tangential to the deformed 
beam  with a component auy/a-”c ctr auy/8L along the Y axis, we obtain 

The derivative of Eq. (17.190)  with  respect to L gives 

(17.190) 

(17.191) 

The  second tern on the right-hand side  of Eq. (17.191) is usually  neglected, 
because for small deflections ~ t / ~ L  is  negligible.  However,  when the ten- 

has a component  along the beam, Q is large in  comparison  with the 
other two  components, and this second  term  must  be retained. By develop- 
ing the vector products in Eq. (17.191) and using Eq. (17.20a), we find 

where the positive and negative signs are valid, respectively, for strength and 
compression. In the present context, Eq. (17.192)  corresponds to the case for 
which the bending and axial tension are of the same order of magnitude. 
The retention of  only the first term of the right-hand side  of Eq. (17.192) 
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corresponds, as usual, to the limiting  case  of  negligible longitudinal stress. 
The opposite limiting situation corresponds to the case  in  which the resis- 
tance to bending is  small  in comparison with the resistance to stretching. In 
this situation, the first term on the right in Eq. (17.192) can be  neglected in 
comparison with the components of the second term on the right. 
Viscoelastic  beams and rods under tensions much stronger than the bending 
forces are called  viscoelastic strings, 

According to the correspondence principle, the equation 
viscoelastic  beam under transversal and longitudinal effects  is 

describing a 
given  by 

(17.193) 

For a sinusoidal steady excitation and small  deflections, the elastic and 
viscoelastic solutions are formally similar, as the separation of variables 
methodology outlined above suggests. Thus, in this case, the viscoelastic 
response is dependent on only the specific material properties of the sample 
under study. Moreover, on the basis  of one of the hypotheses mentioned 
above, the therrnoviscoelastic problem can be  reduced to a thermoelastic 
one. Therefore, in the present context only the elastic solution of the pro- 
blem  will  be  discussed. 

For a double-clamped beam  of length L, transversely loaded at its 
midpoint with a weight P, the deflection  will  be  given  by the equations 
(1 3)  

2  sinh(kL/2) - kL cosh(kL/2) 
+(kL/2) cosh kL - sinh kL  + (kL/2) __ 1- 

2 - 2 cosh kL  + kL sinh kL  2 kx __ kx) I 
(17.194a) 

for a strengthened beam, and 

2sin!5f-kLcos~+!5fcoskL-sinkL+!5f 1 
2-2coskL+kLsinkL 2 - - (sin kx - k x ) ~  

(17.194b) 

for a compressed beam. In these  expressions, 

k = (Q/EI)’/2 (17,195) 
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The deflection at the midpoint, which  in  this  case  is the maximum  deflection, 
is obtained by making x = L/2 in Eqs. (17.194a) and (17.194b). The results 
are 

uvm = 6 (tanh- - - 4 4  

when the beam  is stretched and 

uvm = - tan- - - L( Y T) 

(17.196a) 

(17.196b) 

when the beam  is  compressed. 
For relatively  small  values  of k,  the approximations 

2 2  t anxEx+-+-+s-e  3 15 
(17.197a) 

and 

2 2  t anhxEx- -+-+ .+ .  (17.197b) 
3 15 

in conjunction with Eq. (17.195)  give the following  result for the maximum 
deflection: 

(17.198) 

where the negative and positive  signs hold, respectively, for stretching and 
compression. 

The next  step  is to express Q as a function of the maximum  deflection 
and the temperature jump.  The peak-to-peak deflection corresponding to 
the sinusoidal  displacement  is  usually  specified  in the experimental  measure- 
ments. For this reason, the stress produced in the beam due to the deflection 
will  be calculated  in the absence  of thermal effects, and, according to the 
superposition principle, it will  superimpose later with the temperature con- 
tribution to the longitudinal stress. Thus the nonthermal contribution to Q, 
given  by 

(17.199) 

must be determined by combining the corresponding derivative, 
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(1  7.200) 

with Eqs. (17.194a) and (17.194b), the expressions corresponding to  the 
deflection  of the beam. By using the approximation duy/dx S P/Q', and 
the series  expansions for sin x, cos x, sinh x, and cosh x, after long algebraic 
calculations, we obtain 

?L4A 
15,360H2 

Q' 2 (17.201) 

(17.202) 

where the subscript p  is  used to denote the modulus calculated without 
considering thermal or  other effects.  According to  Eq. (17.202), Q' can be 
expressed in terms of this maximum  deflection  by 

( l  7.203) 

A s  a consequence, the total 
written as 

longitudinal tension for a  specified uym can be 

( l  7.204) 

~ubstituting this equation  into  the expression for the deflection [Eq. 
(1  7.198)]  gives 

(1  7.205) 

where the sign for the correction, combining longitudinal and thermal stres- 
ses in the beam,  has  been taken  into account. For rectangular cross section 
beams  with thickness d, 

" A L ~  (L)2 
401 - 10 2 (1  7.206) 
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Eq. (17.205) adopts  the form 

(17.207) 

It is  convenient to compare the actual modulus E with that calculated in 
the absence of thermal and longitudinal stresses, that is, from Eq. (17.202). 
From Eqs. (17.202) and (17.207),  we  find 

l -G 3 (li>”[. L 12 (x) uy ,  2 (-)2-BArj Ep * (17.208) 

from which, after some rearrangements, we obtain 

Let  us  assume, for instance, the following values for  the parameters 
appearing in Eq. (1’7.209): 

10 -~  
uym = 16 m; p = 4 x ~ O - ~ K - ’  

Then the corrections for different temperature jumps  are 

AT(OC) +l --l +l0 -10 +l00 -100 

E/Ep 1.00 0.99 1.05 0.95  1.48  0.52 

The preceding analysis suggests that  the thermal  effects are clearly 
dominant over those due to the longitudinal tension for relatively  high 
values  of ]AT!. That is, for  a thermal jump of  several tens of  degrees, 

(17.210) 

It is  worth noting that the thermal stress effect can also be di~inished to 
some  degree  by the slipping process existing  between the bar  and the clamps. 
For this reason, the values  of the preceding table are surely overestimated. 



Thermal effects can explain some phenomena observed in  the experi- 
mental results. Thus when the sample  is  clamped at room temperature,  it 
stretches during cooling (h T 0), and  the measured modulus tends to be 
lower than  the  actual one (Fig. 17.8).  However,  when the stretched sample is 
heated from low to high temperature  during  the measurements, and,  more 
specifically,  when a polymer  passes through  the glass transition,  the thermal 
stresses disappear,  and the experimental curves  may exhibit an increase in 
the modulus as shown in Figure 17.9. 

A new example of deformation of a  rod, in  which  small strains  are compa- 
tible  with large displacements of parts of the  rod, is torsion (1, p. 59). In  a 
rod under torsion whose  axis  is kept straight,  without flexion or bulge, each 
transverse section rotates relative to those located close to it. Consequently, 
if the  rod is long, two  sufficiently distant sections can  rotate  through  a large 
angle  relatively to each other. 

Let  us consider a  straight  rod with an  arbitrary cross section, as shown in. 
Figure 17.10. If the axis of torsion coincides  with the vertical  axis,  which 

E' 

T 

.8 Variation of the  storage  relaxation  modulus, E, with te~perature 
measured during  a cooling experiment.  Ep  represents  the  actual value  of the  storage 
relaxation  modulus in  absence  of contraction forces  which  increase the  longitudinal 
tension. 
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I E p -  \ 

T 

Variation of the  storage  relaxation  modulus E,  with temperature 
measured during  a  heating experiment. Ep represents the  actual value  of the  storage 
relaxation  modulus in absence of dilatational forces  which  reduce the  longitudinal 
tension. 

passes through  the center of gravity of the  bar,  the following  vector product 
holds. 

6r = a x r  (17.21 1) 

where a is the vector  whose absolute value  is the  torsion angle, directed 
along the torsion axis that will  be considered the Z axis. Consequently, 

l 

l 

....... 
.- .. ,,.I. 

t 
'\ .%,, 1 * ,,,,. :> 

...... 
. .  

% 

-..,. '\. 1 
............ ..................... .... 

re Torsion of a cylindrical rod, showing the  torsion vector a and  the 
displacement  vector 6r. 
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the rotation takes place  in the Xly plane. The vector a in Eq. (17.21  1)  will 
depend  on both z and time. 

It should  be  pointed out  that during torsion the initially planar sections 
lose their planarity because  each  of their points experiences  a  displacement 
parallel to  the z axis. This displacement  is proportional (l) to a function \Ir, 
called the torsion function, which  depends on the position of the point on 
the section before the deformation is produced, and (2) to the magnitude of 
the relative rotation between  two  very  close sections, that is, the derivative 
of a with  respect to the z direction. Consequently, the vector displacement 
has the components 

(17.212) 

where \Ir = $(x, y ) ,  The  components of the  strain tensor according to Eq. 
(4.29a) are 

Substituting Eqs. (17.213) into the stress-strain relationship for viscoelastic 
materials, we obtain the following expressions for  the components of the 
stress tensor: 

(17.214a) 

G, .  = CY,, = 0; CY,, = G, = f~ G(t - 8) ( -~  + g )  &d8 (17.214~) 

G , ~  = G,, = f~ G(t - 8 ) ( x  +$) &de (17.214d) 
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The substitution of the components of the stress tensor, given  in the pre- 
ceding section, into  the equilibrium equations [Eq. (4.14)  with b = 01 leads 
to 

(17.215a) 

(17.215b) 

(17.21%) 

Taking derivatives in the first two equations with  respect to x and y, respec- 
tively, and adding the resulting expressions, we obtain 

where 

a2+ a2+ 
A+=-+-- ax2 ay2 

(17.216a) 

(17.216b) 

isregarding the trivial case, \if = 0, Eqs. (17.216a) and (1 7.21 5c)  imply that 

A + = O  (17.217) 

that is, \1, is a harmonic  quantity. At the same time, a can be linear as well as 
quadratic in z. This implies that the fibers initially parallel to  the torsion axis 
are inclined straight lines or, alternatively, have parabolic form after defor- 
mation. 

As in the elastic case, it can  be demo~strated (l, p. 63) that if the torsion 
is produced by the application of a torque at one  end of the rod, whereas the 
other end  is  fixed, then on the basis of the minimum for the total energy  of 
the distorted bar, the fibers parallel to the torsion axis  will  be distorted along 
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a straight line. In fact, the rotation angle is a linear function of z, that is, 
a == Cz, and  as a result the two factors appearing  in Eq. (17.216a) are null. 

To determine the  boundary conditions on the surface of the rod,  it should  be 
noted that  for thin rods the external forces acting on  the lateral surface are 
considered negligible in comparison  with the internal tensions, and  the fol- 
lowing equation holds for the sides  of the rod: 

x o i j n j  = 0 (17.218) 

As the axis  of the  bar is directed along the z axis, this is equivalent to 

o z x n ,  + a,n, = 0 (17.219) 

Substituting the stress tensor components [Eqs. (17.214~)  and (17.214d) into 
Eq. (17.219), we obtain 

(1  7.220) 

In  the development of this expression it was taken  into account that  the 
components of the vector normal to a plane contour  are n,  = -dy/dZ and 
ny = dx/dZ, where x and y are the coordinates of the points on  the  contour, I 
being an element  of arc. However, for the present purposes, it is  more 
convenient to use  a function F related to $ by 

(17.221) 

The substitution of Eq. (17.221) into Eq. (17.220) leads to dF = 0, whence 

F = constant (17.222a) 

Accordingly, the stress function F is required to be constant along the 
section boundary. This constant may  be  chosen arbitrarily  for a simply 
connected boundary because it has no effect on the stress tensor compo- 
nents. For the forthcoming discussion we assume,  without  loss  of generality, 
the boundary condition 
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F = O  (17.222'17) 

On the other hand, taking the derivative  of Eq. (17.221a)  with  respect to 
y and  that of Eq. (17.221b)  with  respect to x, and subtracting the resulting 
expressions, we obtain 

AF=-1 (17.223) 

This new function is obviously not  harmonic. 

For certain cross sections of  simple  geometry, for example the circular one, 
closed solutions for the modified torsion function F may  be obtained (14). 
On the other hand, for arbitrary cross  sections,  such as a rectangular one, it 
is not possible to find a solution from the boundary equation. In this  case, 
the method of separation of variables  is  used, and the following solution is 
proposed. 

CO nxx F = Z Y ,  
2n+l cos d 

(17.224) 

where  is a function of y. In order to fix ideas,  let  us  consider a prismatic 
bar of thickness d and width b. In view  of the symmetry of the problem, the 
solution is taken in the form of  even functions. Substituting Eq. (17.224) 
into Eq. (17.223), we obtain 

O0 n2x2 nxx CO # Y  nxx 
Zn+l d2 d &+l ay2 d 
- x Y,-cos- +  cos- == -1 

fl>O n>O 

The identity 

leads Eq. (17.225) to the differential equation 

(1 7.225) 

(17.226) 

(17.227) 

whose solution is  given  by 
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nnY Y, = a, sinh 2 + b, cosh - + (- d d (17.228) 

On  account of the symmetry of the Yn with  respect to the axis OX, for all 
a, = 0 and  for y = kb ,  the following equality must  be  fulfilled: 

l+;) = 0 (17.229) 

Consequently, 

and  Eq. (1 7.224)  becomes 

( 1-  cosh(nxY/~)) nnx 
cosh(nn;b/2d) d 

cos ~ 

(1  7.230) 

(1  7.23 1) 

Taking derivatives with  respect to x and y, we obtain 

(1 7.232a) 

These derivatives in  combination  with Eqs. (17.214~)  and (17.214d)  permit 
us to express the components cry. and crxz of the stress tensor as 

The  moment of torque is  given  by 

(17.233) 

(1  7.234) 
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where dQ is an element  of the cross-sectional area.  Equations (17.233) and 
(17.234)  lead to 

(17.235) 

The integral with  respect to the cross-sectional area in the moment  of torque 
can alternatively be  expressed  in vector notation as 

-2  rVF'dQ J, 
and according to the well-known  formula  of vector calculus, 

we  find 

( l  7.236) 

(17.237) 

V(rF)dQ - FVrdQ = -2 rFdQ 3.2 FVrdQ (17.238) I, 1 f JQ 
If the cross section is  singly connected, the first integral taken along  the 
boundary surface where the condition given  by Eq. (17.222b) holds, 
becomes null. Moreover, the first integral is  taken  along the  boundary 
where F = 0, so that 

Vr = 2  (17.239) 

Accordingly, Eq. (17.238)  can  be written as 

with the  boundary conditions given  by  (see Fig. 17.6) 

d d  b b  
2 x + ") 2 +"' 2 '  Y + - z ? + -  

(17.240) 

(17.241) 

The value of the resulting integral on  the right-hand side  of Eq. (17.240)  can 
be found  from  Eq. (17.23 1) taking into account that 
pertinent result is  given  by the series I2 3 0  

2n+l 
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bd3 
3 
- [ 1 - 7 192 (5) d ~ ~ ~ a n h ~ ]  O0 1 = i f ( % )  bd3 d (17.242) 

n>O 

The function f could be tabulated for different values  of d/b. Thus  for d = b 
(square section), we obtain 

K 1  3 1 5  f(1) = 1 - 0.63 tanh- + -tanh-n + -tanh-n + a .  EZ 0.423  (17.243) [ 2 3 5  2 55 2 1 
If d/b 5 1/3, then 

~ ( d / b )  = 1 - 0.63dlb 2 0.79  (1  7.244) 

Finally, Eqs. (17.235) and (17.242)  lead to the following  expression for 
the moment of torque of a viscoelastic rod: 

(1  7.245) 

The torsional motion of the rod will  be studied following the method out- 
lined  by  Elder (1 5)  [see also the paper by Clauz (1 6)]. Let us consider again 
the rectangular sample, The relative change in the moment of a section 
placed at a distance z from the origin  with  respect to another located at z + 
dz is  given  by aM/az. This derivative is  given  by 

(17.246) 

where p is the mass  density and I is the polar moment of inertia of the cross 
section. In the present case, the derivative appearing on the left hand side  of 
Eq. (17.246) can be calculated from Eq. (17.245), thus obtaining the motion 
equation 

(17.247) 

On the other hand, the value  of I for a rectangular cross section  with 
dimensions comparable to those of the lateral faces is given  by 
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where b and d are the lateral 
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E (b2 + d2) (17.248) 12 

dimensions. Moreover, in the case  of  free 
vibrations, the boundary conditions are 

J & + M = O ,  z=.t 

a = 0 ,  z = o  
(1  7.249) 

where J is the mass moment of inertia of the disk located at the end of the 
rod. 

Substituting the equation for the moment M [Eq. (17.245)] into  Eq. 
(17.249), we obtain 

a = 0 ;  z = o  (17.250b) 

By integrating by parts  and taking into account the boundary conditions 
[Eq. (17.250)], the motion equation [Eq. (17.247)] can alternatively be  writ- 
ten as 

Jog + J~ afG(t - 0)d0 = 0, z = .t 
(17.252) 

a = 0 ,  z = o  

where Io and Jo are given  by 

1 J 
I -  

o - (bd3/3)f(d/b) ’ o - (bd3/3)f(d/b) 
J -  (17.253) 

For the solution of this system  of integrodifferential equations, we can 
adopt a method of separation of variables and develop the solution in terms 
of a series that depends on the eigenvalues and the corresponding eigenfunc- 
tions of the characteristic equation. By assuming 

a(z, t )  = $(t) sin hz (1  7,254) 

and carrying this expression to Eqs. (1’7.251) and (17.252), we obtain 
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00 

p(0)G(t - 0)d0 = - $l;(t) (17.255a) 

JO tan hz 
h p(B)G(t - 0)d0 r=: - ~ v)(t); 2 = l! (17.25513) 

Comparison of the right-hand sides  of Eqs. (17.255a) and (17.255b) for z = 
8 together with further rearrangements, give 

Pl.10 hl! tan hl. = - 
JO 

(17.256) 

This  is the secular or frequency equation, which, for convenience, can be 
expressed as 

P, tan P, = P (1 7.257) 

where p = p8.Zo/Jo and Pn = h&. It should  be  pointed out  that  the  roots of 
Eq. (17.257) are real positive numbers  depending on  the geometry of the test 
sample but  not  on the viscoelastic properties of the material. Separation of 
the real and imaginary parts leads to 

(1 7.258) 

The  imaginary part must  be zero, implying that pi = 0 for all 0;. Therefore, 
Eq. (17.258)  becomes 

An approximate solution to the frequency equation is found  for small 
values  of a, making tan p ? p + ( 1/3)p3. Then from  Eq. (17.257)  we  easily 
obtain 

(1 7.260) 

The solutions of the free vibrations problem will  be the eigenvalues 
sin h,z corresponding to the eigenvalues h,. Such functions form an 
orthogonal set in (0, 8) with the orthogonality condition 

sin h, sin hrnz dz + l. sin h,l! sin h,[ == 0 (17.261) 
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provided m # n. This  completes the free vibrations problem. 

series,  in  terms  of the former  sine eigenfunctions, in such a way that 
On the other  hand,  a suitably restricted function can be developed in a 

00 

(17.262) 

where 

p Ji +(z) sin h,z dz + @(z) sin h,[ 
p Ji sin2 hnz  dz + l sin2 h,l 

a, = (17.263) 

is the orthono~alization condition. 

$(z) = z / l  is required. In this case, 
To study the problem  of forced vibrations, the series  expansion  of 

(17.264) 

so that the orthonormalizatio~ condition for  the coefficients  is  given  by 

p Ji(z/C) sin hnz dz + C sin h,C 
p sin2 h,z dz + l sin2 h& 

a, =: 

On calculating the required integrals, we obtain 

(1  7.265) 

(17.266) 

In this case,  by  assuming a  torque M(t)  = MO, we can  proceed  in the follow- 
ing  way. 

Starting from  Eq. (17.252), we have 

00 

J@& + S, a’(@)G(t - 0)d0 = M O ;  z = C 

with the  boundary conditions 

a(z, t )  = 0; &(z, t)  = 0; t = 0’; 0 _< e 
a(z,   t)  = 0; z = 0 

(17.267) 

(17.268) 
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We consider a solution of the type 

00 

(1  7,269) 

where Q,(t) denotes a norma1 coordinate. 

(17.256) and (17.257), it follows that 
Substituting Eq. (17.269) into Eq. (17.267) and considering Eqs. 

where it was taken into account that z = C. To obtain the corresponding 
equations for the normal coordinates, it is convenient to express the applied 
torque as a series. For this purpose, by taking the derivative of Eq. (17.264) 
with  respect to z, we can write 

where 

(17.271) 

(1  7.272) 

By substituting Eq. (17.271) into the right-hand side  of Eq. (17.270), the 
following condition is found: 

A ;  
d, = a,- 

P-eIo 
(17.273) 

Equation (17.266), together with the identity Pn = h&, gives the following 
alternative expression for d,: 

By defining the variable 

(1  7.274) 
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the motion equation for an arbitrary torque can be written in  terms  of the 
normal modes as 

+ S2: 1; Q,(0)G(t - 0)d0 = M(t )  (1  7.276) 

The Laplace transform of Eq. (17.276) together with the boundary condi- 
tions 

Q(O) = Q(o) = o vn  (17.277) 

gives 

This equation leads to 

(17.278) 

(17.279) 

This type of equation appears in  many vibrating systems. The solution of 
the outlined problem  requires  knowledge of the viscoelastic properties of the 
material. In any  case, on  account of Eq. (5.58), we can write 

U ( s ) ~ ( s )  
= s2@) + szj;sr(s) 

(17.280) 

where E($) and 6(s) are, for a viscoelastic  solid,  polynomials  of  degree m, and 
the equation s2E(s) + S2;6(s) = 0, which  gives the poles of the function Q&), 
has m + 2 roots. In the simplest  case-for example, a solid standard gov- 
erned by only a single relaxation time-the  complex relaxation modulus is 
given  by  [Eq.  (10.41)] 

GI + G O ~ S  
1 +m G*(s) = sG(s)  == (17.281) 

Accordingly, the poles of Eq. (17.280) can be obtained by  solving the third- 
degree equation 

1 
S~+-- , ?+S~~G~S+-G~ a: =O (1  7.282) 

z z 
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which has a real  negative root together with  two conjugate imaginary roots, 
with  negative real part,  as can be  seen in Figure 17.11. 

In Figure 17.1 l the values  of sG(s) = G*($) and _ - s 2 / s t ;  are generically 
represented as functions of S. If the degree  of the polynomials CS($) and E($) is 
m, as mentioned above, then the number of real negative roots also is m. Let 
us consider several  physical situations. If the input is  given  by a Dirac delta 
function, as occurs in  free oscillations, the solution of the problem contains 
a transient response through an exponential or a sum of exponentials 
[according to the degree of the polynomials representing &(S) and E(s)] 
that decreases  quickly together with a damped sine  wave. 

If the input is a step, then M(s) = M0/s  and e,($) possess a pole at 
S = 0. The solution would contain, in addition to the already mentioned 
terms, an additive constant. 

If the input is a stationary sinusoidal wave, then the Laplace transform 
of the sine function, 

(1 7.283) 

introduces into the denominator of Eq. (17.279) or Eq. (17.280)  two pure 
conjugated roots  that cause a non-damped sinusoidal response out of phase 
with the input. In this case, the eigenfunction Qn(s) is  given  by 

GO 

- l l z  

Schematic location of the real root of Eq. (17.282). 
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(17.284) 

The  decomposition of Eq. (17.284) into  rational fractions can be written as 

A Bs+C Ds+E +- + 
S +  h (S+ p)2 + t2 s2 +W2 

(17.285) 

where h and kik - p are, respectively, the real and imaginary conjugate 
roots of Eq. (17.282),  while the unknown quantities A, B, C, D, and E 
are given  by 

(1 7.286a) 
[(W + 512 + P2] [(W - + P2] [(- P + h>2 + t2] 

[ &[W2 - (P2 + t2)] + 2P(P2 + t2)] - [W2 - (P2 + k2> - 2P(h - B =  
[(m + 512 + P2][(W - 512 + P2][t2 + (-P + AI2] 

(17.286b) 

[P2 + C21[W2 - (P2 + k2> - 2P(h - 2P>] 
+,c l [h(02 - (P2 + 5"] - 4P(P2 - hp - t2)) 

[(W + Cl2 + P2] [(W - !l2 + P2] [t2 + (-P + AI2] 
c -  

C =  (17.286~) 

(1 7.286d) 

-W4[(-P + h>2 + c2] + m2((P2 + 52)2 + h2[P2 + k2 + 2P(h - ZP)]) 
+T-' (m2{(-2P - h)[(-P + h)2 + 5") + h(P2 + t2)][(P + AI2 + t2]) 

[(W + %l2 + P2][@ - + P2][C2 + ("P + AI2] 
(1 7.286e) 

After taking the inverse  Laplace  of Eq. (17.284), we obtain 
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where 

* +2 = arctan- = arctan ~ Do 
C - PB’ E (17.288) 

A s  mentioned in the chapter devoted to experimental measurements, viscous 
damping becomes important in rubbers and, in general, in amorphous poly- 
mers above the glass transition temperature. In the case  of  free vibrations, 
and for values  of tan 6 > 0.3, the torsional oscillations appear overdamped, 
and in these conditions it is  impossible to measure the frequency and the 
viscous damping. To overcome this difficulty, it is common practice to use 
as a torsion suspension wire an elastic element  with a rigidity  of the order of 
that of the material instead of a metallic thread of  negligible  rigidity. This 
was the methodology outlined in the chapter 7 [see Eq. (7.1)].  Since the 
constant of torsional rigidity depends on the moment of inertia of the sec- 
tion, and this in turn depends on the fourth power  of the radius of the 
section in the case  of circular cross sections, in practice a stainless  steel 
rod with transverse dimensions of a few  millimeters  is  used. In this case, 
the equation that governs the movement  of the free end of the viscoelastic 
rod under torsional oscillations will  be 

CO 

JOG + Ka + a’(Q)G(t - 0)dQ = M(t);  z = l (17.289) 

where fir represents the elastic constant of the new  element introduced. 
Therefore, Eq. (17.289) represents a modified  version of Eq. (17.267). If,  as 
above, a solution in terns of separate variables is adopted, that is, a(z, t )  = 
@(t) sin hz [see Eq. (17.254)], it is  easy to obtain from Eq. (17.289), and  for 
z = 8 ,  the expression 
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where 

(17.291) 

as obtained from Eq. (17.255a) after taking the Laplace transform and using 
Eq. (17.256). 

Equation (17.290) leads to 

(l 7.292) 

and consequently the function &(z, S) can be written as 

U sin hz &(S) 

hl(Jos2 + K )  sin hl - p&Ios2 cos U &(z, S) = (17.293) 

The poles  of G(z, S) are the zeros  of the equation 

~ B ( J ~ s ~  + K )  sin - pt1,2 cos U = o (17.294) 

and from here we obtain 

(17.295) 

where, as usual, 

P = P&Io/Jo (1  7.296) 

Equation (1'7.295) together with Eq. (1'7.291) determine the real zeros. For 
small  values  of the argument he, we can write 

cotU - 1 - -(U)2) h e 3  Y 
With this approximation, Eq. (1'7.295)  becomes 

(17.297) 

(17.298) 

which also can be written in the forms 
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(1  7,299) 

If the viscoelastic material under consideration is a standard solid governed 
by a single relaxation time, then by combining Eqs. (17.281) and (1'7.299), 
we obtain 

or, alternatively, 

1 3 
z Joe ( p + 3 ) Jolz 

s 3 + s 2 - + 3  e s+-(G1+3KC)=0 

(17.300) 

(17.301) 

As indicated in Figure 17.12, the real solution of Eq. (17.301)  is nega- 
tive. The  other two solutions are imaginary  conjugated  with  negative real 
parts. It is important  to  point  out  that in this case, and in contrast with the 
situation in which the auxiliary elastic element  is  missing, the values  of h 
depend not only on the geometry but also on the viscoelastic properties of 
the material Eq. (17.291)- 

On the other  hand, the comments  made for  the case  of nonutilization of 
an auxiliary elastic element  in relation to the different types  of response are 
also pertinent in the present context. In fact, if the trigono~etric functions 
appearing in Eq. (17.293) are approximated by 

1 1 
sin Le E Le- - (Le)3 and cos he E l - - 6 2 (17.302) 

then the following equation  for G(z, S) is obtained: 

or, alternatively, 

(1  7.304) 
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I 

- llz -(l+;) 
.......................... " ,,,,,.,,,,..,. ~ ...,....,... ~ ........................ ,,,, "" .,,.,,,..... .. ............................... ,.,.,..,,.. . 

9 

Schematic location of the real root of Eq. (17.301). 

The appearance  of a double pole is not a serious problem,  because we can 
make the approximations 

(17.306) 
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(17.307) 

where 

It  can be observed that the solution of this problem is  similar to  that of the 
case already studied with K = 0. 

ETS 

Calculate the displacement of a beam that behaves as  an elastic  solid under 
compression but as a viscoelastic standard solid  in shear. The flexural 
moment as  a function of time is M(t)  = MH(t) ,  where H(t)  is the  step 
function. 

Let  us take  as  the origin of coordinates the middle point of the  bar, which 
will  be assumed  fixed. It is more convenient to start by solving the elastic 
case and then consider the viscoelastic one by making use  of the correspon- 
dence principle. 

From Eqs. (17.1),  (17.2), and (17.3), the components of the stress and 
strain tensors are 

(P17.1.1) 

where A4 is the flexural moment, E is the tensile modulus, and v is the 
Poisson ratio.  The  strain tensor components  as 

(P17.1.2) 

and 
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Y X Z  = Yxz  = Y y z  = 0 (P17.1.3) 

By integrating Eq. (P. 17.1.2) the following  expressions for the displacements 
are obtained: 

u,=?+C~(y,z); u Y = - g + C 2 ( x , z ) ;   u z = - ~ + C 3 ( x , y )  R (P17.1.4) 

Furthermore, the displacements at the origin (0, 0,O) are zero, that is 

U, = Uy = U ,  = 0 (P17.1.5) 

Moreover, in order to eliminate rotations of the body as  a whole, the fol- 
lowing equations at (0, 0,O) should be  fulfilled: 

Equations (P17.1 A )  and (P17.1.6)  imply that 

and 

The derivative of Eq. (P17.1.7a)  with  respect to y gives 

a2c1cv9 = 0 This implies that Cl = f ( z )  + ay + b 
ay2 

(P17.1.6a) 

(P17.1.6b) 

(P17.1.7a) 

(P17.1.7b) 

(P17.1.8) 

where, on the basis  of the conditions (P17.1.5), b = 0. Then 
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(P1  7.1.9) 

~ntegrating with  respect to x, the second equality in Eq. (P17.1.9)  gives 

C,(& 2) = -x2/2R - ax + g(z) + d (P17.1.10) 

rom Eq, (P17.1.5), d = 0. By taking the derivative of Eq. (P17.1.10)  with 
respect to z and taking into account Eq. (P17.1.7c), we obtain 

oreover, Eqs.  (P17.1.7) and (P17.1.8) indicate that 

(P17.1.11) 

(P17.1.12) 

ince C3 is independent of z, f ' ( z )  =  constant), and 

c3 = m x + n  (P17.1.13) 

Therefore, aC3/ay = 0. From Eq. (P17.1.4~) and the conditions given by Eq. 
(P17.1.5), n = 0. Integrating (P17.1.11), we obtain 

(P17.1.14) 

where, according to Eq. (P17.1.5), h = 0. Therefore, 

x2 vz2 
c1 =f(z) = mz; c, = " +"-ax; c3 ==mx (P17.1.15) 2R  2R 

Moreover, Eqs. (P17.15a) and (P17.1.9)  imply that 

a=O 

while Eq. (P17.1.7b)  shows that 

(P17.1.16) 

" ') implying that m = -m and, consequently, m = 0 
aZ 
- -~ 

ax 
(P17.1.17) 

This result suggests that Cl = C3 = 0. Hence Eq. (P17.1.4) can be written as 
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X Y  U, = - R (P17.1.18a) 

vy2 x2 vz2 l 
uy = -G - 2ip +"-=-" 2R 2R[X2 + v(y2 - z2)] (P17.1.18b) 

U, = -vyz/R (P17.1.18~) 

For the plane section containing the origin of coordinates, x = 0. Then 

V VYZ 
U, = 0; uy = -&l2 - z2); U2 = " R (P17.1.19) 

Assuming that the dimensions of the transverse cross section are a and b, the 
values  of uY and U ,  for z = k b / 2  are 

while for y = k a / 2 ,  

(P17.1.20) 

(P17.1.21) 

These equations suggest that the superior and inferior faces  of the cross 
section are  distorted, forming parabolas. For a section in  which x + 0, for 
example x = xo, the x component of the displacement, given  by 

XOY U, = - R (P17.1.22) 

indicates that the elementary  flexion  preserves the flatness of the cross sec- 
tions. 

I f y = z = O ,  then 

uy = -x2/2R  (parabola) (P17.1.23) 

along the x axis.  According to this equation, d2uY/dx2 = -l/R, thus justify- 
ing considering R constant along the beam,  This fact implies that the beam 
is  deformed as a circumferential arc. 

The viscoelastic solution of the Euler-Bernoulli equation,  Eq. (17.15b). 

can  be  obtained by means of the elastic-viscoelastic  correspondence 
principle 
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iig.(s) = ~ / ( s E ( s ) I )  

Chapter 17 

(P17.1.25) 

(P17.1.26) 

= - [x2 + sij(s)(y - ."] - 21 (P17.1.27) 
-1 

(P17.1.28) 

In the preceding  expressions E(s) and v(#) should be written in terms of the 
operators P,, Q,; 01 = 1,2. The corresponding expressions are 

(P1  7.1.29) 

(P1  7.1.30) 

(P17.1.31) 

where  use has been made of the equations developed in Problem 16.2 (Chap. 
16). On the other  hand, taking the Laplace transform of the applied 
moment, that is, &?(S) = MO/s, we obtain 

(P1  7.1.32) 

(P17.1.34) 

whose Laplace inverses are 
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(P17.1.35) 

(P17.1.36) 

(P17.1.37) 

The initial values are  obtained by making t = 0 in. these equations. 
Accordingly, 

(P17.1.38) 

(P17.1.39) 

(P17.1.40) 

The longtime behavior is found by taking  the limit of Eqs. (P17.1.38)- 
(€317.1.40) as t "+ m, that is 

XY 1 
El 

U&, y ,  00) = - p 4 0  - (P17.1.41) 

(P17.1.42) 

U,', z, 00) = - - (P17.1.43) 

7. 

Determine the shape of a single cantilevered beam, whose material behavior 
in tension is that of a viscoelastic standard solid, under  a  load P applied at 
its free  end and  a uniform load PI per unit length of the beam (see Fig. 
P17.2.1). 
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P 

The differential equation for the deflection y of a slender elastic beam under 
the hypothesis of linearity is  given  by Eq. (17.19a), 

d2u, 1 - = “(x) 
dx2 EI 

(P17.2.1) 

where the minus sign  in  the  deflection has been disregarded. In this equation 
M(x, t )  is the flexural moment, I the polar moment of inertia of the trans- 
verse section, and E the elastic modulus. For a viscoelastic material, Eq, 
(P17.2.1) can be written as 

d2u  (x ,   t )  
dx2 

I y  = I, D(t - 0)hi (x ,  0)  de (P17.2.2) 

where D is the tensile compliance [see Eq. (17.13a)l. According to the prin- 
ciple  of superposition of loads and deflections, and assuming that the load P 
is applied at a time to after PI is applied, the momentum at t > to is 

M ( x ,   t )  = -P(Z - x )N( t  - to) - -(Z p1 - X)2H(t) 2 (P17.2.3) 

where E is the length of the bar, x the distance from the clamping to a generic 
point, and H(t)  the unit step function. 

The Laplace transform of Eq. (P17.2.2)  is  given by 

d2ii (x ,  S)  

dx2 
I Y  = S B ( S ) l l ? ( S ,  x )  (P17.2.4) 

where 
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while the Laplace  transform of the momentum equation, (P17.2.3),  is  given 
by 

Moreover,  according to Eq. (10.31), the following expression for a visco- 
elastic standard solid holds: 

S.&) = D, + D 2 y l  + W) (P17.2.7) 

Integration of Eq. (P17.2.2)  using the boundary conditions 

uy=O,  -=0 duy f o r x = O  (P17.2.8) 
dx 

gives 

(P17.2.9) 

whose  is  given by 

(P17.2.10) 

Study the free and forced transverse vibrations of a beam  clamped at one 
end and free at the other when the force is applied at the free end. 

This is a modified version of the problem  solved  in section 17.10, though  the 
boundary conditions are different. However, new aspects of the general 
problem of a transverse vibrating beam are considered here. 
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The expressions for free and forced vibrations are given,  respectively,  by 
Eqs, (17 .85) and (17.99).  If the origin of coordinates is taken at the clamped 
end of the beam, the assumed boundary conditions are 

qo, t )  = U i ( 0 ,  t )  = @;(e, t)  = uy‘f’(e, t )  = 0 (P17.3.1) 

where  in  this  case C is the length  of the beam. We consider the two  cases 
separately. 

Case I ,  In the free vibrations case the secular or frequency equation is 
easily obtained as 

whose  lower  mode  is  given  by he = 1.875 and 

2n - 1 he = - 2 n (P17.3.3) 

for n 2 5. 
According to Eq. (17.88), a resonance  frequency  is obtained as 

CO2 = p4sE(s)r/pAE4 (P17.3.4) 

for each  value  of p, where p = LC, and the remaining  symbols  have  been 
defined in the main text. 

Case 2, In the case  of  forced vibrations, and following the double 
Laplace transform method, we obtain 

+ii;(O, $(cosh hx - cos Ax) + _f- ijf”y(O, s)(sinh hx - sin hx) 
h 

In order to find GJ(0, S)  and ii”’y(O, S), we must calculate $(x, S) and 
iiy (x, S) at x = C, where, according to the boundary conditions, these  deri- 
vatives are zero. 

Moreover, if C’ = C after the pertinent derivations in Eq. (P17.3.5), the 
following  system  of equations is obtained: 
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hii;(O, s)[cosh hl - cos hl] + ii’”,(O, @[sin hhe - sin LC] = 0 (P17.3.6a) 

hii;(O, s)[sinh 2he + sin 2hl] + iil’ly(O, s)[cosh 2hl - cos 2hl] = - (A) 
s2 + o2 sE(s)l 

(P17.3.6b) 

These equations lead to 

sinh he + sin he 
1 + cosh he cos he ii;(o, S) = a 

and 

l// cos hl + cosh hl 
1 + cosh h8 cos hL ii, (0, S) = -ha 

where 

Fo 
&(S) = 

(S2 + w2)sE(s)lh 

(P17.3.7) 

(P17.3.8) 

(P17.3.9) 

After substituting these equations into Eq. (P17.3.6), the maximum  deflec- 
tion at the end of the beam  is  given  by 

sin hl cosh he - sinh hl cos hl 
iiy(l, S) = ( 1 + coshhecoshe ) (P17.3.10) 

(S2 + w”sE(s)lh3 

when the load is applied at the end of the beam. By expanding in  series the 
trigonometric and hyperbolic functions appearing in Eq. (P17.3.10) and 
taking the first terms in the corresponding expansions, we obtain 

Fo13 
3(s2 + o2)sE(s)l 

G,(& S) = (P17.3.11) 

When the driving frequency  is  close to the natural,  or in this case, the 
resonance frequency, the amplitude of the vibration for low-loss materials is 
dominated by the contribution of this mode. Writing S = -h + im, where 
2h m tan 6, ur we have 

uy 2 [(wf - 02)2 + 4h2w2]-1/2 (P17.3.12) 

The deflection has a maximum at m = m,, given by 
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(P17.3.13) 

Note  that if o1 and o2 are two frequencies at each  side  of m, the 
following relationship holds 

C 4  = &sax (P17.3.14) 

where C is a  constant. Then,  according to Eqs. (P17.3.13) and (P17.3.14), C 
can  be written as 

(0; - W:)2 C = l +  
W$ tan2 6 

(P17.3.15) 

where i = 1 , 2  and o % m1 0 2  G+ m,. From this equation  and assuming 
that C = 2, we obtain 

A m  tan6 G+ - 
W 

(P17.3.16) 

where A m  = 0 2  - 01. This equation is frequently used  in  resonance experi- 
ments to determine tan& 

Finally, to  obtain  a closed solution, we assume a viscoelastic material 
[Eq. (10.41) for which 

sE(s) = (El + Eo7s)/(l + 7s) (P17.3.17) 

The  corresponding  inverse  Laplace for the equation of the deflection  is 
obtained from Eqs. (P1'7.3.11) and (P17.3.17). The final result is 

(P17.3.18) 

where 

(P17.3.19) 

The response consists of a decreasing exponential and  an out-of-phase 
sinusoidal wave. A s  we can  see, this result is formally similar to those 
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obtained in the main text, the differences arising, of course, from the bound- 
ary conditions. 

According to each  one of the three formulas for shear correction in a beam 
ect. 17.10), estimate the values  of dl1 for which the corrections due to 

shear effects are less than  5%. 

Let 

1 + C(d/Z)2 5 1.05 (P17.4.1) 

C being a  factor  that depends on  the  approach followed to obtain the shear 
correction. The  values  of dl1 are 0.129, 0.153, 0.167,  respectively.  These 
results suggest that if the accuracy of the experiment  device to calculate 
the tensile  modulus  is better than  5%, corrections due to shear effects are 
unnecessary for values  of dl1 lower than 0.1. 

A s  a first approach, let us assume a sinusoidal shape for  the deformed  beam 
considered in Section 17.1 l ,  given  by 

From this expression, calculate the value of Q' given  in Eq. (17.199) and 
discuss its accuracy  in  comparison  with the more so~histicated calculation 
outlined in the main text. 

y substitutin~ the proposed expression for uy into Eq. (17.185) and sub- 
sequent integration, we obtain 

(P17.5.1) 

where L = 21. 
Then the  non thermal total longitudinal tension. Q' can be written as 
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(P17.5.2) 

It can be  seen that if E E Ep, the discrepancy  with the more correct result 
given  by Eq. (17.203)  is  less than  3%. 

Find the torsion function and the torque for a viscoelastic  hollow rod of 
elliptical cross section. 

We have  shown  in  section  17.16 that the function P must be constant on the 
boundary of a simply  connected  section.  Actually,  since the applied  forces 
on the lateral surfaces are zero, the function F for a multiply  connected 
cross section must be constant along each boundary. However, the con- 
stants are not the same, and only one of  these constants can be arbitrarily 
chosen. 

Let  us  consider the doubly connected  cross  section of the elliptical rod. 
Without losing  generality we shall  consider P to be zero on the outer bound- 
ary. The value  of P on the inner boundary is  determined by the condition 
that the warping U, must be single-valued. The line integral along the con- 
tour line corresponding to the inner boundary is  given  by 

where the displacement U, is  expressed  in terms of the torsion function \I/ and 
the relative torsion angle aa/az. Taking the Laplace transform of the stress- 
strain relationships [Eqs.  (17.214), we obtain 

(P17.6.2) 

(P17.6.3) 

By substituting these equations into the Laplace transform of Eq. (P17.6.1), 
after some rearrangements, we obtain 
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Since U ,  is a single-valued function and the integration is  taken over a closed 
path, the left hand side  of Eq. (P17.6.4)  is zero. Accordingly, 

ac;l(s) 
az 

~ ~ ( s ) d x  + cS-,(s)dy] = 2sG(s) - A (P17.6.5) 

where A is the area enclosed  by the inner boundary. This equation must also 
be  fulfilled  by the torsion function F. In general it is  difficult to find  such a 
function that satisfies these conditions. However, if the solution for a solid 
rod is  known,  a solution for the hollow rod  can be  easily found. 

The equation of the  outer  boundary  for a solid elliptical cylinder having 
as axes  2a and 26  is 

x2 y2 
-+--l  
a2 b2 - 

Let us assume a stress function 

(P17.6.6) 

(P17.6.7) 

where k is a constant. Then F vanishes on the boundary,  and from AF = -1 
[Eq. (17.223)],  we obtain 

k = -a2b2/2(a2 + b2) (P17.6.8) 

From knowledge  of the function F it is  easy to obtain a\lr/ax and a$/ay, 
and according to Eqs. (P17.6.2) and (P17.6.3) the shear stresses are given  by 

a2 + b2 

and 

a2 + b2 

(P17.6.9) 

(P17.6.10) 

from  which we obtain 

(T~~/(T~, = -xb2/ya2 (P17.6.11) 

On the other  hand, from the equation of the ellipse we easily  find 
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y’ = -xB2/ya 2 (P17.6.12) 

Equations (P17.6.11) and (P17.6.12) indicate that  the shear stress at any 
point within the cross section of an elliptical cylinder under torsion is tan- 
ent to  an ellipse passing through this point with the same  axis ratio, a/b, as 

that of the boundary ellipse. In  other words, the lines  of shear stress are 
concentric ellipses.  Consequently, the inner boundary also coincides with a 
line  of shear stress. Therefore the shear stress acting normally on the internal 
surface parallel to the z axis in null. Moreover, if a concentric cylinder is 
removed from the rod, the stress distribution in the remaining portion will 
be the same as in the solid cylinder. For this reason, the stress function will 
be  given  by 

(P17.6.13) 

Now we consider the hollow elliptical cross section obtained from  the 
solid  cylinder  where a concentric elliptical area has  been  removed.  The  axes 
of the area eliminated are respectively 212a and 2kb, where, obviously, k < 1. 

The  moment  of torque  can be calculated in the usual way as the differ- 
ence  between the torque acting on the solid cylinder and the torque corre- 
spondin~ to the part removed to produce the hollow cylinder. For the solid 
cylinder, and according to the prescriptions made in the main text [Eqs. 
(17.235) and (17.245), 

(P17.6.14) 

is the area of the cross section. The  double integral can  be calcu- 
lated as follows: 

where the first two integrals on the right represent the moment of inertia of 
the cross section about the y and x axes,  respectively,  whereas the third 
integral is the area of that cross section. The  values  of  these three intervals 
are  respecti~ely given  by  (7c/4)a3b,  (7c/4)ab3, and 7cab. If the value of k given 

7.6.8)  is taken  into account, the moment  of torque given  by Eq. 
can  be written as 
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na3b3 O0 a2a 
a2 + b2 0 aTae M =”I G(t - @)-de 
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(P17.6.16) 

Then, the total  torque will  be  given  by 

By making a = b in Eq. (P17.6.17), the torque  for a cylinder  of circular cross 
section is  obtained as 

(P17.6.18) 

where r ,  and rl, respectively, are the outer  and inner radii of the hollow 
circular cylinder. 

Study the forced oscillations in a straight circular viscoelastic  cylinder  (see 

Z 
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To solve  this  problem we shall start, as usual, with the elastic  case,  using 
cylindrical coordinates. According to  Problem 4.6 (Chap. 4), the equation of 
motion is 

(P17.7.1) 

where it has been taken  into  account that U ,  = U, = 0 and U$ = iie(r, z, t). 
Here  volume  forces are not considered, and consequently be = 0. From the 
stress-strain relationship we find 

where the strain tensor components, according to  Problem 4.2 are given  by 

(P17.7.3a) 

Yrr = 0; Yzz = 0 (P17.7.3b) 

After  accomplishing the appropriate substitutions in the equilibrium 
equation, we obtain 

(P17.7.4) 

Assuming a linear  dependence of ue upon r,  

Yre = Ye2 = %l = ore = 0 (P17.7.5) 

Thus the only nonzero  component of the stress tensor is q Z .  Therefore the 
equation of motion will  be 

$U, p a2ue 
az2 - G at2 
” ” 

After separation of variables, we can write 

(P17.7.6) 

UQ = r f(z) exp(iwt) (P17.7.7) 
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whose substitution into Eq. (P17.7.6)  leads to 

f " ( Z )  + Gf PO2 (2)  = 0 (P17.7.8) 

The solution of the viscoelastic problem is found by assuming 
G = G*(o). By assuming furthermore that the sample is  fixed at z = h and 
that the torque is applied at z = 0, the solution of the previous differential 
equation is  given  by 

From  Eq. (17.246) 

(P17.7.9) 

(P17.7.10a) 

where 

a = ue/r = f ( z ) P  (P17.7.10b) 

Moreover, M(t)  = MO exp(iot), with I = (./2)R4, where R is the radius of 
the circular cylinder. 

Integrating Eq. (P17.7,10), we obtain 

(P17.7.1 la) 

where 

@(h, t )  = 0 = eiWt(A sin Q* + B cos Q*) (P17.7.13) 

These conditions imply that A = -B cot Q*. Therefore, 
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If G* is  known, the torsion angle a(0, t )  at z = 0 is  given  by 

2M(O, t)Q* 

TCR4po2h 
a(0, t )  = tan st* 

Chapter 17 

(P17.7.14) 

(P17.7.15) 

where a(0, t )  is a complex value. 

given torque  can be calculated. If the inertial terms  can  be  neglected, 
Conversely, if the torsion angle is known,  then the modulus, G*, for  a 

1 "(0, t )  nR4 
a(0, t )  2h cot st* E - st;2* and - - - -G* (P17.7.16) 

ote that neglecting the inertial terms, we linearize the problem in terms of 
in". If the applied torque at z = 0 is  known, then a(0, t )  is a complex quan- 
tity, its modulus  being f ( 0 )  and its argument the phase angle between the 
modulus and  the applied torque. 

In  order  to explain and solve the problems inherent to the calculation of the 
complex  modulus  from  free vibration experiments, Markovitz  (17)  proposed 
the resolution of the following problem. 

An infinite slab of  viscoelastic material is located between a fixed infinite 
plane at x = 0 and a perfectly  rigid, infinite, flat moving plate having a mass 
per unit area A4 at x1 = 1. The motion of the plate in the X direction is 
restrained by a purely elastic slab and by the viscoelastic  sample  (see Fig. 

17.8.3).  When the plate undergoes a displacement  in the transverse direc- 
tion, it will  experience a force per unit area ~ U ~ ( t )  due  to the elastic element 
and  a stress oxz due  to the viscoelastic one, ox, being 
deformation as well as on the properties of the sample. 
and noninertial responses. 

If an external force per unit area, F($), is applied to the rigid plate in the x 
direction, a displacement U is  produced, and the motion will  be governed by 

M& + ox,(& t )  + ku,(t) = P(t) (P17.8.1) 
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plate 

First we study the problem for F(t)  = FOG(t), where 8(t) is the 
function, as is usual in the study of  free vibrations. According to the con- 
ditions of the problem, the displacements will  be 

U, = U(2, t); U)) = 0; U, = 0 (P17.8.2) 

Since  in this case the only  component  of the tensor of  deformation is 
yxz = yzx, the general stress-strain relationship is  given  by Eqs. (5.73) as 

ay.. 
a0 "00 

G(t - 0 ) 2 d 0  + 6, S' [K(t - 0) - 

where K and G are, respectively, the bulk and shear relaxation moduli. 
According to the conditions of the present problem, the only nonzero  com- 
ponents of the stress tensor are 

and the equation of motion  expressed in terms of the displacements is 
reduced to 

(P17.8.5) 

since  in this case yxz = (l/:! &.J&) and  the comma  in the subscript x, zz 
means differentiation with  respect to z. 

The boundary conditions are 

U ( 0 ,  t )  = 0; U(& t )  = U, (P17.8.6) 
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The Laplace transform of Eq. (P17.8.5) can be written as 

- a%&) G($)------- = PsU,(S) dz2 (P17.8.7) 

whose solution is  given  by 

E,(z, S) = A exp(qz) + Bexp(--qz),  q = [ps/G(~)]”~ (P17.8.8) 

The coefficients A and B, calculated from the boundary conditions, are 

A = - - B = -  Ern ( 4  (P17.8.9) 
2 sinh ql 

Consequently, 

sinh qz 
sinh ql 

E&!, S) = E,(S)- 

and 

- cosh qz 
(3,,(~, S) = ~SG(S)~,,(Z, S) = ~sG(s)&(s) - sinh q l  

(P17.8.10) 

(P17.8.11) 

The Laplace transform of Eq. (P17.8.1) together with Eq. (P17.8.11)  lead to 

m 
= u(0) = 0; zi(0) = 0 (P17.8.12) Ms2 + k + qpG(s) coth ql ’ 

From Eqs. (P17.8.10) and (P17.8.12) we have 

F($) sinh qz 
(Ms2 + k)  sinh qC + qsG(s) cosh qC 

E,(& S) = (P17.8.13) 

which  is the sought solution. 
In order to complete the problem it is  necessary to specify F(t )  and G(t). 

It should be noted that Eq. (P17.8.13) represents the solution of many other 
problems, depending on the form proposed for i ( s ) .  Each case requires a 
specific treatment. Let us consider first the noninertial solution. 

As we have  seen  in the previous section, the density  of the sample 
included on the right-hand side  of the equation of motion gives, as a 
solution of the problem, the propagation of the stress wave through the 

sample. In the present context, this part of the phenomenon is  of  limited 
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interest and in a first approach can be ignored. In these conditions, the 
noninertial equation of motion becomes 

d2U,(z, S) 

dz2 
" - 0  (P17.8.14) 

whose solution is  given  by 

21, = az + b (P17.8.15) 

By taking into account the boundary condition given in *Eq. (P17.8.6), we 
obtain 

Hence, 

oxz = SG(S)~~(S)/l (P17.8.17) 

;cl&) = F(s)/[Ms2 + k + sG(s)/l] (P17.8.18) 

6, = F(.r)z/[(Ms2 + k)l + sG(s)] (P17.8.19) 

Note once more that the suppression of the inertial terms is equivalent to 
linearizing the hyperbolic and trigonometric functions appearing in the pro- 
blem, 

Let us consider once more the input F(t)  = Folj(t); then &S) = Fo. For a 
standard solid  (see Chap.  lo), we have 

(P17.8.20) 

Since 

(s(s)/E(s) = sG(s) (P17.8.21) 

the Laplace transform of Eq. (P17.8.20) can be written as 

(P17.8.22) 

By combining Eqs. (P17.8.19) and (P17.8.22) we obtain 
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Foz(G1 + G2 + ~ G 2 s )  
?&.(S) = 

MlzG2s3 + Ml(GI + G2)s2 + 7sG2(GI + k t )  + GIG2 + kl(G1 + G2) 
(P17.8.23) 

For convenience, this result can be  expressed in terms of the nondimensional 
quantities 

(P17.8.24a) 

(P17.8.24b) 

Then 

If it is supposed that the denominator has a negative real root (-h) and two 
imaginary  conjugated roots (--p j, is), we obtain 

with 

h+2P  = l/g (P17.8.27a) 

P2 + 2Ph + t2 = (1 + g+)/Pg  (P17.8.27b) 

VP2 + k2) = (1 + $>/PS (P17.8.27~) 

, and C in Eq. (P1’7.8.26)  being 

g-I - h g-l - h P2 + 5’ - g 3 2 P  - h) 
(P - + 5’ ’ (p - h)2 + k2 ’ (P - + 5’ 

A =  * B = - A - ” -  * c= 
(P17.8.28) 

17.8.25) becomes 

(P17.8.29) 

aking the Laplace  inverse  of Eq. ( 17.8.29), we finally obtain 
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(P17.8.30) 

or, alternatively, 

(P17.8.31) 

where 

(P17.8.32) 

In this equation,  the logarithmic decrement  (assuming that 111 >> ID/) will  be 

A = 2np/k and o = C / T  (P17.8.33) 

It should  be  stressed that the form of the response is not altered if l: = 0, 
that is, if the material that  surrounds the vibrating slab is  viscoelastic.  The 
obtained solution consists of a decreasing exponential and  a damped out-of- 
phase sinusoidal wave. 

Let us now  assume an  input of the rectangular type, according to 

f ( t )  = H@), 0 5 t 5 a 

f ( t )  = 0, t > a 
(P17.8.34) 

whose  Laplace  transform is 

[l - exp(-as)]/s (P17.8.35) 

In this case, the displacement will  be  expressed as 



- z(G1 + G2 + ~G23) 
U, = - 

Mt1;G2s3 + Mt(Gl + G2)s2 + zsG2(GI + kt) + GIG2 + kt(G1 + G2) 
(P17.8.36) 

By employing the nondimensional quantities given  by Eqs, (P1'7.8.24), Eq. 
(P1'7.8.36)  becomes 

(P17.8.37) 

Let  us calculate first the Laplace inverse  of the function 

+ + g-l (P17.8.38) 

It can be written as 

(P17.8.39) 

where A ,  B, and C are given as functions of p, 6 g, and h in Eq. (P1  7.8.28). 
Then, by using Eq. (P17.8.24c), the first term of Eq. (P1'7.8.39)  becomes 

whose  inverse  is 

(P17.8.40) 

(P17.8.41) 

On the other hand, the second term of Eq. (P17.8.39) can be written as 

B++C S + C/BT 
S(02 + 2+p + p2 + t2) + (2P/Z)S + (C2 + P2)/z2) 

(P17.8.42) 
S - (l /Cz)[B(t2 + p2) - 2pCJ 
s2 + (2p/z)S + (C2 + p2>/z2 

) 

whose Laplace inverse  is  given by 
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exp(-!t) sin(:t + 6)] 

or, alternatively, 

where 

Hence, the inverse  of  (P17.8.37)  is  given  by 

C +- 

x [ e x p ( - $ ) s i n ( ~ + s )  -exp(-s(t-a))sin( : (t-a)+6)]}  

(P17.8.46) 

where A and C are given  by Eq. (P17.8.28). 
Let us consider  now a more realistic input, defined as 

f(t) = sin(nt/a), 0 5 t 5 a 

f(t) = 0, t > a 

whose Laplace transform is 

(P17.8.47) 

(P17.8.48) 

In this  case, the following  expression for the deformation is obtained: 
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y using the methodology described above, U, can  be  expressed in terns of 
the dimensionless variables f, g, 4, Ji, and p as 

or 

1 (P17.8.51) 

where A, B, and C are functions of g, h, p, and 5 as usual. 
The  Laplace  inverse of the previous expression can be  expressed as 

+ UT2 sin(’(t - a> - 6) + UT2 2 2exP(-;(t-tl))] h 
n:(h2a2 + n: 2: ) a2h2 + n: 2: 

1 +- 
22 

1 

x [(Cp - B2:v)pT - Cz(v - 2 )  - 2p(Bza2 4- c p  - SW)] 

+ t2(B2:a2 + c p  - 

1 2 

} ‘ I2  

(P17.8.52) 

where 
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a = n/a 
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(P17.8.53) 

and 

6 = arctan( - 2) (P17.8.54) 

Bz(n2/a2) + c p  - Bzv 
Bzy(n2/a2) + c ( v  - n2/a2) 

6' = arctan(- :) (P17.8.55) 

C(Bza2 + c p  - Bzv) 
zp(Cp - Bzv) - Cz(v - a2) - 2P(Bza2 + c p  - Bzv) 

6" = arctan (P1'7.8.56) 

In the preceding calculations we made use  of the following identities: 

(P17.8.57) 

where 

1 h M=------- * N=". g=- (P17.8.58) 
h2 + a2 ' h2 + a2 ' h2 + a2 

and 

Bzs + c M's + N' R's + S' 
(S2 + a2)(s2 + ps + v) - s2 + a2 + s2 + ps + v 

- 

with 

(P17.8.59) 

(P17.8.60) 

(P17.8.61) 

(P17.8.62) 

(P17.8.63) 

(P17.8.64) 
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We note that when the losses are  too large, free oscillations cannot be 
excited. For this reason it is compulsory to use the elastic auxiliary element 
in order to get information on the viscoelastic functions. A stiff elastic 
element,  with constant k, can be added to reduce the loss.  When the loss 
of the system  is  sufficiently  small, the discrepancies  between the results 
obtained from the former theory and the solution based on the classical 
second-order differential equation [see Eq. ('7.49), for example] 

M2 + K q i  + (KG' + k ) ~  = 0 (P17.8.65) 

are experimentally indistinguishable. Here K is a geometric factor, is the 
viscosity, and G' is the real part of the dynamic shear modulus. 

A s  a general rule, the larger the losses, the larger are the discrepancies 
between  these  two solutions to the free vibration problem. However, it is 
possible to have greater discrepancies  even for a low  loss material due to 
changes in the damped sinusoidal term. For a more complex linear viscoe- 
lastic material consisting of a finite number of elementary viscoelastic  ele- 
ments, the solution would include a sum of  decreasing exponential terms 
and damped sinusoidal waves. 
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Let f (t )  be a function of t ,  for t > 0. Its Laplace transform, denoted by 
L(f(t)) is  defined by 

Thus, Eq. (A. 1) transforms the function f ( t )  into a new function ?(S). 
The  sufficient conditions for the existence off@) are: 
l) f ( t )  is  piecewise  continuous  in a certain interval. 
2) I f (t )  15 Meat for some  values  of M and a. 

866 
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l) Linearity 

L(alfI(t) + a,F,(t) + . . .) = cltfi(s) + a&(s) + * * ( A 4  

2) Shift function transform 

~ ~ f ( t  - a)) = e-CIJjr(s) (A.3) 

3) Transform of the derivatives 

LCf(")(r)) = S!y(s) - s""f(0) - . . * - sf'"-2'(o) -f("")(O) (A.4) 

4) Transform of integrals 

5) Convolution theorem 

6) Initial value theorem 

If the Laplace transform of a function f ( t )  is ?(S), then f (t )  is the inverse 
Laplace transform of ?(S). Although an integral inversion formula can be 
used to obtain the inverse Laplace transform, in most cases it proves to be 
too complicated. Instead, a transform table (l), is  used to find the image 
function f ( t ) .  For more complicated functions, approximate methods are 
available. In many  cases the inverse  of a  ratio of two polynomials must be 
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calculated. A partial  fraction expansion can then be done. Notice that  the 
transformed variable S can be real or complex. In the context of the theory 

of the viscoelasticity, the variable S will  be taken as io in the case of 
forced oscillations, whereas will  be assumed as -2 + io in the case of free 
oscillations. 

Letf(t) be a  function oft ,  with the same properties than before, the Carson 
transform is then defined as 

where?($)  is the Laplace transform  off(t).  Thus, the Carson  transform gives 
us the complex dynamic modulus or compliances. 

Fourier analysis makes  it  possible to analyse a sectionally continuous per- 
iodic function into  an infinite  series  of harmonics. For  a non-periodic abso- 
lutely integrable function,  the summation over  discrete  frequencies  becomes 
an  integral 

The corresponding inverse is  given  by 

The sine and cosine Fourier  transforms  are defined,  respectively, as 

00 

= S, f ( t )  sin o t  dt (A. 12a) 

00 x(@) = lo f ( t )  cos o t  dt (A. 12b) 

and the corresponding inverses are given  by 
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For even and odd functions we, respectively,  have 

(A. 14b) 

A Stieltjes transform is a double Laplace trawform.  It can be calculated as 
follows: 

Function of the time Laplace Transform 

h(t) (step function) 
8(t) (Dirac function) 

t 
S@)( t )  

tk (k > -1) 
e-at 

pe-at 

sin at 
cos at 
e-btsin at 
eWbtcos at 
sh at 
eh at 

1 l S  
1 
S" 
1 /S2 

r(k + l)/$+ 
f/(s + a) 
r(n + l)/(s + a)"+ 
a/(s2 + a2) 
s/(s2 + a2) 
a/((s2 + b2) + a2) 
(S + b)/((s2 + b2) + a2) 
a/(s2-a2) 
s/(s2-a2) 

1. A Erdelyi, Tables of Integral  Transforms. Vol 1. McGraw Hill, New 
York. 1954. 



a-relaxation 459 
ab-relaxation 457 
Acrylic  polymers 8 
Acrylonitrile-butadiene rubber (NBR) 

Adamm-Cibbs  equation 480 
Addition  polymerization  7 
Addition polymers  4 
Affine deformation model  96,  101 
Aging  60,  475 
Alternating  copolymers 5 
Amorphous polymers  29,  58,  63 
Amorphous regions 29 
Amorphous  state 30 
Andrade  equation 328,  333 
Annealig  temperature  39,  477 
Arrhenius  behavior  465 
Aramid  667-669 
Atactic  configuration  14 
Average  relaxation  time  464 
Avrami equation 46 

124 

Bagley  corrections  532 
Beams  769,  770 

bending  moment  772 
balance equations 775 
forced  vibrations  792,  802 
free vibrations  789,  796 
shear stresses 779 
transverse  vibrations  789 
transverse  vibrations,  thermal 

viscoelstic  788 
Bending  770 
Benzoyl  peroxide  7 
Bingham fluids 519 
Block  copolymers 5 
Boltzman equation 93 
Boltzmann  superposition  principle 

Branched  polymers  2 
Brittle behavior  583 
Brittle-ductile transition 61  3-616 
Brittle fracture 6  13 

effects 808 

207, 208, 214,  245 

871 
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Bulk  compliance functions 171,  204, 
223,  227 

Bulk creep compliance  207,  255 
Bulk  flow  175 
Bulk  loss  compliance  255 
Bulk relaxation  modulusli 164,  165, 

201,  225 
Bulk storage compliance 255 
Bulk  viscosity  175 
Burgers  model  404 

Capillary  rheometers 521 
Carbon black  fibers  656,  659,  666 
Carbon black  fillers  1  16,  666 
Carreau model 552 
Cauchy law 5 11 
Chain  polymerization 7 
Charpy test  636 
Cholesteric 54 
Cis-conformation 16,  17 
Clamping 

effects  in the viscoelastic 

length  corrections 293 
Cold  drawing 585 
Compatibility  equations 15  1 
Complex  viscoelastic functions 

bulk  compliance  255 
bulk relaxation  modulus 256 
creep  compliance functions 250,  3 18 
relaxation  modulus 241,  251,  369 
shear stress 242 
shear  rate  deformation 242 
tensile  compliance 256 
tensile relaxation  modulus 256 
viscosity  242 

measurements  292 

Compliance  functions 

Compliance  loss 250 
Compliance parameters 172 
Composites 654 
Compressibility  coefficient  175 
Condensation  polymerization 8 
Cone-plate viscometer 539 
Configuration 13 

171,173,206,247,307,318,363 

Conformation 13,16,18,19 
Conformational isomers  13 
Conformational states 16 
Conformational transitions 197 
ConsidGre construction 590 
Constitutive  equations 140,  141,  510, 

Contact (or indentation) curved  740 
Contact (or indentation)  plane 736 
Contact (rolling)  744 
Convolution integrals 198,  225 
Cooperativity 197 
Copolymers 3,  72 

alternating 5 
block 5 
graft 5 
random 3 
statistical 3 

Correspondence principle 22  1,  709 
Couette flow  536 
Couette  rheometers 536 
Cox-Merz relation 553 
Cracks 620 
Crazes 602 
Crazing 602 

703 

crazing criteria 606 
crazing stress  607 
crazing  agents 61 1 

Creep compliance function 308,  3  13, 

Creep experiments  199-200,  205,  207, 

Creep in torsion 296 
Critical concentration 424 
Cross-link: 

370 

212 

density  104 
effect on  modulus 105 
effect on T, 71 
elastomer  networks 105 
molecular  weight  between  105 

Cross-linking reactions 10 
Cross-links 86, 104 
Cross-Williamsom  model 552 
Crystal structure 3 l ,  33 
Crystals  growth rate 45 
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Crystalline lamella  37, 38 
Crystalline morphology 3 l ,  37 
Crystalline polymers 29 
Crystalline regions 29 
Crystallization 32,  44 
Crystallization temperature 38 
Crystallinity of  polymers  32,  75 
Cure  shrinkage 663 
Curing  temperatures 66  1 

Debonding of  fibers  687 
Deborah’s  number 197 
Degree  of  crystallinity  33,  43 
Degree  of polymerization 10 
Denier 665 
DGEBA 661 
Deviatoric  component of  stress tensor 

164,  165,  704 
Die  swelling  558 
Diffusion  coeficient  428 
Dilatational  component of the stress 

tensor 164,  704 
Discotic mesophases 54 
Disengagement  time 432 
Disentanglement 197,  337 
Displacement gradient  tensor 149 
Distributed  constans models 409 
Doi-Edwards  theory 438 
Doolittle  equation 64 
Di  Marzio  and  Gibbs  equation 73 
Ductile  and brittle behavior  582 
Ductile failure 64 
Ductile polymers 582 
Dynamic 

creep  compliance functions 244 
creep  experiment 249 
mechanical  test  273 
relaxation experiments  243 
relaxation  functions 239 
viscoelastic properties 273 

Effective  sample length 283 
Eigenfunctions  827 
Eigenvalues  791, 800, 826 
End to end distance 19, 20 

Elastic: 
deformation 584 
deformation (changes in internal 

energy and  entropy ) 87,  98 
entropic compliance 206 
force  of  a network 100 
force of  a  polymer chain 95 
parameters 165,  168 

Elastic and viscous  mechanism 
modeled 359 

Elasticity  (molecular  mechanisms)  87 
Elastomers 6,  9,  85 

additives 1  16 
degradation 114 
effects  of  fillers  1 17 
in  service  111 
rigidity under compression  1  19,  121 
rigidity under  shear 121 
shear  and bulk relaxtion moduli 

thermal aging  1  14 
121 

Ellis  model  552 
Elongational viscosity  176,  177,  207, 

223 
End  corrections 283,  292 
Energy dissipation in shear  dynamic 

experiments 
creep 249 
relaxation 244 

Entanglements 337 
Epoxi  resins  661 
Ethylene-propilene  rubber 126 
Entropic elasticity 202 
Entropy of  a chain 97 
Equilibrium compliance  206,  253,  366 
Equilibrium elastic modulus 204 
Eyring’s  model  598 

Fading memory  216,  217 
Fading structural memory  196,  213 
Fatigue 639 
Fibers 41,  42 
Fiber reinforcement  654,  664 
Fibrils 42 
Fictive temperature 473 
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Fillers 1 17,  654 
Fillers- Moonan-Tschoegl equation 

327 
First-order  approximation. relaxation 

spectra  372 
First-order approximation. 

retardation spectra 374 
First-order approximations 371 
Fringed-micelle 3 1 
Flaws  61 5 
Fluoroolefines rubbers 127 
Folded  chain 38 
Forced oscilation in torsion  280 
Fourier  transforms 247,  248,  868-869 
Fox  equation 73 
Fracture energy  624-627 
Fracture toughness  6  13 
Fracture strength 621 
Fragile liquids 455 
Free  oscilation in torsion  279,  290 
Free volume  62-65, 70 
Freely  jointed  chain  23, 24 
Frequency domain 226,  242,  246,  247 
Friction  coeficient  438,  440 
Fringed-micelle  model  3 l 
Functionality  7-9,  104 

Gauche  conformation 17 
Gaussian  function  21,  22, 24 
Gel point 346 
Gelation 659 
Generalized  Newton’s  law 177 
Generalized stress-strain Hooke’s  law 

Generalized stress-strain relations 221, 

Glass-fiber  665 
Glass transition 57-75,  464 
Glass transition (molecular 

cooperativity) 468 
Glass transition temperature  57,  223 
Glassy  compliance  206 
Glassy-like  zone 328 
Glassy  Poisson’s ratio 225 
Glassy  polymer 30 

162 

226,  227 

Glassy state 57,  58,  328,  464 
Glassy  systems  (viscoelastic  functions) 

463 
Graft- copolymer 5 
Graphite 666 
Griffith theory  623 

Hardener 662 
Hardening reactions  662 
Hardening  strain 592 
Heaviside  function  199 
Helical conformation 29,35 
Higher order  approximation 375 
High-impact  polystyrene  637 
Homopolymer  2 
Hooke’s equation 141 
Hydrogen  bonding  35 
Hydrostatic pressure  165,  2 12 

Ideal elastic solids 200 
Ideal elastic systems  152 
Ideal  elastomers 92 
Ideal liquids 200,  396 
Impact 735 
Impact energy  635 
Impact-resistant  polymers  635 
Impact strength  635 
Impact tests 636 
Imperfections in polymer  networks  87 
Indentation methods  295,  735,  777 
Indifference  principle  5 1 l 
Intrinsic viscosity  525 
Irwin’s  model  628 
Isotactic configuration  14 
Isotropic liquid 55 
Isotropic solids 162 
Isotropy 699 
Izod  impact test 636 

Kauzman  temperature 456,  480 
Kelvin-Voigt  generalized  model  406 
Kelvin-Voigt  model 398 
Kelvin-Voigt solid 399 
Kevlar  3 1 , 52 
Kinetic of crystallization 44 
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Kohlrausch-~illiams-Watts (KW) 

Kronig-Kramers relation ships 253 
equation 459 

Ladder models 408 
Lami: constants 162 
Lamella 57 
Laminate 68 1 
Laplace transform 218 , 866 
LC polymers 

lyotropics 52,  55 
main-chain LC 52,  55 
side-chain LC 52,  56 
thermotropic 52,  56 

Linear dilatation coefficient  172 
Linear viscoelasticity  147,  198,  221, 

Liquid-crystal state 51 
Loss compliance functions 364 
Loss modulus 362 
Loss relaxation modulus 243,  252 
Loss viscoelastic functions 239 

252 

Main-chain LC polymers 52,  55 
Master curves  314, 31  5,  317,  321,  327 
Matrices 655 
Maxwell  generalized model 406 
Maxwell liquid 398 
Maxwell model 395 
Mean-relaxation time  197,  368,  460 
Melt index  560,  562 
Melting 46 
Melting enthalpy 48,  50 
Melting entropy 48,  50 
Melting point depression 
Melting temperature 39,  47,  50,  69 

of equilibriu~~ 48,  49 
Memory effects 212 
Memory functions 2 16 
Mesophases 53,  54 
Meso con~guration 15 

Mesogen groups 52,  53 
Microcracks 620 
Microvoids 620 
Model networks 105 

Modulus of elasticity 141 
Modulus tensor 154 
Molecular cooperativity (glass 

transition ) 468 
Molecular weight  10 
Molecular weight  between crosslinks 

Molecular weight distribution 10, 11 
Monomer 1 
Monomeric unit 1,2 
Mono-olefinic rubber 125 
Mooney-Rivlin equation 103 
Multiaxial tension 703 

105 

Natural rubber (NR) [see also poly 

Navier equations 167 
Neck formation 585 
Nematic mesophases 54,  55 
Neoprene see also polychloroprene 

Newtonian behavior 5 19 
Newtonian liquids 175 
Nomenclature of polymers 3 
Nomina stress of a rubber 100 
Non-Gaussian networks 107 
Non-Gaussian statistics of rubber 

Non-Newtonian behavior 5 19 
Nonrecoverable deformation 584 
Nontransient creep experiments 3 14 
Nontransient relaxation experiments 

Normal strains 15 1 
Notch 635 
Nucleation 44 
Number average molecular weight 11 
Nylon 5,  42,  36 

(cis-  1,4-isoprene]  123 

125 

elasticity 106 

319 

Olefinic TPES 130 
Overlapping 337 

Particulate reinforcement 654 
Phanton chains 423 
Phanton network model 100 
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Phenolics  resin 9, 10 
Physical  aging  474,  ,477 

nonlinear  behavior 482 
viscoelastic functions 478 

Piezorheologically  simple  systems  327 
Planar zig-zag conformation 29,  34 
Plane strain 721 
Plane stress 727 
Plasticizers  73-75 
Plastic deformation 584 
Plate-plate viscometer 541 
Plateau region 332 
Poisson’s ratio 166,  225,  256,  346 
Polyacrylonitrile 4,  33 
Polyamides 8, 3 l ,  36 
Polybutadiene 4, 338 
Polycarbonate 8, 475,  597,  598,  601 
Polychloroprene  (neoprene)  (CR) 4, 

Poly(ciclohexy1 acrylate) 468 
Poly  (cis-  1,4-butadiene) 33 
Poly(cis-  1,4-isoprene) (natural  rubber) 

Po~y(decamethy1en  sebacamide) 50 
Poly(decamethy1ene terephthalate) 50 
Poly(dimethylsi1oxane)  105,  338 
Poly(ecapro1actone) 49 
Poly(ethy1ene  oxide)  66 
Poly(ethy1ene terephtalate) 5, 8, 42 
~oly(ethyleneglyco1 ) 338 
Poly(ethyleneglyco1 terephtalate) 467 
Poly(ethy1methacry~ate) 329 
Poly(m-hexylmethacrylate) 329 
Poly(methy1 acrylate) 4,  32 
Poly(methy1 methacrylate) 4,  338,  458, 

Poly(methylphenylsi1oxane) 329 
Poly(p-xylene)  66 
Poly(tetra~uorethy1ene) 4,  34,  35 
Poly(tetra-methyl p-silphenylsiloxane) 

Poly(tetramethy1ene  glycol 

Poly(tetramethy1ene terphthalate) 50 

125 

9,  10,  50,  113,  339 

463,480, 484 

338 

terphthalate) 39,  41 

Poly(trans- 1,4-isoprene) (gutapercha) 

Poly(viny1 acetate) 32,  61,  338 
Poly(viny1 alcohol) 33 
Poly(viny1 chloride) 4,  13,  68,  75,  464, 

Poly(viny1  fluoride)  33 
Poly(viny1 terbutyl ether) 67 
Polydispersity  12,  434 
Polyester  resins  662 
Polyesters 8 
Polyether  ether  ketone 660 
Polyethers 8,67 
Polyethylene  4,  31,  34,  37,  41,  47,  50, 

Polyimides  664 
Polyisobutylene  67,  315,  319, 338 
Polyisoprene 4 
Polymer  mixtures 73 
Polymer network 86 
Poly~er-polymer interaction 

Polymer-solvent interaction parameter 

Polymerization processes 7 
Polymorphism 34 
Polypropylene 4,  36,  50,  62,  67 
Polystyrene  4, 7,  36,  50,  70, 3 18, 321, 

325,  328,  329,  338 
Polysulfide  cross-linking 1 13 
Polyurethanes 5, 8 
Potential energy functions 

Primitive chain 431 

50 

467, 479,480 

66, 338,467, 599 

parameter 5 1 

51 

(interactions) 460 

Rabinowitsch expression 524 
Racemic configuration 15 
Ramp experiments 21 7 
Random copolymer 3 
Rate of shear 142 
Rate of strain tensor 175 
Real compliance function 250 
Real liquids  201 
Real solids  201 
Recoverable  compliance  210,  328,  341 
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Recoverable  compliance function 309 
Recoverable  creep  compliance  3 10, 

Recoverable deformation 584 
Recovery  compliance  209, 318 
Reduced  stress  affine  model 
Reiner-  Rivlin equation 5 12 
Relative  viscosity  526 
Relaxation experiments  199-202,  214 
Relaxations in the frecuency domain 

Relaxation  modulus 202,  204,  273, 

Relaxation  spectrum 361,  372 
Relaxation time  197,  199,  360,  369 
Reptation 436 
Repeating unit 2,  3 
Resonance  294,  791 
Retardation  spectra 362,  363 
Retardation time 369 
Rheology 14 1 
Rheometry 5 19 
Rheopexy 562 
Rheovibron viscoelastometer  293 
Rivling-Ericksen equation 5 12 
Rivling-Ericksen tensors 5 14 
Rotary inertia 796 
Rotation  tensor 149 
Rouse  theory 3  12,  326 

329 

457 

315 

Saint- ena ant principle  7 10 
Scaling  laws 250 
Scaling  laws applied to the 

determination of 
diffusion  coefficient  428 
plateau  modulus 337 
relaxation times  428 
viscosity  337 

Second  law  of  dynamics  146 
Second order fluid 51 5 
Secondary  normal stress  difference 

Semicrystalline  polymer  43, 60 
Semicrystalline state 30 
Shear 

518 

compliance functions 170, 17 1, 204, 

creep  compliance 206 
deformation 149 
experiments  205 
flow  175 
forces  150 
forces  in  beams  779,  796 
modulus of the  elastomer 100 
relaxation  modulusli 165,  201,  203 
strain 151 
stress  142,  149 
thickening 5 19 
thinning 5 19 
viscosity  223 
yield  584 

223,  227,  308 

Shift factors 311,  321-323,  326, 
Short fiber composite 684 
Side chain LC polymers  52, 56 
Silica as filler  of elastomers 119 
Silicones  126 
Single crystal 37,  38 

period 38 
Slit rheometer 529 
Slow  flow approximation 513 
Small deformation  approximation 5 13 
Smectic  mesophases  53, 55 
Softening strain 592 
Spectra 31 
Spherulite 39,  40,  41 
Standar  deviation of a molecular 

weight distribution 12 
Static viscoelastic properties .296 
Statistical coil 18 
Statistical copolymers  3 
Statistical treatment of rubber 

elasticity  93 
Steady-state compliance  206,  252, 

321,  337,  339,  341,  366,  367 
Stenstein  and Ongchin  (crazing 

criterion) 607 
Stereoregular polymers  16 

Step  function 199 
Step polymers  5 
Storage compliance function 363 
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Storage  relaxation  modulus  243,  254, 

Storage viscoelastic functions  239 
Strain deviator  tensor  165 
Strain induced cristallization in 

Strain stress relations 170 
Strain tensor  147,  149,  152,  158,  166, 

221,  816 
Stretching  flow  563 
Stress deviator  tensor 165 
Stress intensity factor 629 
Stress-strain curves: 

behavior  of  crazes  61 3 
of brittle polymers 61 4 
Consid6re  construction 590 
of ductile polymers  614 

332,  362 

elastomers  87, 108 

Stress relaxation  299 
Stress-strain relations 696,  701 
Stress-strain relationship in terms  of 

the P and Q operators 705 
Stress-strain relationship  including 

thermal  effects  706 
Stress tensor  142,  146,  152,  158,  221, 

698,  818 
Strong liquids 455 
Structural memory  197 
Structural recovery  474 
Structural relaxation  475 
Styrene-butadiene  rubbers  (SBR)  124 
Styrenic TPEs 129 
Sub-glass  relaxations  465-467 
Superposition  principle 221 
Suspensions 

Swelling  of  polymer  networks  109, 
111 

Swelling  theory  of  polymer  networks 
(Flory  and Rebner) 1 10 

Symmetry  152,  154,  227 
Syndiotactic  configuration  14 

Maron Pierce equation 555 

Tensile  compliance  function  172,  207, 

Tensile  creep 298 
223,  227 

Tensile  force  141 
Tensile  relaxation  modulus  225 
Terminal  regions  335 
Thermoelastic  effects  172 
Thermoelastic  Navier equation 
Thermoplastics  6 
Thermoplastic  elastomers  127-  13 1 
Tbermorheological  simple  systems 309 
Thermosets  6,9 
Thermoviscoelasticity  706, 808 
Thixotropy 562 
Three-element standard solid 400 
Time  domain  242,  246,  247 
Time temperature superposition 

principle  306,  496 
Torsion 

creep apparatus 296 
function  818,  821,  848 
pendulum  274 
secondary  effects  280 
theory  818 

Torsional  creep 296 
Toughness  638,  657 
TPEs  for engineering  13  1, 132 
Trans  conformation 17 
Transition-like  zone 328 
Transverse  flexion  285,  789 
Transverse oscilation 285 
Tresca  (yield  criterium ) 596 
Trouton, relation 567 
Tschoegls approach 154 
Tube model  430 

Ubbelohde  viscometer 526 
Undercooling  39,  45,  48 
Unidirectional  composite  672,  677 

Vectra 52 
Vinyl  polymers 8, 32,  67 
Viscoelastic 

beams  769,  788 
behavior  238,  306 
cylinder  pipe  722 
functions  222,  252,  327 
functions and physical  aging 478 
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[Viscoelastic] 
functions for glassy  systems  463 
hollow  sphere  7 10 
liquid 209,  247,  319,  321 
loss functions 329 
material  200,  208,  245,  327,  394 
models  394 
problems  708 
rod (free oscilations) 290 
rotating disc 728 
solid 209,  314,  319,  322 
systems  227 

Viscoelasticity  197 
Viscometer  536,  539,  541 
Viscosity  52,  142,  175,  206,  338 

effect  of  molecular  weight  524,  548 
effect  of te~perature 531,  550 
intrinsic viscosity  525 

capillary 52 1 
Couette 538 
cone-plate  geometry 539 
plate-plate geometry 541 

Carreau model 552 
Cross-Williamson  model 552 
Ellis  model  551 

effect  of  pressure  532 

Viscosity deter~ination from 

Viscosity  models 

Viscous  flow: 

Vitri~cation 661 

Vogel-Fulcher-Tammann- esse 
equation 324,  455 

Voigt formulation 154,  170 
von  Mises  (yield criter~on) 594 
Vulcanization  9,  10,  1  12 

Wave propagation  in viscoelastic 

Waves in viscoelastic materials  748 
Weight  average  molecular  weight 12 
Weissenber~ effect  544 
Wil l ia~s-~andel-F~rry equation 65, 

material  294,  748 

325 

X-ray diffraction 33,  42 
Xydar 52 

Yield 
criteria 593 
mechanical test 588 
strain 584 
stress 584 
viscoelastic behavior  597 

Zener  model  403 
Zener solid 400 
Zero-shear rate viscosity from 

creep  compliance  3 12 
loss relaxation  modulus  243,  252 
relaxation  modulus  218, 252 

Zimm  theory 428 
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